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This volume originated in a causal learning “group”
(Gopnik, Richardson, and Campbell) and a series of
workshops between September 2003 and June 2004 at
the Center for Advanced Studies in the Behavioral
Sciences at Stanford University, Stanford, California.
It is well known that the center is, almost unique
among human experiences, even better than you
think it is going to be, and we are extremely grateful to
everyone at that magnificent institution, particularly
Douglas Adams and Mark Turner, the then-directors,
and the staff who made organizing the workshops such
a pleasure. We are also grateful to the Hewlett
Foundation, which supported A. G.’s fellowship at the
center. A. G. was also supported in the preparation of
this volume by a grant from the National Science
Foundation (DLS0132480), and L. S. was supported

by a National Science Foundation graduate fellowship
and an American Association of University Women
Fellowship.

The principal founder of this feast, however, is the
McDonnell Foundation. In addition to funding 
the workshops themselves, the workshops led to the
McDonnell Causal Learning Collaborative, linking
developmental and philosophical and computational
research and involving many of the authors in this vol-
ume. We are grateful to the foundation, particularly
its president, John Bruer, who saw the potential of this
unusual interdisciplinary enterprise.

Finally, we thank Oxford University Press, espe-
cially our editor there, Catharine Carlin, for all her
support on this project.
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From: mherskovits@psych.ucarcadia.arcadia.edu
To: brook_russell@turing.carnegietech.edu

Hi Brook,

We haven’t met, but I’m writing about this
series of workshops on causal learning that my
advisor and yours have cooked up for this year
at the center in Stanford. My advisor has gone
completely crazy over this causal Bayes nets
stuff and is insisting that I go to this conference
(on the pittance that supports graduate
researchers) and that I learn everything there is
to know about the philosophy and computation
of causal learning. But, every time I look at one
of the papers, all I see are unintelligible 
sentences like this: For any variable R in the
directed graph, the graph represents the 
proposition that for any set S of variables in the
graph (not containing any descendants of R) R
is jointly independent of the variables in S
conditional on any set of values of the variables
that are parents of R!

Let me give you a brief sense of where I’m
coming from, as we say in mellow Arcadia
(though I’m a New Yorker myself). I went to

Public School 164 and did my undergraduate
degree in cognitive science at the City
University of Brooklyn, and I’ve always thought
that the problem of how we learn about the
world was the most central and interesting
question cognitive science could ask. That’s why
I became a developmental psychologist. But,
I’m suspicious about whether philosophy and
computation have much to offer. The history of
cognitive development, and the study of
learning more generally, has been a history of
theoretical answers that didn’t really fit the
phenomena and empirical phenomena that
didn’t really fit the theories. What we empirical
psychologists see is that learners infer abstract,
structured hierarchical representations of the
world. And those representations are true—they
really do get us to a better picture of the world.
But, the data that actually reach us from the
world are incomplete, fragmented, probabilistic,
and concrete. So, the baffling thing for
psychologists has been how we could get from
that kind of data to those kinds of
representations.

The philosophers and computationalists
keep telling us that the kind of learning we
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developmentalists see every day is nothing but
an illusion! The Platonic (read Cartesian, read
Chomskyan, read Spelkean) view has been that,
although we seem to infer structure from data,
actually the structure was there all along. Insofar
as our representations are accurate, it is because
of a long phylogenetic evolutionary history, not
a brief ontogenetic inferential one. And, there is
no real learning involved in development but
only triggering or enrichment.

The Aristotelian (Lockean, behaviorist,
connectionist) view has been that, although it
looks as if we are building abstract veridical
representations, really all we are doing is
summarizing and associating bits of data.
Accuracy is beside the point; associationistic
processes just let us muddle through with the
right responses to the right stimuli. There aren’t
really any abstract representations, just distributed
collections of particular input-output links.

So, all that the philosophers and
computationalists seem to be doing, on either
side, is to tell us empirical developmental
psychologists not to believe our eyes. Actually,
I think Gopnik puts it quite well in her book
about theory formation (Gopnik & Meltzoff,
1997) (she does tend to let her conclusions
outstrip her data, but she sure has an ear for a
slogan):

Far too often in the past psychologists have been
willing to abandon their own autonomous theoriz-
ing because of some infatuation with the current
account of computation and neurology. We wake up
one morning and discover that the account that
looked so promising and scientific, S-R connections,
Gestaltian field theory, Hebbian cell-assemblies, has
vanished and we have spent another couple of
decades trying to accommodate our psychological
theories to it. We think we should summon up our
self-esteem and be more stand-offish in the future.
Any implementations of psychological theories,
either computational or neurological, will first
depend on properly psychological accounts of 
psychological phenomena (Gopnik & Meltzoff
1997, p. 220).

But anyway, although I’ve argued and
argued, my advisor is still insisting that I go to
this thing. And, it sounds like you’re in the
same boat. So, I’m writing to you with a deal:

How about a tutorial swap? I mean, I’ll tell you
all about causal learning in psychology if you’ll
explain those directed acyclic graphs in plain
English words? So, how about it?

All best, Morgan Herskovits

From: brook_russell@turing.carnegietech.edu
To: mherskovits@psych.ucarcadia.arcadia.edu

My dear Morgan,

Thank you for your letter of the 21st. I can’t say
that we seem to have much else in common, but
apparently your advisor matches mine in dotty
obstinacy. Mine is insisting that I read all this
barbaric and incomprehensible stuff about
subjects and methods. Worse, it appears that quite
a few of the subjects appear to be between 30.1
and 40.8 months old—sprogs in short! But, what
on earth methods for sprogs are supposed to have
to do with discovering normatively reliable
methods for causal inference I can’t imagine. He
is also insisting that I attend these workshops.

I can’t say I caught all your references. Plato
certainly, but Spelke? Gopnik? (And what
ghastly names.) However, I completely agree
with you about the lack of connection between
our two enterprises. The philosopher of science
Clark Glymour (Glymour 1992) put it very well,
I think, in his critique of cognitive theories of
science, appropriately called “Invasion of the
Mind Snatchers”: The idea that theories are
something you would find in somebody’s head,
rather than being abstract mathematical
objects, is an idea fit only for Ichabod Crane.

My own work began in my undergraduate
days at Oxford, as an attempt at a conceptual
analysis of causation. (I also am a public school
product by the way, though I find the idea of
numbered public schools rather puzzling. Would
Eton or Harrow get a lower number on your
American scheme?) The conceptual in
philosophy, of course, is not like the conceptual
in psychology. In philosophy, we want to know
what causation is in all conceivable 
circumstances, not what a few mere mortals (let
alone sprogs!) think that it is. There is a long
history in philosophy of trying to develop an
analytic definition of causation through the
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method of examples and counterexamples;
philosophers give examples of cases in which
everyone agrees that X causes Y and then try to
find some generalization that will capture those
examples. Then, other philosophers find
examples that fit the definitions but don’t seem to
be causal or vice versa.

I was working on counterexamples of
quadruple countervailing causal prevention
(you know the sort of thing where one assassin
tries to stop another assassin, but first poison is
slipped in the antidote, and then a brick hits a
wooden board before the king can brake for the
stop sign). I was beginning to find it all rather
discouraging when finally my math tutor put
me on to the theory of causal graphical models,
and it came to me as a revelation.

You see, causal graphical models are to
causation as geometry is to space. Rather than
providing a reductive definition of causation
they instead provide a formal mathematical
framework that captures important regularities
in causal facts, just as the mathematical
structure of geometry captures important spatial
regularities. Causal graphical models capture
just the right kind of asymmetries in causal
relations, allow one to generate the appropriate
predictions about conditional probabilities and
interventions, and perhaps most significantly
discriminate between conditional probabilities
and interventions and counterfactuals. So, I
decided to move to Carnegie Tech for graduate
school and work on some of the many unsolved
problems the formalism poses.

Imagine my shock, then, when my advisor,
a philosopher of science notorious for the
austerity and rigor of his views on just about
everything, began insisting that I read
psychology and, worse, child psychology!
Because, of course, it is obvious that even
sophisticated adults are unable to handle even
the simplest problems involving causality or
probability. The undergraduate students at
Carnegie Tech, for example, who, although
admittedly handicapped by an American
secondary school education, are among the
brightest and best but are quite hopeless at
these computations. Anyone who has, for their
sins, had to teach introductory statistics is aware
of that. So, how could mere sprogs of 3 or 4

years be expected to use anything like Bayes net
learning algorithms? They are, I understand,
inept at even quite elementary differential
integration problems and have, at best, only the
most primitive understanding of basic linear
algebra.

However, one of the benefits of an Oxford
education is the training it provides in
possessing a deep and thorough knowledge of
the most recondite subjects based on a brief
weekly perusal of the Times Literary
Supplement. So, I will, in fact, be grateful for a
(preferably equally brief) summary of this work.
In return, I will do my best to give you an
extremely simple introduction to causal Bayes
nets (see attached).

Yours very truly,

Brook Russell

Attachment 1: Causal Bayes Nets 
for Dummies

Causal Bayes Nets

Causal-directed graphical models, or causal Bayes
nets, were developed in the philosophy of science
and statistical literature (Glymour, 2001; Pearl,
1988, 2000; Spirtes, Glymour, & Scheines, 1993).
Scientists seem to infer theories about the causal
structure of the world from patterns of evidence.
But, philosophers of science found it difficult to
explain how these inferences are possible. Although
classical logic could provide a formal account of
deductive inferences, it was much more difficult to
provide an inductive logic—an account of how evi-
dence could confirm theories. One reason is that
deductive logic deals in certainties, but inductive
inference is always a matter of probabilities—acquir-
ing more evidence for a hypothesis makes the
hypothesis more likely, but there is always the possi-
bility that it will be overturned.

An even more difficult question was what philoso-
phers of science called “the logic of discovery.” Again,
the conventional wisdom, going back to Karl Popper,
was that particular hypotheses could be proposed and
could be falsified (definitely) or confirmed (tentatively).
The origins of those hypotheses were mysterious; there
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was no way of explaining how the evidence itself
could generate a hypothesis.

Causal Bayes nets provide a kind of logic of induc-
tive inference and discovery. They do so, at least, for
one type of inference that is particularly important in
scientific theory formation. Many scientific hypothe-
ses involve the causal structure of the world. Scientists
infer causal structure by observing the patterns of con-
ditional probability among events (as in statistical
analysis), by examining the consequences of interven-
tions (as in experiments), or usually, by combining
the two types of evidence. Causal Bayes nets formal-
ize these kinds of inferences.

In causal Bayes nets, causal hypotheses are rep-
resented by directed acyclic graphs like that of
Figure I-1. The graphs consist of variables, represent-
ing types of events or states of the world and directed
edges (arrows) representing the direct causal relations
between those variables. The variables can be discrete
(like school grade) or continuous (like weight); they
can be binary (like “having eyes” or “not having eyes”)
or take a range of values (like color). Similarly, the
direct causal relations can have many forms; they can
be deterministic or probabilistic, generative or
inhibitory, linear or nonlinear. The exact specifica-
tion of the nature of these relations is called the para-
meterization of the graph. In most applications of the
formalism, we assume that the graphs are acyclic—an
arrow cannot feed back on itself. However, there are
some generalizations of the formalism to cyclic cases.

Causal Structure and Conditional 
Probabilities

The Bayes net formalism makes systematic connections
between the causal hypotheses that are represented by
the graphs and particular patterns of evidence. The

structure of a causal graph constrains the conditional
probabilities among the variables in that graph, no mat-
ter what the variables are or what the parameterization
of the graph is. In particular, it constrains the conditional
independencies among those variables. Given a par-
ticular causal structure, only some patterns of condi-
tional independence will occur among the variables.

Conditional and unconditional dependence and
independence can be defined mathematically. Two
discrete variables X and Y are unconditionally inde-
pendent in probability if and only if for every value x of
X and y of Y the probability of x and y occurring
together equals the unconditional probability of x mul-
tiplied by the unconditional probability of y. That is 
p(x & y)�p(x) * p(y). Two variables are independent in
probability conditional on some third variable Z if and
only if p(x, y | z)�p(x | z) * p(y | z). That is, for every
value x, y, and z of X, Y, and Z the probability of x and
y given z equals the probability of x given z multiplied
by the probability of y given z. This definition can be
extended to continuous variables. When we say three
variables x, y, and z are correlated, we mean that they
are dependent in probability. When we say that x and y
are correlated but that that correlation disappears when
z is partialed out, we mean that x and y are independent
in probability conditional on z.

The structure of the causal graph puts constraints
on these patterns of probability among the variables.
These constraints can be captured by a single formal
assumption, the causal Markov assumption.

The Causal Markov Assumption For any variable X
in an acyclic causal graph, X is independent of all other
variables in the graph (except for its own direct and
indirect effects) conditional on its own direct causes.

If we make further assumptions about the parame-
terization of the graph, that is, about the particular
nature of the causal relations among the variables,
then we can constrain the kinds of inferences we
make still further. For example, if we assume that
each cause independently has a certain power to
bring about an effect and that this power leads to a
certain likelihood of the effect given the cause, then
we can further constrain the patterns of conditional
probability among causes and effects. This is a
common assumption in studies of human causal
learning. The causal Markov assumption, however,
applies to all parameterizations.

To illustrate, consider a simple causal problem that
is far too common for academics who attend many
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learned conferences. Suppose that I notice that I often
cannot sleep when I have been to a party and drunk
lots of wine. Partying P and insomnia I covary and so do
wine W and insomnia I. There are at least two possibil-
ities about the relations among these variables, which I
can represent by two simple causal graphs: Graph 1 is
a chain P → W → I; Graph 2 is a common cause
structure I ← P → W. Maybe parties lead me to drink,
and wine keeps me up; maybe parties both keep me up
and lead me to drink. The covariation among the vari-
ables by itself is consistent with both these structures.

You can discriminate between these two graphs by
looking at the patterns of conditional probability
among the three variables. Suppose you keep track of
all the times you drink and party and examine the
effects on your insomnia. If Graph 1 is correct, then
you should observe that you are more likely to have
insomnia when you drink wine, whether or not you
party. If instead Graph 2 is correct, then you will
observe that, regardless of how much or how little
wine you drink, you are only more likely to have
insomnia when you go to a party.

More formally, if Graph 1 is right, and there is a
causal chain that goes from parties to wine to insomnia,
then I ⊥ P | W; the probability of insomnia occurring is
independent (in probability) of the probability of party
going occurring conditional on the occurrence of wine
drinking. If Graph 2 is right and parties are a common
cause of wine and insomnia, then I ⊥ W | P; the prob-
ability of wine-drinking occurring is independent (in
probability) of the probability of insomnia occurring
conditional on the occurrence of party going.

The philosopher of science Hans Reichenbach
(1971) long ago pointed out these consistent relations
between conditional independence and causal struc-
ture and talked about them in terms of “screening
off.” When there is a chain going from partying to
wine to insomnia, the wine screens off insomnia from
the influence of partying; when partying directly
causes both wine and insomnia, wine does not screen
off insomnia from partying—partying leads to insom-
nia directly. But, partying does screen off insomnia
from the effects of wine. The causal Markov assump-
tion generalizes this screening-off principle to all
acyclic causal graphs.

Thus, if we know the structure of the graph
and know the values of some of the variables in the
graph, we can make consistent predictions about
the conditional probability of other variables. In fact,
the first applications of Bayes nets involved predicting

conditional probabilities (Pearl, 1988). Many real-life
inferences involve complex combinations of condi-
tional probabilities among variables—consider a med-
ical expert, for example, trying to predict one set of
symptoms from another set. Trying to predict all the
combinations of conditional probabilities rapidly
becomes an exponentially complicated problem.
Computer scientists were trying to find a tractable way
to calculate these conditional probabilities and discov-
ered that representing the variables in a directed graph
allowed them to do this. The graph allowed computer
scientists to “read off” quite complicated patterns of
conditional dependence among variables. The first
applications of Bayes nets treated the graphs as calcula-
tion devices—summaries of the conditional probabili-
ties among events.

Bayes Nets and Interventions

Why think of these graphs as representations of causal
relations among variables, rather than simply thinking
of them as a convenient way to represent the probabil-
ities of variables? The earlier Bayes net iterations were
confined to techniques for predicting some probabili-
ties from others. However, the development of causal
Bayes net algorithms also allows us to determine what
will happen when we intervene from outside to
change the value of a particular variable. When two
variables are genuinely related in a causal way, holding
other variables constant, then intervening to change
one variable should change the other. Indeed, philoso-
phers have argued that this is just what it means for two
variables to be causally related (J. Woodward, 2003).

Predictions about probabilities may be quite differ-
ent from predictions about interventions. For example,
in a common cause structure like Graph 2, we will
indeed be able to predict something about the value of
insomnia from the value of wine. If that structure is the
correct one, then knowing that someone drank wine
will indeed make you more likely to predict that they
will have insomnia (because drinking wine is corre-
lated with partying, which leads to insomnia). But,
intervening on their wine drinking, forbidding them
from drinking, for example, will have no effect on their
insomnia. Only intervening on partying will do that.

The Bayes net formalism captures these relations
between causation, intervention, and conditional
probability through a second assumption, an assump-
tion about how interventions should be represented
in the graph.

INTRODUCTION 5



The Intervention Assumption A variable I is an inter-
vention on a variable X in a causal graph if and only
if (a) I is exogenous (that is, it is not caused by any
other variables in the graph), (b) directly fixes the
value of X to x, and (c) does not affect the values of
any other variables in the graph except through its
influence on X.

Given this assumption, we can accurately predict
the effects of interventions on particular variables in a
graph on other variables. (We can also sometimes
make accurate predictions about the effects of inter-
ventions that do not meet all these conditions). In
causal Bayes nets, interventions systematically alter
the nature of the graph they intervene on, and these
systematic alterations follow directly from the formal-
ism itself. In particular, when an external intervention
fixes the value of a variable, it also eliminates the
causal influence of other variables on that variable. If
I simply decide to stop drinking wine, then my inter-
vention alone will determine the value of wine drink-
ing; partying will no longer have any effect. This can
be represented by replacing the original graph with an
altered graph in which arrows directed into the inter-
vened on variable are eliminated (Judea Pearl in 2000
vividly referred to this process as graph surgery). The
conditional dependencies among the variables after
the intervention can be read from this altered graph.

Suppose, for example, I want to know what I can
do to prevent my insomnia. Should I sit in my room
alone but continue to drink when I want to or go to
parties just the same but stick to Perrier? I can calcu-
late the effects of such interventions on each of the
causal structures using graph surgery and predict the
results. I will obtain different results from these inter-
ventions depending on the true causal structure (soli-
tary drinking will lead to insomnia, and sober partying
will not for Graph 1; sober partying will lead to insom-
nia, and solitary drinking will not for Graph 2).

Exactly the same inferential apparatus can be used
to generate counterfactual predictions. Suppose I want
to ask what would have happened had things been oth-
erwise. If I had refrained from wine at all those confer-
ences, then would my life, or at least my insomnia,
have been better? Graph surgery will also answer this
question. Just as in an intervention, a counterfactual
“fixes” the value of certain variables and allows you to
infer the consequences.

A central aspect of causal Bayes nets, indeed the
thing that makes them causal, is that they allow us to
go back and forth freely from evidence about observed

probabilities to inferences about interventions and
vice versa.

These two assumptions, then, allow us to take a par-
ticular causal structure and accurately predict the con-
ditional probabilities of events, and the consequences
of interventions on those events, from that structure.

Bayes Nets and Learning

We just saw that knowing the causal structure lets us
make the right predictions about interventions and
probabilities. We can also use this fact to learn causal
structure from the evidence of interventions and
probabilities.

Let us go back to the wine-insomnia example. You
could distinguish between these graphs by either
intervention or observation. You could, for instance,
hold partying constant (always partying or never par-
tying) and vary whether you drink wine, or you could
hold drinking constant (always drinking or never
drinking) and vary whether you party. In either case,
you could observe the effect on your sleep. If drinking
affects your sleep when partying is held constant, but
partying has no effect on your sleep when drinking is
held constant, then you could conclude that Graph 1
is correct. Such reasoning underlies the logic of
experimental design in science.

You could also, however, simply observe the rela-
tive frequencies of the three events. If you notice that
you are more likely to have insomnia when you drink
wine, whether or not you party, then you can infer
that Graph 1 is correct. If you observe that, regardless
of how much or how little wine you drink, you are
only more likely to have insomnia when you go to a
party, then you will opt instead for Graph 2. These
inferences reflect the logic of correlational statistics in
science. In effect, what you did was to “partial out”
the effects of partying on the wine-insomnia correla-
tion and draw a causal conclusion as a result.

This type of learning, however, requires an addi-
tional assumption. The assumption is that the pat-
terns of dependence and independence we see
among the variables really are the result of the causal
relations among them. Suppose that wine actually
makes you sleepy instead of keeping you awake. But,
it just happens to be the case that this influence of
wine on insomnia is perfectly canceled out by the
countervailing exciting influence of parties. We will
incorrectly conclude that there are no causal relations
between the three variables. We need to assume that
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these sinister coincidences will not occur. Formally,
this is called the faithfulness assumption.

The Faithfulness Assumption In the joint distribu-
tion on the variables in the graph, all conditional
independencies are consequences of the Markov
assumption applied to the graph.

Given the faithfulness assumption, it is possible to
infer complex causal structure from patterns of condi-
tional probability and intervention (Glymour &
Cooper, 1999; Spirtes et al., 1993). Computationally
tractable learning algorithms have been designed to
accomplish this task and have been extensively applied
in a range of disciplines (e.g., Ramsey, Roush, Gazis, &
Glymour, 2002; Shipley, 2000). In some cases, it is also
possible to accurately infer the existence of new unob-
served variables that are common causes of the
observed variables (Richardson & Spirtes, 2003; Silva,
Scheines, Glymour, & Spirtes, 2003).

Causal Bayes net representations and learning
algorithms allow learners to predict patterns of evi-
dence accurately from causal structure and to learn
causal structure accurately from patterns of evidence.
They constitute a kind of inductive causal logic, and
a logic of causal discovery. It is possible to prove that
only certain patterns of evidence will follow from par-
ticular causal structures, given the Markov, interven-
tion, and faithfulness assumptions, just as only certain
conclusions follow from particular logical premises
given the axioms of logic.

From: mherskovits@psych.ucarcadia.arcadia.edu
To: brook_russell@turing.carnegietech.edu

3:15 a.m., August 5, 2003

Righto Brook.

Well, quadruple countervailing causal
prevention sounds just fascinating. I’m so glad
I’m going to this conference now.

But, thanks for the attachment. Actually,
I think I might be getting the hang of these
Bayes net things, even with all the formal stuff.
(Though there’s one thing about the math
I still don’t get: Why do you Brits insist on
making it plural?) They sound like something
we know a lot about in Arcadia: vision. Not of
course the political kind or the hallucination
kind (although we know a lot about those, too),

but the kind we study in psychophysics and
perceptual psychology.

The world out there is full of real three-
dimensional objects, but our perceptual system
just gets some distorted two-dimensional retinal
input. Still, the merest “sprog,” as you would say,
has the computational power to turn that input
back into a three-dimensional representation of a
table or a lamp without even thinking about it.
And (ignoring the occasional illusion), those
representations are accurate: They capture the
truth about the spatial world.

In vision science, we have “ideal observer”
theories about how that happens—how any
system, animal, human or robotic, sprog,
or Ph.D. could infer the structure of a three-
dimensional world from two-dimensional data.
Vision science tells us that the visual system
implicitly assumes that there is a world of three-
dimensional moving objects and then makes
assumptions about how those objects lead to
particular patterns on the retina. By making
the further assumption that the retinal patterns
were, in fact, produced by the objects in
this way, the system can work backward and
infer the structure of objects from those
patterns (see, e.g., Palmer, 1999).

Your causal Bayes net inferences sound sort
of like that. The visual system assumes that the
patterns at the retina were produced by 
three-dimensional objects in a particular way
and then uses those assumptions to infer the
objects from the retinal patterns. Your causal
Bayes nets assume that causal structure
produced patterns of evidence and uses those
assumptions to learn the structure from the
evidence (your causal Markov, intervention,
and faithfulness assumptions). You guys seem
to think that you’re going to do the same thing
for causality that the psychophysicists have
done for vision: You’re going to tell us how we
could transform information about probabilities
and interventions into accurate representations
of the causal structure of the world.

So, I guess if you’re right (and I’m not
committing myself yet there), causal Bayes nets
could give us a way of formally specifying
accurate inductive causal inferences—just like
ideal observer theories in vision provide a way
of formally specifying accurate visual inferences
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and like logic provides a way of formally
specifying accurate deductive inferences.

But if that’s right, then I have to say, Brook,
the rest of your letter doesn’t make a whole lot
of sense  :)  You seem to be under the bizarre
impression that any knowledge you can’t find
in the Times Literary Supplement isn’t really
“knowledge.” So, I guess you think my sprogs
can’t see because they can’t write an article on
Fourier transforms.

But, of course, my sprogs see just as well as
you and I do. And, of course, sprogs can use
vision to learn all sorts of new things about
objects. In fact, they engage in perfectly
sophisticated “maths” all the time—and if they
can perform complex, implicit computations to
support vision, then they could, in principle,
perform complex, implicit computational
procedures to support causal inference.

Your computers may or may not be able to
solve this causal learning problem, but it’s certain
that my sprogs can do it. In fact, they might be
the most powerful causal learning devices in the
universe. Thirty years of work on the “theory theory”
shows that children have abstract, coherent
representations of the causal structure of the
world. Those representations allow children to
make predictions, perform interventions, and
even generate counterfactuals. As soon as they
can talk, they even offer explanations of the
world around them. And, they seem to learn
those causal structures from patterns of evidence.

Plus, even the very smallest sprogs can
combine information from observation and
intervention. Little babies who learn a new
skill—like reaching for objects—understand
other people’s actions on objects better than
babies who don’t have the skill. Jessica
Sommerville will show you next week how
giving babies “sticky mittens” and changing
their own ability to act on the world changes
the babies’ ability to understand the actions of
others. Andrew Meltzoff will show you
something like the reverse: how babies take
information they only observe and turn it into
actions of their own. Sprogs do all sorts of other
things: make good interventions, discriminate
confounded and unconfounded interventions,
reason about unobserved causes, learn complex
causal structure. . . . Laura Schulz, Tamar
Kushnir, and that Gopnik woman whose name

you like so much will also show you all that on
Saturday. When it comes to grown-ups, York
Hagmayer, Steve Sloman, Dave Lagnado, and
Michael Waldmann will show you that even
those stats class undergraduates can make
remarkably sophisticated inferences about both
predictions and interventions.

Best of all, sprogs never do absolutely
useless things like reason about quadruple
causal prevention.

Anyway, I’m doing my part and attaching
some fairly primitive stuff about the psychology
of causal learning. As you’ll see, even the best
theoretical accounts we have don’t really even
start to capture the richness of what people,
even very small people, can actually do.

All the best,

Morgan

Attachment 2: The Psychology of Causal
Learning for Nerds

The Piagetian Account of Causal Reasoning

Research on children’s causal reasoning, like research
on cognitive development in general, was initiated by
the work of Jean Piaget (1929, 1930). Piaget believed
that causal reasoning developed very gradually.
Indeed, Piaget proposed no less than 17 distinct stages
of causal learning.

In particular, however, Piaget believed that chil-
dren’s reasoning from early to middle childhood was
“precausal.” It was characterized by a confusion
between psychological activity and physical mecha-
nism (Piaget 1930). This conclusion was based chiefly
on his investigation of children’s explanations of nat-
ural phenomena. Piaget found that children’s early
explanations of physical events were artificialistic
(meaning events were attributed to human interven-
tion: clouds move because we walk, the river flows
because of boats) and animistic (meaning that physi-
cal events were attributed to psychological intention:
the string turns because it wants to unwind itself)
(1929). According to Piaget’s account, not until quite
late in development are children able to provide a
complete, functional account of a chain of causal
events and reason accurately about intervening causal
mechanisms.
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Nativist and Modular Views of Causal
Reasoning

Over the past several decades, however—and with 
the development of new methods for assessing the
cognitive abilities of infants and young children—
considerable research has suggested that Piaget
underestimated the causal reasoning abilities of
young children. Both infants and adults seem to per-
ceive causality when objects (like billiard balls) col-
lide and launch one another (Leslie & Keeble, 1987;
Michotte, 1962; Oakes & Cohen, 1990). Infants also
seem to expect causal constraints on object motion,
assuming that objects respect principles of support,
containment, cohesion, continuity, and contact
(Baillargeon, Kotovsky, & Needham, 1995; Spelke,
Breinlinger, Macomber, & Jacobson, 1992; Spelke,
Katz, Purcell, Ehrlich, & Breinlinger, 1994).

Moreover, contra Piaget, considerable evidence
suggests that even babies appropriately distinguish
psychological and physical causality. Specifically,
infants seem to interpret human, but not mechanical,
action as goal directed and self-initiated (Meltzoff,
1995; A. L. Woodward, 1998; A. L. Woodward,
Phillips, & Spelke, 1993). Thus, for instance, babies
expect physical objects to move through contact
(Leslie & Keeble, 1987; Oakes & Cohen, 1990) 
but do not expect the same of human agents 
(A. L. Woodward et al., 1993); expect that an object
will be entrained when grasped by a human hand but
not by an inanimate object (Leslie, 1982, 1984); and
treat the reach of a human hand, but not the trajec-
tory of a metal claw, as goal directed (A. L. Woodward,
1998). Furthermore, almost as soon as children can
speak they offer causal explanations (at least of famil-
iar, everyday events) that respect domain boundaries
(Hickling & Wellman, 2001). Finally, preschoolers’
predictions, causal judgments, and counterfactual
inferences are remarkably accurate across a wide
range of tasks and content areas (e.g., Flavell, Green, &
Flavell, 1995; Gelman & Wellman, 1991; Gopnik &
Wellman, 1994; Kalish, 1996; Sobel, 2004).

To account for the early emergence of structured,
coherent, causal knowledge, some psychologists have
suggested that children’s early causal representations
might be largely innate rather than learned. Following
Kant’s conception of a priori causal knowledge
(1787/1899), some researchers have proposed that
children’s early causal understanding might originate
in domain-specific modules (Leslie & Keeble, 1987)
or from innate concepts in core domains (Carey &

Spelke, 1994; Keil, 1995; Spelke et al., 1994). These
researchers have suggested that children’s causal
knowledge might be accurate not because of general
learning mechanisms designed to infer structure from
evidence but because of specialized mechanisms
dedicated to relatively constrained information-
processing tasks (Leslie, 1994).

It may be that infants’ object concepts, their abil-
ity to distinguish objects from agents, and their per-
ception of Michottean causality do indeed have an
innate basis. However, there seems less reason to
believe that children’s abilities to reason broadly
about the causes of human behavior, physical events,
and biological transformations are an outgrowth of
domain-specific modules. In particular, modular,
domain-specific accounts of causal reasoning do not
seem to explain how we identify particular causal rela-
tions within a domain, how we make causal infer-
ences that transcend domain boundaries (i.e., that
physical causes can be responsible for psychological
effects and vice versa), and why causal reasoning is
sensitive to patterns of evidence. Nonetheless, the
majority of post-Piagetian research on preschool chil-
dren’s causal reasoning has emphasized the centrality
of substantive, domain-appropriate principles.

Domain-Specific Causal Knowledge, Causal
Mechanisms, and the “Generative
Transmission” Account

In particular, researchers have focused on the role that
substantive concepts, like force and spatial contact,
might play in constraining young children’s inferences
about physical causal events (e.g., Bullock, Gelman,
& Baillargeon, 1982; Leslie, 1984; Shultz, Pardo, &
Altmann, 1982; Shultz, 1982). In an influential mono-
graph on children’s causal reasoning, the psychologist
Thomas Shultz distinguished between a statistical
view of causal relations, in which the causal connec-
tion between events is determined by the covariation
of cause and effect, and a causal mechanism view of
causality, in which causation is understood “primarily
in terms of generative transmission” of force and
energy (1982, p. 46). In a series of experiments, Shultz
demonstrated that, in their causal judgments,
preschoolers privilege evidence for spatially continu-
ous processes compatible with the transmission of
energy over evidence for covariation. Preschoolers
inferred, for instance, that a tuning fork with vibrations
that were not obstructed was more likely to produce a
sound than a tuning fork with vibrations that were
blocked, even when the effect immediately followed
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an intervention on the latter and followed the former
only after a delay.

Similarly, Bullock, Gelman, and Baillargeon con-
cluded that the idea that “causes bring about their
effects by transfer of causal impetus” is “central to the
psychological definition of cause-effect relations”
(1982). Consistent with this view, psychologists have
shown that even adults prefer information about plau-
sible, domain-specific mechanisms of causal transmis-
sion to statistical and covariation information in
making causal judgments (Ahn, Kalish, Medin, &
Gelman, 1995).

Covariation Accounts

However, the generative transmission view of causa-
tion in particular and domain-specific knowledge in
general have played a rather limited role in accounts
of adult causal learning. Indeed, in the adult cogni-
tive science literature, researchers have largely
focused on the role of contingency and covariation in
causal learning, as opposed to principles about mech-
anisms. Two accounts of causal learning have been
particularly influential: associative learning or con-
nectionist accounts and Patricia Cheng’s causal
power theory (1997).

Associative Learning and Connectionist
Accounts of Causal Learning

Although not all contingencies are causal, all causal
relationships involve contingencies. There is a vast
body of literature on contingency learning in 
both human and nonhuman animals, and some
researchers have proposed that mechanisms similar to
those underlying contingency learning in operant and
classical conditioning can account for human causal
reasoning (Dickinson, Shanks, & Evendon, 1984;
Shanks & Dickinson, 1987; Shanks, Holyoak, &
Medin, 1996; Wasserman, Elek, Chatlosh, & Baker,
1993).

Instrumental and Imitative Learning

Thorndike found that cats could learn to escape from
cages by trial and error, and that with practice, the cats
became faster at escaping. He described this as the law
of effect: Actions with positive consequences are likely
to be repeated and actions with negative consequences
avoided (1911/2000). A large body of research on
learning subsequently elaborated the ways in which

behavior could be shaped by reinforcing or punishing
outcomes. Operant learning has been demonstrated in
nonhuman animals ranging from pigeons to primates;
unsurprisingly, it has been demonstrated in human
babies as well. Thus, infants who learn, for instance,
that kicking makes a mobile spin, will both repeat the
behavior and remember it after significant delays
(Rovee-Collier, 1980; Watson & Ramey, 1972).
Instrumental learning—the ability to learn from the
immediate consequence of one’s own actions—seems
to be an early development, both phylogenetically and
ontogentically.

Importantly, human beings (if not uniquely
among animals, then at least characteristically; see
Tomasello & Call, 1997) are able to learn not only
from the consequence of their own actions but also
from the consequences of others’ actions. Thus, for
instance, 9-month-old babies who see an experi-
menter light up a toy by touching it with his head will
spontaneously touch their own heads to the toy
(Meltzoff, 1988). By 18 months, infants will even rec-
ognize the goal of another’s intervention and produce
the completed action when they have seen only a
failed attempt (Meltzoff, 1995). Such research sug-
gests that young children can learn the causal relation
between human actions and the events that follow
them. However, it does not explain how children
learn causal relations when human action is not 
the causal variable (e.g., the causal relationship
between two parts of a toy, the causal relationship
between growth and food, and the causal relation-
ship between mental states and behavior). Instru-
mental learning and learning from the direct
outcome of others’ interventions do not seem to
explain our ability to engage in nonegocentric causal
reasoning about distal events.

Classical Learning and the Rescorla-
Wagner Theory

Shortly after Thorndike formulated the law of effect,
Pavlov famously discovered that an animal regularly
exposed to a temporal contiguity between a condi-
tioned stimulus (like a tone) and an unconditioned
stimulus (like food) would learn to associate the
two stimuli. When presented only with the conditioned
stimulus, the animal would produce a response (e.g.,
salivating) normally elicited by the unconditioned
stimulus (1953). This finding has also been replicated
across species and ages; like instrumental learning,
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classical conditioning is an ontogenetically, phylogenti-
cally, early, robust development.

Rescorla modified Pavlov’s theory to suggest that
contingency, not just contiguity, was critical for
learning Rescorla & Wagner (1972). That is, for
learning to occur, cues have to be predictive: The
probability of the effect given the cue must be greater
than the probability of the effect in the absence of the
cue. The Rescorla-Wagner theory (R-W theory; 1972)
specified that learning occurred on a trial-by-trial
basis and predicted that early trials would be more
important to learning than later trials.

In its simplest form, the R-W equation for associa-
tive learning is �V�K(���V), where �V is the
change in the perceived strength of the association
(e.g., the amount of learning that occurs on any given
trial), K is a parameter between 0 and 1 that reflects
the salience of the cue multiplied by the salience of
the effect, � is the association between cue and stim-
ulus at asymptote, and �V is the sum of the associa-
tive strength on previous trials.

Thus, the R-W theory predicts that the change in
associative strength on any trial is proportional to the
difference between the maximum possible associative
strength between a cue and an outcome and the pre-
vious estimate of the strength of association. Thus, the
stronger the prior association is, the less learning there
will be on any given trial.

The model can be applied to human causal learn-
ing by substituting causes for the conditioned stimu-
lus and effects for the unconditioned stimulus. The
associative strength between the two variables is then
taken as indicating the causal connection between
them. This equation successfully predicts findings in
the animal learning literature such as blocking, over-
shadowing, and conditioned inhibition and many
findings in the human contingency learning literature
(Baker, Mercier, Valee-Tourangeau, Frank, & Maria,
1989; Dickinson et al., 1984; Shanks et al., 1996;
Wasserman et al., 1993). The R-W rule, or generaliza-
tions of the rule, have often been implemented in
connectionist networks aimed at explaining human
causal learning (see, e.g., Gluck & Bower, 1988;
Rogers & McLelland, 2004; Shanks, 1990).

However, there is substantial agreement that the
R-W equation by itself does not adequately account
for the psychology of human causal learning (see,
e.g., Cheng, 1997; Glymour, 2001; Gopnik 
et al., 2004; Waldmann, 1996, 2000; Waldmann &
Holyoak, 1992). In fact, it may not even explain 

animal learning. The R-W account predicts neither
learned irrelevancy (the fact that an animal first
exposed to a cue without any reward or punishment
has difficulty on later conditioning trials learning to
associate the cue with an outcome) nor failures of
extinction (the fact that an animal that has learned
through operant conditioning to avoid a cue once
associated with a punishment retains the behavior in
the presence of the cue long after the association has
disappeared).

In the human case, Patricia Cheng demonstrated,
for instance, that the R-W approach fails to account
for boundary conditions on causal inference (1997).
When an effect always occurs (i.e., whether the can-
didate cause is present or not), the R-W equation pre-
dicts that we should conclude that the candidate
generative cause is ineffective. In contrast, human
reasoners believe that if the effect occurs at ceiling,
then there is no way to determine the efficacy of a
candidate cause. Similarly, if an effect never occurs,
then the R-W equation predicts that we should
believe a candidate inhibitory cause is ineffective,
whereas people believe that if the effect never occurs,
then it is impossible to determine the strength of an
inhibitory cause. Similarly, Waldmann (1996, 2000;
Waldmann & Holyoak, 1992) showed asymmetries in
the predictive and diagnostic uses of causal informa-
tion that were difficult to explain in associationist
terms.

The R-W account also fails to explain a phenome-
non known as backward blocking (Sobel, Tenenbaum,
& Gopnik, 2004). If two candidate causes A and B
together produce an effect and it is also the case that
A by itself is sufficient to produce the effect, then
human reasoners (including young children) are less
likely to believe that B is a cause of the effect.
However, since observing A by itself provides no new
evidence about the association between B and the
effect, the R-W rule predicts that our estimate of the
causal strength of B should not change (although
some researchers, e.g., Wasserman & Berglan, 1998,
have suggested modifications to the R-W rule that do
allow for this prediction).

In addition to those aspects of human causal reason-
ing that seem to contradict the predictions of the R-W
model, there are many aspects of human causal learn-
ing that would require ad hoc modification of the R-W
rule. The R-W model, for instance, calculates the
strength of every candidate cause separately; thus, to
judge the interaction of two causes, it must treat the
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interaction as a “third” candidate cause (see Gopnik
et al., 2004). Similarly, the R-W equation assumes that
all the variables have already been categorized as
causes or effects and then calculates the associative
strength between each cause and each effect. However,
the model cannot determine whether variables are
causes or effects (i.e., it cannot decide whether 
A causes B, B causes A, or neither). One might run the
equation multiple times, sometimes with one variable
as a cause and sometimes with the other, and then
compare the relative strength of each pairing, but this
is an ad hoc modification of the theory.

The Power Theory of Probabilistic Contrast

Patricia Cheng (1997) proposes an account of human
causal learning that resolves some of the difficulties
with the R-W account. Cheng proposes that people
innately treat covariation as an index of causal power
(an unobservable entity) and suggests that people rea-
son about causes with respect to particular focal sets,
a contextually determined set of events over which
people compute contrasts in covariation.

Cheng uses probabilistic contrast (�P) as an index
of covariation. �P is simply the difference between
the probability of an effect given a candidate cause
and in the absence of the candidate cause; formally,
�P�P(e | c)�P(e | ~c). However, in distinction from
purely covariational accounts of causal reasoning,
Cheng introduces the idea of causal power. Although
we cannot know the real causal power of any variable
(because causal power is a theoretical entity), we can
estimate causal power by distinguishing between the
probability of the effect in the presence of a candidate
cause and the probability of the effect in the presence
of all causes (known and unknown) alternative to the
candidate cause. Cheng assumes (a) that candidate
causes and alternative causes influence the effect
independently; (b) that there are no unobserved com-
mon causes of the candidate cause and the effect
(although the account can be generalized to relax this
assumption; Glymour, 2001); and (c) that candidate
causes are noninteractive (although Novick and
Cheng, 2004, have since modified the account to
explain inferences about interactive causes).

The causal power of a candidate cause is not
equivalent to either P(e | c) or �P because even when
the candidate cause is present and the effect occurs,
the effect could be caused by alternative causes.
However, if you assume that alternative causes occur

independently of the candidate cause, then the prob-
ability of the effect when the candidate cause is pres-
ent and all alternative causes are absent can be
estimated as 1�P(e | ~c). Thus, generative causal
power pc can be estimated as pc ��P/(1 � P(e | ~c)).

As this equation illustrates, when alternative
causes are absent, �P will reflect the causal power of
c. However, as P(e | ~c) increases, �P becomes an
increasingly conservative estimate of causal power.
The limiting case, of course, is when the effect
always occurs (whether c is present or not). In that
case, the reasoner can no longer use covariation as an
index of causation, and the causal power of c is unde-
fined. This explains both why ceiling effects are a
boundary condition on causal inference and why
covariation is not, in general, equivalent to causation.
A parallel account explains inferences about candi-
date inhibitory causes.

Although compelling as a psychological account
of human causal learning, one weakness of Cheng’s
account is that, like the R-W account, it assumes that
variables in the world are already identified as causes
or effects. The account does not explain how, in the
absence of prior knowledge or temporal cues, people
could use data to distinguish causes and effects (i.e.,
to infer whether A causes B or B causes A).

Put another way, both the R-W account and the
Cheng account are explanations of how people judge
the strength of different causal variables. These theo-
ries do not explain how people make judgments about
causal structure. In addition, neither the R-W nor the
power PC theory provides a unified account of how
people might go from judgments about causes to
inferences about the effects of interventions. Finally,
both of these accounts assume that the candidate
causes and effects are observed. Neither account
explains how people might use observational data to
infer the existence of unobserved causes.

From: brook_russell@turing.carnegietech.edu
To: mherskovits@psych.ucarcadia.arcadia.edu

My dear Morgan,

Thank you for your letter and the attachment.
Well, perhaps you are right that there is more
similarity between our problems than one
might at first think. Your description of the
different positions in the psychology of causal
learning is indeed reminiscent of the classical
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positions in the philosophical literature –partly,
I suppose, because historically speaking this is
where the psychological positions ultimately
come from. In philosophy, accounts of
causation have been similarly divided. Some
accounts, like those of Dowe (2000) or Salmon
(1998), stress “mechanism” and “transmission.”
Much like your Shultz they argue that
causation involves the spatiotemporal
transmission of some sort of “mark” or
“impetus” from cause to effect. Since Hume,
the alternative account, usually phrased in
skeptical terms, has been that causation just
amounts to covariation–sounding rather like
your associationists two centuries later. As,
Bertrand Russell put it: “The law of causality, 
I believe, like much that passes muster among
philosophers, is a relic of a bygone age,
surviving, like the monarchy, only because it is
erroneously supposed to do no harm.”

But, you see recently, and in tandem
with all the new maths I told you about in
that attachment, there’s been a new way of
thinking about causation in philosophy.
Philosophers increasingly think about
causation in relation to intervention: In terms
that would suit your sprogs—if X causes Y,
then if you wiggled X, Y would also wiggle.
Jim Woodward will tell you all about it on
Saturday, and Chris Hitchcock will show you
how it helps explain even those cases of
quadruple countervailing prevention you find
so amusing. And, John Campbell will tell you
how it applies to even the kind of causation
your particular brand of scientist deals in—the
psychological kind.

Here is the really important and, I must
confess, somewhat against my will, even
intriguing thing about your letter. The unsolved
problems you describe in the psychology of
causal learning—the things you say your sprogs
are so good at doing and the theories are so bad
at explaining—well, they’re just the sort of
things that the interventionist/causal Bayes net
account seems, well, destined for.

My learning algorithms, like your sprogs,
can infer causal structure rather than just
strength; they can appropriately combine
information from interventions and
observations and distinguish appropriately

between them, and they can even infer
unobserved variables from evidence. So, if the
two actually were conjoined, . . .

As ever,

Brook

P.S. Oh and, by the way, there seems to be a
defect in your word-processing program. In
several places where a full stop is clearly
intended, it seems to transmit a colon or
semicolon followed by a right parenthesis
instead; quite mysterious.
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Interventionist Theories of Causation in 
Psychological Perspective

Jim Woodward

occur, and (b) if C were not to occur, then E would
not occur. Following David Lewis, counterfactuals
are often understood in the philosophical literature in
terms of relationships among possible worlds:
Roughly, a counterfactual like (a) is true if and only
if there is a possible world in which C and E hold
that is “closer” or “more similar” to the actual world
than any possible world in which C holds and E
does not hold. A set of criteria is then specified for
assessing similarity among possible worlds (cf. Lewis,
1979, p.47).

The interventionist theory described in the next sec-
tion is a version of a counterfactual theory; the counter-
factuals in question describe what would happen to E
under interventions (idealized manipulations of) on C.
The interventionist theory does not require (although it
permits) thinking of counterfactuals in terms of possi-
ble worlds and, as noted below, the specification of
what sorts of changes count as interventions plays the
same role as the similarity metric in Lewis’s theory.
When causal information is represented by directed
graphs as in Bayes net representations, these may be given

Introduction

Broadly speaking, recent philosophical accounts of
causation may be grouped into two main approaches:
difference-making and causal process theories. The
former rely on the guiding idea that causes must make
a difference to their effects, in comparison with some
appropriately chosen alternative. Difference making
can be explicated in a variety of ways. Probabilistic the-
ories attempt to do this in terms of inequalities among
conditional probabilities: A cause must raise or at least
change the probability of its effect, conditional on
some suitable set of background conditions. When
probabilistic theories attempt to define causation in
terms of conditional probabilities, they have obvious
affinities with associative theories of causal learning
and with the use of contingency information (condi-
tional �p) as a measure of causal strength (Dickinson &
Shanks, 1995). Counterfactual theories explicate dif-
ference making in terms of counterfactuals: A simple
version might hold that C causes E if and only if it is
true both that (a) if C were to occur, then E would



an interventionist interpretation (Gopnik & Shulz, 2004;
Woodward, 2003).

It is usual in the philosophical literature to con-
trast so-called type causal claims that relate one type
of event or factor to another (“Aspirin causes
headache relief”) with token or singular causal claims
that relate particular events (“Jones’s taking aspirin on
a particular occasion caused his headache to sub-
side”). There are versions of difference-making
accounts for both types of claim, although it is
arguable that such accounts apply most straightfor-
wardly to type causal claims. In contrast, causal
process accounts apply primarily to singular causal
claims. The key idea is that some particular event c
causes some other event e if and only if there is a con-
necting causal process from c to e (Salmon, 1994).
Processes in which one billiard ball collides with
another and causes it to move are paradigmatic.

There are a number of different accounts of what
constitutes a causal process, but it is perhaps fair to say
that the generic idea is that of a spatiotemporally con-
tinuous process that transmits a conserved quantity
such as energy and momentum or, as it sometimes is
described in the psychological literature, “force.”
Theorists in this tradition often deny that there is any
intimate connection between causation and difference
making; they claim that whether c causes e depends
only on whether there is a causal process connecting c
and e, something that (it is claimed) does not depend
in any way on a comparison with what happens or
would happen in some other, contrasting situation
(Bogen, 2004; Salmon, 1994). In contrast, such
comparisons are at the heart of difference-making
accounts.

Although most philosophical versions of causal
process accounts are not committed to claims about
the possibility of perceiving causal connections, an
obvious analogue in the psychological literature are
approaches that focus on launching or Michotte-type
phenomena. Psychological theories that attempt to
understand causation in terms of mechanisms or gen-
erative transmission (where these notions are not
understood along difference-making lines) are also in
broadly the same tradition.

Interventionism

Interventionist accounts take as their point of departure
the idea that causes are potentially a means for manip-
ulating their effects: If it is possible to manipulate 

a cause in the right way, then there would be an
associated change in its effect. Conversely, if under
some appropriately characterized manipulation of one
factor, there is an associated change in another, then
the first causes the second.

This idea has a number of attractive features. First,
it provides a natural account of the difference
between causal and merely correlational claims. The
claim that X is correlated with Y does not imply that
manipulating X is a way of changing Y, while the
claim that X causes Y does have this implication. And,
given the strong interest that humans and other ani-
mals have in finding ways to manipulate the world
around them, there is no mystery about why they
should care about the difference between causal and
correlational relationships. Second, a manipulationist
account of causation fits naturally with the way such
claims are understood and tested in many areas of
biology and the social and behavioral sciences and
with a substantial methodological tradition in statis-
tics, econometrics, and experimental design, which
connects causal claims to claims about the outcomes
of hypothetical experiments.

Although it is possible to provide a treatment of
token causation within a manipulability framework,1 I
focus on the general notion of one type of factor being
causally relevant (either positively or negatively) to
another. There are two more specific causal concepts
that may be seen as precifications of this more general
notion: total causation and direct causation. X is a
total cause of Y if and only if it has a nonnull total
effect on Y—that is, if and only if there is some inter-
vention on X alone (and no other variables) such that
for some values of other variables besides X, there will
be a change in the value of Y under this intervention.
Woodward (2003) argues that this notion is captured
by the conjunction of two principles (TC):

(SC) If (a) there are possible interventions (ideal
manipulations) that change the value of X such
that (b) if such an intervention (and no others)
were to occur X and Y would be correlated, then
X causes Y.

(NC) If X causes Y, then (a) there are possible
interventions that change the value of X such that
(b) if such interventions (and no other interven-
tions) were to occur, X and Y would be correlated.

Before turning to the notion of direct causation,
several clarificatory comments are in order. First, note
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that if TC is to be even prima facie plausible, then we
need to impose restrictions on the sorts of changes in X
that count as interventions or ideal manipulations.
Consider a system in which A � atmospheric pressure
is a common cause of the reading B of a barometer and 
a variable S corresponding to the occurrence/nonoccur-
rence of a storm but in which B does not cause S or vice
versa. If we manipulate the value of B by manipulating
the value of A, then the value of S will change even
though, in contradiction to (SC), B does not cause S.
Intuitively, an experiment in which B is manipulated in
this way is a badly designed experiment for the purposes
of determining whether B causes S. We need to
formulate conditions that restrict the allowable ways of
changing B so as to rule out possibilities of this sort.

There are a number of slightly different characteri-
zations of the notion of an intervention in the
literature; including those by Spirtes, Glymour, and
Scheines (2000); Pearl (2000); and Woodward (2003).
Because the difference between these formulations will
not be important for what follows, I focus on the core
idea. This is that an intervention I on X with respect to
Y causes a change in X that is of such a character that
any change in Y (should it occur) can only come about
through the change in X and not in some other way. In
other words, we want to rule out the possibility that the
intervention on X (or anything that causes the interven-
tion) affects Y via a causal route that does not go
through X, as happens, for example, when B in the
example above is manipulated by changing the com-
mon cause A of B and S. I also assume in what follows
that the effect of an intervention on X is that X comes
entirely under the control of the intervention variable
and that other variables that previously were causally
relevant to X no longer influence it, that, as it is com-
monly put, an intervention on X, “breaks” the causal
arrows previously directed into X. In the case of the ABS
system, an intervention having these features might be
operationally realized by, for example, employing a ran-
domizing device that is causally independent of A and
B and then, depending on the output of this device,
experimentally imposing (or “setting”) B to some partic-
ular value. Under any such intervention, the value of S
will no longer be correlated with the value of B, and
(NC) will judge, correctly, that B does not cause S.
Note that, in this case, merely observing the values of B
and S that are generated by the ABS structure without
any intervention is a different matter from intervening
on B in this structure. In the former case, but not in the
latter, the values of B and S will be correlated. It is what

happens in the latter case that is diagnostic for whether
B causes S.

The difference between observation and interven-
tion thus roughly corresponds to the difference
between so-called backtracking and non-backtracking
counterfactuals in the philosophical literature. The
mark of a backtracking counterfactual is that it
involves reasoning or tracking back from an outcome
to causally prior events and then perhaps forward
again, as when one reasons that if the barometer read-
ing were low (high), then this would mean that the
atmospheric pressure would be low (high), which in
turn would mean that the storm would (would not)
occur. Evaluated in this backtracking way, the coun-
terfactual “If the barometer reading were low (high),
then the storm would (would not) occur” is true. By
contrast, when the antecedent of a counterfactual is
understood as made true by intervention, backtracking
is excluded because, as emphasized above, an inter-
vention breaks any previous existing relationship
between the variable intervened on and its causes.
Thus, when the barometer reading is set to some value
by means of an intervention, one cannot infer back
from this value to the value that the atmospheric pres-
sure must have had. For this reason, the counterfactual
“If the barometer reading were low (high), then the
storm would (would not) occur” is false when its
antecedent is regarded as made true by an intervention.

Lewis holds that non-backtracking rather than
backtracking counterfactuals are appropriate for
understanding causation, and the interventionist the-
ory yields a similar conclusion. This illustrates how, as
claimed, interventions play roughly the same role as
the similarity metric in Lewis’s theory and how they
lead, as in Lewis’s theory, to non-backtracking coun-
terfactuals, with arrow breaking having some of the
features of Lewisian miracles.2

What is the connection between this characteriza-
tion of interventions and manipulations that are
performed by human beings? I explore this issue
below, but several comments are helpful at this point.
Note first that the characterization makes no explicit
reference to human beings or their activities; instead,
the characterization is given entirely in nonanthro-
pocentric causal language. A naturally occurring
process (a “natural experiment”) that does not involve
human action at any point may thus qualify as an
intervention if it has the right causal characteristics.
Conversely, a manipulation carried out by a human
being will fail to qualify as an intervention if it lacks the
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right causal characteristics, as in the example in which
the common cause A of B and S is manipulated.
Nonetheless, I think that it is plausible (see the
Interventions and Voluntary Actions section) that, as a
matter of contingent, empirical fact, many voluntary
human actions as well as many behaviors carried out
by animals do satisfy the conditions for an interven-
tion. Moreover, I also think that it is a plausible empir-
ical conjecture that humans and some other animals
have a default tendency to treat their voluntary actions
as though they satisfy the conditions for an interven-
tion and to behave, learn, and (in the case of humans)
make causal judgments as if their learning, behavior,
and judgments are guided by principles like TC. The
connection between interventions and human (and
animal) manipulation is thus important to the empiri-
cal psychology of causal judgment and learning, even
though the notion of an intervention is not defined by
reference to human action.

Second, note that both SC and NC involve coun-
terfactual claims about what would happen if certain
“possible” interventions “were” to be performed. I take
it to be uncontroversial that the human concept of
causation is one according to which causal relation-
ships may hold in circumstances in which it may
never be within the power of human beings actually to
carry out the interventions referred to in SC and NC.
(In this respect, the human concept may be different
from whatever underlies nonhuman causal cognition;
see section on primate causal cognition.) Both
conditions should be understood in a way that accom-
modates these points: What matters to whether the
relationship between X and Y is causal is not whether
an intervention is actually performed on X but rather
what would happen to Y if (perhaps contrary to actual
fact) such interventions were to be performed.

SC and NC connect the content of causal claims
to certain counterfactuals and, as such, are not claims
about how causal relationships are learned. However,
if SC and NC are correct, it would be natural to
expect that human beings often successfully learn
causal relationships by performing interventions; in
fact, this is what we find. But this is not to say (and SC
and NC do not claim) that this is the only way in
which we can learn about causal relationships.
Obviously, there are many other ways in which
humans may learn about causal relationships; these
include passive observation of statistical relationships,
instruction, and the combination of these with
background knowledge. What SC and NC imply is

that if, for example, one concludes on the basis of
purely observational evidence that smoking causes
lung cancer, this commits one to certain claims about
what would happen if certain experimental manipu-
lations of smoking were to be performed.

Finally, a brief remark about an issue that will prob-
ably be of much more concern to philosophers than to
psychologists: the worry that TC is “circular.” Because
the notion of intervention is characterized in causal
terms, it follows immediately that TC does not provide
a reductive definition of causation in terms of concepts
that are noncausal. I argue elsewhere (Woodward,
2003) that it does not follow from this observation that
TC is uninformative or viciously circular. Rather than
repeating those arguments here, let me just observe
that TC is inconsistent with many other claims made
about causation, for example, claims that causal rela-
tionships require a spatiotemporally connecting causal
process. So, regardless of what one makes of the circu-
larity of TC, it is certainly not vacuous or empty.

Let me now turn to the notion of direct causation.
Consider a causal structure in which taking birth
control pills B causally affects the incidence of throm-
bosis T via two different routes (Figure 1-1). B directly
boosts the probability of thrombosis and indirectly
lowers it by lowering the probability of an intermedi-
ate variable pregnancy P, which is a positive cause of
T (cf. Hesslow, 1976). Suppose further that the direct
causal influence of B on T is exactly canceled by the
indirect influence of B on T that is mediated through
P, so that there is no overall effect of B on T. In this
case, B is not a total cause of T because there are no
interventions on B alone that will change T.
Nonetheless, it seems clear that there is a sense in
which B is a cause, indeed a direct cause, of T.

The notion of direct causation can be captured in
an interventionist framework as follows:

(DC) A necessary and sufficient condition for X to
be a direct cause of Y with respect to some vari-
able set V is that there be a possible intervention
on X that will change Y (or the probability distri-
bution of Y) when all other variables in V besides
X and Y are held fixed at some value by other
independent interventions.
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In the example under discussion, B counts as a direct
cause of T because, if we intervene to fix the value of P
and then, independent of this, intervene to change the
value of B, then the value of T will change. The notion
of X as a direct cause of Y is thus characterized in terms
of the response of Y to a combination of interventions,
including both interventions on X and interventions on
other variables Z. This contrasts with the notion of a
total cause, which is characterized just in terms of the
response of the effect variable to a single intervention
on the cause variable. The notion of direct causation
turns out to be normatively important because it is
required to capture ideas about distinctness of causal
mechanisms and to formulate a plausible relationship
between causation and probabilities (for details, see
Woodward, 2003, chapter 2). Of course, it is a separate
question whether the notion corresponds to anything
that is psychologically real in people’s causal judg-
ments and inferences. I suggest that it does: It is
involved in or connected to our ability to separate out
means and ends in causal reasoning. It is also centrally
involved in the whole idea of an intervention, which
turns on existence of a contrast between doing some-
thing that affects Y directly and doing something that
affects Y only indirectly, through X. We will see that
even young children are able to reason causally about
the consequences of combinations of interventions.

Finally, let me note that both TC and DC address
a specific question: Is the relationship between X and
Y causal rather than merely correlational? However, if
we are interested in manipulation and control, then
we typically want to know much more than this: We
want to know which interventions on X will change Y,
how they will change Y, and which background cir-
cumstances will cause the change—that is, we want
to know a whole family of more specific and fine-
grained interventionist counterfactuals connecting X
to Y. We may view this more detailed information,
which may be captured by such devices as specific
functional relationships linking X and Y, as the natu-
ral way of spelling out the detailed content of causal
claims within an interventionist framework. Such
information about detailed manipulability or depend-
ency relationships is often required for tasks involving
fine-grained control such as tool use.

Additional Features of Interventionism

I said that interventionist accounts are just one type of
approach in the more general family of theories that

conceive of causes as difference makers. To bring out
further what is distinctive about interventionism, con-
sider the following causal structures:

X ← Y → Z (1-1)

X → Y → Z (1-2)

Let us make the standard Bayes net assumption con-
necting causation and probabilities: the causal Markov
condition CM, according to which, conditional on its
direct causes, every variable is independent of every
other variable, singly or in combination, except for its
effects. Given this assumption, both structures 1-1
and 1-2 imply exactly the same conditional and
unconditional independence relationships: In both, X,
Y and Z are dependent and X and Z are independent
conditional on Y. The difference between the struc-
tures 1-1 and 1-2 shows up when we interpret the
directed edges in them as carrying implications about
what would happen if various hypothetical interven-
tions were to be performed in accordance with DC.
In particular, if structure 1-1 is the correct structure,
then under some possible intervention on Y, X and Z
will change; if structure 1-2 is the correct structure,
then Z but not X will change under an intervention
on Y. Similarly, structure 1-2 implies that, under some
intervention on X, both Y and Z will change; while
structure 1-1 implies that neither Y nor Z will change.
In general, if two causal structures differ at all, then they
will make different predictions about what will happen
under some hypothetical interventions, although, as
structures 1-1 and 1-2 illustrate, they may agree fully
about the actual patterns of correlations that will be
observed in the absence of these interventions.

Although an interventionist account does not
attempt to reduce causal claims to information about
conditional probabilities, it readily agrees that such
information can be highly relevant as evidence for dis-
criminating between competing causal structures.
Indeed, as I explain (Woodward, 2003, p. 339ff.), we
may think of CM as a condition that connects claims
about what happens under interventions to claims
about conditional probabilities involving observed out-
comes, thus allowing us to move back and forth
between the two kinds of claims. Arguably (see the sec-
tion on primate causal cognition), the ability to move
smoothly from claims about causal structure that follow
from information about the results of interventions to
claims about causal structure that are supported by
observations and vice versa is one of the distinctive
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features of human causal cognition. In this connection,
there is considerable evidence that, at least in simple
cases, humans can learn causal Bayes nets from passive
observations, interventions, and combinations of the
two. Indeed, for at least some tasks the assumption that
subjects are Bayes net learners does a better job of
accounting for performance than alternative learning
theories.

I suggested above that an interventionist account
will lead to different causal judgments about particu-
lar cases than causal process accounts. Consider cases
of double prevention, in which A prevents the occur-
rence of B, which had it occurred, would have
prevented the occurrence of a third event C, with the
result that C occurs (cf. Schaffer, 2000). Cases of this
sort occur in ordinary life and are common in biolog-
ical contexts. For example, the presence A of lactose
in the environment of Escherichia coli results in the
production C of a protein that initiates transcription
of the enzyme that digests lactose by interfering with
the operation B of an agent that (in the absence of lac-
tose) prevents transcription. There is dependence of
the sort associated with interventionist counterfactuals
between whether lactose is present and the synthesis
(or lack of synthesis) of the enzyme that digests it—
manipulating whether lactose is present changes
whether the enzyme is synthesized—but no spa-
tiotemporally continuous process or transfer of
energy, momentum, or force between lactose and the
enzyme.3 Interventi-onist accounts along the lines of
TC will judge such relationships as causal; causal
process theories will not. Biological practice seems to
follow the interventionist assessment, but it would be
useful to have a more systematic experimental inves-
tigation of whether ordinary subjects regard double
prevention relationships as causal, how they assess
causal efficacy or strength in such cases, and the ease
with which such relationships can be learned.

Double prevention cases suggest that energy trans-
mission is not necessary for causal relatedness. Is it suf-
ficient? Arguably, energy transmission between two
events is sufficient for there to be some causal process
connecting the two. However, the information that
such a process is present is not tantamount to the
detailed information about dependency relationships
provided by interventionist counterfactuals. This is sug-
gested by the following example (Hitchcock, 1995).

A cue stick strikes a cue ball, which in turn strikes
the eight ball, causing it to drop into a pocket. The
stick has been coated with blue chalk dust, some of

which is transmitted to the cue ball and then to the
eight ball as a result of the collision. In this case,
energy, momentum, and force are all transmitted from
the stick to the cue ball. These quantities are also
transmitted through the patches of blue chalk that
eventually end up on the eight ball. The sequence
leading from the impact of the cue stick to the
dropping of the eight ball is a causal process, as is the
transmission of the blue chalk, and a connecting
mechanism is present throughout this sequence. The
problem is that there is nothing in all this information
that singles out the details of the way in which the cue
stick strikes the cue ball (and the linear and angular
momentum that are so communicated) rather than,
say, the sheer fact that the cue stick has struck the cue
ball in some way or other or the fact that there has
been transmission of blue chalk dust as causally rele-
vant to whether the eight ball drops. Someone might
both fully understand the abstract notion of a causal
process and be able to recognize that the process con-
necting cue stick, cue ball, and eight ball is a causal
process that transmits energy and yet not understand
how variations in the way the cue strikes the cue ball
make a difference to the subsequent motion of the
eight ball and that the transmission of the chalk dust is
irrelevant. Yet, this information, which is captured by
interventionist counterfactuals of the sort described in
TC, is crucial for manipulating whether the eight ball
drops in the pocket.4 As discussed below this observa-
tion has implications for primate causal understanding.

In general, then, an interventionist account pre-
dicts that, when information about spatiotemporal
connectedness is pitted against information about
dependency relations of the sort captured by interven-
tionist counterfactuals, the latter rather than the
former will guide causal judgment. For example, if
the relationship between C and E satisfies the condi-
tions in TC, people will judge that C causes E even if
there appears to be a spatiotemporal gap between C
and E. Moreover, even if there is a connecting spa-
tiotemporally continuous process from C to E, they
will judge that C does not cause E if the dependence
conditions in TC are not satisfied. Similarly, for the
information that something has been transmitted
from C to E; although chalk dust is transmitted to the
eight ball, subjects will not judge that its presence
causes the ball to go into the pocket because the
conditions in TC are not satisfied.

Despite these observations, adherents of an
interventionist account can readily acknowledge that
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information about causal mechanisms, properly
understood, plays an important role in human causal
learning and understanding. However, rather than
trying to explicate the notion of a causal mechanism
in terms of notions like force, energy, or generative
transmission, interventionists will instead appeal to
interventionist counterfactuals. Simplifying greatly,
information about a mechanism connecting C to E
will typically be information about a set of depend-
ency relationships, specified by interventionist
counterfactuals, connecting C and E to intermediate
variables and the intermediate variables to one
another, perhaps structured in a characteristic spa-
tiotemporal pattern (cf. Woodward, 2002). Among
other things, such counterfactuals will specify how
interventions on intermediate variables will modify or
interfere with the overall pattern of dependence
between C and E.

As an illustration, consider Shultz’s classic 1982
monograph in which he argues that children rely
heavily on mechanism information in causal attribu-
tion. This mechanism information can be readily
reinterpreted as information about interventionist
counterfactuals. For example, in Experiment 2, sub-
jects must decide which of two different lamps is
responsible for the light projected on a wall. Here,
the relevant interventionist counterfactuals will
describe the relationship between turning on the
lamp and the appearance of a spot on the wall, the
orientation of the lamp and the position of the spot,
the effect of inserting a mirror in the path of transmis-
sion, and so on. Similarly, in the cue ball example, the
relevant mechanism will be specified in terms of the
dependence of the trajectories of the cue and eight
ball on variations in the momentum communicated
by the stick, the effect of intervening independently on
the eight ball (e.g., gluing it to the table), and so on.

On this construal, detailed information about the
operation of mechanisms is not, as is often supposed,
something different in kind from information about
dependency or manipulability relationships, under-
stood in terms of interventionist counterfactuals, but
rather simply more of the same: more detailed fine-
grained information about dependency relationships
involving intermediate variables.5 An additional advan-
tage of this way of looking at things is that it provides a
natural account of how it is possible, as it clearly is, for
people to learn that there is a causal relationship
between C and E without knowing anything about a
connecting mechanism. This is much harder to

understand if, as some mechanism-based approaches
claim, the existence of a causal relationship between C
and E just consists of the obtaining of a connecting
mechanism between C and E and the information that
C causes E consists of or implies information to the effect
that there is such a mechanism. By contrast, according
to TC, people will judge that C causes E if they are pre-
sented with evidence (e.g., from repeated experimental
manipulations) that the relevant interventionist coun-
terfactuals hold between C and E even if they have no
information about an intervening mechanism.

Philosophy and Psychology

The interconnections between philosophical and
psychological treatments of causation are complex
and intricate. Many, although by no means all, philo-
sophical accounts are (at least officially) intended as
accounts about the world rather than accounts of
anyone’s psychology, that is, as accounts of what cau-
sation is or (less ambitiously) of constraints that hold
between causal relationships, as they exist in the
world, and other worldly relationships (having to do,
e.g., with the obtaining of regularities). Nonetheless, it is
common for philosophers to move back and forth
between such worldly claims and claims that do
sound more psychological: claims about what people
mean (or ought to mean) when they make causal
claims, the evidence on which such claims are or
should be based, and so on. Even when no such
accompanying psychological story is explicitly
described, it is often implicit in or at least naturally
suggested by the ostensibly worldly account. For
example, it is natural to suppose that philosophers
who claim that causation can be reduced to facts
about conditional probabilities will also think that
human causal beliefs and representations encode
facts about conditional probabilities, and that causal
learning consists of learning facts about conditional
probabilities. Similarly, if a theorist claims, as some
adherents of causal process/mechanistic approaches
do, that whether C causes E has nothing to do with
what does or would happen to E in the absence of C,
one would not expect (at least on the face of things)
human causal judgment to represent or to be sensitive
to such information.6

Matters are further complicated, though, by the
fact that insofar as philosophical accounts of causation
have psychological implications, they are often
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presented primarily as normative rather than straight-
forwardly descriptive accounts; that is, they are
presented as accounts of the causal judgments people
ought to make in various situations, how they ought to
use evidence in reaching such judgments, and so on.
I assume, however, that it is always in order to ask how
these accounts fare when taken as descriptive theories:
We may construe them as descriptive claims regardless
of the intentions of their authors. Moreover, quite
apart from its great intrinsic interest, there is an obvi-
ous motivation for proceeding in this way. Humans
and other animals engage in a remarkable amount of
successful causal learning and form many true or cor-
rect causal representations of the world. There must
be some unified story about this that is both an accu-
rate description of what they do and that enables us to
understand how what they do leads, often enough, to
normatively correct outcomes.7 Asking about the
descriptive adequacy of various normative theories is
an obvious route to this sort of understanding.

In addition, there are many other interconnections
between normative and descriptive theories. It is com-
mon for philosophers to appeal both to claims about
the causal judgments that ordinary people or experts
will make in particular cases and to claims about the
types of considerations on which those judgments are
based to motivate the particular theories they favor. It
is also common for philosophers to make claims
about how people’s causal judgments connect with or
fail to connect with various other concepts and pat-
terns of reasoning, such as the use of counterfactuals,
to motivate particular approaches. Claims of this sort
are of course descriptive claims about the empirical
psychology of causal inference and judgment and
should be evaluated accordingly. In addition,
although adherents of a normative theory always have
the option, in any particular case, of responding to
evidence that subjects do not in fact reason and judge
in the way that theory says they should, by saying that
such subjects are subject to processing limitations, or
are confused, extensive and fundamental divergence
between normative prescriptions and actual behavior
is often plausibly regarded as at least a prima facie
problem for a normative theory—a problem that the
normative theory needs to address rather than ignore.
In the spirit of these remarks, I explore, in the remain-
der of this chapter, some issues concerning the empir-
ical plausibility of interventionist accounts and their
philosophical rivals as descriptions of human and
nonhuman causal inference and judgment.

Instrumental Learning

A useful point of departure is the difference between
classical or Pavlovian conditioning and instrumental
or operant conditioning. In classical conditioning, a
subject learns an association between two events that
are outside its control (e.g., an association between
the ringing of a bell and the provision of food). The
subject is thus in the position of learning through pas-
sive observation rather than active intervention, and
what is learned is that one stimulus predicts another,
where this predictive relationship may or may not
reflect the fact that the first stimulus causes the sec-
ond. By way of contrast, in instrumental conditioning
what is learned is an association between some behav-
ior produced by the subject and an outcome, as when
rats learn an association between pressing a lever and
the provision of a food pellet.

From an interventionist perspective, instrumental
learning has a “causelike” flavor. An organism that
was incapable of acting on the world and could only
passively observe associations outside its control
would have no need for a notion of causation or
causelike representations, conceived along interven-
tionist lines. Such an organism might still find it
useful to predict what will happen, but sensitivity to
correlations and to temporal relationships, rather than
to anything distinctively causal, would suffice for this
purpose. Given a correlation between two variables X
and Y, it would not matter how the correlation
arises—whether because (a) X causes Y or because
(b) X and Y have a common cause—as long as the
correlation is stable and projectable. The difference
between (a) and (b) begins to matter when the animal
is interested in whether changing X is a way of
changing Y.

It is thus of considerable interest that there are
striking, if incomplete, parallels between instrumen-
tal conditioning in nonhuman animals and causal
learning and judgment in humans, a theme that has
been systematically explored by Dickinson, Shanks,
and others in a series of papers (Dickinson &
Balleine, 2000; Dickinson & Shanks, 1995). Both
instrumental learning by rats and human judgments
of causal strength (as expressed in verbal reports) in
instrumental learning tasks exhibit a similar sensitivity
to temporal delay between action and outcome. Both
rat behavior and human causal judgment are (inde-
pendently of temporal relations) highly sensitive to
the contingency �p between action A and outcome
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O, that is, to P(O/A) �P(O/�A). Although there are
important qualifications, both human judgments of
causal strength and the rate of lever pressing for rats
tend to decline as �p approaches zero. In addition,
in both humans and rats, learning of instrumental
contingencies has a number of other features that give
it a causal flavor; for example, both exhibit backward
blocking, and both rat behavior and human causal
judgment are subject to a discounting or signaling
effect in which the usual reaction of nonresponse to a
noncontingent reward schedule does not occur when
rewards that are not paired with the instrumental
action are preceded by a brief visual signal. As
Dickinson and Balleine remark, “the intuitive expla-
nation [of this effect] is that the signal marks the
presence of a potential cause of the unpaired out-
comes, thereby discounting these outcomes in the
evaluation of control exerted by the instrumental
action” (2000, p. 192).

These results suggest that both instrumental learn-
ing in rats and human judgments of causal strength
(as well as actions based on this) behave as though
they track the perceived degree of control or manipu-
lative efficacy of the instrumental action over the
outcome, which is what one would expect on an
interventionist account on causation. In addition,
phenomena such as sensitivity to contingency, back-
ward blocking, and causal discounting show that at
least some causal representation and judgment are
sensitive not only to information about the rates of
occurrence of cause and effect and the processes that
connect them but also to information about what
would or does happen in the absence of the cause and
under the occurrence of potential alternative causes of
the effect.8 This is contrary to what some (psycholo-
gized) versions of causal process/mechanism theories
seem to imply.

Causal Judgment and Interventionist
Counterfactuals

I noted that interventionist theories are just one species
of the more general category of difference-making the-
ories. The sensitivity of causal judgment to contin-
gency information is consistent both with various
versions of probabilistic theories of causation and with
theories that appeal to interventionist counterfactuals.
Is there evidence that specifically favors intervention-
ism as a descriptive account of causal judgment, at least
in humans?

Let me begin with the issue of the relationship
between causal and counterfactual judgments.
Although, as noted, there are influential philosophical
theories such as those of Lewis (1973) that connect
causal claims to counterfactuals, many philosophers
continue to regard counterfactuals in general (and a
fortiori, their use in a theory of causation) with great
skepticism. It is contended that counterfactuals are
unclear, untestable, unscientific, and in various ways
unnatural and artificial in the sense that they are
philosophical inventions that correspond to nothing
in the way ordinary people actually think and reason.

In fact, there is considerable evidence that people
employ counterfactuals extensively in various forms of
ordinary reasoning, and that they connect causal
claims and counterfactuals in something like the way
that interventionist and counterfactual theories sug-
gest.9 Since the relevant literature is vast, I focus, for
illustrative purposes, on a charming set of experi-
ments involving young children described by Harris
(2000). Harris presented children aged 3–4 years with
a number of scenarios that probed the way in which
they connected causal and counterfactual judgments.
He found, for example, that when children were pre-
sented with a causal sequence (Carol walks across the
floor in her muddy shoes and makes the floor dirty)
and then asked counterfactual questions about what
would have happened under different possible
antecedents (what would have happened if Carol had
taken her shoes off?), a large majority gave correct
answers (that is, answers that respect the intuitive con-
nection between causal and counterfactual claims).
They were also able to discriminate correctly between
counterfactual alterations in the scenario that would
have led to the same and to different outcomes, that
is, which alterations in behavior would have avoided
mud on the floor and which would not.

Children not only connect causal and counterfac-
tual claims when explicitly prompted to do so by a
question about what would happen under a counter-
factual possibility, but also when asked why an
outcome occurred or how it might have been pre-
vented. For example, in a scenario in which Sally has a
choice between drawing with a pen and drawing with a
pencil, chooses the pen, and gets ink on her fingers,
children who are asked why Sally’s fingers got inky
motivate the causal role of the pen by appealing to
what would have happened if she had instead used the
pencil. Indeed, children spontaneously invoke what
would have happened under alternative possibilities 
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in arriving at causal judgments even when those
alternatives are not explicitly mentioned in or
prompted by the scenarios. Harris’s (2000) conclusion
is that “counterfactual thinking comes readily to very
young children and is deployed in their causal analysis
of an outcome” (p. 136).

This conclusion may seem surprising if one is
accustomed, as many philosophers are, to thinking of
counterfactuals as primarily having to do with Lewis-
style similarity relationships on possible worlds and
similar metaphysical arcana. Clearly, small children
(and for that matter most adults) do not have anything
remotely like Lewis’s framework explicitly in mind
when they use counterfactual reasoning. But, what-
ever one’s assessment of Lewis’s theory, it is important
to bear in mind that one of the main everyday uses of
counterfactual and causal thinking, by both children
and adults, is in planning and in anticipating what the
consequences of various possible courses of action
would be (without necessarily performing the
actions in question). This is a perfectly ordinary, nat-
ural, practically useful activity and (relevantly, to our
story) one that even small children appear to be
much better at than nonhuman primates. Children
engage in such planning involving counterfactuals
and causal claims on an everyday basis when they
reason, for example, that if they want to avoid getting
their fingers inky they should use a pencil rather
than a pen, that using a pen with blue ink rather
than black ink will not avoid the outcome, and so
on. If we think of counterfactuals of this sort, used
for this purpose (notice, by the way, that the above
counterfactuals are all interventionist counterfactu-
als), then we should be able to see that there is
nothing particularly problematic or obscure about
them.

Turning now specifically to the notion of an
intervention, a natural worry is that this notion is too
complex and cognitively sophisticated to be psycholog-
ically realistic. In assessing this worry, we need to
distinguish two issues:

1. Do most people consciously or explicitly
represent to themselves the full technical defi-
nition of a normatively appropriate notion of
intervention when they engage in causal
reasoning?

2. Do people learn and reason in accord with the
normative requirements of the interventionist
account?

I assume that the answer to Question 1 is almost cer-
tainly no for most people without special training. On
the other hand, there is considerable evidence that
the answer to Question 2 is yes, for many people at
least some of the time.

To begin, there is evidence that, in a substantial
range of situations, adults learn causal relationships
more reliably and quickly when they are able to per-
form interventions than when they must rely entirely
on passive observations (Lagnado & Sloman, 2004;
Sobel & Kushnir, 2006).10 This true for infants as well;
Jessica Sommerville (chapter 3, this volume) reports a
series of experiments that show that infants who
actively intervene, for example, to obtain a toy by
pulling a cloth on which it rests learn to distinguish
relevant causal relationships between the cloth and toy
(presence of spatiotemporal contact, etc.) more readily
than those who rely on passive looking. Moreover, in
at least some situations a significant number of sub-
jects (although by no means all) intervene optimally
when given a choice among which interventions to
perform, choosing those interventions that are maxi-
mally informative. For example, when presented
with a scenario in which there are several possible can-
didates for the correct causal structure, one of which is
a chain structure in which X causes Y which causes Z,
people choose to intervene on the more diagnostic
intermediate variable Y rather than on X or Z
(Steyvers, Tenenbaum, Wagenmakers, & Blum,
2003). This suggests some appreciation of the connec-
tion between intervention and causal structure.

A similar conclusion is suggested by a series of
experiments by Lagnado and Sloman (2005). They
report the following:

1. Subjects are told that billiard ball 1 causes ball 2
to move, which causes ball 3 to move. Almost all
judge that if ball 2 were unable to move, then
ball 1 would still have moved, and that billiard
ball 3 would not have. On other hand, when
presented with a parallel scenario involving
conditionals that lack an obvious causal
interpretation and are of the form if p then q,
if q then r, subjects’ responses are far more
variable, with a considerable number willing
to infer not p from the information than not q.
In another words, most subjects endorse the
non-backtracking counterfactuals associated
with interventionist accounts in the causal
scenario but respond differently to noncausal
conditionals, for which a considerable number
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do endorse a backtracking, noninterventionist
interpretation.

2. Subjects are presented with a chain structure in
which they are told that A causes B, which
causes C. They are then told either (a) someone
intervened directly on B, preventing it from
happening or (b) we observe that B did not hap-
pen. Again, consistent with the interventionist
account, subjects treat the intervention condi-
tion (a) differently from the observation condi-
tion (b). For example, they judge that the
probability of A is higher in the intervention
condition than in the observation condition;
that is, they do not backtrack in the former and
are more likely to in the latter.

These and other experiments involving more com-
plex causal structures suggest that subjects do indeed
distinguish between observing and intervening in the
way that the interventionist account says they should,
that in at least some situations they interpret an
intervention in an arrow-breaking way, and that they
associate interventionist non-backtracking counterfac-
tuals with causal claims and employ them in contexts
in which a causal interpretation is natural or a reason-
able default, while being at least somewhat more
inclined to use non-backtracking counterfactuals in
contexts that are obviously noncausal. These results
seem inconsistent with claims (e.g., Bennett, 1984)
in the philosophical literature that people either do
not distinguish at all between backtracking and non-
backtracking counterfactuals or do not preferentially
employ the latter in contexts involving causal rea-
soning. In addition, the experiments provide addi-
tional evidence (if any is needed) that subjects are
indeed able to engage in sophisticated normatively
appropriate counterfactual reasoning regarding causal
situations.

Interventions and Voluntary Actions

I noted that in many situations people make more reli-
able causal inferences when they are able to intervene.
From a design viewpoint, one thus might expect that
subjects will have more confidence in causal infer-
ences and judgments that are directly associated with
their interventions and perhaps that some of these
inferences will be fairly automatic. This suggests the
following hypothesis: Human beings (and perhaps
some animals) have (a) a default tendency to behave
or reason as though they take their own voluntary

actions to have the characteristics of interventions and
(b) associated with this a strong tendency to take
changes that temporally follow those interventions
(presumably with a relatively short delay) as caused by
them.11 Voluntary here means nothing metaphysically
fancy, just the commonsense distinction between
deliberately pouring the milk in one’s coffee and
spilling it accidentally.

I noted that it is not psychologically realistic to
suppose that most people operate with an explicit rep-
resentation of the full technical definition of the
notion of an intervention. Taken together, (a) and (b)
suggest one way in which it is nonetheless possible for
such subjects to use their interventions (note: not
their explicit concepts of intervention) to reach fairly
reliable causal conclusions in a way that respects prin-
ciples like (TC). For an account along these lines to
work, several things must be true. First, subjects must
have some way of determining (some signal that tells
them) when they have performed a voluntary action,
and this signal must be somewhat reliable, at least in
ordinary circumstances. Second, voluntary actions
(again in ordinary, ecologically realistic circum-
stances) must—not always, but often enough—have
the characteristics of an intervention.

I suggest that both claims are true. First, human
subjects do have a characteristic phenomenology
associated with voluntary action; they typically have a
sense of agency or ownership of their behavior that is
not present when they act involuntarily.12 This is not
surprising: Presumably, it is important for humans
and other animals to have some way of distinguishing
those cases in which a change occurs in their environ-
ments or in their bodies that results from their
voluntary actions from those cases in which the
change comes about in some other way—not as a
result of a movement of their bodies at all or as a result
of a movement that is nonvoluntary. It is plausible
that one role for the feeling of ownership of one’s
action is to provide information that helps organisms
to monitor this distinction. Once this feeling is avail-
able, it may be used for many purposes, including
causal inference.

Turning now to the status of (b), it is clear that the
correlation between voluntariness and satisfaction of
the conditions for an intervention is imperfect. In a
badly designed clinical trial, an experimenter might
be subconsciously influenced, in decisions to give a
drug to some patients and withhold it from others, by
the health of the patients; his decisions are voluntary
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and yet correlated with an independent cause of
recovery in a way that means that the conditions for
an intervention are not satisfied. Nonetheless, it
seems plausible that many voluntary actions do, as a
matter of empirical fact, satisfy the conditions for an
intervention. If I come on a wall switch in an unfamil-
iar house and find that there is a regular association
between my flipping the position of the switch and
whether a certain overhead light is on or off, then
often enough flippings will satisfy the conditions for
an intervention on the position of the switch with
respect to the state of the light. Similarly for a baby
whose leg is attached by a string to a mobile and who
observes a correlation between leg movements and
the motion of the mobile. In both cases, subjects who
are guided by (a) and (b) will make fairly reliable
causal inferences. The existence of causal illusions in
which we experience or “perceive” salient changes
that follow our voluntary actions as caused by them
similarly suggests that such a heuristic is at work.13

Going further, it might be conjectured that involun-
tary behavior is less likely to meet the conditions for
an intervention.14 If this is so, then one might expect
that the impression of causal efficacy for outcomes
following such behavior should be attenuated.
Premack and Premack (2003) report that this is the
case, although more systematic experimental investi-
gation would be desirable.

Primate Causal Cognition

Despite the abilities of nonhuman animals in instru-
mental learning tasks and the similarities between
animal instrumental and human causal learning
described, it is a striking fact that nonhuman animals,
including primates, are greatly inferior to humans,
including small children, at many tasks involving
causal learning, especially those involving tool use,
object manipulation, and an understanding of “folk
physics.” This is so despite the fact that nonhuman pri-
mates and many other mammals have capacities on
object permanence and trajectory completion tasks
(capacities that are often taken to demonstrate the pos-
session of “causal” concepts in the psychological
literature) that that are apparently not so very different
from those possessed by human children and adults.
This suggests that although these various abilities may
well be necessary for the acquisition of the causal
learning abilities and understanding possessed by

human beings, they are not sufficient. Can an inter-
ventionist perspective cast light on what more is
involved?

In approaching this question, let me begin by
briefly describing some representative experimental
results involving nonhuman primates. In experiments
conducted by Kohler and subsequently repeated by
others, apes (including chimps, orangutans, and goril-
las) were presented with problems that required
stacking several boxes on top of each other to reach a
food reward. In comparison with humans, including
children, the apes had great difficulty. They behaved as
though they had no understanding of the physical prin-
ciples underlying the balancing of the boxes and the
achievement of structures capable of providing stable
support; as Kohler put it, they had “practically no stat-
ics” (Kohler, 1927, p. 149, quoted in Povinelli, 2000,
p. 79). The structures they succeeded in building, after
considerable trial and error, were highly unstable, and
completely neglected center of gravity considerations,
with boxes at an upper level extending in a haphazard
way far over the edges of lower-level boxes. Subjects
even on occasion removed lower-level boxes from
beneath boxes they supported. Errors of this sort were
made repeatedly, suggesting what from a human per-
spective would be described as complete lack of insight
into the principles governing the construction of stable
structures. When stable structures were achieved, this
appeared to be the result of trial-and-error learning.
There was little evidence that the apes were able to rea-
son hypothetically about what would happen if they
were to create this or that structure, without actually
creating the structures in question, and then use this
reasoning to guide their actions in the way that, for
example, the children in Harris’s experiments were
able to reason.

In another series of experiments, conducted by
Visalberghi and Trinca (1989), a desirable food item
was placed in a transparent hollow tube, and the ani-
mals were given various tools that might be used to
push it out. Both apes and monkeys were able to solve
some variants of this problem. For example, when
given a bundle of sticks that was too thick to fit into
the tube, they unbundled the sticks and used appro-
priate size sticks to dislodge the food item. On the
other hand, they also frequently behaved as though
they lacked a real understanding of the causal struc-
ture of the task. For example, they inserted sticks that
were too short to reach the reward when a stick of
appropriate length was available. They attempted to

30 CAUSATION AND INTERVENTION



use sticks with cross pieces that blocked insertion into
the tube. They also inserted nonrigid objects like tape
that were incapable of displacing the food. In still
other experiments, the animals failed to choose
implements with a hook at the end, which would
have been effective in retrieving desired objects,
instead of straight sticks, which were not.

Povinelli’s summary is that the animals “appear to
understand very little about why their successful
actions are effective” (2000, p. 104). In particular,
they appeared not to understand the significance of
the mechanical properties of the systems they were
dealing with—properties such as weight, rigidity,
shape, center of mass, and so on. Instead, as both
Povinelli (2000) and Call and Tomasello (1997)
remark, they often acted as though (any) spatiotempo-
ral contact between the target object they wished to
manipulate and the means employed was sufficient to
achieve the desired manipulation.

Both Povinelli (2000) and Call and Tomasello
(1997) go on to suggest a more general characteriza-
tion of the deficits exhibited in the experiments: They
claim that these stem from the animals’ lack of various
abstract concepts having to do with “unobservables”
(Povinelli, 2000, p. 300, mentions gravity, force,
shape, and mass, among others) that humans think of
as mediating causal relationships. In contrast to
humans, apes operate entirely within a framework of
properties that can be readily perceived, and this
underlies their lack of causal understanding.

Philosophers of science are likely to find this invo-
cation of unobservables puzzling. If we think of a
property as observable for a subject as long as the sub-
ject can reliably discriminate whether it is present (or
among different values if the property is quantitative)
by perceptual means, then it seems implausible that
properties like weight and shape are literally unob-
servable by apes—presumably, apes can be trained to
discriminate reliably between objects of different
shapes or weights. There is, however, an alternative
way of understanding this claim that makes it seem far
more plausible.15

Suppose that when an ape learns to discriminate
among objects according to (what we would call)
weight, the discrimination is made on the basis of
sensory feedback and bodily sensations associated
with differential effort in lifting. If apes’ “concept” of
weight is closely linked to these bodily sensations,
then it becomes more understandable why they are
apparently unable to make use of information about

weight in other sorts of contexts requiring causal
reasoning—why, for example, they are unable to rec-
ognize the relevance of weight to support relation-
ships. To recognize the relevance of weight to these
contexts requires possession of a more abstract way of
thinking about weight that is not so closely tied to
sensory and motor experience. Similarly for properties
like rigidity.

In this way of thinking about the matter, the apes
(in comparison with humans) operate with the wrong
variables to enable them to engage in the kind of
sophisticated causal learning required for the tasks
described above; their variables are too closely linked
to egocentric sensory experience. From the perspec-
tive of the interventionist account, we might describe
this as a situation in which certain interventionist
counterfactuals cannot be learned by the apes
because the variables in terms of which those counter-
factuals are framed are unavailable to the apes. For
example, apes are unable to learn the appropriate
interventionist counterfactuals involving the human
concept of weight because they lack that concept.
Whether this analysis is accepted, it seems clear, as a
more general point, that whatever the apes’ grasp of
notions like weight and rigidity, they do not under-
stand their causal relevance to the tasks with which
they are dealing and cannot integrate these notions
into causal representations that successfully guide
action in connection with those tasks.

As I see it, this sort of limitation in the apes’ under-
standing is not just a matter of their failure to grasp
the abstract notion of a causal process (as a process
that transmits force, energy, etc.) or an inability to rec-
ognize particular instances of such a process in the
system of interest. As noted in the section entitled
Additional Features of Interventionism, grasp notion of
a causal process is not sufficient for the sort of detailed
knowledge of dependency relationships that is
required for successful manipulation in tasks like bal-
ancing boxes or extracting food from a tube. What
needs to be explained is the apes’ lack of this latter sort
of knowledge.

Whenever a primate moves a food source with a
stick—whether the food is pushed in an appropriate
or inappropriate direction or with an appropriate
instrument—there will be transmission of force and
energy, the presence of a mechanism, and so on. A
creature that possessed the concept of force and “gen-
erative transmission” (and could recognize when force
was transmitted) and whose heuristic was: “to cause a
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desired outcome, transmit force to the outcome (or
the object associated with the outcome) or set in oper-
ation a generative mechanism connected to the out-
come” would not get useful guidance from this
heuristic about exactly what it should do to balance
boxes in the stacking task or to expel food from the
tube.16 To accomplish this, far more specific informa-
tion about how the outcome that the agent wishes to
affect depends on variation in other factors (perhaps
including factors that are not linked too closely to
egocentric sensory experience) that the agent is able
to control is required, where these include factors not
linked too closely to egocentric sensory experience.
Thus, in the tube experiment the subject must 
recognize the relevance of the dimensions and rigid-
ity of the implement chosen and so on. This looks
far more like information of the sort represented 
by TC and DC than information about force trans-
mission.

The idea that the apes lack the right variables (and
hence cannot grasp counterfactual dependency rela-
tionships based on those variables) gives us one way of
explaining at least some of their deficits in causal
understanding. An alternative line of argument,
which I see as complimentary to and not in competi-
tion with the “wrong variables” analysis and which
also fits naturally into an interventionist framework,
focuses on Tomasello and Call’s notion of a tertiary
relationship (1997, especially pp. 367–400). A rela-
tionship qualifies as tertiary for a subject if the
relationship is understood or recognized as holding
between objects and individuals that are independent
of the subject. This contrasts with relationships that
are (or are conceived as) more directly egocentric in
the sense of holding between the subject and some
other object or individual. Clearly, the ability to rec-
ognize and reason in terms of tertiary relations is
closely related to the ability to think in an abstract or
context-independent way. Tomasello and Call suggest
that all primates (or at least all simians) have the abil-
ity to form and understand concepts of tertiary
relationships in both social and physical domains.
For example, primates seem to possess concepts of
tertiary social relationships between conspecifics,
such as the concept of one animal outranking
another in a dominance hierarchy (as opposed to the
notion of the nontertiary relationship of this animal
outranking me).

This suggests the following question: Do primates
understand (or at least behave in accordance with a

conception of) causation as a tertiary relationship? As
argued in the section on interventionism, the human
concept of causation is clearly a concept of a tertiary
relationship. Although people think of causal rela-
tionships as relationships that they may be able to
exploit for purposes of manipulation and control, they
also conceive of causal relationships as relationships
that can exist in nature independently of their (or,
indeed, any agent’s) manipulative activities. Thinking
along these lines suggests the usefulness of distin-
guishing among the following possibilities or “levels”
of causal/instrumental understanding:

1. An agent whose instrumental behavior and
learning is purely egocentric. That is, the agent
grasps (or behaves as if it grasps) that there are
regular, stable relationships between its manipu-
lations and various downstream effects but stops
at this point, not recognizing (or behaving as
though it recognizes) that the same relationship
can be present even when it does not act, but
other agents act similarly or when a similar rela-
tionship occurs in nature without the involve-
ment of any agents at all.

2. An agent with an agent causal viewpoint: The
agent grasps that the same relationship that it
exploits in intervening also can be present when
other agents act.

3. An agent with a fully causal viewpoint: The
agent grasps that the same relationship that the
agent exploits in intervening also can be present
both when other agents intervene and in nature
even when no other agents are involved. This
involves thinking of causation as a tertiary rela-
tionship.

Tomasello and Call (1997) suggest that nonhu-
man primates do not operate with this tertiary, Stage
3 conception of causation but rather with something
closer to what I take to be the egocentric conception
described in Stage 1 (cf. Figure 1-2):

We are not convinced that apes need to be using a
concept of causality in the experimental tasks
purporting to illustrate its use, at least not in the
humanlike sense of one independent event forc-
ing another to occur. More convincing would be
a situation in which an individual observes a
contiguity of two events, infers a cause as interme-
diary, and then finds a novel way to manipulate
that cause. For example, suppose that an individ-
ual ape, who has never before observed such an
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event, for the first time observes the wind blowing
a tree such that the fruit falls to the ground. If it
understands the causal relations involved, that the
movement of the limb is what caused the fruit to
fall, it should be able to devise other ways to make
the limb move and so make the fruit fall. . . . We
believe that most primatologists would be
astounded to see the ape, just on the bases of hav-
ing observed the wind make fruit fall, proceed to
shake a limb, or pull an attached vine, to create
the same movement of the limb. Again, the prob-
lem is that the wind is completely independent 
of the observing individual and so causal analysis
would have to proceed without references to the
organism’s own behavior and the feedback it might
receive from that (thus, it might be able to learn to
shake the limb if its own movements had previ-
ously led to a limb shaking and the fruit falling as
a result). Moreover, performing some novel behav-
ior to make the fruit fall would involve an even
deeper causal analysis of the web of possible ways
that the cause could be repeated so as to reinstate
the desired effect. (p. 389)

Although some commentators (e.g., Povinelli,
2000) are skeptical, I think that these remarks help to
capture some important features of the limitations
exhibited in the primate experiments described
above.17 In what follows I want to develop some of the
implications of this line of thought in more detail.

First, note that the transitions from Level 1 to Level
3 are important in part because they correspond to pro-
gressively stronger forms of instrumental/causal learning.

For example, if I am a creature who thinks only in terms
of instrumental relationships that connect my own
actions to outcomes (Level 1) and not in terms of Levels
2 and 3, then the relevance of observations concerning
what happens under the interventions of others will be
unclear to me. Suppose that I do X and observe that Y
ensues, and that I have the ability to learn, from
repeated experiences of this sort, that (usually or often)
when I do X, Y regularly ensues. Clearly, it is logically
possible that I might have this ability and yet not be able
to learn or recognize that when another actor does X, Y
ensues, then this is evidence that if I were to do X, then
Y would ensue. Similarly, I may have the Level 1 learn-
ing ability just described and not be able to recognize
that there are relationships that occur in nature in the
absence of human or animal intervention that are such
that I could make use of those very relationships for pur-
poses of manipulation. Associated with this, I may not
be able to learn from observing naturally occurring
events that these instantiate relationships that I might
make use of for purposes of manipulation. In short, in
Level 1, the only way I learn about a manipulative rela-
tionship is if I perform the relevant manipulation. I take
Call Tomasello (1997) to be suggesting that this is not
only a logical possibility but also that something like this
is true for nonhuman primates.

This line of thought suggests that susceptibility to
instrumental conditioning shows only that an animal
is capable of learning instrumental relationships in
the sense of Level 1; it does not in itself show that the
animal is capable of understanding or appreciating
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causal relationships in Sense 3 or the forms of learning
associated with it. What would go some way toward
establishing the latter would be evidence of transfer-
ence between operant and classical conditioning.

Suppose that C is some outcome that an animal
knows how to produce, and that the animal learns
that C is associated with E just via passive observation
or classical conditioning, where E is an outcome the
animal wants. Will the animal spontaneously pro-
duce C (without extensive trial-and-error learning) to
get E once it is given the opportunity to intervene? If
the animal learns in an instrumental conditioning
task that producing C is followed by E, then will the
animal expect (or quickly learn to expect) E when it
merely observes but does not produce C? Although
there is some controversy surrounding this issue, the
consensus seems to be that there is relatively little
transfer back and forth between instrumental and
classical conditioning.18 This is consistent with the
claims of Call and Tomasello (1997) about the
inability of nonhuman primates to learn instrumental
relationships from passive observation of causal rela-
tionships occurring in nature. If correct, then such
claims do indeed suggest that the representations and
abilities that underlie nonhuman instrumental
learning are not fully causal in the human, Level 3
sense, even though, as indicated, they have many fea-
tures in common with human causal learning and
representation.

There is another aspect of the contrast between
Stage 1 and Stage 3 that is worth underscoring. An ani-
mal that possesses only Stage 1 information is in effect
in the position of possessing fused action-outcome rep-
resentations and behavior patterns: representations
that its behaving in a certain way produces such and
such a desired outcome or goal. This need not involve
any appreciation of causal relationships among vari-
ables that are intermediate between the behavior and
achievement of the goal. It thus falls well short of
what might be thought of as full-fledged means-ends
understanding of how the goal might be achieved.
This last does involve the postulation of intermediate
causal links or what I take to be the same thing, some
appreciation of the contrast between direct and more
indirect causal relationships.

In particular, means-ends understanding seems to
involve a decomposition of a task into an intermediate
outcome O that can be produced fairly directly by
the subject’s action A and a further outcome O′ that is
more directly caused by O and less directly by A and

where the link between O and O′ is a tertiary link
between events rather than an action-event link. In Call
and Tomasello’s diagram (Figure 1-2), this intermediate
outcome is described by the variable limb shakes, and
this in turn causes the outcome described by fruit falls.
Note that this causal relationship holds between events
that are not manipulations by the animal.

As Call and Tomasello (1997) suggest, and is appar-
ent from their diagram, it is the introduction of the
intermediate variable that makes possible (or corre-
sponds to) the recognition that there are different ways
(involving both actions and events occurring in
nature) in which the same goal (fruit falls) might be
brought about, all of which have in common the fact
that they operate through the intermediate variable
limb shaking.19 In general, the postulation of the inter-
mediate link (and with it an appreciation that causal
relationships can be more or less direct) goes hand in
hand with a decoupling of sought-after final outcomes
and the means used to achieve them and a focus on
the latter as a separate entity.

As Call and Tomasello (1997) and Tomasello
(1999) argue, this decoupling is closely linked to
learning through imitation, that is, through observing
the interventions of others. The issue of whether
nonhuman primates ever learn through genuine
imitation, as opposed to such other possibilities as
emulation learning, is a complex and controversial
one involving, among other things, disputes over how
to best characterize imitation and issues about the
theory of mind skills required for this activity.
However, it seems uncontroversial that, in comparison
with humans, including young children, nonhuman
animals, including primates, are much inferior at
learning means-ends relationships and appropriate
tool use by observing the manipulations of other con-
specifics. It also seems uncontroversial that, whatever
else is required for successful imitation, the ability to
perform the kind of means-ends (goal) decomposition
described by Call and Tomasello is essential.

One reason for thinking this is that if imitation is to
be successful, then it will often not involve the exact
copying of another animal’s behavior, if only because
the copier (particularly if a juvenile) may differ from
the target in size, strength, and other relevant charac-
teristics. The successful imitator must be able, as Call
and Tomasello (1997) say, to separate the overall goal
of the imitation from the particular means employed,
viewing the latter as an independent step, and be able
to copy the means at something more like a functional
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level—that is, in a way that reproduces those of its
causal characteristics that are essential to produce the
goal—while at the same time varying other features to
accommodate differences between the targets and imi-
tators situation and abilities. This suggests (here, I take
myself to be following Call and Tomasello) that we
should expect to find the following abilities occurring
together: ability to imitate activities that have a means-
ends structure, ability to learn about complex causal
structures through combinations of interventions that
reveal direct versus indirect causal relationships, abil-
ity to learn about causal relationships by observing the
interventions of others, a conception of causation
according to which it is a tertiary relationship, and
associated with this an ability to use information
learned about causal relationships through passive
observation to guide interventions and vice versa. To a
substantial extent, these abilities seem to be unique to
humans, with nonhuman animals having abilities (a
capacity for instrumental conditioning, ability to learn
action outcome sequences, etc.) that have more of a
Stage 1 feel to them.

Because a number of the experiments that most
clearly show that even small children have these abil-
ities have been performed by Gopnik, Schulz, and
others (Gopnik & Schulz, 2004; Gopnik et al., 2004)
and are described elsewhere in this volume, I confine
the discussion to a brief overview, emphasizing gen-
eral connections with the interventionist approach.
First, young children learn not only the causal conse-
quences of their single interventions but also, more
interestingly, other causal relationships from combi-
nations of interventions performed by others. They
learn in conformity with a conditional intervention
principle that is essentially just the definition of
direct cause (DC). Moreover, they do this in contexts
in which information about generative mechanisms,
the transmission of force, and spatiotemporal clues
cannot be used to identify the correct causal struc-
ture. For example, when confronted with a device
with two interlocked gears A and B that move
together, which may also be influenced by the posi-
tion of a switch and which is such that the gears are
removable only when the switch is off, the children
are able to infer correctly that the motion of A causes
B to move (when the switch is on), and that the
motion of B does not cause A to move, not on the basis
of intervening on A and observing the motion of B, but
rather on the basis of information about what happens
to A (B) when the switch is first turned off, B (A) is

removed, and then the switch is turned on. In effect,
this operation shows that the switch does not directly
influence B without going through A, while the switch
influences A even with B fixed at the value “removed.”
Moreover, children can also acquire knowledge of
causal structure from information about conditional
probabilities and then use this information to predict
the outcomes of new interventions or to produce new
interventions that are appropriate for desired goals.
That is, they can transfer or move back and forth
between observational and intervention-based causal
learning in a way that nonhuman animals apparently
cannot.

The important role that learning from the interven-
tions of others appears to play in the development of
human causal understanding suggests that two abilities
often regarded as rather different—the social cognition
abilities involved in imitation and causal understand-
ing of the nonsocial world—may be closely inter-
twined.20 There is also independent evidence that
young children are motivated to pay particular attention
to the actions of other humans, and that they have prim-
itive imitative or simulative abilities for parsing and copy-
ing the actions of other humans. One might speculate
that these attentional biases and abilities (which seem to
be specific to humans in some respects) are combined
with instrumental learning abilities that are shared with
nonhuman animals to enable the much stronger forms
of causal learning exhibited by humans.21
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2

Infants’ Causal Learning

Intervention, Observation, Imitation

Andrew N. Meltzoff

covariation to be understood as fully causal. The
concept of an intervention may help us move
beyond a debate about the primacy of perception
(Michotte) versus action (Piaget) to theories that map
observations and actions to the same abstract causal
representations.

For developmental scientists, one striking feature
of the philosophical notion of an intervention is that
it is abstract—an intervention can be performed by
the self or by another person (or even by a “natural
experiment” not involving an agent). We can learn
not only through our own interventions on the world,
but also by watching the interventions of others. This
intriguing idea is incompatible with many classical
views of infancy, which explicitly deny the equiva-
lence between observing others and acting oneself.
In classical developmental views, we observe others
from the outside as a series of movements in space,
but we feel ourselves from the inside as yearnings,
intentions, and freely willed plans. The way we repre-
sent self versus other is fundamentally different. This
results in a disconnect between learning by doing

Infants’ Understanding of Interventions
by Self and Other

Causal learning by children combines both observa-
tion and action. These two sources of information
have not been well integrated in developmental
theory. Following Michotte (1963), some develop-
mental scientists argue that young infants are exquis-
itely tuned observers, and that their perceptual
understanding of causality far outstrips their ability to
use this information to manipulate the world.
Following Piaget (1954), others argue that young
infants learn little by pure observation—self-produced
motor action is critical; cognitive development gener-
ally, and causal reasoning in particular, is charted as a
progressive combination of action schemes.

Bayes net approaches provide a way of using both
observation and action (in the form of “interven-
tions”), combining them to generate veridical repre-
sentations of the causal structure in the world. In
fact, on some interpretations (Woodward, 2003), the
link to intervention is crucial for observed patterns of



(self-action) and learning by watching (other’s action).
A prime developmental achievement is to bring these
two modes of learning into line.

There are many ways of testing the psychological
linkage between observed and executed interventions.
I have used infant imitation, which has several
virtues. First, imitation is natural to humans, even
babies. Second, in imitating novel acts, infants fashion
their interventions based on observing interventions
performed by others. Third, it is widely acknowledged
that humans are far more proficient imitators than
other primates (Meltzoff, 1996; Povinelli, 2000;
Tomasello & Call, 1997), and therefore we may be
getting at distinctively human cognition by examining
human imitation and its development. Fourth, com-
putational models including Bayesian approaches have
been applied successfully to both human and robotic
imitation (e.g., Demiris & Meltzoff, in press; Meltzoff &
Moore, 1983; Rao, Shon, & Meltzoff, 2007).

Historically, there are two principal theories of
how infants come to imitate the acts of others:
Skinnerian and Piagetian theory. I argue that neither
of these can encompass the modern empirical work
on infant imitation. The new data are more compati-
ble with the view that there is a fundamental equiva-
lence between the perception and performance of
goal-directed acts—an abstract mapping connecting
acts seen and acts done—that was not envisioned in
the classical frameworks.

Skinner (1953) proposed that young infants cannot
imitate the acts of others without specific training.
When a young infant sees a mother perform an act
such as shaking a rattle to make a sound, the infant
does not know what movements to recruit to copy this
act. Rather, the mother needs to shape the child’s
response through operant conditioning. Mom shakes
the rattle, and then the infant responds with random
motor acts. Mom selectively reinforces those acts that
are similar to shaking the rattle. Over time, the
mother’s shaking comes to serve as a discriminitive cue
(a bell or a light would do as well) that elicits the rein-
forced act (the baby’s rattle shaking). To the outside
observer, the infant is imitating, but this is not because
the baby is able to translate the acts seen into acts
done. The parent essentially teaches the infant what to
do and when to do it through operant conditioning.

This is not an entirely hypothetical example. In
fact, Skinner (1953) has shown that pigeons can be
conditioned to peck a key when they see other pigeons
peck: If Pigeon 1 (P-1) pecks at a key to obtain food

and an observer Pigeon 2 (P-2) is reinforced for peck-
ing on seeing this event, then P-2 will eventually be
shaped to peck when seeing P-1 pecking. But, P-2 did
not learn this intervention on the basis of observing
the other animal. All that has happened is that the
behavior of P-1 has become a cue for eliciting a con-
ditioned response in P-2. It follows that the observer
pigeon could be conditioned to perform a nonimita-
tive act just as easily. Skinner (1953) endorses this
implication: “The similarity of stimulus and response
in imitation has no special function. We could easily
establish behavior in which the ‘imitator’ does exactly
the opposite of the ‘imitatee’ ” (p. 121).

It is known that human infants as young as 3 to 6
months old can be operantly conditioned quite readily
(e.g., Rovee-Collier, 1990). This means that they can
learn the contingency between their own actions and
results in the world. But, the capacity for operant condi-
tioning does not mean that the infant can learn these
action-outcome relations from observing the acts of oth-
ers. In other words, the fact that infants can learn an
intervention through their own trial and error (learning
by doing) does not mean that they can learn to perform
the intervention on the basis of observing the interven-
tions of others (learning by watching). The latter would
be imitation. The former is just a special case of operant
conditioning in which a friendly demon (a clever
mother or experimenter) has arranged it so the discrim-
inative cue matches the reinforced response. The moral
is that if we want to know whether infants can learn an
intervention through observation, then we need to
know the infant’s reinforcement history or, failing that,
use a novel act for which prior shaping is unlikely.

Piagetian theory (1962) came to similar conclu-
sions as Skinner, albeit for entirely different reasons.
Piaget also thought that young infants could not imi-
tate spontaneously. In Piaget’s case, it was not that
infants needed to be conditioned to learn to imitate,
but rather that they needed to reach a certain stage of
cognitive sophistication. Piaget realized that translat-
ing a seen intervention into one executed by the self
was nontrivial, and he claimed it was beyond the
capacity of infants in the first half year of life. He
hypothesized that infants were “egocentric,” even
“solipsistic.” The youngest infants could not learn
novel acts from observing others (whether these acts
were complex means-ends relationships or simple
body acts) because learning at first occurred through
self-action independently of other people (what
Piaget called practical intelligence).
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The Piagetian concept of infantile egocentrism was
most famously illustrated in his predictions about facial
imitation. Infants can see you make a facial movement,
but they cannot see their own faces. If the infant is
young enough, he or she will never have seen his or her
face in a mirror. How could the infant link the observed
facial acts of others with personal unseen bodily acts?
According to Piaget, this “invisible imitation” was
impossible because self and other were known in such
different terms; there was no abstract framework for
connecting observation and performance. Piaget
(1962) put it this way: “The intellectual mechanism of
the child will not allow him to imitate movements he
sees made by others when the corresponding move-
ments of his own body are known to him only tactually
or kinesthetically (as, for instance, putting out his
tongue) . . . since the child cannot see his own face,
there will be no imitation of movements of the face
[before approximately 1 year old]” (p. 19).

Thus, Piaget shared Skinner’s view that actions
could be observed and performed, but that the obser-
vation of an act did not engender the production of a
matching act without a long path of prior learning.
Neither Skinner nor Piaget thought that imitation was
a mechanism for early learning; rather, imitation itself
needed to be learned, and a good deal of theoretical
effort was put into explaining how babies could even-
tually associate the observation of others’ actions with
manipulations performed by the self.

Newborn Imitation: Innate Mapping
Between Observation and Execution

In part because of Skinner’s and Piaget’s theories about
a gulf between the observation and the execution of
human acts, I designed a series of tests of facial imita-
tion in young infants. Contrary to classical theories,
the results show that newborns imitate facial gestures.
The work suggests an abstract notion of goal-directed
action that cuts across the observed acts of others and
one’s own freely willed actions.

In an early study, Meltzoff and Moore (1977)
tested facial imitation in 2- to 3-week-old infants. The
results showed that they could imitate four different
adult gestures: lip protrusion, mouth opening, tongue
protrusion, and finger movement. The mapping
between observation and execution was quite specific:
Infants confused neither actions nor body parts. They
differentially responded to tongue protrusion with
tongue and not lip protrusion, revealing an innate

body scheme that maps from observed body parts to
their own body, despite never having seen their own
face. Similarly, they responded accurately to lip
protrusion versus lip opening, showing that different
patterns of action can be extracted and imitated when
the specific body part is controlled.

As my psychology colleagues quickly pointed out,
these infants may not have been young enough to
answer the objections of Skinner and Piaget. In their
2 weeks of life, they might have learned the relevant
associations. Perhaps mothers conditioned their chil-
dren to stick out their tongues whenever they saw this
gesture. The definitive test involved newborns who
averaged 32 hours old at the time of the test. The old-
est infant was 72 hours old, and the youngest was just
42 minutes old. The newborns accurately imitated
(Meltzoff & Moore, 1983, 1989). Apparently, facial
imitation is innate. This suggests a fundamental
equivalence between the perception and production
of acts that is built into the mind of the human baby.

Goal-Directedness in Early Imitation

Does facial imitation involve a “goal-directed” act? In
this chapter, I discuss goal-directed acts that cause
something to happen in the world. These simple bod-
ily acts do not do that. Nonetheless, I think that early
imitation is goal directed.

A characteristic of goal-directed action is that it con-
verges toward the endpoint along flexible routes. This
has been demonstrated in early imitation. Accurate
imitation does not pop out fully formed. Infants have to
work on it. They make errors and gradually correct
their motor attempts to achieve a more accurate match
to the observed target (Meltzoff & Moore, 1994). This
error correction occurs even though the adult gives no
feedback to the child (no smiles or encouragement)
and, most important, even though the child observes
the others’ act but not their own.

The goal directedness of the response is also illus-
trated in the “creative errors” infants make. One study
showed infants the novel gesture of poking out the
tongue at 45º off midline (from the side of the mouth)
(Meltzoff & Moore, 1994). The predominant pattern
was to poke the tongue into the inside of their check
and then gradually adjust. However, some infants
adopted a novel approach. They poked out their
tongues and simultaneously turned their heads to the
side, thus creating a new version of “tongue to the side”
(Meltzoff & Moore, 1997). This head movement was
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not something the adult demonstrated but was the
infants’ construction of how to combine a tongue
protrusion and an off-midline direction. Although the
literal muscle movements were very different, the end-
state orientation of the tongue was similar, and in this
sense it can be seen as an act organized by a goal.

The Innate Representation of Human Action

One way of accounting for these results is to hypothe-
size that infants innately represent the perception and
performance of elementary human acts using the same
mental code. There is thus something like an act space
or primitive body scheme that allows the infant to unify
the visual and motor information into one common
“supramodal” framework (Meltzoff & Moore, 1997).

The nature of the supramodal framework can be
further dissected. Three pieces of data suggest that
the supramodal system is not simply a Gibsonian reso-
nance device that directly turns observations into like
movements—a perception-production transducer.
First, the voluntary nature of the response indicates that
the infant need not produce what is given to perception.
The observations of others’ acts can be stored and
accessed after a delay. At minimum, there is an interme-
diary representation and not simply an automatic trans-
duction. Second, as we have seen, infants correct their
imitative efforts (and make creative errors). Information
about one’s acts has to be available for comparison to
the representation of the adult’s act, but the representa-
tion of the observed act is not confused with or modified
by one’s own multiple motor attempts. Third, infants
show special interest in being imitated themselves; they
recognize when their behavior is being copied
(Meltzoff, 2007). Such recognition implies that there is
a representation of their bodily acts.

This takes us beyond the simple transducer story.
The data suggest a differentiation in the supramodal
system. The representation of the observations are
tagged to keep them differentiable from the represen-
tation of one’s own motor acts. The cognitive act is to
compare these two representations—in one case to
match one’s own acts to the other (imitative correc-
tion) and in the other case to detect being matched
oneself (recognizing being imitated). The mental
code may be abstract enough to unite perception and
production, but the representations deriving from
observation and self-action are not confused. They retain
some source information (e.g., tongue-beyond-lips
[observed] and tongue-beyond-lips [produced]).

I would argue that this fundamental equivalence
(with differentiation) between self and other is a
starting point for social cognition, not an endpoint
reached after months of postnatal learning à la Piaget.
The chief goal for the remainder of the chapter is to
flesh out the thesis that these innately registered
equivalences between observed and self-generated
actions provide a substrate for infants’ learning causal
relations from others’ interventions.

Learning Interventions From Observation:
Making Things Happen

Adults manipulate objects to cause other things to
happen in the world. Infants carefully observe adult’s
causally directed acts and begin reproducing what they
see as soon as they become capable of handling objects.

One study tested whether 14-month-olds could
learn an intervention purely from observation. To
ensure that a new causal relation was being learned, a
novel act was used (Meltzoff, 1988). The adult put a flat
box on the table, looked down at it, and then bent from
the waist, touching it with his head, which caused the
top panel to light up. (This was an early blicket detector
that was activated by human heads.) Later, when infants
were given the box themselves, 67% of them leaned for-
ward from the waist and touched the panel with their
own foreheads. Many kept their eyes open, staring at the
top of the box, and smiled when the light came on.
Control infants showed that the baseline probability of
infants touching the panel with their foreheads was lit-
erally 0%. Not a single infant did so in the absence of
seeing the intervention. In a recent study, I changed the
head-touch apparatus to incorporate a remote effect.
When the adult touched the box with his forehead, this
caused a remote box to light up. The remote box was 2
feet away. When the infants were given their turn, they
touched the adult’s box with their foreheads and imme-
diately turned to stare at the remote box, waiting for it 
to activate (Meltzoff & Blumenthal, 2006). Carpenter,
Nagell, & Tomasello (1998) reported related effects.
Taken together, the experiments show that infants can
learn novel interventions based purely on observation.

A Privileged Role for Manipulations
Performed by Self

These head-touch studies show that infants can learn
an intervention by watching others. Is anything added
if infants perform the intervention themselves 
(Kushnir & Gopnik, 2005; Meltzoff, 2006)?
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I conducted a relevant study with 14-month-olds
(Meltzoff, 2006). Infants were randomly assigned to
two groups. Infants in Group 1 watched the adult per-
form manipulations of two novel objects. The experi-
menter shook one object to cause it to make a sound;
he held another one from a string and bounced it up
and down on the tabletop. Infants observed these acts
and then were sent home without manipulating the
objects themselves. Infants in Group 2 were treated
similarly but were immediately given the objects
before being sent home. Virtually all of them imitated
the actions they saw and thus had manipulatory expe-
rience as well as observational information.

The critical test came the next day when both
groups returned to the laboratory, and the objects were
put before them. The adult gave no hint what to do.
Infants who had been given the opportunity for imme-
diate imitation performed significantly more of the tar-
get acts on Day 2. Something appears to be gained if
infants perform the action themselves directly after
observing it. Infant performance is boosted if they
quickly convert an observed manipulation into a self-
produced manipulation. In line with the work on
facial imitation, it appears that the actions of self and
other are coded in commensurable terms, but that the
self-produced acts are tagged distinctively from acts
that were merely observed; converting observation into
a self-action makes it memorable.

I hasten to add that infants can remember causal
events without taking concurrent action. We know
this because the first group of children, who only
observed on the first day (by experimental design),
imitated from memory on the next day. Evidently, the
observed intervention can be stored and used to gen-
erate one’s own manipulations after a delay. But, it is
equally interesting that memory for the causal act is
stronger if the act is first performed by the self before
the delay.

Inferring an Intervention Based on
Unsuccessful Action Patterns

Learning Actions Versus Learning Outcomes

We have seen that infants who see an adult use unusual
means to accomplish an intervention do not simply
reproduce the result (making the light come on) using
any motor acts at their disposal (e.g., their hands), but
instead faithfully copy the whole behavioral envelope.
Based on this research, one might wonder whether

means and ends are differentiable aspects of an
intervention, or whether infants achieve causal results
by reenacting the precise actions used by the adults.

This makes a difference to theories because it could
be that (a) infants faithfully copy the adult’s actions,
and sharing body types and the laws of physics, the
causal results naturally follow; or (b) infants represent
the causal results and strive to achieve them by their
own invented means. This is a tricky distinction to test
empirically because if infants copy our actions, then
they are likely to achieve our causal results “for free.”

The way I investigated this question was to have
infants observe an unsuccessful intervention. I wanted
to test whether infants can read through our failed
attempts and infer the intervention we intended to
achieve. Because the adult’s actions were unsuccess-
ful, infants could not copy the adult’s actions and
achieve the desired result.

Inferred Interventions

I showed 18-month-olds unsuccessful interventions
(Meltzoff, 1995). For example, the adult used a stick
tool in an attempt to push a button to make a sound
but “accidentally” under- or overshot the target. 
Or, the adult grasped the ends of a dumbbell-shaped
object and attempted to yank it in two, but his hands
slid off as he yanked, and thus the goal was not
achieved. To an adult, it was easy to decode the actor’s
intended intervention. The measure of how infants
interpreted the event was what they chose to reenact.
In this case the “correct answer” was not to imitate the
manipulation that was seen (the unsuccessful
attempt), but to perform the intervention the adult
“meant to do.”

The study compared infants’ tendency to perform
the target act in several situations: (a) after they saw
the successful intervention demonstrated, (b) after
they saw the unsuccessful attempt to perform the
intervention, and (c) after the intervention was nei-
ther shown nor attempted (control). The results
showed that 18-month-olds can infer interventions
from adult attempts to perform them. Infants who saw
the unsuccessful attempts and infants who saw the
successful interventions both performed the goal acts
at a significantly higher rate than the controls.
Evidently, infants can understand our goals even if we
use means that are insufficient to fulfill them.

In further work, 18-month-olds were shown similar
displays but were handed a trick toy that prevented
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them from performing the intervention (Meltzoff,
2006). For example, the dumbbell-shaped object was
surreptitiously glued shut. If infants attempted to pull
it apart, then their hands slipped off the ends, dupli-
cating the adult’s behavior. The question was whether
this satisfied infants. It did not. They did not terminate
their behavior. They varied the way they yanked on the
dumbbell, systematically changing their interventions
to find one that worked. They also appealed to their
mothers and the adult for help. About 90% of the
infants looked up at an adult within 2 seconds after
failing to pull apart the trick toy, and many vocalized
while staring at the adult’s face. Why were they
appealing for help? They had matched the adult’s sur-
face behavior, but evidently they were striving toward
something else—the adult’s intended intervention.

Inventing New Means to Achieve an
Inferred Intervention

If infants are inferring the adult’s goal, then they
should also be able to achieve it using a variety of
means. I tested this. As before, an adult grasped the
ends of a gigantic dumbbell and attempted to yank it
apart, but his hands slid off. The dumbbell was then
presented to the infants. Infants did not even try to
copy the adult’s exact movements. Rather, they put
their tiny hands on the inside faces of the cubes and
pushed outward, or stood upright and used both
hands to pull upward, and so on. They used different
means than the experimenter, but these acts were
directed toward the same causal result. This fits with
the hypothesis that the infants had inferred the goal of
the intervention, differentiating it from the surface
behavior that was observed.

Work by Want and Harris (2001) goes further and
shows that older children, 3-year-olds, benefit from
observing others using multiple means to achieve a
goal. They benefit more from watching an adult mod-
ify a failed attempt into a successful act than from
watching the demonstration of successes alone. Other
work also underscores the importance of goals in imi-
tation (e.g., Gattis, Bekkering, & Wohlschläger, 2002;
Gleissner, Meltzoff, & Bekkering, 2000; Williamson
& Markman, 2005).

Agents and Goals: Infants Infer Interventions
for Agents

In the adult commonsense framework, the acts of
people can be goal directed and intentional, but

the motions of inanimate devices are not; they are
governed by physics, not psychology. Do infants
interpret the world in this way? Meltzoff (1995)
designed an inanimate device made of plastic and
wood. The device had short poles for arms and
mechanical pincers for hands. It did not look human,
but it traced the same spatiotemporal path the
human actor traced and manipulated objects much
as the human actor did. When the pincers slipped off
the ends of a dumbbell, infants did not infer the
intervention as they did with the human agent. The
infants were no more (or less) likely to pull the toy
apart after seeing the unsuccessful attempt of the
inanimate device than infants in the baseline condi-
tion. However, if the inanimate device successfully
completed this act, then infants did perform the suc-
cessful intervention.

Evidently, infants can understand and duplicate a
successful intervention displayed by the inanimate
device but do not read meaning into the device’s
unsuccessful “attempts.” This makes sense because
successes lead to a visible change in the object.
Failures leave the object intact and therefore must be
interpreted at a deeper level, in terms of the intended
interventions of the agent. Perhaps infants do not
interpret inanimate devices as psychological agents
with goals and intentions; thus, no intervention is
inferred.

In summary, the research shows that infants distin-
guish between what the adult meant to do and what
he actually did. They ascribe goals to human acts;
indeed, they can infer an intended intervention from
a pattern of behavior (multiple unsuccessful attempts)
even when the intervention was not performed. The
acts of persons—but not the motions of mechanical
devices—are understood within an agentive frame-
work involving goals and intentions.

A Natural Experiment: The Primacy of
People in Infants’ Notion of Interventions

The Involvement of People Causes Infants
to Interpret the Same Scene Differently

As we have seen, infants interpret the acts of people in
special ways. This suggests a way of testing Woodward’s
idea of a natural experiment in which a causal event
occurs without an agent as the source of the change. I
showed 18-month-old infants an intervention and varied
whether a person was involved in producing the result.
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Infants saw the dumbbell-shaped object in three
successive states. The three views were separated from
each other by raising a black screen, so that the infants
saw three snapshot views of an event that unfolded
over time. What varied is the causal story of how it got
to be that way. After infants saw the three displays, they
were given the dumbbell. The question was whether
they produced the target behavior, which was to pull
the object apart.

Group 1 was a baseline control condition to assess
infants’ spontaneous tendency to manipulate the
object. For this control group, infants simply saw three
identical states—the assembled object sitting in place
with no person present. As expected, infants did not
pull the object apart spontaneously: They mouthed it,
banged it, and slid it across the table, but they did not
spontaneously discover pulling it apart in the absence
of seeing this intervention. For Group 2, the three snap-
shots revealed the affordances of the object but did not
specify the involvement of a person. The views were
the following: (a) object assembled, no person present;
(b) object disassembled, no person present; (c) object
assembled again, no person present. For Group 3, the
snapshots revealed an agent as a potential cause. The
views were the following: (a) object assembled, in per-
son’s hands; (b) object disassembled, in person’s hands;
(c) object assembled, in person’s hands.

Infants in Group 2 did not pull apart the toy; in
fact, they did not differ from the baseline controls. In
contrast, infants in Group 3 pulled the object apart
significantly more often than those in Group 1 or
Group 2. Thus, the involvement of a person as a
potential cause led infants to interpret the same scene
differently. In the case of the natural experiment in
which the object was seen in its pre- and posttrans-
formed state (Group 2), infants observed but did not try
to re-create the event. However, if a person held the
object, although sitting stony-faced and displaying no
effort at acting, infants did so.

These results are especially interesting when com-
bined with the Meltzoff (1995) intention-reading
study. In that study, the dumbbell remains untrans-
formed, and the person is trying to perform an inter-
vention. In the current study, the person is present
and shows no intent, but the results of the object
transformation are shown (three static states: assem-
bled, apart, reassembled). In the former case, there is
human effort and no object transform, and this suf-
fices for infants to infer the intervention. In the latter
case, there is an outcome state and no effort, but if the

person is present, this can be interpreted as a potential
cause for what happened. In both cases, it provides
enough for infants to interpret the observations as rel-
evant to their own actions and for them to fill in the
blanks and produce a manipulation that was never
directly observed but only inferred.

Agentless Transformations: Magic

In a further study, the dumbbell object was magically
pulled apart and reassembled in front of the child’s
eyes but appeared to do so autonomously. This pro-
vides object transformation data in full view.

The object was placed on a black box, and inside
the box there were magnets. The magnets were
moved, and thus the dumbbell came apart and was
reassembled without this being caused by a human
agent. The results were that 15-month-olds did not
pull the toy apart at any higher than baseline levels.
Interestingly, half of the infants picked up the object
and placed it back on the box several times, as if situ-
ating the object on the magic spot would cause the
result. Infants saw the intervention and wanted it to
repeat but, in the absence of a human cause, drew no
implication for their own causal actions. Evidently,
they thought the object transformation would happen
to the object if it was spatially positioned, rather than
thinking they could cause the transform through their
own manipulation.

Learning to Use a Tool

In the developmental and animal psychology litera-
tures, one of the most celebrated examples of causal
reasoning is the case of tool use. We know a lot about
the ability of chimpanzees to use tools—starting from
Köhler’s (1927) observations of Sultan moving crates
below an overhead banana to reach it and extending
to Jane Goodall’s (1968) reports of termite fishing on
the Gombe Stream Reserve. Although it was once
argued that tool use was uniquely human, it is now
widely acknowledged that other animals are success-
ful tool users, including the gold standard of using a
stick to obtain an out-of-reach target. The debate con-
cerns whether animals use tools based on trial and
error or based on insight about the causal relations
involved (Povinelli, 2000; Tomasello & Call, 1997).

For the purposes of this chapter, I am interested in
exploring tool use from a different perspective.
Instead of asking whether animals and infants use

INFANTS’ CAUSAL LEARNING 43



tools when left on their own to “figure it out,” I wish
to examine learning through observation—in
particular, seeing an expert use a stick to obtain an
out-of-reach goal. The extant data are mixed.
Tomasello and Call (1997) suggest that wild chim-
panzees do not readily learn how to use a tool from
observation, but that some enculturated chimps may;
Povinelli (2000) remains skeptical of the latter.

The literature concerning human infants is simi-
lar. There is good evidence that infants can eventually
learn to use sticks as tools when left to their own
devices (Bates, Carlson-Luden, & Bretherton, 1980;
Brown, 1990; Piaget, 1954) but much sparser evi-
dence concerning learning from the interventions of
others. Of course, it is well known that adults and
older children learn how to use a wide variety of tools
and complex machinery by watching experts; the
debate concerns younger ages.

To test for observational learning of tool use, one
needs a few conceptual distinctions. To begin,
one needs to distinguish imitation from stimulus
enhancement. The latter refers to the fact that the
infants’ attention may simply be drawn to a tool by
virtue of the adult handling it. With their attention
drawn to the stick, infants may increase their random
play with the object, thereby increasing the probabil-
ity that they will learn through trial and error that it
can be used as a tool. The child is not learning a new
causal relation based on what they see the other
do. Rather, the child is learning that the stick is
interesting—stimulus enhancement—and thereby is
more likely to pick it up, with the rest following by
chance or trial and error.

In the developmental literature, there have been
surprisingly few well-controlled tests of learning to use
complex tools through observation. Nagell, Olguin,
and Tomasello (1993) performed a relevant experi-
ment comparing chimps and human infants. They
reported that the 18-month-old children failed to
learn how to use a rake (to obtain a distant object)
from observation, but that 24-month-olds could do so.

I tested younger infants. The sample consisted of
120 infants evenly distributed at 16, 18, 20, and 22
months of age (Meltzoff, 2006). Within each age
group, infants were randomly assigned to one of three
test conditions: (a) learning by observation, in which
the adult modeled the correct use of the rake to obtain
the out-of-reach goal; (b) Control 1 (baseline), in which
infants saw no modeling and were simply given the
rake; and (c) Control 2 (stimulus enhancement), in
which infants saw the adult use the rake to touch the

goal, thereby drawing attention to the rake and to the
fact that it could make spatial contact with the goal
(correct use of the rake was not shown).

The tool was a 17-inch long rake. It was placed
horizontally in front of the infant, with approximately
a 2-foot spatial gap between it and the goal object.
The goal was a highly desirable rubber giraffe. Infants
had 1 minute to solve the problem. Preliminary studies
in our lab suggested that infants performed better
when they observed the model from a first-person
perspective—when the adult and infant were side by
side, rather than facing each other across the table.
This may be important because previous studies have
not modeled tool use from this perspective (e.g., in
the Nagell et al. 1993 study the adult faced the infant,
so the modeling entailed using the tool to pull the
object away from the infant and toward the adult).
Viewing the goal-directed act of the model from the
same perspective as one’s own may facilitate learning
from observation.

Infants showed great enthusiasm for obtaining the
goal (stretching out their arms, vocalizing, looking at
the adult, etc.). In the two control groups, there was
no significant difference in the successful use of the
rake as a function of age. Across all 120 subjects, only
7.5% (6 of 80) of the infants solved the problem spon-
taneously; in contrast, fully 50% (20 of 40) of the
infants succeeded after they saw the adult show them
how to use the tool, p � .001. The older infants 
(20- and 22-month-olds) profited far more from obser-
vation (70% succeeded) than did the younger infants
(30% succeeded), p � .05.

Infants learn from observation but not automati-
cally. There appears to be an interaction between the
infants’ initial cognitive level and what they gain from
observing others. The young infants learn, but they do
not exceed spontaneous rates by the same degree that
the older infants do. I would predict that still younger
infants would not learn how to use the rake from
observation. I say this because of the nature of the
failures. After watching the expert adult, the younger
infants pounce on the rake and wield it with great
confidence. However, once they move the rake to the
quarry, they are not be able to “think through” the
causal relations—that the business end of the rake has
to be behind the goal-object and the tines pointed
downward before the rake could be pulled in. (Their
reaction reminds me of undergraduates who get halfway
through a difficult conceptual distinction and then,
face fallen, find themselves lost, unable to bring
things to conclusion. The “uh-oh, what-do-I-do-next”
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expression seems to be invariant across age.) One pos-
sibility that arises from this work is that infants have to
be “on the cusp” of solving the problem themselves to
get the boost from seeing how someone else solves it
(see Gopnik & Meltzoff, 1986, 1997, for related find-
ings). The older infants would be more intelligent
consumers of the observed interventions. I am explor-
ing this possibility through further research.

Conclusions

The work described in this chapter has implications
for both psychology and philosophy.

Psychology

The power of imitation has always been underesti-
mated in psychology. Skinner underestimated imita-
tion because he thought it was simply a variant of
operant conditioning in which the infants’ response
had been shaped up. Just as infants could be trained
to perform Behavior X when they saw a red light, so
they could be trained to perform Behavior X in
response to Behavior X. There was nothing special
about the match between self and other. Skinner
thought that the opposite behavior would do just as
well as a cue. I doubt it. I think you would be in for a
long series of training sessions if you tried to teach a
baby to open his or her hand every time the baby saw
you close yours. The intrinsic connection would
interfere with learning the arbitrary association.

Chomsky underestimated imitation because it was
a learning mechanism. To say children learn through
imitation means that they are sculpted by experience.
Chomsky relegated experience to “parameter setting”
or the “triggering” of innately structured systems. It is
difficult to see how these concepts can explain the imi-
tation of novel acts like head-touch. Infants duplicate
this act, but it is unlikely to be biologically specified
and simply triggered. Chomsky may (or may not) be
correct about the domain of grammar, but in the
domain of action, observing others’ novel acts has a
powerful effect of sculpting infants’ own actions.
Parents do not need to slavishly condition their child
for the child to begin to act like those around the
dinner table. The babies are observing and learning.
Moreover, research suggests that “auditory observation”
may be more powerful in language acquisition than
traditionally assumed, particularly for the acquisition
of culturally specific phonology. Kuhl (2004) reports that
infant phonology, as indexed by both brain measures

and perceptual measures, is influenced by the sounds
infants hear in their culture; furthermore, studies show
that young infants reproduce speech sounds they hear
through imitation (Kuhl & Meltzoff, 1996).

Piaget underestimated imitation because he
thought that infants were born with “heterogeneous
spaces”—a “visual space” that was initially independ-
ent of their “motor space.” A major task of the first
2 years of life was to unify these spaces so infants
could learn from watching, not just from doing.
Piaget predicted that facial imitation was impossible
until about 1 year of age and deferred imitation (imi-
tation from the memory of observed, now absent,
events) impossible before about 18 months of age.
My research shows facial imitation at birth and
deferred imitation soon thereafter.

These theorists missed the idea that there is a fun-
damental equivalence between observing and per-
forming goal-directed motor acts. It is not that seeing
and doing need to be linked by associative learning or
conditioning. Imitation is innate. Infants can even
imitate facial gestures they have never seen them-
selves perform. Infants have an abstract mental code,
we call it a supramodal code, that unites acts seen and
acts done within the same framework.

The innate equivalence between elementary acts
of self and other has implications for learning about
cause-effect relations. Instead of relying exclusively on
the contingencies between your acts and the conse-
quences in the world, you can learn through observing
the actions of others—actions that you immediately
recognize as “like my own.” If acts performed by
another make something happen, perhaps they will
make the same thing happen when I do them. Such
learning could not get off the ground if the observed
acts were not recognized to be the same as my own
acts. That much is nature’s share.

Philosophy

Woodward (chapter 1, this volume) describes three
levels of causal understanding:

1. A purely egocentric causal view: The subject
understands the relationships between personal
actions and the resulting effects but is unable to
grasp that the same relationships can occur
when the self is not the cause.

2. An agent causal view: The subject understands
that the causal relationships that exist between
personal actions and effects also apply to the
actions of other people.
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3. A fully causal view: The subject understands
that the same causal relationships that the sub-
ject exploits in intervening can also be used by
other agents and can exist in nature even when
no other agents are involved.

The egocentric infant described by Piaget’s theory
(1952, 1954) closely resembles what Woodward called
the egocentric causal view. This egocentric organism is
capable of being conditioned because he or she can
grasp the relation between bodily movements and
effects in the world but cannot learn from watching
the causal actions of others. The modern empirical
results suggest that the egocentric infant is a fiction.
Laboratory rats and other animals may conform to this
description, but the human infant does not.

There is evidence, however, that up to about 18
months of age, the human infant is not fully causal in
Woodward’s sense. Several experiments suggest that
the human infants learn interventions differently from
a person than from an inanimate device (inferred
intervention studies) and draw only limited inferences
when no agent is present (natural experiment stud-
ies). Based on the current research, it may be that
Woodward’s (chapter 1, this volume) characterization
of an “agentive view” is a reasonable description of
the prelinguistic toddler. How and when an infant
develops into a fully causal agent is a central question
for developmental cognitive science (Gopnik et al.,
2004; Meltzoff, 2006).

Summary

The perception of others’ actions and production of
self-action are mapped onto commensurate represen-
tations starting from birth. This allows infants not
only to learn interventions through their own manip-
ulations but also to multiply greatly their learning
opportunities by observing the manipulations of oth-
ers and profiting from them. For example, in the
novel head-touch case, infants immediately knew
how to activate the object 24 hours after seeing the
adult do so, without ever having handled the object
themselves. Importantly, infants do not seem to confuse
acts of self and other. On the one hand, they correct
their behavior (showing a retention of the observed
target that is differentiable from the self’s motor
efforts). On the other hand, they treat their own acts
in a privileged manner that suggests some sort of
mental tagging that helps track whether an act was of
external or internal origins.

Infants imitate but do not blindly copy everything
they see. First, they make creative errors. Second, they
skip over the literal behavior they see and choose to
duplicate inferred interventions—what the adult
meant to do, not what the adult did do. Third, when
causal relations are difficult, as in the rake case for
younger infants, observation alone does not seem to
guarantee success; older infants glean more from the
modeling than do younger ones.

Starting at birth, there seems to be a delicate inter-
play between learning by observation and learning by
doing. The two are not quarantined from each other
as Michotte (with an emphasis on observation over
motor experience) or Piaget (with an emphasis on
motor experience over pure perception) might have
supposed. Instead, there seems to be a reciprocal
exchange between these two modes of learning. What
infants observe influences what they do (novel head-
touch imitation), and what they can do changes their
attention to the model and how they interpret it (tool
use from observation).
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Introduction

Humans are causal animals. We see events not merely
as occurring, but as caused. Integral to mature causal
reasoning is the ability to understand particular causal
relations in our environment. Indeed, adults readily
detect both psychological and physical causal
relations across a range of human action and object
motion events. Imagine watching a dinner companion
hungrily devouring his dessert. You might assume that
the actor’s grasp of the dessert fork is caused by his
goal of obtaining the brownie, and that the movement
of the dessert item on his plate is caused by the con-
tact between fork and brownie. Thus, at a basic level,
identifying causal relations involves at least two com-
ponents. First, one must segment ongoing human
action and object motion into psychological and
physical causal episodes. In the example, one must
recognize that the fork-grasping, brownie-moving,
and brownie-eating actions cohere to form causal
units. Second, one must identify variables relevant to
causal outcomes. A desire or predisposition to eat

sweets and a particular type of contact between the
fork and brownie are relevant to identifying the
respective psychological and physical causal relations
involved in our dessert scenario.

An integral question then is how an understanding
of these rudimentary aspects of causal understanding
is achieved. In this chapter, I argue that infants’ expe-
rience of their own actions and the consequences that
these actions have on the world play an important role
in their developing understanding of causal relations.
Recent philosophical theories of causation take an
interventionist perspective on causality: If manipulations
on one factor (interventions) are associated with a
change in a second factor, then the first causes the
second (e.g., Woodward, chapter 1, this volume). In
addition, empirical evidence suggests that both adults
and young children readily learn causal structure from
enacting and observing interventions (see Gopnik &
Schulz, 2004, for a review). In this chapter, I present
evidence that infants’ developing ability to act on the
world is intimately linked to their causal understand-
ing. Infants’ interventions may enable them to evaluate
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causal hypotheses and detect the causal structure of
various events in the world.

Infants’ Understanding of Physical and
Psychological Causation

A variety of research reveals that children have a rich
understanding of the causal structure of the physical
and psychological world (e.g., Gopnik &  Meltzoff,
1997). By the end of the preschool period, children
appreciate human action as psychologically caused:
They describe, predict, and explain their own and
others’ behavior with reference to mental states
(Bartsch & Wellman, 1995; Gopnik & Astington,
1988; Wellman, Cross, & Watson, 2001). These
developments are paralleled in children’s understand-
ing of physical causation.

The sophistication of young children’s causal
reasoning has led researchers to focus on the origins
of causal understanding. Work suggests that toddlers
possess at least one key aspect of understanding
behavior as psychologically caused: They understand
human action as guided by goals. Eighteen-month-
old infants readily imitate the inferred goals of others
(Meltzoff, 1995), selectively reproduce goal-directed
acts (vs. accidental acts; Carpenter, Akhtar, &
Tomasello, 1998), and can distinguish between their
own goals and those of another person (Repacholi &
Gopnik, 1997).

Studies have assessed the roots of preverbal
infants’ ability to view human action as goal directed.
This work reveals that even young infants construe
simple actions of others as goal or object directed.
After watching an actor reach for and grasp an object,
6-month-old infants attend more to changes in an
actor’s goal than they do to other, more superficial
aspects of the reach and grasp, such as the reach
trajectory or location (Woodward, 1998). Over the
next 6 months of life, infants’ ability to construe action
as goal directed becomes increasingly elaborate: 12-
month-olds also perceive attentional (e.g., eye gaze;
Woodward, 2003), instrumental (e.g., point gesture;
Woodward & Guajardo, 2002), and novel actions
(e.g., pushing with the back of hand; Jovanovic et al.,
2006; Kiraly, Jovanovic, Prinz, Aschersleben, &
Gergely, 2003) as object directed. Infants can also
move beyond construing action as goal directed to
parse the ongoing stream of behavior into goal-relevant
units (Baldwin, Baird, Saylor, & Clark, 2001) and are
able to use previous action and attentional cues to

predict future action (Phillips, Wellman, & Spelke,
2002; Sodian & Thoermer, 2004). These findings sug-
gest that a key element of understanding psychologi-
cal causal relations begins in infancy and is
elaborated over the first year of life.

A nascent sensitivity to physical causal relations is
also present in infancy. Traditionally, infants’ under-
standing of physical causal relations has been exam-
ined from the vantage point of problem solving or tool
use. Piaget (1953) suggests that causal understanding
emerges toward the end of the first year of life; this
was based on observing that his own infants developed
the ability to use an intermediary object to achieve a
target object (e.g., pulling a support to obtain an out-
of-reach toy, pulling a string to get a toy) by this age.
Additional empirical works bear out and extend
Piaget’s observations. Numerous studies demonstrate
that, by the end of the first year of life, infants can
solve a variety of simple tool use tasks (Bates, Carlson-
Luden, & Bretherton, 1980; Uzgiris & Hunt, 1975;
Willatts, 1984, 1999). Shortly thereafter, infants can
generalize tool use solutions across problems based
on their underlying causal structure, as opposed to
strictly on the basis of shared perceptual features
(Chen, Sanchez, & Campbell, 1997). Moreover,
older infants not only can transfer causal solutions
across problems, but also can pick tools to solve a
problem based on their causal efficacy. After learning
to solve a tool use problem, toddlers select novel tools
based on their utility in goal attainment as opposed to
their perceptual similarity to previous tools (Brown,
1990; Chen & Siegler, 2000).

Subsequent work has revealed that preverbal
infants detect causal relations in certain types of
object motion events. By 6 months of age, infants
recognize the causal status of Michottian-type
launching sequences and distinguish this causal event
from other events that share spatiotemporal properties
but are not causal (e.g., delayed launching and no
collision events; Leslie, 1982; Leslie & Keeble, 1987).
Over the next several months, infants’ causal percep-
tion becomes more sophisticated. By 10 months of
age, infants respond to the causal status of the launch-
ing events that feature real objects (Oakes & Cohen,
1990) and perceive the causality of launching events
in which objects move along dissimilar paths (Oakes,
1994). It is also by this age that infants become
increasingly sensitive to causal roles within a causal
event (Cohen & Oakes, 1993). Several months later,
infants differentiate the primary cause of a causal
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chain versus a temporal chain (Cohen, Rundell,
Spellman, & Cashon, 1999). Thus, over the first year
of life infants recognize physical causal relations in a
variety of different object motion events.

Taken together, these findings suggest that the
roots of causal understanding are present in infancy.
Infants recognize psychological and physical causal
episodes and can identify some of the variables affecting
these relations. Controversy exists, however, over the
means by which this understanding is achieved.

Mechanisms Underlying the
Development of Causal Understanding

Some investigators have argued that infants are
innately endowed with an ability to understand certain
psychological and physical causal relations. For exam-
ple, it has been suggested that infants possess an
abstract system for construing action as goal directed,
and that such a system is automatically activated by a
set of perceptual cues (such as self-propelled motion,
contingent action, etc.; e.g., Baron-Cohen, 1995;
Gergeley, Nasady, Csibra, & Biro, 1995; Premack,
1990). Similarly, Leslie argues that infants’ sensitivity
to causality in launching events is guided by an innate
perceptual module (e.g., Leslie, 1994).

However, innate knowledge cannot be the whole
story. Prior to 6 months of age, infants respond to
launching events on the basis of simpler perceptual
features (e.g., spatial-temporal features) but not
causality (Cohen & Amsel, 1998), and they do not
spontaneously encode the goal of a human actor’s
reach and grasp (Sommerville, Woodward, &
Needham, 2005). In addition, there is general agree-
ment that sensitivity to both psychological and physi-
cal causal relations becomes increasingly elaborate
over the course of infancy (e.g., Cohen, Chaput, &
Cashon, 2002; Csibra, Biro, Koos, & Gergely, 2003;
Gopnik & Meltzoff, 1997; Woodward, Sommerville, &
Guajardo, 2001).

Other authors suggest that various domain-general
developments may underlie infants’ causal under-
standing. Cohen and colleagues (e.g., Cohen et al.,
2002) argue that information-processing develop-
ments throughout infancy enable infants to integrate
increasingly higher-order elements, including causal
relations, of object motion displays. Studies have doc-
umented that infants are adept at detecting statistical
regularities across a range of stimuli, and that infants’
ability to do so forms the basis of learning (e.g., Aslin,

Saffran, & Newport, 1998; Kirkham, Slemmer, &
Johnson, 2002; Saffran, Aslin, & Newport, 1996;
Saffran, Johnson, Aslin, & Newport, 1999). For exam-
ple, infants segment words from fluent speech based
on statistical relationships between adjacent speech
sounds (Saffran et al., 1996) and appear to do so based
on transitional probabilities of successive speech
sounds (e.g., Aslin, Saffran, & Newport, 1998).
Baldwin and colleagues (Baird & Baldwin, 2001;
Baldwin et al., 2001) have argued that infants may
capitalize on such statistical learning skills to identify
behavioral cues associated with goal attainment when
observing ongoing human action. By extension,
infants could also use statistical covariation detection
to identify aspects of physical causal structure.

The Role of Interventions in Infants’
Developing Sensitivity to Causal
Relations

All of the aforementioned abilities likely contribute
to infants’ capacity to appreciate physical and psycho-
logical causal relations. In addition, infants’ develop-
ing experience as actors may play a powerful role in
their causal understanding. Indeed, Piaget suggests
that infants’ causal understanding emerges through
their sensorimotor actions on their environment
(e.g., Piaget, 1953). Other scholars argue that under-
standing human behavior as psychologically caused
relies on our ability to map from our own experience
to those of others (e.g., Goldman, 1989; Gordon,
1986; Harris, 1989; Heal, 1989), and that this may be
particularly true in early development (Meltzoff,
2002; Meltzoff & Brooks, 2001; Tomasello, 1999;
Woodward et al., 2001).

Previous work suggests that adults and children
readily detect causal structure by intervening on their
environment (Gopnik & Schulz, 2004; Gopnik et al.,
2004; Kushnir & Gopnik, in press; Lagnado & Sloman,
2004; Sobel & Kushnir, 2003; Steyvers, Tenenbaum,
Wagenmakers, & Blum, 2003). Inter-ventions are
particularly crucial when one must disambiguate
multiple causes or identify variables relevant to causal
outcomes. Critically, interventions enable learners to
test causal hypotheses and compare the outcomes of
their interventions to expected outcomes (e.g., Sobel &
Kushnir, 2003). In keeping with this suggestion, evi-
dence suggests that, at least in some circumstances,
self-generated interventions may result in more

50 CAUSATION AND INTERVENTION



accurate and thorough causal learning than watching
the interventions of others (e.g., Kushnir & Gopnik, in
press; Sobel, 2003).

Dramatic changes occur over the first 2 years of
life in infants’ ability to act effectively on their world.
Infants’ changing action capacities may provide them
with the opportunity to intervene on their environ-
ment, that is, to manipulate one factor intentionally
and observe the results of their manipulations on
another factor. Infants’ own interventions may be a
particularly rich source of information for causal
learning as they allow them to investigate directly
the causal hypothesis that infants hold in the
moment and to observe the effects of their interven-
tions. Such a perspective predicts that infants should
(a) be able to learn from their own causal interven-
tions and (b) be able to relate their interventions to
those of others.

Existing studies provide preliminary evidence for
both of these proposals. Infants’ ability to solve a box-
opening problem improves as a result of their own
dynamic engagement with this problem-solving task
(Bojcyzk & Corbetta, 2004). Put another way, infants
readily and spontaneously learn from their own
interventions. In addition, even very young infants
relate their own interventions to those of others.
Three-month-old infants who participated in a task
that facilitated their ability to intervene on objects sub-
sequently appreciated similar interventions performed
by another person as goal directed (Sommerville et al.,
2005).

Thus, infants possess prerequisites that may enable
them to use information from their own interventions as
a means to understanding psychological and physical
causal relations.

In the studies discussed in this chapter, Woodward
and I (Sommerville & Woodward, 2005a, 2005b) inves-
tigated the extent to which infants’ ability to intervene
on a particular problem was related to their sensitivity
to causal relations in a similar problem when watching
another person act. To do so, we presented infants with
a simple tool use scenario: Infants saw an actor pull a
support supporting an out-of-reach toy and grasp the
toy. An observer watching this sequence must under-
stand that the actor acts on the support with the inten-
tion of getting the toy (psychological causal relation),
and that the movement of the support causes the toy to
move (physical causal relation). Moreover, observers
must understand variables influencing the causal rela-
tions in this sequence, namely, the presence of the

actor’s desire to get the toy and the need for contact
between the support and toy so that the first can cause
the second to move.

Across both studies (Sommerville & Woodward,
2005a, 2005b), infants received an intervention task in
which they were given the opportunity to act on the
support to obtain the out-of-reach toy. To assess
whether infants understand the psychological causal
relations of this sequence, one group of infants subse-
quently took part in a paradigm that assessed whether
infants recognized that an actor acting on a similar
support did so with the intention of getting the toy. To
assess whether infants were sensitive to the physical
causal structure of the sequence, another group of
infants subsequently took part in a paradigm that
assessed their ability to recognize the need for contact
between the toy and support for movement of the sup-
port to cause the toy to be displaced. Our questions
were whether (a) infants were sensitive to the respec-
tive psychological and physical causal relations and (b)
whether this sensitivity was linked to their own inter-
vention experience.

The Role of Interventions in Infants’
Understanding of Psychological Causal
Relations

Adults shown the support-pulling sequence under-
stand that the actor’s goal in this situation (getting the
toy) guides the actor’s actions on the support. Previous
work suggests that the support-pulling problem is
readily solved by 1 year of age (e.g., Piaget, 1953;
Willatts, 1999). Moreover, a study provided evidence
that by this same age infants recognize the psycholog-
ical causal relations of the support-pulling sequence.
After watching an actor pull a support that supported
a toy, infants construed the actor’s subsequent actions
on the support as directed toward the toy rather than
the support itself (Sommerville & Woodward, 2005a).
The present study assessed whether younger infants
could also appreciate the psychological causal
relations involved in the support-pulling sequence
and whether their ability to do so is related to their
developing experience intervening on a similar 
problem.

Ten-month-old infants took part in two para-
digms. During the support-pulling intervention task,
infants were given multiple opportunities to pull a
support that supported an out-of-reach toy, bringing
the toy within reach so that it could be grasped. 
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We assessed infants’ ability to solve this problem in a
spontaneous manner without prior instruction.
Specifically, we assessed how frequently infants
solved the task in a way that appeared clearly
directed at obtaining a toy.

Infants also took part in a habituation paradigm
(see Figure 3-1 psychological structure paradigm).
This paradigm capitalizes on infants’ visual attention
as a way to gauge their event representations. While
sitting in a high chair or on a caregiver’s lap, infants
watch live events presented by a human actor on a
puppet stage. An experimenter who is unaware of the
events that infants are watching observes infants’ eye
gaze using a computer program that times infants’
looking to the outcomes of the events. Infants are
separated from the stage by a screen that can be lowered

to reveal the event and raised when a trial is termi-
nated. During the initial phase of the study, infants
repeatedly watch a single event until their attention
wanes (habituation). Infants then see two test events
in alteration that each differ along a single dimension
from the habituation event. The features that infants
weight most heavily in their event representations are
gauged by examining infants’ novelty preference (e.g.,
which event they look longer at) to the test events.
Some test events are perceptually similar to the habit-
uation event but feature a change in the actor’s overar-
ching goal. Other test events preserve the actor’s
overarching goal but feature changes in the way in
which this goal is achieved in comparison to the habit-
uation event. Infants’ sensitivity to the psychological
causal relation of the sequence is inferred from the
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extent to which they prefer (e.g., look longer at) events
that vary the actor’s goal over those that vary the way in
which the actor’s original goal is achieved.

During the habituation trials, infants saw an actor
sitting behind a stage that contained two different
colored supports, each of which sat under a different
toy. The screen was lowered, and the actor said
“Hi. Look.” while subsequently reaching toward and
grasping one of the supports. She next pulled the sup-
port toward her and grasped the toy that it supported.
Infants’ looking was timed to the static outcome of
this event (the actor grasping the toy).

Once infants’ looking time had decreased to half of
its initial level (habituation), the locations of the toys
were switched. This enabled us to show infants two
new test events that tapped their sensitivity to the goal
of the sequence. On new support events, infants saw
the actor turn in a new direction and grasp a different
support than she had during habituation trials (which
now supported the same toy that she had acted toward
during habituation). On new toy events, infants saw the
actor turn in the same direction and grasp the same
support that she had during habituation trials (which
now supported a different toy than she had acted on
during habituation trials). In both cases, infants’ look-
ing was timed to the static outcome of the event (the
actor grasping the support). Longer looking to the new
support events would suggest that infants construed the
actor’s initial actions on the support as directed toward
the support itself rather than as directed toward the toy.
Longer looking on the new toy events would suggest
that infants inferred that the actor’s actions on the sup-
port were directed toward the toy and thus showed a
novelty preference for events featuring a change in this
dimension of the action sequence.

To address our question of interest, we sought to
assess the extent to which infants’ ability to intervene
on the support-pulling problem was related to their
habituation performance. To do so, we categorized
infants into two groups based on their intervention task
performance. Infants in the top 25% in terms of action
task performance were dubbed planful infants. Planful
infants produced clearly goal-directed strategies to
solve the action task on 83%–100% of trials. Infants in
the bottom 25% in terms of action task performance
were dubbed nonplanful infants. Nonplanful infants
produced clearly goal-directed strategies to solve the
action task on 0%–20% of trials.

To assess whether planful and nonplanful infants
construed the habituation events differently, we

compared looking times to the new toy and new
support events for both groups. Planful infants looked
significantly longer to the new toy than new support
events. Nonplanful infants showed the opposite pat-
tern of looking: They preferred the new support over
the new toy event. These findings suggest that infants
who were good at organizing their actions toward the
goal of the sequence (the toy) likewise perceived the
actions of another person in a similar context as
directed toward the overarching goal of the sequence.
Infants who were poor at organizing their actions
toward the goal of the sequence, in contrast, may have
misperceived the actor’s actions on the support as
directed toward the support itself.

These findings suggest that infants begin to
abstract the goal of action sequences toward the end
of the first year of life, and that this ability is tightly
linked to infants’ own tendency to intervene on the
support in a goal-directed manner. In another study
Woodward and I (Sommerville & Woodward, 2005b)
assessed whether infants’ experience intervening on
the support-pulling problem was related to their abil-
ity to detect physical causal relations.

The Role of Interventions in Infants’
Understanding of Physical Causal 
Relations

The ability to understand the support-pulling sequence
entails not only an appreciation of the causal relations
between actor and toy in this situation, but also an
appreciation of the causal relation between the toy and
support. This entails the ability to recognize the need
for contact between the toy and the support: If the toy
were sitting adjacent to, rather than on top of, the sup-
port, then the toy would not move when the support was
pulled. Previous work suggests that infants begin to take
into account the need for contact between the toy and
the support by about 12 months of age, both in their
own actions (e.g., Piaget, 1953; Schlesinger & Langer,
1999) and the actions of others (Schlesinger & Langer,
1999; Sommerville & Woodward, 2005b). In this study
(Sommerville & Woodward, 2005b), Woodward and I
sought to assess whether younger infants are also sensi-
tive to this physical causal relation and whether their
ability to appreciate the need for contact between the
toy and the support was related to their own interven-
tion experience in a similar situation.

A different group of 10-month-old infants from
those in the aforementioned study took part in 
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a support-pulling intervention task and a habituation
paradigm. The intervention task was similar to that
described; however, in this task infants were given
multiple opportunities to pull the support both when
the toy sat on the support and when it sat adjacent to
the support. We assessed infants’ ability to solve the
problem in a goal-directed manner as a function of
the location of the toy.

The habituation paradigm differed slightly from
that of Woodward and I in 2005. Infants again watched
live events presented by a human actor on a puppet
stage, and their looking was timed to the static outcome
of these events. In this study, however, after seeing a
simple support-pulling event, infants saw events that
were perceptually similar to the initial event but
causally implausible along with those that were percep-
tually dissimilar to the initial event but causally plausi-
ble. The prediction was that sensitivity to the physical
causal structure of this event would be evident in
longer looking at the causally implausible event.

During habituation trials, infants saw an actor sit-
ting behind a stage that contained a single support
that supported a toy. The screen was lowered, and the
actor said, “Hi. Look.” She subsequently pulled the
support toward her, entraining motion on the part of
the toy. Unlike in the previous study, the actor did not
grasp the toy. Infants’ looking was timed to the static
outcome of the event (the actor grasping the support).
Infants watched this event on repeated trials until
looking had declined to half of its initial level (habit-
uation criteria).

While the stage was hidden from view, we next
removed the toy from the support and placed it on an
invisible black platform that sat roughly 3.5 inches
adjacent to the support. On test trials, infants saw two
types of test events. On consistent test events, once the
screen was lowered the actor said “Hi. Look.” and
subsequently pulled the support toward her while the
toy remained in place. On inconsistent test events,
once the screen was lowered, the actor said “Hi.
Look.” and subsequently pulled the support toward
her while the toy moved alongside the support. The
actor accomplished this by surreptitiously pulling
the toy on the platform along a track from underneath
the display. To an adult observer, the inconsistent
event represents a causal violation: The toy appears to
be moving “magically” along with the support.

Our prediction was that the extent to which infants
varied their own interventions as a function of the
location of the toy would be related to their ability to

recognize causal violations to the support sequence in
the actions of another person. To test this prediction,
we subdivided infants into two groups based on their
performance on the intervention task. Infants dubbed
discriminators pulled the support as a means to get the
toy more frequently when the toy sat on, rather than
adjacent to, the support. Infants dubbed nondiscrimi-
nators did not vary their support-pulling behavior as a
function of the toy location. The results of this study
met with our predictions. Discriminators looked longer
at the inconsistent than consistent test events, suggest-
ing that they recognized that a causal violation had
occurred when support movement appeared to cause
the toy to move in the absence of contact between the
toy and the support. Nondiscriminating infants looked
equally to both test events, suggesting that they were
not sensitive to this causal violation. Thus, the way in
which infants intervened on the support problem
predicted whether they would be sensitive to the
physical causal violation of the support sequence.

Subsequent analyses revealed interesting and
important differences among nondiscriminating
infants with respect to their intervention task and
habituation performance. Some nondiscriminating
infants pulled the support as a means to get the toy at
high frequencies regardless of the location of the toy.
Other nondiscriminating infants pulled the support to
get the toy infrequently regardless of the location of
the toy. Thus, high-frequency pullers had multiple
opportunities to observe the effects of their interven-
tions under two different setting conditions: when the
toy sat on and when the toy sat off the support. Low-
frequency pullers had far fewer opportunities. In sub-
sequent analyses, we took into account that frequently
infants pulled the support across both contact and
noncontact trials during the intervention task. High-
frequency pullers subsequently recognized the causal
violation featured in the habituation paradigm.
Specifically, they looked longer at the inconsistent
than the consistent test event. These findings suggest
that infants may use their interventions to evaluate
causal hypotheses, and that they can rapidly detect
causal structure in the actions of others based on this
experience.

Taken together, the results indicate that infants
begin to appreciate causal relations in the support
sequence toward the end of the first year of life, and
that their ability to do so is intimately linked to their
own intervention experience and expertise. Infants’
ability to planfully solve the support sequence was
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related to their ability to recognize that another
person’s actions on the support were directed at the
toy (psychological causal relation). Infants’ ability to
guide their interventions according to the degree of
contact between the support and the toy was related
to how readily they attended to the need for contact
between the support and the toy for the first to cause
the second to move (physical causal relation).
Importantly, the way in which infants enacted inter-
ventions in this latter case predicted their ability to
learn which variables were important for producing a
successful causal outcome. Thus, like young children
(e.g., Gopnik et al., 2004; Kushnir & Gopnik, in
press), infants may also utilize their own interventions
as a means to detecting causal structure.

Conclusion

Research using a range of methodologies suggests that
causal understanding has its roots in infancy and is
instantiated in infants’ sensitivity to a number of psy-
chological and physical causal relations. In addition,
evidence suggests that infants may possess or
encounter a range of learning mechanisms and abili-
ties that support early causal learning. Chief among
these factors is infants’ own active experience. Formal
and descriptive accounts of causation stress the role of
interventions, actions that bring about or prevent a
certain event from occurring, in detecting causal
structure (e.g., Gopnik & Schulz, 2004; Woodward,
chapter 1, this volume). Indeed, causal learning in
both adults and children is informed by an opportu-
nity to enact interventions (Gopnik et al., 2004;
Kushnir & Gopnik, in press; Lagnado & Sloman,
2004; Sobel, 2003; Steyvers et al., 2003). The evi-
dence discussed in this chapter suggests that infants’
developing action abilities, their action experience,
and the extent to which they capitalize on opportuni-
ties to act on their environment and observe the con-
sequences of their actions may play on important role
in causal learning. Through acting on the world,
infants can bring about interventions that may enable
them to test causal hypotheses and observe the effect
that these interventions have on the causal structure
of the world.
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This chapter extends the interventionist analysis of
causation to give an account of causation in psychol-
ogy. Many aspects of empirical investigation into psy-
chological causation fit straightforwardly into the
interventionist framework. I address three problems.
First is the problem of explaining what it is for a
causal relation to be properly psychological rather
than merely biological. Second is the problem of
rational causation: how it is that reasons can be
causes. Finally, I look at the implications of an inter-
ventionist analysis for the idea that an inquiry into psy-
chological causes must be an inquiry into causal
mechanisms. I begin by setting out the main ideas of
the interventionist approach.

Interventionism

Interventionism is the view that for X to be a cause of
Y is for intervening on X to be a way of intervening on
Y (cf. Pearl 2000; Spirtes, Glymour, & Scheines,
1993; Woodward, 2003; Woodward & Hitchcock,
2003; see also Woodward, chapter 1, this volume).
The interventionist approach can be vividly

expressed by means of causal graphs, which use
arrows to depict causal relations between variables.
These arrows may represent positive or inhibiting
causal relations. Suppose we consider a causal rela-
tion between variables X and Y. Suppose, for exam-
ple, that X represents the level of a drug in someone’s
blood, and that Y represents whether and how well
the subject recovers from an illness. Suppose further
that the body endogenously produces the drug in
varying quantities in different people. There will be
some biological factor responsible for the level of
endogenous production of the drug in someone’s
body; suppose we express this by variable R. And, sup-
pose that the drug is also spontaneously ingested by
people as part of their ordinary diet, in varying
amounts by different people; suppose we summarize
the factors responsible for spontaneous ingestion of
the drug in ordinary diet by variable S. Then, we can
represent the hypothesis that the level of the drug is
a cause of degree of recovery from the illness as in
Figure 4-1.

The arrows in Figure 4-1 show variables R and S
causally affecting X and X causally affecting Y.
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The objective of an interventionist analysis is to
explain what it is for X to be causally affecting Y. The
intuitive idea is that for X to cause Y is for intervening
on X to be a way of intervening on Y (intervening on
the level of drug will be a way of intervening on
degree of recovery from the illness).

Following Woodward and Hitchcock (2003), we
can exhibit an intervention on X in terms of a variable
I that acts on X. (For instance, we might think of an
external agent giving people various amounts of the
drug and observers keeping track of the subsequent
degrees of recovery of people from the illness.) The
idea then is that there are at any rate some circum-
stances in which, if there were an intervention on X,
then there would be a difference in the value of Y
(Figure 4-2).

There is a possibility that R and S might be
common causes of both X and Y. In that case, variations
in X will be correlated with variations in Y, but that
may not be because X causes Y. (So, for example, we
have to keep in mind the possibility that the factors
that cause endogenous production of the drug, or lead
a person to ingest a lot of it, might each be a common
cause of both the level of drug in a person’s body and
the degree of recovery from the illness. In that case, we
will find that there is indeed a correlation between
degree of recovery and level of drug in the body but
that will not constitute a causal relation between the
level of drug and the degree of recovery. So, we should
want an intervention on X to suspend the influence of

these other factors on the level of drug in the blood.)
In general, then, the intervention variable I should
take over control of the value of X, removing it from
the influence of R and S. To use Pearl’s term, the inter-
vention should be surgical, breaking the arrows from R
and S to X. Given that condition on the intervention
variable I, then we can say that for X to cause Y is for
it to be the case that there is a correlation between X
and Y under potential interventions on X.

There are further conditions to be met. We have to
exclude the possibility that the intervention I on X
also affects Y directly. (For example, administering the
drug should not have a placebo effect.) So, we should
stipulate that an intervention variable for X with
respect to Y must not affect Y otherwise than by affect-
ing X. We should require that there is no bias in
which interventions are carried out; that is, that there
should be no correlation between intervention and
recovery (i.e., we should not be administering the
drug only to those who are going to recover anyway).
Finally, we should have a requirement of causal suffi-
ciency on the variables we have explicitly represented;
in particular, there should be no unrepresented
variables that are common causes of pairs of variables
we do have explicitly represented, so that spurious
correlations can be generated.

With these stipulations in place, though, we can
define what it is for X to cause Y by saying that if there
were an intervention on X, then there would in some
cases be a difference in the value of Y. Or, equiva-
lently, we can say that for X to cause Y is for X and Y
to be correlated under potential interventions on X.
This is not a reductive definition of causation. On the
contrary, it makes free use of causal notions in defin-
ing the idea of an intervention and in explaining what
it is for a set of variables to be causally sufficient.
Nonetheless, the definition I have just given does not
appeal to the idea of a causal relation specifically
between X and Y. It has therefore some claim to provide
a nonreductive illumination of the notion by locating
it in a broader framework of causal notions.

In my remarks in this section, I follow closely the
approach to causation developed by Woodward and
Hitchcock, building on the earlier work of Pearl
(2000) and Spirtes, Glymour and Scheines (1993);
any originality so far is accidental. Notice that the
approach presupposes a certain modularity in the
system of variables in question. It presupposes that inter-
ventions on the system can in principle leave undis-
turbed the causal relations among particular variables.
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That is, an intervention can selectively disturb certain
causal relations—those involving the usual causes of
the target variable X—while leaving others intact,
particularly the causal relation between the target
variable X and the outcome variable Y (cf. Hausman,
and Woodward 1999).

Control Variables

I want now to ask whether this approach can be used
to illuminate causation in psychology. On the face of
it, there should be no special problem here. Consider
any psychological variable M1 and the hypothesis
that M1 is a cause of some other psychological vari-
able M2. So, for example, consider the hypothesis
that worry is a cause of insomnia (Harvey (2005)). For
worry to be a cause of insomnia is, on this approach,
for it to be the case that if there were an intervention
on worry, then there would be a difference in the
level of insomnia. The trouble with this, though, is
that any intervention on worry is also going to be an
intervention on some underlying set of biological vari-
ables. You cannot affect worry without affecting the
underlying biology. So, how do we describe the situa-
tion? Is it that the worry is causing the insomnia—that
intervening on the worry is correlated with a difference
in the insomnia? Or, is it that there is a biological vari-
able underlying the worry, and it is causally related to
a biological variable underlying the insomnia? In that
case, the situation is better described by saying that
intervention on the first biological variable is correlated
with the second biological variables. The psychological
variables, in that case, are epiphenomenal on the
underlying biological causation.

Think how you would characterize the relation
between the positions of the controls on a radio and
the output of the radio, such as the volume of the
sound or the radio station heard. All that goes on here
does indeed supervene on a microphysical reality. But,
we would ordinarily have no hesitation in saying that
someone turning the controls is making a difference to
the output. Why does it seem so evident here that the
position of the dials is causing the output, and that we
are not here dealing merely with epiphenomena?

I think we can get at this by recalling a famous set
of criteria proposed in 1965 by the epidemiologist
Austin Bradford Hill to determine whether particular
environmental hazards were causes of particular dis-
eases or merely correlated with them. Central among

Hill’s criteria are three things. The first is the existence
of a dose-response effect. Most simply, this demands
that there be an identifiable relationship between the
value of the input variable and the correlated output
variable. To demonstrate that smoking is a cause of
cancer, for example, one critical piece is the datum
that the amount one smokes is correlated with the
probability of contracting cancer. Second, it enhances
the case for saying that smoking causes cancer if there
is a large effect of smoking on cancer. Finally, it
enhances the case for saying that smoking is a cause of
cancer if smoking is correlated specifically with cancer
rather than any other outcome. I can sum this up by
saying that the case for saying that smoking causes
cancer is a case for saying that smoking is a control
variable for cancer. Here, I am using control in the
sense in which the buttons on a radio are controls.
There is a large, specific, and systematic correlation
between the volume coming out of the radio and the
degree to which you turn the volume dial. Just so,
under interventions on the level of smoking, there are
large, specific, and systematic effects on cancer.

I am proposing that we should use this notion of a
control variable to identify the level at which we find
the causally significant variables in a complex system.
I think there is no question but that, in the case of the
radio, the positions of the various buttons and knobs
are control variables in this sense, and that this is 
why it seems so evident that making a difference to
the controls of the radio is making a difference to the
upshot; we are not dealing here with epiphenomena.
For the case of smoking, consider how you would
react to a spokesperson for the tobacco industry who
argued that smoking is not a cause of cancer, that
smoking and cancer are both merely epiphenomenal
on an underlying microphysical reality at which the
true causal relations are to be found. The natural
point to make in reply is that smoking is a control vari-
able for cancer; interventions on smoking have large,
specific, and systematic correlations with cancer. That
is the case for saying that the causal relations between
smoking and cancer are to be found at the macro-
physical level.

The example of the controls on a radio is in some
ways special. The relationship between control variable
and output need not always be analog. This will be par-
ticularly important when we consider how we can affect
one another through the use of language. You can tell me
how things are or make requests of me, and the control
system here, assuming I am compliant, is not analog.
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But, you may nonetheless have large, specific, and
systematic effects on my states.

Of course, it will be a matter of degree whether one
variable functions as a control variable for another,
and there will be a certain relativity to context. But,
that is how it is with causal ascription generally. Hill
(1965) did not explicitly formulate his criteria as
criteria for choice of variables to use in characterizing
the data, and what I have said here by no means
exhausts his points. But, the force of the idea, that we
find the right level at which to characterize causal
relations by looking for the level of control variables,
seems undeniable.

One way to see the force of that idea is to look
again at the background picture of an interventionist
approach to causation. An interventionist approach
sees the interest or point of our notion of cause as hav-
ing to do with our manipulations of our environment.
It is not that the notion of cause is explained in terms
of agency; it is, rather, that to characterize causal rela-
tions is to characterize the aspects of the world that we
exploit when we manipulate it. If you think of causa-
tion in this way, then it seems evident that control
variables will be of great importance in describing
causation. For, in manipulating the world, we want, as
much as possible, to be intervening on variables that
are correlated with large, specific, and systematic
upshots. We want to be intervening on control vari-
ables in our actions. In these terms, then, the case for
saying that worry is a cause of insomnia is that worry
is a control variable for insomnia. What is it to say that
worry causes insomnia, and that the two are not
merely epiphenomena? It is to say that interventions
on worry are correlated with large, specific, and sys-
tematic variations in insomnia.

Causation by Reasons

Some difficult issues concern the application of the
interventionist picture to what we might call rational
causation, cases in which the causal explanation
appeals to the subject’s possession of reasons. Suppose
we consider, for instance, the hypothesis that the
intention to do X causes doing X. Can we think of this
in terms of whether there would be differences in
whether X was performed if there were interventions
on the intention to do X?

The really difficult thing here is to find the right
characterization of a psychological intervention.

What is it to intervene on whether someone has the
intention to do X? We would naturally think of this in
terms of providing someone with reasons to do X or
reasons not to do X. “You think doing X will make you
happy, but it won’t,” you might say as an opening
move. And, you might present further considerations
in favor of your remark. You would be appealing to
the rationality of the subject. The trouble with this is
that it leaves intact the factors that are the usual
causes of the someone’s forming, or not forming, the
intention to do something.

For example, suppose that one of the usual causes
of a person’s intending to do X is that they think doing
X will make them happy. If your intervention takes the
form of arguing about whether doing X will in fact
make that person happy, then you have left in place
one variable that is a usual cause of whether the
person forms the intention to do X. This means that
the intervention is not, in Pearl’s term, surgical. To use
again the example of a drug trial, suppose you are ask-
ing whether the level of drug in someone’s body causes
recovery from illness. If you manipulate the level of
drug in that person’s body by acting on the mechanism
involved in the body’s endogenous production of the
drug, then this does not constitute an intervention in
the sense I explained in the last section. Similarly, if an
endogenous cause of whether someone forms the
intention to do X is whether the person believes that
doing X will make them happy, then a manipulation of
whether the person forms the intention that proceeds
by manipulating whether the person believes that
doing X will make them happy does not constitute an
intervention in the sense I explained.

The reason for insisting on a surgical intervention
in the case of the drug trial was the problem of
common causes: that the endogenous cause of the
level of drug in the blood might also be directly caus-
ing recovery from illness, so that the level of drug in
the blood actually played no role in causing recovery
from illness despite being correlated with recovery. It
is to rule out this scenario that we have to consider
interventions that seize control from outside the level
of drug in the blood. Similarly, suppose we leave intact
the endogenous causes of formation of the intention to
do X, such as the belief that doing X will make one
happy. Then, it is possible that the belief that doing X
will make one happy causes both formation of the
intention to do X and directly causes performance of
the action itself. In that case, the intention to do X will
be correlated with doing X even though the intention
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plays no role in causing the action. It is to rule out this
scenario that we have to consider only surgical inter-
ventions on the intention to do X, according to the
interventionist picture as I have so far set it out.

What would it be to have a surgical intervention
on someone’s possession of an intention to do X? The
intervention would have to come from outside and
seize control of whether the subject had the intention,
suspending the influence of the subject’s usual reasons
for forming an intention, such as whether the subject
had reasons for forming the intention to do X. We can
diagram the situation by means of a causal graph
(Figure 4-3).

This is evidently quite an unusual situation. It does
not happen very often, if it happens at all, that a person’s
rational autonomy is suspended and some alien force
seizes control over whether that person has a particular
intention. Still, even though it does not happen very
often, it could still be that an interest in psychological
causation is an interest in what would happen in such
an unusual case. Similarly, you might say that an inter-
est in causation in physics often deals with what would
happen in various idealized conditions—in a complete
vacuum or on a frictionless plane, for example—even
though such situations do not arise often.

The real problem for the interventionist picture
here is that it is not credible that our interest in
psychological causation is an interest in what would
happen under such idealized conditions of alien
control. There are two aspects of our ordinary concep-
tion of the psychological life that have been removed
in this scenario, and without them our psychological
life would not be recognizable.

Notice first that ordinarily we have our intentions
under continuous review. If you hit an obstacle in try-
ing to execute your plan, then you may review whether
to sustain the intention in the light of all your back-
ground beliefs and objectives—just how important is

this anyhow?—and how far you stick with an inten-
tion often depends on continuous review in the light
of your other psychological states, your priorities, and
your beliefs regarding the likelihood of success. If you
could not do this kind of continuous monitoring, then
you would be said to be “not responsible for your
actions.” It is exactly this situation that we are envisag-
ing, though, when we think in terms of surgical inter-
vention on possession of an intention.

Second, this scenario is one that would undermine
our ordinary conception of the ownership of an inten-
tion. One element in our ordinary notion of the 
ownership of an intention is the idea that the long-
standing objectives, interests, preferences, and so on
of that person were causally responsible for the
formation of that particular intention. It is a reason-
able description of the situation envisaged as surgical
intervention here to say that someone else’s intention
has been thrust into the mind of the subject.
Someone who seemed to find him- or herself in that
situation—someone who encountered in introspec-
tion an intention that seemed to have been the direct
result of someone else’s long-standing objectives,
interests, preferences, and so on—would experience
this as thought insertion, the feeling that someone
else’s token thought has been pushed into your mind,
one of the symptoms of schizophrenia.

There are many systems for which an approach in
terms of surgical interventions seems appropriate.
Suppose, for example, that our descendants come
upon an archive of electrical machines, present-day
radios, perhaps. And, they want to find out just how
the circuitry works. They are not concerned with the
function of these devices. They just want to under-
stand the electrical engineering involved. In this case,
an approach in terms of surgical interventions seems
entirely apt. Even if it turns out not to be in practice
possible to tear the systems apart into their modular
constituents, still the objective is to find out what
would happen in each constituent module were we to
have a surgical intervention that ripped out this piece
of wiring from its context and tampered with the
input end to see what would happen at the output.
We have understood the causal structure of the
circuitry when we have answered all such questions.
In the case of rational causation, in contrast, we have
no such interest in ripping out individual pieces of
circuitry from their context to see how they would
behave in isolation. The attempt to do this would
result in a system so different from the original that
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what happened in that context could not be said to
have any significant implications for the functioning
of the original intact system. This is a fundamental
point about rational causation in psychology, which
underpins some of the hesitation philosophers have
felt in talking about mental causation at all.

Two Types of Intervention

I think that we can resolve this problem within a
broadly interventionist framework, but to do so we
have to rethink our conception of an intervention; we
have to move away from the focus on surgical inter-
ventions. We want to consider interventions that keep
intact the rational autonomy of the subject, which
means leaving in place the usual causes of the sub-
ject’s psychological states and actions. Then, what
kind of thing are we looking for, to be a psychological
intervention? Let me first give a couple of examples,
then provide a more abstract statement of the general
notion of intervention being presupposed.

Suppose that I am the passenger and you are
driving as we come to a pool of water in the middle of
the road. You stop to weigh the situation. Should you
drive on, or should you back off? As you pause, I say,
“Go for it!” and you put your foot on the accelerator.
One possibility is that you have such admiration for
my judgment and such concern to act as I would like
that the mere fact of my making my remark gives you
a reason to form the intention to press on. However,
that is not the most obvious or the natural analysis of
the situation I have described. Perhaps you know that
my judgment is in general questionable; perhaps you
and I have just quarreled so that far from giving you a
reason to form the intention to proceed, had you
paused to reflect on the matter for a moment you
would have found that my remark gives you good rea-
son to swing around and go the other way. As it is,
though, it is undeniable that my remark had the effect
of making you form the intention to drive on, and that
consequently you did drive on. In this case, my inter-
vention affects the formation of your intention, but it
does not do so by providing you with reasons for or
against forming the intention. Rather, it directly
affects the formation of your intention. I did manage
to reach into your mind and affect the formation of
your thought, otherwise than by giving reasons.

It is not, though, as if you had given over the reins of
your mind to me. You remained an autonomous rational

agent throughout. You could have resisted my remark;
you may later regret that you did not do so. Had you
mustered reasons that struck you as compelling, one way
or another, it could have been that my remark would
have had little effect. The structure of the example can
be given by the causal graph of Figure 4-4.

The problem we encountered with this kind of sit-
uation was as follows. We are attempting to explain the
existence of a causal relation between the intention to
act and the action as a matter of the intention and the
action being correlated under interventions on the
intention. But, we have not yet excluded the possibil-
ity that the usual causes of the intention may also be
direct causes of performance of the action. So, even if
the intention and the action are correlated under this
kind of intervention on the intention, it may be that
this correlation is only a residue of the role of the
usual causes of the intention in operating as common
causes of both the intention and the action.

There is, though, another way in which we could
think of interventions. Suppose we go back to the
example of drug level and recovery from illness.
Suppose we consider a range of actual or possible exter-
nal administrations of the drug to individuals across a
population. And, suppose that when the drug is admin-
istered to an individual it is administered without the
level of endogenous or spontaneous ingestion of the
drug being taken into account; these factors are allowed
to operate as usual. So, this is not a surgical interven-
tion. Nonetheless, we can look at the level of drug that
is endogenously produced by the individual and at the
level of drug that is spontaneously ingested by the indi-
vidual. For each combination of a particular level of
endogenous production and a particular level of spon-
taneous ingestion, we can consider what would be the
outcome of administering a particular level of the drug.

We can say the following: Suppose that there is
some combination of a particular level of endogenous
production of the drug and some level of spontaneous
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ingestion of the drug such that, were the external
administration of the drug to be varied while those
levels remained the same, there would be a differ-
ence in whether the subject recovered from illness.
In that case, the level of drug in the blood is a cause
of recovery from illness. In fact, in the way I propose
of developing the interventionist account, this is
what it is for the level of drug in the blood to be a
cause of recovery from illness. (For formal develop-
ment of a related notion of soft intervention, see
Markowetz, Grossman, & Spang, 2005.)

The difference between this formulation of inter-
ventionism and the analysis I reported in the section
on control variables emerges vividly when we
consider cases, such as that of rational causation, for
which modularity assumptions are not correct. We are
not any longer considering whether the value of Y is
independent of the value of X, when the value of X is
set by surgical intervention. We are, rather, consider-
ing whether Y is independent of the intervention
variable I given the usual causes of X. And, the condi-
tions that have to be met by the intervention variable
I are just as before, except that we are no longer
requiring that the influence of the usual causes of X
should be suspended, and that I should be the sole
determinant of the value of X.

We can apply this picture to rational causation in
psychology. We do not need to consider a scenario in
which the rational autonomy of the agent is suspended
and some external factor seizes control of the agent’s
intentions. We can, rather, consider cases in which the
usual causes of the agent’s formation of intentions oper-
ate as usual and look at whether external interventions
that make a difference to whether the agent forms an
intention, for some set of values for the agent’s other psy-
chological states, would be correlated with differences in
whether the agent performs the action. Is intention a
cause of action? My proposal is that this is the question is
whether interventions on intention are correlated with
action given the agent’s other psychological states.

Psychological Causation Without
Psychological Mechanisms

One of the most striking features of an interventionist
approach to causation in psychology is that it makes no
appeal to the idea of mechanism. All that we are asking,
when we ask whether X causes Y, is whether X is corre-
lated with Y under interventions on X. Whether there
is a mechanism linking X and Y is a further question.

Indeed, you could maintain an interventionist
approach to causation while being skeptical about the
very idea of a mechanism. What does it mean to ask
whether there is a mechanism linking X and Y? All
that it comes to, you might say, is that we are asking
whether we can find any causally significant variables
mediating X and Y. Or, perhaps in some cases, we are
asking merely that the link between X and Y should be
explained in terms of one or another familiar pattern
of explanation, for example, biological explanation.
But, the very idea of a causal link does not demand
that there should be intervening variables, or that
assimilation to a favored paradigm should be available.

To see why this perspective matters, consider some
findings in psychiatry. It has long been known that
stressful life events such as bereavement or unemploy-
ment are good predictors of chronic depression. In a
study of several thousand subjects, Kendler, Hettema,
Butera, Gardner, and Prescott (2003) tried to determine
which aspects of stressful life events might be playing a
causal role here. They found that the strongest correla-
tions with later chronic depression were with humilia-
tion rather than with loss; that other-initiated separation
was a stronger predictor of chronic depression than
bereavement, for example. To interpret the study as
showing something about the causes of depression is to
read it as having implications for what the upshot would
be of clinical interventions: The implication is that,
under interventions to ameliorate the sense of humilia-
tion, there would be differences in the degree of
chronic depression. In the sense I explained, humilia-
tion is a control variable, in the kind of nonsurgical
intervention I just described, for later depression.

Stressful life events, however, are not the only
predictors of later depression; there are also biological
factors that seem to be relevant. Kendler, Kuhn,
Vittum, Prescott, and Riley (in press) found that
genetically acquired deficiencies in the serotonin
transport system are correlated with later depression.
Now, given the complexity of the phenomena, all
such findings have to be regarded as provisional. In
this chapter, I want finally to suggest a simple reading
of them, on which they provide a simple, illlustrative
example of a quite general pattern emerging from
current empirical work in psychology and psychiatry.

Although stressful life events predict depression,
not everyone who is humiliated ends up with depres-
sion. People vary in how resilient they are. One read-
ing of the serotonin data is that they reveal serotonin
deficiencies to be the basis of a lack of resilience.
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On this reading, then, we have found two causal
variables underlying later chronic depression: humili-
ation and serotonin deficiency. These are control vari-
ables for depression, let us suppose. And, the relevant
notion of intervention, let us suppose, is of the kind I
indicated, for which we consider psychological factors
that affect the level of humiliation directly rather than
by acting on the usual causes of humiliation. So, we
have two variables, one psychological and one biolog-
ical, that are joint causes of later depression.

In this situation, it is natural to ask, What is the
mechanism by which these variables jointly cause
later depression? The radical suggestion I want to con-
sider is that there may be no mechanism. Explanation
by means of mechanisms must bottom out some-
where, and then we are left with the bare facts about
what would happen under interventions. At the
moment, the empirical data show only that both
psychological and biological variables are in general
relevant to psychological outcomes. There is no
empirical support for the idea that all causation that
involves both psychological and biological variables
bringing about a psychological outcome must be sus-
tained by biological mechanisms. In particular, there
is no reason to suppose that a comprehensive set of
control variables for depression will ever be found at
the biological level. It may be that the control vari-
ables for depression will always include psychological
as well as biological variables.

For anyone familiar with vision science, the ubiq-
uity of something like Marr’s three levels of compu-
tation, algorithm, and implementation may seem to
provide a pattern that has been so successful that its
application ought to be pursued across the board.
Scientists working on vision move back and forth
between the cognitive level and the level of biological
mechanism so seamlessly that, in vision science, doing
without the level of biological mechanism is almost
unimaginable. Although that is certainly so for vision
science, it depends on quite special features of the area
that do not hold for psychological causation in 
general.

To explain what these special features are, I want
to introduce the notion of the “robustness” of a vari-
able. The idea here is that if a variable does play a self-
standing role in some causal process, then it ought also
to play a role in endlessly many other causal processes.
For example, consider the so-called hot chocolate
effect: As you stir a cup of hot chocolate and the spoon
sounds against the base of the cup, each successive

“ting” rises in pitch. Why is that? The usual explana-
tion is in terms of the aeration of the liquid. As you stir,
trapped air bubbles are released from the liquid, and it
becomes stiffer. The more rigid a substance, the faster
sound travels through it. Hence, the pitch of the sound
goes up (Crawford, 1982). This explanation appeals to
a variable, aeration. Now, this variable does not figure
only as the explanation of the hot chocolate effect.
There are endlessly many ways in which you can get
at the air bubbles trapped in a liquid. They are affected
by the temperature of the liquid being poured into the
contained and the speed at which it is poured, and
they show up in as simple a way as the visible clouding
of the liquid. This is what I mean by the robustness of
the variable: It shows up in endlessly many different
causal processes and so can be investigated in end-
lessly many different ways.

Now, consider the kinds of variables appealed to in
information-processing accounts of vision. Vision is
generally thought to be modular, in something 
like the sense of Fodor (1983; cf. Coltheart, 1999).
So, the variables appealed to in explaining, for
instance, the finer points of motion perception or
color perception are being used to explain processing
going on within a module. Now, the cognitive 
variables—wavelength pattern X at place p, for
instance—that are used in this kind of explanation
really are internal to the characterization of the pro-
cessing in a single module. What gives the brain states
the contents they have is their role in the processing
within a particular modular system. It makes no sense
to ask, What is the representational content of that
cell-firing? outside the context of inquiry into the pro-
cessing going on in some particular module.

For that reason, the cognitive variables appealed
to in an account of some aspect of visual information
processing cannot be allowed to take on a life of their
own. As purely cognitive variables, it would make no
sense to suppose that the very cognitive variable that
is playing a causal role in the processing going on in
one module could also be playing a role in the pro-
cessing going on in some other module; the determi-
nation of the content of a cognitive state here is always
internal to the working of one particular module or
other. The whole situation is in sharp contrast to the
appeal to aeration in explaining the hot chocolate
effect, for which one and the same variable can evi-
dently figure in a whole sequence of quite different
processes. In that sense, then, the cognitive variables
appealed to in the psychology of vision are not robust.
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That is why we have the seamless moving back and
forth between these variables and biological mecha-
nisms. The physiological variables are, of course,
robust and can be investigated through their roles in
endlessly many different processes. In contrast, we
give a cognitive characterization of the physiology
only when we are considering the working of some
one modular system.

I think that this point about robustness explains
why we cannot, in vision science generally, make
sense of the idea of cognitive explanation without
biological mechanisms. The point evidently does 
not generalize to every psychological variable.
Humiliation, for example, is evidently robust. The
degree to which you have been humiliated shows up
in many different causal processes. So, too, do the
variables of rational psychology. A particular desire
may figure in causal process after causal process, lead-
ing from endlessly many different inputs to endlessly
many different outputs. Your attentive awareness of an
object before you may be caused by anything from it
suddenly lighting up to it having been the target of
years of search, and it may play a role in processes as
diverse as the starting of a train of thought and the fad-
ing of a smile. So, these personal-level variables are,
in general, robust. We can therefore appeal to them in
causal explanation without having to look for the
robust biological variables that might underlie them.

There may be such variables. It may be that, in the
end, it will turn out that the most effective control vari-
ables for psychological outcomes in human beings are
one and all biological. At the moment, we have no evi-
dence to support such a conclusion. What we find are
more and more biological variables working together
with ever-better understood psychological variables to
yield psychological outcomes. One great merit of an
interventionist approach to causation in psychology, it
seems to me, is that it acknowledges the possibility that
this may be the right picture. We are not obliged to
force the empirical findings to yield biological mecha-
nisms where there may be none.
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Twain meant his comment as a witticism, of course,
but there is something fascinating about science. From
a few bones, scientists infer the existence of dinosaurs;
from a few spectral lines, the composition of nebulae;
and from a few fruit flies, the mechanisms of heredity.
From a similarly trifling investment, some of us pre-
sume to conjecture even about the mechanisms of
conjecture itself.

Why does science, at least some of the time, suc-
ceed? Why does it generate accurate predictions and
effective interventions? With due respect for our
accomplished colleagues, we believe it may be
because getting wholesale returns out of minimal data
is a commonplace feature of human cognition.
Indeed, we believe the most fascinating thing about
science may be its connection to human learning in
general and in particular to the rapid, dramatic learn-
ing that takes place in early childhood. This view, 
the theory theory, suggests that starting in infancy,
continuing through the life span, and canalized in sci-
entific inquiry, many aspects of human learning can

be best explained in terms of theory formation and
theory change.

Theories have been described with respect to their
structural, functional, and dynamic properties
(Gopnik & Meltzoff, 1997). Thanks to several decades
of work in developmental psychology, we now know a
great deal about the structural and functional aspects
of children’s theories. That is, in many domains, we
know that children have abstract, coherent, causal rep-
resentations of events, we know something about the
content of those representations, and we know what
types of inferences they support.

We know, for instance, that 6-month-olds’ naïve
physics includes principles of cohesion, continuity,
and contact but not the details of support relations
(Baillargeon, Kotovsky, & Needham, 1995; Spelke,
Breinlinger, Macomber, & Jacobson, 1992; Spelke,
Katz, Purcell, Ehrlich, & Breinlinger, 1994). We
know that 4-year-olds’ naïve biology supports infer-
ences about growth, inheritance, and illness but not
the adult concept of living thing or alive (Carey, 1985;
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Gelman & Wellman, 1991; Inagaki & Hatano, 1993;
Kalish, 1996). We know that 2-year-olds’ naïve psy-
chology includes the concepts of intention and desire
but not the concept of belief (Flavell, Green, &
Flavell, 1995; Gopnik & Wellman, 1994; Perner,
1991). Moreover, we know that, across domains, chil-
dren’s naïve theories support coherent predictions,
explanations, and even counterfactual claims (Harris,
German, & Mills, 1996; Sobel, 2004; Wellman,
Hickling, & Schult, 1997).

However, the theory theory is not just a theory
about what children know or what children can do. It
is, centrally, a claim about how children learn. In this
respect, it is the dynamic rather than the structural
and functional aspect of theories that is critical. If
children’s reasoning is like scientific theory forma-
tion, then children’s naïve theories should be subject
to confirmation, revision, and refutation, and chil-
dren should be able to make inferences based on evi-
dence from observation, experimentation, and
combinations of the two.

Until recently, this dynamic feature of theories has
been difficult to explain. If children’s knowledge
about the world takes the form of naïve theories—and
if conceptual development in childhood is analogous
to theory change in science—then we would expect
the causal reasoning of even very young children to be
very sophisticated. A causal “theory” (as distinct from,
for instance, a causal module or a causal script) must
support novel predictions and interventions, account
for a wide range of data, enable inferences about the
existence of unobserved and even unobservable
causes, and change flexibly with evidence (Gopnik &
Meltzoff, 1997). Moreover, theories have a complex
relationship with evidence; they must be defeasible in
the face of counterevidence, but they cannot be too
defeasible. Because evidence is sometimes misleading
and sometimes fails to be representative, the process
of theory formation must be at once conservative and
flexible.

In recent work, we have focused on causal learn-
ing as a fundamental dynamic mechanism underlying
theory formation. In thinking about what causal knowl-
edge is, we have been influenced by philosophical and
computational work proposing an “interventionist”
view of causation (see Woodward, Hitchcock, &
Campbell, chapters 1, 7, 4, this volume). This view
stands in contrast to many traditional ideas about cau-
sation in both adult and developmental psychology.
However, we believe that an interventionist account of

causation not only helps to elucidate tricky metaphys-
ical questions in philosophy but also provides a partic-
ularly promising way to think about children’s causal
knowledge.

As noted, much developmental research on causal
reasoning has looked at children’s understanding of
domain-specific causal mechanisms (Bullock,
Gelman, & Baillargeon, 1982; Leslie & Keeble, 1987;
Meltzoff, 1995; Shultz, 1982; Spelke et al., 1992;
Wellman et al., 1997; A. L. Woodward, 1998; A. L.
Woodward, Phillips, & Spelke, 1993). Although this
research tradition has successfully overturned Piaget’s
idea that young children are “precausal” (1930), it has
followed Piaget’s lead in treating knowledge of dis-
tinct physical and psychological mechanisms of
causal transmission as the hallmark of causal under-
standing.

Specifically, developmental researchers have
largely accepted the idea that causal knowledge
involves knowing that causes produce effects by trans-
fer of information or energy through appropriate
intervening mechanisms. In an influential mono-
graph on children’s causal reasoning, the psychologist
Thomas Shultz wrote that children understand 
causation “primarily in terms of generative transmis-
sion” (1982, p. 48). Similarly, Schlottman writes that
“mechanism is part of the very definition of a cause”
(2001, p. 112), and Bullock et al. (1982, p. 211) con-
clude that the idea that “causes bring about their
effects by transfer of causal impetus” is “central to the
psychological definition of cause-effect relations.”

Consistent with this causal mechanism or “genera-
tive transmission” approach, psychologists have sug-
gested that even adults prefer information about
plausible, domain-specific mechanisms of causal
transmission to statistical and covariation information
in making causal judgments (Ahn, Kalish, Medin, &
Gelman, 1995). Some philosophers have also adopted
a transmission perspective, arguing that causal interac-
tions are characterized by spatiotemporally continuous
processes involving the exchange of energy and
momentum or the ability to transmit “a mark” (Dowe,
2000; Salmon, 1984, 1998).

However, although the generative transmission
model of causation is arguably the dominant view of
causal knowledge in the developmental literature,
there are several respects in which this model criti-
cally fails to account for our causal intuitions. Many
events that we believe are causally connected (e.g.,
losing track of time and being late for class; taxing
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cigarettes and reducing smoking) are not, at least in
any obvious way, characterized by mechanisms of
transmission. Second, as the philosopher Jim
Woodward observes, there is no obvious reason why it
should be of value to us to distinguish those events
that transmit energy or information from those that do
not (2003); those aspects of causality that make it of
central importance to human cognition (prediction
and control) do not seem to be captured by the con-
cern with spatial and energy relations that character-
ize the transmission view. Furthermore, nothing in
the generative transmission model distinguishes
causally relevant from causally irrelevant features of
transmission. Generative transmission models fail to
explain why, for instance, the momentum transferred
from a cue stick to a cue ball is causally relevant to the
ball’s movement, while the blue chalk mark, transmit-
ted at the same time and in the same manner, is not
(Hitchcock, 1995, and chapter 7, this volume).

Critically, the tendency to equate causal under-
standing with an understanding of mechanisms of
causal transmission may pose a particular problem for
the theory theory. Research suggests that adults can-
not generate a plausible account of causal mecha-
nisms, even in domains in which they consider
themselves highly knowledgeable (Rozenblit & Keil,
2002). Keil has suggested that we suffer from an “illu-
sion of explanatory depth,” and that our causal knowl-
edge may amount to little more than “one or two
connected causal beliefs” (2003). He has argued that
“calling this causal knowledge folk ‘science’ seems
almost a misnomer,” and that “the rise of appeals to
intuitive theories in many areas of cognitive science
must cope with a powerful fact. People understand
the workings of the world around them in far less
detail than they think.”

If having a theory is coextensive with having an
account of causal mechanisms, then Keil’s suggestion
is troubling, particularly because an impoverished
understanding of causal mechanisms is presumably
even more characteristic of young children than
adults. Perhaps children’s causal reasoning is not par-
ticularly sophisticated after all.

However, the interventionist account explicit in
recent philosophical work and implicit in computa-
tional models such as causal Bayes nets provides a
quite different account of what it might mean to have
causal knowledge. In the context of a causal model,
the proposition that X causes Y (X → Y) means, all
else being equal, that an intervention to change the

value or probability distribution of X will change the
value or probability distribution of Y. That is, the
causal arrows in the graphical models are defined, not
with respect to their relevance to a domain, their spa-
tiotemporal features, or their ability to transmit energy
or force, but (mirroring the way causality is under-
stood in science) in terms of possible interventions.
These interventions need not actually be realized or
even feasible, but they must be conceivable (see 
J. Woodward, 2003, for details). A causal relation then
is defined not in terms of its physical instantiation but
in terms of the real and counterfactual interventions
it supports. A theory, in this view, represents a coher-
ent and organized set of such relations rather than
necessarily involving a set of beliefs about physical
processes or mechanisms.

Both statisticians and philosophers have argued
that this interventionist account captures precisely
what it means for a variable to be a cause (see, 
e.g., Pearl, 2000, and J. Woodward, 2003). Learning 
algorithms based on these models support novel pre-
dictions, interventions, inferences about a range of
causal structures, and inferences about unobserved
causes. Arguably, then, knowledge of causal mecha-
nisms and processes of transmission may not be of
central importance for at least some of what we need
theories to do.

Note, moreover, that an interventionist account of
causal learning is consistent with and indeed predicts
many of the findings that have been associated with
the generative transmission model. In looking, for
instance, at children’s inferences about force relation-
ships, Shultz (1982) first taught the children what
types of interventions were relevant to outcomes (e.g.,
that striking a tuning fork in front of an open box cre-
ated a sound). Shultz then struck two tuning forks; the
first failed to covary temporally with the sound
(because it was positioned to the side of the box); the
second did covary with the effect (because the exper-
imenter struck the second fork and simultaneously
turned the box to face the first). Children chose the
first tuning fork (with the appropriate transmission
relationship) as a cause and rejected the tuning fork
that merely covaried with the effect.

However, the relevant covariation information for
children might not be merely the temporal covariation
of the tuning fork with the effect but the covariation
of interventions and outcomes; that is, children could
have learned that turning the box was as critical to the
effect as striking the fork. Indeed, in novel cases like
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this, arguably the only information that children have
about processes of causal transmission is the evidence
of effective patterns of intervention. Given that any
causal relationship (e.g., flipping a switch and a light
turning on) can be instantiated by a vast number of
causal mechanisms (many types of wires, bulbs, cir-
cuits, etc.), it may make sense that children’s naïve
theories should focus on the connection between
interventions and outcomes rather than on the myriad
mechanisms that might realize it. Indeed, one of the
virtues of theories may be that they enable us to make
powerful predictions despite our often-substantial
ignorance about underlying processes and mecha-
nisms (our “trifling investment in fact”).

Note that scientific theories, as well as naïve ones,
often remain agnostic about processes of transmission
while committing to hypothetical interventions.
Newton developed his theory of gravitation without
knowing any mechanism that might enable masses to
attract one another; Darwin developed his theory of
evolution without knowing any mechanism that
might make variation in the species heritable. Thus,
although we might say informally that Darwin posited
natural and sexual selection as “mechanisms” for evo-
lution, we do not mean that Darwin discovered spa-
tiotemporally continuous processes by which energy
or information is transferred. Rather, Darwin inferred
that traits that enhance an organism’s reproductive
success will be more prevalent in the population; that
is, changes to one set of variables will affect the out-
come of other variables. Thus, scientific theories, like
naïve ones, are not necessarily derived from, or com-
mitted to, particular causal mechanisms. Rather, in
identifying the causal structure—the real and hypo-
thetical interventions the variables support—theories
help narrow the search space for the relevant physical
processes.

Critically, we do not mean to suggest that substan-
tive assumptions about spatiotemporal relations and
domain-specific knowledge do not play a fundamental
role in children’s causal understanding. Indeed, one of
the important challenges for cognitive science is to
understand how knowledge about particular physical
relations in the world is integrated with evidence
about interventions and patterns of covariation. In
what follows, we discuss some important interactions
between children’s substantive causal knowledge and
formal learning mechanisms. Even more critically,
we do not mean that children only learn causal rela-
tions from interventions. Children may infer causal

relations in myriad ways, including from spatial
relations, temporal relations, patterns of covariation,
and simply by being told. The claim rather is that cer-
tain patterns of interventions and outcomes indicate
causal relationships, and when children infer that a
relationship is causal, they commit to the idea that
certain patterns of interventions and outcomes will
hold.

One of the exciting features of the interventionist
account of causation is that, together with theory the-
ory, it generates an array of interesting and testable
predictions about children’s early learning. At a mini-
mum, if children’s causal knowledge takes the form of
naïve theories and if causal knowledge is knowledge
that supports interventions, then children should be
able to (a) use patterns of evidence to create novel
interventions; (b) do this for any of a variety of possi-
ble causal structures; (c) use evidence from interven-
tions to infer the existence of unobserved causes; 
(d) distinguish evidence from observation and inter-
vention in their inferences about causal structure; 
(e) effectively weigh new evidence from interventions
against prior beliefs; and (f) distinguish good interven-
tions from confounded ones.

In what follows, we walk through this alphabet of
inferences. We discuss respects in which the causal
Bayes net formalism provides a normative account of
these components of theory formation, and we review
evidence from our lab suggesting that young children
are capable of this type of learning.1

Making Novel Interventions

In the absence of theories, you could safely navigate a
lot of causal territory. Classical conditioning, trial-
and-error learning, and hardwired causally significant
representations (of the sort that make nestlings cower
when hawks fly overhead, and arguably of the sort that
is triggered by seeing one object strike and displace
another; e.g., Michotte, 1962) are effective ways of
tapping into real causal relations in the world. Each
of these abilities lets us track regularities in the envi-
ronment and predict some events from the occur-
rence of others. Some of these abilities even support
effective interventions.

Like other animals, human beings seem to have
innate, domain-specific causal knowledge (Spelke et al.,
1992), the ability to detect statistical contingencies
(Saffran, Aslin, & Newport, 1996), and the ability to
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learn from the immediate consequences of our own
actions (Rovee-Collier, 1980; Watson & Ramey, 1987).
Unlike other animals, however, we routinely use the
contingencies and interventions we observe to design
novel interventions. We routinely meet regularities with
innovation.

Some of this inferential power may come from the
way that human beings represent causal knowledge.
Elsewhere (see Gopnik et al., 2004), we have sug-
gested that causal Bayes net representations provide a
causal map of events in the world. The analogy to a
spatial map is helpful because it explains both some
of the advantages of the causal Bayes net representa-
tion and some of the disadvantages of alternative ways
of storing causal knowledge.

Some animals, like ants, seem to represent spatial
relations egocentrically. Ants know where their nest is
in relation to their own body movements, but if they
are scooped up and displaced even slightly, they lose
their way, even in familiar terrain (Sommer &
Wehner, 2004). Other animals, like mice, construct
spatial maps. Once mice have explored a territory,
they can always take the shortest route to a goal, no
matter where they are placed initially (Tolman, 1932).
Such cognitive spatial maps reveal the underlying sta-
bility of geometric relations.

Causal relations can also be represented egocentri-
cally in terms of the immediate outcome of one’s own
actions (e.g., as in operant learning). However, like an
egocentric spatial representation, operant learning
fails to represent the relationship of variables to one
another. Operant learning restricts you to learning the
immediate outcome of your own actions, and even
these can only be learned by trial and error. However,
if you represent causal events as they relate to one
another, then—even if you are not part of the causal
structure, or even if you own relationship to the event
changes—the stability of the underlying causal struc-
ture is preserved. From such stability may come the
ability to negotiate novelty.

Causal Bayes nets provide just such a coherent,
nonegocentric representation of the causal relation-
ship among events. In a literature rife with stories
about cigarette smoking, stained fingers, and lung
cancer; birth control pills, thrombosis, and strokes;
and prisoners, sergeants, and firing squads, almost
any concept can be illustrated with a macabre exam-
ple. We work with preschoolers, however, so we make
use of a more benign, indeed suburban, illustration
(adapted from Pearl, 2000): Suppose you walk

outside and see that the grass in your front yard is wet.
You might guess that it has rained. Because you
believe the weather is a common cause of the state of
your front yard and your backyard, you will be able to
infer that the grass in your backyard is most likely wet
as well. You could represent this causal structure as
the causal Bayes net in Figure 5-1, in which each
node is a binary variable taking either the value wet
or dry.

In this causal structure, the state of the front yard
and the state of the backyard are dependent in proba-
bility. Knowing something about the front yard will
tell you (in probability) something about the state of
the backyard. That is, you can use knowledge of the
causal graph and the known value of some variables
in the system to predict the (otherwise unknown)
value of other variables.

However, the critical thing about causal Bayes
nets, indeed the thing that makes them causal, is that
they can also support inferences about the effects of
interventions. We discuss interventions in more detail
in the following section, but roughly speaking, the
arrow in the graph between the weather and the front
yard encodes the proposition that, all else being
equal, changing the state of the weather will change
the state of the front yard. Importantly, the arrow
retains this meaning even though (in the real world)
we cannot actually intervene on the weather (short of
global climate change, anyway). Knowing the causal
graph lets you predict the outcome of interventions—
whether or not you have ever seen them performed
and indeed whether or not you could ever perform
them. Thus, unlike hardwired representations or trial-
by-error learning, causal graphs support genuinely
novel inferences.

However, the absence of the arrow between the
front yard and the backyard is also informative.
Although the states of the yards are dependent in
probability, there is no direct causal link between
them; all else being equal, changing the one will not
change the other. Causal graphs thus represent the
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distinction between predictions from observation (if
the front yard is dry, then the backyard is probably dry
as well) and predictions from intervention (wetting
the front yard will not wet the backyard).

In a series of experiments, we looked at whether,
consistent with the formalism, young children could
use patterns of dependence and independence to
make novel predictions and interventions (Gopnik,
Sobel, Schulz, & Glymour, 2001; Schulz & Gopnik,
2004). We showed preschoolers, for instance, that
three flowers were associated with a monkey puppet
sneezing (see Figure 5-2). One flower (A) always
made the monkey sneeze; the other flowers (B and C)
only made the monkey sneeze when Flower A was
also present.

Formally, A and the effect were unconditionally
dependent; B, C, and the effect were independent
conditional on A. Applied to this case (and assuming
no unobserved common causes), a Bayes nets learn-
ing algorithm will construct the graph in Figure 5-3\
The graph in Figure 5-3 says that A causes the effect,
and B and C do not. (It also says that there is an unde-
termined causal link between A, B, and C, repre-
sented by the circles and the ends of the edge
connecting those variables. In fact, there is such a
link, namely, the experimenter, who put all three
flowers in the vase together.) This structure in turn
generates predictions about interventions. In particu-
lar, it implies that an intervention on A will change
the value of C, but an intervention on B or C will not
have this effect.

Children were asked, “Can you make it so that
Monkey won’t sneeze?” Consistent with the predic-
tion of the formalism, children screened-off flowers B
and C and removed only flower A from the vase.
Control experiments established that the inference
was caused by the pattern of conditional dependence
and independence, not frequency information.

One might argue, however, that children have
only a limited ability to make novel and appropriate
inferences. Children might, for instance, be able to

use patterns of dependence to differentiate equally
plausible causal candidates within a domain (i.e., the
causal power of one flower vs. another). However,
innate or domain-specific knowledge might restrict
the range of evidence children are willing to consider
in the first place. Formal inference procedures might
not be able to override or change children’s prior
beliefs.

However, if, consistent with the theory theory,
children develop their causal understanding from pat-
terns of evidence, then domain-specific judgments
ought to be defeasible. Given appropriate evidence,
children ought to be able to override prior knowledge
and reason about truly novel events, including events
that cross the boundaries of domains, and design truly
novel interventions accordingly. To look at the extent
to which children could flexibly use evidence and 
formal inferential procedures to make genuinely
novel causal inferences, we pitted children’s domain-
specific knowledge against patterns of evidence.

We showed children, for instance, that three
causes were associated with a machine turning on.
Two of the causes were domain appropriate (but-
tons), and one was domain inappropriate (talking to
the machine). Talking to the machine and the
machine turning on were unconditionally dependent
but conditional on talking; the buttons were inde-
pendent of the effect. Thus, the structure was for-
mally identical to the structure in Figure 5-3. We
asked the children if they could turn off the machine.
In a baseline condition, we provided children with
no evidence and simply asked the children whether
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talking or pushing buttons was more likely to turn off
the machine.

Consistent with past research showing that chil-
dren’s causal inferences respect domain boundaries,
children in the baseline condition chose the domain-
appropriate causes (the buttons) at ceiling. However,
consistent with the predictions of the formalism,
when asked to turn off the machine, 75% of the chil-
dren ignored the buttons and said, “Machine, please
stop.” Children were able to use the pattern of condi-
tional dependence and independence to create a new
causal map and to generate an appropriate, but novel,
causal intervention.

In this experiment, the relations between causes
and effect were deterministic. Such definitive evi-
dence might have made it particularly easy for chil-
dren to override their prior knowledge. However, in
another experiment (Kushnir, Gopnik, & Schaefer,
2005), we tested whether children’s domain-specific
preference for contact in physical causal relations
could be overridden in light of probabilistic evidence
that physical causes could act at a distance. We
showed children a toy with a colored surface and told
them, “Sometimes the toy lights up.” Without further
instruction, we gave children a block and asked them
to make the toy light up. Of 16 children, 13 (81%)
demonstrated a strong initial assumption of contact
causality, touching the block to the surface of the toy
(the other 3 did nothing). After their intervention, we
showed children four pairs of blocks. In each pair,
one block activated the toy one third of the time and
always by contact. The other block activated the toy
two thirds of the time and always at a distance (i.e.,
by being held 5–6 inches above the toy). At the end
of the experiment, we asked children to make the toy
light up again. A significant number of children
revised their original intervention and activated the
toy at a distance (McNemar’s test, p � .05). Thus,
children seem to be able to revise their domain-spe-
cific knowledge and create novel interventions, even
when given only stochastic evidence for new causal
relations.

If children’s causal reasoning were constrained by
innate representations or informationally encapsulated
modules, then such flexibility and sensitivity to evi-
dence would be surprising. However, it is less surprising
from a theory theory perspective. The ability to over-
turn prior knowledge and learn something genuinely
new is one of the chief virtues of scientific inquiry. It
may also be one of the hallmarks of childhood.

Learning a Wide Range of Causal
Structures

If you were a Martian reading much of the classic liter-
ature on human causal reasoning, then you might
assume that Earth was a relatively simple place. The
stakes are sometimes high (Does camouflage protect
tanks from being blown up? Does gender affect college
admissions? Does medication cause headaches? Baker
et al., 1989; Bickel, Hammel, & O’Connell, 1975;
Novick & Cheng, 2004), but the questions, at least, are
straightforward: Given a particular set of evidence, is C
a cause of E?

Many theories have tried to explain how people
answer this question. Accounts ranging from the asso-
ciative learning accounts we discussed to Patricia
Cheng’s elegant power theory of probabilistic contrast
(Cheng, 1997; Novick & Cheng, 2004) have looked
at how people might estimate the relative strength (or,
uniquely in Novick & Cheng, 2004, the conjunctive
strength) of variables to produce an outcome.

However, both the question and the ways we
might answer it assume that variables in the world are
already identified as (potential) causes or as effects. A
Martian might reasonably wonder whether events on
Earth come with labels. The question does not ask,
and the theories do not answer, how we might distin-
guish causes from effects in the first place. Put
another way, both associative learning accounts and
the power theory account aim to explain how people
distinguish the strength of different causal variables.
They do not explain how people make judgments
about causal structure.

Sometimes, of course, events in the world are
essentially “labeled” by the information around them.
Spatial cues, combined with prior knowledge about
plausible causal mechanisms, may identify some vari-
ables as potential causes and others as effects. In other
cases (not coincidentally including camouflage and
explosions, gender and college admissions, medicine
and headaches), temporal priority makes the distinc-
tion transparent (Lagnado, Waldmann, Hagmayer, &
Sloman, chapter 10, this volume).

However, spatiotemporal cues are not always avail-
able in the input. If cause and effect occur at nearly
the same time (the dog barks, and the cat runs) or if
you walk in on the middle of a scene (brother is sulk-
ing, and sister is mad), there may be no way to know
“who started it.” Moreover, even when temporal cues
are present, they may be misleading. A naïve learner
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who sees Mom search under the bed and then
exclaim with joy on finding her car keys might be jus-
tified in concluding that searching caused Mom to
want her keys rather than that desire motivated the
search.

More critically, any theory (naïve or scientific)
requires knowing something more than the set of binary
relations (does X cause Y?) that obtain between events.
A prerequisite to theory formation must be the ability
not only to distinguish the strength of causal variables,
but also to organize variables within a causal structure.
Indeed, part of what differentiates a theory from an
empirical generalization is that, within a theory, causal
relations are coherent and mutually reinforcing.

The causal Bayes net formalism provides a way to
represent and learn complex, coherent causal struc-
tures without prior knowledge about whether variables
are causes or effects. Although the formalism can
incorporate background information from prior knowl-
edge, substantive cues, and temporal order (see the sec-
tion on weighing new evidence against old beliefs), the
direction of causal arrows can also be derived directly
from the patterns of conditional dependence and inde-
pendence in the data. Some structures can be distin-
guished by observation only; others require a
combination of observation and interventions.

Suppose, for instance, that you see three correlated
events and are trying to decide whether A and B cause
C or whether C causes A and B. If the causal structure
is a common effect (A → C ← B), then you are more
likely to see A and C co-occur and B and C co-occur
than to see A and B co-occur. However, if the structure
is a common cause (A ← C → B), then you are likely
to see all three variables co-occur. B will be independ-
ent of A conditional on C in the common cause case
but not the common effects case. These structures can
be distinguished just by observation.

The situation is more complex if you are trying to
distinguish other structures. For example, suppose you
are trying to distinguish the common cause structure
(A ← C → B) from the causal chain (A → C → B). In
the common cause structure, if C occurs exogenously,
then it will activate both A and B, and you will tend to
see all three variables together. Similarly, in the chain,
if A occurs exogenously, then it will activate C, which
will activate B, and again you are likely to see all three
variables co-occur. In both cases, B is independent of A
conditional on C. Such Markov-equivalent structures
are indistinguishable under observation. However,
these structures can be distinguished by intervention. 

If you intervene to make C happen, then you will
increase the probability of seeing A and B if the struc-
ture is a common cause (A ← C → B) but will have no
impact on the probability of observing A if the structure
is a chain (A → C → B) (see Steyvers, Tenenbaum,
Wagenmakers, & Blum, 2003, for discussion and evi-
dence that adults are sensitive to these distinctions).
Given a combination of evidence from observation and
intervention, the causal Bayes net formalism allows for
learning the structure even of complex, multivariable
systems.

Within the formalism, interventions are treated as
variables with special features. Specifically, they must
be exogenous (that is, they must not be influenced by
any other causal factors in the graph), and they must
fix the value or probability distribution of the variables
of interest. After an intervention, the value of the
intervened-upon variable is entirely determined by
the intervention and not by any preexisting causes
(see Figure 5-4). Thus, interventions on a causal
Bayes net break arrows into the variables of interest,
performing what Judea Pearl vividly described as
graph surgery (2000). We can then look at the “post-
surgical” graph (after the intervention has taken
place) and figure out what has happened to the other
variables in the graph.

There are several different ways of formally captur-
ing these relations between interventions, dependen-
cies, and causal arrows (see Pearl, 2000; Spirtes,
Glymour, & Scheines, 1993; J. Woodward, 2003).
One way to do this is in terms of what we have called
the conditional intervention principle. The condi-
tional intervention principle can be formally stated as
follows: For a set of variables in a causal graph, A
directly causes B (that is, A → B) if and only if
(a) there is some intervention that fixes the values of
all other variables in the graph, results in B having a 
particular probability distribution pr(Y) such that 
(b) there is another intervention that changes the value
of A, (c) changes the probability distribution of B from
pr(B) to pr′(B) but (c) does not influence B other than
through A, and (d) does not undo the fixed value of the
other variables in the graph (Gopnik et al., 2004).
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Although this principle may sound complex, it is
simply a formal statement of the sort of intuitions
about intervention and causation that underlie exper-
imental design. In an experiment, if you want to find
out the causal relationship between two variables,
then you intervene to hold all other variables con-
stant, and then you intervene to manipulate the value
of the variable of interest. If, for instance, you want 
to know the causal relationship between A and B
(represented by an arrow with a question mark in
Figure 5-5a), then you can perform one intervention
(I1 in Figure 5-5a) to hold all other potential causes of
B constant and another intervention to change the
value of A (I2 in Figure 5-5a). If the value (or proba-
bility distribution) of B changes, then you can con-
clude that A causes B.

Note also that the conditional intervention princi-
ple rules out confounded interventions. Line 4 of the
conditional intervention principle eliminates the
graph in Figure 5-5b (because the intervention on A
cannot influence B except through A), and Line 5
rules out the confounded graph in Figure 5-5c
(because interventions cannot change the fixed value
of any other variable in the graph).

Motivated by causal Bayes net theory (in this 
volume, see also Hagmeyer, Sloman, Lagnado, &
Waldmann, chapter 6; Lagnado et al., chapter 10;
Rehder, chapter 12; Griffiths & Tenenbaum, chapter
20), researchers have shown that adults can make
appropriate inferences about a wide range of causal
structures beyond simple cause-effect pairings.
Importantly, the evidence suggests that causal strength
learning (and subsequent inferences) can and does
take place in the context of complex causal models.

For example, Waldman (2000, 2001) has shown that
adults are sensitive to the direction of causal arrows
when learning and reasoning about causal strength
relations; that is, they make the distinction between
predictive and diagnostic inferences, a fact that
cannot be predicted based on associative learning
mechanisms alone. Other studies (Lagnado et al.,
chapter 10, this volume; Sloman & Lagnado, 2005;
Waldman & Hagmayer, 2005) have shown that,
given causal models, adults can make inferences
about the effects of hypothetical interventions as
well. Thus, psychologically, causal strength judg-
ments do not take place outside the context of causal
structures.

All this should satisfy a Martian that adult humans
can make appropriate predictions about observations
and interventions in a broader causal context. But, of
course, adult humans, particularly the university
undergraduates tested in these studies, have extensive
experience and often quite explicit tuition in causal
inference. Moreover, for the most part these studies
have focused on making inferences about evidence
given knowledge of a particular structure rather than
learning structure from evidence. These studies do
not tell us whether this sort of causal learning is part
of a more fundamental human learning mechanism
and in particular whether it might be responsible for
the impressive learning we see in young children.
Conversely, the studies of children we have just
described all presented them with the classical prob-
lem of inferring which cause was responsible for a
particular effect—which blicket set off the detector,
which flower made the monkey sneeze. In principal,
these results might be explained by variations of earlier
theories such as associationism or causal power theory.
Studies so far have not tested explicitly whether adults
or children can use the conditional intervention 
principle to make inferences about complex causal
structures, as the Bayes net formalism would suggest.
In the absence of distinguishing spatiotemporal infor-
mation, can children use evidence from observations
and interventions to learn the structure of causal
chains, common effects, common causes, and causal
conjunctions?

To find out, we introduced preschool children
(mean age 4 years 6 months) to a gear toy. Children
saw that, when a switch was flipped, two gears, A and B,
spun simultaneously. There were four possibilities: 
(a) The switch activated gear A and A made B go; 
(b) the switch activated gear B and B made A go; 
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FIGURE 5-5 Graphs illustrating the conditional inter-
vention principle (a) I1 fixes the value of other causes
of B (Clause 1 of the conditional intervention princi-
ple). I2 changes the value of A (Clause 2 of the condi-
tional intervention principle). (b) I* is ruled out by
Clause 4 of the intervention principle because the
intervention affects the value of B directly. (c) I* is
ruled out by Clause 5 of the intervention principle
because the intervention affects other causes of B.

(a) (b) (c)



(c) the switch activated each gear independently; or 
(d) the switch activated the gears but neither gear
would spin without the other. Note that these struc-
tures are indistinguishable under observation; no
matter which structure obtains, when you flip the
switch, both gears will spin together.

The structures, however, are distinguishable under
intervention. If, for instance, you remove gear B, flip
the switch on, and gear A spins, then you can elimi-
nate structures (b) and (d). If you replace gear B,
remove gear A, flip the switch on, and gear B fails to
spin, then you can eliminate structure (c) and infer
that structure (a) is correct. This type of inference is a
direct application of the conditional intervention
principle. Controlling for other causes of A (the state
of the switch), an intervention on A changes the value
of B (when the switch is on and A is present, B spins;
when A is absent, B does not), whereas controlling for
other causes of B, an intervention on B does not
change the value of A. You should conclude that
structure (a) is correct, and A → B. Because the pat-
terns of evidence under intervention are unique to
each structure, the correct structure can be deter-
mined from the data that result from interventions.

Over a series of experiments, we found that, con-
sistent with the formalism, 4.5-year-olds were able to
learn the correct causal structure, represented by a
simple picture, from the type of evidence described.
Children were equally good at learning all four struc-
tures (the two chains, the common effect, and the
conjunction). In each case, when children were pre-
sented with the appropriate evidence, they chose the
correct structure significantly more often than any of
the other structures. Control experiments suggested
that children’s judgments were not based on substan-
tive cues or prior knowledge about gears. In addition,
consistent with the data reported in the section on
making novel interventions, children were able to use
their knowledge of the causal structure to make novel
predictions. Children who had never seen gears A and
B on the toy but were told the structure (e.g., that A
spun B) were able to predict the evidence that would
result from interventions (e.g., that when the switch
was on and A was on the toy by itself, A would spin,
but that when B was on by itself, B would not). Again,
children were equally good at predicting the out-
comes of interventions for all four structures (Schulz,
2003; Schulz, Gopnik, & Glymour, in press).

These experiments are particularly noteworthy
because they were explicitly inspired by the Bayes net

formalism and are not explicable by any other existing
theory of causal learning. The physical and mechani-
cal features of the gears were identical in all cases,
and the associations and covariations between the
gears were also held constant. The complex pattern of
relations between interventions and observations
allowed children to learn complex causal structure—
in just the way the formalism would suggest.

In their everyday life, children intervene widely on
the world and see a wide range of interventions per-
formed by others. At least in simple, generative, deter-
ministic cases, preschool children seem to be able to
infer a range of different causal structures from pat-
terns of evidence and to predict patterns of evidence
from knowledge of causal structure. Even young chil-
dren seem to rely on some of the same formal princi-
ples of causal inference that underlie scientific
discovery. Such mechanisms may help children to
develop intuitive theories of the world around them.

Inferring the Existence of Unobserved
Causes

One of the critical respects in which science some-
times brings us genuinely new insight is by invoking
unobserved causes to explain events. However, unob-
served causes are not the exclusive provenance of sci-
entific theories. Children’s naïve physics relies on
unobservable forces, children’s naïve psychology on
unobservable mental states, and children’s concept of
natural kinds on unobservable essences (e.g., Bullock
et al., 1982). It is thus perhaps surprising that most
psychological accounts of causal reasoning (Cheng,
1997; Shanks & Dickinson, 1987) relegate unob-
served causes to a background condition.

We already discussed respects in which the causal
Bayes net formalism supports inferences about the
unknown value of some variables from the known
value of others. However, in some cases the formalism
supports inferences about the existence of variables
themselves. In particular, if the known values in the
graph generate patterns of conditional dependence
and independence that appear to violate the causal
Markov assumption, then the formalism infers the
existence of an unobserved cause.

In a series of experiments, participants (both adults
and children) were introduced to a “stickball
machine” (see Figure 5-6). The two stickballs could
move up and down (either simultaneously or inde-
pendently) without any visible intervention (because
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they could be manipulated from behind the
machine). The experimenter could also visibly inter-
vene on a stickball by pulling up on the stick. This
might cause—or fail to cause—the other stickball to
move.

We looked at whether, consistent with the causal
Markov assumption, adults and kindergarteners could
use interventions and the pattern of outcomes to infer
the existence of an unobserved common cause. In
these studies, participants saw that the movement of the
two stickballs was correlated in probability. They then
saw that an intervention on Stickball A (pulling on A)
failed to move B, and that an intervention on B failed
to move A. On comparison trials, participants were
given evidence consistent with A → B (e.g., they saw
that pulling on B failed to move A, but they did not see
an intervention on A).

If the movements of A and B are probabilistically
dependent but intervening to do A fails to increase the
probability of B moving and intervening to do B fails
to increase the probability of A moving, then the
causal Markov assumption can be preserved only by
inferring the existence of an unobserved common
cause of A and B (i.e., that the true causal structure is
A ← U → B). This structure predicts the observed evi-
dence: A and B are unconditionally dependent in
probability, but an intervention on either A or B
breaks the dependence.

Consistent with the formalism, both adults and
children inferred the existence of an unobserved
common cause when interventions on either stick-
ball failed to correlate with the movement of the
other. Adults drew the appropriate graph (A ← U → B);
children inferred that “something else” (besides
either of the stickballs) was making the stickballs

move (Kushnir, Gopnik, Schulz, & Danks, 2003;
Schaefer & Gopnik, 2003). Importantly, participants
only postulated an unobserved common cause when
no other graph was consistent with the observed pat-
tern of dependencies. The causal Bayes net formal-
ism thus provides a mechanism by which evidence
about observed variables can lead to inferences about
the existence of unobserved variables. Processes like
these might help explain how both children and 
scientists bring new theoretical entities into the
world.

Distinguishing Evidence From
Observations and Interventions

At the core of the theory theory is the idea that chil-
dren learn causal structure from evidence. There are
two ways we can get (firsthand) evidence about an
event: We can see the event happen, or we can make
the event happen. Importantly, as we have implied in
the previous sections, these two ways of getting
data—seeing and doing—can lead to radically differ-
ent conclusions, even when the evidence itself is oth-
erwise identical. What you can learn depends not
only on what you already know, but also on how you
know it.

In the section on making novel interventions, we
discussed a simple causal graph in which the weather
was a common cause of the state of the front yard and
the backyard (F ← W → B). We noted that, using this
graph, you could predict the state of the backyard
from the state of the front yard.

Suppose, however, that you buy a sprinkler for
your front yard and set it to go off every morning at 
6 a.m. Setting the sprinkler cuts the arrow between
the weather and the front yard and breaks the depend-
ence between the front yard and the backyard. The
altered graph is shown in Figure 5-7.

If the graph is as depicted in Figure 5-7, then
when you look outside and see that the grass in your
front yard is wet, you will not be able to infer that the
grass in your backyard is also wet. Evidence that was
informative under observation is uninformative under
this intervention.2

One of the strengths of the causal Bayes net for-
malism is that it supports accurate inferences whether
the evidence comes from observations, interventions,
or combinations of the two. Because the causal graph
under intervention is different from the graph under
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observation, the same evidence should lead to different
inferences.

The theory theory implies that young children
should be sophisticated causal reasoners. Are children
also sensitive to the distinction between evidence
from observations and evidence from interventions,
and do they modify their inferences accordingly?
Note that such sensitivity is not predicted by all mod-
els of causal reasoning. Accounts of causal reasoning
that use the strength of the association between two
variables as indicative of the probabilistic strength of
the causal connection between them (see, e.g.,
Dickinson, Shanks, & Evenden, 1984; Shanks, 1985;
Shanks & Dickinson, 1987; Wasserman, Elek,
Chatlosh, & Baker, 1993) are indifferent to whether
the association is caused by intervention or observa-
tion. Because of this, the predictions made by causal
variants of the Rescorla-Wagner equation and the
causal Bayes net formalism sometimes differ.

In a series of experiments (designed primarily to
look at children’s ability to distinguish common cause
structures from causal chains), we looked at whether
children’s conclusions changed depending on
whether they observed the relevant evidence with or
without an intervention. Children were introduced to
the stickball machine described in the section on
inferring the existence of unobserved causes.
Children were told the following: “Some stickballs
are special. Special stickballs almost always make
other stickballs move.” Children were taught that one
stickball might be special, both stickballs might be
special, or neither stickball might be special.

In the test condition, children saw the stickballs
move up and down simultaneously (without an inter-
vention) three times. The experimenter then visibly
intervened by pulling on the top of one stickball; the
other stickball failed to move. In the control condi-
tion, the experimenter intervened by pulling on one
stickball, and both stickballs moved simultaneously
three times. The experimenter then pulled on the

stickball a fourth time, and the other stickball failed to
move. At the end of the trials, the experimenter
pointed to each stickball and asked, “Is this stickball
special?”

In the test condition, there is a correlation
between seeing stickball Y move and seeing stickball
X move. However, intervening to move Y breaks the
dependence. From a causal Bayes net perspective,
this pattern of evidence is consistent with the graph 
X → Y but not with the graph Y → X. Children
should say that X is special but deny that Y is special.
In the control condition, intervening on Y and seeing
X move are probabilistically dependent throughout.
This is consistent with Y → X but not X → Y; children
should say that Y is special, and X is not.

Note, however, that from an associative learning
perspective, the strength of association between the
stickballs is the same in both conditions. The move-
ment of stickball Y is associated with the movement of
stickball X every time but one. If children are reason-
ing associatively, then in both conditions they should
say that Y is special.

The children (4.5-year-olds) distinguished
between evidence from observations and interven-
tions and reasoned not as predicted by associative
learning models, but as predicted by the causal Bayes
net formalism. That is, children were significantly
more likely to affirm that X was special and deny that
Y was special in the test condition than in the control
condition and significantly more likely to affirm that
Y was special and deny that X was special in the con-
trol condition than in the test (Gopnik et al., 2004;
Schulz, 2001).

Similarly, in the unobserved cause studies discussed
in the preceeding section, we reported that participants
saw that intervening to move stickball X failed to move
stickball Y, and intervening to move Y failed to move X.
In control conditions, however, participants saw X
move by itself and Y move by itself, but this time the
stickballs moved without visible intervention—the
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experimenter simply pointed at X when it moved by
itself and then pointed at Y while it moved by itself.
Consistent with the predictions of the formalism, par-
ticipants distinguished between the two conditions and
only inferred the existence of an unobserved common
cause of X and Y (X ← U → Y) in the intervention con-
dition. (In the observation condition, they inferred the
existence of two independent unobserved causes: 
U1 → X and U2 → Y.)

Pearl writes that, “Scientific activity, as we know it,
consists of two basic components: Observations and
interventions. The combination of the two is what we
call a laboratory” (2000). Although making inferences
about stickball machines may seem a far cry from sci-
entific inquiry, the ability to distinguish evidence
from observations and interventions is fundamental to
both. Sensitivity to the different role played by these
“basic components” may help support children’s abil-
ity to learn the causal structure of events in the world.

Weighing New Evidence Against 
Old Beliefs

We reported that preschoolers ignored a machine’s
buttons and asked a machine to stop after seeing—
once—that talking and the toy activating were uncon-
ditionally dependent. We reported this as partial proof
of the cleverness of 4-year-olds. This might worry you.
This might also worry our institutional review board.
Are preschoolers unreasonably impressionable?
Surely, it is not that clever to override the whole of
naïve physics on the evidence of a single trial.
Surely—even in Berkeley—we do not want children
going around talking to machines. Learning flexibly
from evidence is all very well, but can causal Bayes
nets run amok?

Well, no—at least not in this respect. Causal Bayes
net representations can be inferred by a variety of dif-
ferent learning algorithms discussed, such as con-
straint-based and Bayesian learning algorithms (see
Gopnik et al., 2004, for discussion). Both of these algo-
rithms can take prior knowledge into account.
Constraint-based algorithms test pairs and triads of vari-
ables for independence and conditional independ-
ence. By adjusting the significance level of the
statistical test used to deter-mine independence, con-
straint-based methods ensure that variables likely to be
independent based on prior knowledge (e.g., talking
and a machine activating) are subject to less-rigorous

tests of independence than variables that, given prior
knowledge, are less likely to be independent.

A somewhat more elegant approach is adopted by
Bayesian causal learning methods. Bayesian algo-
rithms assign all the possible causal hypotheses (the
causal graphs) a prior probability. This probability is
then updated given the actual data (by application of
Bayes theorem). The posterior probability of each
causal graph is evaluated to see which model best fits
the data. Thus, it will take more evidence to support
an initially unlikely causal hypothesis than an initially
probable one.

Several studies show that, under conditions of
uncertainty, people do take current evidence and
prior knowledge into account as predicted by
Bayesian learning algorithms (Griffiths & Tenenbaum,
2001; Tenenbaum & Griffiths, 2003, Griffiths &
Tenenbaum, chapter 20,  this volume). In one study,
for instance, adults were taught that “superpencils”
would activate a “superlead” detector. During a train-
ing period, adults were taught that superpencils were
either rare (2 of 12 pencils activated the detector) or
common (10 of 12 activated the detector). Two (pre-
viously untested) pencils were then placed on the
detector, and adults saw that both pencils (A and B)
together activated the detector, and that A by itself
activated the detector. The adults were asked to esti-
mate the likelihood that B by itself would activate the
machine.

As predicted by the Bayesian learning algorithms
(but not as predicted by associative learning
accounts), prior knowledge about the prevalence of
superpencils affected people’s causal judgments.
Despite seeing identical evidence about B in both
conditions, participants believed B was much more
likely to activate the machine in the common condi-
tion than in the rare condition (Tenenbaum &
Griffiths, 2003). Other studies showed that 4-year-old
children could make similar judgments. Taught
either that blickets were rare or common and shown
the “backwards blocking” condition described in the
previous paragraph, children inferred that B was a
blicket when blickets were common and that B was
not a blicket when blickets were rare (Sobel &
Kirkham, chapter 9, this volume; Sobel, Tenenbaum,
& Gopnik, 2004; Griffiths & Tenenbaum, chapter 20,
this volume).

So, if preschool children take prior knowledge into
account when making causal judgments, why did chil-
dren in the talking machine experiment violate their
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knowledge about domain-appropriate causes on the
evidence of a single trial? Note that in the cross-
domain experiment, children were given deterministic
data: Buttons and the machine turning on were always
independent conditional on talking; talking and the
machine turning on were always unconditionally
dependent. When evidence is deterministic, you do
not need statistical tests to determine independence,
and whatever the prior probability of the hypothesis,
the posterior probability is 100%. Given the determin-
istic evidence, children’s inferences were identical to
those that would be made by the formalism.

Importantly, however, in a more ambiguous sce-
nario, children did take prior knowledge into
account. We replicated the machine/talking experi-
ment with a new group of children and then tested
the children on a “transfer condition” with a novel
toy, a novel speech act, and two novel switches. In the
transfer condition, children received no evidence
about the novel stimuli; we simply asked the children
how they would activate the novel toy: by talking to it
or by flipping the switches. In the test condition, the
children talked to the machine, just as in the previous
study. However, in the transfer condition, despite the
similarity of the stimuli, the children largely reverted
to their prior knowledge: 75% of the children chose
the switches (the domain-appropriate cause).

Equally important, however, the prior exposure to
the domain-inappropriate evidence did affect chil-
dren’s causal judgments. Children were significantly
more likely to choose the domain-inappropriate cause
in the transfer condition than in the previous baseline
condition (i.e., in which they had no evidence whatso-
ever about domain-inappropriate causes). The recent
exposure to counterintuitive evidence affected how
children extended their causal inferences. Similarly, as
discussed in the section on making novel interven-
tions, we found that many children would override
their preference for contact in physical causal relations
in light of probabilistic evidence for action at a dis-
tance. Thus, the combination of prior knowledge and
formal inference procedures seems to allow for learn-
ing that is both conservative and innovative.

This tension between conservativism and innova-
tion is consistent with a theory theory approach to
conceptual development and is also a salient feature
of adult scientific inquiry. Surprising evidence is often
questioned or dismissed before it is taken seriously
enough to establish the theories that will, in turn,
make the evidence predictable. As William James

(perhaps apocryphally) is said to have quipped:
“When a thing is new, people say: ‘It is not true.’
Later, when its truth becomes obvious, they say: ‘It is
not important.’ Finally, when its importance cannot
be denied they say: ‘Anyway, it is not new.’”

As scientists, we may complain about the tendency
of prior beliefs to squelch innovation; however, as an
extension of the inferential procedures used in child-
hood, the advantages of carefully weighing new evi-
dence against old is clear. If children’s learning were
too flexible—if it were, for instance, wholly dictated
by the most recent evidence observed—then children
would be subject to endless error. Children live in a
noisy world and might easily be exposed to misleading
data. If, on the other hand, innate or prior knowledge
acted as a strong constraint on children’s causal learn-
ing, then errors made early in development would be
irreparable. Children would be intransigent in the
fact of corrective evidence and helpless in genuinely
novel environments.

Although science has a reputation for objectivity,
one of the advantages of having a theory (naïve or sci-
entific) is precisely that all evidence is not treated
equally. By limiting the evidence to which we attend,
or that we take seriously, theories explain in part why
science can get so much inferential power out of a
“trifling investment in fact.” Formal inference proce-
dures, able to take into account both prior knowledge
and new evidence, may provide just the sort of learn-
ing mechanism that allows children’s causal theories
to be both stable and defeasible.

Distinguishing Good Interventions From
Confounded Ones

People who become exercised by the concept of child
as scientist frequently point out what is indisputably
the case: Children, unlike scientists, do not go around
designing controlled experiments to test their theo-
ries. Moreover, when children do try to design exper-
iments (i.e., because a teacher or a researcher asks
them to), they perform poorly. Children tend to inter-
vene on many variables at once, change interventions
between conditions, and then draw all the wrong con-
clusions. Adults (and often scientists) do little better
(Kuhn, 1989; Kuhn, Amsel, & O’Laughlin, 1988;
Masnick & Klahr, 2003).

However, designing an experiment requires
metacognition. To design an appropriate intervention,
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you have to know what makes an intervention appro-
priate. Learning from interventions does not require
metacognition. You may have no idea what makes one
intervention better than another and still be able to
draw correct conclusions from the patterns of evidence
that result.

In the previous sections, we provided evidence sug-
gesting that when children are given good evidence,
they draw normative causal conclusions. What hap-
pens, however, when children are given bad evidence?
Are there conditions under which children realize that
interventions are confounded? Does confounding
change the types of inferences children make?

The conditional intervention principle defined an
intervention to rule out instances of confounding: An
intervention on X should be exogenous, should break
all the arrows into X, and should not influence any
other variable in the graph except through X. In the
test condition of the gear toy experiment, we showed
children evidence consistent with the conditional
intervention principle, and children were able to
learn the relationship of the gears to one another.

In the control condition, however, we concealed
the state of the switch. Thus, just as in the test condi-
tion, children saw, for instance, that gear A spun when
B was removed, but gear B failed to spin when gear A
was removed. However, with the switch hidden, the
children could not know whether B failed to spin
because gear A was removed or because the experi-
menter failed to flip on the switch. That is, there was no
way to know whether the intervention to remove gear A
broke all the arrows into B or not. Although the move-
ment of the gears was the same in both conditions, chil-
dren in the control conditions responded at chance
and—anecdotally—tried to look behind the machine
to determine whether the switch was on or off.

In a different set of studies, we looked at children’s
sensitivity to probabilistic causes and the role played
by their own interventions. In an observation condi-
tion, children saw an experimenter place a block on a
toy three times in a row. The children saw that one
block made the toy light up two of three times, and
another block made the toy light up only one of three
times. Children were told that each block had “spe-
cial stuff” inside and were asked which block has
more special stuff. The children distinguished the 2/3
probability from the 1/3 probability and said that the
2/3 block had more special stuff.

The intervention condition was identical except
that children were allowed to intervene on the block on

the third trial. For the 2/3 block, children saw the block
light up the toy twice, but when they tried the block, it
failed to light up. For the 1/3 block, children saw the
block fail to light up the toy twice, but when they tried
the block, the toy did light up. In this condition, chil-
dren said that the 1/3 block had more special stuff.
Children seemed to prefer making inferences based on
their own interventions.

Critically, however, the children were also tested
in a confounding control condition. In the control
condition, children saw exactly the same evidence as
in the test condition; however, this time when the
child intervened, the experimenter simultane-
ously pushed a button “to make the toy light up.” 
The child’s “intervention” was thus no longer a real
intervention—it did not break other arrows (like the
experimenter pushing the button) into the effect.
When the children’s own interventions were con-
founded in this way, they did not express a preference
for their own interventions; the children returned to
judging the blocks on the basis of the probabilities
(Kushnir, 2003; Kushnir & Gopnik, in press).

These findings suggest that, although children
may not be able to design controlled experiments,
they do, at least in certain cases, recognize instances
of confounding. Children seem to be sensitive to
some of the fundamental features of experimental
design and make different inferences when causal
manipulations are consistent with the conditional
intervention principle than when they are not.

Still, we might ask how, in the absence of con-
trolled experiments, children are able to learn so
much from interventions. We rely on experimental
design heavily in science; how can children learn so
much in its absence? Why aren’t children constantly
running into confounded interventions and drawing
inaccurate causal conclusions?

One possibility is that the very fact of being a
child might serve children well. Children are notori-
ous for being impulsive (they get into a lot of things)
and perseverative (they get into the same things over
and over again). Cast in a more positive light, chil-
dren tend to intervene a lot, and they tend to replicate
their interventions. Children’s very immaturity and,
in particular, the protracted development of their pre-
frontal cortex, which (in adults) seem to inhibit
impulsivity (e.g., Casey, Giedd, & Thomas, 2000;
Chao & Knight, 1998) and prevent perseveration
(e.g., Goel & Grafman, 1995), may support causal
learning.
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How might immaturity and noise substitute for
controlled experimental design? Note that to infer that
X causes Y, you do not necessarily have to hold other
causes of Y constant. You can also randomize other
causes of Y. Children’s tendency to intervene in many
different contexts and their tendency to replicate their
actions might be advantageous. Other causes of Y
(whatever Y is) might exist, but children’s own actions
are unlikely always to coincide with those causes.
Certainly, children may occasionally leap to the
wrong causal conclusion from bad evidence. Wu and
Cheng (1999), for instance, cite a childhood anecdote
in which one of the authors dropped a vase at the same
time that a power outage occurred and thus blamed
herself for the blackout. However, such anecdotes are
funny in part because they are rare. In general, chil-
dren’s own actions may be a trustworthy foundation for
their causal inferences and naïve theories.

Conclusion

In many respects, the causal Bayes net formalism
seems to provide a learning mechanism that captures
the dynamic nature of theories—and in many respects,
children’s learning seems to be commensurate with the
predictions made by the formalism. However, the
causal Bayes net formalism may not tell the whole
story. In particular, the formalism may not entirely sat-
isfy Mark Twain. How we get such “wholesale returns
of conjecture out of a trifling investment in fact”
remains something of a mystery.

Causal Bayes net algorithms were developed for
use in procedures like data mining, for which evi-
dence is plentiful, but the causal relationships are
obscure. Constraint-based search methods thus rely
on the evidence of many trials or assume the available
data are representative of a larger sample. Bayesian
learning algorithms rely on either an abundance of
data or an abundance of prior knowledge.

In our experiments, by contrast, evidence was
scarce. Children made causal inferences from a min-
imal amount of data, often using only the evidence of
a single trial. As Tenenbaum and Griffiths (2003)
note, in “many cases . . . causal inference follow(s)
from just one or a few observations, where there isn’t
even enough data to reliably infer correlation!”

Note, however, that the causal Bayes net formalism
was also developed to infer causal structure from noisy,
probabilistic data in contexts in which interventions
were impossible (e.g., in epidemiological studies).

By contrast, in all of our studies, children observed or
performed interventions, and in most cases the evi-
dence they saw was deterministic. Such contexts (when
interventions are possible and determinism is assumed)
may be plentiful in everyday life, and within such con-
texts, children may not need the full apparatus of the
causal Bayes net learning algorithms. Children may be
able to represent structure as a causal Bayes net and
may use some of the same principles about the rela-
tionship between evidence and structure without
requiring the full power of the learning algorithms (see
Richardson, Schultz, & Gopnik, chapter 13, this 
volume). Thus, the causal Bayes net formalism may be
“too big” for what children need to accomplish.

Alternatively, causal Bayes nets formalism may be
“too small.” The algorithms may miss a level of
abstraction (what Tenenbaum & Niyogi, 2003, and
Griffiths & Tenenbaum, chapter 20, this volume, call
a causal grammar) that encompasses higher-order
causal laws that are assumed but never explicitly pre-
sented to the children (i.e., that blocks activate detec-
tors, and detectors do not activate blocks). Children
may be successful at learning causal relationships from
a few observations (in our lab and in the world)
because they are already bringing a rich theoretical
structure to bear on the inferential tasks. Thus, the
causal Bayes net algorithms may allow children to
learn structure from minimal data only when they are
embedded within higher-order causal theories (see
Tenenbaum & Griffiths, 2003; Tenenbaum & Niyogi,
2003; Griffiths & Tenenbaum, chapter 20, this 
volume).

Critically, however, this account may only move
the problem of causal inference back a step.
Knowledge of higher-order causal laws might support
children’s ability to learn particular causal relations.
However, somehow children must also learn the
higher-order causal laws—and it seems tempting to
assume that children infer higher-order causal laws
from particular causal relations. One of the challenges
for future research is to determine whether such cir-
cles can be benign rather than vicious. In principle,
children might be able to bootstrap an abstract causal
grammar from clear evidence for particular causal
relationships and then use the higher-order theory to
handle more complex or ambiguous evidence for 
particular causal relations.

However, even if (as we expect) the causal Bayes
net formalism does not end up being “just right,” it
more than any other current computational account
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suggests a learning mechanism that does justice to
much of the breadth and depth of children’s naïve
theories. In supporting novel predictions, novel inter-
ventions, structure learning, inferences about unob-
served causes, distinctions between observations and
interventions, and the criteria for a good intervention,
the causal Bayes net formalism captures much that is
critical about a theory. Our hope is that children’s
ability to engage in theory formation and theory
change might similarly set the standard for future
computational accounts of learning.

If you are persuaded by little else by this chapter,
we hope we have at least convinced you of the value
of interdisciplinary work. Research in computer sci-
ence, artificial intelligence, and philosophy has sug-
gested some of the fundamental assumptions that
might underlie the development of children’s naïve
theories. Work in developmental psychology has
demonstrated that young children are able to learn
the causal structure of events with remarkable speed
and accuracy. We hope that investigators in all these
areas will continue to find causal learning, in both
children and science, fascinating for years to come.
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Introduction

Causal knowledge enables us to predict future events,
to choose the right actions to achieve our goals, and to
envision what would have happened if things had
been different. Thus, it allows us to reason about
observations, interventions, and counterfactual possi-
bilities. Philosophers and computer scientists have
begun to unravel the relations among these three
kinds of reasoning and their common basis in causal-
ity (e.g., Pearl, 2000; Spirtes, Glymour, & Scheines,
1993; Woodward, 2003).

Observations can provide some information about
the statistical relations among events. According to the
principle of common cause (Reichenbach, 1956),
there are three possible causal explanations for a reli-
able statistical relation between two events A and B:
A causes B, B causes A, or both events are generated by
a third event or set of events, their common cause. For
example, dieting and obesity are statistically related
because obesity causes people to go on a diet, because
dieting disturbs regulatory physiological processes that

eventually lead to obesity (many obese people went on
a diet before they became extremely overweight), or
because obesity and dieting may be causal conse-
quences of our modern eating habits. In this last case,
we can say that the correlation between obesity and
dieting is spurious. Regardless of the underlying causal
structure, an observation of one of these events allows
us to infer that other events within the underlying
causal model will be present or absent as well. Thus,
when we have passively observed an event, we can rea-
son backward diagnostically to infer the causes of this
event, or we can reason forward and predict future
effects. Moreover, we can infer the presence of spuri-
ously related events.

Interventions often enable us to differentiate
among the different causal structures that are compat-
ible with an observation. If we manipulate an event A
and nothing happens, then A cannot be the cause of
event B, but if a manipulation of event B leads to a
change in A, then we know that B is a cause of A,
although there might be other causes of A as well.
Forcing some people to go on a diet can tell us
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whether the diet increases or decreases the risk of
obesity. Alternatively, changing people’s weight by
making them exercise would show whether body mass
is causally responsible for dieting.

In contrast to observations, however, interventions
do not provide positive or negative diagnostic evi-
dence about the causes of the event on which we
intervened. Whereas observations of events allow us
to reason diagnostically about their causes, interven-
tions make the occurrence of events independent of
their typical causes. Thus, because of the statistical
independence created by interventions, these events
will occur with their usual base rate independent of
the outcome of an intervention. For example, forcing
somebody to eat 50 (and only 50) grams of fat per day
fixes fat intake independent of the presence or
absence of other factors normally affecting diet.

Counterfactual reasoning tells us what would have
happened if events other than the ones we are cur-
rently observing had happened. If we are currently
observing that both A and B are present, then we can
ask ourselves if B would still be present if we had
intervened on A and caused its absence. If we know
that B is the cause of A, then we should infer that the
absence of A makes no difference to the presence of B
because effects do not necessarily affect their causes.
But, if our intervention had prevented B from occur-
ring, then we should infer that A also would not
occur. For example, Morgan Spurlock (director and
guinea pig of the movie Supersize Me, released in
2004) ate fast food for 4 weeks and gained more than
20 pounds. What would have happened if he had not
eaten burgers and fries all the time? Assuming that his
heavy consumption of fast food was causally responsi-
ble for his increase in weight rather than the
increased weight being the cause of eating, we can
conclude that he would have stayed in better shape
without all the carbohydrates and fats.

The example indicates that counterfactual reason-
ing combines observational and interventional reason-
ing. First, we observe Morgan eating fast food and
gaining weight. Second, we assume that one of the
events had been different. We imagine him not eating
such a diet, while all other observed or inferred factors
(e.g., his genetic makeup, amount of physical exercise,
etc.) are assumed to stay at the observed level. Thus,
instantiating a counterfactual event is causally equiva-
lent to an imaginary intervention on a causal model in
which all variables that are not affected by the interven-
tion are assumed to stay at currently observed levels.

Finally, causal consequences of the intervention are
inferred on the basis of the given causal model. We
infer that Morgan would not have gained as much
weight as he did (see next section; Pearl, 2000; and
Sloman & Lagnado, 2005, for a more detailed discus-
sion of counterfactuals).

There are important differences among observa-
tion, intervention, and counterfactuals. Nevertheless,
they can be given a unified treatment within the
causal model framework. Whereas probabilistic and
associative accounts of causal knowledge fail to cap-
ture these three interrelated functions of causal
knowledge, causal Bayes nets do (Glymour, 2001;
Pearl, 2000; Spirtes et al., 1993). The next section
summarizes these accounts. Although causal Bayes
nets provide successful formal tools for expert systems,
few experiments have tested whether causal Bayes
nets also capture everyday reasoning with causal mod-
els by people who are not formally trained. The
remainder of the chapter presents experimental evi-
dence from the areas of logical reasoning, learning,
and decision making demonstrating the plausibility of
causal Bayes nets as psychological theories.

Modeling

We do not give a detailed description of causal Bayes
nets here (see Pearl, 2000, or Spirtes et al., 1993, for
detailed introductions). Research on causal Bayes
nets focuses not only on causal representation and
inference but also on other questions, such as those
regarding learning (see Lagnado, Waldmann,
Hagmayer, & Sloman, chapter 10, this volume).
Here, we show how to derive predictions from causal
Bayes nets based on observations, interventions, and
counterfactual assumptions. Although causal Bayes
nets provide tools for reasoning with complex models,
experimental studies typically present problems that
are within the grasp of naïve participants. We there-
fore concentrate our brief introduction on inferences
using the three basic causal models involving most
research: common-cause, common-effect, and causal
chain models. More complex models can be gener-
ated by combining these three models (see Sloman &
Lagnado, 2005, and Waldmann & Hagmayer, 2005,
for research on more complex models).

Figure 6-1 shows the graphs for the three models,
with the nodes representing event variables and the
arrows signifying direction of causal influence: (a) a
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common-cause model in which a single cause X
influences two effects Y and Z, (b) a causal chain
model in which an initial cause X affects an interme-
diate event Y influencing a final effect Z, and (c) a
common-effect model in which two causes X and Y
independently influence a joint effect Z.

The graphs encode assumptions about dependence
and independence, simplifying the representation of
the causal domain. One important assumption under-
lying Bayes nets is the Markov assumption, which states
(informally) that each event in a causal graph is inde-
pendent of all events other than its descendants (i.e., its
direct and indirect effects) once the values of its parent
nodes (i.e., its direct causes) are known.

The graph of the common-cause model expresses
the spurious correlation between effects Y and Z
(because of their common cause) and their independ-
ence once the state of cause X is known. This is a con-
sequence of the Markov condition. Once we know
that X is present, the probability of Y is the same
regardless of whether Z is present. Similarly, the
causal chain implies that the initial cause X and the
final effect Z are dependent but become independent
when the intermediate event Y is held constant. Once
we know that Y, the direct cause of Z, is present, the
probability of Z stays constant regardless of whether X
has occurred. Finally, the common-effect model
implies independence of the alternative causes X and
Y and their dependence once the common effect is
held fixed. This is an example of explaining away. X
and Y should occur independently, but once we know
that X and its effect Z are present, it is less likely that
Y is also present.

Independence is advantageous in a probabilistic
model not only because it simplifies the graph by
allowing omission of a link between variables but
also because it simplifies computation. Conceived
as a computational entity, a Bayes nets is merely a

representation of a joint probability distribution—
P(X,Y,Z) in Figure 6-1—that provides a more com-
plete model of how the world might be by specifying
the probability of each possible state. Each event is
represented as a variable. Causal relations are assumed
to generate the conditional probabilities relating causes
to their effects, and arrows in a causal graph represent
those causal relations. The factorizations of the three
models at issue are

Common cause: P(X, Y, Z) � P(Y | X) P(Z | X) P(X)

Causal chain: P(X, Y, Z) � P(Z | Y) P(Y | X) P(X)

Common effect: P(X, Y, Z) � P(Z | Y, X) P(Y) P(X)

The equations specify the probability distribution of
the events within the model in terms of the strength of
the causal links and the base rates of the exogenous
causes that have no parents (e.g., X in the common-
cause model). Implicit in the specification of the
parameters of a Bayes net are rules specifying how mul-
tiple causes of a common effect combine to produce
the effect or (in the case of continuous variables) func-
tional relations between variables. A parameterized
causal model allows it to make specific predictions of
the probabilities of individual events or patterns of
events within the causal model.

Modeling Observations

Observations not only tell us whether a particular event
is present or absent but also inform us about other
events that are directly or indirectly causally related to
the observed event. Therefore, the structure of the causal
model is crucial for inference. Observing an event
increases the probability of its causes and its effects. For
example, if someone has a high level of cholesterol, then
you can make the diagnostic inference that the person
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has probably had an unhealthy diet (cause) and you
can predict that the person’s risk of contracting heart
problems is relatively high (effect). These inferences
can be justified on the basis of the structure of the causal
model. No specific information about the strength of
the causal relations or the base rates of the events is
necessary to make these qualitative predictions. More
specific predictions of the probabilities of events can be
made when the model is parameterized.

Formally, observations are modeled by setting the
event variables to the values that have been observed.
Based on our equations and probability calculus, the
probabilities of other events conditional on the
observed variable can be calculated. The structure of
the causal model is crucial for these calculations.
Imagine that an effect Y of a common cause X that
also generates Z is observed. The resulting increase in
probability of the cause X can be computed using
Bayes’ rule:

P(X � 1 | Y � 1)
� P(Y � 1| X� 1) P(X � 1)/ [P(Y � 1| X� 1)

P(X � 1) � P(Y � 1| X� 0) P(X � 0)]

For example, if the base rate of following an
unhealthy diet is P( X�1)�.5, the probability that
an unhealthy diet will cause being overweight is 
P( Y �1| X�1)�.9, and the probability of being
overweight despite eating healthy food is P( Y�1 |
X� 0) �.1, then being overweight indicates a proba-
bility of P(X � 1 | Y � 1) � .9 that the diet was
unhealthy. The probability of the other effect Z has
to be computed by using the updated probability of
the common cause and the conditional probability
P(Z | X) referring to the causal relation connecting
the common cause and the second effect. For exam-
ple, if the probability of having high levels of choles-
terol given an unhealthy diet is P � .4 and P�.1
otherwise, then the observation of a person’s being
overweight implies that the probability of having a high
level of cholesterol is .37. Note that this calculation
rests on the assumptions that the events are connected
by a common-cause model. The same conditional
probabilities have different implications given other
causal structures.

Modeling Interventions

There are different types of intervention (see
Woodward, 2003). Interventions can interact with the

other causes of events. For example, when we
increase fat in our diet, then the resulting cholesterol
level in our blood depends on our metabolism, prior
level of cholesterol, and many other factors. The
causal Bayes net literature has focused on a specific
type of intervention that completely determines the
value of the variable the intervention targets (see
Pearl, 2000; Spirtes et al., 1993; Woodward, 2003).
For example, if we set the temperature of a room to
20°C, our intervention fixes room temperature while
disconnecting it from all its causes. In this chapter, we
focus on this strong type of intervention.

How can interventions be formally modeled? The
most important assumption can be traced to Fisher’s
(1951) analysis of experimental methods. Randomly
assigning participants to experimental and control
groups creates independence between the independ-
ent variable and possible confounds. Thus, if we, as
external agents, set cholesterol levels to a specific
value, then the level of cholesterol is independent of
other factors normally determining its level. To qual-
ify as an intervention of this strong kind, the manipu-
lation has to force a value on the intervened variable
(e.g., cholesterol), thus removing all other causal
influences (e.g., diet). Moreover, the intervention
must be statistically independent of any variable
that directly or indirectly causes the predicted event
(e.g., all causes of cholesterol), and it should not
have any causal relation to the predicted event except
through the intervened-on variable (see Pearl, 2000;
Spirtes et al., 1993; Woodward, 2003).

As with observation, predictions of the outcomes
of hypothetical interventions are based on specific
values of event variables, but whereas observations
leave the surrounding causal network intact, interven-
tions alter the structure of the causal model by render-
ing the manipulated variable independent of its
causes. Thus, predictions on the basis of interventions
need to be based on the altered causal model, not the
original model. For example, the passive observation
of low cholesterol level indicates a healthy diet
because of the causal link between diet and choles-
terol, but medically inducing a specific cholesterol
level does not provide evidence about a person’s
eating habits. Manipulating cholesterol independent
of the prior value and other factors creates independ-
ence between cholesterol level and diet. Thus, predic-
tions about eating habits can only be based on
assumptions about base rates, not on evidence about
cholesterol level.
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The changes in a causal model caused by
interventions (of the strong type) can be modeled by
procedures that Pearl (2000) vividly calls graph surgery.
These procedures result in a “manipulated graph”
(Spirtes et al., 1993). The key idea is that interventions
introduce an external independent cause that fixes the
value of the manipulated event. As a consequence, all
other causal arrows pointing toward this event need to
be removed because these causal influences are not
operative during the intervention. Thus, both types of
predictions are grounded in a representation of the
underlying causal model. However, whereas observa-
tional predictions are based on the original causal
graph, interventional predictions are based on the
manipulated graph. Figure 6-2 illustrates for the three
causal models from Figure 6-1 how observing differs
from intervening. In general, the manipulated graphs
are generated by removing the incoming causal links
that point to the manipulated variable.

Traditional Bayes nets (e.g., Pearl, 1988) and other
probabilistic theories are incapable of distinguishing
between observations and interventions because they
lack the expressive power to distinguish observational
and interventional conditional probabilities. Both types
are subsumed under the general concept of conditional
probability. To distinguish observations from interven-
tions, Pearl (2000), following previous work by Spirtes

et al. (1993), introduces a do-operator. The do-operator
represents an intervention on an event that renders the
manipulated event independent of all its causes (i.e., it
is the formal equivalent of graph surgery).

For example, do(Y � 1) represents the event that Y
was fixed to the value of 1 by means of an interven-
tion. Thus, it implies the removal of all previous
causal influences in Y. Applying the do-operator
allows it to make specific interventional predic-
tions about events within the causal model. For exam-
ple, the equations for the factorization of the joint 
distribution of the causal chain model (Figure 6-2) in
which the intermediate event is observed to be present
(Y � 1) or manipulated [do(Y � 1)], respectively, are

Observation of Y:
P(X, Y �1,Z) � P(Z | Y �1) P(Y�1 | X) P(X)

Intervention on Y:
P(X, do(Y �1),Z) � P(Z | Y �1) P(X)

If the parameters of the causal model are known, we
can calculate the probabilistic consequences of inter-
ventions. The hypothetical intervention on Y (i.e., Y is
fixed to the value of 1 and therefore known to be pres-
ent) in the causal chain implies that Z occurs with the
observational probability conditional on the presence
of Y (P(Z | Y�1), and that X occurs with a probability

90 CAUSATION AND INTERVENTION

FIGURE 6-2 Examples of observations of (symbolized as eyes) and interventions on (symbolized as hammers)
the three basic causal models.



corresponding to its base rate (P(X)). Notice that the
interventional probability requires fewer parameters
because graph surgery involves simplification by
inducing independence between a variable and its
causes.

As a second example, consider the common-
cause model in Figure 6-1. Whereas observing Y
allows us to reason diagnostically back to its cause X
and then reason forward predictively to its spurious
correlate Z, predictions for hypothetical interven-
tions in effect Y need to be based on the manipu-
lated graph in Figure 6-2 in which the link between
X and Y is removed. Formally, this can be expressed
by the equation1

P(X, do(Y �1), Z) � P(Z | X) P(X)

Thus, fixing Y at the value 1 removes the link to
this variable from the causal model. However, pre-
dictions are still possible on the basis of the manipu-
lated graph. The common cause X should occur
with a probability corresponding to its base rate, and
Z is determined by the base rate of its cause X and
the strength of the probabilistic relation between 
X and Z.

Modeling Counterfactuals

Counterfactuals combine observations and interven-
tions. The current state of the world is modeled as an
observation, and then the counterfactual is set by an
imaginary intervention altering the state of the
variables assumed to be different. For example, we
may currently tend to eat unhealthy fast food. For a
counterfactual analysis, we would first model this fact
as if it were an observation by inferring the conse-
quences for other unobserved events within the causal
model. We may infer that we have an increased prob-
ability of contracting diabetes. Next, we want to know
what would happen if we had eaten healthy food
instead. We model this counterfactual by means of a
hypothetical intervention that fixes the value of the
diet variable. Note that counterfactuals differ from
interventions because counterfactual interventions
alter causal models, which have been updated before
on the basis of the given facts.

As in the case of observations and interventions,
graphical causal models are sufficient to draw qualita-
tive inferences from counterfactuals. For example, con-
sider a causal chain model connecting diet, weight,

and diabetes. To model the statement, “If she were not
obese, she would not have developed diabetes,” we first
assume that we observe diabetes and obesity in a
woman. Based on these observations, we can infer that
the woman probably tends to eat an unhealthy diet.
Next, we hypothetically eliminate obesity by means of
an intervention that influences this variable by means
of a factor external to the chain model. This hypothet-
ical intervention would cut the causal link between
diet and weight, but the link between weight and dia-
betes would stay intact. Therefore, the counterfactual
implies that the person in this alternative world would
be spared diabetes, while her eating habits would stay
the same.

Formal modeling of counterfactuals requires
updating of the model twice. First, the probabilities of
all events are calculated conditional on the facts
stated in the counterfactual treating facts as observa-
tions. Second, the counterfactual event is set by the
do-operator, which entails a reanalysis of the probabil-
ities of the events in the manipulated graph. Thus,
assuming the validity of the causal model and the
attached parameters, causal Bayes nets allow us to
generate precise predictions for counterfactuals.

Summary

Causal Bayes nets capture the structure of causal
models. They allow us to generate qualitative predic-
tions for observations, interventions, and counterfac-
tuals. Moreover, parameterized causal models enable
us to make precise predictions about the probabilities
of events within the causal model. Whereas observa-
tional predictions are within the grasp of traditional
associative or probabilistic (including Bayesian) theo-
ries, modeling interventions and counterfactuals tran-
scends the conceptual power of these models. To
model hypothetical interventions and counterfactuals
correctly, a preliminary stage has to be assumed in
which the structure of the causal model generating
the predictions is modified. Based on this modified
causal model, precise predictions can be made for sit-
uations that may never before have been observed.

The distinction between observation and inter-
vention is crucial for the theory of causal Bayes nets.
Although observations allow drawing inferences about
causes and effects of the observed event, interventions
cut the event off from its causes by deleting the causal
links pointing toward the event. Sloman and Lagnado
(2005) coined the term undoing for this process. 
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If causal Bayes nets are veridical models of intuitive
human causal reasoning, then participants have to be
sensitive to undoing. Thus, a key issue will be whether
human participants are capable of predicting out-
comes of hypothetical interventions and of reasoning
about causal counterfactuals. This compe-
tency would imply that people have access to reason-
ing processes that modify causal representations prior
to deriving predictions. The next three sections report
evidence concerning this question.

Causal Reasoning Versus Logical
Reasoning

Causal Bayes nets can be used to represent and model
qualitative logical inferences in causal domains. One
implication of this account is that causal inference
differs from inference in a context in which the stan-
dard rules of propositional logic also apply. Although
standard logic does not distinguish between the obser-
vation of an event and the generation of the same
event by an intervention, the distinction is central to
causal Bayes nets. Causal models have the ability to
represent both action (intervention in the world) and
imagination (intervention in the mind). If participants
are sensitive to the difference between observation
and intervention, then they should infer that the
observation of an event is diagnostic of the presence of
its causes, but when the same event is physically or
mentally manipulated, it no longer is.

Observation Versus Intervention in
Counterfactual Scenarios

To verify that people are sensitive to the difference
between observation and intervention, Sloman and
Lagnado (2005) gave a group of students the follow-
ing scenario:

All rocketships have two components, A and B.
Movement of Component A causes Component B
to move. In other words, if A, then B. Both are
moving.

Notice that this scenario describes the simplest
possible causal model involving only a single link (see
Figure 6-3). Furthermore, the current values of the
variables A and B are stated.

After reading the scenario, half the group was
then asked the observational counterfactual ques-
tion concerning what they would expect if they had
observed components not moving: (a) Suppose
Component B were observed to not be moving,
would Component A still be moving? The other
half was asked the interventional counterfactual
question concerning what they would expect if
components had been intervened on and thereby
prevented from moving: (b) Suppose Component B
were prevented from moving, would Component A
still be moving?

The difference between observation and interven-
tion should show up in the comparison of (a) and (b).
Observing that the effect B is not moving should be
diagnostic of A, suggesting that A also is not moving. In
contrast, the logic of intervention says that we should
represent an intervention on B as P(A moves | do(B
does not move)), which reduces to P(A moves)
because B is disconnected from its normal cause A
under the do operation. As participants were told
before that A is moving, they should stick to that belief
and answer yes. This is just what happened: 85% of
participants answered yes to (b) but only 22%
answered yes to (a). B’s movement was only treated as
diagnostic of A’s movement when B was observed not
to move, not when its movement was prevented. This
shows that people are sensitive to the logic of a coun-
terfactual intervention in a situation with a transparent
causal structure.

Causal Reasoning Versus Propositional Logic

The causal model framework predicts that people are
sensitive to the logic of intervention when reasoning
causally, not necessarily when reasoning in other
ways. Sloman and Lagnado (2005) compared reason-
ing in a situation with causal relations to one with par-
allel relations that were not causal.
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FIGURE 6-4 Causal chain model used by Sloman and Lagnado (2005).

Consider the following causal problem described
in terms of conditional (if … then) statements:

Causal conditional: There are three billiard balls
on a table that act in the following way: If Ball 1
moves, then Ball 2 moves. If Ball 2 moves, then
Ball 3 moves.

Imagine that Ball 2 could not move. Would
Ball 1 still move?

The fact that we are talking about billiard balls—
prototypical causal elements—strongly suggests that
the conditional statements should be interpreted as
describing causal relations. The causal model under-
lying this scenario is depicted in Figure 6-4.
The causal modeling framework represents the two
questions using the do-operator because an outside
agent is preventing the ball from moving, represented
as do(Ball 2 does not move):

P(Ball 1 moves | do(Ball 2 does not move)).
To evaluate this, we must assume that Ball 2 does
not move. We must also simplify the causal model
by removing any links into Ball 2 as depicted in
Figure 6-5.

It is immediately apparent, parallel to the last
example, that the value of Ball 1 is no longer affected
by Ball 2, and therefore the causal Bayes model
framework predicts that Ball 2’s lack of movement is
not diagnostic of its normal cause, Ball 1. Of partici-
pants, 90% agreed, affirming that Ball 1 could move if
Ball 2 could not.

Standard propositional logical systems have no
way to represent this argument. They not only do not
have a representation of cause, but also have no way
of representing an intervention. A conventional logical

analysis of this problem might go as follows: The prob-
lem tells us that if Ball 1 moves, then Ball 2 moves. We
know that Ball 2 does not move. Therefore, Ball 1 does
not move by modus tollens, a logical schema that dic-
tates that the antecedent of a conditional must be false
if its consequent is. This particular argument does not
explain people’s judgments, which are that Ball 1 can
move even if Ball 2 cannot.

In the noncausal realm, modus tollens can be a
perfectly valid form of argument for deriving definite
conclusions. For example, modus tollens would be an
appropriate inference scheme to use on a problem
similar to the causal one just shown but based on log-
ical if-then relations rather than causal ones. Maybe
people would make inferences conforming to modus
tollens with such an argument. To find out, Sloman
and Lagnado (2005) gave a group of people the
following scenario:

Logical conditional. Someone is showing off her
logical abilities. She is moving balls without break-
ing the following rules: If Ball 1 moves, then Ball
2 moves. If Ball 2 moves, then Ball 3 moves.

Sloman and Lagnado then asked the group the same
question as for the causal case:

Imagine that Ball 2 could not move, would Ball 1
still move?

In this case, only 45% of participants said yes. The
majority gave the inference consistent with modus
tollens, no. Clearly, there is less consistency than in
the causal case, probably because participants are
more confused in a logical than in a causal context.
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Their answers are more wide ranging, and they tend
to express less confidence. People’s discomfort with
logical problems relative to causal ones arises either
because there are different forms of logic and they are
not sure which one to pick or because no form of
deductive logic comes naturally.

The experiments by Sloman and Lagnado (2005)
show that causal reasoning is not adequately modeled
by either standard propositional logic formalisms nor
traditional probabilistic theories that do not distin-
guish intervention from observation. Causal Bayes
nets are the best currently available account that mod-
els this competency.

Reasoning With Parameterized 
Causal Models

The preceding section showed that people can reason
qualitatively with causal models, and that they distin-
guish between observation and intervention.
Waldmann and Hagmayer (2005) have addressed
similar questions in the realm of learning. Following
the framework of causal model–theory (Waldmann,
1996; Waldmann & Martignon, 1998; see also
Lagnado et al., chapter 10, this volume), participants
were told about the structure of a causal model gener-
ating the learning data before being shown the data.
The learning data consisted of individual cases that
allowed participants to estimate the parameters of the
assumed causal model (e.g., causal strength, base
rates). The main questions were whether learners
were capable of deriving precise predictions on the
basis of the parameterized models and whether their
predictions differ depending on whether the predic-
tions are based on hypothetical observations or hypo-
thetical interventions. Again, causal Bayes nets
provided the formal tools to analyze this competency.

Associative theories are the dominant approach in
the realm of learning. They can differentiate between
observing and intervening by postulating separate learn-
ing modes: Whereas classical conditioning might be
viewed as underlying prediction, intervention might be
driven by instrumental conditioning (Dickinson, 2001;
see Domjan, 2003, for an overview). Thus, we might
learn in an observational learning paradigm (classical
conditioning) that the barometer reading predicts the
weather; in an interventional learning paradigm
(instrumental learning), we might also learn that fid-
dling with the barometer does not change the weather.
However, although this approach approximates causal

knowledge in many contexts, it fails to capture the
relations between observation and intervention. The
separation between classical and instrumental condi-
tioning predicts that, without a prior instrumental
learning phase, we should be incapable of correctly
predicting what would happen in case of an interven-
tion in situations in which our knowledge is based on
observational learning. Our experiments show that this
is wrong. People not only were capable of deriving pre-
dictions for hypothetical interventions after a purely
observational learning phase, but also their predictions
were sensitive to the structure of the underlying causal
model and the size of the parameters.

Predicting the Outcomes of Hypothetical
Interventions From Observations

Experiment 2 of Waldmann and Hagmayer (2005)
provides an example of the learning task. In this exper-
iment, participants were taught either a common-cause
or a causal chain model. In a fictitious medical sce-
nario that involved hormone levels of chimpanzees,
they were told either that an increased level of the hor-
mone pixin P causes an increase in the level of sonin S
and of xanthan X (common-cause model), or that an
increase in the level of sonin causes the level of pixin to
rise, which in turn increases the amount of xanthan
(causal chain model) (see Figure 6-6). Waldmann and
Hagmayer compared these two models because the
common-cause model implies a dissociation between
observational and interventional predictions, whereas
the chain model implies identical predictions for both
types, allowing us to test whether people correctly dif-
ferentiate between causal models.

After the initial instructions, participants received
descriptions of the hormone levels of a set of 20 indi-
vidual chimpanzees as observational data. The causal
relations were probabilistic (see Figure 6-6). Using the
data, learners could estimate the parameters of the
causal models. Causal chain and common-cause
models have the same structural implications (they are
Markov equivalent); therefore, only one set of data was
presented that was coherent with both. The models
and the implied parameters are shown in Figure 6-6.

A Bayesian analysis of these parameterized models
implies for both models that the probability 
of increased levels of xanthan conditional on sonin
being observed to be at an elevated level is
P(X �↑ S�↑)�.82, whereas the corresponding con-
ditional probability is P(X�↑ S� ↔) �.18 when
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the sonin level is normal. The base rate of the exoge-
nous causes in both models (i.e., sonin in the 
common-cause model, pixin in the chain model) was
set to 0.5.

For the causal chain model, the interventional
probabilities are identical to the observational proba-
bilities. For example, regardless of whether sonin is
observed to be increased or whether an increased level
was caused by means of an inoculation, the other two
hormones should be affected equally. However, an
intervention on sonin in the common-cause model
entails the removal of the causal arrow connecting
pixin and sonin. Therefore, the probability of xan-
than depends only on the base rate of its cause pixin
and the causal impact of this hormone on xanthan.

Thus, the interventional probability of xanthan is
P(X �↑ do[S�↑]) �P(X�↑ do[S � ↔]) �.5,
regardless of whether sonin is increased or normal.

To test whether participants’ judgments follow these
predictions, they were asked to make predictions about
hypothetical observations and hypothetical interventions
after having studied the learning data. All participants
were requested to estimate for a set of 20 new, previously
unseen chimpanzees the number of animals showing
elevated levels of xanthan based on the hypothetical
observation that sonin was at either an increased or nor-
mal level in these animals. The corresponding questions
about hypothetical interventions asked participants to
imagine inoculations that increased or lowered the level
of sonin in the 20 animals. The order of the test
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questions was counterbalanced. The mean response to
the test questions and the answers predicted by the
causal model framework are shown in Figure 6-7.

The pattern of results shows that participants
correctly differentiated between observational and inter-
ventional predictions, and that they were sensitive to the
different implications of the contrasting causal models.
Whereas for the causal chain model learners correctly
predicted similar levels of xanthan independent of
whether sonin levels were observed or generated, a clear
dissociation was observed for the common-cause model.
The majority of participants concluded that the proba-
bility of xanthan is independent of the type of interven-
tion on sonin. A second finding was that, on average,
estimates were as predicted, although in some cases
there was a slight tendency to underestimate. The
largest deviation between the estimates and the norma-
tive values was found for the intervention lowering the
level of sonin (second pair of columns in Figure 6-7),
which is probably because participants had no data
about what would happen if the level of one hormone
fell below a normal level.

These results are beyond the grasp of associationist
theories. This is most obvious in the common-cause
model in which the predictions of the outcomes of
the hypothetical interventions turned out close to the
predicted value of 50%, even though participants had
never observed this value in the learning phase. These
predictions clearly support causal models as descrip-
tions of human reasoning. Apparently, reasoners rely
not only on the observed associations but also on the
underlying causal model to generate predictions.

Sensitivity to Parameters

To examine whether learners used the learned param-
eters for their predictions, Waldmann and Hagmayer
(2005) ran additional studies manipulating parameter
values across conditions. Their Experiment 4 provides

an example of this manipulation. In this experiment,
participants were instructed that a fictitious bacterial
infection in dogs has two causal effects, gastric prob-
lems and increased antibodies (i.e., common-cause
model). In two conditions, two different data sets were
shown to participants in a list format. The two data sets
varied the strength of the two causal relations. In one
condition (“strong-weak”), the bacterial infection had
a strong influence on gastric problems (�P � .91) and
only a medium influence on the presence of antibod-
ies (�P � .45). (�P is a measure of contingency that
reflects the numeric difference between the probabil-
ity of the effect, gastric problems, conditional on the
presence and absence of the cause [e.g., bacterial
infection].) In the other condition, the assigned causal
strength was reversed (“weak-strong”) (see Figure 6-8).
The base rate was the same (0.55) in both conditions.

Participants were requested to estimate the fre-
quency of antibodies in a new set of 20 dogs assuming
either that gastritis was observed to be present or absent
or that the presence or absence of gastritis was caused
by means of an external intervention (inoculation).

Although the structure of the causal model is identi-
cal in both conditions, the parameters implied by the
two data sets have distinctive implications for the 
different types of predictions (see Figure 6-8). Because of
the underlying common-cause model, an external inter-
vention in gastric problems has no causal influence on
the infection rate and the presence of antibodies. This is
because of graph surgery, which requires removal of the
causal arrow between the common-cause infection and
gastritis. The probability of antibodies is solely deter-
mined by the base rate of the bacterial infection and its
causal impact on the antibodies. Therefore, antibodies
are more likely in the condition in which bacterial infec-
tion has a strong influence (i.e., weak-strong) than when
it has only a weak impact (i.e., strong-weak).

The different parameters in the two conditions
imply different predictions not only for the intervention
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questions but also for the observation questions. In
general, the implied probabilities are higher if gastri-
tis is observed to be present than if it is absent. In
addition, the probability of antibodies is higher in
the weak-strong condition than in the strong-weak
condition.

In Figure 6-9, the mean responses are compared
with the values predicted by the causal model. The
results show that participants again differentiated
between predictions for hypothetical observations and
hypothetical interventions. Moreover, the estimates
also demonstrate that participants were sensitive to the
parameters of the causal model. On average, partici-
pants’ estimates were quite accurate, although there
were again small deviations that could be due to
regression effects. This competency is rather surprising
considering the complexity of the task.

Sensitivity to the size of parameters was shown not
only for the causal strength parameters but also for the
base rate parameters. In another experiment (Waldmann
& Hagmayer, 2005, Experiment 3), the base rate of the
common cause was manipulated while holding causal
strength constant. This should particularly affect the
interventional predictions (based on interventions on the
first effect) as the probability of the predicted second
effect in this case varied in proportion to the base rate of
its cause (see Figure 6-2). The results showed that partic-
ipants incorporated the base rate information in their
predictions in a way that was surprisingly close to the
predictions of causal Bayes nets.

Causal Decision Making

The distinction between observation and interven-
tion also has practical implications for decision mak-
ing (Sloman, 2005). For example, if we observe low
values on a barometer, then we will probably take
our umbrella because the probability of rain is high.
But, we also know that setting the barometer by
means of an intervention will not affect the weather.
The evidential relation between the barometer read-
ing and the weather is spurious and mediated by
atmospheric pressure, which acts as a common cause
that independently affects the barometer and the
weather. Thus, observing a low reading of the barom-
eter because of tampering should not influence our
decision to take an umbrella. This example shows
that causal models and the distinction between obser-
vation and intervention are highly relevant to deci-
sion making. Specifically, choice is a form of
intervention and should be modeled as such by
breaking the edge between the variable with the
value that is chosen and its normal causes. However,
most theories of decision making, certainly most nor-
mative theories, analyze decision making on the basis
of evidential relations between variables (e.g., subjec-
tive expected utility theory).

In contrast, in line with the analyses of causal Bayes
nets and previous work on causal expected utilities
(Nozick, 1969, 1995), Sloman and Hagmayer (2006)
propose that choice is equivalent to an intervention in
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a causal network. They claim that in decision making
people first consider a causal model of the decision
context and then explore the causal consequences of
their possible interventions.

Simple Choices

Hagmayer and Sloman (2005) presented participants
with simple decision problems, such as the following:

Recent research has shown that of 100 men who
help with the chores, 82 are in good health,
whereas only 32 of 100 men who do not help with
the chores are. Imagine a friend of yours is married
and is concerned about his health. He read about
the research and asks for your advice on whether
he should start to do chores or not to improve his
health. What is your recommendation? Should he
start to do the chores or not?

Hagmayer and Sloman also provided participants in
different conditions with one of two causal models that
might underlie the correlation between chores and
health. In one condition, the relation was because of a
common cause, the degree of concern, that independ-
ently influences the likelihood of doing the chores and of
entertaining health-related activities, or in the alternative
direct-link model, it was pointed out that chores are an
additional exercise directly improving health.

Participants received several different decision
problems involving a range of issues, from the rela-
tion between high-risk sports and drug abuse to the
relation between chess and academic achievement.
If participants equate choices with interventions,
then they should often recommend not acting in the
common-cause condition because intervening on an
effect of a common cause does not alter the spuri-
ously correlated collateral effect. Such an interven-
tion would simply render the action independent of
the rest of the model, including the desired outcome.
In contrast, in the second condition, participants
should recommend doing the chores because this
variable is directly causally related to health.
Participants’ judgments turned out to be in accor-
dance with the causal model–theory of choice.
Despite learning about an identical evidential rela-
tion, only 23% of the participants in the common-
cause condition advised their hypothetical friend to
act, in contrast to 69% of the participants in the
direct-link condition.

Complex Choices and Newcomb’s Paradox

The difference between observational and interven-
tional probabilistic relations is crucial in more
complex cases as well. Newcomb’s paradox is an
interesting test case because it involves a conflict
between two principles of good decision making: 
(a) maximizing expected utility and (b) dominance
(i.e., choosing the option that always leads to the
better outcome) (see Nozick, 1969, 1995). Classical
decision theory cannot handle this paradox as it has
no principled way to choose between these alterna-
tive criteria; however, a causal analysis in some 
cases can.

Table 6-1 illustrates a variant of Newcomb’s para-
dox that Hagmayer and Sloman (submitted) used in
an experiment. In this experiment, students were
asked to imagine being the marketing executive of a
car manufacturer and having to choose between two
advertising campaigns. The manufacturer could pro-
mote either their sedan or their minivan. However,
according to the instructions, the expected sales
depend not only on the executive’s decision but also
on the marketing decision of the manufacturer’s main
competitor (see Table 6-1).

As the payoff matrix of Table 6-1 shows, higher
sales are expected for the minivan regardless of the
competitor’s campaign. Therefore, the principle of
dominance prescribes promoting the minivan.
However, participants were also informed that in the
past the two car companies ended up promoting the
same type of car in 95% of the cases, with either car
promoted equally often. If this additional information
is taken into account, then the expected value of
promoting the sedan turns out to be higher than that
of the minivan (29.250 vs. 21.000). Thus, the princi-
ple of maximizing expected value implies the oppo-
site of the principle of dominance.

To investigate the influence of the assumed causal
model, participants were also informed about the
causal relations underlying the observed evidential
relations. In one condition, participants were told that
the competitor tends to match the participant’s strategy
(direct-cause model); in the other condition, they were
told that both car companies make their decisions
independently based on the market (common-cause
model). After considering the information, partici-
pants were requested to choose one of the available
options.
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Under the direct-cause model, the evidential prob-
abilities between the choices of the two competitors
indicate a stable causal relation. Therefore, the causal
expected utility equals the evidential expected utility,
and the sedan should be promoted. In contrast, under
a common-cause model, the choice should be viewed
as an intervention that is independent of the competi-
tor’s choice, with the competitor supposed to choose
on the basis of the state of the market. Because a free
choice destroys the evidential relation between the
choices of the participant and the hypothetical com-
petitor, the assumption that both choices are almost
guaranteed to coincide is no longer tenable. Thus, the
dominant option is the best choice under a common-
cause model.

The results show that decision makers were sensi-
tive to the structure of the underlying causal model,
and that they tended to treat choices as interventions.
Whereas traditional theories of decision making fail,
causal Bayes nets provide a coherent account to
model decision making in causal domains.

Final Remarks

Causal Bayes net theories differentiate between pre-
dictions based on observations, interventions, and
counterfactuals. In this chapter, we reviewed evi-
dence concerning this distinction. Traditional proba-
bilistic and associationist theories are incapable of
distinguishing between the different predictions
entailed by hypothetical observations and interven-
tions. The results of the experiments show that people
are remarkably good at distinguishing between predic-
tions based on observed events on one hand and pre-
dictions based on hypothetical interventions on the
other. Although observational predictions are based on
the structure of a relevant causal model, interventions

require mentally modifying the model prior to deriv-
ing predictions by “undoing” the link between the
intervened-on variable and its causes. People not only
are capable of deriving qualitative predictions implied
by the structure of a causal model, but also proved
capable of incorporating learned quantitative param-
eters in their predictions (Waldmann & Hagmayer,
2005).

It turns out that children also excel at differentiat-
ing interventions from observations (see Schulz,
Kushnir, & Gopnik, chapter 5, this volume). They
proved capable of deriving predictions for novel inter-
ventions from previous observations. For example, in
one experiment children were shown different causal
structures, such as a switch turning a gear A, which
spins a second gear B. Children 4.5 years old were able
to predict what would happen if either of the gears was
placed on a toy and the switch turned on. Although
they expected Gear A to spin, they did not expect Gear
B to rotate. This shows that children are able to derive
correct predictions, at least for simple, deterministic
causal structures (see Schulz, Kushnir, & Gopnik,
chapter 5, this volume, for more details and further
evidence). Recently Blaisdell and Waldmann
(Blaisdell et al., 2006) showed that even rats grasp the
difference between interventions and observations.

The distinction between observation, interven-
tions, and counterfactuals is relevant not only for
inference within a causal model, but also for the
induction of causal models (in this volume, see
Schulz, Kushnir, & Gopnik, chapter 5; Lagnado et al.,
chapter 10; Sobel, chapter 9; Griffith & Tenenbaum,
chapters 19 and 20, for theory and evidence). The
empirical results indicate that adults as well as chil-
dren can infer causal models using evidence from
observations and interventions together (Gopnik et al.,
2004, Steyvers, Tenenbaum, Wagenmakers, & Blum,
2003; Tenenbaum & Griffiths, 2003). However, peo-
ple seem to have a limited capacity to derive causal
models based on observations alone (Hagmayer,
2001; Lagnado & Sloman, 2004).

The evidence reviewed in this chapter strongly
suggests that people find it natural and easy to draw
different inferences from observations and from
interventions when reasoning and when making
decisions. The difference between observation and
intervention has to do with why an event occurs or
how a variable obtains its value (i.e., with the
mechanism that produces the event or value).
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TABLE 6-1 Payoff Matrix ($)

Additional Sales

Competitor Promotes Competitor Promotes
Sedan Minivan

You promote sedan 30,000 15,000

You promote minivan 40,000 20,000

Source: Hagmayer and Sloman (in preparation).



Hence, the distinction between observation and
intervention is grounded in causal knowledge, in an
understanding of the mechanisms that produce
change. Thus, people’s ease of reasoning about
observation versus intervention would seem to indi-
cate quite directly competence with causal reason-
ing, and this would be a direct consequence of a
system that is designed for action, for achieving
effects through intervention.
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Introduction

Karl Popper (1962) characterized science as a process
of “conjectures and refutations.” Scientists formulate
hypotheses or conjectures that yield falsifiable predic-
tions. They then set about testing those predictions. If
the predictions are not borne out, then the hypothesis
is refuted, and a new conjecture must be found. For
better or for worse, analytic philosophy has largely
proceeded according to a parallel method, a method
of analyses and counterexamples. Philosophers for-
mulate an analysis of some important concept, which
is then compared with a variety of test cases (often
hypothetical). I offer a standard illustration involving
the concept of causation, which may be useful for
readers without a philosophical background.

My main concern, however, is to use this example to
illustrate the variety of causal concepts that we deploy.
When we ask whether one thing causes another, we may
be asking many different things. For instance, we may 
be asking whether the relationship between them is

genuinely causal, as opposed to accidental or spurious.
Or, we may be asking about the direction of the relation-
ship between them: Does the one cause or prevent the
other? Or, we may be asking about the strength of the
relationship between them: Does the one have enough
of an impact on the other to count as causing it?
Treatments of causation in philosophy and psychology
typically run these questions together, but there is no rea-
son to expect all of these questions to have a uniform
answer. I argue that when we carefully distinguish these
sorts of questions, the different combinations of answers
that may be provided form the basis of a taxonomy of
causal relationships. Such a taxonomy is better able to
illuminate the nature of causal reasoning than is any the-
ory that aims only to define causation simpler.

An Analysis and a Counterexample

Let us begin by formulating a probabilistic theory of
causation, which I call the R-S theory because it is
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based on (although not quite identical to) definitions
offered by Reichenbach (1956) and Suppes (1970).
According to this theory, causes and effects are repre-
sented by events in a probability space and are indexed
according to the time when they occur. Ct is a cause of
Et′ just in case the following conditions hold:

(i) t � t′
(ii) P(Et′ | Ct) 	 P(Et′)

(iii) There is no time t
�t and no event Bt″ such
that

P(Et′ | CtBt″) � P(Et′| Bt″)

The time at which C occurs must be earlier than
the time at which E occurs; the occurrence of C at
time t must render the occurrence of E at t″ more
probable, and there must be no earlier event B that
“screens off” C from E, that renders C probabilisti-
cally irrelevant to E. Although I treat R–S as illustra-
tive of the sorts of attempts philosophers have made to
define causation, I am not concerned here to evaluate
the specific proposals put forward by either
Reichenbach or Suppes.1

Hesslow (1976) has offered a counterexample to this
analysis of causation involving the effect of birth control
pills on thrombosis (the formation of blood clots in the
arteries). Let us make some background assumptions:
We have a population of healthy women, all of whom
are married, under the age of 35, nonsmokers, and
capable of conceiving children. Such women are
among the most likely consumers of birth control pills.
Thrombosis is considered to be one of the most danger-
ous side effects of birth control pills. This means, pre-
sumably, that the consumption of oral contraceptives is
a cause of thrombosis. Pregnancy is also an important
risk factor for thrombosis. This is hardly a coincidence:
Birth control pills prevent pregnancy by mimicking the
hormonal effects of pregnancy, so birth control pills
have many of the same side effects as pregnancy itself. It
turns out that pregnancy is a much stronger risk factor
for thrombosis than birth control pills. Thus, by using
birth control pills, a woman in our hypothetical popula-
tion would actually lower her overall probability of
thrombosis because birth control pill use is such an
effective preventive measure against pregnancy.

We represent this case schematically in 
Figure 7-1. Intuitively, the thickness of the arrow corre-
sponds to the strength of the causal influence in 
question; the sign attached to each arrow indicates
whether one factor causes or prevents the other. 

The probabilities of the various outcomes (using obvi-
ous abbreviations and suppressing temporal subscripts)
are as presented in Table 7-1. In the table,

1. The probability of thrombosis is lower, condi-
tional on birth control pill use, than it is overall.

2. Conditional on becoming pregnant, the proba-
bility of thrombosis is higher conditional on
birth control pill use.

3. Conditional on avoiding pregnancy, the proba-
bility of thrombosis is higher conditional on
birth control pill use.

We have, then, an apparent counterexample to the
R-S analysis of causation: The consumption of birth
control pills is a cause of thrombosis, even though
Clause (ii) of the analysis is not satisfied (it is contra-
dicted by inequality 1 in Table 7-1). Some authors, such
as Salmon (1984) and Dowe (2000), use related exam-
ples to reject probabilistic analyses of causation generally
and to recommend in their place accounts of causation
that focus on the physical process that connect causes
with their effects. (But, see Hitchcock, 1995a, and
Schaffer, 2000, for criticisms of these proposals.)

Many Questions

When we ask about a particular causal relationship,
such as the relationship between thrombosis and the
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FIGURE 7-1 Hesslow’s counterexample.

TABLE 7-1 The probabilities in Hesslow’s counter-
example

1. P(Throm|Pills) � P(Throm)

2. P(Throm|Pills & Preg) 	 P(Throm|Preg)

3. P(Throm|Pills & No Preg) 	 P(Throm|No Preg)



consumption of birth control pills, there are a number
of different questions that might be posed. Let us start
by drawing a distinction between two main questions:

1. Is the relationship between birth control pills
and thrombosis causal at all?

2. Given that the relationship is causal in some
broad sense, what specifically is the nature of
the relationship?

We can elaborate further on the second question
by introducing a number of subquestions:

2a. What is the direction of causal influence? Do
birth control pills promote or encourage
thrombosis? Or, do they rather prevent or
inhibit thrombosis?

2b. What is the strength of the relationship? How
efficacious are birth control pills in bringing
about thrombosis? Are they stronger causes of
thrombosis than pregnancy is?

2c. How does birth control pill use compare with
various alternatives? What are the conse-
quences of birth control pill use for thrombo-
sis in contrast with other birth control
methods or in contrast with the failure to
employ contraception at all?

2d. To what extent is the relationship between
birth control pills and thrombosis stable across
different background conditions? How do
birth control pills interact with other causes of
thrombosis? Is the effect of birth control pill
use on thrombosis different for different kinds
of women, and if so, how?

2e. Via what causal pathways do birth control pills
affect thrombosis? How does the influence of
birth control pills differ along these various
paths? How do these pathways combine to
yield an overall effect?

Let us now examine each of these questions in
greater detail.

Question 1: Causal Relationships

I do not attempt to offer any precise account of what
a relationship is. The sorts of things I have in mind
are: (a) regularities or predictable patterns of co-
instantiation among types of events; (b) probabilistic
correlations of the sort described in Table 7-1; and 
(c) mathematical functions connecting the values of
quantitative variables. The first key question, then, is

whether a specific relationship between events, event
types, or variables reflects a causal influence of one on
the other.

Let us suppose that we have observed the popula-
tion of women described in Hesslow’s (1976) exam-
ple, and that we have kept careful statistics regarding
which have taken birth control pills, which have
become pregnant, and which have suffered from
thrombosis. Let us suppose, moreover, that these sta-
tistics are in accord with the probabilities presented in
Table 7-1. These probabilities describe certain statis-
tical relationships that hold between birth control pill
use and thrombosis. What does it mean to ask
whether these relationships are causal?

We may start by saying what we mean to exclude.
There are at least two different ways in which these
relationships might fail to be causal. First, our sam-
ple might not be representative. In this case,
although thrombosis rates happen to be lower
among pill users in our particular population sam-
ple, this would not reflect any kind of underlying
connection between them; if we were to continue
sampling from an idealized infinite population, then
the negative correlation between pill use and throm-
bosis would (with probability 1) disappear. In lan-
guage familiar to philosophers, the correlations are
accidental. This terminology is drawn from philo-
sophical discussions about laws of nature. According
to one traditional view, laws of nature are universal
generalizations. For example, it is a law of nature
that all massive objects travel at a velocity less than
that of light. But, not all universal generalizations
are laws of nature. It may be that all samples of pure
gold that ever have existed or ever will exist have a
mass of less than 1,000 kilograms, but this is not a
law. It is, rather, an accidental generalization, a con-
tingent feature of the way our world just happens to
unfold. (See, for example, Goodman, 1955, for a
classic exposition of this issue.) Causal relationships
need not be laws—in saying that birth control pills
cause (or prevent) thrombosis, we are not claiming
that all (or none) of the women who consume birth
control pills develop thrombosis. Nonetheless,
causal relationships do seem to be distinguishable
from accidental relationships in much the same way
that laws of nature are often thought to be.

Second, it may be that the relationship between
birth control pills and thrombosis, although not
merely accidental, is sustained by a common cause
or by some more complex causal structure that does
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not involve any causal influence of birth control pills
on thrombosis. It may be, for example, that women
who have more limited access to health care are less
likely to employ birth control pills and are more sus-
ceptible to thrombosis. If this were the case, then the
first inequality of Table 7-1 would not reflect any
causal influence of birth control pills on thrombosis:
Birth control pill use would merely be a symptom of
access to medical care, the factor that would really be
influencing whether thrombosis occurs. In this case,
we would say that the (negative) correlation between
birth control pills and thrombosis is spurious. The
third clause of the R-S analysis is intended to rule out
spurious correlations: In the hypothetical case just
described, conditioning on access to health care
would render oral contraceptive use probabilistically
irrelevant to thrombosis.

We should also briefly mention the possibility that
thrombosis affects birth control pill use rather than vice
versa. This possibility is consistent with the probabilistic
information reported in Table 7-1. However, if we have
the further information that birth control pill use com-
mences before the onset of thrombosis, then this possi-
bility can be ruled out. Condition (i) of R-S reflects this
temporal constraint on causal relationships.

Thus, a causal relationship between birth control
pill use and thrombosis is a relationship that is neither
accidental nor spurious. But, what are the positive
characteristics of these relationships that distinguish
them from other, noncausal relationships? It is in
response to this particular question that the interven-
tionist approach to causation, developed especially by
Woodward (2003, chapter 1, this volume), is particu-
larly promising.

This approach is best motivated by asking why we
are so interested in learning about causal relation-
ships.2 Suppose, first, that we are interested in predict-
ing who will develop thrombosis and who will not. It
is easy to see why the probabilistic information pre-
sented in Table 7-1 will be especially useful for us: It
tells us that women who fall into certain categories
are more likely than others to develop thrombosis. If
the probabilistic relationships described in Table 7-1
are merely accidental, then, although these relation-
ships are still useful for predicting thrombosis within
this particular population of women, we would have
no reason to expect that they would provide reliable
guides to prediction within other groups of women.
So, it is not surprising that we should find nonacci-
dental relationships to be particularly important.

Why should we be interested in causal rather than
spurious relationships? If we were only interested in
predicting the outcomes of observed initial condi-
tions, then we would have no reason to prefer causal
relationships to spurious ones. The consumption of
birth control pills can be a reliable indicator of
whether a woman will develop thrombosis regardless
of whether it affects thrombosis or is merely sympto-
matic of some other underlying condition that itself
affects thrombosis. It is only when we seek to inter-
vene in the normal course of events that causal rela-
tions take primacy of place.

Suppose, for example, that we are contemplating a
policy of providing free oral contraceptives to some of
the women in our hypothetical population, and we
wish to predict the incidence of thrombosis under this
protocol. If the correlation between birth control pill
use and thrombosis is spurious, then we cannot neces-
sarily rely on the probabilities given in Table 7-1 to pre-
dict the outcome. For example, if the correlation arises
because access to health care influences both pill use
and thrombosis, then we would not expect this correla-
tion to persist under our new protocol. If we provide
free access to birth control pills, then we can no longer
expect birth control pill use to be symptomatic of
access to health care more generally. Causal relation-
ships, by contrast, remain stable under the sorts of
interventions that would disrupt spurious relationships.
It is for this reason that knowledge of causal relation-
ships is especially valuable to us. According to the 
interventionist approach to causation developed by
Woodward and others, this invariance of a relationship
under interventions is a defining feature of a genuinely
causal relationship, in the sense of Question 1.

This is only a preliminary sketch of an interven-
tionist approach to causation; see Woodward’s chapter
1 in this volume for a more detailed presentation. My
intent here is not to defend the interventionist
approach in detail, but only to appeal to its broadly
practical orientation to help give a sense of what the
first question—whether the relationship between
birth control pills and thrombosis is causal at all—is
asking. The same practical orientation can also be
used to motivate the second question, along with its
various subquestions. If we want to know what the
effect of our contemplated policy intervention will be,
then it is not nearly enough to know that there is some
causal relationship between pill use and thrombosis;
we will also need to know something more about the
details of this relationship.3
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Question 2a: Causal Direction

In our interventions in the world, we typically seek to
promote those outcomes that we deem desirable and
to prevent or inhibit those outcomes that we wish to
avoid. Thus, we will typically aim to prevent or inhibit
thrombosis, while we may seek to either prevent or
promote pregnancy, depending on our desires at a
particular stage in our lives. This distinction is fairly
intuitive and was marked by the inclusion of � and �

signs in Figure 7-1. Unfortunately, our language can
be treacherous here, for we often use the word cause
specifically to mean promote. In this usage, cause and
prevent (or inhibit) are antonyms. Nonetheless, pre-
vention is a kind of causal relationship. Birth control
pills prevent pregnancy; they do not cause pregnancy.
But, it would be wrong to conclude from this that the
relationship between birth control pills and pregnancy
is not causal (i.e., that it is merely accidental or spuri-
ous). Thus, when we ask whether one thing is a cause
of another, we must take care to specify if we are
inquiring whether a causal relationship exists or more
specifically whether the causal relationship points in a
certain direction—whether the cause promotes the
effect rather than inhibiting or preventing it.

How might we characterize the distinction
between promoting causes on the one hand and pre-
venting or inhibiting causes on the other? Within the
probabilistic framework of R-S, a natural proposal
would be that a promoting cause increases the prob-
ability of the outcome in question; a preventing
cause decreases the probability. This proposal would
have the advantage of tying our practical maxim—
promote desirable outcomes and prevent undesirable
ones—to standard decision theory: An action
increases expected utility to the extent that it renders
high-utility outcomes more probable and low-utility
outcomes less probable.

In examining the probabilities in Table 7-1, we see
that conditioning on birth control pill usage can either
increase or decrease the probability of thrombosis,
depending on what else is being conditioned on. For
this reason, it is not possible to characterize pill use
unambiguously as either a promoting or a preventing
cause of thrombosis. We return to this point in the sec-
tion on Question 2e regarding causal pathways.

So far, we have been restricting our attention to
binary variables; we have supposed that one can take
birth control pills or not, develop thrombosis or not,
become pregnant or not. (Pregnancy is a proverbial

binary variable: There is no such thing as being a “little
bit pregnant.”) The natural and social sciences are often
concerned with quantitative variables, however. For
example, a physicist might be interested in the relation-
ship between electrical potential and current, a sociolo-
gist in the relationship between education level and
income, and a macroeconomist in the relationship
between unemployment and inflation. If the relation-
ship between two variables is monotonically increasing
or monotonically decreasing, then it might be perfectly
natural to import the language of promotion and pre-
vention to describe the direction of a causal relation-
ship. If increasing levels of education correspond with
increasing levels of income, then it might be natural to
say that education is a promoting cause of income
(assuming that the relationship is causal at all, rather
than accidental or spurious). If the relationship between
unemployment and inflation is monotonically decreas-
ing, then high unemployment levels inhibit inflation.
There is no guarantee, however, that a relationship
between quantitative variables will be monotonic; it
might be U-shaped or sinusoidal. In such a case, it will
not be possible to provide a simple characterization of
the direction of the causal influence. (See Hitchcock,
1993, for further discussion of this point.)

Question 2b: Causal Strength

Some causal influences are stronger than others. In
Hesslow’s (1976) example, pregnancy is a stronger
cause of thrombosis than is pill use; we marked this
in Figure 7-1 by drawing a thick arrow from preg-
nancy to thrombosis and a thin arrow from pills to
thrombosis. Within a probabilistic framework, it is
natural to measure the strength of a causal influ-
ence in terms of the size of the difference in proba-
bility that a causal factor makes. To say that
pregnancy is a stronger cause of thrombosis than
pill use, for example, would suggest that, if we look
at the inequalities 2 and 3 in Table 7-1, then we
might expect the difference between the left- and
right-hand sides of each inequality to be small com-
pared to the difference between the left-hand sides
of 2 and 3 or to the difference between the right-
hand sides of 2 and 3.

One of the great virtues of Cheng’s (1997)
PowerPC model of causation is that it offers a pro-
babilistic measure of causal strength that is in many
ways superior to simpler measures that look only at the
difference or ratio of probabilities. When quantitative
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variables stand in linear relationships, it is natural to
measure the strength of the relationship between them
in terms of correlation coefficients. As with the case of
causal direction, however, if the relationship between
two variables is sufficiently complex, then there may
be no natural way to characterize the strength of the
causal influence of one on the other.

In practice, we often ignore weak causal influ-
ences. Indeed, by selecting outcomes of interest we
effect a kind of course-graining that renders many
causal influences irrelevant. For example, the gravita-
tional influence of Alpha Centauri will make a slight
difference to the exact location of every molecule in a
woman’s body. We are, however, particularly inter-
ested in which women will develop thrombosis, and it
is extraordinarily unlikely that the effects wrought by
our stellar neighbor will ever make the difference
between developing thrombosis or not.

In connection with this last point, a distinction is
sometimes made between causing some outcome and
affecting or influencing it.4 Consider a woman who is
already at high risk of developing thrombosis—
indeed, she will eventually succumb regardless of
whether she takes birth control pills or becomes preg-
nant. Nonetheless, her use of birth control pills may
hasten or delay the onset of thrombosis; it may affect
the severity of her thrombosis or otherwise be relevant
to the manner in which thrombosis occurs. In such a
case, we might say that her taking birth control pills
did not cause her thrombosis (since she was going to
suffer from it anyway), but that it did affect or influ-
ence her thrombosis. We cannot take this distinction
too far, however: Socrates was mortal, but his drinking
hemlock nonetheless caused his death and did not
merely affect or influence it.

Question 2c: Contrasting Alternatives

In most philosophical treatments, and arguably in
common sense as well, causes and effects are events
or event-types. We ask about the effect of consuming
birth control pills on thrombosis or about the effects
of a particular woman’s consuming birth control pills
during a particular time frame on her case of throm-
bosis. As we have remarked, however, it is common in
the sciences to represent causal relationships as rela-
tionships among variables. The social scientist, for
example, does not ask whether having a high school
education causes one to have an income of greater

than $40,000 per year, but asks rather about the causal
relationship between education and income more
generally. The variable education might have values
representing the following education levels: never
completed high school; high school diploma; some
university education; bachelor’s degree; master’s
degree; doctorate or highest professional degree.

I have argued at length elsewhere (Hitchcock, 1993,
1995b, 1996a, 1996b) that there is something deeply
misleading about the ordinary philosophical concep-
tion of causation as a relation among events or event-
types and something deeply right about the scientific
practice of thinking in terms of causal relations among
variables. Causal claims are always explicitly or implic-
itly contrastive: When we represent causal relationships
as relations among variables, we are making explicit the
range of contrasting alternatives under consideration.

In Hesslow’s (1976) example, we are interested in
the effect of birth control pill use on thrombosis. But,
we must ask: Birth control pills as opposed to what? If
we contrast the use of oral contraceptives with the fail-
ure to employ contraception, then the probabilities
might well be as reported in Hesslow’s example. But,
suppose instead that we compare birth control pills
with other reliable forms of contraception. Then,
birth control pill use might make relatively little dif-
ference for whether a woman becomes pregnant—
women who use oral contraceptives become pregnant
at more or less the same rate as women employing
other effective means of contraception—while still
posing an additional risk of thrombosis. When we
make this comparison, then, it may turn out that birth
control pills increase the probability of thrombosis rel-
ative to other forms of contraception.

Putting the same point in a slightly different way,
we may embed the event-type birth control pill use as
a value of many different variables. One variable
might take as values {birth control pill use, no contra-
ception}; another might take as values {birth control
pill use, abstinence, male sterilization, female sterili-
zation, condom use, … }. These two variables need
not stand in the same relation to the variable that
takes as values {thrombosis, no thrombosis}.

Question 2d: Stability Across
Background Conditions

In presenting Hesslow’s (1976) counterexample, we
made a number of assumptions about the condition
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of the women in our hypothetical population. Let us
now remove those assumptions: Suppose that some of
the women are celibate or infertile; some are older,
smokers, and otherwise at high risk of thrombosis.
Why not throw some men in there as well? The prob-
abilistic profile described in Table 7-1 will no longer
characterize all of the members of the population.
More specifically, there will now be some background
conditions B such that

P(Throm | Pills & B) � P(Throm | B);

and other background conditions B′ such that

P(Throm | Pills & B′) 	 P(Throm | B′);

and perhaps even B″, such that

P(Throm | Pills & B″) � P(Throm | B″).

The effect of birth control pills on thrombosis will
depend on what other relevant factors are present in
the background. In such a case, we say that birth con-
trol pill use interacts with these other factors.

How stable must the effect of birth control pills be
across the different background conditions in a hetero-
geneous population for us to continue talking mean-
ingfully of the effect of birth control pills? One
proposal, originally of John Stuart Mill (1843) and
given a probabilistic reformulation by Humphreys
(1989), is that a cause must raise the probability of its
effect in every possible background condition. One
upshot of this proposal is that event-types such as birth
control pill consumption will rarely count as causes of
anything. Rather, a cause will typically be a compli-
cated conjunction of factors. Thus, for example, we
would not be able to say that birth control pill con-
sumption causes (or prevents) thrombosis, but only that
pill consumption by women who are in such-and-such
specific physiological condition does so. A slightly dif-
ferent proposal, that of Eells (1991) is that causal
claims are population relative. Thus, we might say that
the consumption of birth control pills prevents throm-
bosis in the subpopulation of women who are fertile
and sexually active and satisfy various other physiologi-
cal conditions; birth control pills cause thrombosis in a
different subpopulation of women. In the population as
a whole, the best we can do is to say that oral contracep-
tive use is a “mixed cause” of thrombosis. It is clear,
however, that our ordinary usage of words like cause
and prevent is considerably more permissive than either
of these proposals would allow.

Question 2e: Causal Pathways

Figure 7-1 shows two causal pathways connecting
birth control pill use with thrombosis. Intuitively,
birth control pills affect one’s chances of developing
thrombosis in (at least) two different ways. First, they
have a direct effect by introducing hormones into the
subject’s body; second, they have an indirect effect by
preventing pregnancy, which is itself a risk factor for
thrombosis. This example is particularly interesting
because it turns out to be difficult to distinguish these
pathways by any kind of appeal to physical processes
or mechanisms. The reason is that the mechanisms
underlying the arrows in Figure 7-1 are more or less
identical. The chemical agents in birth control pills
that cause thrombosis are the same as the ones that
prevent pregnancy; pregnancy itself causes thrombo-
sis because it leads to production of essentially the
same agents.5

How, then, are we to distinguish the two different
causal pathways? From within a probabilistic framework,
it is the second and third inequalities in Table 7-1 
that supply the clue. Pregnancy is a causal intermedi-
ary between pill use and thrombosis: Oral contracep-
tive use influences whether pregnancy occurs, and
this in turn affects the occurrence of thrombosis. Yet,
when we control for pregnancy by conditioning on
whether pregnancy has occurred, there is a residual
correlation between birth control pill use and throm-
bosis. If the only effect of birth control pill use on
thrombosis was the one mediated by its effect on preg-
nancy, then we would expect pregnancy to screen off
pill use from thrombosis.

This idea is captured in the Markov condition, a
standard condition relating the probability distribu-
tion over a set of variables to the structure of a directed
graph representing the causal relations among them
(see Spirtes, Glymour, & Scheines, 2000). Although
the arrow diagram in Figure 7-1 was originally pre-
sented as an intuitive representation of the structure
of Hesslow’s example, it has the structure of a directed
graph. (We need to make a few changes to turn it into
a proper causal graph: Lose the � and – signs, ignore
the differences in the thickness of arrows, and inter-
pret the nodes as binary variables rather than event-
types.) When a graph contains an arrow from variable
X to variable Y, then X is said to be a parent of Y. The
Markov condition says that a variable X is independ-
ent of all other variables (either singly or in combina-
tion) except for descendents of X when we condition
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on all of the parents of X; the parents of X screen it off
from all of its nondescendents. Now, we can see that
if we were to remove the arrow from Pill use to
Thrombosis in Figure 7-1, then the resulting graph
would no longer satisfy the Markov condition. With
the arrow removed, Pregnancy becomes the only par-
ent of Thrombosis. Yet, Pregnancy does not screen
Pill use off from Thrombosis, even though Pill use is
not a descendent of Thrombosis.

As Woodward notes in this book (chapter 1, sec-
tion on interventionism), an interventionist approach
to causation of the sort outlined in the section on
Question 1, causal relationships, may also be used to
identify the distinct causal pathways. First, we note
that by separately intervening on whether birth con-
trol pills are used and on whether pregnancy occurs,
we can determine that birth control pills prevent preg-
nancy, and that pregnancy is a cause of thrombosis.
(Never mind the ethical problems involved in inter-
vening to cause or prevent pregnancy; thought exper-
iments do not need to pass human subject review
boards.) Now, we can further inquire into what hap-
pens when we intervene to determine whether a
woman uses birth control pills, while simultaneously
and independently intervening to determine
whether pregnancy occurs. If the probabilistic corre-
lations reported in the second and third lines of
Table 7-1 persist under this protocol, then birth con-
trol pills have an effect on thrombosis in addition to
the influence they have in virtue of their effect on
pregnancy.

It is now possible to distinguish a variety of differ-
ent kinds of causal relation. The arrows in a causal
graph (such as the one derived from Figure 7-1) rep-
resent what are called direct effects. One variable has
a direct effect on another if it has an effect that is
unmediated by any other variable in some specified
variable set. Obviously, the notion of direct effect
must be relativized to a choice of variable set. In
another work (Hitchcock, 2001b), I provide a general-
ization of the notion of direct effect that is invariant
under the number of variables that are interpolated
along a causal pathway.6 I call this notion the compo-
nent effect of one variable on another along a causal
pathway. Pearl (2001) provides an even more power-
ful generalization, defining the notion of a path-spe-
cific effect for any causal pathway or complex network
of causal pathways. Finally, there is the notion that is
variously called net, total, or causal effect. This is the
overall effect that one variable has on another along

all of the available causal pathways. This effect is
reflected in the overall correlation between the two
variables when no causal intermediates are controlled
for. Thus, the first inequality in Table 7-1 reflects the
net effect of birth control pills on thrombosis.
Although I favor the term net effect to emphasize the
analogy between net and component forces in
Newtonian mechanics, net effects cannot simply be
computed by adding the various component effects;
the various component effects may interact with each
other in complicated ways (see Hitchcock, 2001b for
discussion).

In Hesslow’s (1976) example, birth control pill use
has two distinct component effects on thrombosis.
Along the direct pathway, the effect of birth control
pills is to weakly promote the occurrence of thrombo-
sis. Along the indirect pathway, the effect of birth con-
trol pills is to strongly prevent thrombosis. The net
effect is to moderately prevent thrombosis. Thus,
there is a sense in which it is correct to say both that
birth control pills cause thrombosis and that birth
control pills prevent thrombosis. The R-S theory cap-
tures the second claim; Hesslow’s counterexample
appeals to the first claim.

Causal Taxonomy

The different ways in which Questions 2a through 2e
can be answered correspond to different ways in
which one event or event-type can be causally related
to another. This is by no means an exhaustive list of
the ways in which we can articulate the nature of a
causal relationship, but it provides at least a healthy
start on a causal taxonomy. Note that these various
issues are not independent, but that there are interac-
tion effects between them. For example, we cannot
say anything unambiguous about the direction
(Question 2a) or the strength (2b) of the relation-
ship between birth control pill use and thrombosis 
unless we specify whether we are asking about one or
another component effect or about the net effect (2e).
How many causal pathways there are (2e) will depend
on which background conditions we are considering
(2d). Among women who are incapable of becoming
pregnant (for reasons independent of birth control
pill use), there will be no indirect effect of birth con-
trol pill use on thrombosis mediated by the possibility
of pregnancy. And, if it should turn out that the influ-
ence of birth control pills on thrombosis has zero
strength (2b) or no direction (2a), then we might
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reject the initial assumption that they are causally
related in the first place (1).

One might try to classify causal relationships along
different dimensions. It may turn out, for instance,
that causation functions differently in the physical,
biological, and social domains. Or, we might try to
classify causal concepts according to theoretical
approach. I have discussed the R-S theory in some
detail and have made passing reference to a number
of other philosophical approaches: other probabilistic
theories, interventionist theories, counterfactual theo-
ries (for those of you paying close attention to the foot-
notes), and causal process theories. All but the last of
these theories share a common idea: the occurrence
of a cause makes a difference for its effect. The differ-
ent types of causal relationship that emerge from a
consideration of Questions 2a through 2e all corre-
spond to different ways in which a cause might make
a difference to its effect; thus, I expect that the sort of
taxonomy that I advocate may be adopted from within
the framework of any difference-making approach to
causation. Causal processes and interactions, the key
concepts in process theories of causation such as
those of Salmon (1984) and Dowe (2000), are cer-
tainly causal concepts that are distinct from those
enumerated, but they do not really belong in the tax-
onomy that I have been developing. Indeed, I am
rather skeptical that these concepts really help us to
understand better the nature of causal relationships,
in part for reasons noted (see also Hitchcock, 1995a,
2004a, 2004b; Schaffer, 2000).

Morals for Philosophy

The holy grail of philosophy, or at least for the project
of analyzing causation, has been to provide an ade-
quate account of the causal relation, to spell out just
what it means to say that C causes E. This analytic proj-
ect tacitly assumes that there is just one special type of
causal relationship called causing that is the target of
analysis. We can see how this is true of our R-S theory
by considering our various questions in turn.

First, the intent behind the R-S theory is that when
C causes E, the relationship between them is genuinely
causal in the sense of Question 1. Both Reichenbach
(1956) and Suppes (1970) advance versions of
Condition (iii) for the purpose of ruling out spurious
correlations. With hindsight, we now recognize that it is
not possible to distinguish causal relationships from 

spurious ones using purely probabilistic criteria.
Cartwright (1979/1983) offers a powerful argument for
this conclusion, and Spirtes et al. (2000) provide a vari-
ety of “statistical indistinguishability” results that bear
on this issue. Despite this shortfall, the screening-off
relations originally introduced by Reichenbach (1956)
have proven to be helpful for detecting certain kinds of
spurious relationship.

When we look closely at R-S, however, it is appar-
ent that it is not simply an attempt to define the
notion of a causal relationship in the sense of
Question 1. Let us look at how R-S relates to each of
Questions 2a through 2e in turn.

Question 2a. According to R-S, a cause must
increase the probability of its effect. This suggests
that a cause in the sense of R-S must be a promot-
ing cause.

Question 2b. R-S imposes no lower bound on how
much difference a cause must make to the proba-
bility of its effect. This suggests that something
may count as a cause no matter how weak or
insignificant its influence.

Question 2c. R-S requires us to compare the prob-
ability of E conditional on C with the uncondi-
tional probability of E, rather than with the
probability of E conditional on any specific alter-
native to C. In effect, we must compare P(E | C)
with the weighted average of probabilities of the
form P(E | C′), where C′ ranges over C and all pos-
sible alternatives to C. So, for R-S, a cause must be
a promoting cause on average, where the average
is taken with respect to alternatives to the cause.
This has the rather odd consequence that, whether
or not birth control pills cause thrombosis (e.g.)
will depend on the probabilities of various 
other forms of contraception being used. (See
Hitchcock, 1993, for elaboration.)

Question 2d. R-S does not require that a cause raise
the probability of its effect in every background con-
dition: Conditions (i)–(iii) are all compatible with
the existence of a background condition Bt″ such
that P(Et′ | CtBt″) � P(Et′ | Bt″ ) [although Condition
(iii) is obviously incompatible with a background
condition Bt″ such that P(Et′ | CtBt″) � P(Et′ | Bt″)].
R-S also does not require that a cause raise the prob-
ability of its effect in any circumscribed range of
background conditions. There is, however, an obvi-
ous sense in which Condition (ii) requires that a
cause raise the probability of its effect on average,
where the average is here taken over background
conditions.
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Question 2e. Finally, R-S is suitable only for net
causes, for it never asks us to consider probabilities
conditional on events intermediate between the
cause and the effect. It is because of this feature, in
particular, that R-S fails to rule that birth control
pills cause thrombosis.

In brief, then, a cause in the sense of R-S is a net-
promoting-cause-on-average.

The principal moral that I wish to draw from our
taxonomy is that we should reject the assumption that
there is one specific kind of causal relationship that is
the referent of the word cause. We use the word cause
to mark a variety of different distinctions: the distinc-
tion between a causal relationship and one that is
merely spurious; the distinction between causing an
outcome and preventing it; the distinction between
causing an outcome and merely affecting it; and so
on. When we reflect on the multifaceted nature of
Hesslow’s (1976) example, it seems clear that there is
no univocal answer to the seemingly simple question:
Does the consumption of birth control pills cause
thrombosis? There is a genuinely causal relationship
between birth control pills and thrombosis. The use
of birth control pills, when compared with substan-
tially less-effective forms of contraception (or no con-
traception at all), has a net inhibiting effect on
thrombosis among women in certain conditions. In
those same background conditions, birth control pills
also have a relatively small, direct, promoting effect
on thrombosis. Birth control pills also have a small
promoting net effect on thrombosis among women
who are unable to become pregnant or when con-
trasted with equally effective forms of contraception.
Does this specific causal profile amount to causation
or not? We should reject the question. The reason
that all attempts to analyze causation have met with
failure is that there simply is no one specific relation-
ship of causation to be analyzed. At any rate, there is
no one specific relationship that is picked out by our
pretheoretic use of the word cause. (See Hitchcock,
2003, for further polemics on this issue.)

Nonetheless, we should not simply reject all
attempts to analyze causation as bankrupt. What is
needed is a little redirection of effort. What we should
demand of a theory of causation is that it be able to pro-
vide an account of at least some of the causal concepts
brought out by our various questions. In my discussion,
I offered some suggestions for how a probabilistic
approach to causation in the spirit of R-S might be
used to illuminate some of the diverse causal 

concepts we have encountered. I do not attempt to 
pass judgment on the ultimate success of any of these
strategies.

The important point to recognize is that a theory’s
success or failure in analyzing one of these concepts
may be largely independent of its performance in ana-
lyzing another. It is one thing to ask whether it is pos-
sible to capture the distinction between causal
relationships and spurious correlations in purely prob-
abilistic terms; it is quite another to ask whether the
intuitive distinction between causing and preventing
some outcome corresponds to the difference between
raising and lowering the probability of that outcome.
Yet, when authors such as Salmon (1984) and Dowe
(2000) argue that we should abandon probabilistic
theories of causation altogether, based primarily on
counterexamples like Hesslow’s (1976) in which
causes lower the probabilities of their effects, they are
conflating just these kinds of questions.

One of the reasons that philosophers have been so
interested in the topic of causation is that many other
concepts of interest to philosophy appear to have a
causal dimension: explanation, rational deliberation,
moral responsibility, perception, knowledge, refer-
ence, temporal direction, and so on. Indeed, the
importance of causation as an analytical ingredient in
other philosophical concepts is often cited as a moti-
vation for attempts at understanding causation. How
does the dismantling project that I have been recom-
mending affect these further analytical projects? I
would argue that the availability of diverse causal con-
cepts can only help to further our understanding of
other concepts with a causal dimension.

Let us consider two such concepts: prudential
rationality and morality. Prudential rationality would
seem to recommend that we aim to cause those out-
comes that are (prudentially) desirable and to prevent
those outcomes that are (prudentially) undesirable.
Morality would seem to recommend that we aim to
cause those outcomes that are (morally) desirable and
to prevent those outcomes that are (morally) undesir-
able. Are the two, then, at root the same, differing only
in the criteria that we use to evaluate the intrinsic desir-
ability of the outcome? I would argue that they are not,
and the difference lies, at least in part, in the different
notions of cause that are at work in the two cases.

Let us begin with prudential rationality. The
importance of causation to prudential rationality is
brought out by so-called medical Newcomb prob-
lems.7 Marie is an up-and-coming young economist
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who is very fond of pickles—as she likes to put it, she
derives a great deal of utility from eating pickles.
Unfortunately, Marie also believes that pregnant
women crave—and hence eat—a lot of pickles.
Because pregnancy would disrupt her career goals,
causing her a great deal of disutility, she decides that
it would be wiser to forego the pleasures of pickle-
eating. It is easy to see where Marie has gone wrong.
Although pickle-eating is correlated with pregnancy
(assuming Marie’s beliefs in this matter are correct),
it is merely a symptom of the underlying condition
rather than a cause of pregnancy. Whether pregnant
or not, Marie has nothing to lose by enjoying her
pickles.

A version of expected utility theory formulated in
terms of simple conditional probabilities (such as
Jeffrey, 1965) will yield the wrong advice in this sort
of case. This has led a number of theorists (such as
Gibbard & Harper, 1978; Skyrms, 1980; Lewis, 1981)
to formulate versions of causal decision theory. Some
of these versions, especially Skyrms (1980), resemble
the R-S theory of causation in that they require us to
condition on certain background conditions to elimi-
nate spurious correlations. There is a further feature
that these theories share with R-S: They do not
require us to condition on any events intermediate
between the contemplated actions and their possible
outcomes. This suggests that decision theory is con-
cerned with the net effects of our actions rather than
with the component effects. When it comes to pru-
dential deliberation, we are concerned with how our
actions affect the overall probability of good and bad
outcomes.

The case of moral deliberation is quite different.
Consider the case of an Outback doctor who receives
two emergency calls. She can fly to one remote town
to save a single life, or she can fly to a remote town in
the opposite direction where two people are dying.
She cannot do both. It is certainly morally permissible,
and perhaps even morally obligatory, for her to save
two lives instead of one. The next day, she faces a dif-
ferent dilemma. Three people are dying. This time,
fortunately, all three are in the same town. The first
patient has a condition that is quite treatable, albeit
lethal if left untreated. Unfortunately, the other two
are dying from organ failure. The only way to save
them would be to find an organ donor, and as it hap-
pens, the only suitable match is the first patient. It is
certainly morally permissible, and perhaps even
morally obligatory, for her to save the first patient, even

if this results in the death of the other two patients:
The moral imperative to save two lives rather than one
is hardly an absolute. What this example suggests is
that moral evaluation is much more sensitive to the
nature of the causal pathways involved. It is permissi-
ble to save two lives, even if this results in the loss of a
third life as an unavoidable side effect, but it is some-
thing quite different to save two lives by allowing a
third person to die. The so-called doctrine of double
effect is an attempt to codify just when it is permissible
to perform actions that have both good and bad out-
comes. The concepts of direct effect and component
effect seem better suited to the articulation of such
principles than is the concept of net effect that seems
to be central to prudential rationality.

Morals for Psychology

I have argued that there is no single relation that
holds between events or event-types that serves as the
referent of the verb cause. Nonetheless, we frequently
do make judgments about what causes what in actual
and hypothetical cases, even when the question is not
more fully specified along the lines of Questions
2a–2e. There is thus an empirical question of just
what people attend to when they make such judg-
ments, and the sort of taxonomic project that I have
been encouraging can supply a ready-made set of
hypotheses.

There seems to be some evidence, for example,
that people tend to focus on direct causes. Consider
the experiment reported in Baker, Mercier, Vallée-
Tourangeau, Frank, and Pan (1993), which is dis-
cussed in detail by Glymour (2001, chapters 4, 5). In
this experiment, subjects observe a video screen on
which a tank attempts to navigate a minefield safely.
The subjects observe a number of trials, on some of
which the tank makes it safely across the minefield
and on some of which it does not. There is also an air-
plane that appears on some occasions and not on oth-
ers. Finally, subjects have the option of moving a
joystick, which has the effect of changing the color
(“camouflaging”) the tank.

Subjects were asked to assign a numerical value
to the efficacy of the camouflage in allowing the tank
to pass through the minefield safely. In one set
of observed trials, camouflaging the tank was posi-
tively correlated with the appearance of the plane,
and the appearance of the plane was perfectly cor-
related with safe navigation through the minefield.
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On average, subjects ruled that the camouflage had
negligible efficacy in guiding the tank to safety. Baker
et al. (1993) claimed that this was a mistake because
camouflage is positively correlated with safe passage.

Glymour (2001, pp. 63–66) notes that one plausi-
ble interpretation of the data is that camouflaging the
tank causes the plane to appear, which in turn causes
the tank to pass safely through the minefield, with no
direct effect of the tank’s color on its ability to get
through. On this interpretation, the camouflage has
a net effect and a component effect on safe passage,
but no direct effect.8 This suggests that the subjects,
when asked to assess the efficacy of camouflage,
implicitly judged the direct effect of camouflage on
safe passage.

Is there a tension here? I have argued that there is
no one relationship that holds (or that we take to
hold) whenever we judge that one event or event-type
is a cause of another. Yet, I have also urged psycholo-
gists to look for such a relationship and even sug-
gested that it might be direct causation. What I fully
expect that such research will discover, however, is
that what kind of relationship we attend to when
asked to make causal judgments is a highly context-
sensitive affair. It may depend on the nature of the
example, it may depend on our interests and our rea-
sons for seeking causal information, and it may even
depend on framing effects. For example, in the Baker
et al. (1993) experiment, the subjects were told that
the mines were “visual mines” that could only destroy
a tank “if they could see it” (but the subjects did not
know which color the mines could see). In this con-
text, it would hardly be surprising if the subjects inter-
preted questions about the efficacy of the camouflage
as questions about how well the mines could see the
color in question, a causal mechanism that bypasses
any effect the plane might have on safe passage. In
other words, the wording used to describe the hypo-
thetical scenario naturally suggested to subjects that
the direct effect of the tank’s color on the mines was
of particular interest. It is my hope that careful inves-
tigation into the ways in which our causal judgments
are sensitive to contextual cues such as these will help
us to make sense of the cacophony of intuitions that
currently underlies philosophical investigation into
the nature of causation.

Finally, more careful attention to the dif-
ferent causal concepts evoked by Questions 1 and 2a
through 2e can help us to understand better the
nature of causal learning and causal induction. We

should expect causal learning to be multifaceted:
There is learning whether a relationship is causal or
not (Question 1); learning the strength and direction
of a causal relationship (2a and 2b); learning how a
cause compares with a variety of alternatives (2c);
learning how stable a causal relationship is (2d); and
learning about causal pathways (2e). Causal learning
of any one of these sorts will typically take place while
making use of background assumptions about other
facets of the causal relationships involved.

Many of the successes and failures of psychological
investigation into causal learning can be better under-
stood from within this framework. For example, a cen-
tral shortcoming of the traditional associationist
program of predicting and measuring associative
weights (see, e.g., Rescorla & Wagner, 1972) is its
attempt to answer questions about associative strengths,
questions of type 2b, while ignoring the effect of our
underlying assumptions about whether the relationship
is causal or not (Question 1). (See Waldmann &
Holyoak, 1992, and Waldmann, 2000, for detailed cri-
tiques.) Contrast this with Patricia Cheng’s (1997)
PowerPC model of causal inference. This model is
intended to capture the way in which we estimate the
strength of specific causal relationships—the way in
which we attempt to answer questions of type 2b. The
model is explicit about the types of assumptions that
need to be made about the nature of the underlying
relationships. For example, the formalism that is used
is different depending on whether we are measuring
promoting causes (which Cheng, 1997, calls genera-
tive causes) or inhibiting causes and depending on
whether other inhibiting causes are present. So, the
model requires assumptions about answers to ques-
tions of type 2a. The model, at least in its simplest
form, also requires assumptions about the absence of
interactions between the various causes that are pres-
ent—assumptions about answers to questions of type
2d. It is, of course, an empirical question whether
ordinary reasoners do in fact make just these assump-
tions when estimating causal strengths; my point is
simply that it is highly implausible that we judge
causal strengths in a cognitive vacuum, and that the
sort of taxonomy I have been encouraging would sug-
gest a variety of hypotheses about the sorts of assump-
tions we bring to the table.

As a second illustration, consider the blicket
detector experiments of Gopnik and her collaborators
(see, e.g., Gopnik et al., 2004). In these experiments,
children are shown a variety of objects, which are
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placed on a device—a “blicket-detector”—in various
combinations. On some occasions, the machine
lights up and makes noises. The children are then
asked which objects activate the machine (i.e., which
ones are blickets). Gopnik and her collaborators argue
that the children are using screening-off relations to
make inferences about which objects are causally effi-
cacious in setting off the machine, and more gener-
ally, that they represent causal structure using Bayes
nets (directed acyclic graphs with a probability distri-
bution satisfying the Markov condition).

Some commentators (see, e.g., Griffiths and
Tenenbaum, forthcoming) have remarked on the speed
with which the children infer that some objects affect
the machine; sometimes, the children make such infer-
ences on the basis of a single observation. Subjects
make such inferences on the basis of sample sizes
much too small to detect, at a statistically significant
level, the conditional independence relations
entailed by the Markov condition. A plausible expla-
nation is that the subjects are exploiting background
assumptions about the nature of the causal relation-
ships that will be present. First, the number of possi-
ble graphs may be restricted in various ways: It is the
objects being placed on the machine that cause it to
go off, rather than the other way around; the objects
are not causing each other to be blickets, and so on.
Indeed, the set of possible graphs is restricted to the
extent that the only causal relationships under consid-
eration are direct effects of the objects on the
machine. Second, the subjects may have a particular
model in mind: The machine goes off if and only if
one or more blickets are placed on it.

Griffiths and Tenenbaum (forthcoming) present
some experimental results suggesting that subjects do
indeed work with this sort of background assumption.
In this case, the central question is of type 1. Subjects
have observed certain correlations between objects
being placed on the machine and its going off, and
they are trying to determine which objects are causing
it to go off. Their implicit model makes a number of
assumptions about the nature of the causal relation-
ships involved: There are no objects that act to inhibit
the operation of the detector (Question 2a); all of the
causal relations are deterministic or of maximal
strength (2b); the ability of an object to set off the
machine is not affected by the presence or absence of
other objects on the machine (2d); and all effects are
direct (2e). These assumptions are defeasible—they
may be abandoned if they prove to be incompatible

with observation—but while they are in place, causal
inferences may be made efficiently and rapidly.

Causal learning is a bootstrapping affair: Inferences
about one facet of a causal relationship are facilitated
by assumptions about other facets of that relationship.
Understanding causal learning therefore requires that
we understand the multidimensional nature of causal
relationships.
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From: brook_russell@turing.carnegietech.edu
To: mherskovits@psych.ucarcadia.arcadia.edu

Dear Morgan,

What an amazing weekend! It has completely
changed my mind about the value of your kind
of psychology, and I simply cannot wait for the
next workshop. My head is buzzing with
questions and thoughts about human causal
learning, and I’m so longing for the answers the
next workshop seems all set to provide.

There is the whole question of probability,
for example. I am struck that so many of those
brilliant examples of causal learning you and
the rest of them described, especially with the
sprogs, seem restricted to deterministic 
contexts, in which causes always follow effects.
Of course, causal Bayes nets can be applied to
such contexts. But, the canonical application of
the systems is to cases involving what may be
quite complicated systems of conditional
probabilities. And, while Bayes nets can be
applied to deterministic systems, such systems
raise special problems for learning. Often, they
result in violations of faithfulness. I’m sure that
Thomas Richardson and Clark Glymour can
take care of that if anyone can.

Along the same lines, I do still have that
query about whether human beings of any age

are really capable of calculating probabilities.
Didn’t one of your psychologists recently get a
Nobel Prize for showing how bad even sophisti-
cated adults were at probabilistic reasoning?

And, I am curious also about the question of
classification and categorization. The Bayes net
formalism depends on the idea that variables
are specified beforehand. That is, we already
have some sense of how a particular event fits
into a category—how a particular token is a
member of a type as we say in philosophy—
before we do any causal inference at all. But, it
appears that people often categorize objects pre-
cisely according to their causal powers. Could
the formalism be applied to answer these
questions, too?

I’m sure this next workshop will answer all
this and more.

All the best,
Brook

From: mherskovits@psych.ucarcadia.arcadia.edu
To: brook_russell@turing.carnegietech.edu

Hi Brook,

Well, I have to say I feel the same way.
Remember that quote from Gopnik I sent in
that first letter? Well, I guess it’s too soon to say
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for sure, of course, but this does seem awfully
like the real thing. For once, a computational
set of ideas really does seem to make contact
with the things we care about in psychology.
And, even better, it gives us psychologists all
sorts of new work to do. I already can think of a
zillion experiments to do to test the ideas.

And, you know, I think a lot of your
questions are going to be answered at the next
workshop. It’s true that people are just awful at
explicitly representing probabilities, but David
Sobel and Natasha Kirkham will show you that
even tiny babies, as young as 8 months old,
already can do some kinds of statistical
reasoning; in fact, they already seem to use a
kind of “screening off.” Dave Lagnado and his
colleagues will show you that adults can use
probabilities to infer causation when they’re
combined with the right kinds of other cues;
Richard Scheines will show that even those

undergraduate statistics students are, well, a lot
smarter than they look.

As for categorization, that’s an interesting
one because for a long time in psychology
people noticed that “causal powers” seemed to
play an important role in the way people
categorized objects. In fact, one of the first
areas of psychology in which people talked
about the theory theory was precisely in the
domain of categorization. Adults’ categories
seemed to be based more on their theories of
the deeper causal powers of objects—their
“essences”—than on more superficial percep-
tual features. David Danks and Bob Rheder
will show how we can use the Bayes net
formalism to make quite precise predictions
about how ordinary folk will categorize objects.

Best,
Morgan
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Introduction

By the early to mid-1990s, a normative theory of
causation with qualitative as well as quantitative sub-
stance, called causal Bayes nets (CBNs),1 achieved
fairly widespread acceptance among key proponents
in computer science (artificial intelligence), philoso-
phy, epidemiology, and statistics. Although the repre-
sentational component of the normative theory is at
some level fairly stable and commonly accepted, how
an ideal computational agent should learn about
causal structure from data is much less settled and, in
2005, was still a hot area of research.2 To be clear, the
CBN framework arose in a community that had no
interest in modeling human learning or representa-
tion. They were interested in how a robot, or an ideal
computational agent, with obviously far different pro-
cessing and memory capacities than a human, could
best store and reason about the causal structure of the
world. Much of the early research in this community
focused on efficient algorithms for updating beliefs
about a CBN from evidence (Pearl, 1988;

Spiegelhalter & Lauritzen, 1990) or on efficiently
learning the qualitative structure of a CBN from data
(Pearl, 1988; Spirtes, Glymour, & Scheines, 2000).

In contrast, the psychological community, interested
in how humans learn not in how they should learn if
they had practically unbounded computational
resources, studied associative and causal learning for
decades. The Rescorla-Wagner theory (1972) was
offered, for example, as models of how humans (and
animals, in some cases) learned associations and causal
hypotheses from data. Only later, in the early 1990s, did
CBNs make their way into the psychological commu-
nity and only then as a model that might describe every-
day human reasoning. At the least, a broad range of
psychological theories of human causal learning can be
substantially unified when cast as different versions of
parameter learning within the CBN framework (Danks,
2005), but it is still a matter of vibrant debate whether
and to what degree humans represent and learn about
causal claims as per the normative theory of CBNs (e.g.,
Danks, Griffiths, & Tenenbaum, 2003; Glymour, 1998,
2000; Gopnik et al., 2004; Gopnik, Sobel, Schulz, &
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Glymour, 2001; Griffiths, Baraff, & Tenenbaum, 2004;
Lagnado & Sloman, 2002, 2004; Sloman & Lagnado,
2002; Steyvers, Tenenbaum, Wagenmakers, & Blum,
2003; Tenenbaum & Griffiths, 2001, 2003; Tenenbaum
& Niyogi, 2003; Waldmann & Hagmayer, in press;
Waldmann & Martignon, 1998).

Nearly all of the psychological research on human
causal learning involves naïve participants, that is,
individuals who have not been taught the normative
theory in any way, shape, or form. Almost all of this
research involves single-trial learning: observing how
subjects form and update their causal beliefs from the
outcome of a series of trials, each either an experi-
ment on a single individual or a single episode of a
system’s behavior. No work, as far as we are aware,
attempts to train people normatively on this and
related tasks, and no work we know of compares the
performance of naïve participants and those taught
the normative theory. The work we describe in this
chapter begins just such a project. We are specifically
interested in seeing if formal education about norma-
tive causal reasoning helps students draw accurate
causal inferences.

Although there has been, to our knowledge, no
previous research on subjects trained in the normative
theory, there has been research on whether naïve sub-
jects approximate normative learning agents. Single-
trial learning, for example, can easily be described by
the normative theory as a sequential Bayesian up-
dating problem. Some psychologists have considered
whether and how people update their beliefs in accord
with the Bayesian norm (e.g., Danks et al., 2003;
Griffiths et al., 2004; Steyvers et al., 2003; Tenenbaum
& Griffiths, 2001, 2003; Tenenbaum & Niyogi, 2003)
and have suggested that some people at least approxi-
mate a normative Bayesian learner on simple cases.
This research does not extend to subjects who have
already been taught the appropriate rules of Bayesian
updating, either abstractly or concretely.

In the late 1990s, curricular material became
available that taught the normative theory of CBNs.3

Standard introductions to the normative theory in
computer science, philosophy, and statistics do not
directly address the sorts of tasks that psychologists
have investigated, however. First, as opposed to single-
trial learning, the focus is on learning from samples
drawn from some population. Second, little or no
attention is paid to the severe computational (process-
ing time) and representational (storage space) limita-
tions of humans. Instead, abstractions and algorithms

are taught that could not possibly be used by humans
on any but the simplest of problems.

In the normative theory, learning about which
among many possible causal structures might obtain
is typically cast as iterative:

1. Enumerate a space of plausible hypotheses.
2. Design an experiment that will help distinguish

among these hypotheses.
3. Collect a sample of data from such an 

experiment.
4. Analyze these data with the help of sophisti-

cated computing tools like R4 or TETRAD5 to
update the space of hypotheses to those sup-
ported or consistent with these data.

5. Go back to Step 2.

Designing an experiment, insofar as it involves
choosing which variable or variables to manipulate, is a
natural part of the normative theory and has just
recently become a subject of study.6 The same activity,
that is, picking the best among many possible experi-
ments to run, has been studied by Lagnado and Sloman
(2004), Sobel and Kushnir (2004), Steyvers et al.
(2003), and Waldmann and Hagmayer (in press).

Another point of contact is what a student thinks the
data collected in an experiment tell them about the
model that might be generating the data. Starting with
a set of plausible models, some will be consistent with
the data collected, or favored by it, and some will not.
We would like to know whether students trained in the
normative theory are better, and if so, in what way, at
determining what models are consistent with the data.

In a series of four pilot experiments, we examined
the performance of subjects partially trained in the
normative theory on causal learning tasks that
involved choosing experiments and deciding which
models were consistent with the data. Although we
did not use single-trial learning, we did use tasks sim-
ilar to those studied recently by psychologists, espe-
cially Steyvers et al. (2003). Our students were trained
for about a month in a college course on causation
and social policy. The students were not trained in the
precise skills tested by our experiments. Although our
results are not directly comparable to those discussed
in the psychological literature, they certainly suggest
that students trained on the normative theory act
quite differently from naïve participants.

Our chapter is organized as follows: We first briefly
describe what we take to be the normative theory of
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causal reasoning. We then describe the online corpus
we have developed for teaching it. Finally, we
describe four pilot studies we performed in the fall of
2004 with the Causality Lab, a major part of the
online corpus.

The Normative Theory of Causal
Reasoning

Although Galileo pioneered the use of fully con-
trolled experiments almost 400 years ago, it was not
until Sir Ronald Fisher’s (1935) famous work on
experimental design that real headway was made on
the statistical problem of causal discovery. Fisher’s
work, like Galileo’s, was confined to experimental set-
tings in which treatment could be assigned. In
Galileo’s case, however, all the variables in a system
could be perfectly controlled, and the treatment
could thus be isolated and made to be the only quan-
tity varying in a given experiment. In agricultural or
biological experiments, however, it is not possible to
control all the quantities (e.g., the genetic and envi-
ronmental history of each person). Fisher’s technique
of randomization not only solved this problem, but
also produced a reference distribution against which
experimental results could be compared statistically.
His work is still the statistical foundation of most
modern medical research.

Representing Causal Systems: Causal
Bayes Nets

Sewall Wright pioneered representing causal systems
as “path diagrams” in the 1920s and 1930s (Wright,
1934), but until about the middle of the 20th century
the entire topic of how causal claims can or cannot be
discovered from data collected in nonexperimental
studies was largely written off as hopeless. Herbert
Simon (1953) and Hubert Blalock (1961) made
major inroads but gave no general theory. In the mid-
1980s, however, artificial intelligence researchers,
philosophers, statisticians, and epidemiologists began
to make real headway on a rigorous theory of causal
discovery from nonexperimental as well as experi-
mental data.7

Like Fisher’s statistical work on experiments,
CBNs seek to model the relations among a set of
random variables, such as an individual’s level of edu-
cation or annual income. Alternative approaches aim
to model the causes of individual events, for example,

the causes of the space shuttle Challenger disaster.
We confine our attention to relations among vari-
ables. If we are instead concerned with a system in
which certain types of events cause other types of
events, then we represent the occurrence or nonoc-
currence of the events by binary variables. For exam-
ple, if a blue lightbulb going on is followed by a red
lightbulb going on, we use the variables red lightbulb
[lit, not lit] and blue lightbulb [lit, not lit].

Any approach that models the statistical relations
among a set of variables must first confront what we
call the ontological problem: How do we get from a
messy and complicated world to a coherent and
meaningful set of variables that might plausibly be
related either statistically or causally. For example, it
is reasonable to examine the association between the
number of years of education and the number of dol-
lars in yearly income for a sample of middle-aged men
in western Pennsylvania, but it makes no sense to
examine the average level of education for the aggre-
gate of people in a state like Pennsylvania and com-
pare it to the level of income for individual residents
of New York. It also does not make sense to posit a
“variable” with a range of values that is not exclusive
because it includes has blond hair, has curly hair, and
so on. After teaching causal reasoning to hundreds of
students over almost a decade, the ontological prob-
lem seems the most difficult to teach and the most dif-
ficult for students to learn. We need to study it much
more thoroughly, but for the present investigation, we
simply assume it has been solved for a particular
learning problem.

Assuming that we are given a set of coherent and
meaningful variables, the normative theory involves
representing the qualitative causal relations among a
set of variables with a directed graph in which there is
an edge from X to Y just in case X is a direct cause of
Y relative to the system of variables under study. X is a
direct cause of Y in such a system if and only if there
is a pair of ideal interventions that hold the other vari-
ables in the system Z fixed and change only X, such
that the probability distribution for Y also changes. We
model the quantitative relations among the variables
with a set of conditional probability distributions: one
for each variable given each possible configuration of
values of its direct causes (see Figure 8-1).

The asymmetry of causation is modeled by how
the system responds to ideal intervention, both quali-
tatively and quantitatively. Consider, for example, a
two-variable system: room temperature (of a room an
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FIGURE 8-1 Causal Bayes net.

FIGURE 8-2 Manipulated graph.

FIGURE 8-3 Original and manipulated systems.
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individual is in) �55º, 55º�85º, 	85º], and wearing
a sweater [yes, no], in which the graph and set of
conditional probability tables in Figure 8-1 describe
the system.

Ideal interventions are represented by adding an
intervention variable that is a direct cause of only the
variables it targets. Ideal interventions are assumed to
have a simple property: If I is an intervention on variable
X, then when I is active, it removes all the other edges
into X. That is, the “other” causes of X no longer influ-
ence X in the postintervention, or manipulated, system.
Figure 8-2 captures the change and nonchange in the
Figure 8-1 graph in response to interventions on room
temperature (A) and on wearing a sweater (B).

Modeling the system’s quantitative response to inter-
ventions is almost as simple. Generally, we conceive 
of an ideal intervention as imposing not a value but
rather a probability distribution on its target. We thus
model the move from the original system to the
manipulated system as leaving all conditional distri-
butions intact save those over the manipulated vari-
ables, in which case we impose our own distribution.
For example, if we assume that the interventions
depicted in Figure 8-2 impose a uniform distribution
on their targets when active, then Figure 8-3 shows
the two manipulated systems that would result from
the original system shown in Figure 8-1.8

To simplify later discussions, we include the “null”
manipulation (i.e., we intervene on no variables) as
one possible manipulation. A CBN and a manipula-
tion define a joint probability distribution over the set
of variables in the system. If we use experimental setup
to refer to an exact quantitative specification of the
manipulation, then when we collect data we are draw-
ing a sample from the probability distribution defined
by the original CBN and the experimental setup.

Learning Causal Bayes Nets

There are two distinct types of CBN learning given data:
parameter estimation and structure learning. In param-
eter estimation, one fixes the qualitative (graphical)
structure of the model and estimates the conditional
probability tables by minimizing some loss function or
maximizing the likelihood of the sample data given the
model and its parameterization. In contrast, structure
learning aims to recover the qualitative structure of
graphical edges. The distinction between parameter
estimation and structure learning is not perfectly clean
because “close-to-zero parameter” and “absence of the

edge” are roughly equivalent. Danks (2005) shows
how to understand most non-Bayes net psychological
theories of causal learning (e.g., Cheng, 1997; Cheng
& Novick, 1992; Perales & Shanks, 2003; Rescorla &
Wagner, 1972) as parameter estimation theories for
particular graphical structures.

A fundamental challenge for CBN structure learn-
ing algorithms is the existence of Markov equivalence
classes (MECs): sets of CBNs that make identical pre-
dictions about the way the world looks in the absence
of experiments. For example, A → B and A ← B both
predict that variables A and B will be associated. Any
data set that can be modeled by A → B can be equally
well modeled by A ← B, so there is no reason—given
only observed data—to prefer one structure over the
other. This observation leads to the standard warning
in science that “correlation does not equal causation.”
However, patterns of correlation can enable us to
infer something about causal relationships (or, more
generally, graphical structure), although perhaps not
a unique graph. Thus, structure learning algorithms
will frequently not be able to learn the “true” graph
from data, but will be able to learn a small set of
graphs that are indistinguishable from the “truth.”

For learning the structure of the causal graph, the
normative theory splits into two approaches: constraint
based and scoring. The constraint-based approach
(Spirtes et al., 2000) aims to determine the class of
CBNs consistent with an inferred (statistical) pattern
of independencies and associations, as well as back-
ground knowledge. Any particular CBN entails a set of
statistical constraints in the population, such as inde-
pendence and tetrad constraints. Constraint-based
algorithms take as input the constraints inferred from
a given sample, as well as background assumptions
about the class of models to be considered, and output
the set of indistinguishable causal structures. That is,
the algorithms output the models that (a) entail all and
only the inferred constraints and (b) are consistent
with background knowledge. The inference task is
thus split into two parts: statistical, inference from the
sample to the constraints that hold in the population,
and causal, inference from the constraints to the CBN
or nets that entail such constraints.

Suppose, for example, that we observe a sample of
100 individuals on variables X1, X2, and X3 and after
statistical inference conclude that X1 and X2 are statis-
tically independent, conditional on X3 (i.e., X1 ⊥ X2 |
X3). If we also assume there are no unobserved com-
mon causes for any pair of X1, X2, and X3, then the PC
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algorithm (Spirtes et al., 2000) would output the pat-
tern shown on the left side of Figure 8-4. That pattern
is a graphical object that represents the MEC shown
on the right side of Figure 8-4; all three graphs predict
exactly the same set of unconditional and conditional
independencies. In general, two causal graphs entail
the same set of independencies if and only if they
have the same adjacencies and unshielded colliders,
where X and Y are adjacent just in case X → Y or X ←
Y, and Z is an unshielded collider between X and Y
just in case X → Z ← Y and X and Y are not adjacent.
Thus, in a pattern, we need only represent the adja-
cencies and unshielded colliders. Constraint-based
searches first compute the set of adjacencies for a set
of variables and then try to “orient” these adjacencies,
that is, test for colliders among triples in which X and
Y are adjacent, Y and Z are adjacent, but X and Z are
not: X-Y-Z.

Testing high-order conditional independence
relations—relations that involve a large number of
variables in the conditioning set—is computationally
expensive and statistically unreliable, so the con-
straint-based approach sequences the tests to mini-
mize the number of higher-order conditional
independence facts actually tested. Compared to
other methods, constraint-based algorithms are
extremely fast and under multivariate normal distri-
butions (linear systems) can handle hundreds of vari-
ables. Constraint-based algorithms can also handle
models with unobserved common causes. Their
drawback is that they are subject to errors if statistical
decisions made early in the algorithm are incorrect.

If handed the independence relations true of a
population, then people could easily perform by hand
the computations required by a constraint-based
search, even for many causal structures with dozens of
variables. Of course, people could not possibly compute

all of the precise statistical tests of independence rela-
tions required, but they could potentially approximate
a subset of such (unconditional and conditional)
independence tests (see Danks, 2004, for one tenta-
tive proposal).

In the score-based approach (Heckerman et al.,
1999), we assign a “score” to a CBN that reflects both
(a) the closeness of the CBN’s “fit” of the data and (b)
the plausibility of the CBN prior to seeing any data.
We then search (in a variety of ways) among all the
models consistent with background knowledge for the
set that has the highest score. The most common scor-
ing-based approach is based on Bayesian principles:
Calculate a score based on the CBN’s prior—the
probability we assign to the model being true before
seeing any data, and the model’s likelihood—the
probability of the observed data given this particular
CBN.9 Scoring-based searches are accurate but are
slow, as calculating each model’s score is expensive.
Given a flat prior over the models (i.e., equal proba-
bilities on all models), the set of models that have the
highest Bayesian score is identical to the MEC of
models output by a constraint-based algorithm.

Bayesian approaches are straightforwardly
applied to standard psychological tasks. By comput-
ing the posterior over the models after each new
sample point, we get a learning dynamics for that
problem (as in, e.g., Danks et al., 2003; Griffiths 
et al., 2004; Steyvers et al., 2003; Tenenbaum &
Griffiths, 2003). However, even if naïve subjects act
like approximately rational Bayesian structure learn-
ers in cases involving 2 or 3 variables, they cannot
possibly implement the approach precisely or possi-
bly implement the approach for larger numbers of
variables, e.g., 5–10. Hence, the Bayesian approach
is not necessarily appropriate for teaching the nor-
mative theory.
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FIGURE 8-4 Equivalence class for X1 ⊥ X2 | X3.



The Causality Lab

Convinced that the qualitative story behind causal
discovery should be taught to introductory-level
students either prior to or simultaneously with a basic
course on statistical methods, a team10 from Carnegie
Mellon and the University of California, San Diego,
created enough online material for an entire semes-
ter’s course in the basics of CBNs. By the spring of
2004, over 2,600 students in more than 70 courses at
almost 30 different colleges or universities had taken
all or part of our online course, which is available
through Carnegie Mellon’s Open Learning Initiative
at www.cmu.edu/oli/.

Causal and statistical reasoning involves three
components: 16 lessons, or concept modules; a virtual
laboratory for simulating social science experiments,
the Causality Lab;11 and a bank of over 120 case stud-
ies, which are reports of “studies” by social, behav-
ioral, or medical researchers. Each of the concept
modules contains approximately the same amount of
material as a textbook chapter. The Causality Lab
embodies the normative theory by making explicit all
the ideas we discussed.

Figure 8-5 shows the navigation panel for the lab.
Each of the icons may be clicked to reveal, and in
some cases manipulate, the contents of an object for a
given exercise. The instructor creates the “true” CBN
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FIGURE 8-5 The Causality Lab navigation panel. hyp., 
hypothetical.

www.cmu.edu/oli/


with an exercise building tool, and this constitutes the
“true graph” to be discovered by the student. Of
course, just as real scientists are confined to one side
of the Humean curtain, so are students of the
Causality Lab. In most exercises, they cannot access
any of the icons in the left column, all of which
represent one aspect of the truth to be discovered.
Students cannot simply click and see the truth.

Using the example of room temperature and
sweaters, suppose the true graph and conditional prob-
ability distributions are as given in Figure 8-1. To fully
determine the population from which the student may
draw a sample, however, the student must also provide
the (possibly null) experimental setup. Once the
student specifies one or more experimental setups,
that student can “collect data” from any of them.

For example, suppose we clicked on the
Experimental Setup icon and then created three
distinct experimental setups (Figure 8-6). On the left,
both room temperature and sweater will be passively
observed. In the middle, the value of room tempera-
ture will be randomly assigned (indicated by the icon
of a die attached to Room_Temp), and the value of
sweater will be passively observed. On the right, the
value of sweater will be randomly assigned, and the
value of room temperature will be passively observed.

As the navigation panel in Figure 8-5 shows, it is
the combination of the experimental setup and the
true CBN that defines the manipulated system, which
determines the population probability distribution.
So, if we click on Collect Data from Exp-Setup 1 (far
left side of Figure 8-6), then we will be drawing a
sample from the distribution shown at the top of
Figure 8-3. If we collect data from Exp-Setup 2, then
our sample will be drawn from the distribution shown

in the middle of Figure 8-3, and so on. The fact that
the sample population depends on both the experi-
mental setup and the true CBN is a pillar of the nor-
mative theory, but this fact is rarely, if ever, taught.

Once a sample is pseudorandomly drawn from the
appropriate distribution, we may inspect it in any way
we wish. To keep matters as qualitative as possible,
however, the focus of the Causality Lab is on
independence constraints—the normative theory’s pri-
mary connection between probability distributions
and causal structure. In particular, the Predictions and
Results window allows the student to inspect the fol-
lowing for each experimental setup: the independence
relations that hold in the population12 and the
independence relations that cannot be rejected at �

�.05 by a statistical test applied to any sample drawn
from that population

For example, Figure 8-7 shows the results of an
experiment in which wearing a sweater is randomly
assigned and a sample of 40 individuals was drawn
from the resulting population. The Predictions and
Results window indicates that, in the population,
room temperature and sweater wearing are independ-
ent (notated as ). The lab also allows students to
inspect histograms or scatterplots of their samples and
then enter their own guesses regarding which inde-
pendence relations hold in a given sample. In this
example, a student used the histograms to guess that
room temperature and sweater wearing were associ-
ated (not independent), although the statistical test
applied to the sample of 40 could not reject the
hypothesis of independence. Thus, one easy lesson
for students is that statistical tests are sometimes bet-
ter at determining independence relations than stu-
dents who eyeball sample summaries.

�
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FIGURE 8-6 Three experimental setups.



Students can also create hypotheses and then
compare the predictions of their hypotheses to the
results of their experiments. For example, we may
rebel against common sense and hypothesize that
wearing a sweater causes the room temperature. The
Causality Lab helps the students learn that their hypo-
thetical graph only makes testable predictions about
independence in combination with an experimental
setup, which leads to a manipulated hypothetical
graph (see Figure 8-5).

Causal Discovery in the Lab

Equipped with the tools of the Causality Lab, we can
decompose the causal discovery task into the follow-
ing steps:

1. Enumerate all the hypotheses that are consistent
with background knowledge.

2. Create an experimental setup and collect a
sample of data.

3. Make statistical inferences about the indepen-
dences that hold in the population from the
sample.

4. Eliminate or reallocate confidence in hypo-
theses on the basis of the results from Step 3.

5. If no unique model emerges, then go back to
Step 2.

Steps 1 (enumeration) and 3 (statistics) are interest-
ing, although only necessary if one is following a
constraint-based approach. The interesting action is in
Steps 2 and 4. As operationalized in the Causality Lab
and defined in the normative theory, the first part of Step
2 (experimental design) amounts to determining, for
each variable under study, whether that variable will be
observed passively or have its values assigned randomly.

Depending on the hypotheses still under considera-
tion, experimental setups differ in the informativeness
of the experiment’s results. For example, suppose the
currently active hypotheses include X → Y → Z and
X ← Y → Z. An experimental setup (call it ES1) in
which X is randomized and Y and Z are passively
observed will uniquely determine the correct graph no
matter the outcome.13 A different experiment (call it
ES2) in which Z is randomized and X and Y passively
observed will tell us nothing, again regardless of the
outcome of the experiment. The difference in the
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FIGURE 8-7 Independence results.



experiments’ informativeness arises because the manip-
ulated graphs are distinguishable in ES1 but not in
ES2 (Figure 8-8). In ES1, the two possibilities have dif-
ferent adjacencies (X → Y in one, and no edges in the
other) and thus entail different sets of independencies.
In ES2, however, the two manipulated graphs are indis-
tinguishable; they have the same adjacencies.

From this perspective, the causal discovery task
involves determining, for each possible experimental
setup one might use, the set of manipulated hypotheti-
cal graphs and whether they are (partially) distinguish-
able. This is a challenging task. What are the general
principles for experimental design, if any? When the
goal is to parameterize the dependence of one effect on
several causes, then there is a rich and powerful theory
of experimental design from the statistical literature
(Berger, 2005; Cochran & Cox, 1957). When the goal
is to discover which among many possible causal struc-
tures are true, however, the theory of optimal experi-
mental design is much less developed. From a
Bayesian perspective, we must first specify a prior distri-
bution over the hypothetical graphs. Given such a
distribution, each experimental setup has an expected
gain in information (reduction in uncertainty), and
one should thus pick the experiment that would most
reduce uncertainty (Murphy, 2001; Tong & Koller,
2001). Computing this gain is intractable for all but the

simplest of cases, although Steyvers et al. (2003) argue
that naïve subjects approximate just this sort of behav-
ior. Regardless of the descriptive question, a theory of
so-called active learning provides normative guidance
regarding the optimal sequencing of experiments.
Taking a constraint-based approach, Eberhardt,
Glymour, and Scheines (2005) show that for N vari-
ables, N � 1 experiments that randomize at most a 
single variable are always sufficient to identify the cor-
rect graph and in the worst case that many are necessary.

Although there is not yet a graphical characteriza-
tion of the best experiment given a set of active hypothe-
ses, we do have a few powerful heuristics. For example,
passive observation is sufficient, under a constraint-
based approach, to identify all the adjacencies among 
a set of variables. Given the adjacencies, an intervention
on X will orient all the edges adjacent to X. Suppose X
and Z are adjacent. If X and Z are independent after an
intervention on X, then the edge is X ← Z; if X and Z
are associated, then the edge must be X → Z.

Pilot Studies

An obvious question about teaching the normative
theory is as follows: Does learning it improve a student’s
performance on causal learning tasks? In the fall of
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FIGURE 8-8 Informative and uninformative experimental setups.



2004, one of us (R. S.) taught an upper-level seminar at
Carnegie Mellon on causation and social policy. For
about a month in the middle of the seminar, the stu-
dents went through the causal and statistical reasoning
material and learned the rudiments of the representa-
tional theory of CBNs. The class covered the idea of
causation, causal graphs, manipulations, manipulated
models, independence, conditional independence,
and d-separation,14 but included no instruction on
model equivalence and no instruction on a procedure
for causal discovery. All 15 of the students in the class
agreed to participate in a pilot study in which they 
were given four discovery tasks. The students all
worked for a little over an hour in a computer cluster.
We were unable to enforce strict silence between stu-
dents, and thus the results of our pilot study cannot be
considered rigorous. They are nevertheless interesting
and suggestive.

In all of our experiments, participants were allowed
to see the full independence relations that hold in the
population defined by an experimental setup of their
choice, and so no statistical judgments were required.
We recognize that this is different from the standard
presentation in psychological experiments, but our
intent was to focus on the skills involved in causal
discovery from known facts about the population, as
opposed to making statistical inferences from samples.
To provide familiarity with the Causality Lab inter-
face, all participants were provided a simple training
problem. In the training task, the students were
instructed to (a) do a passive observation, then (b)
eliminate all the models they could, and finally (c)
determine the true graph using the fewest number of
experiments.

Experiment 1

In Experiment 1, we asked students to determine
which model in Figure 8-9 was the true graph in the
minimum number of experiments. Students were

randomly assigned to a model, and there was no effect
of condition. The experiment explored whether stu-
dents understood the difference between direct and
indirect causation. All 15 students learned the correct
model in a single experiment.

We were also interested in the students’ choices of
experimental targets. Table 8-1 shows the independ-
ence relations entailed by both models in every possi-
ble experimental setup, as well as whether M1 and
M2 can be distinguished in that experiment. From a
normative point of view, no one should choose to ran-
domize Z because that experiment will not distin-
guish between these two models. Randomizing Y is
optimal because under that intervention the two mod-
els make different predictions about both X  Z and
X  Z | Y.

Steyvers et al. (2003) report a source bias in choos-
ing interventions: People prefer to intervene on vari-
ables believed to have no edges into them (i.e., no
causes in the system). If this bias holds, then people
should prefer to randomize on X when they random-
ize on any variable at all. Note that the source bias
refers only to choices among experiments; no predic-
tion was made about whether people will prefer to
experiment or passively observe.

Figure 8-10 shows the frequency with which each
experiment was chosen first. All students were norma-
tively correct; no one chose to randomize on Z. Our
students preferred the passive observation, which can
be explained by its use in the training experiment. 
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FIGURE 8-9 Choices in Experiment 1.

TABLE 8-1 Independencies Implied by M1 and M2

Experimental Setup X   Y X  Z X   Z | Y M1 and M2 
Distinguishable?

Passive observation Neither Neither M1, not M2 Yes

Randomize X Neither Neither M1, not M2 Yes

Randomize Y Both M1, not M2 M1, not M2 Yes

Randomize Z Neither Both No
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FIGURE 8-10 Choice of experiments in Experiment 1. Obs., observation.
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FIGURE 8-11 Possibilities in Experiment 2.

And, in contrast to the results reported in Steyvers et al.
(2003), students exhibited no source bias whatsoever:
Six of the seven who chose to intervene did so on the
mediating variable Y.

Experiment 2

In the second experiment, the students had to choose
among four possibilities (Figure 8-11). They were
again told to find the true graph in the minimum
number of experiments, although they understood
that they were not required to do the passive observa-
tion experiment first. Since M3 and M4 are essen-
tially the same a priori, we randomized the students to
a true graph of M1, M2, or M3.

This experiment aimed to determine whether stu-
dents could choose an informative intervention; in
this problem, the choice of experimental setup
matters greatly, as shown in Table 8-2. For example, if
we passively observe all variables, then we can tell
only whether M1 is the true model or not the true
model (i.e., that the true model is one of {M2, M3,
M4}). The normatively optimal experiment to per-
form is the one in which the middle variable C is ran-
domized. That experiment is guaranteed to uniquely
identify the correct model regardless of outcome.

Again, students were quite successful in the over-
all task: 14 of 15 correctly identified the model. The
number of experiments it took to arrive at an answer
varied considerably: Two experiments were the mode,
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FIGURE 8-12 Results of Experiment 2.
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TABLE 8-2 Distinguishable Models by Intervention
Choice

Experimental Setup Distinguishable?

Passive observation M1 from {M2, M3, M4}

Randomize A M1 from {M2, M3} from M4

Randomize B M1 from {M2, M4} from M3

Randomize C M1 from M2 from M3 from M4

but several students used three or four. Figure 8-12
shows the students’ first experimental choice (top
graph) and the target of the first intervention they per-
formed regardless of when that first intervention
experiment occurred (bottom graph). Clearly, stu-
dents preferred passive observation as a first choice,
but the first choice for an intervention was
overwhelmingly the mediator C as opposed to either
endpoint variables A or B.



Experiment 3

In the third experiment, students were told that the true
model was one of the models in Figure 8-13, and we
randomly assigned students to have either the single-
edge model or the chain model (both highlighted in
Figure 8-13) as the true underlying causal structure.
(Students were not told that those were the only two
possibilities.) All participants were required to (a) begin
with the passive observation experiment, (b) eliminate
as many models as possible after each experiment, and
(c) find the true model in the minimum number of
experiments. Students recorded the experimental
design used to eliminate each model except the final
one. Students did not use the hypothetical graph win-
dow of the Causality Lab and so had no computational
aids to calculate the independencies implied by each
hypothesis under a given experimental setup.

In our experiment, over two thirds of participants
(11 of 15) answered correctly, and success was inde-
pendent of condition. Including the passive observa-
tion, students averaged just under three experiments
before reaching a final answer, and the number of
experiments was also independent of condition. As
one would expect, the 11 students who got the answer
right averaged significantly fewer experiments than
the 4 who got it wrong. For the remaining analyses,
we restrict our attention to the participant responses
after only the initial passive observation.

One question behind our experiment was whether
students acted as if they understood the concept of
MECs: sets of models that are indistinguishable by
passive observation because they imply the same set of

independence relations. In Figure 8-14 we show
again the 18 possible models, but group them in
boxes corresponding to the 9 MECs.

Individuals who (act as if they) understand the idea
of MECs should, for every equivalence class, either
keep or remove all its members together after the
passive observation stage. For equivalence classes D, E,
and F, which have only a single member, this necessar-
ily happens, so we exclude those classes. We then define
a (weighted) MEC “integrity” score as follows:

The weighting captures the fact that it is more
challenging to have MEC integrity for equivalence
classes G, H, and I, which have three members, than it
is for equivalence classes A, B, or C, which have two. If
a participant always keeps or removes members of an
MEC together, then MEC-Integrity equals 1; if mem-
bers of an MEC are never kept or removed together,
then MEC-Integrity equals 0. Figure 8-15 shows that
students exhibited an extremely high degree of MEC
integrity: 12 of 15 participants were perfect, and only 1
student was massively confused.

Even if someone exhibited perfect MEC integrity,
they might still be retaining or excluding the wrong
graphs (or the wrong MECs) given the data they
received. To measure whether they are including too

MEC integrity

if all models in mec were
included or all excluded

�

mec :
::

otherwisemec A B C G H I 0 :
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FIGURE 8-13 Possibilities for Experiment 3.



many graphs, we computed the percentage of com-
mission errors:

Commission Error

Number of graphs retained
by student but not in co

�

, rrrect
MEC
Number of graphs not in
correct MEC

Similarly, to measure whether they are excluding
graphs equivalent to the truth, we computed the per-
centage of omission errors:

Omission Error

Number of graphs in the correct
MEC omitted by the stu

�
ddent

Number of graphs not in correct
MEC
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FIGURE 8-14 Equivalence classes for the passive observation experiment in Experiment 3.

FIGURE 8-15 MEC integrity.
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Not surprisingly, students were not as good on the
accuracy of their inferences. Figure 8-16 shows that,
although their omission error was quite low (few cor-
rect graphs were left out), students often retained
more graphs than were consistent with the passive
observation.

Interestingly, we think we can explain why.
Although we did not include equivalence classes D,
E, and F in our computation of MEC-Integrity
(because they each have only one graph as a mem-
ber), we did include those graphs in our calculations
of omission and commission error. These graphs each
have the same adjacencies as some equivalence class,
although they differ from the class in edge orienta-
tion. In Figure 8-14, classes D and G share the same
adjacencies, as do E and H, and F and I. If, for exam-
ple, the true graph was C → B → A (part of equiva-
lence Class H) and I included every graph in Classes
E and H, then I would have a perfect score on MEC-
Integrity but a nonzero commission error. In general,
if I attend only to adjacencies and ignore orientations,
I will (provably) always receive a perfect score on
MEC-Integrity, even though I might make a number
of commission errors.

After looking at the data, we hypothesized that stu-
dents were quite good at determining the correct
adjacencies but not very good at determining the cor-
rect orientations. To explore this, we first computed
participants’ Adjacency-Integrity to determine
whether the students included or excluded graphs
that share adjacencies as a unit.

The histogram in Figure 8-17 shows that students
had relatively high Adjacency-Integrity, suggesting
that the high MEC-Integrity scores were caused (at
least in part) by people keeping/removing graphs with
the same adjacencies and not necessarily those that
made the identical observational predictions.

This explanation does not completely account for
students’ performance. Many included graphs that
were neither Markov nor adjacency equivalent to the
truth. But, not all mistakes are quite the same.
Suppose the truth is A → B → C. Including the graph
A → B ← C is arguably a less-severe mistake than
including the graph B → C → A. In the former case,
the adjacencies were correctly learned, although not
the orientations. In the latter case, however, a true
adjacency (A-B) was excluded, and a false adjacency
(C-A) was included. We will say that a graph G is
adjacency consistent with a graph H if G’s adjacencies
are a subset of H’s or vice versa. The former error in
this example is adjacency consistent with the truth;
the latter error is not.

To understand better the severity of the students’
errors, we computed the proportion of the commission

Adjacency-Integrity

if all els in adj were

included or all e
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xxcluded
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FIGURE 8-16 Commission and omission error.
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errors that were adjacency consistent with the true
MEC.

Figure 8-18 shows that students’ errors tend to be adja-
cency consistent; the majority of their mistakes
involved keeping a graph that was either a subgraph or
supergraph of the truth.

Of course, this high percentage could arise if most
graphs are adjacency consistent with the truth (although
this is not actually the case in this experiment). 

Adjacency Consistent Error
Number of graphs committed
that are adj

�
aacency consistent

Number of graphs committed

To normalize for the number of errors that could be
adjacency consistent or inconsistent, we also computed:

Adjacency Inconsistent Inclusion
Number of committed graphs
that

�
aare adjacency inconsistent

Number of committable graphs
that are addjacency inconsistent

Adjacency Consistent Inclusion
Number of committed graphs
that ar

�
ee adjacency consistent

Number of committable graphs
that are adjaceency consistent
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FIGURE 8-17 Adjacency-integrity.
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FIGURE 8-18 Adjacency consistent error.
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If students were indifferent between adjacency consis-
tent and adjacency inconsistent errors, then the
within-student difference between these two measures
should center around 0. As Figure 8-19 shows, it
clearly does not.

These results seem to indicate that

1. Students have very high Adjacency-Integrity
(Figure 8-17).

2. A large fraction of the graphs committed are
adjacency consistent (Figure 8-18).

3. The fraction of the committable adjacency con-
sistent graphs that are actually committed is
much higher than the fraction of committable
adjacency inconsistent graphs that are actually
committed (Figure 8-19).

We interpret these results to mean that, like con-
straint-based algorithms and consistent with Danks
(2004), students are using one cognitive strategy for
detecting when two variables are adjacent and
another for detecting how the adjacencies are ori-
ented, especially in the case of data collected from
passive observation. Detecting whether X and Y are
adjacent is as simple as detecting whether X and Y are
independent conditional on any set. Detecting
whether X-Y-Z is oriented as X → Y ← Z or as one of
{X → Y → Z, X ← Y → Z, X ← Y ← Z} is much more
difficult.

Conclusions

The pilot studies discussed here are suggestive but 
still preliminary. Subjects had direct access to the
independence data true of the population, and in sev-
eral of our experiments the choices they confronted
were limited. Nevertheless, these studies suggest that
there is a lot to be learned from comparing naïve sub-
jects to those trained even for a short time on the nor-
mative theory of CBNs. For whatever reason, trained
subjects can reliably differentiate between direct and
indirect causation, and many can do so with an opti-
mal strategy for picking interventions. Indeed, our
first experiment suggests that trained students are not
subject to source bias in picking interventions, even
though they were never trained in this particular skill.
We speculate that simple training in the normative
theory sensitizes subjects to the connection between
conditional independence and indirect causation,
and attending to the mediating variable, which is the
conditioning variable, leads subjects to intervene on
the mediator instead of the source. Our pilot studies
also suggest that only minimal training in the norma-
tive theory is needed to exhibit sensitivity to model
equivalence, a core idea in the normative theory.
Finally, they suggest that students pursue a strategy by
which they find which pairs of variables are adjacent
and then attempt to find in which direction the causal
relations obtain.

136 CAUSATION AND PROBABILITY

FIGURE 8-19 Adjacency consistent-adjacency inconsistent inclusion.
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Strategies for automatically learning causal struc-
tures in the normative theory divide into constraint-
based and score-based methods.15 In constraint-based
methods, one decides on individual constraints (e.g.,
independence or conditional independence facts) to
decide on local parts of the model (e.g., whether a
given pair of variables is adjacent or not). In score-
based searches, one computes a score reflecting the
goodness of fit of the entire model. Human subjects,
both naïve and trained, arguably execute a simple ver-
sion of a constraint-based search. Our subjects used
particular independence relations to decide on ques-
tions of adjacency, and were reliable at this, and then
used interventions to decide on orientation for local
fragments of the model, and were moderately reliable
at this. None judged models as a whole and attempted
to maximize some global score. As it turns out,
constraint-based approaches are much more efficient
but less accurate in the face of noisy data. Our conjec-
ture is that human subjects employ a constraint-based
approach because it allows a sequence of decisions,
each involving a potentially simple computation, like
whether two variables are independent or not.

In systems of more than toy complexity, that is,
systems involving more than two or three variables, a
score-based strategy would become computationally
prohibitive for a human cognitive agent, while a con-
straint-based approach would still be viable. Because
a constraint-based approach also lends itself to an any-
time approach, that is, using only the simplest con-
straints first and then stopping “any time” the
constraints under test become too complicated to
compute or to trust statistically, it is also well suited to
systems with severe computational or memory con-
straints (e.g., human learners).

Nevertheless, we do not claim that evolution has
trained humans to execute anything like the theoreti-
cally correct version of a constraint-based search for
causal structure. Even minimally trained subjects
using a constraint-based approach well suited for toy
systems but not theoretically correct might quickly be
overcome by the complexity of a five-variable system.
In informal observation, this is exactly what happens.
Even on systems involving four variables, if subjects
are given no background knowledge whatsoever
about which variables are prior to which others (e.g.,
which variable is the “outcome” variable), then they
become quickly lost in the more than 50 models in
their search space. In future experiments, we will
investigate the discontinuities in performance for

trained subjects as a function of system complexity.
We will train subjects to execute a modified version of
a constraint-based approach that would handle much
larger systems and see if this will help students to
become truly more reliable causal learners.

ACKNOWLEDGMENTS This research was supported
by the James S. McDonnell Foundation, the Institute
for Education Science, the William and Flora Hewlett
Foundation, the National Aeronautics and Space
Administration, and the Office of Naval Research
(grant to the Institute for Human and Machine
Cognition: Human Systems Technology to Address
Critical Navy Need of the Present and Future 2004).

We thank Adrian Tang and Greg Price for
invaluable programming help with the Causality
Lab, Clark Glymour for forcing us to get to the
point, and Dave Sobel and Steve Sloman for several
helpful discussions.

References

Berger, M. (2005). Applied optimal designs. New York:
Wiley.

Blalock, H. (1961). Causal inferences in nonexperimental
research. Chapel Hill: University of North Carolina
Press.

Bowden, R., & Turkington, D. (1984). Instrumental vari-
ables. New York: Cambridge University Press.

Cheng, P. W. (1997). From covariation to causation: A
causal power theory. Psychological Review, 104,
367–405.

Cheng, P. W., & Novick, L. R. (1992). Covariation in
natural causal induction. Psychological Review, 99,
365–382.

Cochran, W., & Cox, G. M. (1957). Experimental
designs (2nd ed.). New York: Wiley.

Danks, D. (2004). Constraint-based human causal learn-
ing. In M. Lovett, C. Schunn, C. Lebiere, &
P. Munro (Eds.), Proceedings of the Sixth
International Conference on Cognitive Modeling
(ICCM-2004; pp. 342–343). Mahwah, NJ: Erlbaum.

Danks, D. (2005). Causal learning from observations and
manipulations. In M. Lovett & P. Shah (Eds.),
Thinking with data. Mahwah, NJ: Erlbaum.

Danks, D., Griffiths, T. L., & Tenenbaum, J. B. (2003).
Dynamical causal learning. In S. Becker, S. Thrun,
& K. Obermayer (Eds.), Advances in neural infor-
mation processing systems 15 (pp. 67–74).
Cambridge, MA: MIT Press.

Eberhardt, F., Glymour, C., & Scheines, R. (2005). 
N � 1 experiments suffice to determine the causal

TEACHING THE NORMATIVE THEORY OF CAUSAL REASONING 137



relations among N variables (Tech. Rep. No.
CMU_PHIL-161), Carnegie Mellon University,
Department of Philosophy, Pittsburgh, PA.

Glymour, C. (1998). Learning causes: Psychological
explanations of causal explanation. Minds and
Machines, 8, 39–60.

Glymour, C. (2000). Bayes nets as psychological models.
In F. C. Keil & R. A. Wilson (Eds.), Explanation
and cognition. Cambridge, MA: MIT Press.

Glymour, C., & Cooper, G. (1999). Computation, cau-
sation, and discovery. Cambridge, MA: AAAI
Press/MIT Press.

Gopnik, A., Glymour, C., Sobel, D. M., Schulz, L. E.,
Kushnir, T., & Danks, D. (2004). A theory of causal
learning in children: Causal maps and Bayes nets.
Psychological Review, 111, 3–32.

Gopnik, A., Sobel, D. M., Schulz, L. E., & Glymour, C.
(2001). Causal learning mechanisms in very young
children: 2-, 3-, and 4-year-olds infer causal rela-
tions from patterns of variation and covariation.
Developmental Psychology, 37, 620–629.

Griffiths, T. L., Baraff, E. R., & Tenenbaum, J. B. (2004).
Using physical theories to infer hidden causal struc-
ture. Proceedings of the 26th Annual Conference of
the Cognitive Science Society.

Lagnado, D., & Sloman, S. A. (2002). Learning causal
structure. Proceedings of the 24th Annual
Conference of the Cognitive Science Society,
Maryland.

Lagnado, D., & Sloman, S. A. (2004). The advantage of
timely intervention. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 30,
856–876.

Murphy, K. (2001). Active learning of causal Bayes net
structure (Tech. Rep.), University of California-
Berkeley, Computer Science Division, Berkeley, CA.

Pearl, J. (1988). Probabilistic reasoning in intelligent sys-
tems. San Mateo, CA: Morgan Kaufmann.

Pearl, J. (2000). Causality: Models, reasoning, and infer-
ence. Cambridge, England: Cambridge University
Press.

Perales, J. C., & Shanks, D. R. (2003). Normative and
descriptive accounts of the influence of power and
contingency on causal judgement. The Quarterly
Journal of Experimental Psychology, 56A, 977–1007.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of
Pavlovian conditioning: Variations in the effective-
ness of reinforcement and nonreinforcement. 
In A. H. Black & W. F. Prokasy (Eds.), Classical
conditioning II: Current research and theory
(pp. 64–99). New York: Appleton-Century-Crofts.

138 CAUSATION AND PROBABILITY

Simon, H. (1953). Causal ordering and identifiability. In
Hood & Koopmans (Eds.), Studies in econometric
methods (pp. 49–74). New York: Wiley.

Sloman, S. A., & Lagnado, D. (2002). Counterfactual
undoing in deterministic causal reasoning.
Proceedings of the 24th Annual Conference of the
Cognitive Science Society, Maryland.

Sobel, D. M., & Kushnir, T. (2004). Do it, or watch it
done: The importance of decision demands in causal
learning from interventions. Manuscript submitted
for publication, Brown University.

Spiegelhalter, D., & Lauritzen, S. (1990). Sequential
updating of conditional probabilities on directed
graphical structures. Networks, 20, 579–605.

Spirtes, P., Glymour, C., & Scheines R. (2000).
Causation, prediction and search (2nd ed.),
Cambridge, MA: MIT Press.

Steyvers, M., Tenenbaum, J. B., Wagenmakers, E. J., &
Blum, B. (2003). Inferring causal networks from
observations and interventions. Cognitive Science, 27,
453–489.

Tenenbaum, J. B., & Griffiths, T. L. (2001). Structure
learning in human causal induction. In T. Leen, T.
Deitterich, & V. Tresp (Eds.), Advances in neural
information processing 13 (pp. 59–65). Cambridge,
MA: MIT Press.

Tenenbaum, J. B., & Griffiths, T. L. (2003). Theory-
based causal inference. In S. Becker, S. Thrun, &
K. Obermayer (Eds.), Advances in neural informa-
tion processing systems 15 (pp. 35–42). Cambridge,
MA: MIT Press.

Tenenbaum, J. B., & Niyogi, S. (2003). Learning causal
laws. In Proceedings of the 25th Annual Conference
of the Cognitive Science Society.

Tong, S., & Koller, D. (2001). Active learning for struc-
ture in Bayesian networks. Proceedings of the
International Joint Conference on Artificial
Intelligence.

Waldmann, M. R., & Hagmayer, Y. (in press). Seeing
versus doing: Two modes of accessing causal knowl-
edge. Journal of Experimental Psychology: Learning,
Memory, and Cognition.

Waldmann, M. R., & Martignon, L. (1998). A Bayesian
network model of causal learning. In M. A.
Gernsbacher & S. J. Derry (Eds.), Proceedings of the
20th Annual Conference of the Cognitive Science
Society. Mahwah, NJ: Erlbaum.

Wright, S. (1934). The method of path coefficients. Annals
of Mathematics Statistics, 5, 161–215.



Causal knowledge enables children to interpret the
current state of the world rationally and to engage in
predictive inference and explanation. Traditionally,
young children’s causal knowledge has been consid-
ered “perceptually driven” or “precausal” (e.g., Piaget,
1929). Contemporary research, however, has shown
that young children’s causal reasoning abilities are
actually quite sophisticated. Infants recognize causal
properties of objects, including containment, support,
and contact (e.g., Hespos & Baillargeon, 2001; 
Leslie & Keeble, 1987; Needham & Baillargeon, 1993;
Spelke, Breinlinger, Macomber, & Jacobson, 1992).
Before their second birthday, toddlers recognize vari-
ous nonobvious causal relations, especially about oth-
ers’ desires and intentions (e.g., Meltzoff, Gopnik, &
Repacholi, 1999). By age 5, children understand that
biological and psychological events rely on nonobvi-
ous, hidden causal relations (e.g., Gelman & Wellman,
1991; Gopnik & Wellman, 1994). More generally,
preschoolers recognize the importance of Hume’s 

principles—temporal priority, spatial priority, and 
contingency—in making judgments about causal rela-
tions (Bullock, Gelman, & Baillargeon, 1982; Shultz,
1982). Preschoolers also appear to have sophisticated
explanative and counterfactual reasoning abilities
(Harris, German, & Mills, 1996; Schult & Wellman,
1997; Sobel, 2004; Wellman & Liu, chapter 16, this
volume).

As developmentalists, we wish to describe how chil-
dren learn causal knowledge and develop their reason-
ing abilities. How children represent and acquire causal
knowledge, however, is an interdisciplinary question,
and this volume illustrates how philosophy, computer
science, and cognitive psychology can offer different
insights into the process. We would like to suggest that
other branches of developmental research—specifically
research on infants’ statistical learning—offer insight
into causal learning. Conversely, understanding how
children learn and reason about causal relations might
provide insight into other areas of development.
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In this chapter, we examine the relation between
young children’s causal learning and inference abili-
ties and their capacity to perceive the statistical associ-
ations between salient events. Of course, there are
significant differences between recognizing statistical
relations and causal knowledge. Knowing what causal
relations exist allows learners to generate explanations
and reason about counterfactuals, neither of which is
supported by pure statistical association. Statistical
associations do allow for simple predictions about
future events and the chunking of correlated stimuli
(for more efficient processing). But, causal knowledge
goes much further than that, allowing for a “calculus
of intervention” (Pearl, 2000): inferences about the
outcome of intentional manipulative actions that
change the state of events in the world. Recognizing
that two events are associated provides no information
about the result of interventions on either event. But,
although correlations do not equate to causal rela-
tions, they are often a good place to start. Under-
standing whether and how children acquire statistical
information about events in the world should provide
a starting point for researchers interested in causal
learning. Likewise, children’s causal reasoning abili-
ties might provide insight into phenomena discussed
in the statistical learning literature.

How Statistical Regularity Can
Translate to Causal Knowledge

A system for causal learning has a particular prob-
lem: Although some causal relations seem directly 
perceivable—such as watching a ball launch another
ball (Michotte, 1963)—in general, causal knowledge is
not directly perceptible. One goal of research in chil-
dren’s causal learning has been to describe how causal
knowledge can be recovered from the environment.
How children recognize correlations between objects
and events seems a good place to start. For example,
knowing that a particular causal relation exists suggests
that certain data will occur; if event X causes event Y,
then the occurrence of X will make the occurrence of
Y more likely (all other things being equal). Observing
such correlations might offer insight into causal struc-
ture. Seeing that Y is more likely in the presence of X
than in its absence often leads us to conclude that X is
a cause of Y. Indeed, some adult experiments on causal
learning suggest that such probabilistic reasoning
might be considered a normative model of causal infer-
ence (Allan, 1980; Cheng, 1997; Shanks, 1995).

Of course, such correlations do not always equate
to genuine causal conclusions. Consider three events
related by a simple causal chain X → Y → Z. In this
situation, X and Y are correlated, X and Z are corre-
lated, and Y and Z are correlated. Temporal priority
(or other forms of prior knowledge) might inform you
of the directions of the potential causal relations spec-
ified by these correlations, but the correlations them-
selves potentially overgeneralize the causal structure.
Whether X causes Z directly or only indirectly
through Y is ambiguous given only this information.
What is necessary is a system that recognizes not only
the dependencies among these events, but also their
conditional independencies as well. Observing that X
and Z only co-occur in the presence of Y (and thus are
independent in the absence of Y) suggests the causal
chain model. If this conditional independence rela-
tionship was absent, then a more general model in
which X directly causes both Y and Z (and in which Y
causes Z) is more likely.

What this suggests is that children must recognize
the dependencies among events as well as conditional
probability information to learn the causal structure
of the world. Researchers in causal learning have
examined whether children recognize conditional
dependence and independence information when
making causal inferences (Gopnik, Sobel, Schulz, &
Glymour, 2001; Sobel, Tenenbaum, & Gopnik,
2004). Much of this research introduced children to a
blicket detector, a machine that lights up and plays
music when certain objects are placed on it. The
blicket detector presents a novel, nonobvious property
of each object: its potential to activate the detector.
(The machine is actually controlled through an
“enabling” switch. When the switch is on, any object
will activate the detector. When it is off, no object will
activate the detector.)

Gopnik et al. (2001) trained 3- and 4-year-olds that
objects that activated the detector were called blickets.
Children quickly learned this association. Then, chil-
dren observed a set of trials in which objects either
independently activated the machine or did so only
dependent on the presence of another object.
Specifically, in the one-cause trials, children were
shown two objects. Children observed one object A
activate the detector by itself. Then, they saw that the
other object B did not activate the detector by itself.
Finally, they saw objects A and B activate the detector
twice together (see Figure 9-1 for a schematic of this
procedure). Children were asked whether each object
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was a blicket. In this condition, 3- and 4-year-olds
labeled only object A as a blicket. Object B only acti-
vated the detector in the presence of the object A.

Performance on these trials was compared with per-
formance on the two-cause trials, in which children
were shown two objects that activated the detector with
the same frequency as in the one-cause trials. Speci-
fically, children saw two new objects (C and D). Object
C was placed on the machine three times and activated
it all three times. Object D was placed on the machine
three times and activated it two of three times (see
Figure 9-1). On these trials, 3- and 4-year-olds catego-
rized both objects as blickets. Both objects independ-
ently activated the detector; they just did so with
different frequencies.

These data suggest that children can recognize the
difference between dependencies and conditional
independencies between two events when faced with
information about their statistical regularity (what
Reichenbach in 1956 called screening-off reasoning).
This type of reasoning represents a move from recogni-
zing just the co-occurrence among events to recognizing
the information necessary to make causal inferences.

This procedure generalizes beyond reasoning about
physical events: Schulz and Gopnik (2004) demon-
strated that 3- and 4-year-olds make similar screening-
off inferences across a variety of domains (see also
Schulz et al., chapter 5, this volume). Younger chil-
dren also appear to make similar inferences. Using
slight manipulations to the procedure, Gopnik et al.
(2001) demonstrated that 30-month-olds made these
inferences. Sobel and Kirkham (in press) demonstrated
that children as young as 19 months also reasoned in
this manner about objects placed on a blicket detector.

The Associative Challenge

The trouble with the procedure described is that a
mechanism for causal reasoning does not exclusively
explain children’s ability to make screening-off infer-
ences. Screening off is a form of blocking, a phenom-
enon from the animal conditioning literature. In a
classic blocking experiment (Kamin, 1969), an animal
is shown an association between a conditioned and
an unconditioned stimulus (e.g., that a tone predicts
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the occurrence of food). This association is trained
until asymptote, and then the animal is shown a
novel conditioned stimulus presented in compound
with the established stimulus (e.g., that the same
tone paired with a light will predict food). Animals do
not learn that the light is predictive. One interpreta-
tion of these data is that the animals recognize that
light only predicts food in the presence of an estab-
lished predictor (i.e., the tone). Various models of
associative learning (e.g., Rescorla & Wagner, 1972)
were designed to explain this phenomenon.

However, inferential models that rely on calculating
the associative strength among events can have difficulty
when the data involve learners making retro-
spective inferences. One example, taken from the 
contingency judgment literature, is the phenomenon of
backward blocking (Shanks, 1985; Shanks & Dickinson,
1987). In these experiments, adult learners were pre-
sented with two stimuli in compound (A and B) that
elicited some effect. Learners were then shown that one
of those two events alone (A) elicits the effect. Given this
information, adults rated that the B stimulus did not
have the causal efficacy necessary to produce the effect.

Can children engage in backward blocking about
causal events? Sobel et al. (2004) introduced pre-
schoolers to the blicket detector and trained them that

blickets activated the machine. They showed children
two objects (A and B) that activated the machine
together. Then, they showed children that Object A
activated the machine by itself. This procedure is shown
in Figure 9-2. The critical question was how children
would rate Object B. Its causal status is uncertain. If
children engage in backward blocking, then they
should determine that it is not a blicket. This was the
case: Children rarely labeled Object B as a blicket.

Sobel et al. (2004) also demonstrated that children
did not follow a simple algorithm that only recog-
nized associations among events (e.g., Rescorla &
Wagner, 1972). In a different type of trial—indirect
screening-off trials—children were shown two differ-
ent objects (C and D) that activated the machine
together and then that Object C failed to activate the
detector. This procedure is also shown in Figure 9-2.
In this circumstance, only Object D should be con-
sidered a blicket: Object C fails to activate the detec-
tor independently, so the only logical conclusion
children could draw is that Object D has the causal
efficacy necessary to activate the detector. Indeed, 3-
and 4-year-olds generated this response. However,
responding on the basis of only associations, one
would consider Objects B and D’s associative strength
with the detector’s activation to be the same. In both
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cases, the object activates the detector with another
object. The efficacy of that other object alone should
have no bearing on its associations with the detector.

Although these data are inconsistent with various
associative accounts, there are several different cate-
gories of learning algorithms that describe how adults
make inferences about contingencies among events,
which can explain these findings. Children might rec-
ognize causal relations based on a calculation of asso-
ciative strength among events that relies on more
complicated associative mechanisms (Dickinson,
2001; Kruschke & Blair, 2000; Wasserman & Berglan,
1998). These models were designed with the backward
blocking phenomenon in mind. Alternatively, children
might make causal inferences through estimates of
causal strength based on the frequency with which
events co-occur. Such models, like the �P model
(Allan, 1980; Jenkins & Ward, 1965; Shanks, 1995) and
the PowerPC model (Cheng, 1997, 2000), calculate an
estimate of the strength of a presumed causal relation-
ship given a set of data. The backward blocking data
are also consistent with these possibilities.

Sobel et al. (2004) and others (Tenenbaum,
Griffiths, & Niyogi, this volume) pointed out that many
of these learning mechanisms rely on multiple expo-
sures to data (i.e., large sample sizes). Models that
calculate causal structure through associative
strength or through parameter estimation, like the �P
and PowerPC models, must have large sample sizes to
function properly. In this view, the backward blocking
data are inconsistent with all of these accounts because
children make inferences based on relatively small
sample sizes. However, Sobel et al. (2004) also wanted
to demonstrate that children’s causal inferences were
well described by a different type of learning algorithm:
one that relies on Bayesian inference. In Bayesian infer-
ence, learners assign a probability value to a set of
potential causal hypotheses and then update the val-
ues of those probabilities given the observed data
based on the application of Bayes’ rule. The resulting
posterior probabilities are a rational estimate of the
likelihood of each hypothesis being the correct causal
model (see Tenenbaum, Griffiths, & Niyogi, this volume,
for a more detailed description of this model).

This account relies on the assumption that chil-
dren assign the initial probabilities of each hypothesis
nonrandomly: Those priors are set by the base rate of
blickets. If children recognize that there are many
blickets out there in the world, then hypotheses that
specify that many objects are blickets should have a
higher initial probability than hypotheses that specify

few objects are blickets. In this case, the hypothesis in
which both Object A and Object B are blickets
should have a higher initial probability than the
hypothesis that only Object A is a blicket. Both are
consistent with the observed data, and thus both will
be updated equally by the application of Bayes’ rule.
Thus, the hypothesis that both objects are blickets will
have a higher posterior probability. Thus, Bayesian
reasoning predicts that if children know there are
many blickets in the world, then they should not
demonstrate backward blocking.

To test this hypothesis, Sobel et al. (2004, Experi-
ment 3) showed children a set of identical objects that
were placed on the blicket machine. They trained chil-
dren that blickets were either rare or common: 12
objects were scanned 1 at a time, and either 2 or 10
activated the machine in the rare and common condi-
tions, respectively. Then, they presented children the
same backward blocking procedure with two new
objects (from the same set). When 4-year-olds were
trained that blickets were rare, they demonstrated back-
ward blocking: The uncertain object was not catego-
rized as a blicket. When 4-year-olds were trained that
blickets were common, they did not demonstrate back-
ward blocking: The uncertain object was categorized
as a blicket. There was not enough counterevidence to
exclude the hypothesis that both objects were blickets.

These data were qualitatively consistent with the
Bayesian account. The same ambiguous backward
blocking data were presented across the conditions,
and children relied on the base rates of blickets to
make an inference about an object with causal powers
that were uncertain. Further research demonstrated
that adults also reason about such data in a similar man-
ner (Tenenbaum, Sobel, Griffiths, & Gopnik, submitted).
Tenenbaum et al. also introduced a new learning prob-
lem in which both children and adults observed only
ambiguous data. Adult learners were introduced to a
machine like a blicket detector (a detector that
responded to a special kind of lead in pencils, dubbed
superlead, and hence, superpencils) and were trained
that the occurrence of pencils containing this lead was
rare (using the same manipulation as that of Sobel et
al. in 2004–by showing them that 2 of 12 pencils cho-
sen at random from a set activated the detector). Then,
they were shown 3 pencils taken from the set at ran-
dom (A, B, and C). Objects A and B activated the
machine together, and then Objects A and C activated
the machine together. Participants were asked to rate
the likelihood that each object was a super pencil after
each event.
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The Bayesian account predicts four levels of per-
formance given these data. First, ratings of Object A
at the end of the trial should be highest, but not at
ceiling. This reflects the fact that learners did not
unambiguously observe Object A activate the
machine, but the majority of hypotheses consistent
with the data suggest that Object A is a super pencil.
The ratings of A and B after they are placed on the
machine together should be slightly lower. This
reflects the fact that the data at this point in the trial
suggest that at least one of those objects must be a
superpencil. The ratings of B and C at the end of the
trial should be lower, but still higher than the initial
ratings of each object. There are some hypotheses
consistent with B and C being superpencils (namely,
the hypothesis that B and C are superpencils, and A is
not). Tenenbaum et al. (submitted) observed exactly
this four-level pattern of responses. This pattern of
performance also extends to children. In a subsequent
experiment, they found that 4-year-olds made similar
responses, consistent with these qualitative predic-
tions of the Bayesian model.

In general, these experiments integrate children’s
(and adults’) use of statistical information from the
environment with their causal inferences. In the rare-
common backward blocking manipulation, children’s
retrospective inferences were guided by the base rate
of blickets. Because the blicket detector introduced a
novel causal relation, children had to rely on that ini-
tial exposure to establish the training. Indeed, the
original backward blocking experiments can be rean-
alyzed in terms of the base rate of blickets. In Sobel 
et al.’s first experiment, the base rate of blickets was
exactly 50%. In this case, 4-year-olds rated the
B object (the blocked object) as a blicket 13% of the
time in the backward blocking condition. In their sec-
ond experiment, the base rate of blickets was slightly
higher (it varied between 60% and 80%, with a mean
of 68%). In this case, 4-year-olds categorized this
object as a blicket 35% of the time, slightly higher
than the previous experiment. Even without explicit
training, 4-year-olds seemed to pick up on the base
rate of objects that activated the detector and used
that information to guide their inferences.

Can Younger Children Make
Retrospective Inferences?

Sobel and Kirkham (in press) examined whether 
toddlers were capable of retrospectively making

screening-off inferences. They introduced 19- and
24-month-olds to the blicket detector and established
that both age groups would place causally efficacious
objects on the machine. Then, children were shown
two objects (A and B) that activated the machine
together, and then that object A did not activate the
machine by itself. When these objects and the
machine were presented to the child with the instruc-
tion to “make it go,” 24-month-olds placed Object B
on the detector by itself significantly more often than
all other responses put together. The 19-month-olds,
in contrast, responded no differently from chance.

Sobel and Kirkham (in press) also presented these
children with a backward blocking inference.
Because the children were too young for verbal meas-
ures, they could not replicate the Sobel et al. (2004)
procedure. Instead, they showed children three
objects (A, B, and C). Objects A and B activated the
machine together, and then Object A activated the
machine by itself. Object A was removed from the dis-
play, and Objects B and C and the machine were pre-
sented to the child. If children made a backward
blocking inference, then they might be more inclined
to choose Object C (the novel object) in this condi-
tion because they would infer that Object B is ineffec-
tive. Both 19- and 24-month-olds chose between
Objects B and C at chance.

The importance of this procedure, however, is not
in these results, but in the comparison with the indirect
screening-off procedure because the associative strength
of Object B is the same across the two tasks (at least on
many associative models like the Rescorla-Wagner
model). The 24-month-olds’ use of Object B to activate
the detector differed between these two conditions; 19-
month-olds chose Object B with the same frequency
across the two trials. Importantly, Sobel and Kirkham
(in press) did find that these 19-month-olds recognized
screening-off inferences that involved no retrospection.
The critical question is whether these causal reasoning
abilities are developing during the toddler years.

Statistical Learning

A difficulty with testing toddlers’ causal inferences is
that there are some cases in which 18-month-olds fail
to engage in simple, imitative “means-ends” behav-
iors (e.g., Uzgiris & Hunt, 1975; see also Gopnik &
Meltzoff, 1992). Although the children who partici-
pated in Sobel and Kirkham’s (in press) experiment
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were slightly older, to count as making a retrospective
inference in the indirect screening-off trials, they had
to inhibit an event they observed activate the machine
(placing both objects on it) in favor of a novel interven-
tion (placing only Object B on it). The demand char-
acteristics of this experiment might have overwhelmed
the toddlers from producing these inferences.

There is reason to believe that 18-month-olds,
and even younger children, have the ability to detect
conditional probabilities among events. Saffran,
Aslin, and colleagues found that 8-month-old infants
could parse a stream of auditory stimuli based solely
on the transitional probabilities within and between
syllables (i.e., the likelihood that one syllable would
predict the next syllable; Aslin, Saffran, & Newport,
1998; Saffran, Aslin, & Newport, 1996).

For example, Saffran et al. (1996) presented
infants with a 2-minute constant speech stream of 12
unique syllables, which could be parsed into four 
3-syllable “words.” These words were presented
through speakers located on either side of the seated
infant and were defined only by the transitional prob-
abilities between syllables (i.e., there were no pauses
or other cues to word beginnings or endings).
Syllables that occurred within words always predicted
each other; their transitional probabilities were always
equal to 1. In other words, the first syllable in a word
always predicted the second syllable, and the second
syllable always predicted the third. Syllables that
occurred across word boundaries were less pre-
dictable. In this particular case, because there were
only four words in the speech stream, the transitional
probability was equal to .33. The last syllable in a
word predicted the first syllable of the three other
words with equal likelihood. Infants were conditioned
to turn their heads toward the speaker producing the
novel strings (using a preferential head-turn para-
digm). When they turned away from the speaker, the
speech stream would stop. In this way, infants con-
trolled their individual exposure to the auditory stimuli.

After familiarization, infants listened to three sylla-
bles that made up words [i.e., three syllables A, B, and
C, in which p(B |A)�1 and the p(C | B)�1], alternat-
ing with three syllables that did not make up a word
(i.e., three syllables that did not obey these transi-
tional probabilities). The infants showed significantly
greater interest in the nonwords than in the words, as
measured by the amount of time spent looking at the
speakers. Because infants will consistently look longer
at novel stimuli, postfamiliarization (Bornstein, 1985),

these results suggest that the infants discriminated
between the words and the other stimuli based on
learning the transitional probabilities defining word
boundaries (see also Aslin et al., 1998, for evidence
that the results stem from true computation of input
statistics rather than simple frequency counting).

Infants’ statistical learning abilities extend beyond
learning word boundaries. Infants are capable of recog-
nizing and discriminating between complex grammars
relating words together. Using the preferential head-
turn paradigm, Gomez and Gerken (1999) exposed 12-
month-olds to a subset of novel strings produced by one
of two artificial grammars. These grammars differed
only in terms of the ordering of word pairs: Individual
words in the two sets and the starting and ending words
were always the same. The only cues to recognition
were contained in the transitional probabilities inherent
in the word order. After familiarization to the grammar,
infants were exposed to novel words embedded in either
the original grammar or a novel grammar. Infants
showed significantly increased looking time to the
speaker producing novel words in the original grammar,
suggesting that they could discriminate between the two
grammars even when the words were unfamiliar.

The ability to extract regularities in sequential
input does not seem to be a language-specific mecha-
nism, but exists broadly across audition. Infants parse
auditory streams based on statistical probabilities even
when the stimuli are tones (Saffran, Johnson, Aslin, &
Newport, 1999). Further, at least one species of non-
human primates, cottontop tamarins (which never
develop humanlike language skills), can learn statisti-
cally structured sounds (Hauser, Newport, & Aslin,
2001). This suggests that the ability to perceive statis-
tical structure is perhaps not language specific.

There is evidence from other paradigms that infants
show some sensitivity to visual spatial relations among
repetitive events. Young infants learn simple two-
location, predictable spatial sequences in a visual expec-
tation paradigm (Haith, 1993). Infants also show
sensitivity to spatial contingency in temporal sequences.
Wentworth, Haith, and Hood (2002) presented
3-month-old infants with a spatiotemporal sequence in
which a stimulus appeared on the left, in the center, or
on the right of a computer monitor. Infants viewed
either a fixed or a random pattern of locations, and in
some cases there was a contingent relation between the
identity of the central stimulus and the location of the
next peripheral picture. The fixed sequence of three
locations resulted in more eye movement anticipations,
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and there were more anticipatory saccades to the
correct location when there was a contingent relation
between central and peripheral events.

Infants can also recognize statistical structure in dis-
plays of greater complexity than simple two- and three-
location events. Kirkham, Slemmer, and Johnson
(2002) demonstrated that infants as young as 2 months
old could learn temporal sequences of shapes that
were defined by transitional probabilities. Kirkham,
Slemmer, and Johnson (2004) found that 
8-month-olds were capable of extracting these probabil-
ities even when the visual sequence was both temporal
and spatial. In addition, Fiser and Aslin (2003) demon-
strated that 9-month-olds are capable of picking up on
the correlations between individual visual elements in
a series of static multielement scenes. After being
exposed to a number of these scenes, the infants were
shown isolated element pairs that had co-occurred
either frequently within the scenes or rarely; infants
were capable of discriminating between the two.

Statistical Learning Across Modalities

These data suggest that infants—perhaps as young 
as 2 months—recognize conditional probabilities
among events and respond to sequences based on
those transitions. These learning and inferential abili-
ties go beyond observing sequences of events; knowl-
edge about the environment requires correctly
correlating events across sensory modalities.

Indeed, infants develop a variety of intersensory
capacities that allow them to integrate information
across modalities. Newborns bind auditory stimuli to
visual stimuli and then expect that the sounds and their
associated objects will move together (Morrongiello,
Fenwick, & Chance, 1998; Richardson & Kirkham,
2004). By 4 months of age, infants perceive the
bimodal nature of objects (Spelke, 1979, 1981), and
they can perceive speech bimodally (Kuhl & Meltzoff,
1982). Four-month-olds also match faces with voices
based on age, gender, and (at 5 months) affective
expression of the speaker (Bahrick, Netto, &
Hernandez-Reif, 1998; Walker, 1982). By 5 months,
infants also recognize the importance of this sensory
integration. Bahrick and Lickliter (2000) demon-
strated that infants habituated to a bimodal presenta-
tion of an event sequence (e.g., a hammer tapping out
a particular rhythm) would dishabituate to the uni-
modal presentation of that information (e.g., just the
visual of the hammer tapping, without the sound).

These capacities indicate that infants not only prefer
multimodal cues that present them with statistical
redundancies but also recognize their importance in
perceiving the world. Infants’ sensitivity to cross-modal
information stands in contrast to the sparse, unimodal
presentations of many laboratory experiments described
here (e.g., Fiser & Aslin, 2003; Kirkham et al., 2002;
Saffran et al., 1996). If experimental studies do not fully
exploit the cross-modal sensitivity of infants, then per-
haps they risk underestimating the full capacity of their
learning abilities. Bahrick, Lickliter, and colleagues
have presented evidence that intersensory redundancy,
the overlap of information provided by amodal stimuli,
drives selective attention (e.g., Bahrick & Lickliter,
2000; Bahrick, Lickliter, & Flom, 2004). Can infants
usefully integrate statistical information across different
modalities?

One way in which this question can be answered is
in considering infants’ understanding of objects as
enduring across space and time behind an occluder.
In experimental settings, typically the demonstration is
unimodal (e.g., a silent visual display of a ball traveling
across the visual field and passing behind and then
remerging from an occluder). Kirkham and Johnson
(2006) demonstrated that 4-month-old infants, who
are right at the beginning of a transition toward success
at perceptual completion in an object constancy para-
digm (e.g., correctly perceiving the constant trajectory
the ball), benefit greatly from the presence of cross-
modal information. They incorporated a continuous
moving sound into the ball-and-occluder paradigm
such that the sound traveled with the object from one
side of the occluder to the other side. When given
these multiple, redundant, cross-modal cues, 4-month-
old infants could anticipate trajectories as well as 6-
month-olds in a unimodal condition.

Multiple redundant cues are useful when one has
to learn from probabilistic information. For example,
if you test positive for a disease on a blood test that is
90% effective on two separate occasions, then you can
be more than 90% sure that you are indeed suffering
from the disease. Research modeling language learn-
ing has shown that multiple probabilistic cues (e.g.,
lexical stress, phonemes, and pauses) can be inte-
grated to produce faster learning of word boundaries
and syntax, even though each cue individually might
be unreliable (Christiansen, Allen, & Seidenberg,
1998; Christiansen & Dale, 2001). Further, models
have shown a particularly robust effect of cross-modal
information in the service of learning (de Sa &
Ballard, 1998).
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Kirkham, Slemmer, and Johnson (2006) demon-
strated one method in which redundant cue integration
benefited infants’ statistical learning. When 8-month-
olds were presented with a visuospatial pattern (e.g., a
red circle that appeared in one of six locations and in a
statistically probable pattern), they were unable to learn
the statistical relationships within the sequence success-
fully. However, when redundant color and shape cues
were added into the sequence (e.g., each shape in the
pattern had a unique color and shape), performance
improved significantly. Redundant information sup-
ported infants’ statistical learning abilities.

How Statistical Learning Informs Our
Understanding of Causal Learning

These studies provide compelling evidence that
infants are sensitive to statistical regularities across
various modalities but leave open the intriguing ques-
tion of how such abilities could support the complex
inferences that exist in causal reasoning. When
preschoolers use conditional probability to make
judgments about whether objects are blickets, are
they relying on the same mechanisms as infants learn-
ing word boundaries or structural information about
the visual world?

Several different research groups have suggested that
children’s and adults’ causal knowledge and reasoning
abilities can be described by a particular computational
framework: causal graphical models (Glymour, 2001;
Gopnik et al., 2004; Lagnado & Sloman, 2004;
Waldmann & Hagmayer, 2001). The data on chil-
dren’s causal inferences are all consistent with this
representation of causal knowledge. To make these
models causal, they must meet a set of assumptions
(see Gopnik et al., 2004), but at heart, causal graphi-
cal models represent joint probability distributions—
the frequency with which all possible combinations of
events occur. This would imply that recognizing sta-
tistical regularities among events is critical for causal
learning and reasoning, and infants’ statistical learn-
ing abilities build up to an understanding of causal
relations among events.

One implication of this hypothesis is that infants
should be able to engage in the kind of retrospective
inferences about statistical regularity among events.
Our previous investigations suggested that 19-month-
olds could not make these kinds of inferences when
presented with the blicket detector procedure.
However, these difficulties could have resulted from

the motor demands of the experiment. Using statistical
learning procedures that involve measuring infants’ eye
gaze eliminated these demands. We have begun inves-
tigating this hypothesis by presenting 8-month-old
infants with a statistical learning procedure that exam-
ines these abilities (Sobel & Kirkham, in press,
Experiment 2). Our procedure is shown in Figure 9-3a
to 9-3c. In both conditions, 8-month-olds observed a
sequence of four events. During the familiarization
stage (Figure 9-3a), two of these events (A and B)
always occurred together and predicted the occurrence
of another event (C) with 100% frequency. The C
event equally predicted a fourth event (D) or the AB
compound. Likewise, the D event was equally predic-
tive of C or AB. A sound effect (the same one) accom-
panied the C and D events.

After this familiarization, which lasted until infants
observed the AB→C sequence four times, infants
observed that one member of that compound (B) pre-
dicted either the C or the D event (Figure 9-3b). After
observing these data, infants were presented with the
other member of the compound (A), followed by a
blank screen (Figure 9-3c), and the sound effect that
accompanied the C and D events was played. Infants’
eye gaze was measured for an 8-second period. When
the B event did predict the C event on its own, infants
were faced with a similar backward blocking inference
concerning the A event; when B did not predict C, the
data were similar to the indirect screening-off proce-
dure used with the blicket detector.

We observed a significant interaction between
looking time to the C and D locations and experi-
mental condition. When infants were presented with
the backward blocking data, they looked more often
to the D location than the C location. The data sug-
gest that the infants did not believe that the A event
predicted the C event, even though they observed no
evidence to the contrary. When infants were pre-
sented with the indirect screening-off inference, the
pattern of looking times was reversed: Infants looked
longer to the C location than the D location.
Critically, following the A event, infants’ looking
times to the C location were different between the
two conditions, suggesting that they were not respond-
ing on the basis of a simple associative mechanism.

The present data are inconsistent with certain
models that might underlie recognizing statistical reg-
ularities. In particular, the hypothesis that children’s
reasoning is based solely on recognizing associations
does not seem to provide the proper framework 
to explain these data. Similarly, models that rely 
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primarily on calculations of associative strength that
do not distinguish between forms of retrospective
inference, such as the Rescorla-Wagner (1972) equa-
tion and others based on it (e.g., Cramer et al., 2002),
seem inconsistent with the present data.

These inferential abilities are consistent with the
hypothesis that children recognize conditional proba-
bility and engage in screening-off inferences at early
ages. However, unlike the blicket detector experiments,
which showed that preschoolers’ causal inferences
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could not be explained by a variety of alternative mod-
els of causal reasoning, the present data are consistent
with models of causal learning that rely on causal
strength designed with retrospective inferences in mind
(e.g., Kruschke & Blair, 2000; Wasserman & Berglan,
1998) as well as various parameter estimation models
(e.g., Allan, 1980; Cheng, 1997; Shanks, 1995).

Like the experiments on preschoolers, there is one
aspect of these data that is inconsistent with these mod-
els: Infants appear capable of making these kinds of
inferences based on a small sample of data. Estimates
of causal strength and measures of parameter estima-
tion require a relatively large amount of data to make a
meaningful estimation. In the present experiment,
infants could do so with only four trials with the com-
pound AB event and two trials with one of those events
in isolation. However, a stronger argument would be to
present infants with inferences that would be inconsis-
tent with the models listed, parallel to the method used
in previous research on preschoolers’ causal inference
(Sobel et al., 2004; Tenenbaum et al., submitted). We
are currently attempting to determine whether one of
these models best describes infants’ abilities to recog-
nize statistical regularities among events.

New Directions for Integrating Causal
Learning With Statistical Learning

In addition to attempting to map out how infants rec-
ognize co-occurrences among events, we believe
there are several other interactions between the
causal and statistical learning literature that are wor-
thy of future investigation. This list is not meant to be
exclusive or exhaustive. Rather, we wish to articulate
particular relations between the statistical learning
and causal learning literature and suggest that each
can benefit from discussions with the other.

The Problem of Multimodal Integration

The literature on infants’ multimodal integration sug-
gests that redundant information supports infants’ sta-
tistical learning abilities. Are similar effects found in
children’s causal inferences? Does redundant infor-
mation benefit children’s understanding of causal
relations?

This question has been examined indirectly by
researchers interested in relation of the role of causal
properties to conceptual development. Gopnik and
Sobel (2000) examined whether children would extend

a novel label to objects that shared the same causal
properties. They introduced children to the blicket
detector without using that description. They showed
children four objects and demonstrated each on the
blicket detector. Critically, in “conflict” trials, two iden-
tical pairs of objects were used, and one of each acti-
vated the detector. The experimenter then labeled one
of the objects that activated the detector a blicket and
asked the child to show him the other blicket. The 3-
and 4-year-olds chose between the perceptually identi-
cal and causally identical object with equal frequency.

Nazzi and Gopnik (2000) replicated this experi-
ment, but added a critical piece of redundant infor-
mation: They pointed out either the causal or the
perceptual features of each object. When an object
was placed on the detector in the causal condition,
the experimenter said, “Look, it activates the detec-
tor,” and in the perceptual condition, the experi-
menter said, “Look, this one is red.” They found that
children in the causal condition made more causal
responses on these conflict tasks than children in the
perceptual condition or those in a baseline condition.

These data suggest that children’s inferences
about category membership are influenced by redun-
dant information (the machine’s activation and the
experimenter’s language). However, there is little
research investigating what information would be
considered redundant and at what ages children are
sensitive to this information.

The Problem of Constraining Statistical
Learning

A good deal of evidence suggests that infants can rec-
ognize correlations among environmental factors and
use that information to make inferences. For example,
Younger and colleagues (Younger, 1990; Younger &
Cohen, 1983, 1986; Younger & Gottlieb, 1988) sug-
gested that, by the age of 10 months, infants recognize
correlations among object features. A question that
emerges from this discussion is whether infants are
capable of detecting any correlation or whether con-
straints must be in place to guide the child.

This question has been investigated across a number
of laboratories, and often developmental differences
emerge. Younger children appear more capable of
detecting any kind of correlation; older children only
detect correlations that have some theoretical rationale
(see, e.g., Madole & Cohen, 1995; Rakison, 2004). For
instance, Madole and Cohen found that both 14- and
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18-month-olds detected the co-occurrence between the
form and function of an object part. However,
14-month-olds could also detect a correlation between
the part of an object and the function of another part of
that object. Although there are many objects in the
world in which a part’s form and function co-occur, the
latter co-occurrence has little bearing on reality. Indeed, 
18-month-olds did not detect this correlation.

There are a variety of theoretical interpretations of
these data, from a top-down, theory-driven approach
that suggests features correlate based on a set of
explanatory principles (e.g., Murphy & Medin, 1985)
to a bottom-up approach to conceptual development
motivated by detecting which correlations are critical
to category membership (e.g., Smith & Heise, 1992).
In a discussion of these data, Madole and Oakes
(1999) state that “the child’s own experience acting
on and observing objects is probably the primary insti-
gator of developmental change” (p. 289). We agree,
but how this occurs remains an open question.

The Problem of Setting Priors

Tenenbaum and Griffiths (2003; Tenenbaum et al.,
this volume; Tenenbaum et al., 2005) presented a
Bayesian algorithm that accounts for much of the data
on both preschoolers’ and adults’ causal inferences
presented here (Sobel et al., 2004; Tenenbaum et al.,
sunmitted; see also Griffiths & Tenenbaum, 2005).
An important aspect of this account is that children (at
least by age 4) might use statistical information to set
the probability of particular causal hypotheses. In these
experiments, children use the frequency with which
particular events occur to set their prior for each
hypothesis.

However, other information about the way objects
and events causally interact may be detectable from
statistical information in the environment. Griffiths
(2005) reexamined the original Gopnik et al. (2001)
screening-off experiment, in which 3- and 4-year-olds
were shown the examples of one-cause and two-cause
trials shown in Figure 9-1. Children received two of
each trial in a random order. Griffiths suggested that
the order in which these trials were presented might
have presented different information about the nature
of the blicket detector. If children observe a two-cause
trial first, in which one object’s causal power is proba-
bilistic, then children might interpret the detector as
a probabilistic device. When they then observe the
one-cause trial, in which Object B does not activate

the detector by itself once, children might interpret
Object B as a blicket that simply failed on that trial
(because, after all, it was shown to activate the detec-
tor with Object A two times subsequently).

Griffiths (2005) found that performance of 4-year-
olds demonstrated this particular order effect. Their
performance on the first one-cause trial depended on
whether it was the first test trial or if they had observed
a two-cause trial previously. If children observed a
two-cause trial before, then they were more likely not
to make a screening-off inference (i.e., to say that
Object B was a blicket). Here, 4-year-olds are not rec-
ognizing the statistical regularity among events but
rather that patterns of data suggest how new data
could be interpreted. Younger children did not show
this pattern of response. Is this developmental differ-
ence robust, or does it reflect something specific
about the blicket detector paradigm? Griffiths and
Sobel (in preparation) are currently investigating this
question systematically. But, an open question
remains: How else might the data children observe
influence which causal inferences they make?

Concluding Thoughts

What infants know about the statistic of an environ-
ment has been a seminal question in language learn-
ing for some time (Aslin et al., 1998; Jusczyk & Aslin,
1995; Saffran et al., 1996). Questions about children’s
knowledge and use of statistical regularities in the
environment have also motivated research in concep-
tual development (e.g., work by Younger and col-
leagues) as well as what infants know about object
concepts (Johnson, Amso, & Slemmer, 2003; Johnson,
Bremmer, Slater, et al., 2004; Spelke & Van de Walle,
1993). These questions have also begun to permeate
the field of theory of mind, examining what infants
know about statistical regularities in detecting inten-
tions (Baldwin, Baird, Saylor, & Clark, 2001; Brand,
Baldwin, & Ashburn, 2002) or pretending (Lillard &
Witherington, 2004).

What these literature bodies all have in common is
that they describe some type of causal knowledge that
children develop. There seem to be several places in
which children’s causal learning and their statistical
learning abilities interact and can inform each other.
Mapping out those interactions, both generally and in
specific domains of knowledge, is critical to a set of
exciting new research questions that can be asked.

150 CAUSATION AND PROBABILITY



ACKNOWLEDGMENTS We would like to thank the
parents and children who have made all of the research
presented here possible. We would also like to thank
Alison Gopnik, Daniel Richardson, Laura Schulz, and
Jessica Sommerville for comments on this chapter.

References

Allan, L. G. (1980). A note on measurement of contin-
gency between two binary variables in judgment tasks.
Bulletin of the Psychonomic Society, 15, 147–149.

Aslin, R. N., Saffran, J. R., & Newport, E. L. (1998).
Computation of conditional probability statistics by
8-month-old infants. Psychological Science, 9,
321–324.

Bahrick, L. E., & Lickliter, R. (2000). Intersensory
redundancy guides attentional selectivity and per-
ceptual learning in infancy. Developmental
Psychology, 36, 190–201.

Bahrick, L. E., Lickliter, R., & Flom, R. (2004).
Intersensory redundancy guides the development of
selective attention, perception, and cognition in
infancy. Current Directions in Psychological
Science, 13, 99–102.

Bahrick, L. E., Netto, D., & Hernandez-Reif, M. (1998).
Intermodal perception of adult and child faces
and voices by infants. Child Development, 69,
1263–1275.

Baldwin, D. A., Baird, J. A., Saylor, M. M., & Clark, A. M.
(2001). Infants parse dynamic action. Child
Development, 72, 708–717.

Bornstein, M. H. (1985). Habituation of attention as a
measure of visual information processing in human
infants: Summary, systematization, and synthesis. In
G. Gottlieb & N. A. Krasnegor (Eds.), Measurement
of audition and vision in the first year of postnatal
life: A methodological overview (pp. 253–300).
Norwood, NJ: Ablex.

Brand, R. J., Baldwin, D. A., & Ashburn, L. J. (2002).
Evidence for “motionese”: Modifications in moth-
ers’ infant-directed action. Developmental Science,
5, 72–83.

Bullock, M., Gelman, R., & Baillargeon, R. (1982). The
development of causal reasoning. In W. J.
Friedman (Ed.), The developmental psychology of
time (pp. 209–254). New York: Academic Press.

Cheng, P. W. (1997). From covariation to causation: A
causal power theory. Psychological Review, 104,
367–405.

Cheng, P. W. (2000). Causality in the mind: Estimating
contextual and conjunctive power. In F. Keil & R. A.
Wilson (Eds.), Explanation and cognition
(pp. 227–253). Cambridge, MA: MIT Press.

Christiansen, M. H., Allen, J., & Seidenberg, M. S.
(1998). Learning to segment speech using multiple
cues: A connectionist model. Language and
Cognitive Processes, 13, 221–268.

Christiansen, M. H., & Dale, R. A. C. (2001). Integrating
distributional, prosodic and phonological informa-
tion in a connectionist model of language acquisi-
tion. In Proceedings of the 23rd Annual Conference
of the Cognitive Science Society. Mahwah, NJ:
Erlbaum.

Cramer, R. E., Weiss, R. F., Williams, R., Reid, S., Nieri, L.,
& Manning-Ryan, B. (2002). Human agency and asso-
ciative learning: Pavlovian principles govern social
process in causal relationship detection. Quarterly
Journal of Experimental Psychology: Comparative and
Physiological Psychology, 55B, 241–266.

de Sa, V. R., & Ballard, D. H. (1998). Category learning
through multimodality sensing. Neural Computa-
tion, 10, 1097–1117.

Dickinson, A. (2001). Causal learning: Association versus
computation. Current Directions in Psychological
Science, 10, 127–132.

Fiser, J., & Aslin, R. N. (2003). Statistical learning of new
visual feature combinations by infants. Proceedings
of the National Academy of Sciences of the United
States of America, 99, 15822–15826.

Gelman, S. A., & Wellman, H. M. (1991). Insides and
essence: Early understandings of the non-obvious.
Cognition, 38, 213–244.

Glymour, C. (2001). The mind’s arrow. Cambridge, MA:
MIT Press.

Gomez, R. L., & Gerken, L. (1999). Artificial grammar
learning by 1-year-olds leads to specific and abstract
knowledge. Cognition, 70, 109–135.

Gopnik, A., Glymour, C., Sobel, D. M., Schulz, L. E.,
Kushnir, T., & Danks, D. (2004). A theory of causal
learning in children: Causal maps and Bayes nets.
Psychological Review, 111, 1–30.

Gopnik, A., & Meltzoff, A. N. (1992). Categorization
and naming: Basic-level sorting in 18-month-olds
and its relation to language. Child Development,
63, 1091–1103.

Gopnik, A., & Sobel, D. M. (2000). Detecting blickets:
How young children use information about causal
properties in categorization and induction. Child
Development, 71, 1205–1222.

Gopnik, A., Sobel, D. M., Schulz, L., & Glymour, C.
(2001). Causal learning mechanisms in very young
children: 2-, 3-, and 4-year-olds infer causal rela-
tions from patterns of variation and co-variation.
Developmental Psychology, 37, 620–629.

Gopnik, A., & Wellman, H. M. (1994). The theory theory.
In L. Hirschfield & S. Gelman (Eds.), Mapping the
mind: Domain specificity in cognition and culture

INTERACTIONS BETWEEN CAUSAL AND STATISTICAL LEARNING 151



(pp. 257–293). New York: Cambridge University
Press.

Griffiths, T. L., & Sobel, D. M. (in preparation). Learning
about probabilistic and deterministic causal systems.
Brown University.

Griffiths, T. L. (2005). Causes, coincidences, and theories.
Unpublished doctoral dissertation, Stanford
University, Stanford, CA.

Griffiths, T. L., & Tenenbaum, J. B. (2005) Structure
and strength in causal induction, Cognitive
Psychology, 51, 354–384.

Haith, M. M. (1993). Future-oriented processes in
infancy: The case of visual expectations. In C.
Granrud (Ed.), Visual perception and cognition in
infancy (pp. 235–264). Hillsdale, NJ: Erlbaum.

Harris, P. L., German, T., & Mills, P. (1996). Children’s
use of counterfactual thinking in causal reasoning.
Cognition, 61, 233–259.

Hauser, M. D., Newport, E. L., & Aslin, R. N. (2001).
Segmentation of the speech stream in a non-
human primate: Statistical learning in cotton-top
tamarins. Cognition, 78, B53–B64.

Hespos, S. J., & Baillargeon, R. (2001). Infants’ knowledge
about occlusion and containment events: A surpris-
ing discrepancy. Psychological Science, 12, 141–147.

Jenkins, H. M., & Ward, W. C. (1965). Judgment of
contingency between responses and outcomes.
Psychological Monographs: General and Applied,
79, 17.

Johnson, S. P., Amso, D., & Slemmer, J. A. (2003).
Development of object concepts in infancy:
Evidence for early learning in an eye tracking para-
digm. Proceedings of the National Academy of
Sciences, 100, 10568–10573.

Johnson, S. P., Bremner, J. G., Slater, A., Mason, U.,
Foster, & Cheshire, A. (2003). Infants’ perception of
object trajectories. Child Development, 74, 94–108.

Jusczyk, P. W., & Aslin, R. N. (1995). Infants’ detection
of sound patterns of words in fluent speech.
Cognitive Psychology, 29, 1–23.

Kamin, L. J. (1969). Predictability, surprise, attention,
and conditioning. In B. A. Campbell, & R. M.
Church (Eds.), Punishment and aversive behavior
(pp. 279–296). New York: Appleton-Century-Crofts.

Kirkham, N. Z., & Johnson, S. P. (2006). Moving sounds:
The role of inter-modal perception in solving the
problem of occlusion. Manuscript submitted for
publication.

Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002).
Visual statistical learning in infancy. Cognition, 83,
B35–B42.

Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2006).
Location, location, location: Development of spa-
tiotemporal sequence learning in infancy. Manuscript
submitted for publication.

Kruschke, J. K., & Blair, N. J. (2000). Blocking and back-
ward blocking involve learned inattention.
Psychonomic Bulletin and Review, 7, 636–645.

Kuhl, P. K., & Meltzoff, A. N. (1982). The bimodal percep-
tion of speech in infancy. Science, 218, 1138–1140.

Lagnado, D. A., & Sloman, S. (2004). The advantage of
timely intervention. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 30,
856–876.

Leslie, A. M., & Keeble, S. (1987). Do 6-month-old
infants perceive causality? Cognition, 25, 265–288.

Lillard, A. S., & Witherington, D. C. (2004). Mothers’
behavior modifications during pretense and their
possible signal value for toddlers. Developmental
Psychology, 40, 95–113.

Madole, K. L., & Cohen, L. B. (1995). The role of object
parts in infants’ attention to form-function correla-
tions. Developmental Psychology, 31, 637–648.

Madole, K. L., & Oakes, L. M. (1999). Making sense of
infant categorization: Stable processes and changing
representations. Developmental Review, 19, 263–296.

Meltzoff, A. N., Gopnik, A., & Repacholi, B. M. (1999).
Toddlers’ understanding of intentions, desires and
emotions: Explorations of the dark ages. In P. D.
Zelazo, J. W. Astington, & D. R. Olson (Eds.),
Developing theories of intentions (pp. 17–46).
Mahwah, NJ: Erlbaum.

Michotte, A. (1963). The perception of causality. Oxford,
England: Basic Books.

Morrongiello, B. A., Fenwick, K. D., & Chance, G.
(1998). Cross modal learning in newborn infants:
Inferences about properties of auditory-visual
events. Infant Behavior and Development, 21,
543–554.

Murphy, G. L., & Medin, D. L. (1985). The role of the-
ories in conceptual coherence. Psychological
Review, 92, 289–316.

Nazzi, T., & Gopnik, A. (2000). A shift in children’s use
of perceptual and causal cues to categorization.
Developmental Science, 3, 389–396.

Needham, A., & Baillargeon, R. (1993). Intuitions about
support in 4.5-month-old infants. Cognition, 47,
121–148.

Pearl, J. (2000). Causality. New York: Oxford University
Press.

Piaget, J. (1929). The child’s conception of the world.
London: Routledge & Kegan Paul.

Rakison, D. H. (2004). Infants’ sensitivity to correlations
between static and dynamic features in a category
context. Journal of Experimental Child Psychology,
89, 1–30.

Reichenbach, H. (1956). The direction of time. Berkeley,
CA: University of California Press.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of
Pavlovian conditioning: Variations in the effectiveness

152 CAUSATION AND PROBABILITY



of reinforcement and nonreinforcement. In A. H.
Black & W. F. Prokasy (Eds.), Classical conditioning
II: Current theory and research (pp. 64–99). New York:
Appleton-Century-Crofts.

Richardson, D. C., & Kirkham, N. Z. (2004). Multi-
modal events and moving locations: Eye movements
of adults and 6-month-olds reveal dynamic spatial
indexing. Journal of Experimental Psychology:
General, 133, 46–62.

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996).
Statistical learning by 8-month-old infants. Science,
274, 1926–1928.

Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L.
(1999). Statistical learning of tone sequences by
human infants and adults. Cognition, 70, 27–52.

Schult, C. A., & Wellman, H. M. (1997). Explaining
human movements and actions: Children’s under-
standing of the limits of psychological explanation.
Cognition, 62, 291–324.

Schulz, L. E., & Gopnik, A. (2004). Causal learning across
domains. Developmental Psychology, 40, 162–176.

Shanks, D. R. (1985). Forward and backward blocking in
human contingency judgment. Quarterly Journal of
Experimental Psychology, 37b, 1–21.

Shanks, D. R. (1995). Is human learning rational?
Quarterly Journal of Experimental Psychology:
Human Experimental Psychology, 48, 257–279.

Shanks, D. R., & Dickinson, A. (1987). Associative
accounts of causality judgment. In G. H. Bower
(Ed.), The psychology of learning and motivation:
Advances in research and theory (Vol. 21, pp.
229–261). San Diego, CA: Academic Press.

Shultz, T. R. (1982). Rules of causal attribution.
Monographs of the Society for Research in Child
Development, 47, 1–51.

Smith, L. B., & Heise, D. (1992). Perceptual similarity
and conceptual structure. In B. Burns (Ed.),
Percepts, Concepts, and Categories: Representation
and Processing of Information (pp. 233–272).
Oxford, England: North-Holland.

Sobel, D. M. (2004). Exploring the coherence of young chil-
dren’s explanatory abilities: Evidence from generating
counterfactuals. British Journal of Developmental
Psychology, 22, 37–58.

Sobel, D. M., & Kirkham, N. Z. (in press). Blickets and
babies: The development of causal reasoning in
toddlers and infants. Developmental Psychology.

Sobel, D. M., Tenenbaum, J. B., & Gopnik, A. (2004).
Children’s causal inferences from indirect evi-
dence: Backwards blocking and Bayesian reasoning
in preschoolers. Cognitive Science, 28, 303–333.

Spelke, E. S. (1979). Perceiving bimodally specified
events in infancy. Developmental Psychology, 15,
626–636.

Spelke, E. S. (1981). The infant’s acquisition of knowl-
edge of bimodally specified events. Journal of
Experimental Child Psychology, 31, 279–299.

Spelke, E. S., Breinlinger, K., Macomber, J., & Jacobson, K.
(1992). Origins of knowledge. Psychological Review,
99, 605–632.

Spelke, E. S., & Van de Walle, G. (1993). Perceiving and
reasoning about objects: Insights from infants. In 
N. Eilan, R. A. McCarthy, & B. Brewer (Eds.), Spatial
representation: Problems in philosophy and psychology
(pp. 132–161). Oxford, England: Blackwell.

Tenenbaum, J. B., & Griffiths, T. L. (2003). Theory-
based causal inference. Proceedings of the 14th
Annual Conference on the Advances in Neural
Information Processing Systems. Vancouver, CA.

Tenenbaum, J. B., Sobel, D. M., Griffiths, T. L., & 
Gopnik, A. (2006). Bayesian inference in causal learn-
ing from ambiguous data: Evidence from adults and
children. Manuscript submitted for publication,
Brown University.

Uzgiris, I. C., & Hunt, J. M. V. (1975). Assessment in
infancy: Ordinal scales of psychological develop-
ment. Oxford, England: University of Illinois
Press.

Waldmann, M. R., & Hagmayer, Y. (2001). Estimating
causal strength: The role of structural knowledge
and processing effort. Cognition, 82, 27–58.

Walker, A. S. (1982). Intermodal perception of expressive
behaviors by human infants. Journal of
Experimental Child Psychology, 33, 514–535.

Wasserman, E. A., & Berglan, L. R. (1998). Backward
blocking and recovery from overshadowing in human
causal judgment: The role of within-compound asso-
ciations. Quarterly Journal of Experimental
Psychology: Comparative and Physiological
Psychology, 51, 121–138.

Wentworth, N., Haith, M. M., & Hood, R. (2002).
Spatiotemporal regularity and interevent
contingencies as information for infants’ visual
expectations. Infancy, 3, 303–321.

Younger, B. A. (1990). Infants’ detection of correlations
among feature categories. Child Development, 61,
614–620.

Younger, B. A., & Cohen, L. B. (1983). Infant perception
of correlations among attributes. Child
Development, 54, 858–869.

Younger, B. A., & Cohen, L. B. (1986). Developmental
change in infants’ perception of correlations among
attributes. Child Development, 57, 803–815.

Younger, B. A., & Gottlieb, S. (1988). Development of
categorization skills: Changes in the nature or struc-
ture of infant form categories? Developmental
Psychology, 24, 611–619.

INTERACTIONS BETWEEN CAUSAL AND STATISTICAL LEARNING 153



154

10

Beyond Covariation

Cues to Causal Structure

David A. Lagnado, Michael R. Waldmann, York Hagmayer, & Steven A. Sloman

effects, and build larger webs of causal links to capture
the complexities of physical and social systems?

Structure Versus Strength

When investigating causality, a basic distinction can
be made between structure and strength. The former
concerns the qualitative causal relations that hold
between variables, for example, whether smoking
causes lung cancer or aspirin cures headaches. The
latter concerns the quantitative aspects of these rela-
tions: To what degree does smoking cause lung can-
cer or aspirin alleviate headaches? This distinction is
captured more formally in the causal Bayes net frame-
work. The structure of a set of variables is represented
by the graph of Figure 10-1, with the strength of these
links captured in the parameterization of the graph
(see introductory chapter).

Conceptually, the question of structure is more basic
than that of strength—one needs to know or assume the

Introduction

Imagine a person with no causal knowledge or
concept of cause and effect. That person would be
like one of Plato’s cave dwellers—destined to watch
the shifting shadows of sense experience but knowing
nothing about the reality that generates these patterns.
Such ignorance would undermine that person’s most
fundamental cognitive abilities: to predict, control,
and explain the world around them. Fortunately, we
are not trapped in such a cave; we are able to interact
with the world and learn about its generative struc-
ture. How is this possible?

The general problem, tackled by philosophers and
psychologists alike, is how people infer causality from
their rich and multifarious experiences of the world,
not only the immediate causality of collisions between
objects, but also the less transparent causation of illness
by disease, of birth through conception, of kingdoms
won through battle. What are the general principles
that the mind invokes to identify such causes and
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existence of a link before one can estimate its strength.
This is reflected in many of the discovery algorithms
used in artificial intelligence, for which there is an ini-
tial structure learning step prior to estimating the
parameters of a graph (see Neapolitan, 2004). A natural
conjecture is that this priority of structure over strength
is likewise marked in human cognition (Pearl, 1988;
Tenenbaum, Griffiths, & Niyogi, 2001, chapter 19,
this volume; Waldmann, 1996; Waldmann &
Martignon, 1998).

This idea receives intuitive support. We often have
knowledge about what causes what but little idea about
the strength of these relations. For example, most of us
believe that smoking causes cancer, that exercise pro-
motes health, that alcohol inhibits speed of reaction,
but we know little about the strengths of these relations.
Likewise, in the case of learning, we seek to establish
whether causal relations exist before trying to assess
how strong they are. For example, in a medical scare in
the United Kingdom, research focused on whether the
measles-mumps-rubella vaccine causes autism, not on
the degree of this relation. Indeed, the lack of evidence
in support of the link has preempted studies into how
strong this relation might be.

The idea that causal cognition is grounded in
qualitative relations has also influenced the develop-
ment of computational models of causal inference.
To motivate his structural account, Pearl (2000)
argued that people encode stable aspects of their
experiences in terms of qualitative causal relations.
This inverts the traditional view that judgments about
probabilistic relations are primary, and that causal

relations are derived from them. Rather, “if condi-
tional independence judgments are by-products of
stored causal relationships then tapping and repre-
senting those relationships directly would be a more
natural and more reliable way of expressing what we
know or believe about the world” (p. 22).

Despite the apparent primacy of structure over
strength, most research in causal learning has focused on
how people estimate the strength of separate links. In a
typical experiment, variables are presorted as potential
causes and effects, and participants are asked to estimate
the strength of these relations (e.g., Cheng, 1997;
Shanks, 2004). This approach has generated a lot of data
about how people use contingency information to esti-
mate causal strength and how these judgments are mod-
ulated by response format, but the approach does not
consider the question of how people learn about causal
structure. Thus, it fails to address an important, arguably
the most fundamental, part of the learning process.

This neglect has had various repercussions. It has
led to an overestimation of the importance of statisti-
cal data at the expense of other key cues in causal
learning. For example, associative theories focus on
learning mechanisms that encode the strength of
covariation between cues and outcomes (e.g., Shanks
& Dickinson, 1987), but they are insensitive to the
important structural distinction between causes and
effects. As a consequence, they are incapable of
distinguishing between associations that link spurious
relations (e.g., barometer and storm) from true causal
relations (atmospheric pressure and storm). More gen-
erally, these models are incapable of distinguishing

Exposure
to H pylori

Bacterial
Infection

Peptic Ulcer

Aspirin

FIGURE 10-1 A simple Bayesian network representing the
potential causes of peptic ulcers. H. pylori, Helicobacter pylori.
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between direct and indirect causal relations or covari-
ations that are generated by hidden causal events
(Waldmann, 1996; Waldmann & Hagmayer, 2005).

Another shortcoming of this focus on strength is
that it restricts attention to a small subset of causal
structures (mainly common-effect models). For
example, PowerPC theory (Cheng, 1997) focuses on
the assessment of causal strength based on covariation
information. Although the main focus of the empiri-
cal studies lies in how people estimate causal power
(see Buehner, Cheng, & Clifford, 2003), the theory
clearly states that these power estimates are only valid
under the assumption that the causal effect is gener-
ated by a common-effect structure with specific
characteristics. The question of how people induce
these models, which are a prerequisite for the strength
calculations, is neglected in this research. Moreover,
people routinely deal with other complex structures
(e.g., common-cause and chain models). The ques-
tions of how people learn such structures and how
they combine simple structures into more complex
ones are clearly crucial to a proper understanding of
causal cognition.

Furthermore, the focus on strength fails to give
due weight to the importance of intervention (rather
than passive observation) and to the temporal order
of experienced events (over and above their
temporal contiguity). Both of these factors are pri-
marily cues to structure rather than strength, and
there is growing evidence that people readily use
them (Gopnik et al., 2004, chapter 9, this volume;
Lagnado & Sloman, 2004, 2006; Kirkham, chapter 9,
this volume; Steyvers, Tenenbaum, Wagenmakers,
& Blum, 2003; Tenenbaum, Griffiths, & Niyogi,
chapter 19, this volume; Waldmann, 1996).

Even the traditional studies on strength estimation
are open to reevaluation in the light of the structure/
strength distinction. Tenenbaum and Griffiths (2001)
contend that participants in these studies are actually
assessing the degree to which the evidence supports
the existence of a causal link rather than the strength
of that link. More generally, they propose that people
adopt a two-step procedure to learn about elemental
causal relations, first inferring structure and then esti-
mating strength. Although decisive experiments have
yet to be run, Griffiths and Tenenbaum (2005) sup-
port this claim through the reinterpretation of previ-
ous data sets and some novel experimental results.

The main moral to be drawn from these considera-
tions is not that strength estimation has no place in
causal learning, but that the role of structural inference

has been neglected. By recognizing the central role it
plays in both representation and learning, we can attain
a clearer perspective on the nature of causal cognition.

Causal Model Theory

Causal model theory was a relatively early, qualitative
attempt to capture the distinction between structure
and strength (see Hagmayer & Waldmann, 2002;
Waldmann, 1996, 2000, 2001; Waldmann &
Hagmayer, 2001; Waldmann & Holyoak, 1992;
Waldmann, Holyoak, & Fratianne, 1995; Waldmann &
Martignon, 1998; see also Rehder, 2003a, 2003b;
Tenenbaum, Griffiths, & Niyogi, chapter 19, this
volume). According to this proposal, causal induction
is guided by top-down assumptions about the structure
of causal models. These hypothetical causal models
guide the processing of the learning input.

The basic idea behind this approach is that we
rarely encounter a causal learning situation in which
we do not have some intuitions about basic causal fea-
tures, such as whether an event is a potential cause or
effect. If, for example, the task is to press a button and
observe a light (e.g., Wasserman, Chatlosh, &
Neunaber, 1983), we may not know whether these
events are causally related, but we assume that the
button is a potential cause, and the light is a potential
effect. Once a hypothetical causal model is in place,
we can start estimating causal strength by observing
covariation information. The way covariation esti-
mates are computed and interpreted is dependent on
the assumed causal model (Hagmayer & Waldmann,
2002; Waldmann & Hagmayer, 2001).

The distinction between causal structure and
causal strength raises the question of how assumptions
about causal models are generated. Our working
hypothesis is that people use a number of nonstatisti-
cal cues to generate hypothetical causal models. We
do not rule out the possibility that people occasionally
induce causal structure on the basis of covariation
information alone, but this seems rare in the world in
which we live. Whenever people do not have clear
assumptions about causal structure, causal reasoning
easily falls prey to cognitive biases, such as confusing
spurious with causal relations. In contrast, whenever
people have hypothetical knowledge about causal
structure, they show a remarkable competence to
tune this knowledge to the statistical relations in the
learning input and use this knowledge for predictions,
diagnoses, and for planning actions.
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Cues to Causal Structure

People are active agents immersed in a dynamic
physical world. Not only do they experience events in
a diversity of ways, but also they experience a variety
of relations between these events. Perhaps most signif-
icant, they can also interact with the world, thereby
creating new relations and disrupting old ones. The
richness of these experiences of the world affords peo-
ple a variety of cues to its causal structure. Here is a
partial list:

� Statistical relations
� Temporal order
� Intervention
� Prior knowledge

Following Einhorn and Hogarth (1986), we note that
these cues are fallible, sometimes redundant (sepa-
rate cues support the same conclusion), and at other
times inconsistent (separate cues suggest opposing
conclusions). These cues can be combined to con-
struct and update causal models. For example, typical
cases of intervention combine multiple cues—
proximity in space and time, temporal order, and
covariation. This synergy explains the power of inter-
vention as a route to causal knowledge. Cues are gen-
erally strongly correlated in natural environments;
causes tend to be nearby, prior to, and correlated with
their effects.

Statistical Covariation

Hume’s (1748/1975) analysis of causation has set the
agenda for most contemporary theories of learning.
These theories assume that causation cannot be per-
ceived directly and suppose that people infer it from
the statistical patterns in what they can observe. The
key idea is that people are exposed to patterns of data,
such as the occurrence or nonoccurrence of patterns
of events, the presence or absence of features, or
more generally, the values of variables. From this
body of data, they extract certain statistical relations
on which they base their causal judgments. There are
various statistical relations that have been implicated
in this process (Cheng, 1997; Glymour, 2001;
Shanks, 2004). One of the simplest is the covariation
between two events. For example, smoking increases
the probability of heart disease. The existence of a
stable covariation between two events A and B is a
good indication that some underlying causal relation
exists, but by itself does not reveal whether A causes

B, B causes A, or both are effects of a common cause.
This highlights the incompleteness of any model 
of structure learning based solely on covariation
detection.

The advent of Bayesian networks provides a more
general framework to represent the statistical rela-
tions present in a body of observed data (Pearl, 1988).
As well as representing straightforward (uncondi-
tional) relations between variables, they also repre-
sent conditional relations. In particular, they
represent relations of conditional independence,
which holds whenever an intermediate variable (or
set of variables) renders two other variables (or sets of
variables) probabilistically independent. For exam-
ple, the unconditional dependence between intra-
venous drug usage and acquired immunodeficiency
syndrome (AIDS) is rendered independent condi-
tional on human immunodeficiency virus (HIV) sta-
tus. In other words, the probability that someone
develops AIDS, given that they are HIV positive, is
not affected by whether they contracted the virus
through drug use (assuming that drug usage does not
affect the passage from HIV infection to AIDS).
Establishing the conditional independencies that
hold in a body of data is a critical step in construct-
ing an appropriate Bayesian network.

Work in statistics and artificial intelligence forges
a crucial link between statistical data and causal
structure (Pearl, 2000; Spirtes, Glymour, & Schienes,
1993). Given certain assumptions (e.g., the causal
Markov condition and faithfulness; see intro-
ductory chapter, and Woodward, chapter 1, this
volume), they detail the patterns of dependencies that
are associated with a given causal structure and, con-
versely, the causal structures that can be inferred from
a given pattern of dependencies. Based on this analy-
sis, a range of algorithms have been developed that
can infer causal structure from large databases of sta-
tistical information. The success of this computa-
tional work has prompted some to model human
causal learning along similar lines (Glymour, 2001;
see the section Computational Models of Learning).

Despite the sophistication of Bayesian networks, it
is generally recognized that statistical data alone is
insufficient for inferring a unique causal model.
Even with the notion of conditional independence, a
particular body of correlational data will typically be
associated with several possible causal structures
(termed Markov equivalent) rather than a unique
model. For example, if it is known that A, B, and C
are all correlated (unconditionally dependent), and
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that A is conditionally independent of C given B, then
there are three possible causal structures compatible
with these relations (A → B → C, A ← B → C,
A ← B ← C). To narrow these possibilities to just one
requires some additional information. For instance, if
one also knows that A occurs before B, then A → B → C
is the only possible model.

This sets a theoretical limit on what can be
inferred through correlation alone. At best, statistical
cues can narrow the set of possible models to those
that are Markov equivalent. There are also practical
limitations. Even with just three variables, there are a
large number of correlations and conditional correla-
tions to compute to determine viable causal models.
Each of these relations requires a sizable amount of
data before their individual reliability is established.
Thus, inferring possible causal models in a purely
data-driven fashion involves a significant computa-
tional load. Although this may be manageable by a
powerful computer, it is less likely to be achievable by
humans with limited processing and memory
resources.

Indeed, current evidence suggests that people are
limited in their ability to learn structure from cor-
relations alone, even to Markov equivalence. For
example, Lagnado and Sloman (2004) presented sub-
jects with probabilistic data generated by a three-
variable chain A → B → C. In the absence of other
cues (intervention, time order, etc.), most subjects
failed to learn the correct structure or its Markov
equivalents. This result holds across several different
learning paradigms (Lagnado & Sloman, 2006; Sobel
& Kushnir, 2006; Steyvers et al., 2003; Danks &
McKenzie, 2006).

What people seem to find most difficult is estab-
lishing the appropriate conditional independence
relations between sets of variables and using this as
a basis for inferences about causal structure. This is
tricky because learners must track the concurrent
changes in three different variables. They must deter-
mine whether the correlation between any pair of
these variables is itself dependent on a third variable.
For example, in Lagnado and Sloman (2004), partici-
pants had to figure out that (a) two different chemicals
covaried with a given effect, and (b) one of these
chemicals was probabilistically independent of the
effect conditional on the presence or absence of the
other chemical. It is not surprising that most partici-
pants failed to work this out and settled for a simpler
(but incorrect) causal model.

The experiments of Steyvers et al. (2003) also
demonstrated the difficulty of inducing structure from
covariation data. In their experiments, learners
observed data about three mind-reading aliens. The
task was to find which of the three mind readers can
send messages (i.e., is a cause) and which can receive
messages (i.e., is an effect). Generally, performance
was better than chance but was still poor. For exam-
ple, in Experiment 3, in which learners could select
multiple models compatible with the data, only 20%
of the choices were correct. This number may even
overstate what people can do with covariation alone.
In the experiments, learners were helped by the fact
that the possible models were shown to them prior to
learning. Thus, their learning was not purely data
driven but was possibly aided by top-down constraints
on possible models.

Moreover, the parameters of the models were
selected to make the statistical differences between the
models quite salient. For example, the pattern that all
three mind readers had the same thought was very
likely when the common-cause model applied but was
extremely unlikely under a common-effect model.
Similarly, the pattern that only two aliens had the same
thought was very likely under the common-effect
model hypothesis but unlikely with chains or common-
cause models. Under the assumption that people asso-
ciate these different prototypic patterns (e.g., three
mind readers with identical thoughts) with different
causal structures (e.g., common-cause model), some
participants might have solved the task by noticing the
prevalence of one of the prototypic patterns. Additional
cues further aided induction. As in Lagnado and
Sloman (2004), performance improved when partici-
pants were given the opportunity to add an additional
cue, interventions (see also Sobel & Kushnir, 2006;
and the section Intervention).

In sum, there is little evidence that people can
compute the conditional dependencies necessary for
inferring causal structure from statistical data alone
without any further structural constraints. In contrast,
when people have some prior intuitions about the
structure of the causal model with which they are
dealing, learning data can be used to estimate para-
meters within the hypothetical model or to select
among alternative models (see also Waldmann, 1996;
Waldmann & Hagmayer, 2001). Thus, the empirical
evidence collected so far suggests that cues other than
statistical covariation take precedence in the induction
of structure before statistical patterns can meaningfully
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be processed. In the next section, we show that the
temporal order cue can override statistical covariation
as a cue to causal structure.

Temporal Order

The temporal order in which events occur provides a
fundamental cue to causal structure. Causes occur
before (or possibly simultaneously with) their effects,
so if one knows that Event A occurs after Event B, one
can be sure that A is not a cause of B. However,
although the temporal order of events can be used to
rule out potential causes, it does not provide a suffi-
cient cue to rule them in. Just because events of Type
B reliably follow events of Type A, it does not follow
that A causes B. Their regular succession may be
explained by a common cause C (e.g., heavy drinking
first causes euphoria and only later causes sickness).
Thus, the temporal order of events is an imperfect cue
to causal structure. This is compounded by the fact
that we often do not have direct knowledge of the
actual temporal order of events but are restricted to
inferring that order from the order in which we
experience (receive information about) these events.
In many situations, the experienced order will reflect
the true temporal order, but this is not guaranteed.
Sometimes, one learns about effects prior to learning
about their causes. For example, the presence of a
disease is typically learned about after experiencing
the symptoms that it gives rise to (see the section on
prior knowledge for further examples).

Despite its fallibility, temporal order will often
yield a good cue to causal structure, especially if it is
combined with other cues. Thus, if you know that A
and B covary and that they do not have a common
cause, then discovering that A occurs before B tells
you that A causes B and not vice versa. It is not surpris-
ing, therefore, that animals and humans readily use
temporal order as a guide to causality. Most previous
research, however, has focused on how the temporal
delay between events influences judgments of causal
strength and paid less attention to how temporal order
affects judgments of causal structure. The main find-
ings have been that judged causal strength decreases
with increased temporal delays (Shanks, Pearson, &
Dickinson, 1989) unless people have a good reason to
expect a delay (e.g., through prior instructions or
knowledge; see Buehner & May, 2002). This fits with
the default assumption that the closer two events are
in time, the more likely they are to be causally related.

In the absence of other information, this will be a
useful guiding heuristic.

Temporal order versus statistical data

Both temporal order and covariation information are
typically available when people learn about a causal
system. These sources can combine to give strong
evidence in favor of a specific causal relation, and
most psychological models of causal learning take
these sources as basic inputs to the inference process.
However, the two sources can also conflict. For
example, consider a causal model in which C is a
common cause of both A and B, and where B always
occurs after A. The temporal order cue in this case is
misleading as it suggests that A is a cause of B. This
misattribution will be particularly compelling if the
learner is unaware of C. However, consider a learner
who also knows about C. With sufficient exposure
to the patterns of correlation of A, B, and C, they
would have enough information to learn that A is
probabilistically independent of B given C.
Together with the knowledge that C occurs before
both A and B, the learner can infer that there is no
causal link from A to B (without such temporal
knowledge about C, they can only infer that A is not
a direct cause of B because the true model might be
a chain A → C → B).

In this situation, the learner has two conflicting
sources of evidence about the causal relation between
A and B: a temporal order cue that suggests that A
causes B and (conditional) correlational information
that there is no causal link from A to B. Here, a
learner must disregard the temporal order informa-
tion and base structural inference on the statistical
data. However, it is not clear how easy it is for people
to suppress the temporal order-based inference, espe-
cially when the statistical information is sparse.
Indeed, in two psychological studies, Lagnado and
Sloman (2004, 2006) show that people let the tempo-
ral order cue override contrary statistical data.

To explore the impact of temporal order cues on
people’s judgments about causal structure, Lagnado and
Sloman (2006) constructed an experimental learning
environment in which subjects used both temporal and
statistical cues to infer causal structure. The underlying
design was inspired by the fact that viruses (electronic
or otherwise) present a clear example of how the tem-
poral order in which information is received need
not reflect the causal order in which events happen.
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This is because there can be considerable variability
in the time of transmission of a virus from computer
to computer, as well as variability in the time it takes
for an infection to reveal itself. Indeed, it is possible
that a virus is received and transmitted by a computer
before it reveals itself on that computer. For example,
imagine that your office mate’s computer becomes
infected with an e-mail virus that crashes his com-
puter. Twenty minutes later, your computer also
crashes. A natural reaction is to suppose that his com-
puter transmitted the virus to you, but it is possible
that your computer received the virus first and then
transmitted it to your office mate. It just so happened
that the virus subverted his computer more quickly
than yours. In this case, the temporal order in which
the virus manifests itself (by crashing the computer) is
not a reliable cue to the order in which the comput-
ers were infected.

In such situations, then, the order in which infor-
mation is received about underlying events (e.g., the
order in which viruses manifest themselves on com-
puters in a network) does not necessarily mirror the
underlying causal order (e.g., the order in which
computers are infected). Temporal order is a fallible
cue to causal structure. Moreover, there might be
statistical information (e.g., the patterns of correlation
between the manifestations of the viruses) that does
provide a veridical cue to the underlying structure.
How do people combine these two sources of informa-
tion, and what do they do when these sources conflict?

In Lagnado and Sloman’s (2006) experiment,
participants had to learn about the connections in a
simple computer network. To do so, they sent test
messages from a master computer to one of four com-
puters in a network and then observed which of the
other computers also received the messages. They
were able to send 100 test messages before being
asked about the structure of the network. Participants
completed four tasks, each with a different network of
computers. They were instructed that there would
sometimes be delays in the time taken for the mes-
sages to be transmitted from computer to computer.
They were also told that the connections, where they
existed, only worked 80% of the time. (In fact, the
probabilistic nature of the connections is essential if
the structure of the network is to be learnable from
correlational information. With a deterministic net-
work, all the connected computers would covary
perfectly, so it would be impossible to figure out the
relevant conditional independencies.)

Unknown to participants, the networks in each
problem had the same underlying structure and only
differed in the temporal order in which the com-
puters displayed their messages. The four different
temporal orderings are shown in Figure 10-2 along
with the links endorsed by the participants in the test
phase. When the temporal ordering reflected the
underlying network structure, the correct model was
generally inferred (see lower right panel in Figure 10-2).
When the information was presented simultaneously,
learners did less well (adding incorrect links) but still
tended to capture the main links. When the temporal
ordering conflicted with the underlying structure,
participants erroneously added links that fitted with
the temporal order but did not correspond to the
underlying structure.

In sum, people allowed the temporal ordering to
guide their structural inferences, even when this con-
flicted with the structure implied by the correlational
information. However, this did not amount to a total
disregard of the correlational information. For exam-
ple, in the problem with temporal ordering ABDC
(top right panel in Figure 10-2), participants erro-
neously endorsed the link from D to C (as suggested
by the temporal order) but also correctly added the
link from B to C. We hypothesize that they first used
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FIGURE 10-2 Model choices for the four temporal
conditions in Lagnado and Sloman (2006). The 
correct model is that chosen in the lower right panel.
Note that thick arrows represent links endorsed by
75%–100% of participants, thin arrows by 50–75% of
participants.
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the temporal ordering to set up an initial model
(A → B → D → C). This model would be confirmed
by most of the test trials. However, occasionally they
saw a test pattern that contradicted this model (A, B,
not-D, C). To accommodate this new evidence, they
added a link from B to C but did not remove the
redundant link from D to C because this still fit with
the temporal ordering.

Interpreted within the causal model framework, this
study shows that people use both temporal order and
correlational cues to infer causal structure. It also sug-
gests that they construct an initial model on the basis of
the temporal ordering (when available) and then revise
this model in the light of the covariational information.
However, because of the persisting influence of the
temporal order cue, these revisions may not be optimal.

Although the reported study highlights how people
can be misled by an inappropriate temporal ordering,
in many contexts the temporal cue will reliably
indicate the correct causal structure. As with other
mental heuristics, its fallibility does not undermine its
effectiveness in most naturalistic learning situations.
It also works best when combined with other cues. In
the next section, we examine how it combines with
interventions.

Intervention

Various philosophers have argued that the core
notion of causation involves human intervention
(Collingwood, 1940; Hart & Honoré, 1983; von
Wright, 1971). It is through our actions and manipu-
lations of the environment around us that we acquire
our basic sense of causality. Several important claims
stem from this: that causes are potential handles on
the world; that they “make a difference”; that they
involve some kind of force or power. Indeed, the lan-
guage and metaphors of causal talk are rooted in this
idea of human intervention on a physical world.
More contemporary theories of causality dispense
with its anthropomorphic connotations but maintain
the notion of intervention as a central concept
(Glymour, 2001; Pearl, 2000; Spirtes et al., 1993;
Woodward, 2003, chapter 1, this volume).

Intervention not only is central to our notion of cau-
sation, but also is a fundamental means by which we
learn about causal structure. This has been a common-
place insight in scientific method since Bacon (1620)
spoke of “twisting the lion’s tail” and was refined into
axioms of experimental method by Mill (1843/1950).

More recently, it has been formalized by researchers in
artificial intelligence and philosophy (Pearl, 2000;
Spirtes et al., 1993; see Hagmayer, Sloman, Lagnado, &
Waldmann, chapter 6, this volume).

The importance of intervention in causal learning
is slowly beginning to permeate through to empirical
psychology. Although it has previously been marked
in terms of instrumental or operant conditioning
(Mackintosh & Dickinson, 1979), the full implica-
tions of its role in causal structure learning had not
been noted. This is largely because of the focus on
strength estimation rather than structural inference.
Once the emphasis is shifted to the question of how
people infer causal structure, the notion of an inter-
vention becomes critical.

Informally, an intervention involves imposing a
change on a variable in a causal system from outside
the system. A strong intervention is one that sets the
variable in question to a particular value and thus over-
rides the effects of any other causes of that variable. It
does this without directly changing anything else in
the system, although of course other variables in the
system can change indirectly as a result of changes to
the intervened-on variable (a more formal definition is
given by Woodward, chapter 1, this volume).

An intervention does not have to be a human
action (cf. Mendelian randomization; Davey Smith &
Ebrahim, 2003), but freely chosen human actions
will often qualify as such. These can range from care-
fully controlled medical trials to the haphazard
actions of a drunk trying to open a door. Somewhere
in between lays the vast majority of everyday interven-
tions. What is important for the purposes of causal
learning is that an intervention can act as a quasi-
experiment, one that eliminates (or reduces) confounds
and helps establish the existence of a causal relation
between the intervened-on variable and its effects.

A central benefit of an intervention is that it allows
one to distinguish between causal structures that are
difficult or impossible to discriminate among on the
basis of correlational data alone. For example, a high
correlation between bacteria and ulcers in the stom-
ach does not tell us whether the ulcers cause the
bacteria or vice versa (or, alternatively, if both share a
common cause). However, suppose an intervention is
made to eradicate the bacteria (and that this interven-
tion does not promote or inhibit the presence of
ulcers by some other means). If the ulcers also dis-
appear, then one can infer that the bacteria cause the
stomach ulcer.
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Intervention aids learning

Can people make use of interventions to learn about
causal structure? Several studies have compared learning
through intervention with learning through observation,
with both adults (Lagnado & Sloman, 2002, 2004; Sobel
& Kushnir, 2006; Steyvers et al., 2003) and children
(Gopnik et al., 2004, this volume; Sobel & Kirkham,
chapter 9, this volume). All these studies have shown a
distinct advantage for intervention. When participants
are able to intervene freely on a causal system, they
learn its structure better than when they are restricted
to passive observation of its autonomous behavior.

What are the factors that drive this advantage? In
addition to the special type of information afforded by
intervention, because of the modification of the sys-
tem under study, interventions can facilitate learning
in several other ways. For instance, an intervener has
more control over the type of data they see and thus
can engage in more directed hypothesis testing than
an observer. Intervention can also focus attention on
the intervened-on variables and its effects. Further,
the act of intervention introduces an implicit tem-
poral cue into the learning situation because inter-
ventions typically precede their effects. Interveners
may use any of these factors to enhance their learning.

By using yoked designs, Lagnado and Sloman
(2004, 2006) ruled out the ability to hypothesis test as
a major contributor in their experiments (although
Sobel & Kushnir, 2006, report conflicting results).
However, they also showed that the presence of a tem-
poral cue had a substantial effect. When the informa-
tion about the variables in the causal system was
presented in a temporal order that matched the actual
causal order (rather than being inconsistent with it),
learning was greatly facilitated, irrespective of
whether participants were intervening or observing.
The authors suggested that in general people might
use a temporal order heuristic by which they assume
that any changes that occur subsequent to an action
are effects of that action. This can be an effective
heuristic, especially if these actions are uncon-
founded with other potential causes of the observed
effects. Such a heuristic can also be used in observa-
tion but is more likely to lead to spurious inferences
(because of unavoidable confounding).

An online learning paradigm

Although all of the studies reported so far demonstrate
an advantage of intervention, they also reveal low

levels of overall performance. Even when learners
were able to intervene, many failed to learn the correct
model (in most of the experiments, fewer than 40%
chose the correct models). We conjecture that this is
because of the impoverished nature of the learning
environment presented to participants. All of the stud-
ies used a trial-based paradigm, in which participants
viewed the results of their interventions in a case-by-
case fashion. And, the causal events under study were
represented by symbolic descriptions rather than
direct experience (cf. Waldmann & Hagmayer, 2001).
This is far removed from a naturalistic learning context.
Although it facilitates the presentation of the relevant
statistical contingencies, it denies the learner many of
the cues that accompany real-world interventions,
like spatiotemporal information, immediate feedback,
and continuous control.

To address this question, Lagnado and Sloman
(2003) introduced a learning paradigm that provided
some of these cues; participants manipulated on-
screen sliders in a real-time environment. Participants
had to figure out the causal connections between the
sliders by freely changing the settings of each slider
and observing the resultant changes in the other slid-
ers. In these studies, the majority of learners (>80%)
rapidly learned a range of causal models, including
models with four interconnected variables. This con-
trasted with the performance of observers, who
watched the system of sliders move autonomously and
seldom uncovered the correct model. Thus, the bene-
fits of intervention seem to be magnified greatly by
the dynamic nature of the task. This reinforces our
claim that causal cognition operates best when pre-
sented with a confluence of cues, and in particular,
that intervention works best when combined with
spatiotemporal information.

In addition, in a separate condition many learners
were able to make use of double interventions to
disambiguate between models indistinguishable
through single interventions. For example, when
restricted to moving one slider at a time, it is impossi-
ble to discriminate between a three-variable chain
A → B → C and a similar model with an extra link
from A to C. However, with an appropriate double
intervention (e.g., fixing the value of B and then see-
ing whether manipulation of A still leads to a change
in C), these models can be discriminated. The fact
that many participants were able to do this shows that
they can reason using causal representations (cf.
Hagmayer et al., chapter 6, this volume). They were
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able to represent the two possible causal models and
work out what combination of interventions would
discriminate between them.

Intervention versus temporal order

The trial-based experiments by Lagnado and Sloman
(2004) show that temporal order plays a substantial
role in causal learning. However, the low levels of per-
formance made it difficult to assess the separate influ-
ences of intervention and temporal order cues. A
subsequent study by Lagnado and Sloman (2006)
used the slider paradigm to investigate this question.
Participants completed six problems, ranging from
two-variable to four-variable models. Participants were
divided into three groups: those who could freely
intervene on the causal system, those who observed
the system’s behavior, and those who observed the
results of another person’s interventions (yoked to the
active interveners). Within each group, participants
were presented with information about the slider val-
ues in two temporal orders, either consistent with or
opposite to the underlying causal structure. The main
results are shown in Figure 10-3 (in which the inter-
vention group is denoted as intervention 1). There is a
clear advantage of intervention (active or yoked) over
observation. There is also a clear influence of temporal

consistency for the observational and yoked groups
but not for the active interveners. The authors conjec-
tured that the active interveners overcame the incon-
sistent temporal order cue by (correctly) learning that
the variable information was presented in reverse
order. To test this, they ran a second intervention
condition in which the temporally inconsistent time
order was randomized rather than reversed (with the
constraint that it could never produce a consistent
order). The results for this follow-up are also shown in
Figure 10-3 (the new intervention group is interven-
tion 2). The interveners now showed a similar decline
in performance when information was presented in an
inconsistent order. Overall, these results confirm that
intervention and temporal order provide separate cues
to causal structure. They work best, however, in com-
bination, and this may explain the efficacy of interven-
tions made in naturalistic learning environments.

Prior Knowledge

Temporal order is a powerful cue to causality when
we experience causal events online. Whenever we
directly experience causal events, the sequence of the
learning input (i.e., learning order) mirrors the asym-
metry of causal order (causes generate effects but not
vice versa). The correlation between learning order

FIGURE 10-3 Percentage correct model choices in Lagnado and Sloman
(2006) showing influence of intervention and temporal order. Note that in
intervention 2 time-inconsistent orders were randomized rather than reversed.
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and causal order is so strong in these situations that
some theories (e.g., associative learning models)
collapse causal order and learning order by assuming
that learning generally involves associations between
cues and outcomes, with cues presented temporally
prior to their outcomes (see Shanks & Lopez, 1996;
Waldmann, 1996, 2000).

However, whereas nonhuman animals indeed
typically experience causes prior to their effects, the
correlation between learning order and causal order
is often broken when learning is based on symbol-
ized representations of causal events. In fact, most
experimental studies of human learning are now car-
ried out on a computer in which cues and outcomes
are presented verbally. The flexibility of symbolic
representations allows it to present effect informa-
tion prior to cause information so that learning order
no longer necessarily corresponds to causal order.
For example, many experiments have studied disease
classification in which symptoms (i.e., effects of
diseases) are presented as cues prior to information
about their causes (i.e., diseases; e.g., Gluck &
Bower, 1988; Shanks & Lopez, 1996; Waldmann,
2000, 2001).

Learning order and causal order may also mis-
match when the causal events are not readily observ-
able but have to be measured or searched with more
complicated procedures. For example, a physician
may immediately observe symptoms of a new patient
prior to searching for possible causes. Or, parents
might become aware of school problems of their
child prior to finding out about the causes. Thus,
although the temporal order of learning events is
often a valid cue to causal structure, it is sometimes
necessary to override this cue when other cues
appear more valid.

Coherence with prior knowledge is a potent cue to
causal structure. Regardless of when we observe fever
in a patient, our world knowledge tells us that fever
is not a cause but rather an effect of an underlying
disease. Prior knowledge may be specific when
we have already learned about a causal relation, but
prior knowledge can also be abstract and hypotheti-
cal. We know that switches can turn on devices even
when we do not know about the specific function of a
switch in a novel device. Similarly, we know that dis-
eases can cause a wide range of symptoms prior to
finding out which symptom is caused by which dis-
ease. In contrast, rarely do we consider symptoms as
possible causes of a disease.

Prior knowledge versus temporal order

The possible mismatch between causal order and
learning order raises the question whether people are
capable of ignoring the temporal order of learning
events when their prior knowledge suggests a different
causal order. Following the framework of causal-
model theory, Waldmann and Holyoak (1990, 1992)
developed an experimental paradigm addressing this
question. In general, learners in different conditions
receive identical cues and outcomes in identical
learning order. However, based on initial instructions,
different causal orders are suggested so that in one
condition the cues represent causes and the outcomes
effects (predictive learning), whereas in the contrast-
ing condition the cues represent effects and the out-
comes causes (diagnostic learning).

A study by Waldmann (2001) exemplifies this
paradigm. In Waldmann’s Experiment 2, participants
were told that they were going to learn about new dis-
eases of the blood. In all conditions, learners observed
learning trials in which they first received information
about the presence of a Substance 1 in a patient fol-
lowed by feedback about the presence of a disease
(e.g., Midosis). Other trials showed patients whose
blood contained two substances, Substances 2 and 3,
which were a sign of a different disease (e.g., Xeritis).
Associative learning theories are only sensitive to
learning order and would therefore generally predict
that the associative strength between Substance 1 and
Midosis should be greater than between the two other
substances and Xeritis (see Cobos, López, Cano,
Almaraz, & Shanks, 2002). This so-called overshad-
owing effect derives from associative learning theories
(e.g., Rescorla & Wagner, 1972), which predict that
the two redundant always co-occurring substances
compete for predicting Xeritis. Once asymptotic per-
formance is achieved, this should lead to either sub-
stance contributing only about half of the associative
strength needed to predict the disease correctly.

To pit learning order against causal order,
Waldmann (2001) created two contrasting conditions:
In the predictive learning condition, the substances
were described as coming from food items, which
gives them the status of potential causes of the diseases
(see Figure 10-4). In contrast, in the diagnostic learning
condition, the substances were characterized as poten-
tially generated by the diseases, which assigns them
the causal status of effects. Although cues, outcomes,
and learning order were identical in both conditions,



overshadowing interacted with causal status.
Overshadowing was stronger in the predictive than in
the diagnostic learning condition. Similar interactions
have also been shown for the related blocking pheno-
menon (Waldmann, 2000; Waldmann & Holyoak,
1992; Waldmann & Walker, 2005).

This interaction can be modeled by an account that
assumes that people use prior knowledge conveyed to
them through the cover stories to form tentative causal
models with the structures displayed in Figure 10-4 (see
Waldmann & Martignon, 1998, for a Bayesian causal
model account; see also Tenenbaum et al., chapter 19,
this volume). These models free learners from learning
order as a cue to causality and allow them to assign the
learning input flexibly to the causal variables in the ten-
tative causal model. Thus, in the predictive learning
condition, the cues are mapped to the cause layer and
the effects to the outcome layer (Figure 10-4A), whereas
in the diagnostic learning condition the cues are
mapped to the effect layer and the outcomes to the
cause layer (Figure 10-4B). Although prior knowledge
generates the structure of the causal models underlying
the learning domain, the cover stories made it clear to
participants that the causal relations were only hypo-
thetical and needed to be verified by checking the
learning data. Thus, in the learning stage the learning
input is used to parameterize the model or test whether
the hypothesized links are present.

The overshadowing study illustrates this account
(Waldmann, 2001). In Experiment 2, learners observed
Substance 1 by itself as a deterministic cause (predic-
tive learning) or a deterministic effect (diagnostic
learning). However, the situation differed across the
two learning conditions for the two redundant sub-
stances. In the diagnostic learning condition, the
data suggest that each of the two substances is deter-
ministically caused by their common cause, the dis-
ease Xeritis (see Figure 10-4B). Although there may

be alternative unknown diseases also affecting these
symptoms, these alternative causes were not men-
tioned in the instructions so that their potential
impact on learners’ assessment should be relatively
small. By contrast, in the predictive learning condi-
tion, learners were confronted with an ambiguous
situation. Here, the two substances represented
perfectly confounded alternative potential causes, so
it was impossible to determine whether only one of
these potential causes was effective or whether both
shared responsibility in generating the common
effect, Midosis (see Figure 10-4A). Thus, learners
should have been uncertain about their causal status,
which would lead to a lowering of ratings (i.e., over-
shadowing). This pattern was indeed found in the
study.

Temporal order of learning events was also pitted
against causal order in other task domains. In a study
on category learning, Waldmann et al. (1995) showed
that sensitivity to correlations among cues is influ-
enced by the causal status of the cues (see also
Rehder, 2003a, 2003b; Rehder & Hastie, 2001). As
predicted by Bayesian models, when the cues repre-
sent effects within a common-cause model, learners
expect cue correlations, whereas statistical indepen-
dence among cues is expected when they represent
multiple causes of a common effect. These expecta-
tions influenced how difficult it was for participants to
learn about different category structures. Again, these
findings support the view that learners formed a struc-
tural representation of a causal model on the basis of
the initial instructions and then tried to map these
models to the learning data (see Waldmann &
Martignon, 1998, for the formal details).

Prior knowledge and parameter estimation

Even when causal order and temporal order coincide,
temporal order alone is not sufficiently constrained to
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FIGURE 10-4 Predictive learning (A) and diagnostic learning
(B) in Waldmann (2001).
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determine how learning events should be processed.
In a stream of learning events, the relevant events
need to be parsed first, and then it is necessary to
decide how the events are interrelated. Often, this
problem is solved by assuming that events that are
spatiotemporally contiguous (see the section on tem-
poral order) are interrelated. But, this is not always
true. For example, when eating a fish dish, we would
not view the fish as a cause of subsequent nausea that
occurred within 0.5 seconds of eating the meal. Based
on prior knowledge, we expect a longer latency of the
causal mechanism. In contrast, we would not relate a
light to a button press if there was a latency of 10 seconds
between pressing the button and the light going on.

Hagmayer and Waldmann (2002) have shown that
prior expectations about temporal delays between
causes and effects indeed mediate how causes and
effects are interrelated within a stream of events. This
selection consequently affects how causal strength is
estimated within the data set. Despite observing iden-
tical event streams, different assessments of causal
strength resulted based on how the stream was parsed
and how the events were interrelated prior to assessing
the strength of covariation.

Prior assumptions also affect which statistical indi-
cators are chosen to estimate causal strength para-
meters. When the task is to estimate causal strength
between a cause and effect, it is necessary to compute
the covariation between these events while holding
constant alternative causes that may confound the
relation. For example, the strength of the causal influ-
ence of smoking on heart disease should ideally be
assessed when alternative causes of heart disease (e.g.,
junk food) are absent or held constant. In contrast,
causally irrelevant events, alternative effects of the
target cause (within a common-cause model), or
events that lie downstream on a causal chain between
the target cause and the target effect must not be held
constant (Eells, 1991; Pearl, 2000). Otherwise,
erroneous parameter estimates might result.

Waldmann and Hagmayer (2001) have shown that
participants are indeed sensitive to these normative
constraints. In a set of experiments, learners were
given identical learning input with three interrelated
events. The participants’ task was to assess the strength
of the causal relation between a given cause and an
effect. The causal status of the third event was mani-
pulated by means of initial instructions. The results
showed that learners only tended to hold the third
event constant when this event was assumed to be an

alternative cause of the target effect. When it was
causally irrelevant, an alternative effect of the cause,
or an intermediate event on a causal chain between
cause and effect, participants ignored the status of the
third variable. Again, this is a case in which temporal
order is an insufficient cue because the learning
events were presented identically to all participants.
The correct parameter estimates depended on prior
knowledge about the causal status of the learning
events.

Use of prior knowledge and processing 
constraints

Processing learning data on the basis of a prior causal
model can be demanding. For example, in a diagnos-
tic learning task the learning order of cues and out-
comes conflicts with causal order. Also, holding
constant alternative causes can sometimes be difficult
when the presence and absence of the alternative
cause alternates so that it is hard to store separately in
memory the events in which the confound was
present and absent. A number of studies have shown
that, in situations that tax processing capacity, people
may incorrectly process the learning data, although in
less complex tasks they do better (De Houwer &
Beckers, 2003; Tangen & Allan, 2004; Waldmann &
Hagmayer, 2001; Waldmann & Walker, 2005).
Waldmann and Walker have also shown that it is
crucial that people have a strong belief in the validity
of the causal model; otherwise, their learning is dic-
tated by other cues that require less effort to use.
These studies show that people have the competence
to interrelate causal models and learning data cor-
rectly when they strongly believe in their prior
assumptions and when the learning task is within the
grasp of their information-processing capacity.
Otherwise, other cues may dominate.

Integrating Fragments of Causal Models

We rarely acquire knowledge about a complex causal
network all at once. Rather, we learn about these
models in a piecemeal fashion. Consider, for exam-
ple, the search for the causes of ulcer by medical
science (see Thagard, 1999, for a detailed description
of the history of medical theories of ulcer). It was first
thought that ulcers were caused by excessive stomach
acid, which was caused by stress. Later, scientists
found out that excessive acidity is not the cause of
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many ulcers, but that the majority of ulcers are caused
by bacteria (Helicobacter pyloris). In addition, it was
discovered by other researchers that some acid-based
pain relievers, such as aspirin, might also cause ulcers.
As a consequence, an initially simple causal chain
model (Stress → Excessive acid → Ulcer) was replaced
by a more complex causal model (see Figure 10-1).
Theory change occurred as a result of many inde-
pendent empirical studies that focused on individual
links. These individual pieces of knowledge were
eventually integrated into a coherent, global causal
model that incorporated what we now know about
ulcers.

Similarly, in everyday life, we may independently
learn that peanuts cause an allergy and later discover
that strawberries cause the same allergy. Although we
may never have eaten peanuts and strawberries
together, we could still integrate these two pieces of
causal knowledge into a common-effect model.
Similarly, we might independently learn about two
causal relations in which the same common cause is
involved. For example, we may first experience that
aspirin relieves headache. Later, a physician might
tell us that our ulcer is also caused by aspirin. Again,
although we may never have consciously experienced
the two effects of the common cause together, we can
integrate the two fragments into a coherent common-
cause model.

What is the advantage of integrating fragments of
causal knowledge into a coherent global causal
model? In addition to representing only the direct
causal relations within the model (i.e., causes, effects,
and causal arrows), causal models allow us to infer the
relation between any pair of events within the model,
even when they are not directly causally connected.
For example, the causal model for aspirin would
imply that relief of headache and ulcer should tend
to co-occur despite no causal relation to each other.
These structural implications are a consequence of
the patterns of causal directionality inherent in causal
models.

Bayes nets provide formal tools to analyze struc-
tural implications of causal models (see Pearl, 1988,
2000; Spirtes et al., 1993). The graph of a common-
cause model expresses that the two effects are spuri-
ously related (because of their common cause) but
become independent once the state of the common
cause is known (see Figure 10-4B). This is a conse-
quence of the Markov condition. For example, once
we know that aspirin is present, the probability of

ulcers is fixed regardless of whether headache is
present or absent. Similarly, causal chains imply that
the initial cause and the final effect are dependent but
become independent when the intermediate event is
held constant. Finally, a common-effect model
(Figure 10-4A) implies independence of the altern-
ative causes, but they become dependent once the
common effect is held constant. This is an example of
explaining away. Eating peanuts and eating straw-
berries should normally occur independently. But,
once we know that someone has an allergy, finding
out that they have eaten peanuts makes it less likely
that they have also eaten strawberries.

Hagmayer and Waldmann (2000, 2006) have
investigated the question of whether people are capa-
ble of integrating fragments into global causal models
in a normative fashion (see also Ahn & Dennis, 2000;
Perales, Catena, & Maldonado, 2004). In a typical
experiment, participants had to learn about the causal
relations between the mutation of a fictitious gene
and two substances. The two relations were learned
on separated trials, so no information about the
covariation between the two substances was available.
Although the learning input was identical, the under-
lying causal model differed in different conditions. To
manipulate causal models, participants were told
either that the mutation of the fictitious gene was the
common cause of two substances or they were told
that the two substances were different causes of the
mutation of the gene. The strength of the causal rela-
tions was also manipulated to test whether people are
sensitive to the size of the parameters when making
predictions.

The main goal of the study was to test the condi-
tions under which people are aware of the different
structural implications of the common-cause and the
common-effect models. A correlation should be
expected between the two substances when they were
caused by a common cause, with the size of the
correlation dependent on the size of causal strength.
By contrast, two causes of a common effect should
be independent regardless of the size of the causal
relations.

To test sensitivity to structural implications, parti-
cipants were given two tasks: In the first task, partici-
pants were given new cases along with information
about whether a mutation had occurred or not. Their
task was to predict for each trial whether either of
the two substances was present or absent. Thus, in the
common-cause conditions people predicted the
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presence or absence of the two effects based on infor-
mation about the presence or absence of the common
cause; in the common-effect condition, people diag-
nosed the presence or absence of either cause based
on information about the presence or absence of the
common effect. This way, participants made predic-
tions for the two substances they had never observed
together. Across multiple predictions, participants
generated a correlation between the two substances
that could be used as an indicator of sensitivity to the
implied correlations. The second task asked partici-
pants directly to estimate the conditional frequency of
the second substance given that the first substance
was present or absent.

The two tasks assess sensitivity to structural impli-
cations in different ways. Whereas the second task
assessed more explicit knowledge of the structural
implications of causal knowledge, the first task
required participants to use the causal models to pre-
dict patterns of events. Thus, this task probes sensiti-
vity to structural implications in a more implicit
fashion. For example, in the common-cause condi-
tion a possible strategy would be to run a mental sim-
ulation of the underlying common-cause model.
Whenever the presence of the common cause is
stated in the test trial, the two effects could be indivi-
dually predicted with probabilities that conform to the
learned strength of the causal relation. This strategy
would yield the normatively implied spurious correl-
ation between the substances, although the predic-
tions focused on the individual links between the
common cause and either effect.

Similarly, in the common-effect condition people
could simulate diagnoses of the two causes based on
information about the presence or absence of the
common effect by running the causal model back-
ward from effect to causes (see Figure 10-4A).
Simultaneous diagnoses of either cause should make
participants aware of the possible competition
between the causes. Because either cause suffices to
explain the effect, people should be reluctant to pre-
dict both causes too often. This would yield correct
diagnoses of the patterns of causes without requiring
participants to reflect directly on the correlation
between alternative causes.

The results of this and other experiments show
little sensitivity to the differences between common-
cause and common-effect models in the explicit meas-
ure. Although some basic explicit knowledge cannot
be ruled out (see also Perales et al., 2004), Hagmayer

and Waldmann’s (2000, 2006) experiments show that
people do not use the strength parameters to predict
the implied correlations very well. By contrast, the
implicit tasks revealed patterns that corresponded
remarkably well to the expected patterns. Whereas a
spurious correlation was predicted in the common-
cause condition, the predicted correlation stayed close
to zero in the common-effect condition. Hagmayer
and Waldmann attribute this competency to mental
simulations of causal models.

Further experiments by Hagmayer and Waldmann
(2006) explored the boundary conditions for these
effects. The dissociation between explicit and implicit
knowledge disappeared with causal chains in which
the individual links were taught separately and in
which the task in the test phase was to predict the
final effect based on information about the initial
cause (see also Ahn & Dennis, 2000). In this task,
both explicit and implicit measures were sensitive to
the implied correlation between these two events.
This result shows that spurious relations (e.g.,
between two effects of a common cause) need to be
psychologically distinguished from indirect causal
relations. Whereas people obviously have little
explicit knowledge about spurious relations, they may
view indirect relations as a subdivided global causal
relation. In fact, all direct causal relations can be sub-
divided into chains that represent the underlying
mechanisms. Thus, combining links of causal chains
into a global prediction is easier than deriving predic-
tion for spurious relations.

The implicit task also turned out to be sensitive to
boundary conditions. Whereas performance for the
common-cause model and the chain model showed
fairly robust sensitivity to spurious and indirect rela-
tions, it turned out that people’s implicit estimates in
the common-effect condition are only adequate when
the task required them to predict patterns of causes, as
in the experiment described. In this task, the links of
the causal models were simulated in parallel, which
apparently proved important for making learners
aware of the implied competition among the causes.
When the task was first to predict the effect based on
one cause and then make inferences about the other
cause, people erroneously predicted a spurious correl-
ation between the causes. Probably, participants
accessed each link consecutively and tended to forget
about the possible competition between the causes.

In sum, people are capable of integrating frag-
ments of causal knowledge in a way that corresponds
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to the normative analyses of Bayes nets. However, this
competency is not as robust as the computer models
used to implement Bayes nets. It rather depends on a
number of task factors that include the type of relation
within a causal model and the specifics of the task.

Computational Models of Learning

Although our main concern has been with how peo-
ple learn causal structure, the story we have told is
linked in important ways to current computational
models of inference and learning. For one, the causal
Bayesian network formalism (Pearl, 2000; Spirtes
et al., 1993) offers a normative framework for causal
representation and inference. And, at a qualitative
level human inference seems to fit with the broad
prescriptions of this theory (see Hagmayer et al., chap-
ter 6, this volume; Sloman & Lagnado, 2004, 2005).
The causal Bayesian network framework also suggests
various computational procedures for learning causal
structure. These are often grouped into two types:
Bayesian methods (Heckerman, Meek, & Cooper,
1999) and constraint-based methods (Spirtes et al.,
1993). It is instructive to compare and contrast these
approaches as models of human learning in the light
of the proposals and empirical evidence surveyed in
this chapter.

In short, Bayesian methods assume that learners
have some prior belief distribution across all possible
causal structures and update these beliefs as statistical
data are gathered. Bayes rule is used to compute pos-
terior probabilities for each of the possible models
given the data, and a best-fitting model is derived
from this computation (see Tenenbaum et al.,
chapter 19, this volume). Constraint-based methods
work by computing the independencies and depend-
encies (both conditional and unconditional) in the
data set and then returning the structures that are con-
sistent with these dependencies (for more details, see
Danks, 2004, in press).

At present, these computational models have
been used as rational rather than psychological
models of human learning (Anderson, 1990; Marr,
1982). They aim to specify what the learner is com-
puting rather than how they are actually computing
it. Both Bayesian methods (Steyvers et al., 2003;
Tenenbaum et al., chapter 19, this volume) and 
constraint-based methods have been used for this 
purpose. A question closer to the concerns of the

empirical psychologist, however, is whether these
models tell us anything about the psychological or
process level of causal learning. What are the mecha-
nisms that people actually use to learn about causal
structure?

In their current state, these computational
approaches seem to both overestimate and under-
estimate the capabilities of human learners. For
instance, they overestimate the computational
resources and processing power available to humans
to make the appropriate Bayesian or constraint-based
computations. Bayesian models require priors across
all possible models and Bayesian updating with each
new piece of evidence. Constraint-based models
require the computation of all the dependencies and
independencies in the data and inference of the set of
Markov equivalent structures. Both methods appear
to place insurmountable demands on a human mind
known to be limited in its processing capacities.

There are potential solutions to these short-
comings. Bayesian methods can be heuristic rather
than exhaustive, and constraint-based methods can
use more psychologically realistic methods for com-
puting dependencies (Danks, 2004). However, both
approaches still need to deal with the basic problem,
detailed in this chapter, that there is little evidence
that people who only observe patterns of covariation
between events (without further constraints) can
induce causal models. In particular, there is no clear
evidence that people can use statistical information
from triples of events to infer causal models via condi-
tional dependence relations. And, this ability seems to
lie at the heart of both approaches.

In addition, these computational approaches seem
to underestimate human capabilities (or, more pre-
cisely, the richness of the environment around them
and their ability to exploit this information). As we
have seen throughout this chapter, people make use of
various cues aside from statistical data. These cues are
typically used to establish an initial causal model,
which is then tested against the incoming statistical
data. Bayesian approaches have sought to model this
by incorporating prior knowledge and assumptions in
the learner’s prior belief distribution (Tenenbaum 
et al., chapter 19, this volume; for a more general
approach, see Griffiths & Tenenbaum, chapter 20, this
volume) and thus account for inferences made on
sparse data. But, it is not clear how they handle cases
for which people test just a single model and then
abandon it in favor of an alternative. This kind of 
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discontinuity in someone’s beliefs does not emerge
naturally from the Bayesian approach.

On the face of it, constraint-based methods are
largely data driven, so the use of prior knowledge and
other assumptions appears problematic, but they also
have the resources to address this issue. Along with
the constraints that stem from the statistical depen-
dencies in the data, they can include constraints
imposed by prior knowledge, temporal order informa-
tion, and other cues. This approach also seems to fit
well with the discontinuous and incremental nature
of human learning (Danks, 2004, in press).

However, in both cases further work is needed to
develop a comprehensive framework that can inte-
grate the diverse constraints and cues to structure1

(e.g., from temporal ordering, interventions, etc.) and
capture the heuristic methods that humans seem to
adopt. In particular, this framework needs to be able
to combine and trade off these constraints as new
information arrives. For example, although an initial
causal model might be based on the assumption that
temporal order reflects causal order, a revised model
could reject this constraint in the light of statistical
data that contradicts it (see the section on temporal
order).

Summary

In this chapter, we have argued for several intercon-
nected theses. First, the fundamental way that people
represent causal knowledge is qualitative in terms of
causal structure. Second, people use a variety of cues
to infer structure aside from statistical data (e.g.,
temporal order, intervention, coherence with prior
knowledge). Third, once a structural model is hypoth-
esized, subsequent statistical data are used to confirm
or refute the model and (possibly) to parameterize it.
The structure of a posited model influences how the
statistical data are processed. Fourth, people are lim-
ited in the number and complexity of causal models
that they can hold in mind to test, but they can sepa-
rately learn and then integrate simple models and
revise models by adding and removing single links.
Finally, current computational models of learning
need further development before they can be applied
to human learning. What is needed is a heuristic-
based model that shares the strengths and weaknesses
of a human learner and can take advantage of the rich
causal information that the natural environment
provides.
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Introduction

Disparate, mutually incompatible theories of catego-
rization are widespread in cognitive psychology.
Although there are various formal results connecting
pairs of these theories, the primary research focus has
been on particular empirical tests of people’s favorite
theories. This chapter steps back from the question of
which single theory (if any) is “right” and focuses
instead on understanding the intertheoretic relation-
ships among these models. Specifically, I use the
framework of probabilistic graphical models—a set of
closely related computational and mathematical
model types—to provide a common lingua franca for
a significant subset of the extant psychological theo-
ries of categorization. This unified theoretical frame-
work thus enables us to better understand the
systematic relationships between the theories. In par-
ticular, we can gain a clearer picture of the overlaps
and differences in the models’ empirical predictions
and underlying assumptions. Furthermore, expressing

these psychological models in a common framework
helps to identify several natural generalizations of cur-
rently proposed models as well as currently underex-
plored alternative theories.

This graphical framework for representing various
alternative models of categorization has a further, 
less-obvious, benefit. Categorization research suggests
that at least some categories are defined or described
by an underlying causal structure (Ahn, Marsh,
Luhmann, & Lee, 2002; Hadjichristidis, Sloman,
Stevenson, & Over, 2004; Rehder, 2003a, 2003b, chap-
ter 12, this volume; Rehder & Burnett, in press; Rehder
& Hastie, 2004). Lien and Cheng (2000) found that
people preferentially attend to one category from a set
of possible categories, possibly a large set, based on
which category optimizes causal learning and infer-
ence. Categorization thus seems to rely (sometimes) on
causal reasoning. At the same time, all causal learning
theories currently available—whether associationist or
computational, normative or descriptive—assume that
people are trying to learn causal relationships among a
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fixed set of well-defined variables; in other words, all
current theories of causal learning assume some fixed
categorization of the world. We also know that causal
learning and prediction can suffer significantly if we do
not have the appropriate (in a still unclear sense) cate-
gories (e.g., Spirtes & Scheines, 2004).

These results and observations all point toward a
deep interdependence between (at least parts of) the
cognitive abilities of causal learning, inference, and
prediction on the one hand and categorization and
category generation/learning on the other hand. As a
result, we should aim to find a common representa-
tional language for categorization and causation, so
that clear questions can be simultaneously asked
about both. Given the growing evidence (much of it
described elsewhere in this book) that Bayesian
networks—one particular type of probabilistic graphi-
cal model—underlie parts of causal cognition, this
chapter’s framing of categorization theories in terms
of probabilistic graphical models provides an impor-
tant early step toward understanding the relationships
between causation and categorization.

In the next section, I introduce three different cat-
egorization theories, all of which have figured promi-
nently in recent research. I then introduce two
different types of probabilistic graphical models—
Bayesian networks and Markov random fields—and
describe how these categorization theories can be
straightforwardly understood in terms of inference in
particular instances of these model types. These for-
mal equivalencies have various implications, both
theoretical and experimental. Some of the implica-
tions are clear and immediate, including simple
explanations for various model-fitting results in the
experimental literature. Other implications are more
suggestive. In particular, the mathematical equivalen-
cies described suggest several substantive categoriza-
tion theories that are, to my knowledge, novel to the
psychological community (though not within
machine learning). In the final substantive section, I
focus on one particular model and (programmati-
cally) describe how it could account for a range of
intriguing phenomena in various domains.

Three Similarity Functions

The general problem of categorization is to classify an
object as belonging to a particular group. This classi-
fication can then be used for many different purposes,
including inference of unobserved properties of this
individual based on common properties within the

group. For example, when hiking, I frequently (and
quickly) classify poorly seen animals in terms of their
species. To make this judgment, I must attend to par-
ticular features and properties in the world, some of
which I consciously attend to, others of which I do
not. In addition, my classification will depend (in
part) on the other possibilities I consider. The same
critter that I classify as a “pika” in Colorado might be
classified as a “squirrel” in Pennsylvania (since I know
that there are no pikas in Pennsylvania). Once I have
classified the animal, I then decide whether to be con-
cerned about the animal based on what I know about
that species (e.g., a mountain lion or a squirrel,
respectively). This latter task is typically referred to as
feature inference or property induction: determining
the likelihood that some novel instance of this cate-
gory will have a particular property. In this section, I
describe three different psychological theories that
aim to model the cognitive representations and algo-
rithms underlying this process.

Although there are some exceptions, most psycho-
logical models of categorization separate categoriza-
tion into two stages. For a novel instance X and some
set of possible categories, I first determine how repre-
sentative X is of each potential category. These “simi-
larity ratings” are then integrated in a second step to
produce a behavioral response, such as my categoriza-
tion of this critter as a squirrel. In experimental set-
tings, the relevant possible categories for a particular
novel instance are invariably dictated by the cover
story; in the real world, the possible categories are
selected on some poorly understood bases, such as
pragmatics or prior knowledge. Most psychological
research has focused on the similarity rating function;
relatively little empirical work has been done on the
second-stage integration of similarity ratings (though
see Wills, Reimers, Stewart, Suret, & McLaren, 2000).

More formally, suppose that we represent individ-
uals in terms of n (binary or continuous1) features,
denoted by F1, . . . , Fn. These features are presumably
selected by some process outside the categorization
theory itself. Throughout this chapter, I make the
standard assumption for categorization theories that
these features are well defined and well specified.
Similarity ratings for a particular category are thus just
functions on these n features. The standard second-
stage integration rule for the similarity ratings is the
Shepard-Luce rule (Shepard, 1957; Luce, 1963): If
SC(X) denotes the similarity of X to category C and Q
indexes over all of the potential categories, then
P(Respond “C” | X) � SC(X) / �SQ(X). That is, the
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probability of classifying X as a C is given by X’s simi-
larity to C divided by the sum of X’s similarity to every
possible category (including C). Bias parameters are
occasionally used (Logan, 2004), as well as other rules
with significant formal connections to the Shepard-
Luce rule (Ashby & Maddox, 1993).

In this section, I focus on the similarity functions for
standard versions of exemplar (e.g., Kruschke, 1992;
Lamberts, 1998, 2000; Nosofsky, 1986; Nosofsky &
Palmeri, 1997; Zaki, Nosofsky, Stanton, & Cohen,
2003; Logan, 2004, provides a good overview of recent
work), prototype (e.g., Minda & Smith, 2001; J. D.
Smith & Minda, 1998), and causal model (e.g.,
Rehder, 2003a, 2003b) theories of categorization.
Substantial empirical support has been found for all
three types of model, depending on the particular cate-
gory, cover story, and task. Although these three similar-
ity functions do not exhaust the space of proposed
theories, they underlie the most widely discussed theo-
ries. In particular, this analysis includes Nosofsky’s
(1986) generalized context model (GCM; described in
this section), which is the almost universal standard
against which new psychological theories are judged.
Rule-based categorization theories (including Nosofsky,
Palmeri, & McKinley’s 1994 RULEX (RULE-plus-
eXception) model) are indirectly covered by this
section because single-feature rules are equivalent to
exemplar/prototype models in which we attend to only
one feature. More direct analysis of rule-based models
is rarely possible because simulations are almost always
required to generate predictions for any realistic situa-
tion. Note that dynamic measures of categorization,
including category learning dynamics and response
time predictions, will not be considered here.2

The GCM (Nosofsky, 1986) provides the basis
exemplar similarity function for numerous other
categorization theories (e.g., Erickson & Kruschke,
1998; Kruschke, 1992; Lamberts, 1998, 2000;
Nosofsky & Palmeri, 1997). The core intuition
behind the GCM is that the similarity or typicality of
some novel instance X for category A is given by the
average distance in the “category space” between X
and some subset of previously observed category
instances (the exemplars). In other words, I represent
a category in terms of exemplars (previous instances
known to be in the category). A new object is similar
just to the extent that it is “close” to the previous
observations. For example, my category of bird is
defined by remembered previous instances of birds
(e.g., a robin, an ostrich, and so on). My category of
squirrel is defined by previously observed squirrels.
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And, some new critter is classified as a bird rather
than a squirrel just when its average distance to the
bird exemplars is less than its average distance to the
squirrel exemplars (and those are the only two possi-
bilities considered).

Mathematically, we define a GCM (i.e., exemplar-
based) category A by a set of exemplars E1, …, Em, each
of which is a full specification of values for the n
relevant features. Let Y(i) denote Y’s value for the ith
feature. The similarity between novel instance X
and a particular exemplar Ej is then given by 
Sim(X, Ej) � �

n
i�1exp[�c � �i|X(i)�Ej(i)|] where �i is

a salience parameter for the ith feature, and c is a global
weighting parameter.3 That is, the similarity is the prod-
uct of (the exponential of) the distances between X and
Ej on each of the feature dimensions. Note that, if the
features are all binary valued, then the similarity is just
the product of exp[–c � �i] for each feature Fi on
which X and Ej differ. The overall similarity rating 
of novel instance X for category A in the GCM—that is,
the output of the first stage of the categorization
model—is the weighted sum of similarities for all
category exemplars: GCM(X, A)��

m
j�1WjSim(X,Ej).

The similarity ratings for each GCM category, for example
GCM(X, A), GCM(X, B), and so on, are then combined
using the Shepard-Luce rule to generate behavioral
responses. In addition, the set of exemplars (i.e., the cate-
gory definition) can straightforwardly be used for inference
about unobserved features of objects placed into the same
category, such as, “This is a squirrel, and most of my squir-
rel exemplars were not aggressive; therefore, this squirrel
probably won’t be aggressive.”

Prototype-based theories offer a different picture of
categorization from exemplar-based models. Instead
of basing the category on a set of previously remem-
bered instances, categories are defined by proto-
types—single objects—that encode a summary or
average of people’s experiences with the category;
these prototypes need not correspond to any actual
category instance (and almost never will). A novel
instance’s similarity to the category then depends on
its distance in “category space” to that single proto-
type. The prototypical bird, for example, is not any
bird that has ever been observed, although various
actual birds (e.g., robins) are closer to it than others
(e.g., ostriches). Mathematically, the prototype model
(e.g., Minda & Smith, 2001; J. D. Smith & Minda,
1998; see also versions in Johansen & Palmeri, 2002;
Olsson, Wennerholm, & Lyxzèn, 2004) is almost
always a GCM model with only one exemplar for the
category, but for which the exemplar might not have



been observed.4 However, this standard, simple proto-
type model fails to do justice to the intuition behind
prototype models. Information about interfeature
connections or correlations is an important part of
any summary of a series of observations, and this
information cannot be expressed in the description of
a single instance. The standard prototype similarity
function requires some augmentation to capture the
underlying intuition.

A simple way to incorporate interfeature correla-
tions is with second-order features: features with a
value that is entirely determined by the values of two
first-order features. (Second-order features are only
one way to capture correlations; a more powerful
option is discussed in Applying the Graphical Model
Equivalencies.) For example, it might be important
that both F2 and F17 occur, perhaps because of an
observed correlation. In that case, we could define a
second-order feature that “occurs” if and only if F2
and F17 both occur.

Second-order features consisting of logical AND
functions are common (e.g., Rehder, 2003a, 2003b)
but are certainly not the only kind of second-order fea-
ture that could be introduced; Danks (under review)
gives a general, mathematical definition of (plausible)
second-order features. If we allow second-order fea-
tures into a category prototype, then we have to adjust
the first-order feature prototype similarity function
(which was just the GCM similarity function).

For simplicity, I use d(i, j) to denote the distance
between (instance) X and (prototype) E along the fea-
ture composed of Fi and Fj (if i � j, then this is the
appropriate first-order feature). Let �ii be the salience
of first-order feature Fi and �ij be the salience of the
second-order feature composed of Fi and Fj. (�ij � 0
implies no second-order feature for Fi and Fj.) Given
this notation, the second-order prototype (SOP) cate-
gory similarity function is SOP(X, A) �

�
n
i�1 �

n
j�1exp[�c � �ijd(i,j)]. That is, the similarity

between some instance X and category A is the prod-
uct of (the exponentials of) the distances between X
and A for each feature, including second-order ones.
Once X is categorized into a particular prototype-
based category, feature inference is based entirely on
the summary statistics encoded in the prototype itself.
If the value of flies is 0.95 for the prototypical bird
(i.e., 95% of birds summarized in the prototype could
fly), then the probability that this bird flies is .95.

The third psychological theory of categorization
is causal model theory (CMT; Rehder, 2003a,

2003b, chapter 12, this volume). CMT defines a cat-
egory in terms of a particular causal structure among
the features, including possibly unobserved features
(e.g., an animal’s “essence”). The underlying intu-
ition about similarity is that a particular instance is
more likely to be a member of category A just when
its observed features respect the causal relationships
among the various features. Thus, the similarity
function for a category in CMT is the probability
that a particular novel instance would be generated
by that category’s causal structure (perhaps multi-
plied by some scaling factor). For example, a particu-
lar object is similar to “bird” when the combination
of observed features would likely be produced by
something with the causal structure underlying the
category of “bird”.

Obviously, the mathematical details of CMT
depend heavily on the particular representation of
causal structures. Current versions of the theory model
these structures using causal Bayesian networks (or
causal Bayes nets). Details about causal Bayes nets are
provided in the next section. For now, the relevant fea-
ture of a causal Bayes net is that it can be used to deter-
mine the probability of any particular combination of
feature values given some causal structure; the CMT
similarity function is directly proportional to that prob-
ability. That is, CMT(X, A) is proportional to P(X | M),
where M is the causal Bayes net for the category.
Given a particular categorization, the causal structure
can straightforwardly be used for feature inference
(Ahn et al., 2002; Hadjichristidis et al., 2004; Rehder
& Burnett, in press; Rehder & Hastie, 2004).

In this section, I have left out several different types
of categorization theories; perhaps most notably, I
excluded connectionist models (e.g., Gluck & Bower,
1988; McClelland & Rogers, 2003; Rogers &
McClelland, 2004). There is reason for their exclusion.
Connectionist models have the ability to model or
approximate large classes of input-output functions.
However, to determine the exact space of similarity rat-
ings that can be modeled by a particular network, we
must perform significant simulations, except in specific
networks that can model all possible input-output rela-
tionships. Without analytic results about the input-out-
put relationships that can be modeled by a particular
neural network structure, there is no definite target for
expression in the framework of probabilistic graphical
models. Moreover, it is notoriously difficult to deter-
mine which representations are contained in a connec-
tionist model because much depends on the particular
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connection weights that emerge from a learning history.
As a result, process equivalencies that directly map the
symbolic operations of the connectionist model onto a
graphical model are also not forthcoming.

Probabilistic Graphical Models

The central theoretical claim of this chapter is that the
similarity functions from the preceding section can be
usefully and interestingly described in the framework of
probabilistic graphical models. In this section, I outline
two types of graphical models—Bayesian networks and
Markov random fields—and then describe how various
similarity functions are proportional to calculating 
P(X | Model), where Model is one of these probabilistic
graphical models. That is, the various psychological the-
ories make different predictions because they assume dif-
ferent graphical model types: a subclass of Bayesian
networks for exemplar-based theories (the GCM), causal
Bayesian networks for CMT, and a subclass of Markov
random fields for prototype-based theories. Thus, these
diverse theories can be viewed (from a mathematical
point of view) as different parameterizations of a single
unified theory. These mathematical observations raise a
range of psychological implications and questions; I take
up those issues in the subsequent two sections. Because
of space constraints, I have omitted the full proofs and
technical details about the various equivalencies; the rel-
evant mathematical specifics can all be found in my pre-
vious work (2004, under review).

In general, probabilistic graphical models provide a
compact representation of a probability distribution by
encoding various facts about independence and associ-
ation in some type of graph. Strevens (chapter 15, this
volume) explores the importance of (usefully) compact
representations of probability and statistical facts. Bayes
nets are one of the most popular probabilistic graphical
models for such purposes; I here provide a brief intro-
duction to the framework. Neapolitan, 2003; Pearl,
2000; Spirtes, Glymour, & Scheines, 1993/2001, and

other chapters in this volume all provide more compre-
hensive introductions to Bayes nets’. It is important to
realize that, despite the name, there is nothing intrinsi-
cally Bayesian about a Bayes net; the name is derived
from the original uses of the framework. One can be,
but need not be, a Bayesian about Bayes nets.

A Bayes net is defined relative to a set of variables;
in our current setting, these are the observed features.
One half of a Bayes net is a directed acyclic graph con-
taining one node per variable/feature (see Figure 11-1).
These nodes are (possibly) connected by directed edges
(e.g., Fi → Fj), indicating an asymmetric relationship.
In “simple” Bayes nets, the asymmetric relationship is
purely probabilistic. In contrast, a causal Bayes net
(used by CMT as well as multiple psychological theo-
ries of causal reasoning) is a Bayes net in which the
edges in the graph are provided a causal interpretation.
If the causal interpretation is justified by background
knowledge, then X → Y indicates that X is a direct
cause of Y, where no particularly substantive theory of
causation is presupposed (see Woodward, 2003, for one
possibility). We use family terminology (e.g., parent or
child) to describe the graphical relationships. The
acyclicity property of the graph means that there is no
(nontrivial) arrow-following path from a variable back
to itself (e.g., there cannot be a path like F1 → F3 →
F17 → F1 in the graph).

The other half of a Bayes net is a joint probability dis-
tribution (or density, for continuous variables) that spec-
ifies the probability of any particular set of feature
values. When the causal interpretation is justified, the
joint probability distribution encodes information about
the quantitative causal dependencies among the vari-
ables. The two Bayes net components—the directed
acyclic graph and the joint probability distribution—are
connected by a Markov assumption: Every variable is
probabilistically independent of its nondescendants
conditional on its graphical parents. This assumption
implies that the joint probability distribution (density)
factors as P(X) � �

n
i�1 P(Fi | pa(Fi)), where pa(Fi)
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denotes the graphical parents of Fi. The components
are also connected by the faithfulness assumption: The
only probabilistic independencies are those predicted
by the Markov assumption. The primary effect of the
faithfulness assumption is to exclude the possibility of
multiple pathways with effects that exactly cancel out
(e.g., X → Y → Z and X → Z, but X and Z are uncon-
ditionally independent). Faithfulness is assumed (either
explicitly or implicitly) by essentially every Bayes net
learning algorithm. An example of a Bayes net is pro-
vided in Figure 11-1.

The causal model similarity function is already
expressed using causal Bayes nets: The causal struc-
ture defining category A must be a causal Bayes net,
and the similarity of X to A is given by the probability
of X in the joint probability distribution represented
by the causal Bayes net. That is, the similarity rating
of X for category A is equal to P(X), where the proba-
bility distribution is represented by a causal Bayes
net.5 Thus, this categorization theory can easily be
represented in terms of inference for probabilistic
graphical models.

Perhaps more surprisingly, Bayes nets can also be
used to express the exemplar-based GCM similarity
function. In general, the similarity functions used in
these two-stage categorization theories are defined for
all possible instances. Therefore, the pattern of those
ratings for a particular category is proportional to
some probability distribution over those same possible
instances. So, for example, if we have some exemplar-
based (i.e., GCM) category A with its corresponding
similarity function GCM(X, A), then there is neces-
sarily some probability distribution P(X) such that
GCM(X, A) ∝ P(X) for all instances X [i.e., there is
some constant K such that GCM(X, A) � K � P(X)
for all X]. Hence, to establish an equivalence between
the GCM and some probabilistic graphical model, it
suffices to show that, for every probability distribution
proportional to a possible set of ratings for a GCM cat-
egory, there is a perfect map in some class of proba-
bilistic graphical models and vice versa. A graphical
model provides a perfect map of a probability distribu-
tion if and only if the graph implies (by Markov and
faithfulness) all and only the probabilistic indepen-
dencies that occur in that distribution. In general, the
(high-level) strategy for expressing categorization the-
ories in terms of probabilistic graphical models is as
follows: Determine the patterns that could possibly be
produced by (normalized) similarity functions and
then find a set of probabilistic graphical models that
perfectly represent exactly those patterns.

In the case of the exemplar-based GCM, consider a
Bayes net with the directed acyclic graph in 
Figure 11-2. E is an unobserved variable with a num-
ber of values that depends on the category modeled. By
the Markov assumption, the joint probability distribu-
tion for this Bayes net factors into P(E, F1, . . . , Fn) �

P(E) � P(F1 | E) � . . . �P(Fn |E). The structure of this
model is similar to the oft-used naïve Bayes models of
machine learning classification problems, although the
role and interpretation of the (unobserved) common
cause is different in this situation.

Regardless of whether the features are binary (e.g.,
either present or absent) or continuous (e.g., height),
every GCM category is proportional to a probability
distribution over the Fi’s that has a perfect map given
by a Bayes net6 with this graph. That is, for every
GCM category, there is a Bayes net with the Figure
11-2 graph and associated probability distribution
such that GCM(X, A) ∝ P(X) for every possible
instance X over features F1, . . . , Fn. The converse of
this claim holds with a slight addition: For every prob-
ability distribution over the observed Fi’s for a Bayes
net with the Figure 11-2 graph and a “regularity” con-
straint on the form of the P(Fi | E) terms, there is a
GCM category with ratings that are proportional to
that distribution. The exact regularity constraint
depends on whether the features are binary or contin-
uous, but neither constraint is particularly strong.7

Because similarity ratings are determined only up to a
choice of scale, we can conclude that GCM cate-
gories and Bayes nets with a Figure 11-2 graph (plus
regularity constraint) describe exactly the same set of
similarity ratings; any responses that can be fit to one
model can be fit to the other.

In contrast, there is no corresponding equivalence
between Bayes nets and prototype-based categoriza-
tion models with second-order features. These two
types of models are fundamentally different in that
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the intervariable connections in a Bayes net are
asymmetric (whether in a probabilistic or causal
sense), and the second-order features are symmetric.
Hence, we need a probabilistic graphical model with
undirected edges between the features to indicate
symmetric connections. This model type is called a
Markov random field (see, e.g., Darroch, Lauritzen, &
Speed, 1980; Lauritzen, 1996, for more technical
introductions).

As with Bayes nets, Markov random fields are
defined only relative to a set of variables (features) and
are composed of a joint probability distribution (den-
sity) and a graph. In contrast with a Bayes net, though,
a Markov random field graph contains undirected
edges between the nodes (see Figure 11-3). Roughly
speaking, two features connected by an edge in the
graph implies that there is a probabilistic dependence
between those features’ values, but no explanation of
the correlation is given or presumed (and so there is
no asymmetry between the variables).

The graph and probability distribution in the
Markov random field are connected by a Markov
assumption: The probability of any feature value is
dependent only on its graphical neighbors. So, for
example, in Figure 11-3, P(A) depends only on B and
C; A is probabilistically independent of D and E con-
ditional on B and C. The Markov assumption implies
that the joint probability distribution can be factored
into the product of functions (called clique poten-
tials) over the maximal cliques in the undirected
graph. A graphical clique is any set of nodes for which
every pair is connected by an edge, and a clique is
maximal if adding any other variable renders it no
longer a clique. Thus, the Markov assumption for a
Markov random field G implies that, if the maximal
cliques in G are denoted by C1, . . . , Cq, then we can
express the probability of some novel instance X as
P(X|G) � �

n
i�1

gi(X), where gi(X) depends only on
the values of variables in Ci (and Z is a normalization
constant). Figure 11-3 provides an example of a
Markov random field, including both the graph and

1
Z

the factorization of the joint probability distribution
into clique potentials.

As with Bayes nets and exemplar-based models, we
can successfully apply the same high-level strategy to
connect Markov random fields and prototype-based
models. The patterns of ratings produced by prototype-
based similarity functions can be understood as proba-
bility distributions, and we can represent that space of
probability distributions in terms of Markov random
fields. More specifically, for a particular (second-order
feature) prototype-based category, its Markov random
field counterpart contains an edge between two nodes
(features) just when there is a second-order feature for
those two. Then, for every possible pattern of similar-
ity ratings, there is a corresponding (proportional)
probability distribution that has a perfect map given by
the category’s Markov random field counterpart. And,
for every probability distribution with a Markov ran-
dom field perfect map (with clique potentials that sat-
isfy a further, relatively weak, regularity constraint),
there is a corresponding prototype-based category with
similarity ratings that are proportional to the distribu-
tion. Just as GCM categories are equivalent to (proba-
bility distributions with perfect maps given by) Bayes
nets with the Figure 11-2 graph, (second-order) proto-
type-based categories are equivalent to (the probability
distributions for) a subset of Markov random fields.

In summary, all three types of similarity functions
(GCM, SOP, and causal model) can be expressed 
(up to a scaling parameter) as computations of 
P(X | Model), where the differential theory predictions
arise from different assumptions about the underlying
graphical model. The precise psychological model ↔
graphical model relationships are

GCM rating for X ↔ P(X | Bayes net with 
Figure 11-2 graph and constraint)

SOP rating for X ↔ P(X | Markov random fields
with a constraint)

Causal model rating for X ↔ P(X | Causal 
Bayes net)
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The representation of category similarity functions
as probability distributions has been explored by Myung
(1994), Ashby and Alfonso-Reese (1995), and Rosseel
(2002). In contrast to that work, the results detailed here
use the framework of probabilistic graphical models,
which allow us to extend the formal results to a broader
class of prototype theories, as well as to include CMT.
In related research, Nosofsky (1990) and Ashby and
Maddox (1993) pursued a more direct strategy and
found conditions in which exemplar models could be
directly transformed into prototype models and vice
versa without the framework of probability theory or
graphical models (see also Barsalou, 1990). Although
important for understanding those two theory types, the
direct results are not readily extensible to other psycho-
logical theories (e.g., CMT) because they do not situate
the theories in a more general framework.

With these equivalencies in hand, I now turn to
their implications. The next two sections demonstrate
several pragmatic uses of the representation of these
models as probabilistic graphical models, including
better understanding of existing experimental results,
suggestions for novel experiments, and more specula-
tively, the possibility of interesting generalizations of
existing psychological theories.

Applying the Graphical Model
Equivalencies

The most obvious application of these equivalencies
is to facilitate rapid determination of the conditions in
which the categorization theories make differential
predictions, thus enabling us both to explain previous
experimental results and to construct appropriate
novel experiments. In particular, if the two probabilis-
tic graphical model types can perfectly represent dif-
ferent probability distributions and people’s
behavioral responses approximate the observed prob-
ability distribution for some category, then we can
determine analytically whether some experiment is
likely able to discriminate between the SOP (�
Markov random field) and causal model (� causal
Bayes net) theories. In fact, the expressive potentials
of Bayes nets and Markov random fields overlap. That
is, there are probability distributions that can be rep-
resented perfectly by a Markov random field but not a
Bayes net and vice versa. There are also probability
distributions (e.g., those equivalent to first-order 
prototype-based similarity functions) that can be 

represented perfectly by both Bayes nets and Markov
random fields, as well as some that cannot be repre-
sented perfectly by models from either framework.

As a concrete example, there is no Bayes net that
perfectly represents a probability distribution with
the (Markov random field) factorization given in
Figure 11-3. Thus, if Figure 11-3 describes the actual
underlying category structure (i.e., the probability
that any novel instance comes from that category),
then a categorizer using causal models would not be
able to learn the category structure perfectly.
Similarly, there is no Markov random field that per-
fectly represents a probability distribution with the
(Bayes net) factorization in Figure 11-1, so a catego-
rizer using SOP-based categories would not be able
to learn that category accurately. Finally, a simple
category structure consisting of uncorrelated features
can be equally well represented by models from both
frameworks, so no experiment based on such cate-
gories will be able to distinguish between causal
model- and SOP-based categorization (i.e., the psy-
chological theories should have equally good model
fits).

We can also apply this analysis to published—not
just hypothetical—experiments. Rehder’s (2003a)
common-cause condition uses a category probability
distribution that can be equally well represented by a
Bayes net (� causal model) and a Markov random
field (� SOP). As predicted, he found no model fit
difference between the corresponding psychological
theories (see Rehder’s Table 5, p. 729). In contrast,
Rehder’s common-effect condition used a probability
distribution that can be represented by Bayes nets but
not Markov random fields. Thus, the two psychologi-
cal theories should be distinguishable by that experi-
ment: SOP categorizers will do poorly, and causal
model categorizers should do well. Alternately, if we
assume that people can learn a wide range of category
structures, then we should expect the SOP theory to
have a significantly worse model fit than the CMT.
The subsequent data analysis found exactly that sig-
nificant model-fit difference in favor of CMT, which
can represent the underlying probability distribution
(see Rehder’s Table 5, p. 729). (See also Rehder’s
Experiment 3 in chapter 12, this volume, for further
evidence of an asymmetry between common-cause
and common-effect networks.)

Finally, we can use this analysis to design experi-
ments to push the outer boundaries of human category
learning. As noted, there are probability distributions,
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and so categories, that none of the psychological theo-
ries can completely model. Correct theoretical predic-
tions of cognitive failures (in this case, failure to
represent the category correctly) are typically thought
to constitute stronger evidence for a theory than predic-
tions that people will behave close to optimally. Thus,
a natural way to separate these three theory types is to
present individuals with categories with a structure that
cannot be mapped onto any of these representations
without loss of information. In particular, we want to
find categories for which each theory picks out differ-
ent aspects of the structure, so they predict different pat-
terns of failure. Chain graphs are probabilistic
graphical models that use both directed and undirected
edges (further discussed in the next section), and there
are perfect map chain graphs for probability distribu-
tions with no Markov random field or Bayes net perfect
map. One such graph is F1 → F2 — F3 ← F4.8 All
three psychological theories predict that people will
make significant, systematic, predictable errors when
presented with a category with this structure, and those
errors are predictable using the probabilistic graphical
model equivalencies described here. The differential
error predictions can then be used to determine better
which theory best describes an individual’s categoriza-
tion process. To my knowledge, no such experiment
appears in the literature (though see Danks, 2006).

In addition to methodological implications, these
equivalencies suggest natural generalizations of exist-
ing psychological theories. The exemplar-based and
SOP-based similarity functions are equivalent with
only subclasses of Bayes nets with Figure 11-2 graphs
and Markov random fields, respectively. In both cases,
the equivalent graphical models have constraints on
the probability distribution beyond those implied
by the graphical model. From the probabilistic graph-
ical model point of view, these additional constraints
seem arbitrary, although they have a natural justifica-
tion in terms of ensuring computational tractability.

Setting aside computational issues, though, we
might naturally consider generalizing the GCM to
include patterns of similarity ratings that are propor-
tional to any probability distribution with a perfect map
Bayes net with a Figure 11-2 graph. This generalization
has a straightforward interpretation within the GCM
framework: It corresponds to allowing exemplar-
dependent feature saliences in the similarity function.
Similarly, we can generalize the SOP model to include
any probability distribution with an arbitrary Markov
random field perfect map. This generalization would

significantly extend the scope of that theory while
retaining the basic intuition of prototype theories that
the category representation is a summary of the
observed category instances. Importantly, both of these
generalizations remain bounded in explanatory power;
there are experiments and patterns of similarity ratings,
such as Rehder’s (2003a) common-effect condition, that
can distinguish these generalizations from one another.

Finally, these equivalencies suggest alternate
responses to two existing problems for categorization
theories: empirical support for (seemingly) inconsis-
tent theories and (apparent) shifts in category struc-
ture during learning. The first problem is that there is
significant empirical evidence supporting all three of
these psychological similarity ratings, depending on
the particular domain, presentation format, contrast
class, and so on. One response to this fact has been to
argue that there are distinct cognitive systems for dif-
ferent categorization strategies (e.g., exemplar vs. rule
based), and that contextual factors and background
knowledge determine which system is activated. This
idea is supported by evidence from reaction time
(Allen & Brooks, 1991) and neuroimaging (Grossman
et al., 2002; Patalano, Smith, Jonides, & Koeppe,
2001; E. E. Smith, Patalano, & Jonides, 1998) studies
(see also Machery, in press). In a similar vein, Ashby
and his colleagues have argued that different neural
systems underlie implicit and explicit category learn-
ing, which are distinguished by whether participants
can give a simple, verbal rule to differentiate the cat-
egories (Ashby, Alfonso-Reese, Turken, & Waldron,
1998; Ashby & Waldron, 2000; Waldron & Ashby,
2001). These proposals all share the underlying idea
that there are multiple processing systems in the brain
responsible for the different types of categories.

The equivalencies described here suggest a differ-
ent response to the range of empirical supports: The
differential behaviors (perhaps) arise from differing
parameterizations of a common categorization algo-
rithm. That is, these distinct psychological theories
might correspond to the same operation applied to
three different representations (i.e., types of graphs)
rather than distinct cognitive mechanisms. There
might be only one process in which similarity ratings
are based on P(X | Model) but in which the particular
category model type depends on factors such as experi-
ential history, context, other background knowledge,
and so on. Differential behavior arises from different
inputs to the same process rather than fundamentally
different processes. If the cognitive representation of
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the category structure is a Bayes net with a Figure 11-2
graph, the person will exhibit GCM category behavior.
If the representation is a suitable Markov random field
or causal Bayes net, categorizations will be best under-
stood using SOP or CMT, respectively. Of course, this
suggestion is not intended to demonstrate that there
cannot possibly be multiple processes; rather, it is
intended to defeat the (too quick) inference from “sup-
port for multiple theories” to “multiple cognitive
processes must exist.”

Understanding the different categorization theo-
ries in terms of probability calculations using differ-
ent representations also provides a straightforward
solution to the problem of integrating similarity rat-
ings of categories with different structures. Regardless
of category structure, all of the similarity ratings are
on the same scale and have a clear interpretation, so
they can easily be integrated into a single, coherent
behavioral response. In contrast, the multiple systems
hypothesis must provide some further account (per-
haps in terms of probabilities) to explain how similar-
ity judgments from entirely distinct cognitive
processes are integrated to produce well-defined
categorization judgments.

Finally, the underlying category structure type
sometimes seems to change in response to repeated
exposure to category examples (Johansen & Palmeri,
2002; J. D. Smith & Minda, 1998). For example, I
might initially represent a category using a prototype,
but shift to using an exemplar representation (or vice
versa). J. D. Smith and Minda (1998) found that
exemplar-based (specifically, GCM) structures were
predominant throughout learning of small, poorly dif-
ferentiated categories. During the learning of larger,
more clearly delineated categories, however, there
seemed to be a shift from prototype-based to exem-
plar-based category structures (see also Minda &
Smith, 2001; Zaki et al., 2003; and the overfitting wor-
ries of Olsson et al., 2004). Johansen and Palmeri
(2002) found a similar shift toward exemplar models
during learning, although rule-based categories rather
than prototype-based ones were more prevalent in
early stages of their experiments. Rehder (chapter 12,
this volume) suggests other trajectories for shifts in
underlying category structure type.

The common framework of graphical models
enables us to articulate clearly both theoretical and
experimental questions about these phenomena. An
immediate question that arises in these analyses cen-
ters on representational power. The experimental

results were analyzed by determining model fits for
similarity responses at different times, and so the con-
clusions about likely shifts in category structure
should be qualified by the precise model name. In
particular, all of these analyses used only first-order
prototype models; that is, they assumed that the cate-
gory was represented by a single (perhaps unobserved)
instance. The representational power of first-order
prototype models is easily expressed in graphical
model terms: They can only represent probability dis-
tributions with perfect maps that are Markov random
fields with no edges between features and so no inter-
feature correlations. The GCM exemplar model, by
contrast, can represent interfeature correlations,
although (for plausible instances) only of a certain
type. As described, the shifts from (apparent) proto-
type-based to (apparent) exemplar-based structures
were more pronounced for categories with correlated
features. Thus, given the significantly weaker repre-
sentational power of first-order prototype models, it is
entirely conceivable that these shifts in best-fitting
model type are because of this power imbalance
rather than actual cognitive changes. Reanalysis with
a more sophisticated prototype model, perhaps one
based on arbitrary Markov random fields, is
warranted.

Some Speculations about Human
Categorization

The previous sections focused on the equivalencies
between three common similarity functions and com-
puting P(X | Category), where the theories differ about
the exact form of Category. These similarity ratings
are the first stage in a two-stage process. The second
stage is typically the Shepard-Luce rule: The proba-
bility of responding with category C for novel instance
X is the similarity rating between C and X divided by
the sum of similarity ratings for all other considered
categories. Mathematically, if similarity ratings corre-
spond to P(X | Category), then use of the Shepard-
Luce rule corresponds to computing P(Category | X)
if every category under consideration is equiproba-
ble.9 Use of bias parameters in the Shepard-Luce rule
(as in Logan, 2004) then corresponds to allowing the
possible categories to have different base rates. Thus,
the complete (i.e., two-stage) theories solve arguably
the central problem for categorization: Given obser-
vations of a novel object’s features, determine the
probability that it falls in one or another category.
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Moreover, the two stages of these theories are
intended quite seriously: They are supposed to
describe cognitively separable steps in categorization.
So, for example, some experiments aim to obtain judg-
ments of an item’s similarity to a particular category
without invoking actual categorization judgments
(e.g., Rehder, 2003a, although Barsalou, 1985, argues
that many other factors enter into similarity ratings).
Alternately, we might suppose that people’s conscious
access to their categorization judgments is limited to
the final output, in particular, P(Category | X), where
Category can be one of several probabilistic graphical
models, including a Bayes net with a Figure 11-2
graph, a Markov random field, or a causal Bayes net.10

That is, rather than (explicitly) categorizing in two dis-
tinct stages, people directly determine the category
probability given the instance. The most notable pre-
vious example of categorization based directly on
P(Category | X) is Anderson’s (1991) rational analysis
model. However, Anderson’s model and subsequent
extensions are not based on graphical models and so
are not considered here.

The central difference between the one- and two-
stage views of categorization lies in the requirement
of a contrast category to compute anything in the first
view; no contrast category is required to compute the
similarity ratings of the second view. Any computa-
tion of P(Category | X)—whether by one or two
stages—presupposes that there is at least one alterna-
tive category, or else the probability is just one
(because Category is the only possibility). In contrast,
no information about any alternative categories is
required to compute P(X | Category), which is all that
is required for the first stage of the two-stage process.
If categorization is really a one-stage process (i.e., the
only conscious access is to the probability of the cate-
gory given the instance, rather than intermediate sim-
ilarity ratings), then one must explain the source of
people’s similarity ratings in experimental settings.
The most natural explanation is that similarity ratings
are actually categorization judgments with some
implicitly assumed contrast class. That is, judgments
of the typicality of a novel instance X for some cate-
gory A are not actually similarity ratings but rather are
people’s judgments of P(A | X) relative to an implicit
contrast category not-A.

If people’s similarity judgments are really catego-
rization judgments, then they should be influenced by
variations in the contrast class structure and base rate.
One experimental test to distinguish one- from two-

stage views would be to present people with a novel
category and instances of that category, all with an
explicit contrast class (i.e., instances not in the novel
category are definitely in the contrast class). We could
then ask for ratings of the typicality of novel instances
for the target category, in which we vary between con-
ditions either the structure or the base rate of the con-
trast category but not of the target category. The
central prediction in this proposed experiment is as fol-
lows: If categorization is (consciously) a one-stage
process, then there should be a statistically significant
difference between similarity ratings in the conditions;
if categorization is (consciously) a two-stage process,
then there should be no such difference. Even though
the structure of category A does not change, P(A | X)
does change between conditions because of changes
in the structure/base rate of the contrast class. The pre-
cise change will depend on the details of the contrast
category structures (or base rates) but can be deter-
mined quantitatively. Importantly, note that this pro-
posed experiment tests stability of representativeness
(or similarity) judgments of some novel instance for a
category and not categorization judgments. Both views
agree that participants’ categorization judgments
should vary as the contrast class structure or base rate
vary; the disagreement is about whether the contrast
class matters for the typicality ratings.

Das-Smaal and De Swart (1986) performed an
experiment similar in structure to this proposed one
and found limited evidence that representativeness
(similarity) ratings for stimuli change depending on
the contrast class. Unfortunately, they did not obtain
typicality ratings for every possible combination of
features, so we cannot use their experiment as even a
first step toward development of a formal model. If
these results can be suitably replicated and extended,
then additional experiments can aim to determine
(a) whether people have an implicit contrast class if
not given an explicit one and (b) the structure of the
implicit contrast class, if it exists.

The reason for exploring categorization as a one-
stage process is because it opens a range of mathemat-
ical possibilities. The one-stage view draws attention to
the importance of incorporating multiple potential
categories into a single mathematical/representational
structure (because categories are never considered in
isolation). As in the existing psychological theories,
categories in the one-stage theory can be represented
as probabilistic graphical models. We can incorporate
multiple probabilistic graphical models into the same

THEORY UNIFICATION AND GRAPHICAL MODELS 183



structure by the use of a (qualitatively stated) theorem:
There is no mathematical difference between deter-
mining which of several probabilistic graphical mod-
els is most probable and determining the most
probable value of a new variable (Category) that
ranges over the possible categories and is a graphical
parent of the relevant features.

That is, given several probabilistic graphical mod-
els, there is a mathematically equivalent structure with
a new, unobserved Category variable that acts as a
switch to produce the appropriate probabilistic graph-
ical model depending on which category is actual. In
the Bayes net literature, this unobserved variable is a
context variable for a model with context-specific inde-
pendence (CSI; see Boutilier, Friedman, Goldszmidt,
& Koller, 1996; Poole & Zhang, 2003; Zhang & Poole,
1999). Thus, instead of modeling categorization as cal-
culations of P(Category A | X), we can equivalently
model it as calculations of P(CATEG � A | X) for a
context variable CATEG with values that are the vari-
ous mutually exclusive possible categories. This con-
text variable is similar to the “Being a . . .” variables of
Strevens’s (2000) minimal essentialism: The context
(category) determines the structure (e.g., causal laws)

for an individual, but no claims are made about how
the context (category) does so.

As an example of these two ways of thinking about
the same (theoretical, mathematical) process, con-
sider the category of blicket studied by Gopnik and
her colleagues (e.g., Gopnik et al., 2004). Blickets are
objects that cause a particular machine (a blicket
detector) to light up and play music. Thus, the cate-
gory structure for blickets is represented as a causal
Bayes net (because it is a causal model) and is given
in the left-hand side of Figure 11-4. The (possibly
implicit) contrast class of not-blickets are all of the
things that fail to activate the detector; that category’s
causal structure is given in the right-hand side of
Figure 11-4. The equivalent CSI causal Bayes net is
given in Figure 11-5, in which the probability of
DetectorActivates only depends on the value of
OnDetector if the context node Category has the
value blicket. Purely as a visual aid, context variables
will be indicated by a dashed circle. The theoretical
equivalence here implies that there is no mathemati-
cal difference between calculating P(Left-hand struc-
ture | X) in Figure 11-4 and P(Category � Blicket | X)
in Figure 11-5.
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The story gets a bit more complicated when we
allow for the possibility that the different categories
could have different underlying structures. In the
above example, we could represent both category
structures as causal Bayes nets. Suppose instead that
one category structure is represented by a Markov
random field (an SOP-based category) and the
other by a Bayes net (perhaps with a Figure 11-2
graph). There is a third type of probabilistic graphi-
cal model—chain graphs—that contains both
directed and undirected edges (Andersson, Madigan,
& Perlman, 1996; Lauritzen & Richardson, 2002;
Lauritzen & Wermuth, 1989; Richardson, 1998).
The precise interpretation of chain graphs with
mixtures of edge types is the subject of current
research (Lauritzen & Richardson, 2002), but
Markov random fields and Bayes nets emerge as
special cases in which either all of the edges are
undirected or all are directed. Thus, all of the prob-
abilistic graphical models used in this chapter can
themselves be unified in a single framework, and
that framework can also exploit the CSI equiva-
lence between multiple structures and a single
structure with a context variable.

This picture opens intriguing possibilities for
developing integrated hierarchies of multiple category
types (when the categories actually are hierarchical;
see Malt & Johnson, 1992, and Sloman, 1998, for
doubts about this condition).11 Suppose we have a set
of mutually exclusive categories (e.g., dog, cat, mouse,
human, etc.) that are complete relative to some super-
category (e.g., mammal), so every instance of the
supercategory can be placed into exactly one of the
target categories. Then, the context (category) variable
for that set corresponds to the supercategory and will
be a graphical parent of any feature that is part of one
of the category models. Because the GCM, prototype,
and causal model categories can all be represented as

probabilistic graphical models, a single CSI chain
graph model can account for the possibility that these
categories do not have the same structure. No special
difficulties arise if, for example, dog is a causal model
category, cat is an SOP (i.e., Markov random field) cat-
egory, and human is an exemplar-based GCM (i.e.,
Bayes net with a Figure 11-2 graph) category. The
resulting single graphical structure might look some-
thing like Figure 11-6. (Recall that context variables
are indicated by a dashed circle for ease of presenta-
tion.) Note the undirected edges between features,
indicating the association between # of Legs and
Vocalization in the categories.

Representing mutually exclusive categories in a
single graph provides one picture of how multiple cat-
egories could be cognitively represented in a single
category structure. Moreover, because this unified
model does not require us to choose between the var-
ious psychological theories, it inherits their explana-
tory power (although no account has been given of
why a category is represented using a particular struc-
ture). The proposal here is thus consistent with previ-
ous data supporting these psychological theories. In
addition, this unified model provides a plausible
mechanism for including one type of prior knowledge
about contrast class. Background knowledge about a
situation (e.g., I am on land, so all possible animals
must be capable of living on land) is equivalent to
conditioning on one or more features prior to catego-
rization, which will change the prior distribution of
category probabilities. In this example, P(Category �

Whale) in Figure 11-6 will be low, even before I
observe any features of a particular instance.

Further hierarchies of categories can be straightfor-
wardly modeled in this theory by introducing a node
that is a parent (or neighbor) of the Category node. The
values of this new variable will range over the super-
class encoded in Category, as well as the categories that
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are complete and mutually exclusive for the superclass
level of the hierarchy. The new variable (e.g.,
AnimalType in Figure 11-7) is the CSI context variable
for its children (e.g., BirdType, MammalType, etc.).
Moreover, because the superclass variable (e.g.,
AnimalType) is itself a node, it can have various
observed features as its (graphical) children, in addition
to other context variables. One plausible resulting
model structure is shown in Figure 11-7, in which con-
text variable names have been made more descriptive,
and obviously not all relevant variables are included.
(Intercontext connections are indicated by dashed
edges. As with the dashed circles for context variables,
this notation is intended purely as a visual aid.)

By attaching features to the superclass in addition
to the subclass, we can arguably explain two contrast-
ing phenomena: some properties (e.g., lactation) are
more readily identified with the superclass (mammal)
than with any of the subclasses (e.g., dog); while the
presence of those features nevertheless increases the
likelihood of the subclasses. These two phenomena
can only be explained by a framework in which fea-
tures can be attached (in some sense) directly to the
superclass, and there are meaningful connections
between the superclass and the subclasses. In this
model, Lactates is directly associated with AnimalType
� Mammal rather than any specific mammal, but the
Lactates � Yes observation increases the probability
that AnimalType � Mammal, thereby increasing the
(unconditional) probability that the individual has
each possible MammalType. Thus, in this (potential)

unified framework, we have precise, mathematically
well specified representations of hierarchies of multi-
ple specific types of category structure in which no
particular level of the hierarchy is privileged a priori.
Of course, the empirical adequacy of this admittedly
quite complicated unified framework remains a sub-
stantial open question.

Conclusion

The central theoretical results of this chapter provide a
common language for several major psychological the-
ories of categorization: GCMs as Bayesian networks
with a particular graphical structure, SOP models as
Markov random fields, and causal model categories as
causal Bayesian networks. The expression of these the-
ories as probabilistic graphical models opens up a num-
ber of methodological and theoretical possibilities. We
can readily determine why some experimental designs
are unable to distinguish among these theories on the
basis of model fits and so design better, more discrimi-
nating experiments. In particular, we can construct cat-
egory structures that cannot be represented perfectly by
any of the psychological theories to determine which
theory (if any) correctly predicts people’s systematic
errors. These equivalencies also point toward natural
generalizations of the psychological theories, corre-
sponding to elimination of various nongraphical con-
straints on the probability distributions. These
generalizations can easily be tested; for example,
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we could examine people’s performance on categories
that can be modeled by an arbitrary Markov random
field but not one that corresponds to an SOP model.
Moreover, this work suggests a different understanding
of the categorization process and not just similarity ratings.

Categorization judgments in these psychological
theories all correspond to calculating P(Category |
Novel instance X) when every considered category is
equiprobable via a two-stage process: Calculate the
similarity ratings [i.e., P(X | Category) for each cate-
gory] and then use the Shepard-Luce choice rule to get
P(Category | X). In contrast, we can consider a catego-
rization theory that directly computes P(Category | X)
without explicitly computing similarity ratings as an
intermediate step. Experimental elicitations of similar-
ity ratings are, on this model, just categorization judg-
ments relative to an implicit, unspecified contrast class.
There is some preliminary evidence for the idea that all
judgments, even typicality ones, are relative to a con-
trast class. However, significantly more experimental
investigation is required. Finally, we can represent all
of these probabilistic graphical models as chain graphs
and place them into a single graphical model hierarchy
by exploiting various context-specific independencies.
This process unifies multiple category types into a sin-
gle, coherent graphical structure.

The results described here matter for more than just
categorization research. There is clearly a close inter-
dependence between (at least some) causal cognition
and (some) categorization. Causal beliefs and learning
shape some of our categorization decisions, including
categorizing some novel object and selecting or learn-
ing categories for representing the world. In the other
direction, our causal learning and decision making
depend on both the ways in which we categorize our
world and the properties we infer about novel objects
based on their category membership. Despite these
connections, much of the research in the two fields,
whether psychological, philosophical, or computa-
tional, has essentially ignored the importance of the
other. Frequently, substantial allusions are made to the
importance of the other field, but then the other field
plays no theoretical or experimental role. Given the
scope of these cognitive processes, this has been a rea-
sonable research strategy: At least initially, we should
divide and conquer. A range of recent psychological
and theoretical research has started to shift this trend,
but a common mathematical framework is needed for
the two domains. The equivalencies detailed in this
chapter thus provide an important early step for the

integration of research on categorization and causa-
tion: the representation of a major component of cate-
gorization theories as probabilistic graphical models,
which are the emerging consensus framework for mod-
eling large portions of causal learning and inference.
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It is obvious that we classify the objects we encounter
by their appearance, that is, by the particular features,
aspects, or characteristics that they display. But, after a
moment’s reflection, it becomes clear that appearance
is sometimes not all there is to it, that there are other
factors not available to immediate inspection that
might contribute to an object’s identity. A study
of Rips’s (1989) work serves to illustrate. College
students were told a story about a bird that had normal
birdlike features (wings, ate seeds, lived in a nest in a
tree, etc.) and was exposed to hazardous chemicals.
As a result, the bird began to take on properties more
characteristic of an insect: The wings with feathers
were replaced with wings made of a transparent
membrane; the nest was abandoned in favor of 
living on the underside of tree leaves; it developed a
brittle iridescent outer shell; and so on. When asked
whether the animal was now a bird or an insect, most
students judged that it was still a bird. The important
point to note is that they made this decision despite the
fact that the animal no longer looked like a bird at all;

apparently, there is something more to category mem-
bership than just how an object appears. In fact, there
is evidence that even children as young as 3 years old
believe that the “insides” of objects are relevant in
determining its class membership (Gelman &
Wellman, 1991; also see Gelman, 2003; Keil, 1989).

The idea that different aspects or characteristics of
objects might have different implications for category
membership is not (to say the least) new. In philos-
ophy, it dates at least as far back as Aristotle, who dis-
tinguished between an entity’s essential properties
(which define what something is) from its accidental
properties (which determine how it is, that is, which
properties just happen to inhere in it). The idea that
essential properties might be inaccessible to percep-
tion has an equally impressive legacy. Even as central
a British empiricist as John Locke distinguished real
essences (what an object really is, which, according
to the Locke, was unknowable in principle) from
nominal essences, which could be perceived and
which formed the basis for everyday categorization.

12
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In psychology, even after the Roschian view that
membership in natural categories is probabilistic, or
graded, replaced the classical (i.e., defining features)
view, the distinction between perceivable-but-only-
characteristic and real-but-unobservable properties
has persisted in various forms (although, of course,
without Locke’s pessimism regarding the knowability
of the latter). For example, Miller and Johnson-
Laird (1976) distinguished between a categories’
core properties (which could be used during, e.g.,
reasoning), versus their identification procedures
which inferred category membership on the basis
of perceptual information (also see Armstrong,
Gleitman, & Gleitman, 1983; Osherson & Smith,
1981; E. E. Smith, Medin, & Rips, 1984).

But, the separation of perceptual and core properties
in this manner would seem to leave us without any
elucidation of the relation between the two. One is
reminded of Descartes’s famous (non)solution to the
mind-body problem, which proved unworkable
because it failed to specify how the two domains
(mind and body) interact. In the absence of any speci-
fication of how core and perceptual features interact,
we are left, for example, with no principled explana-
tion for why category membership will be decided by
observable features in some (i.e., normal) conditions
but by core features in others (e.g., those instantiated
in Rips’s 1989 study).

This chapter presents a solution to the categoriza-
tion field’s own mind-body problem, that is, how core
and perceptual features interact. It does so by adopt-
ing a move that should be familiar from other fields
of cognition. Namely, it will describe a generative
theory of categories in which a category’s core prop-
erties are represented in such a way that they produce
or generate the perceptual features that one might
observe. But, a unique characteristic of the current
approach is that the relations between features will
be defined in terms of generative causal relations. As
discussed here, once the manner in which percep-
tual features are causally generated by core properties
is specified, one can then “work backward,” so to
speak, to specify how perceptual information implies
the presence of core properties and hence category
membership.

To begin, consider in Figure 12-1 the hypothetical
causal relations among features of one of the real-
world categories used by Rips (1989): birds. The fig-
ure includes the observable features of birds, such as
having wings, flying, building nests in a tree, singing,

and eating seeds. It also includes what might be con-
sidered a core property of birds: bird DNA. Indeed,
for many Western-educated adults, bird DNA would
seem to approximate a defining feature for birds
because an object with bird DNA is virtually certain
to be a bird, and one without it is virtually certain to
not be. But, the dilemma is that, although flying and
eating seeds are features of an animal that are observ-
able, bird DNA is not. 

Fortunately, features are not all that we know
about birds; we also know how their features are
causally related. For example, we know that birds are
able to fly because they have wings and have body
weight that is low enough to be supported by those
wings. We know that birds build nests in trees
because they can fly (and they are light enough not
to break tree branches when they sit on them).
Finally, we (Western-educated adults) all believe that
basic morphological and behavior properties like
having weight, body size, singing, and eating seeds
are (somehow, directly or indirectly) caused by the
fact that birds have the right kind of genetic makeup
and evolutionary history that lead birds to have bird
features.

It is hoped that the claim regarding how core and
perceptual properties interact in categorization is now
clear. People, of course, usually classify objects on
the basis of observable features (what else could they
use?), but they use those observable features to infer
the presence of more core properties, which are then
taken as defining of (or at least more diagnostic of)
category membership. In other words, the mental act
of categorization can be viewed as a case of causal
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reasoning in which properties like weight, body size,
singing, and eating seeds provide inferential support
for properties like bird DNA. This account provides
an explanation for not only why people typically use
observable features in classification, but also why they
can override perceptual information in particular
circumstances. When one is told a story about how
a particular bird’s features are transformed through
external intervention into those of an insect’s, one
recognizes that the underlying core properties remain
unchanged and thus so does the animal’s category
membership.

Accounting for data such as that of Rips is itself no
small feat. But, in fact a generative view of classifica-
tion can gain a large increment in explanatory power
(and in its ability to make unique predictions) by
making one additional assumption, namely, that the
causal relations linking core and observable proper-
ties can sometimes be probabilistic rather than deter-
ministic in nature.1 To illustrate the importance of
treating causality as a probabilistic relation, consider
a second, somewhat simpler, example of a category
and its causal network in Figure 12-2. In Figure 12-2,
D represents some disease, S1 represents a symptom
directly caused by that disease, S2 is a symptom caused
by S1, and S3 is a symptom caused by S2. The disease
and its three symptoms are assumed to be related by
the three causal mechanisms depicted as diamonds
and labeled M1, M2, and M3 in Figure 12-2. On the
one hand, if these causal mechanisms operate deter-
ministically, then whenever the disease D is present,
so are the symptoms S1, S2, and S3. In this case, S1,
S2, and S3 all provide equally good evidence for the
presence of D (all else being equal). But, if the causal
mechanisms operate probabilistically instead, then D
will produce S1 with some probability less than 1.
Similarly, S1 will produce S2 with some probability
less than 1, but because S1 does not always accompany
the disease,S2 will be produced even less often than
S1. The same argument applies to S3, so the upshot
is that 1 	p(S1| D)	p(S2 | D) 	p(S3 | D). As a

consequence, when causal relations are probabilistic,
the generative view predicts that S1 will serve as better
evidence for the presence of D than S2, which in turn
will serve as better evidence for D than S3 (all else
being equal2).

This example is important enough that the intuition
behind it deserves to be cashed out with some precision.
First, note that the representation of causal relations
depicted in Figures 12-1 and 12-2 are examples of
Bayesian networks, which consist of nodes that represent
variables and directed edges that can be interpreted as
representing direct causal relationships between vari-
ables (for details, see Glymour, 1998; Jordan, 1999;
Pearl, 1988, 2000). By themselves, Bayesian networks
convey no information regarding the details of the
causal relationships that link variables (i.e., features)
in a network. However, one can assume that the causal
relations in such networks take on a specific functional
form, and the parameters of those functions can be
specified. For example, in Figure 12-2, there are a total
of six parameters: m1, m2, m3, b1, b2, and b3.
Parameters m1, m2, and m3 represent the probability
that the causal mechanisms M1, M2, and M3, respec-
tively, will successfully operate (that is, will bring
about effects S1, S2, and S3) when the cause feature is
present. Parameters b1, b2, and b3 represent the proba-
bility that symptom S1, S2, and S3, respectively, is 
produced by some unspecified background cause.

Table 12-1 presents the likelihoods that the causal
network of Figure 12-2 will generate symptoms S1, S2,
and S3. For example, the probability that S1 is present
when D is, p(S1| D), is the probability that it is caused
by the causal mechanism M1, or brought about by the
background cause b1. Assuming independence, this

D S1M1

m1 m2 m3b1 b2 b3

M2 S2 M3 S3

FIGURE 12-2 Causal model of a disease category.

TABLE 12-1 Feature Probabilities for the Causal Network of Figure 12-2

Feature P(Si | D; Mi, bi) P (Si | D; mi�.80, bi �.20)

S1 mi� b1�m1b1 .84

S2 m2P(S1 | D) � b2� m2b2P(S1 | D) .74

S3 m3P(S2 | D) � b3� m3b3(S2 | D) .67



probability is m1 � b1 � m1b1. The probability that S2
is present p(S2 | D) is the probability that it is caused
by the causal mechanism M2, m2p(S1 | D), or brought
about by the background cause b2. This probability is
m2p(S1 | D) � b2�m2b2P(S1 | D) and so on for 
p(S3 | D). Table 12-1 also presents the probability
that each feature will be generated by disease D when
m1 � m2 � m3 � .80 and b1 � b2 � b3 � .20. These
probabilities confirm the intuition that, when causal
relations are construed as probabilistic, symptoms that
are causally “farther away” from their disease are gen-
erated with lower reliability.

In summary, the solution offered to the catego-
rization field’s mind-body problem is to assume that
core and observable features are interconnected with
probabilistic causal relations, and as a result observ-
able features serve as evidence for core properties as a
function of the likelihood they are causally generated
by those core features. Using a term first introduced
by Waldmann, Holyoak, and Fratianne (1995), I refer
to this theory as causal model theory, although my
application of this theory concerns classification
rather than category learning (Rehder, 2003a, 2003b).
It also differs in the functional form assumed to hold
for causal relations. Whereas the representation of
causal relations presented here is isomorphic to
Cheng’s (1997) PowerPC theory of causal induction,
Waldmann et al. considered causal relations between
continuous variables such that the level of one
variable (the effect) changed as a linear function of
another (the cause), as in structural equation models.
This difference is not fundamental, however, as the
generative view can be applied to causal networks that
include both continuous variables viewed as being
as linearly related and binary (or ordinal) variables
connected with the type of discrete causal mecha-
nisms described here. Another extension of the gener-
ative view would be to causal mechanisms involving
more than two variables. For example, I may not be
exactly sure how birds fly, but I believe that the causal
mechanism that produces flight somehow involves
the lift produced by the wings overcoming the bird’s
body weight; thus, wing size and body weight (not to
mention the wing’s flapping motion, the body’s
aerodynamic shape, and so on) are all factors causally
relevant to the production of flight. The generative
approach can be applied to cases involving three or
more causally related variables as easily as two.

In this chapter, three experiments are presented
that provide empirical support for the generative

view of classification just described. To assess the
kind of causal reasoning that occurs when a category
has a defining or essential property, in Experiments
1–3 adult subjects are taught novel categories in
which one of the category’s features is designated as
occurring in 100% of members of the category and
in members of no other category. Note that the
property will not be DNA or a disease. The purpose
of these experiments is not to determine what the
defining or essential properties of categories really
are, but rather to stipulate such a feature and then
show how classification is influenced when it is
causally linked to observable properties. Experiments
1–3 differ in terms of the exact network topology by
which the defining feature is causally related to those
observable properties.

These experiments show classification can be
viewed as causal reasoning in which observable
features are taken as evidence for features that are
unobservable but are defining of category member-
ship. However, although a generative theory of classi-
fication subsumes causal reasoning as a special case,
its application is in fact not limited to categories with
a defining feature. As I argue in the Discussion, the
extent to which a category is essentialized is a matter
of degree, and an advantage of the generative view is
that it can also accommodate categories that are
essentialized only partially or not at all. To this end,
subjects in Experiment 4 are taught the same cate-
gories as in Experiments 1–3, with causal relations
among observed features but without an unobserv-
able defining feature. This experiment shows that
category membership is also influenced by the coher-
ence among observed features, that is, whether those
feature corroborate the category’s causal laws.

Experiment 1: Classification 
as Diagnosis

The purpose of the first experiment is to conduct a
test of the example presented in Figure 12-2. College
students were instructed on novel categories in which
one feature was described as defining but unobser-
vable; the other features were observable and were
related to the defining feature in a causal chain. The
generative view predicts (as shown in Table 12-1) that
the feature directly caused by the defining feature
should provide the strongest evidence for category
membership; indirectly caused features should provide
weaker evidence.
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Table 12-2 presents an example of features and
causal relationships for one of the novel experimen-
tal categories, Lake Victoria shrimp. Lake Victoria
shrimp were described to participants as possessing
four binary features and three causal relationships
among those features. One feature (which I con-
tinue to refer to in the abstract as D because it is
“defining”) was described as occurring 100% of the
time in category members and never in members of
other categories. Features F1, F2, and F3 were
described as occurring in most category members.
The causal links were arranged in a chain pattern: D
→ F1→ F2 → F3 (as in Figure 12-2). Each causal rela-
tionship consisted of one sentence indicating the
cause and effect features (e.g., “A high quantity of
ACh neurotransmitter causes a long-lasting flight
response.”) and then one or two sentences briefly
describing the causal mechanism (e.g., “The duration
of the electrical signal to the muscles is longer because
of the excess amount of neurotransmitter.”). The
knowledge associated with categories such as Lake
Victoria shrimp was intended to be a simplified 
analogue of real-world category knowledge, such as
that bird DNA causes wings, which causes flying,
which causes nests in trees, or a disease that causes a
chain of symptoms. Participants in a control condition
were provided with the identical category information
except for the causal relations between features.

Participants learned one of six novel categories:
two biological kinds (Kehoe ants, Lake Victoria
shrimp); two nonliving natural kinds (myastars,
meteoric sodium carbonate); and two artifacts
(Romanian rogos, Neptune personal computers).
Participants first studied several computer screens of
information about their assigned category and were
required to pass a multiple-choice test of this knowl-
edge. They then performed a categorization task in
which they rated the category membership of one of
the three observable features (F1, F2, or F3). For
example, participants who learned about Lake
Victoria shrimp (Table 12-2) would be presented
with a shrimp that was described as possessing a long-
lasting flight response and asked, “Is this a Lake
Victoria shrimp?” Participants entered their rating by
using the left and right arrow keys to move a bar
along a response scale to a position that reflected
their confidence that the exemplar was a category
member. The two ends of the scale were labeled def-
initely not an X and definitely an X, where X was the
name of the category. Responses were recorded as a
number in the range 0–100. Thirty-six university
undergraduates participated in this experiment and
were assigned in equal numbers to the causal and
control conditions.

The category membership ratings for features F1,
F2, and F3 are presented in Figure 12-3 for both the
causal and control conditions. Two things in Figure
12-3 should be noted. First, average ratings were sig-
nificantly higher in the causal condition (56.7) com-
pared to the control condition (46.5), indicating that
features provide stronger evidence for category
membership when they are causally linked to the
defining feature. This finding was predicted by the
generative view because the presence of causal rela-
tions allows one to infer the presence of the defining
feature on the basis of observable features.

The second important result is that, in the causal
condition, feature F1 received a significantly higher
rating (63.3) than feature F2 (54.6), which received a
higher rating than F3 (52.3). (The difference between
F2 and F3 did not reach significance.) This result was
also as predicted because the generative view assumes
that features generated with greater reliability by the
underlying defining feature (like F1) should serve as
greater evidence for the presence of that defining
features than features generated less reliably (F2 or
F3). Apparently, when observed features are causally

TABLE 12-2 Features and Causal Relationships for
the Lake Victoria Shrimp Experimental Category.

Features

D High amounts of ACh neurotransmitter

F1 Long-lasting flight response

F2 Accelerated sleep cycle

F3 High body weight

Causal Relationships

D → F1 High quantity of the ACh neurotransmitter 
causes a long-lasting flight response; longer 
duration of electrical signal to the muscles 
because of excess amount of neurotransmitter

F1 → F2 Long-lasting flight response causes accelerated 
sleep cycle, fatigued muscles; muscle fatigue 
triggers the shrimp’s sleep center

F2 → F3 Accelerated sleep cycle causes high body 
weight; shrimp habitually feed after waking, 
and shrimp on an accelerated sleep cycle 
wake three times a day instead of one



related to defining ones, categorizers can invoke a
process of causal inference in which they work back-
ward from observables to defining properties in the
same way that one can work backward from a disease’s
symptoms to the disease itself.

Experiment 2: Boundary Intensification

Experiment 1 instructed participants on one category
and asked them to rate the likelihood of whether an
object was a member of that category. But classifiers
will often have in mind two or more categories an
object might belong to. A generative view of classifi-
cation can easily be applied to such situations by pre-
dicting that an object is a member of the category that
is most likely to be generated by (also see Danks,
chapter 11, this volume). For example, in the context
of an experiment in which an object O can belong to
one of two categories (A or B), the probability p(O | A)
that O is an A can be expected to be a function of the
relative probability that it was generated by A and B,
that is, according to Bayes’ law:

(12-1)

In Experiment 2, participants are instructed on two
categories and are asked to make a binary judgment
regarding the category to which an object belongs. 

�
�

p
p p

p p

(O | A)
(A | O) (A)

(O | A) (O | B)

As in Experiment 1, in a causal condition a category’s
observable features will be causally related to a defin-
ing feature. However, in Experiment 2 those features
are each directly caused by the defining feature, as
shown in Figure 12-4. In Figure 12-4, categories A
and B have opposite values on the same stimulus
dimensions. For example, some subjects were
instructed on both Lake Victoria shrimp, with the
defining feature a high quantity of ACh neurotrans-
mitter, and Madagascar River shrimp, with the defin-
ing feature a low quantity of ACh neurotransmitter.
Similarly, features F1 and ∼F1 were opposing values
on the same dimension (long-lasting flight response
vs. short-lasting flight response) and so on for the
remaining two stimulus dimensions. Participants in a
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control condition were provided with identical
category information except that the causal relations
between features were omitted.

The question addressed in Experiment 2 concerns
how the presence of causal relations changes subject’s
judgments regarding an object’s membership in one of
two possible categories. Gelman (2003) suggests that
essentialized categories should exhibit the
phenomenon of boundary intensification, in which
category boundaries become more extreme, or more
dichotomous, than they would otherwise be. This
effect is somewhat analogous to the categorical
perception of speech sounds. For example, the sounds
d and t differ from one another on a single dimension
(voice onset time). But, when voice onset time of those
sounds is varied experimentally along a continuum,
they are nevertheless perceived “categorically” as
either as a d or a t but rarely a blend of the two
(Lisker & Abramson, 1970). Applied to the current
experiment, categorical perception would work to
make the category boundaries between categories A
and B in Figure 12-4 more extreme because the
observable features are causally linked to an underly-
ing core property.

Again, it is worthwhile to work out a concrete
example. First, suppose that in the absence of causal
knowledge category A’s three features (F1, F2, and
F3) are viewed as each occurring with probability
75% in members of A, but they have no causal rela-
tions with defining feature D. Similarly, category B’s
three features (∼F1, ∼F2, and ∼F3) occur with proba-
bility 75% among members of B and are causally unre-
lated to ∼D. This corresponds to m � 0 and b�.75 for
both causal models of Figure 12-4. If one then
observes an object O with features F1, F2, and ∼F3,
P(A | O)�(.75)(.75)(.25)�.141 and P(B | O)�
(.25)(.25)(.75)�.047. Assuming that the two cate-
gories are equally probable beforehand (i.e., P(A) �

.50), Bayes’ law tells us that the probability that
O is an A, P(A | O), is .75.

Now consider the case in which the categories’
features are thought to be generated by their defining
features (D or ∼D) via causal mechanisms that operate
with 50% reliability, that is, m � .50. In this case, each
individual feature is now generated with probability
m �b � mb, that is, .875 (assuming independence
again). If one again observes an object O with features
F1, F2, and ∼F3, then P(A | O) � (.875)(.875)(.125) �

.096, P(B | O) � (.125)(.125)(.875) � .014, and thus
the probability that O is an A is now .875. That is, one
should be more confident that the object is a category
member with causal relations (.875) than without
them (.75). The probability that some object O is a
member of category A as a function of the number of
A features it possesses is presented in Table 12-3 for the
case where there are causal relations (m � .50) and
when there are not (m � 0). Table 12-3 demonstrates
the phenomenon of boundary intensification: For all
objects, one’s confidence that it is a member of its
most likely category increases when its features are
linked to an underlying defining feature.

To test these predictions, the categorization test of
Experiment 2 presented objects with values on all
three observed dimensions (as opposed to the single
features presented in Experiment 1). Participants were
asked to choose the two categories to which the object
belonged (e.g., Lake Victoria shrimp or Madagascar
River shrimp) and then to rate their confidence in that
judgment. The eight possible objects that can be
formed from three binary dimensions were each pre-
sented twice. Thirty-six undergraduates participated in
this experiment, and each was instructed on one cate-
gory pair with causal knowledge and another (control)
pair without it (the order of presentation of these two
pairs of categories was balanced).

The results are presented in Figure 12-5 for both
the causal and control conditions. Figure 12-5 shows
the probability that the object was classified as a
member of Category A as a function of the number of
A features it possessed. Of course, in both conditions

TABLE 12-3 Hypothetical Predictions for Experiment 2

Number of A Features P (A | O; m � 0, b � .75) P (A | O; m � .50, b � .75)

0 .047 .003

1 .250 .125

2 .750 .875

3 .964 .997
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FIGURE 12-5 Results from Experiment 2.

subjects’ classifications were sensitive to how many
features O possessed that were characteristic of A or B:
It was likely to be classified as an A if it possessed mostly
A features and as a B if it possessed mostly B features.
But, the figure shows that this effect was more pro-
nounced when those features were described as
causally related to the underlying defining features D
or ∼D. This effect manifested itself as a significant
interaction between condition (causal vs. control) and
number of features. The same pattern of results was
reflected in confidence ratings.

These results demonstrate how the boundary
between categories can become more extreme when
features are causally related to an underlying defining
property. According to a generative view of classi-
fication, causal relations constrain the generation of
features, so that the category becomes more homo-
geneous and thus less accepting of exemplars that are
discrepant with respect to those causal laws. The
result is a sharpening of category boundaries in which
objects are perceived more “categoricallly.”

Experiment 3: Classification as
Prospective Versus Diagnostic
Reasoning

The first two experiments are examples of how classifi-
cation can be taken to be a case of causal reasoning in
which observable features are diagnostic of core prop-
erties. However, classification does not always involve
reasoning backward (i.e., diagnostically) but some-
times involves reasoning forward, prospectively, to a
core property. Consider the examples in Figure 12-6A,

which shows two causal networks, each involving the
human immunodeficiency virus (HIV). In the left
panel of Figure 6A, the category being HIV positive
(which is itself not directly observable) can be diag-
nosed in terms of the symptoms it produces, such as
lymphoma, sarcoma, and pneumonia. However, the
right panel of Figure 6A illustrates how HIV can also
be inferred by reasoning forward from its possible
causes, such as blood transfusions, intravenous drug
use, or participating in unsafe sex. That is, to the extent
that an individual has these properties, the likelihood
that the person has HIV increases.3

Because the generative approach to classification
subsumes causal reasoning as a basis for determining
category membership, it applies equally well to both
diagnostic and prospective reasoning. Moreover, the
HIV example is well suited to illustrating how classifi-
cation can involve specifically causal reasoning
because it exemplifies the asymmetries that obtain
when reasoning from multiple possible effects to
a cause versus from multiple possible causes to an
effect. To demonstrate these asymmetries, first consider
the (often unrealistic) case that each of the causal
relations shown in Figure 12-6A are deterministically
sufficient, that is, a cause produces its effects with
100% reliability (m �1). The left panel of Figure 12-7A
presents the probability that HIV will generate a
given case O as a function of the number of HIV
symptoms (lymphoma, sarcoma, or pneumonia) that
it has. (I continue to use O to represent an object that
displays a set of features, in this case a patient with a
set of symptoms.) Analogously, the right panel of
Figure 12-7A presents the probability of HIV as a
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function of the number of its causes present. Whereas
the left panel of Figure 12-7A indicates that, when
causal relations are assumed to be deterministic, the
probability of HIV is only certain when all of its symp-
toms are present, the right panel shows that the prob-
ability of HIV is certain when one or more of its
causes are present. This is the case because each
cause can independently result in HIV.

Figure 12-7B presents the more realistic situation
in which the causal relations linking HIV with its
causes and symptoms are probabilistic (m �1). Figure
12-7B presents the (logarithm) of the probability of
HIV as a function of the number of symptoms (left
panel) or causes (right panel) present. Because the
causal relationships are probabilistic rather than
deterministic, the probability of HIV now increases
monotonically as the number of symptoms increases.
Note that the utility of plotting these probabilities in

log coordinates is that it demonstrates how evidence
for HIV increases as a function of the number of
symptoms: Because in the generative model evidence
consists of individual probabilities that multiply, plot-
ting the overall probability in log coordinates reveals
an additive (i.e., linear) relationship (left panel of
Figure 12-7B). In contrast, the right panel of Figure
12-7B reveals that the relationship between HIV and
its causes is nonlinear, such that adding the first
possible cause of HIV produces a larger increase in
the probable presence of HIV than adding additional
causes. Nevertheless, this cause does not invariably
lead to HIV, so the presence of additional causes
continues to increase the probability that HIV is
present. Note that asymmetries like this between
common-cause and common-effect networks have
been instrumental in establishing the role of causality
in a variety of category-related and inferential tasks,
including category learning (Waldmann et al., 1995),
categorization (Rehder, 2003a), category-based property
induction (Rehder & Hastie, 2004), and prediction
(Rehder & Burnett, 2005; Waldmann & Hagmayer,
2005). (Also see Strevens, chapter 15, this volume,
for additional discussion about the asymmetries inher-
ent in causal networks.)

To test these predictions, participants in
Experiment 3 were instructed on a single category
(as in Experiment 1). One group of subjects was
presented with the common-cause structure shown in
the left side of Figure 12-6B in which one feature (D)
was the defining feature and was described as the
cause of the three observable features. Another group
was instructed on the common-effect structure in the
right side of Figure 12-6B in which D was the defin-
ing feature and was described as caused by the three
observable features. There were also two control
groups that were identical to the common-cause and
common-effect conditions, respectively, except for the
presence of the three causal relationships. All groups
then performed a categorization test that presented
objects with values on all three observable dimen-
sions. As in Experiment 1, participants were asked to
rate how likely the object (e.g., a shrimp with a given
set of features) was a member of the category (e.g.,
Lake Victoria shrimp). The eight possible objects that
can be formed from three binary dimensions were
each presented twice. Undergraduates (144) were
assigned in equal numbers to the four conditions.

The results are presented in Figure 12-7C. To
allow comparison with the predictions shown in
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two categories in Experiment 3.



Figure 12-7B, the logarithm of the categorization
ratings have been taken. The left panel of Figure 12-7C
indicates that, as predicted, in the common-cause
condition the logarithm of the ratings were a linear
function of the number of effect features present. In
contrast, in the common effect condition those ratings
exhibited a nonlinearity in which the presence of one
potential cause of D produced a larger increase in the
ratings compared to adding a second or third cause
(right panel of Figure 12-7C).

Besides being interesting in their own right, these
results have important theoretical implications for
models of categorization. For example, Rehder
(2003a) has shown not only that standard categoriza-
tion models like prototype and exemplar models
cannot account for asymmetries between common-
cause and common-effect networks (like those shown

in Figure 7C), but also that those models cannot
account for such results even when augmented with
certain rudimentary representations of causal rela-
tions (e.g., adding to a prototype representation sec-
ond-order features that encode interfeature causal
relations). Of special theoretical importance are the
results from the common effect condition that
involves higher-order interactions among features—
a cause producing a large increase in ratings only
when none of the other causes are already present.
(See Danks, chapter 11, this volume, for an extended
discussion of different classes of categorization models
and the constraints they place on possible patterns of
classification ratings.)

In addition to illustrating the predicted asymmetry
between the common-cause and common-effect
networks, the results in Figure 12-7C also demonstrate
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FIGURE 12-7 (A) Theoretical predic-
tions for Experiment 3 assuming deter-
ministic causal relations. (B) Theoretical
predictions assuming probabilistic
causal relations. (C) Results from
Experiment 3.
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how participants treated the causal relationships
as probabilistic because each additional cause (or
effect) produced an increase in the probability that the
defining feature D was present. In other words, the
results correspond to the probabilistic predictions
(Figure 12-7B) rather than the deterministic ones
(Figure 12-7A). Also note that features in the common-
cause and common-effect conditions were more diag-
nostic of category membership (each additional feature
resulted in a larger increment in category membership)
compared to the control conditions. That is, as in the
first two experiments, categorizers use causal knowl-
edge to infer an underlying defining feature.

Experiment 4: Nonessentialized
Categories and Theoretical Coherence

The generative view of categorization presented here
borrows much from the view of essentialism described
by Medin and Ortony (1989). As here, Medin and
Ortony observed that category membership is often
based on unobservable properties. And, as here, they
proposed that underlying properties not only establish
category membership, but also “are best thought of as
constraining or even generating properties the might
turn out to be useful in identification” (p. 185). By
subsuming causal reasoning as a basis for determining
category membership, Experiment 3 shows how the
generative view can also account for cases in which
an observable feature is the cause of, rather than
caused by, an underlying property. Moreover, the
generative view is not restricted to only essentialized
categories. This is important because it is likely that
not all categories that humans know are essentialized
to the same extent (or at all).

For example, I have used diseases as a paradigm
case of essentialized categories. However, the causes
of many diseases were unknown at an earlier stage of
scientific knowledge, and as a result the categories 
for diseases were initially organized around their char-
acteristic features (i.e., symptoms) rather than the
underlying cause. In addition, although research has
shown that biological kinds may be strongly essential-
ized for adults (as Rips’s, 1989, transformed bird
illustrates), this may not be true of all individuals—
specifically, it may not be true for young children
(Keil, 1989). Finally, although underlying causal
properties might be important for complex artifacts
(e.g., automobiles, computers), simple artifacts like

pencils and wastepaper baskets appear to be defined
more in terms of their perceptual or functional prop-
erties (Malt, 1994; Malt & Johnson, 1992; although
see Bloom, 1998; Matan & Carey, 2001; Rips, 1989;
for more essentialist-based construals of artifacts).

An advantage of a generative view of classification
is that it makes predictions not only for essentialized
categories, but also for categories that are essential-
ized only to a degree (i.e., have underlying properties
that provide strong but not defining evidence for cat-
egory membership) or not all. For example, con-
sider the simple causal network in Figure 12-8,
which involves only two category features, C and E,
and in which C is the cause of E. Note that the
assumption is that neither C nor E is defining of
category membership; that is, neither C nor E will
appear in all category members.

Nevertheless, it is possible to define the probability
with which the network generates particular objects
(i.e., particular combinations of C and E). The net-
work has an m parameter that specifies the probability
that the causal mechanism generates E when C is
present and a b parameter that specifies the probabil-
ity that E is brought about by some unspecified back-
ground cause. The parameter c specifies the
probability that C will be present. Table 12-4 presents
how these parameters together specify the probability
with which a category (A) with this causal network will
generate the four combinations of C and E. The prob-
ability that C and E will both be absent, P(∼C∼E | A),
is the probability that C is absent (1� c) times the
probability that E is not brought about by any back-
ground causes (1�b). The probability P(∼CE | A) that
C is absent but E is present is (1�c) times the proba-
bility that E is brought about by some background
cause b. The probability P(C∼E | A) that C is present
but E absent is c times the probability that E is not
brought about by the causal mechanism and not
brought about by the background cause (1�m)(1�b).
Finally, the probability P(CE | A) that C and E are
both present is c times the probability that E is brought
about by the causal mechanism or brought about by
the background cause (m�b�mb). (Again, in these

C E
m

bc

FIGURE 12-8 A two-feature causal model.



equations I assume that the cause between C and E
and E’s background cause operate independently.)

Table 12-4 also presents the probabilities that the
four cases will be generated when c�.67, m�.80,
and b�.20. This example illustrates how a generative
theory can be applied to categories without a defining
feature because the probability of C [�P(C∼E)�
P(CE)�.67] and E [�P(∼CE)�P(CE)�.63] are both
less than 1. It also illustrates how the theory predicts
that combinations of features make for better or worse
category members. In particular, the two objects in
which C and E are both present or both absent are the
most probable (.563 and .264, respectively). In con-
trast, objects in which one is present and the other
absent are relatively improbable (.066 for ∼CE and
.107 for C∼E). In fact, these latter objects, which each
have one feature present, are both less probable than
the one with both features absent. This pattern of
probabilities reflects the empirical observations one
would expect when a causal law holds between two
variables: These variables should be correlated with
one another. In other words, a generative view of clas-
sification predicts that objects will be good category
members to the extent they exhibit theoretical coher-
ence, that is, whether they are consistent with or
corroborate a category’s causal laws (causes and effects
either both present or both absent).

To test these predictions, half the participants 
in Experiment 4 were instructed on one of the six
experimental categories with the causal network in

Figure 12-9A, in which four features were related by
two causal links. The other half learned an identical
control category missing the two causal relations
(Figure 12-9B). In both conditions, each feature was
described as occurring in most category members.
A categorization test then followed that presented
objects with values on all four dimensions, and par-
ticipants rated how likely the object was a member of
the category. The 16 possible objects that can be
formed from four binary dimensions were each pre-
sented twice. Thirty-six undergraduates were
assigned in equal numbers to the causal and control
conditions.

The results are presented in Figure 12-10. For sim-
plicity, only the ratings for objects that are maximally
coherent (causes and effect either all present or all
absent) or maximally incoherent (both causes present
but both effects absent or vice versa) are presented. In
the control condition, categorization ratings of course
were a monotonic function of the number of features:
The object missing all four features received the lowest
rating, the one with all four features received the high-
est rating, and objects possessing two features received
an intermediate rating. In contrast, the results in the
causal condition showed a strong effect of causal knowl-
edge. For example, incoherent objects received a signif-
icantly lower category rating compared to the same
items in the control condition. In fact, in the causal con-
dition the incoherent objects (each with two features)
received a significantly lower rating than the item
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FIGURE 12-9 Causal models for the two categories in Experiment 4.

TABLE 12-4 Object probabilities for the causal network of Figure 8.

Object (O) P (O | A; c, m, b) P (O | A; c� .67, m � .80, b � .20)

∼C∼E (1 � c)(1 � b) .264

∼CE (1 � c)(b) .066

C∼E (c)[(1 � m)(1 � b)] .107

CE (c)(m � b � mb) .563
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missing all four features. These results illustrate how the
corroboration of causal laws can override the impor-
tance of the number of characteristic features that an
object displays.

These findings support the claim that subjects
judged an object’s category membership as a function
of the likelihood it was generated by the category’s
causal laws. Other studies have demonstrated the
importance of whether combinations of features
exhibit theoretical coherence. Ahn, March,
Luhmann, and Lee (2002) have shown that items are
viewed as more typical of real-world categories when
they manifest correlations between theoretically
related pairs of features (e.g., an animal that lives
underwater should also have gills) (also see Malt &
Smith, 1984). And, I have shown that adults are sensi-
tive to not only whether pairs of features exhibit
coherence, but also whether an entire collection of
features linked together in more complex networks
manifests the higher-order correlations between
features that such networks produce (Rehder, 2003a,
2003b). Moreover, effects such as these are not lim-
ited to adults: Barrett, Abdi, Murphy, and Gallagher
(1993) found that first- and fourth-graders were more
likely to classify a bird as a member of a novel cate-
gory if it manifested an expected correlation (e.g.,

between the bird’s memory capacity and brain size)
than if it broke that correlation.

Besides illustrating the importance of theoretical
coherence, another goal of Experiment 4 was to
demonstrate how a generative view of classification
can be applied to categories without a defining fea-
ture. Note, however, that the importance of coherence
is not limited only to nonessentialized categories; even
for categories based on an essence, coherence among
observable features will contribute to category
membership. This fact can be illustrated with the bird
category shown in Figure 12-1. If one is presented with
an unfamiliar animal (e.g., an ostrich) that should not
be able to fly (e.g., because it is too heavy relative to its
wingspan), it may be considered likely to be a bird
only if it does not fly (despite the fact that flight is
usually highly diagnostic of birds). This might be the
case because a large, small-winged animal that some-
how files is actually more likely to be some kind of arti-
fact instead (with an invisible propulsion system
explaining its otherwise unexplained ability to fly).

Discussion

An enduring problem in the field of categorization has
to been to account for both the undisputed fact that
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everyday categorization is based on observable proper-
ties and the fact that categories have an underlying
reality that goes beyond that which is perceptually
available. By itself, the claim that categories possess
both core properties (which define category member-
ship) and observable ones (which serve as the basis for
identification) leaves unexplained the conditions
under which people will override perceptual informa-
tion and instead rely on core properties. In this chap-
ter, I have presented a solution to the categorization
field’s mind-body problem by specifying the interac-
tion between defining and observed features in terms
of generative causal relations. On this account,
objects’ observable features serve as evidence for cate-
gory membership because they imply the presence of
the defining feature. But, people know that such
causal inferences are no longer justified when an
object’s features are transformed through external
intervention. As a result, in such cases they will fall
back on the object’s core properties to establish
category membership.

One goal of this work, of course, has been to
contrast a generative view of classification with one that
merely distinguishes between core and observable prop-
erties. It is important to ask how necessary it is that the
relation between these two types of properties be
conceived of as causal. Indeed, for some categories
the relation between core and observable properties is
manifestly noncausal. For example, if a late-night TV
movie opens on a scene with people doing the hula
underneath palm trees, then you might guess that the
people are on an island, but this guess is unlikely to
be based on your belief that an islands’ defining prop-
erties (small body of land surrounded by water) causes
its observable ones (hula dancing and palm trees).
Given examples like this, one might question the
presence of causal relations even for biological kinds.
For example, Rips’s (1989) transformed bird/insect
may have still been considered a bird because in the
described scenario there was no reason to think that
its underlying defining properties had been changed
by the transformation. Loosely speaking, they (the
defining properties) were there before; there is no
reason to believe that they are not there now. So, why
should one think that the category membership of the
object has changed?

However, this argument leaves unexplained the
numerous findings reported in this chapter. First, it
leaves unexplained why symptoms might be more
diagnostic of a disease when they are causally

linked to the disease. This prediction was tested in
Experiment 1, which found that in fact observable
features provided stronger evidence for category
membership when they were stipulated as caused
by a defining feature. It also fails to explain the
phenomenon of boundary intensification, in which
categories become more homogeneous and less toler-
ant of discrepant category members. This prediction
was tested in Experiment 2, which found that in fact
judgments of category membership were more extreme
when causal knowledge was provided. Finally, it leaves
unexplained why there might be asymmetries depend-
ing on whether a defining feature causes, or is caused
by, the category’s observable features. This predicted
asymmetry was demonstrated in Experiment 3.

Another important component of the generative
view is that causal relations between defining and
observable features are typically viewed as probabilistic
rather than deterministic. A probabilistic view of
causality explains why, in Experiment 1, features more
directly caused by the defining feature served
as stronger evidence for category membership
compared to less directly caused ones. It also explains
why, in Experiment 3, an increase in the number of
features resulted in a monotonic increase in category
membership ratings for both common-cause and
common-effect structures. More important, a proba-
bilistic view of causality explains the fundamentally
probabilistic nature of real-world categorization. For
example, although there are clearly individual
features (e.g., flying) that are diagnostic of member-
ship in certain categories (e.g., birds), such features
are often not present in all category members (e.g.,
ostriches). On the present account, flying provides
evidence for bird category membership, but because
flying is generated by the bird category’s causal model
(Figure 12-1) with less than certain probability, it
admits the possibility of birds that do not fly. This
probabilistic view also accounts for the fact that
people are often uncertain about objects’ category
membership (e.g., McCloskey & Glucksberg, 1978,
found that subjects were about evenly split over
whether a leech is an insect, whether sugar cane
is a vegetable, whether an octopus is a fish, etc.).
According to the generative view, the uncertainty of
whether, say, a leech is an insect arises because the
characteristic features of a leech provide only weak
inferential support for the essential attributes of
insects (as compared to, say, the characteristic features
of a mosquito). In other words, cases of fuzziness in
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category membership arise not necessarily because of
the absence of defining features, but rather because
of inferential uncertainty, that is, from the fact that
sets of observed features vary to the extent they
provide evidence of a defining feature.

A third claim of the generative view is that objects
will be considered better category members to the
extent they make sense, that is, to the extent their
observed features are coherent in light of the causal
laws the category is thought to possess. In Experiment
4, causal relations between observable features were
provided, and in fact objects with a combination of
features that were consistent with those causal laws
were judged as more likely category members than
objects with features that were inconsistent—even
when the latter objects possessed more characteristic
features. The generative view predicts this result
because causal relations will tend to generate coher-
ent objects—cases in which causes and effects are
both present (if a bird builds nests in a tree, then it
also flies) or both absent (a bird that does not fly does
not nest in trees).

Another purpose of Experiment 4 was to demon-
strate how the generative view can accommodate
categories that are not essentialized. In comparison to
the fully essentialized categories used Experiments
1–3 (which each possessed an unobservable defining
feature that caused observable ones), the categories
used in Experiment 4 had no defining feature. An
important advantage of the fact that the generative
view can accommodate both essentialized and
nonessentialized categories is that it applies to cate-
gories for which underlying causal features have not
yet been identified—as in earlier scientific epochs in
which the causes of many diseases were unknown. It
can also accommodate the developmental shift that
apparently occurs in which many categories (e.g.,
biological kinds) increase in the extent to which they
are essentialized.

For example, Keil (1989) conducted a transforma-
tion experiment similar to Rips’s in which children
were shown a picture of a raccoon and then told that
doctors painted the raccoon black and added a white
stripe down its back and a “sac of super smelly yucky
stuff.” Whereas second- and fourth-graders judged
that the animal was still a raccoon (illustrating again
that category membership can be based on more than
just appearance), kindergartners categorized it as a
skunk, that is, perceptually. Although there is
evidence that children as young as 4 years old might

be biased to weigh “insides” of objects heavily in
categorization (Gelman & Wellman, 1991; also see
Diesendruck, 2001; Hirschfeld, 1996), it is frequently
assumed that categories are initially organized around
perceptual information and are augmented with more
conceptual information over time (Keil, 1989, 1994).

This shift in the organization of a category—based
either on scientific progress or cognitive develop-
ment—can be described in terms of an evolving set of
causal models, an example of which is shown in
Figure 12-11. First, consider what might be a cate-
gory’s initial state in Figure 12-11A. In this early stage,
knowledge of the category consists of only its observ-
able features (closed circles) and how those features
covary with a category label (depicted as an additional
binary variable in Figure 12-11A). As a result, evi-
dence that an object is a member of this category is
a simple function of whether it has these features, a
relationship depicted in Figure 12-11A by dotted
arrows. Note that although the dotted arrows represent
a relation between features and the category label that
is inferential (one infers a category label from
features), it is noncausal. Because the category will
often possess a family resemblance structure (in which
features vary in the extent to which they are correlated
with the category label but no one feature covaries per-
fectly), the function that computes the probability of
the category label will usually involve a weighted com-
bination of the number of features present.4

In the second stage of the category’s development
(Figure 12-11B), its representation has been elabo-
rated not only with additional features, but also with
an underlying cause that generates several of the
observed features. Knowledge of this underlying
cause might arise from explicit education (formal or
informal). It might also arise because children are
causal determinists who postulate the presence of
hidden causes to explain what they observe
(Gelman, 2003; Gelman, Coley, & Gottfried, 1994).
In some instances, the cause might be external to
the category itself (often the case with artifacts); in
others, knowledge of the cause might be so vague
that it functions as a placeholder only (Medin &
Ortony, 1989). But, regardless of the source or
nature of the cause, at this point it only provides the
child with an explanation for what the child
observes. Classification itself is still determined by
the observable features alone.

In the third stage (Figure 12-11C), the category
has begun to undergo an essential shift in which



the category label is now directly dependent on the
underlying cause. Importantly, however, this shift is
not complete because the category label still depends
on the observable features as well. At this stage,
observable features contribute to category member-
ship in two ways. The first is that they directly imply
category membership (as in the first two stages). The
second contribution is indirect because from obser-
vable features one infers the likely presence of the
underlying cause, which then increases the probable
presence of the category label yet further. Because
of this second inferential path from observable fea-
tures to the category label, it is at this point that cat-
egories begin to become less variable and, as a result,
undergo boundary intensification.

The essential shift is completed in Figure 12-11D,
which presents a fully essentialized category in which
category membership is directly dependent on the
underlying cause alone. At this point, observable fea-
tures still imply the category label but do so indirectly
by implying the underlying cause in the same way
that one can infer a disease from its symptoms. With
increased knowledge, one might also come to learn
about more features and more causal links between

features and the underlying cause. In addition, one
might learn that some of those feature are causes of
the underlying defining feature rather than being
caused by it (e.g., one learns that unsafe sex is a potential
cause of contracting HIV).

I suggest that it is in this manner that categories shift
from primarily perceptually based to having an essen-
tialized underlying causal structure. At each stage,
what stays the same is that classification proceeds on
the basis of observable features (as it must). What
changes is the nature of the inference itself. What starts
as a noncausal inference from features to a category
label (as assumed by most current theories of cate-
gorization) turns into a causal inference from observ-
able to unobservables (and then to the category label).5

Of course, not every category necessarily progresses
through each of these four stages. For example, the
presence of a unique word for a type of object may
speed the rate at which the category progresses from
the first stage to the third or fourth (Coley, Medin,
& Atran, 1997). Conversely, note that for many
categories there is good reason to question whether the
process of essentialization is ever fully completed,
even in adults. For example, Hampton (1995) has

ESSENTIALISM AS A GENERATIVE THEORY OF CLASSIFICATION 205

A

Category
Label

B

Category
Label

D

Category
Label

C

Category
Label

D

FIGURE 12-11 An evolving set of causal models.



206 CAUSATION AND PROBABILITY

demonstrated that even when biological categories’ so-
called defining properties are unambiguously present
(or absent), characteristic features continue to exert
an influence on judgments of category membership
(also see Braisby, Franks, & Hampton, 1996; Kalish,
1995; Malt, 1994; Malt & Johnson, 1992). Similarly,
although most subjects in the Rips’s (1989) study
thought the transformed bird/insect was still a bird,
they were not indifferent to the animal’s new, insect-
like properties: Average ratings in favor of bird category
membership were only about 6.5 on a 1–10 scale (as
compared to 9.5 when they were asked the same
question of the pretransformed animal). These results
are consistent with the causal model in Figure 12-11C
in which superficial features continue to exhibit
nonzero weight on categorization judgments even
when the presence or absence of the so-called defining
feature is unambiguous.

But, regardless of whether a category is essentialized
in full, in part, or not at all, this chapter has demon-
strated how classification can be construed as a process
that estimates the likelihood that an object is gener-
ated by the category’s causal model. For centuries,
categorization theorists have wrestled with the problem
of the relationship between the observable and the
unobservable when discussing human knowledge of
categories. No less eminent a philosopher than John
Locke distinguished nominal essences (observables
that form the basis of classification) from real ones
(categories’ true underlying nature). If for a moment
we treat Locke as a psychologist instead, then we can
see that he was on the right track all along:

Nature, in the production of things, always designs
them to partake of certain regulated estab-
lished essences, which are to be the models of all
things to be produced. (Locke, 1690/1974, 
pp. 289–290)
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This dialogue is a distillation of a real series of conver-
sations that took place at that most platonic of acade-
mies, the Center for Advanced Studies in the
Behavioral Sciences, between the first and third
authors. The second author had determinist leanings
to begin with and acted as an intermediary.

Determinism, Faithfulness, and Causal
Inference

Narrator: [Meno and Laplace stand in the corridor
of a daycare, observing toddlers at play through a
window.]

Meno: Do you ever wonder how it is that children
manage to learn so many causal relations so suc-
cessfully, so quickly? They make it all seem effort-
less. A 16-month-old of my acquaintance got my
cordless phone to do things I didn’t know it could,
and very speedily I might add.

Laplace: Yes . . . not only do they manage to sidestep
metaphysical questions, they also seem quite able
to make do without randomized controlled exper-
iments and with tiny sample sizes.

Meno: Leaving aside the question of how children
learn for a while, can we agree on some basic prin-
ciples for causal inference by anyone—child,
adult, or scientist?

Laplace: I think so. I think we can both generally
agree that, subject to various caveats, two variables
will not be dependent in probability unless there is
some kind of causal connection present.

Meno: Yes—that’s what I’d call the weak causal
Markov condition. I assume that the kinds of
caveats you have in mind are to restrict this princi-
ple to situations in which a discussion of cause and
effect might be reasonable in the first place?

Laplace: Absolutely. I don’t want to get involved in
discussions of whether X causes 2X or whether the
monthly changes in height of my elder son are
causing the monthly changes in height of my
younger son.

Instead, let’s consider a real, practical, and
indeed, sometimes lifesaving kind of causal infer-
ence—the kind of inference we make in scientific
medicine. From that perspective, a discussion of
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cause and effect starts from the assumption that
there is a population of units (say, patients in a
clinical trial) and a set of treatments (say, drug vs.
placebo). For each potential assignment of a treat-
ment to a unit, there is a well-defined outcome
that we could, in principle, discover by assigning
that treatment to that unit. If we could simply sys-
tematically give all the units each kind of treat-
ment and observe the outcomes, we could
discover which treatments caused particular out-
comes. Causal inference is difficult because we
can usually only find out what would happen to a
particular unit under one treatment. We can’t
observe the counterfactual—what would have
happened if we’d chosen another treatment. We
can’t observe whether for example, a particular
patient would also have recovered if he had taken
the placebo rather than the drug.

Narrator: [See J. Neyman, Sur les applications de la
thar des probabilities aux experiences Agaricales:
Essay des principle, 1923, as excerpted in English
in Dabrowska and Speed, 1990; Rubin, 1974.]

Meno: Why do you say “usually”? Isn’t it logically impos-
sible to see the same unit under two treatments?

Laplace: Well, in some situations it may be reason-
able to assume that the effect of applying the
treatment to the unit is sufficiently short-lived
that we can later apply another treatment to the
same unit and then compare the outcomes. The
effect of applying the second treatment would be
assumed to be the same as if it had been applied
first.

One would typically do this with a set of units
and randomize the order of treatments. For
instance, if you wanted to see if a particular drug
had short-term side effects, you might use a within-
subjects design—give each patient the drug and

then, after a pause, give the patient the placebo
(and vice versa).

On other occasions, we might think that dis-
tinct units were sufficiently similar in all respects
that their outcomes under the same treatment
might be assumed to be identical for practical pur-
poses. We assume, for instance, that a new patient
is similar enough to the patients in our sample so
that the drug will affect the patient in the same
way.

Meno: But, how can you make that assumption with-
out a population of identical twins? Surely, any
such assumption will be untestable; you can’t
escape the fundamental problem of causal infer-
ence so easily.

Laplace: Yes, of course. . . . If you like to drink your
skepticism neat, then we might ask how we know
that the future will conform to the past and, failing
any kind of satisfactory answer, abandon the whole
epistemological roadshow.

I mention these within-subjects or crossover
experimental designs because I think they may be
relevant to what our toddlers are doing.

Meno: Let’s come back to that, but first I want to fol-
low up on the weak causal Markov condition. How
precisely do you see it as justifying causal infer-
ence in your medical example?

Laplace: If there is dependence between the treat-
ment assignment and the outcome of the experi-
ment, then according to the weak causal Markov
condition, (a) treatment is causing outcome, (b)
outcome is causing treatment, or there is a com-
mon cause of outcome and treatment . . . (or some
combination thereof) (Figure 13-1).

Meno: I see, and if treatment were randomized, then
that means that (b) and (c) are ruled out because
the treatment a patient receives is determined by
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the randomizer (e.g. the flip of a coin) rather than
the patient’s (potential) response to the drug or any
common cause (e.g., the doctor’s beliefs about the
patient).

Laplace: Yes—in fact, if there is a time order (i.e., out-
come does not exist) prior to the treatment being
assigned, then we might rule out (b) a priori, but
randomization is required to eliminate (c) as a pos-
sibility.

Meno: When we say dependence, what do we mean?
Presumably we don’t mean that the outcome is
always entirely determined by the treatment?

Laplace: The case in which outcome is determined
by treatment is an important special case, and we
return to it in a minute, but in describing the weak
causal Markov condition we have in mind proba-
bilistic dependence: The distribution of outcomes
in the treatment group and in the control group
are different. Naturally, this only makes sense if we
have some population or hypothetical population
of units.

Meno: I see, so this condition is only supposed to
apply to causation between variables, not between
individual events.

So we agree that, subject to certain caveats,
dependence, whether probabilistic or deterministic,
implies the presence of a causal connection. What
about the reverse? Suppose that we do not observe
any dependence between two variables, what may
we then conclude? Is it reasonable to conclude that
treatment does not cause the outcome?

Laplace: That assumption is an instance of the
assumption known as the causal faithfulness con-
dition. But, here the way is less straightforward.
For instance, suppose that we give a group of
patients a treatment to reduce the amount of
insulin in the body (e.g., by changing it into some
other form), but that the body responds by gener-
ating additional insulin, exactly matching the
amount removed by the drug.

Meno: I see. In the situation you describe insulin
level remains unchanged regardless of whether
the patient has taken the drug or the placebo, so
we might think that the drug had no causal effect.
However, if we were able to prevent the body from
generating additional insulin, then the drug would
have an effect?

Laplace: Yes. For instance, it would have an effect in
a population of diabetics. This is an instance of the
point made about causal effects defined relative to
a comparison of two (counterfactual) outcomes
corresponding to different treatments. The fact
that an intervention does not change any individ-
ual outcome does not mean that in the context of
a second intervention (e.g., destroying the body’s
capability to produce insulin) the intervention will
not change any outcomes.

Meno: But, is this a real problem? Within the popu-
lation of nondiabetic patient treatments, the drug
would, in fact, have no effect on the outcome for
any individual, so for practical purposes, it is just as
if it had no causal influence at all.

Laplace: Agreed. However, such cases may present
problems if we want accurate representations of
causal systems. These representations are useful
because they allow us to say not only what has
happened or even what will happen, but also
what would happen if we made new interven-
tions. For instance, suppose we want to represent
a causal system with a directed graph. If the pres-
ence of a directed path is taken to indicate that
there is an effect, and the graph is intended to
represent the effects of simultaneous interven-
tions on more than one variable, then one is
faced with a choice between a graph that disobeys
the faithfulness condition (e.g., by including an
edge from the drug to the insulin level in the
body) and a graph that is faithful (e.g., by omit-
ting an edge from the drug to insulin level) but
does not correctly predict the results of multiple
interventions.

There are other situations for which the distri-
bution of outcomes may not change under differ-
ent treatments, so that there is no dependence that
may be observed in a randomized experiment, but
at the same time each person’s pair of counterfac-
tual outcomes are different under the different
treatments. For instance, imagine a treatment that
switches a person’s gender. If the treatment and
control groups initially have equal numbers of
men and women, then the proportion of females
in the treatment and control groups will be the
same at the end of the experiment.

Meno: But the treatment would have had a noticeable
effect on the individuals in the treatment group.



Laplace: That is if you are willing to assume that the
people in the treatment group would not also have
spontaneously switched gender had they been in the
control group. (Isn’t that the kind of assumption you
warned me about?) Also, note that the effect would
only be “evident” if you knew the gender the individ-
ual would have had if untreated. For instance, sup-
pose there is a treatment that has this effect in the
first few days after conception, before it is possible to
determine the child’s gender. In this case, you would
not be able to observe any change; hence, there
would be no way to observe the effect directly.

Meno: I see; so, every individual’s outcome would be
different under treatment and control, yet there
would be no way to discover this from looking at the
distribution of outcomes in treatment and control.

Narrator: For a human population, the ratio of males
to female births is not equal; hence, given a large
enough sample size, one would still be able to
detect the effect.

Meno: These scenarios still seem slightly outlandish.
They appear to me to be like causal illusions: Like
a masterful trompe l’oeil, our initial impressions of
the situation are incorrect, but on further inspec-
tion we can see what is really going on. Might we
not agree that, absent other information, we might
adopt as a working hypothesis that the absence
of dependence implies the absence of a causal
relationship?

Laplace: I’m fairly comfortable with that. There are
technical arguments that may be advanced for
such a principle: If there is independence between
treatment and outcome, although treatment
causes outcome, then several causal pathways
must “cancel out,” and this is unlikely to happen
by chance. However, there is one situation that
may often arise in which faithfulness routinely
fails. Faithfulness often fails if the causal relation-
ships are deterministic.

Meno: Let me see if I understand the distinction that
you have in mind. In general, if a variable X has a
causal effect on a variable Y, then knowing the
value of X may inform us about the distribution of
possible values of Y, but it will not tell us which
specific value Y will take on. However, if the rela-
tion between X and Y is deterministic, then know-
ing X, we know the value taken on by Y.

Laplace: Exactly. Consider, for example, a room with
an energy-saving lightbulb connected to a light
sensor. The bulb only goes on when the room
grows dark. Now, consider the “treatment” of
opening versus closing the blinds in the room, the
outcome being whether there is light in the room.
It is easy to see that if the causal relationships are
deterministic (i.e., the light sensor and lightbulb
never fail), then pulling down the blind has no
effect on the outcome variable. So, using the prin-
ciple that absence of dependence indicates
absence of causation, we should conclude that
opening the blind has no causal effect on the light
in the room.

Narrator: It is important here that the outcome,
whether the light is on or off, is binary. If we had a
continuous measure of the quality of light in the
room, then the relationships would not be deter-
ministic (clouds, streetlights, etc.).

Meno: Isn’t this simply the scenario of the insulin-
lowering drug mentioned?

Laplace: Yes and no. It is insofar as we have two
mechanisms canceling one another. There is a dif-
ference, however, in that because our outcomes
are determined, there is less room for detecting
change by slightly perturbing the scenario. By con-
trast, if we allowed the relationships to be proba-
bilistic, so that the light sensor and bulb
sometimes failed, then it would be easy to detect
an effect: Simply count the proportion of time
there is light when the blinds are open versus the
proportion of the time there is light when the
blinds are closed. If the sensor or bulb ever fail,
then the latter proportion must be smaller.

Narrator: This tacitly assumes that the probability of
failure is unrelated to whether the blinds are open
or closed.

Meno: It is unless you happen to do the experiment
in an environment with permanent sunshine or
darkness, such as the poles or anywhere on
Mercury. I see you are arguing that causal relation-
ships that are not deterministic are more likely to
obey the causal faithfulness condition. Ironically,
the “noise” in a probabilistic system may help us
understand more about how the system works than
we can understand in the apparently simpler
deterministic case.
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Laplace: Absolutely. In fact, this point becomes even
clearer and more pressing if we consider contexts
with more variables. So far, we have only been
considering a single candidate cause (the treat-
ment) and a single effect (the outcome). But, of
course, causal structures may be a lot more com-
plicated than this (Figure 13-2).

Meno: For those contexts, don’t we have to assume
the strong causal Markov condition?

Laplace: Yes. Let us review this condition. We need a
few more concepts first. If X causes Y, let us say
that X is a (causal) parent of Y, and Y is a (causal)
child of X. Similarly, let us say U is a (causal)
ancestor of V if there is a sequence of variables
starting with U and ending with V such that each
variable in the chain is the parent of the next. If U
is a causal ancestor of V, then we will say that V is
a (causal) descendant of U. Finally, say that a set of
variables is causally sufficient if any common
causal ancestor of two or more variables is
included in the set.

Meno: So, in these terms, the strong causal Markov
condition states that, in a causally sufficient set of
variables, if we know the values taken by the par-
ents of a given variable X, then learning the values
taken by other variables that are not descendants
of X tells us nothing about (the distribution of) X
itself.

Laplace: Yes, that is exactly right. In fact, for systems
in which all causal relationships between parents

and children are linear, the weak causal Markov
condition implies the strong condition.

Meno: In this context, the causal faithfulness condi-
tion now asserts that every independence relation
is a consequence of the strong causal Markov
condition applied to the true causal graph. Only
independence relations that follow from the
causal Markov condition will appear in the data.
If some other independence relation appears,
then the causal faithfulness assumption has been
violated.

Laplace: Again, exactly right. With these concepts in
hand, we are now in a position to discuss the prob-
lems brought about by deterministic relations.
Consider a simple situation with a common cause:
Pressing the garage door opener X leads to a light
blinking on the opener LO, the door opening D,
and a light going on in the garage LG (Figure 13-3).

Meno: So, the Markov condition tells us that if we
know whether the opener X was pushed, then D,
LO, and LG are irrelevant to one another. In tech-
nical parlance, D, LO, and LG are mutually inde-
pendent conditional on X.

Laplace: Correct, but here is the problem: Suppose
that the relationship between the door opener
being pressed and the light on the opener LO is
deterministic, so that this light goes on when and
only when the opener is pressed. It is now easy to
see that if I see the opener light, then I immediately
know that the opener has been pressed even if I
have not observed this directly. But, it then follows
that the door opening D and the garage light LG
are independent given only knowledge of the light
on the opener LO. This independence does not fol-
low from the causal Markov condition: If the rela-
tionship between X and LG were not deterministic,

FIGURE 13-2 A, B, and C are parents of E; G and H
are children of E; A, B, C, D, and E are ancestors of
G; E, G, and H are descendants of B. The set {A, B,
E, G} is causally sufficient; the sets {E, F} and {F, H}
and {F, G} are not causally sufficient. According to
the strong causal Markov condition, G is independent
of A, B, C, F, and H given E and D.

C
B

A

D E F

G H

FIGURE 13-3 A simple garage door opener: X is the
opener; LO is a light on the opener; D is the door
opening; LG is a light in the garage.



then this extra independence would not hold, yet
the causal graph would be the same.

Meno: So far, I follow. Suppose I were to try to make
inferences about causal structure from conditional
independence, assuming the causal Markov con-
dition and, contrary to fact, the causal faithfulness
condition held? All such procedures use the fact
that under these conditions, if X is a causal parent
of Y, then X and Y will always be dependent
regardless which other variables we know (or con-
dition on). I do not see that causing immediate
problems here because this extra independence of
D and LG given LO simply tells us that there can
be no edge between D and LG, which is correct.

Laplace: Yes, but there are more unfaithful independ-
ence relations here. We already know that LO and
LG are independent once we know X. But, if X
and LO are logically equivalent, then LG and X
are also independent once we know LO because
we know LO if and only if we know X. Likewise, D
and X are independent once we know LO.

Meno: I see; so, in fact we will end up with no edges
except the one between X and LO.

Laplace: I’m afraid so.

Meno: I see now why those proposing the causal
faithfulness condition as an inferential principle
for learning causal structure explicitly exclude
deterministic contexts. In those contexts, the
faithfulness assumption will often (in fact, usu-
ally) be false.

Narrator: For example, Spirtes, Glymour, and
Scheines (1993) state: “We will not consider algo-
rithms for constructing causal graphs when such
deterministic relations obtain, nor will we con-
sider tests for deciding whether a set of variables X
determines a variable Y” (p. 57).

Determinism in Children’s Causal
Inferences

Meno: Can we return to children’s learning?

Laplace: By all means.

Meno: Inspired by my discussion with Socrates
about geometry, I also have concluded that
empirical developmental psychology is the best

way to answer epistemological questions. So, 
I have been reading the developmental literature
and find that several authors have put forward
the suggestion that children learn causal
structure by “implementing” inference algo-
rithms that rely on the Markov and faithfulness
assumptions.

Laplace: I think I have heard of this. Can you give me
an example?

Meno: In one set of experiments, children were
shown a device that was called a blicket detector, a
box with the capability of emitting a sound when
blickets were placed on it.

In these experiments, objects of two different
types, let us say A and B, were placed on the
detector. The children observed the detector
making a noise in certain configurations and
were then asked various questions.

Laplace: I think I follow.

Meno: In one experiment, 3- and 4-year-old children
were divided into two groups. One group, in the
one-cause condition, were shown the following
sequence of events:

A on detector with noise

B on detector without noise

A and B on detector with noise (repeated twice)

The second group, in the two-cause condition,
were shown the following:

A on detector with noise (repeated three times)

B on detector without noise (once)

B on detector with noise (repeated twice)

In each case, the children were then asked if
each object was a blicket. In the one-cause condi-
tion, children said that Object A was a blicket more
than twice as often (96% vs. 41%). In the two-cause
condition, they were roughly equally likely to say
that A and B were blickets (97% and 81.5%, respec-
tively). In another version of the experiment, chil-
dren were asked which of the two objects was a
blicket. The results were similar.

Narrator: [See Gopnik, Sobel, Schulz, and Glymour,
2001, Experiment 1.]
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Laplace: I think I follow the logic that the children
might have used, but I do not see the connection
to Markov and faithfulness.

Meno: Isn’t it obvious? The children took the fre-
quencies observed in the data and observed that in
the one-cause condition

0 � P(Noise | not A and B), P(Noise | A and not B)
� P(Noise | A and B) � 1

Hence, the presence of A makes Noise more
likely, and Noise and B are independent given A.

If the children also believe that the detector
does not make a noise without a trigger, so
P(Noise| not A and not B) � 0, then Noise and B
are also independent given not A. Hence, by the
faithfulness condition we may conclude that B is
not a cause of Noise. Because A and Noise are
dependent, by the Markov condition they are
causally connected: It could be that the fact that
A is on the detector causes the noise, that the
noise causes A to be on the block, or that there is
some common cause of both events. However,
both the description of the blicket detector and
the fact that A is placed by an investigator suggest
that the placement of A is an external intervention
(i.e., it is exogenous), hence we may conclude that
A is a cause of noise.

Laplace: I see; if the placement of the block near the
detector were not performed by a human (e.g., it
was a consequence of some larger mechanism),
then we might conclude that there was some com-
mon cause at work.

Meno: Exactly. You still look skeptical.

Laplace: I have several concerns with this argument.
Broadly, I am not convinced that the formalism
of probability theory needs to be invoked to
explain the logic that is used here. After all, the
relationships between the detector and the blocks
are deterministic, aren’t they, at least in the one-
cause task? Every time a blicket is placed on the
detector, it goes off. Further, I think that if prob-
ability theory were used in the way that is sug-
gested, then we would be less good at learning
causal relationships than in fact we are. Third, I
am skeptical about invoking the faithfulness
assumption in this context because as an inferen-
tial principle I believe that it is incompatible with

a belief that one is observing a simple determin-
istic system.

Meno: Please go on. What do you see as problematic
about the use of probability theory.

Laplace: Were I a child, I would be hesitant about
regarding the observed (relative) frequencies seen
in such a small number of cases as representative
of the probability that any of these events would
happen in these conditions.

Meno: Why shouldn’t one do so?

Laplace: Well, suppose that I first showed the follow-
ing four outcomes:

Nothing on detector without noise

A on detector with noise

A on detector without noise

Nothing on detector with noise

Meno: So, from faithfulness I would conclude that A is
not a cause of the noise because the probability of
noise is independent of A: P(Noise | A) � P(Noise |
not A) � 1/2.

Laplace: But, here is the problem. If you continue to
apply the same logic, and I now tell you that I am
going to place A on the detector, then before you
see the outcome, you can conclude that you will
believe that there is a causal relationship between
A and the noise.

Meno: That seems like an absurd outcome. How does
it follow?

Laplace: Well, if we place A on the detector and it
makes a noise, then with that additional observa-
tion, according to the observed frequencies,
P(Noise | A) � 2/3, while P(Noise | not A) � 1/2, so
noise and A are dependent. Conversely, if we place
A on the detector and it fails to make a noise, then
P(Noise | A) � 1/3; P(Noise | not A) � 1/2, so again
A and the detector are dependent. In fact, even
before I show you any data, if you know how many
trials you plan under each condition, you may be
able to conclude that, if the observed frequencies
are assumed to be representative, then there will
have to be a causal connection. For example, if we
plan an odd number of trials in some condition and
assume that the observed frequencies in those trials



are representative, then it will simply have to follow
that the frequencies will indicate dependence.

Narrator: This assumes that the outcome is binary.

Meno: I see the problem. But, it is important to
remember that we are merely observing the rea-
soning patterns employed by young children;
there is no reason to assume that their inferences
should abide by normative principles.

Laplace: Indeed. Psychologists have often docu-
mented our “irrational” belief in the “law” of small
numbers.

Narrator: Tversky and Kahneman (1982, p. 7) describe
the law of small numbers as the belief “according
to which even small samples are highly represen-
tative of the populations from which they are
drawn.”

Laplace: But, I think it is equally important to bear in
mind that there may be more than one explana-
tion for the observed behavior. Furthermore, the
inferences made in the one- and two-cause condi-
tion experiment you described seem eminently
reasonable—one would not expect an adult, even
one attuned to statistical inference, to reason any
differently. Surely you would agree that if we can
explain children’s behavior in these experiments
without suggesting that they are systematically irra-
tional, then that would be a preferable outcome?

Meno: Agreed. On reflection, I realize that when
inferences about causal structure are made by
machine learning algorithms employing faithful-
ness and Markov conditions, then these are based
on databases containing hundreds, if not thou-
sands, of cases.

Laplace: Yes—without further assumptions, any rea-
sonable statistical procedure would be agnostic
about the presence or absence of dependence
from samples as small as those used by the chil-
dren in the experiment you described.

Meno: Is it not possible that the children think it is
safe to conclude that these small samples are rep-
resentative because they are presented by a trusted
adult figure in the person of the experimenter?

Laplace: One might think this, but I see two
problems. First, if one really believed that one 
was observing a blicket detector that was not

deterministic, then surely one must believe that it
is outside the control of the experimenter to make
it produce or fail to produce a noise on any partic-
ular occasion? In which case, there is no way for
the experimenter to ensure that the data are rep-
resentative: Although they might choose when to
place or not to place the blocks, whether a noise
is produced would not be entirely within the
experimenter’s control, so “representativeness”
could not be guaranteed.

Hence, when the detector appears to behave
indeterministically, the child would have to
believe that the experimenter in fact controlled all
aspects of the device and was creating the illusion
of probabilistic data to (beneficently) reveal the
true probabilistic properties of the device (that
would pertain in the absence of the experi-
menter?). Although, of course, this is in fact how
these experiments are conducted, I believe it
would be an unusual 3-year-old who would adopt
this as their working hypothesis.

Narrator: In principle, even with an indeterministic
device, an experimenter might control the
observed proportions by choosing to stop at an
“appropriate” point. However, it would again be
rather surprising if feelings of trust with respect to
the experimenter were parlayed in such an elabo-
rate manner: The sensitivity of frequentist statisti-
cal inferences to the choice of stopping rule was
something that only became widely understood
within the last 50 years.

Meno: I agree.

Laplace: Second, if it could be demonstrated that the
children had such deep trust in the experimenter
that they would consider this a plausible scenario,
then one might seriously question the ecological
validity of any inferences made about causal learn-
ing that took place in such a scenario.

Meno: Suppose I accept, as you appear to be arguing,
that such small samples cannot be regarded as
data on which one may reliably base conclusions
about probabilities. You mentioned that you
thought that the causal inferences made might be
explained as normative without reference to prob-
ability theory. Can you expand on that?

Laplace: You read me correctly: From a statistical per-
spective, very little can be obtained from such
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small samples, other than the fact that certain
combinations of events are possible (have nonzero
probability). When I say statistical perspective, I
mean if one starts out with the hypothesis that
there are probabilistic causal relationships
between the variables.

If this is the viewpoint with which we typically
viewed the world, then it is somewhat surprising,
perhaps even inexplicable, that most people would
agree on the correct answer to the blicket ques-
tion, at least in the one-cause scenario.

Meno: Some psychologists have made many of the
same arguments and argue that therefore chil-
dren’s inferences must be constrained by a great
deal of prior knowledge in a Bayesian way.

Narrator: [See Tennenbaum and Griffiths, chapter 10,
this volume.]

Laplace: If we are successful in providing a norma-
tively rational explanation for children’s infer-
ences, then it will not be surprising if similar
conclusions would be drawn by a hypothetical
Bayesian agent. Some might even regard this as
necessary.

However, I do not believe that this is the only
explanation for such inferences, and indeed, I
think that such an account leaves unresolved as
many questions as it addresses.

Meno: Can you be more specific? Doesn’t the
Bayesian approach, in principle, provide a com-
plete description of how to update one’s beliefs?

Laplace: That it does. However, I would argue that a
psychological theory should explain why people
agree on the “correct” answer in the one-cause
blicket experiment. The Bayesian approach does
not prescribe any specific set of prior beliefs; in
fact, one might expect different agents with differ-
ent life experiences to have different beliefs. For
example, Calvinist children might think that
Divine intervention was responsible for the blicket
detector making a noise at precisely the moment
when the block was placed on it; Jungians might
think it was just another instance of synchronicity
at work.

Without an explanation regarding why we all
have similar prior beliefs pertaining to such situa-
tions, the Bayesian account does not explain why
we have the beliefs that we have.

Meno: I see. You contend that for any particular set of
(posterior) beliefs we have after making some
observations, a proponent of Bayesian inference
might always concoct a hypothetical set of prior
beliefs for us, which had we had them and had we
been Bayesian would have resulted in the beliefs
we have. But, because this could have been done
for any set of posterior beliefs, the existence of
such a set of prior beliefs in any given case does
not constitute evidence that we arrived at our
beliefs by Bayesian means.

Laplace: Indeed. Further, I believe that there is a
computational issue that arises.

Meno: How so?

Laplace: It is a simple consequence of Bayes’ rule that
any hypothesis that is initially assigned probability
0 will continue to be assigned probability 0 regard-
less of the evidence that is observed.

Meno: I’m familiar with that, but how is it relevant
here?

Laplace: The upshot is that if we do not wish to be
unable to learn the true causal structure eventu-
ally, then we must ensure that we do not assign it
probability 0 initially. Because the number of can-
didate causal structures increases quickly with the
number of variables, an ideal Bayesian reasoner is
faced with the prospect of keeping track of per-
sonal beliefs concerning hundreds, if not millions,
of candidate hypotheses.

Meno: This is required if we are to be “ideal”
Bayesians, but couldn’t we be flawed Bayesians?
For example, just entertaining seriously a few
hypotheses, while regarding the remainder as hav-
ing some small probability that we don’t bother to
update?

Laplace: We might, but again, as with the specifica-
tion of prior beliefs, I believe that the “meat” of
any such account lies in the details of how and
why such an approximation scheme works in 
practice.

Narrator: J. Tennenbaum (personal communication,
30 January 2005) has proposed that a causal learner
might approximate a (Metropolis-Hastings) Markov
chain Monte Carlo scheme for sampling from a
posterior distribution. For example, a learner could
keep in mind a single model but be continually



switching from one model to another even in the
absence of any new data (but with the probability
of switching determined by the data observed so
far). At any given moment, the learner would have
“in mind” only one model but would continually
be changing this model, so that over an extended
period the proportion of the time that the model is
in mind would approximate the posterior probabil-
ity. This is an intriguing idea, but it still requires
that the learner have “access” to prior probabilities
assigned to all possible models. (The issue of
explaining/specifying priors also remains.)

Meno: I also see that most of us would consider it pos-
sible for us eventually to learn about a system with
a structure that has features unlike anything we
have ever seen, whereas an ideal Bayesian would
need to have initially considered such a system at
the outset. This reminds me of a discussion I once
had with Socrates concerning the apparent prob-
lem of coming to learn anything new.

Narrator: [See Plato, Meno 80 D.]

Laplace: Although I would not wish to rule out a
Bayesian inferential approach per se, I believe that
there is another, perhaps simpler, way forward:
The apparent conflict between strong human
agreement concerning the correct answer in the
(one-cause) blicket and statistical agnosticism
from small amounts of data suggests to me that
most people do not adopt a statistical perspective
on these problems, Bayesian or otherwise. Instead,
they assume that they may simply be observing a
deterministic system.

Meno: I can certainly see how that might simplify
matters in the one-cause situation: The detector
makes a noise if and only if Block A is placed on it;
Block B is irrelevant.

Laplace: This is exactly what I had in mind, but noth-
ing comes for free. In arriving at this conclusion,
we have used the (weak) causal Markov assump-
tion: The observation that the machine makes a
noise after Block A is placed on it is interpreted as
an intervention (or treatment), namely, placement
of Block A then leading to an effect (or outcome),
namely, the noise. The weak causal Markov condi-
tion invites us to conclude that there is a causal
connection underlying the observed association.
Under the hypothesis that placement of Block A is

an (exogenous) intervention, this implies that A is
the cause of the noise.

Meno: That tells us that A is a cause of the noise. But,
how do we eliminate the possibility that B is also a
cause? In the analysis, we described the investigators
assumed faithfulness and assumed that the failure of
B was representative, that is, that in general there was
no dependence between B and the noise. How can
we draw this conclusion without those assumptions?

Laplace: Rather than employ faithfulness, we simply
employ another parsimony principle: Because no
other causal relationships are required to explain the
observed events, we assume that none are present.

Meno: Of course. Faithfulness may also be viewed as a
parsimony principle in the sense that, as employed
in some learning, it leads us to choose stochastic
causal structures with fewer parameters. Here, in
the one-cause condition we presume that there is
no relationship between Block B and the noise, not
because we have observed them to be statistically
independent, but simply because we can explain all
of the observed noises without assuming that B will
lead the detector to make a noise.

Laplace: Absolutely right. From my point of view, we
have not nearly enough data to say anything about
the statistical independence of B and the detector.

Meno: But, wouldn’t this sort of deterministic infer-
ence just collapse to good old-fashioned deductive
logic? A is a blicket if and only if, if A was placed
on the detector then the detector activates.

Laplace: Not exactly. Standard propositional logic
does not include methods for dealing with causal
interventions.

Meno: Let me see if I understand. When we have a
set of propositions such as

Socrates is a man implies Socrates is mortal.

Socrates is mortal implies life insurance will not
be free.

these implications are supposed to hold true
always, whereas we wish to consider situations in
which, via external intervention, some proposi-
tions are no longer true.

Laplace: Precisely. If there is a medical breakthrough,
some (rich?) people’s lives might be extended
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indefinitely. In such a case, the first proposition
might no longer hold true—we might intervene to
make Socrates immortal—but the second will no
doubt continue to hold true. The propositions in a
causal model are thus “modular” in the sense that
an ideal intervention can override some proposi-
tions while leaving others intact.

Narrator: [See Appendix; Pearl, 2000, Chapter 7;
Schulz et al., chapter 5, this volume.]

Laplace: Thus, this “causal logic” has features that
make it different from classical deductive logic. In
particular, the difference between interventions
and contingencies is inferentially crucial, but
there is no such distinction in classical logic. Both
children and adults seem to be appropriately sen-
sitive to that distinction.

Narrator: [See, for instance, Gopnik et al., 2004;
Steyvers, Tenenbaum, Wagenmakers, and Blum,
2003; Lagnado et al., chapter 10, this volume.]

Meno: I can see that assuming that things are deter-
ministic and applying a causal logic simplifies
matters, but surely such an assumption is too
stringent to be of much use in real life, when evi-
dence is almost never deterministic. For that mat-
ter, the data presented in the two-cause condition
are incompatible with a deterministic functional
relationship. Remember that in the experiment
children see A set off the detector 3/3 times, and
B set it off 2/3 times. They conclude that both
blocks are blickets. But, here on one occasion we
have block B alone and a noise, and on another
occasion we have block B alone and no noise.
The same is true of other developmental experi-
ments. In one of the puppet machine experi-
ments, for example (Gopnik et al., 2004), one
puppet almost always, but not always, makes the
other puppet go.

Laplace: It is true that the two-cause condition is
incompatible with a belief that whether a noise is
produced is determined entirely by which blocks
are present. However, by hypothesizing an addi-
tional unobserved variable, for example, a loose
connection between the battery and the buzzer or
the amount of pressure the experimenter applied
when placing the object, one could easily con-
struct a deterministic model that was compatible
with the observed data. Then, you could make

inferences about this deterministic model in the
way I described.

Meno: But, is there any evidence to suggest that
agents are willing to postulate the existence of
such unobserved causes to “save” their belief in
determinism. I seem to recall reading something.

Laplace: Indeed, there is. Consider the following
experiment:

Children are initially told that the experimenter
likes to trick her confederate. The children then
see a light, which is activated by a switch. There is
also a ring on the light, which must be in place for
the light to work.

Children are divided into two groups. In the first
group (stochastic causation condition), the confed-
erate makes eight attempts to turn the light on by
pushing the switch but is successful only on two
occasions. In the second group (deterministic causa-
tion condition), the confederate is successful on all
eight attempts. After seeing these eight trials, the
experimenter then reveals a small key chain flash-
light to the children, which has not been seen previ-
ously. Both groups of children are then asked to
make it so that the switch does not work. Most of the
children (15 of 16) in the stochastic causation group
then reach for the flashlight even though they have
never seen it do anything (one child chose the ring).
By contrast, in the deterministic causation group
almost all of the children (14 of 16) choose to
remove the ring (two choose the flashlight).

Narrator: [Schulz, Sommerville, and Gopnik, in press,
Experiment 1.]

Meno: Interesting. So, this indicates that the children
in the stochastic causation group do not believe
that “things just happen.” They think that if the
light is not working, there must be a (determinis-
tic) explanation, and they are sufficiently invested
in finding such an explanation that they are will-
ing to hypothesize that an entirely new object has
such powers.

But isn’t it problematic that children are will-
ing to attribute such hidden variables so easily?
With enough hidden variables, we can represent
any input-output function by an infinite variety of
different graphs. Having too many causal answers
is just as bad as having too few, and accurate causal
inference will be just as difficult in these cases.



The children will be like Freudians or astrologers
who can explain everything and therefore cannot
really explain anything.

Laplace: But, the experiment points to more than
that: Notice that most of the children in the deter-
ministic causation group did not attribute causal
powers to the flashlight. This suggests that the chil-
dren do not hypothesize hidden variables in a
promiscuous fashion. Rather, they do so parsimo-
niously and systematically. The events observed in
the deterministic causation condition do not
require any additional variables to be fully
explained.

Meno: Still, it seems to me that there is a problem
here. Let me return to your garage door example
and consider the situation in which I do not
directly observe whether you pressed the opener X,
although we do observe the other three variables
D, LO, and LG. There are then no deterministic
relationships among the observed variables, yet I
will still fall into error if I make inferences based
on faithfulness. For example, LG and D are inde-
pendent given LO; hence, I will suppose that they
are not causally connected, when in fact they are.

Laplace: Absolutely right.

Meno: Well, then, here is what I do not understand. If
deterministic relations, even between observed and
unobserved variables, are incompatible with using
faithfulness, and yet any indeterministic system may
be viewed as a deterministic system with hidden
variables, then how does it ever make sense to
assume faithfulness? Because you seem comfort-
able with using faithfulness in some indeterministic
contexts, doesn’t your argument prove too much?

Laplace: An excellent observation. Is there no room
left in this world for faithfulness? Here is the solu-
tion to your dichotomy. Suppose for a moment
that we are omniscient demons, knowing the
entire causal nexus.

Meno: “Laplacian” demons?

Laplace: If you insist. Given any set of observed vari-
ables, we will add variables to the set until, for any
two variables in the set, if they have a common
cause, then that variable is included in our set.
Such a set of variables may be called causally suf-
ficient. If there are no deterministic relationships

among this larger set of (observed and unobserved)
variables, then we may proceed to use faithfulness
in our analysis of the original variables that we
observed.

Meno: Of course, if we were the demon, we would
not need to use faithfulness to infer the structure.

Laplace: Agreed. This is obviously a thought experi-
ment. The point is that there is a well-defined set
of variables among which we require there to be
no deterministic relationships to safely base infer-
ences on faithfulness.

Meno: I see. The scenario with the garage door
opener obviously fails the test.

Laplace: Indeed. A simple way in which this condi-
tion can be satisfied is if each variable in the sys-
tem is subject to at least one independent cause.

Meno: I see; so, deterministic relationships are not
problematic in a system in which each variable
has many causal parents.

Laplace: This is provided that we do not observe all
of them, and that is usually the case in complex
systems.

Meno: But this is highly problematic in deterministic
systems in which variables have only a few parents.

Laplace: Whenever we make causal inferences, we
are not considering all the possible variables,
observed or hidden, that exist in the universe, but
only a small subset of those variables.

Narrator: [See also Glymour, chapter 18, this 
volume.]

Laplace: Metaphysically, we may have a hard time
imagining genuinely indeterministic causal rela-
tions. But, even if we are metaphysical determin-
ists, in complex settings we often simply ignore the
unobserved variables we think are responsible for
indeterministic appearances, especially in com-
plex cases—we brush them off as “noise” that is
irrelevant for causal inference. From a formal per-
spective, this epistemological brush-off has just the
same consequences as believing in metaphysical
indeterminism.

Meno: From what you say, simple deterministic sys-
tems are problematic for causal inference from
conditional independence relations. Yet, many
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mechanical devices one can think of behave in
exactly this way. After all, the blicket detector is
just such a system and so are the other “machines,”
like the puppet or the gear-toy machine that devel-
opmentalists have used to test children’s causal
inferences. This brings us back to the original
question of how children manage to learn such
systems with so little data? If they do not use faith-
fulness to infer complex noisy causal systems, then
how else could they manage to learn so much so
quickly and accurately?

Laplace: Now, you ask me to enter the realm of conjec-
ture. I can only guess, but I believe there are a num-
ber of factors that work to children’s advantage.

Let us turn to faithfulness first. As we
described, it serves to identify when variables are
not causally related. This is important because, in
the right context, it allows these algorithms to
establish that a particular variable is uncon-
founded or exogenous—it is not itself affected by
other variables in the system.

Meno: I see. Once we have established that variable
X is exogenous, then we only require the causal
Markov condition to conclude that anything
dependent on X is caused by X. If X is exogenous,
then we have ruled out the possibility of common
causes and ruled out the possibility that anything
else is causing X. But, if we cannot use faithful-
ness, then how else could we establish exogeneity?

Laplace: Children might establish exogeneity in other
ways. For one thing, children, unlike data-mining
programs, can actively intervene on the causal sys-
tems they are learning about. In fact, in their spon-
taneous play they perform such interventions all
the time. It is what parents call “getting into every-
thing.” Children might have a background theory
that allows them to attribute the property of exo-
geneity to actions they undertake. In particular,
like adults, children might assume that their own
intentional actions are the result of free will and so
are intrinsically exogenous.

Meno: But in the blicket detector experiments, chil-
dren do not get to intervene on the system; they
just watch other people’s interventions.

Laplace: This raises an interesting point. If children
also assume that the actions of others are analo-
gous to their own actions—particularly that they

are also the result of free will and so are exoge-
nous—then they could make similar inferences by
just watching other people manipulate objects.

Meno: I see. In fact, interestingly, several experiments
have shown that children will distinguish between
actions performed by agents assumed to be like the
children themselves and those performed by nona-
gents.

Narrator: [See Meltzoff, Somerville, chapters 2 and 3
this volume. Also see Schulz, Sommerville, et al.,
2005, Experiment 4.]

Meno: Children do not simply observe patterns of
association but see goal-directed agents around
them performing actions. Thus, a child might be
more like a first-year graduate student in a lab or a
historian of science, who may be fairly sure that if
these otherwise well-adjusted adults spend a lot of
time manipulating something, then it is probably
causally efficacious in some way.

In fact, some developmentalists, as well as
grown-up psychologists, have already argued for
the significance of interventions in human causal
inference.

Narrator: [See Schulz et al., chapter 5, this volume;
Lagnado et al., chapter 8, this volume; Hagemeyer
et al., chapter 6, this volume.]

Meno: In this respect, human inference is different
from the perspective of a data-mining program,
which cannot exclude the possibility that the vari-
ables are completely unrelated to one another (or
completely confounded by unobserved variables).
Other experiments have shown that children can
use interventions on deterministic systems to make
complicated inferences about the causal structure
of those systems—distinguishing common causes,
common effects, and causal chains.

Narrator: [See Schulz et al. chapter 5, this volume;
Schulz et al., in press.]

Meno: But, what you say suggests that interventions
will be especially important, in fact, indispensable,
if we want to understand deterministic systems.

By the way, earlier you mentioned crossover or
within-individual experiments as playing a role.
Can you expand on that point?

Laplace: As mentioned in our discussion, the “funda-
mental problem of causal inference” is that we



typically do not get to view the outcomes for the
same subject under two different treatments.
Randomization serves to construct groups of sub-
jects whose distributions of outcomes under the
same treatment may be considered to be similar.

However, a child typically does not do experi-
ments on a large group of blicket detectors. The
child typically only has one detector, but it is often
reasonable to assume that different interventions
leave the device unchanged.

Meno: Yes—although it is possible to imagine that
Block A is somehow “imprinted” on the blicket
detector, like tweed trousers on a newly hatched
Lorenzian duckling, causing it to squawk when
(and only when) its first love is again placed on
it—this is certainly not the first hypothesis that
springs to mind. Indeed, the word detector seems
to rule this out.

Laplace: Precisely. It would be an unusual (although
perhaps not irrational) child who would say,
“Block A is the blicket—it was blicketized by
being the first object placed on the detector!”

Some interventions have permanent irreversible
effects on objects, such as dropping the glass on
the tile floor or pouring ink on the Persian rug, but
the fact of irreversibility is usually plain to see.
Interventions that lead to undetectable, but per-
manent, irreversible effects are less common.
Hence, children live in a world amenable to
within-subject crossover designs.

Meno: Indeed, you could think of children’s repetitive
spontaneous play with objects as just such an
experimental strategy. Grown-up psychologists
often treat children’s perseveration as a sign of stu-
pidity or at least lack of executive control. But, it
also might be an excellent way to get within-subject
information, in particular to check that there have
been no irreversible changes, so that the same
intervention continues to produce the same effect.

In this way, the fundamental problem is
avoided, and individual causal effects can be
inferred.

Laplace: Yes, in fact, when combined with the
assumption of determinism, it also makes feasible
inferences about the existence of unobserved hid-
den causes of a single variable and the causal
effect of such hidden causes (i.e., whether they are
inhibitory or generative).

Narrator: [See Schulz, Sommerville, et al., in press,
Experiments 2 and 3.]

Laplace: The Markov and faithfulness conditions
sometimes make it possible to infer the existence
of an unobserved common cause of two variables
in indeterministic systems, and there is some evi-
dence that adults and children make such infer-
ences. But, inferences about the existence of
single unobserved causes cannot be made purely
on the basis of conditional independence and
dependence. (Clustering of imputed “distur-
bance” terms would be one way to proceed.) Yet,
children also seem to make such inferences.

Narrator: [See Gopnik et al., 2004; Kushnir, Gopnik,
Schulz, & Danks. 2003; Schulz et al., chapter 5,
this volume.]

Meno: This may also solve another problem: One
concern that I have had with the standard
approach to causal inference based on directed
acyclic graphs (also called Bayesian networks) is
that all causal relationships are asymmetric: If X is
a cause of Y, then Y is not a cause of X. In particu-
lar, under the standard account of interventions, if
we were to intervene on Y, then we would produce
no change in X—cyclic systems are explicitly ruled
out. Yet, there are simple systems in which causal
relationships appear to be reversible. For instance,
I can pull the engine of a toy train, and the tender
will be pulled along, but if I choose to push the ten-
der forward, then the engine will also be moved.
And, in some experiments children seem to infer
such cyclic relationships. In the gear-toy experi-
ments, for example, children hypothesized that
Gear A might sometimes move Gear B while at the
same time Gear B might sometimes move Gear A.

Narrator: [See Schulz et al., chapter 5, this volume;
Schulz et al., in press.]

Laplace: Reversibility of the type you describe is sim-
ple to include in an account of intervention in
which two variables are related deterministically
and the relationship is one to one, so that each
value of X corresponds to a unique value of Y and
vice versa. This is a model of intervention corre-
sponding to reversing edges rather than breaking
edges. For example, if prior to intervention we
have A → B → C and we then intervene on C,
then this will lead to C → B → A.

PRINCIPLES UNDERLYING CAUSAL LEARNING 221



222 CAUSATION AND PROBABILITY

Narrator: This intervention model may be general-
ized to having p input variables and p output vari-
ables, provided that each possible vector of values
for the outputs corresponds to a unique vector of
values for the inputs.

Meno: Like any working hypothesis, assuming deter-
minism or near determinism (i.e., a few unob-
served variables) will work well if true but may be
highly misleading when false.

Laplace: But, again, we do not learn causal relation-
ships purely out of intellectual curiosity.
Considerations of utility also play a role.
Deterministic causal systems are, by definition,
more reliable, and thus more useful, once we
have learned them. If our goal is to manipulate
the world around us, then learning the subtleties
of an unreliable system may not be worth the
effort.

If a system is complex and indeterministic,
then we have no hope of learning how to manipu-
late it, absent large amounts of data; hence, unless
we really can gather a lot of data, from a pragmatic
point of view we are losing little by ruling out such
systems at the beginning.

Remaining Problems

Meno: You’ve convinced me that a near-deterministic
experimental causal logic may serve children as
well as the full apparatus of probabilistic Bayes net
causal learning algorithms. But, do you see no role
for indeterminism in children’s learning?

Laplace: That may be going too far. I almost always
would qualify anything I say. Empirically, children
do seem to use observed frequency as a way of esti-
mating causal strength, much as adults do. For
instance, it has been shown that children think a
block that sets off the detector 2/3 times has “more
special stuff inside” than one that only sets it off 1
of 3 times. Of course, these judgments don’t
involve causal structure—the sort of judgments
captured by causal graphs, but only the parameter-
ization of those graphs.

Narrator: [See Kushnir and Gopnik, 2005.]

Meno: Don’t these experiments necessitate the use of
indeterministic models as cognitive constructs?

Laplace: An indeterministic model provides one
explanation, but observe that it is also possible to
see these experiments concerning the amount of
special stuff as revealing that children are capable
of using different levels of description of frequency
rather than using indeterministic models per se.

Meno: How so?

Laplace: If we view the three responses resulting from
placing the block on the detector three times in
succession as a single response that takes four val-
ues 0, 1, 2, 3 (rings of 3), then we can build a
deterministic model for the system. Certain blocks
lead to a response of 1 of 3; others lead to a
response of 2 of 3. For example, it might be the
case that every time we place a given block on the
detector a constant (deterministic) amount of spe-
cial stuff is transferred to the detector. The detec-
tor accumulates special stuff until a threshold is
reached, at which point the detector makes a
noise, and its special stuff reservoir is depleted by
some (fixed) amount. Although a given block
always transfers the same amount, different blocks
transfer different amounts.

Meno: I see. If we may set aside your metaphysical
theory of special stuff for a moment, there appears
to be a more general point here. Your reasoning
seems to suggest that another route to incorporat-
ing seemingly indeterministic data into a deter-
ministic world view is simply to provide a level of
description for our variables that avoids recording
the outcome in any specific case but rather just
describes ensembles of outcomes. Thus, Y is a
deterministic function of X, but Y takes values
such as never, rarely, often, always, which refer to
collections of individual observations.

Narrator: Note that in a deterministic system a given
set of inputs either always or never produces a cer-
tain output.

Laplace: Indeed. This is an instance of the following
idea, which is familiar from regression: Knowing
someone’s height does not allow us to predict their
weight, but the average weight in a given sub-
population of people who are all of exactly the
same height may be a simple deterministic func-
tion of that height. If the variable Y takes on values
such as never or rarely, then it is basically record-
ing the average (rate) of occurrence of an event



under some condition. Thus, we may describe
deterministically the way in which X (special stuff)
influences the average response (frequency of the
detector ringing).

Meno: This also raises a question regarding what it
means to “use” an indeterministic model.
Regression can be thought of as a statistical proce-
dure derived from a probability model, or it can
simply be thought of as line fitting. I could use the
regression line for making predictions without
explicitly assuming a probability model. In this
case, am I or am I not using an indeterministic
model?

Laplace: I agree that this is not so clear.

Meno: To my mind, psychological causation seems in
some sense far more indeterministic than physical
causation, and yet we know that children infer the
structure of psychological systems as quickly and
easily as they make physical inferences.

Narrator: [See Schulz and Gopnik, 2004.]

Laplace: Yes. Other agents are often quite unpre-
dictable in the way in which they respond to us.
Our daily interactions certainly provide plenty of
time to gather data about those who are closest to
us. On the other hand, such indeterministic sys-
tems may not have a fixed causal mechanism.
Agents around us are changing even as we are
learning about them: One of the ways in which
they change is that while we learn about them
they also are learning about us. This makes the
learning task a bit more complicated because data
are not generated by a fixed underlying distribu-
tion. You may be smiling at me because you like
me, because you think that I like you, or more
deviously, because you think you have made me
think that you like me and so on.

Meno: Virologists and pathologists sometimes have to
study systems that are constantly evolving and that
change the way they function in response to inter-
ventions.

Laplace: Indeed, but viruses that evolve quickly are
much harder to combat than those that do not.

Another difference is that in such circum-
stances the simple fact of gathering data—observ-
ing your expressions—is itself an intervention in
the system. As every parent of a toddler soon finds

out, often the best way to ensure that a tantrum
continues is to try to find out what is wrong. So, it
is puzzling that children make these inferences as
easily as they do. On the other hand, the fact that
children often manipulate their parents and vice
versa suggests that perhaps humans are less hard to
predict than we might like to believe.

Meno: Making the analogy between the way in which
scientists and statisticians analyze their data and
the way in which children learn from observations
around them seems to me to leave two important
parts of the process unexplained: hypothesis gener-
ation and concept formation. Do you agree?

Laplace: Absolutely. Statistical analysis of causation
often gives no account regarding how particular
variables are chosen as candidate causes or effects.
Heuristics based on observing other agents may be
of assistance to children in this regard. For exam-
ple, Mommy seems to spend a lot of time fiddling
with that little black box, so let me investigate it;
someone or something turns the TV off, so let me
see if I can find out what it is.

Machine learning algorithms often have a well-
defined hypothesis space through which they per-
form some sort of search. However, children face a
much less well-defined, hence larger, search space
and arguably do not carry a giant list of all possible
causal hypotheses. (This also causes problems for
Bayesian accounts.) Choosing good candidate
hypotheses in such circumstances seems like a
hard problem, but one that they do well.
Experiments such as those in which hidden causes
(the flashlight) were hypothesized give a tantaliz-
ing glimpse of this process in action.

Meno: Finally, Laplace, as I say my association with
Socrates has taught me the importance of empiri-
cal developmental findings. How could we test
your ideas about determinism empirically?

Laplace: I regard the experiments relating to the key
chain flashlight described as empirical evidence
that children are willing to postulate the existence
of hidden variables merely from observations that
appear to be indeterministic in a manner not
compatible with a conditional independence-
based approach because such approaches only
postulate common causes. Naturally, this does not
rule out the use of probabilistic models in other
settings.
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More generally, I speculate that if we give
children the same problem in a deterministic or
near-deterministic way and in a way that genuinely
requires them to compute conditional probabili-
ties, then I predict that they will solve it in the
deterministic case and not the probabilistic one.
All the published studies have been deterministic
or nearly so. I have a feeling that some unsuccess-
ful probabilistic experiments might be lurking in
wastebaskets and desk drawers.

Meno: Maybe so, but the experimental problem is
harder than you might think. As you said, it may be
that we use indeterministic information just when
we assume that there are many uncontrolled vari-
ables, lots of noise in the system. But, a develop-
mental psychologist’s first task is to make sure that
the problem is clearly posed, and there are no extra
factors that might be distracting the child. You may
be able to persuade undergraduates that they
should only pay attention to the information about
probabilities on the sheet directly in front of them.
But, it will be much harder to persuade young chil-
dren to do so (and even with undergraduates, the
individual differences among participants suggest
that they also may be considering other factors).

Narrator: [See Lagnado et al., chapter 10, this volume;
Hagmeyer et al., chapter 10, this volume.]

Meno: How can we be sure that children only pay
attention to the variables we control while at the
same time leaving them the impression that there
are many other uncontrolled variables lurking in
the background, and therefore that indeterminism
might be appropriate?

Laplace : Perhaps we might exploit the indeterminism
of psychological relations.

Meno: I see; suppose we show the child that Bunny
the fussy eater will eat plain peanuts one of three
times you offer them but will eat them three of
four times when you add salt, although he never
eats salt alone. The salt influences the probability
distribution of Bunny’s preferences. Will children
infer that the salt has a causal effect on Bunny’s
actions in this indeterministic case?

Laplace: I think it would be interesting to see how
children would respond. However, I believe that,
as with the special stuff experiments, it would be
possible for someone to describe the result of the

experiment deterministically, without reference to
probabilities, by saying that, “Bunny frequently
eats peanuts with salt, but rarely eats them with-
out.”

As with our discussion concerning the pros and
cons of a Bayesian explanation of human reason-
ing, I believe that although many observations
may be compatible with a child entertaining an
indeterministic model, I think it is unlikely to be
necessary. Probability is a relatively recent addi-
tion to the set of descriptive methods used by sci-
entists. It was also one that was fiercely resisted at
first. Probability may seem to be an integral part of
the metaphysical landscape in the 21st century,
but it certainly was not always thus.

Meno: Oh, dear. We appear to have raised as many
interesting issues as we have resolved. At least 
we have established the importance and primacy
of experimental evidence in informing our
theorizing.

As my dear friend Lavoisier says:

In the practice of the sciences imagination, which
is ever wandering beyond the bounds of truth,
joined to self-love and that self-confidence we are
so apt to indulge, prompt us to draw conclusions
which are not immediately derived from facts; so
that we become in some measure interested in
deceiving ourselves.

[In contrast] . . . when we begin the study of any
science, we are in a situation, respecting that sci-
ence, similar to that of children; and the course by
which we have to advance is precisely the same
which Nature follows in the formation of their
ideas. . . . We ought to form no idea but what is a
necessary consequence, and immediate effect, of
an experiment or observation. (p. 4)
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Appendix

This appendix outlines simple methods for learning
cause-effect relationships from small numbers of inter-
ventions in a causal system in which all nodes are
binary, and all endogenous variables (i.e., with par-
ents) are a (deterministic) disjunction of conjunctions
of their parents. We present an algorithm that lays out
a simple experimental procedure that enables the
learner to learn first indirect and then direct causes. In
contrast to other machine learning algorithms, this
procedure does not say anything about what should be
inferred from passive observations. This is in keeping
with the contention (of Laplace) that interventions
allow learners to avoid the complexities of probabilis-
tic inference. Further, the algorithm focuses on what
causes a specific outcome variable. Again, this reflects
the view (again stated by Laplace) that learners are
often attempting to (re)produce a particular outcome
(e.g., make it go, make Mommy smile, etc.).

The method outlined here is relevant to the
blicket experiments (and others like them) only inso-
far as a participant might view the actions of the per-
son putting the blocks on the detector as (partially)
carrying out the sequence of interventions sketched in
this method.

Basic Notions and Definitions

Consider a deterministic causal model in which all
variables are Boolean, taking values true or false. We
also refer to these states as on and off, respectively. We
suppose an underlying directed causal graph in which
every vertex with parents is a logical function of its
parents taking the specific form of a disjunction of
conjuncts:

x�(p11 � p12
. . . � p1k1) �

(p21 �… � p2k2) � … � (pt1�…� ptkt). (*)

Here, the {pij} are all in the set pa(v) of parents of v in
the causal graph, which we will require to be acyclic
(i.e., containing no directed cycles).

Intuitively, v is true if all of the pij’s inside at least
one of the parentheses are true. This also includes as
special cases a network in which each vertex with par-
ents is either a conjunct or a disjunct of its parents.

This is a strong restriction that rules out many pos-
sible relationships between causes and effects (see dis-
cussion here). However, it is general enough to cover
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most (all?) experiments considered in the develop-
mental literature while still being simple enough to
allow a relatively direct inferential method. At a crude
level, it captures the idea present in many experi-
ments that “something” (a given conjunction) makes
“it” (v) “go” (be true). There is also a close connection
to Mackie’s (1965) INUS (Insufficient but Necessary
part of a condition which is itself Unnecessary but
Sufficient for the effect) model.

Let E be the set of exogenous variables and V be the
set of endogenous variables. We will define an instance
of the system to consist of an assignment of truth values
to all of the exogenous variables (i.e., those without par-
ents), which we will denote by E � e. Because there is
an equation of the form (*) for each of the endogenous
variables, an assignment of values to the exogenous
variables automatically assigns truth values to all of the
endogenous variables.

Let X(e) be the value assigned to the endogenous
variable X when the exogenous variables are assigned e.
Similarly, we define the set of true or on variables
associated with an assignment as follows:

T(e) � {v | v � V, X(e) � T}

and likewise

F(e) � {v | v � V, X(e) � F}.

Note that we have not (and will not) put any distribu-
tion over the exogenous variables.

The following are some examples described in this
format.

Example 1: One-cause blicket detector

Exogenous variables: Block 1 present? (B1); Block 2
present? (B2).

Endogenous variable: Detector making a noise? (D).

Graph: B1 → D B2

Functional relationship: D � B1

This is the trivial case of (*) where t � 1, and k1 � 1.
We have, for instance, T(B1 � T, B2 � F) � {D};
T(B1 � F, B2 � T) � { }. (Here { } indicates the
empty set.)

Notational convention To simplify notation, we
often simply describe an assignment via the subset of
exogenous variables taking on value T, it being

implicit that the remaining variables take the value F.
Thus, for example, we may reexpress the statements
above as follows:

T({B1}) � {D}; T({B2}) � { }

This convention simplifies expressions, but it is also
based on the intuition that the default state for
exogenous variables is false or off. Thus, if we were
to physically implement a particular assignment, we
would only need to pay attention to those exogenous
variables assigned the value true as the remaining
exogenous variables would already be in the false
state.

Example 2: Two-cause blicket detector

Endogenous and exogenous variables are the same as
in Example 1.

Graph: B1 → D ← B2

Functional relationship: D � B1 � B2

Here, t � 2, k1 � k2 � 1.

Example 3: Twin piston engine

See Glymour, chapter 14, this volume.

Exogenous: Key present? (K)

Endogenous: Fuel Intake 1 open? (F1); Spark? (S);
Fuel Intake 2 (F2)? Piston 1 moves? (P1); Piston 2

FIGURE 13-A1.



moves? (P2); Drive Shaft moves? (D) (see
Figure 13-A1). 

Functional relations:

F1 � K; S � K; F2 � K; P1 � F1 � K;
P2 � F2 � K; D � P1 � P2.

The following is an important consequence of our
restriction on the functional forms of the parent-child
relationships:

Lemma 1: If e1 and e2 are two assignments to E
such that

{X | X � E; X assigned T by e1} � {X | X � E;
X assigned T by e2}

then T(e1) � T(e2).

In words, if Assignment e2 turns on every exoge-
nous variable turned on by e1, then at least as many
endogenous variables are turned on by e2 as by e1.

Interventions

So far, we have not described operations for interven-
ing in the system. An intervention turns an endoge-
nous variable into an exogenous variable, forcing it to
take a given value, and striking out the equation pre-
viously governing it. All other equations remain in
place. We will simply denote this via expanding our
assignment to include the intervened variables Z. By
a natural extension of the previous notation, we will
let X(E � e, Z � Z) be the value assigned to the
endogenous variable X under this assignment and
intervention. Likewise, the set of (remaining) endoge-
nous variables taking the value T under this interven-
tion is then represented via T(E � e, Z � Z).
For example, in the piston engine example, we have

T(K � F) � { }, 
but T(K � F,  P1 � T, P2 � T) � {D}

expressing the fact that if the key is absent, then noth-
ing happens, but if the key is absent and we force both
pistons to move, then the drive shaft turns.

In the schemes described next, we will only ever
consider interventions that force variables to take the
true state. Thus, as before we can simplify notation by
recording only the set of exogenous variables taking the
value T and the set of endogenous variables forced to
take the value T. For example, the above statements can
be expressed as T({ }) � { }, but T({P1, P2}) � {D}.

More generally, under an assignment and inter-
vention represented by the set W � E* � A, where
E* is a subset of the exogenous variables E, and A is a
subset of the endogenous variables V, we mean the
following:

(i) Assignment of true to the variables in E*,

(ii) Assignment of false to the variables in E\E*
(i.e., those not in E), and

(iii) An intervention forcing the variables in A to
take the value true.

This notation is not fully general in the sense that
we cannot express interventions forcing endogenous
variables to take the value false or off. However, for
our purposes this is not a problem: As stated, the
learning methods we describe next only ever require
us to perform interventions forcing endogenous vari-
ables to take the value true.

We will sometimes refer to such an assignment
and intervention as an intervention on W (� E* �

A). This is a slight abuse of terminology because in
fact we are assigning to E (� E* � (E\E*)) and inter-
vening on A. However, because interventions simply
make endogenous variables exogenous, assignments
to exogenous variables may be viewed as trivial inter-
ventions.

Similarly, we will refer to the state that a given
variable X (endogenous or exogenous) takes under
E* � A: If X is in E or in A, then this is specified
directly by the intervention; if not, then X’s value is
given by X(W). If X takes the value true under W,
then we will say that X is turned on by W. The set of
variables turned on under W consists of W �

T(W).
Finally, we note the following properties 

Lemma 2: T(W) � de(W), where de(W) is the
set of descendants of W.

In words, the set of endogenous variables taking the
value true under W is a subset of the descendants
of W.

Lemma 3: For any set A � V � E and any variable
X � A,

X(A) � X(A � an(X)) � X((A � an(X)) � W)

where W is an arbitrary subset of (V � E)\(an(X)
� {X}).
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In words, the truth value taken by an (endoge-
nous) variable X only depends on the values assigned
to variables (either exogenous or intervened on) that
are ancestors of X.

Learning Indirect Causes From Interventions:
How Can I Make It Go?

We can now describe a simple method for answering
the following question: For a specific variable X in a
causal model, how do I get it to “go” with the least
effort?

We are not necessarily trying to find the direct
causes of X, we merely require a nonredundant set of
minimal sufficient causes. We formalize this question
as follows: For a given variable X, find a set A such
that A does not contain X, turning on all the variables
in A makes X take the value T, and no proper subset
of A makes X take the value T.

Such a set A may be found in a simple manner:
First, try turning on each variable in turn (if necessary
by intervention) other than X itself. If successful, stop;
otherwise, try sets of size two, and so on.

More formally, we have the following algorithm.

Input: A target variable X

Output: A set A such that X � T(A), but for any
proper subset A*� A, X � T(A),

or failure if no such set exists.

How algorithm

For k � 1 to |(V � E)\{X}|

For each subset A � (V � E)\{X}, such that |A| � k

If X � T(A), return A

Until all subsets of size k from (V � E)\{X} have
been tried.

k � k � 1

If k 	 |(V � E)\{X}|, then report failure and
return.

Failure will only occur if the target variable is in
fact exogenous or if (contrary to the assumptions of
the algorithm) we are not able to intervene on all vari-
ables in the system.

Example piston engine If we attempt to get the drive
shaft to turn (D � T), then the algorithm will termi-
nate with k � 1, with the set A � {K} because this is

the only set of size 1 making the engine turn over.
Note that K is an ancestor but not a parent of D. This
will be true in general:

Lemma 4: The set A resulting from the how algo-
rithm consists of ancestors of the target variable X.

Sketch of proof: Suppose for a contradiction that A
contained a variable that was not an ancestor of X.
Consider the set A* � A � an(X). By Lemma 3,
X(A) � X(A � an(X)) � X(A*). So, in particular,
if X � T(A), then X � T(A*). But, by hypothesis
because A contains a vertex that is not an ancestor of
A, | A* | � | A |, so the set A* would have been consid-
ered first by the algorithm, which is a contradiction.

The number of interventions required to find the
set A � {K} in the piston example depends on the
ordering of the variables. Under the worst ordering,
we would need to perform six sets of interventions,
each forcing a single variable to take the value true. In
the best case, only one intervention is required.

Note that, in a system containing no conjunctions,
it will only be necessary to consider sets of size 1 in
the how algorithm; hence, the outer loop is unneces-
sary. This corresponds to the simple scheme of getting
into everything by which a child simply pushes each
button in turn (literally or figuratively) until the
desired effect is obtained.

Because various child-proofing schemes involve
conjunctions, we conjecture that such systems may
be harder to learn. For example, on some dishwash-
ers, when the child lock is activated, pressing any but-
ton causes two buttons to flash, which must then be
pressed simultaneously to proceed. Similarly, some
stair gates require a button to be pushed and a pedal
to be pressed simultaneously.

Learning Direct Causes From Interventions:
Why Does That Make It Go?

The how algorithm succeeds in finding an interven-
tion that makes a given variable X go, that is, take the
value true, but as we saw in the piston example, it
does not necessarily identify the direct causes or,
equivalently, the parents of X in the graph. Thus, a
causal learner might ask this as a follow-up: Given
that A makes X go, why does A make X go?

We reformulate this question as follows: Can we
identify parents of X that are turned on by A and con-
sequently turn on X? We emphasize that this is clearly



a limited answer to the question, Why does A make X
go? In particular, if A is a set of parents of X, then we
will simply return the answer that, A makes X go
because A makes X go, which, though true, is not very
illuminating.

The idea behind the algorithm is that if a set A
turns on X but does not consist solely of parents of X,
then if instead we were to turn on only the parents of
X that are turned on by A, it will lead to a reduction
in the number of variables turned on overall. Put
more formally: For a given variable X and set A that
turns on X, can we find a set P such that

(a) X �P, but X � T(P), that is, P turns on X;
(b) P � A � T(A), that is, every variable in P is

turned on by A;
(c) There is no proper subset P* of the variables

turned on by P, that is, P* � P � T(P), such
that X � P*, but X � T(P*).

Condition (c) states that there is no proper subset
of the variables that take the value true under P,
which does not contain X, and which will make X take
the value true. Note that it also follows from this that
no proper subset of P will make X take the value true.

Lemma 5: A set P satisfying conditions (a), (b),
and (c) will consist of parents of X that are either
descendants of A or are themselves in A.

Proof: First suppose that P is not a subset of pa(X).
Consider the set P* � (P � T(P)) � pa(X). Because
X � T(P), and by construction, the variables in
pa(X) are assigned the same values under P* as they
take under P, it follows that X � T(P*). However,
X � P*. Now, P* � pa(X), but by hypothesis P is not
a subset of pa(X). Thus, P* is a strict subset of P �

T(P); hence, P does not satisfy Condition (c), which
is a contradiction.

That the variables in P are descendants of A fol-
lows from P � A � T(A) and Lemma 2.

We now outline the algorithm for finding the set P:

Why algorithm

Input: A set A and vertex X such that X � T(A);

Output: A set P satisfying Conditions (i), (ii),
and (iii);

0. Let P � A;

1. For each vertex P � P

For k � 1 to | (P � T(P))\{P,X} |

For each subset P* � (P � T(P))\
{P,X} such that | P* | � k

If X � T(P*), then let P �
P* and return to Step 1.

Until all subsets of size k from (P �
T(P))\{P,X} have been tried.

k � k � 1

If k 	 |(P � T(P))\{P,X}|, output P.

Step 1 attempts to remove each vertex in turn
from the set P but at the same time intervene on
additional variables that were turned on by P. If we
are successful in removing a given vertex from P,
then we replace P with P* and start the search all
over again.

We finish by illustrating the algorithm on the pis-
ton engine example.

After running the how algorithm, we obtained the
set A � {K}, which made the target variable D take
the value true.

Initially, P � {K}, and there is only vertex P to
remove.

The smallest subset of T({K})\{D} � {F1,F2,
S,P1,P2}, which turns on D, is

P* � {P1,P2}; thus, we set P � P* � {P1,P2} and
go back to Step 1.

Because P is now the set of parents of D, we are
unable to remove any vertices from the set, and
the algorithm terminates.

Exactly how many interventions are required
depends on the ordering of the variables. Under the
worst ordering, we would have to perform five sets of
interventions on sets of size 1 and then 10 interven-
tions on sets of size 2 before we found {P1,P2}, giving
15 sets of interventions in total. Under the best
ordering, we would only need 6. Because there are
no vertices in T({P1,P2})\{D}, there are no new
experiments required to confirm that this set satisfies
Conditions (a), (b), and (c).

Note that we have only uncovered some of the
causal structure. In this example, we found all of the
parents of X. In general, we would only find a subset
of the parents corresponding to one of the conjuncts
in the equation (*).

To find the whole structure of the piston engine
would require us to choose each endogenous variable
as the target (X) and then to run the how and why
algorithms in turn. Although perhaps laborious, it is
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worth noting that in this way the simple intervention-
ist procedure would allow us to recover the whole
structure. In contrast, a procedure based on passive
observation leaves a large set of possible structures
(see Glymour, chapter 14, this volume).

In the worst-case these algorithms perform expo-
nentially many experiments. See Eberhardt et al.
(2005) for related work on causal Bayes nets.

Relaxing the Assumption on Functional
Relationships

Two questions arise from this analysis. Could the
algorithms be extended to cover the case in which the
relations between the variables are not restricted to
disjunctions of conjunctions, for example, in which
negations of variables are permitted? Conversely, are
there many causal structures that we encounter in our
daily existence in which the functional relationships
are not of this form?

Consider a staircase with a light and a light
switch at the top and bottom of the stairs. In the
usual manner in which such switches are config-
ured, flipping one switch while leaving the other
unchanged always changes the state of the light
(from on to off or vice versa). A little thought reveals
that such a system implements an XOR gate, for
example, things might be wired so that if both
switches are up or both are down, then the light is
off; otherwise, it is on. This is the simplest structure
that cannot be handled in the framework consid-
ered. However, it is worth noticing that we are
almost never in a position to operate both switches at
once. As long as we only operate one switch and
regard the other as fixed in its state, then the subsys-
tem consisting of the single switch confronting us
and a lightbulb falls within our framework.

As this example illustrates, an analysis of such
structures is harder because there is less clear corre-
spondence between interventions and outcomes.



Whether our everyday world of middle-size dry goods
and wet liquids appears deterministic or indeterminis-
tic seems to depend on how closely and finely we
resolve circumstances and variables and which sys-
tems we consider. Sometimes, when I turn the key to
my old truck, the door unlocks and sometimes not. If
one examined how the key teeth fit the lock spindle
in any particular case, then I suppose it would seem
deterministic. How my teen-aged daughter, Madelyn
Rose, responds when I call her down from her room
seems completely indeterministic—hard to predict
whether the result will be silence, the appearance of
a grumpy daughter, or the appearance of a cheerful
daughter. The more human action is involved, the
more indeterministic things seem.

Whether and how people learn causal relations in
deterministic systems seems remarkably little studied.
Here are some obvious questions:

1. Suppose subjects can manipulate A, and A
determines B, B determines C, but C does not
determine B. B and C, if they both occur, occur

simultaneously. A, B, and C may each have two
or multiple values. Can subjects discover that C
does not cause B? Do they realize that they can-
not tell whether A influences C by a route other
than through B (e.g., after experimenting for
a while, if they are then given the power to con-
trol B, will they predict that varying A will vary
C when B is fixed, or not, or say they can’t tell?)?

2. Can subjects determine the structure of a simple
cascade of effects when they have no time cues.
For example, when they can manipulate the
exogenous variables X, Y, Z, and X, Y cause W,
and Y, Z cause R, and W and R cause Q?

3. Given experience manipulating inputs to a rel-
atively simple system and observing resultant
states and given full information regarding its
causal structure, if the structure is then dis-
rupted (e.g., a link removed or a variable fixed
at a value, as in stuck-at-zero faults in logic cir-
cuits), can subjects identify the fault?

I do not know the answer to these questions, but
I have something to say about Question 2. The
psychological perspective and the computational
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be done randomizing the sparks and fuel intakes inde-
pendently, and (b) the piston motions and the drive
shaft motions can be observed in each case. With
such experiments, we break the common cause that
synchronizes the fuel intakes and sparking, and we
are really investigating the system of Figure 14-2.

To avoid issues about time series, I assume some-
thing unrealistic: The Drive Shaft turns when and
only when both pistons move—it would make only
minor differences to the discussion if instead the drive
shaft moved when either piston moved. So, because
this is a deterministic system, the states of the system
can be given by a kind of truth table, as in Table 14-1.

It is important to observe what determines what
in the example. The values of Fuel Intake 1, Spark,
and Fuel Intake 2 together determine the values of
the three remaining variables. The values of Piston 1
and Piston 2 together determine the value of Drive
Shaft. Additional deterministic relations hold for par-
ticular values of variables. For example, when Piston
1 �Moves, then always Fuel Intake 1 �Open and
Spark �Yes. And, when Piston 1�Not, then always
Drive Shaft �Not. These facts have interesting
consequences.

Now, suppose we experiment by simultaneously
and independently randomizing Fuel Intake 1, Spark,
and Fuel Intake 2, and in each case note the results
for the other variables. The probability of each value
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FIGURE 14-1

algorithms concerning how causal structure may be
learned that inspired some of the chapters in this
book were developed for indeterministic systems. A
similar inspiration for deterministic systems would
be nice to have. There are significant engineering
issues as well. Fault diagnosis in deterministic sys-
tems is essentially about learning the structure of a
deterministic causal system with some background
knowledge and with data on the behavior of the sys-
tem under a limited range of interventions. This
chapter is about the issues that arise in modifying the
search procedures that are correct for indeterminis-
tic systems so that they are correct and informative
for deterministic systems.

I have a simple example that illustrates many of the
issues. The example is sufficiently elementary that a
procedure that could not provide correct information
about it would not be of much interest. Consider a sim-
ple two-piston engine of the kind one used to see some-
times on motor scooters but with some modifications.
It works like this: Fuel is squirted into Intake 1, and fuel
is squirted into Intake 2. A spark fires, which pushes
down the pistons, which turns the drive shaft. At this
level of description, the system looks like that in Figure
14-1.

Of course, much finer descriptions are true of the
system, but this one will do. Suppose one does not
know how any of this works, but (a) experiments can

FIGURE 14-2



of the other variables is given by their respective con-
ditional probabilities on the values of their direct
causes. Noting that the probability of any value of a
two-valued variable must be (1 – the probability of the
other value), the joint probability distribution of all
values of the system in Table 14-1 can be described as
in Table 14-2.

The question is this: How could we discover the
causal structure in Figure 14-1 from the joint proba-
bility distribution described in Table 14-2? (One way,
of course, to find the structure in Figure 14-1 would
be to do further experiments, but that does not answer
the question posed.)

If the system were not quite deterministic, then we
would know how to discover the structure. Suppose,
for example, small unmeasured factors might inde-
pendently influence the pistons and the drive shaft, so

that the probability distribution looks something like
Table 14-3 instead of Table 14-2.

Then, we could discover the structure (from
appropriate samples) in Figure 14-1 by using any of
several algorithms, the PC algorithm, for example.
PC is a computational and statistically more efficient
version of the following idea:

1. In a system of variables with no unobserved
common causes, X directly influences Y, or Y
directly influences X, if and only if for every
subset S of the remaining variables there are
values for variables in S such that X and Y are
not independent given those values.

2. If X is independent of Z conditional on S and
each of X, Z directly influences or is directly
influenced by Y, and Y is not in S, then X, Z
both directly influence Y.
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TABLE 14-1

Fuel Intake 1 Spark Fuel Intake 2 Piston 1 Piston 2 Drive Shaft

Open Yes Open Moves Moves Turns over

Open Yes Closed Moves Not Not

Open No Open Not Not Not

Closed Yes Open Not Moves Not

Open No Closed Not Not Not

Closed Yes Closed Not Not Not

Closed No Open Not Not Not

Closed No Closed Not Not Not

TABLE 14-2

Probability (Fuel intake 1�Open)�p1;

Probability (Spark�Yes)�p2;

Probability (Fuel intake 2�Open)�p3

Probability(Piston 1�Moves | Fuel Intake 1�Open and Spark�Yes)�1

Probability(Piston 1�Moves | Fuel Intake 1�Open and Spark�No)�0

Probability(Piston 1�Moves | Fuel Intake 1�Closed and Spark�Yes)�0

Probability(Piston 1�Moves | Fuel Intake 1�Closed and Spark�No)�0

Probability(Piston 2�Moves | Fuel Intake 2�Open and Spark�Yes)�1

Probability(Piston 1�Moves | Fuel Intake 2�Open and Spark�No)�0

Probability(Piston 1�Moves | Fuel Intake 2�Closed and Spark�Yes)�0

Probability(Piston 1�Moves | Fuel Intake 2�Closed and Spark�No)�0

Probability(Drive Shaft�Turns | Piston 1�moves, Piston 2�moves)�1

Probability(Drive Shaft�Turns | Piston 1�Moves, Piston 2�Not)�0

Probability(Drive Shaft�Turns | Piston 1�Not, Piston 2�Moves)�0

Probability(Drive Shaft�Turns | Piston 1�Not, Piston 2�Not)�0
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TABLE 14-3

Probability (Fuel Intake 1�Open)�p1;

Probability (Spark�Yes)�p2;

Probability (Fuel Intake 2�Open)�p3

Probability(Piston 1�Moves | Fuel Intake 1�Open and Spark�Yes)�1� �

Probability(Piston 1�Moves | Fuel Intake 1�Open and Spark�No)��/3

Probability(Piston 1�Moves | Fuel Intake 1�Closed and Spark�Yes)��/3

Probability(Piston 1�Moves | Fuel Intake 1�Closed and Spark�No)��/3

Probability(Piston 2�Moves | Fuel Intake 2�Open and Spark�Yes)�1� �

Probability(Piston 1�Moves | Fuel Intake 2�Open and Spark�No)��/3

Probability(Piston 1�Moves | Fuel Intake 2�Closed and Spark�Yes)��/3

Probability(Piston 1�Moves | Fuel Intake 2�Closed and Spark�No)��/3

Probability(Drive Shaft�Turns | Piston 1�Moves, Piston 2�Moves)�1��

Probability(Drive Shaft�Turns | Piston 1�Moves, Piston 2�Not)��/3

Probability(Drive Shaft�Turns | Piston 1�Not, Piston 2�Moves)��/3

Probability(Drive Shaft�Turns | Piston 1�Not, Piston 2�Not)��/3

FIGURE 14-3

FIGURE 14-4

The PC algorithm applies these ideas this way:
First, make an undirected graph with nodes that are
all of the variables (Figure 14-3).

Now, for each pair of variables, remove the edge
between them if they are independent in probability.
Because we assumed that Fuel Intake 1, Fuel Intake 2,
and Spark were randomized independently, they will
be independent, and we can remove the edges among
them (Figure 14-4).

We record that we did not have to condition on any
variables in removing these edges. Now look back at
Figure 14-2. There is no pathway or common source
of influence connecting Fuel Intake 1 with Piston 2 or

Fuel Intake 2 with Piston 1. Fuel Intake 1 behavior
does not influence Piston 2 behavior or vice versa, and
nothing influences them both; it is similar for Fuel
Intake 2 and Piston 1. Now, look at Table 14-3. The
probability distribution for Piston 2 depends on Fuel
Intake 2 and Spark, and the probability of neither of
these variables depends on Fuel Intake 1. So, we
expect that, on examining the data, we would find that
Fuel Intake 1 is independent of Piston 2, and Fuel
Intake 2 is independent of Piston 1. Removing the
edges and noting that we relied on an unconditional
independence relation in doing so, we have what is
shown in Figure 14-5.

Now, considering the distribution in Table 14-3
once more, note that the probability distribution for
Drive Shaft is completely specified, in every case, by
the values of the two piston variables, which means
Drive Shaft is independent of Fuel Intake 1, Spark,
and Fuel Intake 2, conditional on any assignment of
values to Piston 1 and Piston 2. Because of these
conditional independence relations, remove the
edges between Drive Shaft and these variables, noting
which variables were conditioned on in each case, to
obtain Figure 14-6.

In Figure 14-2, the piston variables do not influence
one another, and Spark is their only common cause. In
Table 14-3, the distribution of Piston 1 and the distribu-
tion of Piston 2 are given by conditional probabilities.
The only variable conditioned on in both cases is
Spark, and all of the variables conditioned on are



independent of one another. So, we should find that
Piston 1 and Piston 2 are independent conditional on
any value of Spark. We remove the edge between the
piston variables, and note that we conditioned on Spark
in doing so, to obtain Figure 14-7.

We have arrived at the undirected skeleton of
Figure 14-2 simply by using the independence and
conditional independence properties of the distribu-
tion in Table 14-3. Further, we can direct all of the
edges. Fuel Intake – Piston 1 – Spark is directed as
Fuel Intake → Piston 1 ← Spark because we did not
have to condition on Piston 1 to remove the edge
between Fuel Intake 1 and Spark; if the influences
had not both been directed into Piston 1, then Fuel
Intake 1 would have been unconditionally associated
with Spark via one of three mechanisms (Fuel Intake
1 → Piston 1 → Spark, or Fuel intake 1 ← Piston 1 ←
Spark, or Fuel intake 1 ← Piston 1 → Spark), and we
would have had to condition on Piston 1 to make
Fuel Intake 1 and Spark independent.

By similar reasoning, because each edge in
Figure 14-7 occurs in some triple of the form X-Y-Z
with no edges between X and Z, and because of the
variables we did not have to condition on to remove
edges between the two end variables of each such
triple, we find all of the orientations and recover
Figure 14-2 exactly.

Why does this work? Because our example satisfies
two principles:

The causal Markov assumption (CMA): In a
causally sufficient system V of variables (i.e., no
common causes of variables in V are left out of V),
if Y is not an effect of X, then Y is independent of
X conditional on each assignment of values to all
of the direct causes of X.

The faithfulness assumption: All of the conditional
independence relations in the distribution are
consequences of the CMA applied to the directed
graph of causal relations.

In the example, all of the direct influences and
their directions were unambiguously identified by the
algorithm. That is not true of every example, of
course, because of ten if two causal graphs imply the
same independence and conditional independence
relations when the CMA is applied, then no algo-
rithms can distinguish them without extra informa-
tion. Two such graphs are said to be Markov
equivalent. The PC algorithm, for example, in gen-
eral returns a description of a Markov equivalence
class. It happens that, in the example of Figure 14-2,
the Markov equivalence class has but one member.

The faithfulness assumption is essential to avoid
incorrectly eliminating true influences because of 
independence or conditional independence relations.
For example, if the probability distribution were not
as in Table 14-2, but instead somehow specified that
Piston 2 is independent of Drive Shaft conditional on
Piston 1, the PC algorithm would have removed the
connection between Piston 2 and Drive Shaft.

So, why does something like this not work with the
deterministic case, with the distribution in Table 14-2?
The answer is because the distribution in Table 14-2 is
not faithful to the graph of Figure 14-2. Determinism
produces extra conditional independence relations.
If, conditional on a set of values for some variables,
another variable X is constant—has its value uniquely
determined—then conditional on those values X is
independent of every variable. Because in the deter-
ministic system values of Fuel Intake 1, Fuel Intake 2,
and Spark determine the values of every other vari-
able, conditional on values of these three, Piston 1 and
Piston 2 are independent of Drive Shaft.

One way to think about the deterministic case is to
assume that PC would give correct results were it not
for deterministic conditional relations and consider
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FIGURE 14-5

FIGURE 14-6

FIGURE 14-7



what adjacency and directional relations could then
be inferred from nondeterministic relations within
the deterministic system.

A determining variable Z (or set of such variables)
can produce a conditional independence between X
and Y in one of the following ways (Figure 14-8):

(i) By, for each value of Z, fixing a value of X,
(ii) Or by, for each value of Z, fixing a value 

of Y,
(iii) Or by, for each value of Z and for each trek

between X, Y (i.e., a direct path from X to Y
or from Y to X or pair of paths to X and Y from
a common source Z) fixing the value of some
variable on that trek.

In Case (i), X is independent of W and of Y condi-
tional on Z; in Case (ii), X is independent of W and
of Y conditional on Z as well. In Case (iii), however,
X is not independent of Y conditional on Z. If there
were no X → Y edge, then in each case removing an
X-Y connection because of the independence of X, Y
conditional on Z would not have led to an error. But,
if there is, in reality, an X-Y direct connection, as
shown, then in Cases 1 and 2, but not Case 3, X, Y
would be independent conditional on Z, and the X-Y
direct connection would be erroneously removed.
The moral is that we cannot reliably remove edges
between two variables, say X, Y, when they are inde-
pendent conditional on a variable or set of variables
with values that determine unique values for X or
unique values for Y. All we can do is note that such
edges are indeterminate: Unless the edge is removed
because of conditioning on some other variable (W
for instance) that does not determine X and does not
determine Y, we do not know whether these edges are
really present.

So, the upshot is that when dealing with determin-
istic systems we should modify the PC algorithm so that
we only remove an undirected edge between two vari-
ables, X, Y when X and Y are independent conditional

on some set of variables with values that do not
uniquely determine X or uniquely determine Y, and
when an edge is not thus removed but X and Y are
independent conditional on some variable or set of
variables that determines X or determines Y, we
should mark the edge as uncertain. In the example of
Figure 14-2, this means we would not, for example,
remove the edge between Spark and Drive Shaft
because those variables are independent conditional
on the values of the two piston variables because the
values of the two piston variables determine the value
of Drive Shaft.

That is not enough. Look at Table 14-2 again and
notice the relation between Spark, Drive Shaft, and
Piston 1. When Piston 1 � Moves, in every case
Spark �Yes. Hence, Spark and Drive Shaft are inde-
pendent conditional on Piston 1 � Moves. But, when
Piston 1 �Not, in every case, Drive Shaft �Not.
Hence, Spark and Drive Shaft are independent con-
ditional on Piston 1 �Not. Thus, in every case Spark
and Drive Shaft are independent conditional on the
value of Piston 1. So, if we used the PC procedure,
then we would remove an edge between Spark and
Drive Shaft. In our example, this gives the correct
result—but suppose Spark did cause Drive Shaft
directly as well as indirectly through the pistons
(never mind how, just imagine). Then, we would be
wrong to remove the edge. In fact, in a deterministic
system, we cannot reliably decide whether such an
edge is present, and we should modify the search fur-
ther to mark such edges as uncertain unless they are
removed by some other, nondeterministic, condi-
tional independence. Let us see what this does for
our example. Start again with the fully connected
graph (Figure 14-9) and use Tables 14-1 and 14-2.

As before, we can remove the independencies
among variables that do not determine one another,
to obtain Figure 14-10.

Piston 1 and Piston 2 are indeterministically
independent conditional on Spark, so we derive
Figure 14-11.
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FIGURE 14-9

FIGURE 14-10

FIGURE 14-11

FIGURE 14-12

FIGURE 14-13

FIGURE 14-14

FIGURE 14-15

FIGURE 14-16

FIGURE 14-17

FIGURE 14-18

FIGURE 14-19

FIGURE 14-20

Fuel Injection 1

Piston 1 Piston 2

Drive Shaft

Spark Fuel Injection 2
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Fuel Intake 1 is independent of Drive Shaft condi-
tional on Piston 1 and Spark, but the independence is
deterministic because when Spark and Piston 1 are 0,
Drive Shaft must be 0, and when Spark is 1 and Piston
1 is 0, fuel intake must be 0, and when Spark and
Piston 1 are 1, fuel intake must be 1. The same two
variables are also independent conditional on Piston 1
and Piston 2, but the values of these variables deter-
mine the value of Drive Shaft. So, the edge between
Fuel Intake 1 and Fuel Intake 2 must be marked with
a question mark. The same is true for Fuel Intake 2 and
Drive Shaft, and as we have seen, also for Spark and
Drive Shaft. So, we have the diagram of Figure 14-12.

Notice that Piston 1 and Drive Shaft are determinis-
tically independent conditional on Fuel Intake 1, Spark,
and Fuel Intake 2 and similarly for the relation between
Piston 2 and Drive Shaft. In a deterministic system, all
“endogenous” variable pairs will be deterministically
independent conditional on some set of other variables.
Hence any edge between endogenous variables must be
marked with a question mark (Figure 14-13).

At this point, the relevant reasoning becomes
different from the indeterministic case. The data tell
us the following: Piston 1 and Drive Shaft are not inde-
pendent. So, there must be some mechanism connect-
ing them. Hence, either Piston 1-Drive Shaft is real or
at least one of Fuel Intake 1 and Spark is directly
connected to Drive Shaft. But, if Piston 1-Drive Shaft is
not real and Fuel Intake 1-Drive Shaft is not real, then
Fuel Intake 1 would be independent of Drive Shaft,
contrary to the data. Hence, the Fuel Intake 1-Drive
Shaft edge is real, the Piston 1-Drive Shaft edge is real, or
both. Similar reasoning holds for Drive Shaft, Piston 2,
and Fuel Intake 2. And, of course, if neither Piston 1 nor
Piston 2 direct connections with Drive Shaft exist, then
the direct Spark-Drive Shaft connection must exist. The
nonmonotonic, disjunctive relations quickly become
complicated. Connect pairs of edges, at least one of
which must exist by an arc (Figure 14-14).

There are further problems in determining which
variables are directly connected. Consider Figures 14-15
and 14-16. In Figure 14-15, S determines Y, but not X or
Z. Because S is the source of a trek connecting X and Z,
X and Z will be independent unless S is conditioned on.
But conditioning on any value of S fixes a value of Y, and
Y is a collider; conditioning on a value of Y creates an
association between X and Z. So, no matter which vari-
ables are conditioned on nondeterministically, X and Z
remain associated, and we cannot determine whether
Figure 14-15 or Figure 14-16 is the case. This problem
does not arise in the example of Figure 14-2, but it can

in other cases. Whenever there is a set of variables S that
determines a set of variables on undirected paths
between X and Z and X and Z are not nondeterministi-
cally independent conditional on any set of variables, the
undirected edge between X and Z must be marked as
questionable.

In the indeterministic case, we could direct all of
the edges in our example without any prior informa-
tion about the orientation of any of the edges. The
principle was that if X-Y-Z is found such that X and
Z do not share an edge, then X and Z are independ-
ent conditional on some set of variables, and Y must
either be in no such sets or in all of them, accord-
ingly as X → Y → Z or not. So, if we found a set
making X, Z independent and not containing Y,
then both edges must be directed into Y; in other
terms, Y is a collider on the path from X to Z. That
is not generally true in deterministic cases.
Consider Figure 14-17.

Notice that we do not need to condition on Y to
make X and Z independent. Conditioning on S alone
will fix a value of Y and make X and Z independent. If
we applied the rule we use for indeterministic cases,
then, because we do not need to condition on Y to make
X and Z independent, we would wrongly conclude that
there is a collider at Y on a path from X to Z. The rule
for indeterministic systems will accommodate such
cases if we apply it only when the conditioning set that
removes the X-Z connection does not determine Y.
Hence, continuing with our example we immediately
find Figure 14-18. We can also order the uncertain
edges, using the same principle (Figure 14-19).

We did not need to make use of the information
that Fuel Intake 1, Fuel Intake 2, and Spark are not
caused by the other variables, although we could have
used this as prior knowledge.

A modification of the PC algorithm that uses all of
these points, except for marking edges as question-
able, is presented next.

PCD_Discrete

Arguments: Data set D with variables V �{V1,…,Vn},
percentage of determination p.
Returns: Mixed graph G over V.
Lets Sepset ({V1, V2}) be a map (to be constructed)
from size-2 sets of variables to sets of variables.

Step A

Form the complete undirected G over V1,…,Vn.
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Step B (Determine Fast Adjacency Search)

For each depth d �0,1,…, until no more edges can
be removed:

For for each variable X:

“next_y”:

For each adjacent variable Y to X:

Let adjX�adj(X ) �Y

Let adjY�adj(Y) �X

For each subset Sx of adjX up to size d: If
there is no combination C of values of Sx for
which some category x of X exists such that
p% of data points satisfying C have category x
or some category y of Y exists such that p% of
data points satisfying C have category y,

If X  Y | Sx,

remove X—Y from G.

Set Sepset({X, Y}) to Sx.

Continue “next_y”.

For each subset Sy of adjY up to size d: If ther is
no combination C of values of Sy for which some
category x of X exists such that p% of data points
satisfying C have category x or some category y of
Y exists such that p% of data points  satisfying C
have category y,

If X  Y | Sy,

remove X—Y from G.

Set Sepset({X, Y}) to Sy.

Continue “next_y.”

Step C

Orient colliders in G, as follows:

For each variable X:

For each pair of variables Y, Z adjacent to X:

If Y and Z are not adjacent,

If X is not in Sepset({Y,Z});

If there is no combination C of values of
Sepset({Y,Z}) for which some category x of X
exists such that p% of data points satisfying C
have category x,

Orient Y → X ← Z.

Step D

Apply orientation rules until no more orientations are
possible. Rules to use: away from collider, away from

cycle, kite1, kite2. (These ae Meek’s rules R1, R2, R3,
and R4.)

Away from collider:

For each variable A:

For each B, C in adj(A):

If B → A—C:

Orient B → Z → C.

Else if C → A—B:

Orient C → A → B.

Away from cycle:

For each variable A:

For B, C in adj(A):

If A → B → C and A—C:

Orient A → C.

Else if C → B → A and C—A:

Orient C → A.

Kite 1:

For each variable A:

For each nodes B, C, D in adj(A) such that 
A—B, A—C, A—D, and!(C—D):

If C → B and D → B:

Orient A → B.

Kite 2:

For each variable A:

For each nodes B, C, D in adj(A) such that 
A—B, A—D, B is not adjacent to D, either 
A—C, A → C, or C → A,

If B → C and C → D:

Orient A → D.

Else if D → C and C → B:

Orient A → B.

For data generated from the structure in Figure 14-2
with the probability distribution in Table 14-3, the
implementation of PCD in the TETRAD IV program
gives just what we should expect.

Figure 14-20 is typically produced at sample size
100 and significance level .05, and at sample size 50
and significance level .05 with prior knowledge of time
order; at sample size 20 at significance level .1 and prior
knowledge of time order, an average of two edge differ-
ences (added or omitted) from Figure 14-20 occur. 
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This at least suggests that information about the
structure of some small deterministic systems can be
obtained at small sample sizes given knowledge of time
order. Larger samples give similar information with
more complex systems. But, in all cases what is learned
is what causes what and what does not. Otherwise, the
mediating mechanisms are ambiguous.

The difficult thing is to say in which general
circumstances PCD or some other algorithm for
deterministic cases is correct and maximally informa-
tive. We cannot usefully assume that the answer is for

faithful cases. We could consider conditions of lim-
ited faithfulness, like this: If in Graph G, X and Y are
independent conditional on all values of Z and some
value of Z determines neither X nor Y, then the
Markov assumption applied to G implies that X is
independent of Y conditional on Z (equivalently, X, Y
are d-separated with respect to Z).

I believe, but have not proved, that PCD discrete
is sound if the Markov assumption is supplemented
with this assumption. It is evidently not complete, as
the disjunctive reasoning in the example shows.

240 CAUSATION AND PROBABILITY



Part III

CAUSATION, THEORIES, AND MECHANISMS



This page intentionally left blank 



From: mherskovits@psych.ucarcadia.arcadia.edu
To: brook_russell@turing.carnegietech.edu

Brook,

I have to admit that I’m having second
thoughts. It’s true that it’s all exciting still. But I
worry that the gaps—the differences in
background assumptions and interests and
concerns—are just going to be too great to
overcome.

In some ways the normative computational
project seems like just the opposite of the psy-
chological project. The computationalists, after
all, are most interested in designing systems
that can do just the things that human beings
can’t, like extracting causal structure from
masses of correlational data all at one time.
People, and children especially, seem to do
things differently. As Thomas Richardson
(chapter 3) pointed out, like scientists them-
selves, children can do experiments, and they
can do them repeatedly. And, they make infer-
ences from small samples instead of the enor-
mous databases that the computer systems
operate on. But, ironically, we do not seem to
have good computational accounts of precisely
how this sort of experimentation leads to accurate
causal conclusions.

And there’s another thing that’s bothering me.
Remember the whole point of this in the first
place was to explain the nature and development
of our intuitive theories? But, I think I’m losing
the connection between this sort of general
causal learning and theory-formation. For
instance, one of the main functions of intuitive
theories is to provide explanations—I know
Henry Wellman has tons of terrific data about
that. But there doesn’t seem to be anything in the
formalisms that corresponds to explanation.
Theories also seem to constrain the kind of
causal inferences we can make. When we have 
a theory, the theoretical laws we formulate and
the assumptions we make influence the way 
we interpret the evidence. Again, there doesn’t
really seem to be a good place for that kind of
top-down effect of prior knowledge in the 
formalism.

There’s one more thing. I can’t seem to get
rid of this nagging sense that all those intuitions
about mechanisms must come from
somewhere—they must play some role or 
other. But, it’s not at all clear just what that 
role is or how ideas about mechanism fit with
causal Bayes nets. Maybe “mechanisms” are
just more and more little arrows connecting 
the variables. I think there must be more to it
than that.
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Anyway, maybe this is just a temporary 
let-down. I thought I should let you know and
see what you think about it.

All the best,

Morgan

From: brook_russell@turing.carnegietech.edu
To: mherskovits@psych.ucarcadia.arcadia.edu

Dear Morgan,

I have to confess I’ve been having some of the
same doubts myself. But, you know I was look-
ing at the papers for this last workshop, and I
do think that there may be some answers there.
Woo-Kyung Ahn and Michael Strevens are
both going to talk about how we can integrate
ideas about mechanism and causal structure
and intervention. And, Clark Glymour gives
an example of how you could adjust your

assumptions about causality to apply these ideas
to the particular domain of social relations.
Then Josh Tenenbaum, Tom Griffiths, and
Sourab Niyogi are going to discuss ideas about
representing theories and showing how the
prior knowledge encoded in those theories can 
shape inferences (chapters 19 & 20).

Anyway, surely the measure of any relation-
ship isn’t just the initial excitement but the
potential for long-term productivity. If this one
works, it won’t be because all the problems are
solved but because we have a succession of
ideas, thoughts, experiments, and discoveries,
each unfolding from the one before. And, we
can gain strength from both the similarities and
the differences if we change and evolve
together. So, let’s see how it goes at the work-
shop, be patient, think hard, and hope for the
best, which would, after all, be very good
indeed.

Brook
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The Question

Why should the mind represent causal relations?
Because they are there, goes the simplest answer. But,
this is not good enough: There is much that is there in
the external world, but that is not represented—though
it could be—because it is not important enough to
merit a place in the limited space inside the skull.

Thus, the next simplest answer: We represent causal
information because knowledge of causation is impor-
tant for getting around the world safely and extracting
from it what we need and desire. This is true enough,
but again not entirely satisfactory. Much of the knowl-
edge that enables us to navigate the world for fun and
profit can be represented in noncausal form, for exam-
ple, as information about correlations.

This observation suggests a strategy for answering
the question. Compare and contrast information
about causal relations with information about correla-
tions and show that causal information is somehow
better, at least sometimes, for getting what we want.
What follows is an attempt to implement this strategy.

There are, broadly speaking, two different advan-
tages that causal information might have over statis-
tical information. (In what follows, I use statistical
more or less interchangeably with noncausal.) First,
it might be that there are some aspects of the world
that can be captured using causal representations but
not mere statistical representations, and that knowl-
edge of these properties of our surroundings has some
practical use for us. Second, it might be that every-
thing worth knowing for practical purposes can in
principle be expressed using statistical representa-
tions, but that the causal representation of certain
kinds of facts is especially efficient given our particu-
lar means and ends.

I call these two explanations of our use of causal
representations, respectively, the external and the
internal explanations because, whereas the external
explanation points to aspects of the outside world that
can be represented only using causal representations,
the internal explanation points to elements of the sys-
tem of causal representation itself—the system exist-
ing inside our heads—that are especially user friendly.
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Which explanation is correct? It is certainly too
soon to answer such a categorical question. This chap-
ter, however, declares an interest, focusing on explana-
tions of the internal variety, for the following reason:

Decades, even centuries, of work on the meta-
physics of causation by philosophers holds out no
great hope for the external approach. It is not that
philosophers are agreed that causal claims say nothing
that cannot be said by statistical claims—far from it.
Debate is as lively as ever regarding whether there are
sui generis causal relations in the world that it is the
privilege of causal language alone to represent, with
the realists about causation arguing for and the
empiricists against (Sosa & Tooley, 1993). It is rather
that, even on realist theories that posit such sui
generis facts, what is implied by the facts over and
above a certain pattern of correlations is not, on the
face of it, information that is in itself useful in day-to-
day life. In other words, even on realist theories of
causation, the practical use of a causal fact lies
entirely in the correlations it entails. There is thus a
working philosophical consensus that correlations are
good enough for everyday life—a consensus that, if
correct, implies that an attempt to give an external
explanation for our use of causal representations must
fail. This consensus has been challenged, recently
and vigorously by Woodward (2003) in particular
(discussed in the section on asymmetry and control),
but as things currently stand, there is good (if not con-
clusive) reason to focus on the internal approach to
explaining the existence of causal cognition.

A good discipline for an internalist explainer is to
assume, for tactical reasons, empiricism about causal
language, that is, to assume that there is nothing said
by causal claims—more generally, nothing captured
by causal representations—that cannot be said by
statistical claims. The advantage of the causal way of
speaking and thinking must then of necessity be
found, not in what is said, but in how it is said. In
what follows, I adopt this discipline.

Note that the statistical claims—the claims about
correlations and so on—that exhaust the content of a
causal claim will be quite complex. Empiricist theo-
ries of causation long ago abandoned simple analyses
of causal language on which, for example, to say c is a
cause of e is just to say c is correlated with e. It is this
complexity that opens the way to an internal explana-
tion of causal representation because, if a causal
scheme organizes the facts about correlation rather
differently from, and apparently more simply than, a
statistical scheme, then there may be real advantages

to choosing one organization over the other. The chal-
lenge is to show that the causal scheme picks out espe-
cially important parts of the statistical information and
arranges them conveniently for later use.

Imagine, then, a world, perhaps our own, at any
rate in many ways not too different from our own, in
which every fact can be captured by statistical
claims—the kind of world imagined by the meta-
physical empiricists. Show that, in such a world,
creatures like us would gain some real practical
advantage from causal cognition. Show, in other
words, that if causation did not exist, then it would be
necessary, or at least highly desirable, to invent it.

Two Features of Causal Representation

The first question to ask is as follows: What are the
features that distinguish a causal scheme of represen-
tation from a statistical scheme? Perhaps that is
too large and unwieldy a way to begin, however. I
ask instead, What are the organizational or logical
features that distinguish the causal claim “c is a cause
of e” from the statistical claim “c is correlated with e”?

I organize this chapter around two such features:
asymmetry and the supposition of an underlying mech-
anism. Each in its own way points to an interesting
explanation, or explanations, of the utility of the causal
scheme of representation. Let me characterize, loosely,
the relation between causation, asymmetry, and under-
lying mechanism.

First, consider asymmetry. Correlation is a sym-
metric relation in the sense that “c is correlated with
e” means exactly the same thing as “e is correlated
with c”. Causation is not: “c is a cause of e” means
something different from “e is a cause of c” (although
in some cases both may be true).

As promised at the end of the preceding section, I
assume for the sake of the argument that the asym-
metric information represented by the causal claim
can also be represented by some set of statistical
claims. (Certainly, although correlation itself is a sym-
metric relation, there is normally no shortage of asym-
metry in the complete statistics of the associations
between two event types c and e.) The question I ask
in the following section is what advantage there might
be in tracking an asymmetric relation between event
types rather than a symmetric relation such as correla-
tion. The various answers take the discussion far
beyond the advantages of asymmetry itself.

Second, consider underlying mechanism. Unlike
the statistical claim “c is correlated with e”, the causal
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claim “c is a cause of e” implies the existence, or so I
will suppose, of a mechanism connecting c and e and
in virtue of which c causes e. You should not think that
facts about mechanism are supposed to exist entirely at
the metaphysical level as ineffable necessary connec-
tions, hidden strings, or causal oomphs. On the con-
trary, the nature of a causal connection’s underlying
mechanism is normally amenable to regular empirical
investigation: The conditions required for, and the var-
ious intermediate steps that constitute, its operation
can be inferred or even directly observed.

In any case, for the tactical reasons given, I assume
that the information contained in claims about
the workings of a causal connection’s underlying
mechanism is ultimately statistical information. But,
a causal claim makes room for this information in its
own characteristic way; the question, then, is whether
representing the relevant facts as information about
an “underlying mechanism” has practical advantages
for the user.

Of what follows, the discussion of asymmetry is
drawn for the most part from previous work on
the philosophy and psychology of causation by
Reichenbach (1956), Pearl (2000), Glymour (2001),
Woodward (2003), and others; for this reason, I keep
the presentation relatively short and simple, directing
your attention if appropriate to the primary sources.
In the discussion of the inferential role of informa-
tion about underlying mechanism, I strike out on my
own, developing ideas from my earlier work on the
psychology of causal reasoning (Strevens, 2000).

There is a final clarification, a terminological
note, and a hint to the reader: Some claims of the
form “c is a cause of e” are what philosophers call
singular causal claims, concerning particular events
or occurrences, and some are causal generalizations,
concerning types of event. For example, “my eating
eggplant last night prevented me from sleeping” is
a singular claim, whereas “eating vegetables causes
insomnia” is a causal generalization. Both kinds of
causal claims play an essential role in causal cogni-
tion, singular claims because the end product of
causal reasoning is so often the prediction and con-
trol of individual facts and happenings, generaliza-
tions because reasoning about singular events is
invariably guided by information about the causal
tendencies of the event types to which they belong.

Some of the literature on causal generalizations,
including much work on Bayesian networks, talks
about variables rather than event types. The differences

between these two notions are not important for the
purposes of the discussion in this chapter.

The sections on asymmetry and prediction,
asymmetry and control, and underlying mechanism
are self-contained and so may be read independently
of the others. If you have time for nothing else, read
the section on underlying mechanism.

Asymmetry

Which asymmetric aspects of the world’s statistical
web might be especially usefully represented by a
causal schema? Usefully, you might ask, with respect
to what end? The three cardinal aims of science are
said to be explanation, prediction, and control. I
organize the discussion of asymmetry around the
more practical goals of prediction and control.

Asymmetry and Prediction

Hans Reichenbach suggested in The Direction of Time
(1956) that the roots of causal thinking could be found
in certain pervasive asymmetrical statistical patterns
in our world. I focus on one such pattern, which I call
the Reichenbach asymmetry (invidiously because
Reichenbach investigated several such patterns and
synecdochically because there is more to the pattern
than its lack of symmetry).1 Reichenbach’s view that
causal representations always go along with certain sta-
tistical asymmetries has been put to work in various
ways by philosophers and other students of causality.
Preeminent for my purposes is the asymmetries’ use to
give an internal account of the purpose of causal cog-
nition that invokes the utility of causal representation
as either an explanatory or a predictive tool.

Reichenbach emphasized the explanatory impor-
tance of causal representation (see, in particular,
1956, p. 152). I focus rather on prediction—not much
of a departure because, for logical empiricists such as
Reichenbach, explanation and prediction have much
in common. What follows does not capture anything
like the full range and subtlety of Reichenbach’s
attempt to understand causality and causal thinking
in terms of statistical relations; indeed, the particular
position I lay out cannot be ascribed to Reichenbach
at all; it is a deliberately simplified version of section
22 of The Direction of Time.2

Let me begin by characterizing the statistical pattern
that I am calling the Reichenbach asymmetry. The fun-
damental notion employed in the characterization is a
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statistical relation captured by a construction that I call
a Reichenbach dyad. A Reichenbach dyad consists of
two entities: a single event that I call the focal event and
a set of events that I call the parent events. The term par-
ent hints at the causal interpretation that is to come, but
you should bear in mind that the definition of a
Reichenbach dyad is purely statistical—it makes no ref-
erence to causal relations.

A focal event and a set of parent events form a
Reichenbach dyad just in case:

1. The parent events occur before the focal
event,3 and

2. Conditional on the parent events, the occur-
rence of the focal event is statistically independ-
ent of the occurrence of any previous event, that
is, any event occurring before the focal event. In
other words, once the parent events are taken
into account, the occurrence of any other event
preceding the focal event can be ignored in
determining the focal event’s probability.

This is only a rough version of Condition 2; the
precise condition is specified below.

There are three remarks regarding dyads. First, the
definition of a Reichenbach dyad should remind you
of the causal Markov condition from the Bayesian net-
work literature discussed elsewhere in this volume;
however, unlike that condition, it makes no reference
to causal relations. (In this respect, it is closer to the
original acausal Markov condition used to represent
purely statistical information in acausal Bayes nets.)

Second, in Reichenbach’s view, the probabilities
attaching to events are simply the probabilities attach-
ing to the corresponding event types. The statistical
clause of the definition of a Reichenbach dyad, then,
is satisfied in virtue of probabilistic facts about event
types, whereas the temporal clause is satisfied in
virtue of facts about the temporal ordering of the par-
ticular events in the dyad.4 For a philosopher with a
frequency-based notion of probability—such as
Reichenbach—the probability distributions attached
to event types will be determined in turn by the statis-
tics of singular events, so the asymmetry as a whole
will be a matter of the patterning of singular events.

Third, the definition needs the following refine-
ment: The independence relation must hold not only
conditional on the occurrence of all of the parent
events, but also conditional on any combination of
the parent events’ occurrence and nonoccurrence. If
there are two parent events, for example, then the

relation must hold conditional on the occurrence of
both, on the nonoccurrence of both, on the occur-
rence of the first and the nonoccurrence of the
second, and on the nonoccurrence of the first and the
occurrence of the second.

Reichenbach notes that the world we live in is
statistically patterned in a certain way: It is full of
Reichenbach dyads. More exactly, for almost every
event, there is a Reichenbach dyad for which it is the
focal event, and—this is what gives the claim bite—
these dyads have relatively small sets of parent events.5

This pattern is the Reichenbach asymmetry. That
it is indeed an asymmetry is because of the temporal
asymmetry in the definition of a dyad. (It was in virtue
of this asymmetry, or something close to it, that
Reichenbach suggested that the time order of events
can be determined from information about condi-
tional independences; unlike Reichenbach, I of
course am taking a time ordering of events as given.)

In a Reichenbach-asymmetric world, Reichenbach
held, there is a close relationship between the dyads
and the causal structure of the world. To simplify
somewhat,6 there is a Reichenbach dyad in the actual
world just in case there is a causal structure in which
the parent events of the dyad are the direct causes of
the focal event, that is, just in case there is a causal
structure of the form shown in Figure 15-1.

The co-occurrence—note, not necessarily an
equivalence—of causal and statistical structure is the
linchpin of everything that follows. It can be exploited
in various ways, all suggested by Reichenbach in
some form.

First, it can be used to construct a metaphysics of
cause or, as Reichenbach would say, a semantics for
causal language: Define cause so that for one event
to be a cause of another simply is for certain
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Reichenbach dyads to exist. On the most straight-
forward definition, one event is a (direct) cause of
another just in case the one belongs to the parents in
a dyad for which the other is focal.

Second, an epistemologist may use the statistical
structure to discover causal structure, inferring the
existence of the sort of structure shown in Figure 15-1
whenever the right Reichenbach dyads exist. Spirtes,
Glymour, and Scheines’s (2000) system for inferring
causal structure is, in effect, a sophisticated version of
this proposal (although it employs statistical subtleties
that I have not even hinted at here).

Third, the coincidence of causal and statistical
structure underwrites an alternative representational
scheme for statistical facts, a scheme that represents
the fact that a set of events constitutes a Reichenbach
dyad using the sort of graph structure shown in
Figure 15-1 rather than a set of probability state-
ments. It is of course this third use that interests me,
suggesting as it does the beginnings of an internal
explanation for causal cognition.

The sort of internal explanation I have in mind
hinges on three posits:

1. That the world is Reichenbach asymmetric,
2. That a causal network diagram—a directed

acyclic graph or DAG in the Bayesian networks
parlance—is an especially compact way of rep-
resenting Reichenbach dyads in a
Reichenbach-asymmetric world, and

3. That representing the Reichenbach dyads has
great practical utility in a Reichenbach-
asymmetric world given the asymmetries in our
own epistemic situation.

These three premises imply if not that a causal
schema is indispensable for certain kinds of reasoning
about the world, then at least that it is highly advanta-
geous. (As a caveat, I do not have much to say about
the relationship between DAGs and causal represen-
tation; I simply assume that they tend to go together,
leaving the hard work to the neo-Reichenbachians.)

In what follows, I assume the existence of the
Reichenbach asymmetry for the sake of the argument.
What of the other two premises? The advantage of a
causal network diagram, or DAG, as a representation
of the facts about Reichenbach dyads and other more
complex conditional facts about independence of the
same sort is as follows: A many-noded DAG—a graph
that represents the causal structure in which a number
of events are embedded—identifies a Reichenbach

dyad for every event that has its parents represented.
To record this information as a set of statements about
probability would require every such event to be men-
tioned a number of times, once as a focal event and
then many times as parent. By contrast, the DAG
“mentions” every event just once. The DAG thus
provides a compact (and computationally convenient)
representation of the dyadic relations. The compact-
ness of the DAG is due in considerable part to
that aspect of the world’s Reichenbach asymmetry
that guarantees that almost every parent in a dyad is
the focal event of some other dyad.

To the last premise, then. Why is tracking the
Reichenbach dyads so useful, and useful in particular
in a world pervaded by Reichenbach asymmetry? As
I said, I focus on predictive utility, that is, the useful-
ness of dyadic information in trying to ascertain
whether some event will occur in the future given
what you know now.

Consider how predictions are made using purely
statistical information. You wish to predict whether
some event e will occur. What you want to calculate
is the probability of e; if it is high, then you predict
that e will occur and act accordingly; if low, then you
predict that it will not occur. In calculating the prob-
ability, you want to take into account all of your back-
ground knowledge as this will result in the most
accurate predictions (the principle of total evidence).
Thus, you want to calculate the probability of e con-
ditional on everything you know, which is an onerous
task. You must not only keep track of every event that
has occurred, but also must make use of a probability
distribution so fantastically detailed that it is well
defined over all of these events.

Your task is much simpler, however, if you know
that a very small subset of your background know-
ledge screens off the rest from the event e that you are
trying to predict—if you know that, once you condi-
tionalize on the small subset, conditionalizing on the
rest will make no difference to the probability of e.
Then, you may, with a serene heart and a clear epi-
stemological conscience, track only the events in this
subset and invoke a probability distribution defined
over only these events (and of course over e).

It is precisely this predictive advantage that a
Reichenbach dyad supplies to organisms like us who
have direct knowledge of past but not of future events.
In the simplest case, the event e that you want to pre-
dict is the focal event of a Reichenbach dyad in which
all of the parent events are known to have occurred,
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and no events occurring at the same time or after the
focal event are known to occur. The probability of e
conditional on the parent events is then the best
predictor of e available to you. Thus, only e’s parents
need to be taken into account, enormously simplify-
ing your predictive task.

The more complex case in which you have know-
ledge about only some of the parent events cannot be
handled so easily, but again, information about the
conditional independences is extremely helpful.

In either case, note, the asymmetry of the
Reichenbach asymmetry comes into its own: It is
because the temporal asymmetry of the dyad reflects
the temporal asymmetry in our knowledge of the
world—we have far more knowledge of the past than
of the future—that the dyads are so useful, despite the
temporally qualified nature of the independence
relations they represent.7

Here, then, is the skeleton of an internal explana-
tion of the role of causal cognition. A would-be
predictor has great need of information about condi-
tional independences. In a Reichenbach-asymmetric
world, the class of such information most useful to
asymmetric knowers like us can be stored compactly
using a causal network representation. The role of
causal representations in our psychology is to exploit
this efficiency. (For a fuller discussion of the psycho-
logical utility of DAGs, see Glymour, 2001.)

I have two nonpsychological remarks. Observe
that a world containing the Reichenbach asymmetry
will be symmetric overall if it also contains the pattern
you might call the reverse Reichenbach asymmetry:
For (almost) every event e, there is a set of “child”
events that (a) occur after e and (b) create a condi-
tional independence between e and any other event
occurring after e. In a deterministic world, you ought
to expect precisely such a pattern. As writers on causa-
tion and statistical mechanics beginning with
Reichenbach have noted, however, although a deter-
ministic world may have the reverse asymmetry at the
microlevel, if it conforms to the second law of thermo-
dynamics, then it will not have the asymmetry nearly
so extensively at the macrolevel, that is, relative to a
coarse graining of events (because any candidate set of
children will have to be specified finely for the inde-
pendence relation to hold and so will be lost in a
coarse graining). Such a world will have both the
forward- and backward-looking asymmetries, then,
but the forward-looking asymmetry may be far more
apparent to macroscopic beings like us. (Some writers

would argue that the second law also explains the
asymmetry of our epistemic situation in virtue of
which, as argued, the forward-looking asymmetry is
far more useful to macroscopic beings.)

As noted at the beginning of this section, I have
discussed just one asymmetric pattern used in
Reichenbach’s investigation of the causal and statisti-
cal order of the world. There are other such patterns.
(The Direction of Time [1956] itself discusses two
more: the conjunctive fork and the mark asymmetry
that inspires Salmon’s 1984 account of causation.)
The work described in this section should, then, be
regarded as part of a wider research program, which is
perhaps still in its early stages.

Asymmetry and Control

To have control over an event is to be able to manip-
ulate nature in such a way that the event occurs.
Woodward (2003) argued that the most important
function of causal representation is to encode mani-
pulability relations. Because the relation between
causality and manipulability is discussed at length
elsewhere in this volume (in chapters 1 and 4), I con-
fine myself in this section to the briefest sketch of the
way in which manipulability might provide an inter-
nal explanation of causal cognition.

A simple example demonstrates the difference
between manipulability and prediction. Consider the
relationship between a switch and light. There is a
strong correlation between the switch’s being in the
on position and the light’s shining. As a result, you
can use your knowledge of the switch’s position to pre-
dict whether the light is shining, or just as surely, you
can use your knowledge regarding whether the light is
shining to predict the switch’s position. But, this
predictive symmetry breaks down when it comes to
control: You can change whether the light is shining
by changing the state of the switch, but you cannot
change the position of the switch by changing the
state of the light, for example, by removing the bulb
or breaking the main circuit. When we say that
toggling the switch causes the light to go on but deny
that changing the state of the light causes the switch
to be toggled, according to Woodward we are asserting
something like this asymmetry.

The purpose of the asymmetric language of causa-
tion, then, is to capture the asymmetric facts about
manipulability. (As an exercise, how are the facts
about manipulability related to Reichenbach’s [1956]
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concerns in The Direction of Time: the statistical
asymmetries, the second law of thermodynamics, and
the direction of time itself? Horwich’s work [1987] is
a useful resource on such questions and contains a
brief discussion of the manipulationist approach to
causation.)

Woodward (2003) suggests that causal language
can capture facts about manipulability that are
beyond the reach of any mere statistical claim, in the
sense that facts about manipulability are not reducible
to statistical facts (p. 28). Perhaps, then, he would
endorse an external explanation of causal cognition:
We think causally because causal representations
capture facts about manipulability that are both of
great practical utility and beyond the expressive range
of statistical language.

I think, however, that this cannot be correct. Even
if Woodward is right in holding that the facts about
manipulability are not purely statistical facts, a simple
and familiar argument shows that the practical aspect
of manipulability facts—that is, the consequences of
manipulability facts that are relevant to our practical
decision making—can be captured statistically.

Briefly, the argument is as follows:

1. Anything that makes a practical difference
makes a publicly observable difference. You
and I can both see, for example, that my flick-
ing the switch changes the state of the light, but
that my removing the bulb does not change the
state of the switch.

2. Any observable pattern can be represented by a
statistical claim.

3. Therefore, everything contained in a manipula-
bility claim that is of practical use to us could
be stated using purely statistical language.

In short, all we need to know about manipulability
in our world can be represented statistically. The fact
that flicking a switch turns on a light is stated as a cor-
relation not between the on state of the switch and the
light’s shining, but between the fact of flicking and
the subsequent change of the light’s state. The fact
that breaking the light bulb does not toggle the switch
is stated as a lack of correlation between the breaking
and a subsequent change of the switch’s state. (For a
way of making the same point from within the Bayes
nets framework, see Spirtes et al., 2000, section 3.72.)

There is no external explanation of causal cognition
to be found in the insights of Woodward and others
about the relation between causality and manipula-

bility, then. There may well be an internal explanation,
however.

Consider what I am calling the practical content
of our knowledge about manipulability. This content
can, I have argued, be given a statistical representa-
tion; it could be encoded in a list of correlations. But,
might it not be more economical to encode it in a
causal DAG?

A good case can be made that the causal represen-
tation is more efficient. But, it is a complicated issue
because even the causal representation is rather more
complex than you might think: To provide useful
information about manipulability, a DAG must repre-
sent not only the various features of the world that are
to be manipulated, but also the manipulating actions
themselves, in particular, the various actions that can
be taken by the manipulator—pushings, pullings,
switchings, and so on. There are a great number of
these, and there is no shortcut to the causal represen-
tation of this information or, at least, no shortcut that
is not also a shortcut for the probabilistic representa-
tion of the same information.

Thus, having given the barest sketch of the
explanation, I leave the hard work to the modern-day
proponents of the view that the impetus for our causal
thinking is the need to represent relations of manipu-
lability.

Underlying Mechanism

Assume that for every type of causal relation, that is,
every fact of the form c causes e, we causal cognizers
suppose that there is an underlying mechanism in
virtue of which occurrences of c bring about occur-
rences of e. Perhaps this is not always true—perhaps
causal relations considered fundamental are not
thought to have an underlying mechanism—but
ignore these exceptions for the sake of the discussion.

On the face of it, imagining the existence of
underlying mechanisms might seem to be a species of
metaphysical daydreaming. You may think that there
is a mechanism or you may not, but it will not make
a difference to the serious business of everyday causal
inference; in particular, it will not make a difference
to your use of causal knowledge to predict and control
the aspects of the world that matter to you.

My first goal in this section is to refute such a view.
Everyday causal inference of the most mundane and
utilitarian sort, I show, makes use of information about
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underlying mechanisms on a regular basis. Any
account of practical causal reasoning must be in part
an account of the inferential role of information about
mechanisms.

In the course of the demonstration, I employ a
notion of underlying mechanism on which there is
more to a mechanism than “hidden strings” attaching
cause to effect. In my sense, the operation of a mech-
anism may be in large part entirely observable in the
form of various intermediate steps in a causal process.
In accordance with my overall strategy in this chapter,
I go even further and assume that information about
underlying mechanisms—certainly, the useful part of
information about underlying mechanisms—can be
captured completely by noncausal, probabilistic
representations. But, although it can be organized as
a body of statistical claims, conceiving of and organiz-
ing this information instead as though it concerns an
underlying mechanism is, I argue, more productive in
a number of ways.

The Inferential Role of Information 
About Mechanisms

What is the inferential role of our knowledge of a
causal relation’s underlying mechanism? I answer this
question by discussing an example that I have written
about elsewhere, the causal relations that underwrite
the characteristic appearances of a biological species
member,8 for example, a lemon’s yellow color or a
tiger’s ferocity.

An emerging consensus in the psychological liter-
ature on natural kind concepts, and on species con-
cepts in particular, holds that there is a natural
human tendency to conceive of the relation between
a species and its characteristic properties as causal.
This is an assumption common to the psychological
essentialists (Gelman, 2003; Medin & Ortony, 1989)
and to my work on this topic (Strevens, 2000). If it
is allowed that wherever we humans posit a causal
relation, we also tend to posit a mechanism, then both
the essentialists and I hold that, for every species and
known characteristic property, humans typically
believe in the existence of a mechanism, common to
all members of the species, that causes the property.
For example, all humans who know that tigers are
ferocious posit the existence of a single mechanism,
common to all tigers, that causes ferocity. In what
follows, I assume this without argument.

When children first learn that, say, lemons are
yellow, they normally know little or nothing of the
mechanism by which lemons acquire their character-
istic color. Their commitment to the existence of a
mechanism, then, is solely that: a commitment but
nothing more. As they develop, they learn something
about the workings of the mechanism. Immature
lemons are green, but they develop their characteristic
color over time, with their skin gradually colored by
some internal process as they mature. This knowledge
is slight and superficial, but it can have considerable
influence on ordinary causal reasoning, as I now
show.

The causal relation between membership of a
species k and a given characteristic observable prop-
erty p will be represented by a causal generalization
roughly of the following form: An organism’s being a
member of species k causes it to have property p.9 For
example, the connection between lemonhood and
yellowness is represented as the mental equivalent of
the following sentence: A fruit’s being a lemon causes
it to be yellow. The connection between tigerhood
and ferocity is represented as follows: An animal’s
being a tiger causes it to be ferocious.

A causal claim of this form is good for two things:
inferring from an organism’s species that it has certain
observable properties and inferring from an organ-
ism’s observable properties that it is a member of a
certain species.

You perform the first sort of inference, which may
be called projection, when you stay well away from
tigers on the assumption that they are ferocious or
avoid eating lemons on the assumption that they are
sour. You perform the second sort of inference, which
is always called categorization, when you classify
something with all the characteristic observable prop-
erties of a lemon—something that is yellow, football
shaped, sour, and so on—as a lemon.

A projection takes you from the antecedent to the
consequent of the represented causal relation, infer-
ring from the presence of a cause, namely, species
membership, the presence of a characteristic effect.
A categorization, by contrast, takes you from the con-
sequent to the antecedent of the causal representa-
tion, inferring from the presence of a cluster of
characteristic effects the presence of something that
typically causes those effects. (For some other ways to
integrate causal thinking into the process of catego-
rization, see chapters 11 and 12, this volume.)
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The significance of knowledge of an underlying
mechanism lies in its ability to modify both kinds of
inference, most often, although not always, in its
ability to defeat them—to give you reason not to
infer the presence of the effect from the presence of
the cause or vice versa. In illustrating this inference-
mediating power, I discuss projection and catego-
rization separately.

First, regarding projection, the basic form of a
projective inference is as follows:

1. Organism x belongs to species k,
2. An organism’s being a member of species

k causes it to have observable property p,
therefore

3. x will have p.

By following this inferential pattern whenever you
can—by inferring, of any member of k, that it has p—
you will not do too badly in this world. But, you could
do better. The reason is that, even when the premises
of the inference hold true, the conclusion may not.
Some members of a species will lack the characteris-
tic properties of that species.

For example, lemons are characteristically yellow,
but immature lemons are green. Skunks are character-
istically four-legged, but injured skunks may be three-
legged. Tigers are characteristically ferocious, but
sedated tigers are not. Uncharacteristic specimens of a
species are, you see from these examples, far from rare.

What makes an uncharacteristic specimen possible
is that the existence of an underlying mechanism con-
necting species membership with the appearance of a
characteristic property does not guarantee the pres-
ence of the property. Broadly, there are three reasons
that the property might not be present. First, the con-
ditions required for the mechanism to operate properly
may not have been present. This is true for immature
lemons, for example, for which the yellowing mecha-
nism has not had the time it needs to do its work.
Second, something may have interfered with the
mechanism, preventing it from operating properly.
This is true for the sedated tiger, with the sedatives
temporarily disabling the behavioral or other mecha-
nisms responsible for ferocity. Third, the mechanism
may have operated properly, so that the characteristic
property was present at one time, but some outside
force may have since undone the mechanism’s work.
This is true for the injured skunk: It originally had four
legs, but one has been lost.

The more you know about underlying mecha-
nisms, the better you are able to predict the break-
down of the relation between species membership
and observable properties and so to know when not to
make a projection on the grounds of species member-
ship: You avoid the error of projecting the yellowness
of immature lemons or the ferocity of tigers that are
sedated, or ill, or have been tamed.

The utility of mechanism knowledge is general:
The mechanism underlying any causal generalization
“c is a cause of e” can break down or have its effects
undone, so that some instances of c are not accompa-
nied by instances of e. The more you know about the
workings of the mechanism, the better you will be
able to recognize the circumstances in which a break-
down or a reversal is likely and so the better you will
be at recognizing cases in which the presence of an e
should not be inferred from the presence of a c.

Your projective prowess as a mechanistic reasoner
about a given causal connection, then, will increase
in proportion first to your knowledge of the connec-
tion’s underlying mechanism and second to the fre-
quency and systematicity of the connection’s
exceptions.

Let me now discuss categorization. The basic form
of a categorical inference is as  follows:

1. Organism x has observable properties p.
2. An organism’s being a member of species k

causes it to have observable properties p,
3. There is no other likely cause of x’s having p,

therefore
4. Organism x belongs to species k.

(Note that, in most categorizations, p is a complex of
observable properties—although categorization is
sometimes possible on the basis of a single characteris-
tic property, as when you recognize a fruit by its taste.)

In virtue of Premise 3, a categorical inference is
more complex than a projective inference. The need
for this premise is an entirely general feature  of infer-
ring from effects to causes as opposed to inferring
from causes to effects. To see this, suppose that c
causes e. If you know that a c has occurred, then the
presence of other potential causes of e makes your
inference that an e occurs no less secure. But, if you
know that an e has occurred, the presence of other
potential causes of e should most definitely deter you
from inferring the presence of a c unless you have
further information.
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The further information is often, if not always,
information about or pertinent to underlying mecha-
nisms. If you have some knowledge of how this partic-
ular e was caused, then you may be able to rule out
potential causes of e other than c, or alternatively, you
may be able to rule out c itself as a cause of the e.

Let me illustrate this claim by returning to causal
connections between species and their observable
properties. Suppose you observe some green, lemon-
shaped fruit on a tree. Are they lemons or limes? You
cannot taste them, so you have only the usual visual
information to go on, namely, their color and shape.
They have the characteristic color and shape of limes,
so a diagnosis of limehood would seem apt. But sup-
pose you know that it is early in the growing season.
Then, if you know something about the mechanism
underlying color in lemons, that color takes some
time to develop, you know that you cannot use the
inference schema to categorize the fruit as limes
because Premise 3 does not hold: There is a possible
cause of the fruit’s greenness other than limehood. If,
by contrast, you know nothing about the underlying
color mechanism but simply think of lemons as
yellow, then you will not gasp the precariousness of
the inference to limehood.

A natural reaction to this description of the
lemon/lime inference is to question whether an elab-
orate causal framework is necessary to encode the
information. Why not simply record a correlation
between lemonhood, immaturity, and greenness?
Then, the fruit in question will resemble two different
prototypes (using the term prototype loosely), the pro-
totypes for lime and immature lemon, and the infer-
rer will exhibit the appropriate level of uncertainty
regarding the fruit’s category.

As I have said several times, if you want an inter-
nalist explanation of causal cognition, then it is
unhelpful to contrast causal with statistical informa-
tion as though each were sui generis; it is better to
contrast a causal representation of statistical informa-
tion with other schemas for representing the same sort
of information. The question then becomes one of
organization rather than extent: What is the most flex-
ible and efficient way of storing statistical information
about, say, lemons, their color, and their maturity?

This question is properly the subject of the next
section, but I lay some of the groundwork here. Let me
begin by making a case for the great flexibility of the
causal schema, in particular the flexibility of the part
of the schema inhabited by underlying mechanisms,

as a means for representing inferentially relevant infor-
mation by considering some other ways that informa-
tion about mechanism affects categorization.

In the example, information about mechanism
rightly inhibited categorization, but in other cases, it
opens the way to categorizations that would otherwise
fail to be made. I have in mind categorization tasks
involving uncharacteristic specimens: members of a
species that lack some characteristic property of the
species.

Consider, for example, the three-legged skunk.
Knowing that the mechanism underlying skunks’
four-leggedness, although it causes skunks to grow
four legs, does not maintain the legs once grown—so
that a severed leg will not grow back—provides the
foundation for understanding that a skunk or other
quadruped may easily lose a leg despite being charac-
teristically four-legged and so allows us to categorize
an otherwise skunklike three-legged animal as a skunk.
(Somewhat deeper knowledge of the mechanism
shows that there are other ways, such as congenital
defects, in which the mechanism may fail to ensure
four-leggedness.)

There are a thousand ways that a specimen might
turn out to be uncharacteristic. Although it is possi-
ble, in principle, to store a statistical profile for every
one of these possibilities, so that examples of each will
be correctly classified (or at least classified as intelli-
gently as background information allows) should they
be encountered, it is far more efficient—especially
given that most varieties of uncharacteristic speci-
mens will be rather rare—to store a great deal of
information about characteristic specimens. This
information gives you your best chance of recognizing
that a particular observable but uncharacteristic prop-
erty was not produced naturally, that is, not produced
in accordance with the kind of causal law specified
in Premise 2 of the categorization schema. Once you
know that a property is not naturally produced,
you know that it is not a clue to species membership.
You are free—in fact, you are obliged—to ignore it
and to use whatever other information you have to
make a categorization. In this way, information about
the normal operation of mechanisms is used to clas-
sify abnormal specimens correctly. I return to the
question of the efficiency of the causal schema in the
next section.

An extreme case of an uncharacteristic specimen is
the sort of organism described in Frank Keil’s (1989)
“transformation” experiments. In these experiments,
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a raccoon is supposedly subjected to a cosmetic
makeover so comprehensive that it is visually (and
olfactorily) indistinguishable from a skunk. Such an
animal has all the characteristic properties of a skunk,
but knowing that it came to have these properties
unnaturally—that is, not in accordance with the
mechanism by which real skunks come to have
them—you resist the inference from skunk appear-
ance to skunkhood. Such a case is too bizarre to play a
part in explaining the practical function of causal cog-
nition, but it does a good job of exposing the causal
underpinnings of our reasoning about uncharacteristic
properties. I made the case that this reasoning is driven
by knowledge about the underlying mechanism
in Strevens (2000).

Let me summarize some of the ways in which
knowledge of underlying mechanism can have an
impact on everyday projection and categorization.
Take as a paradigm the causal connection between
lemonhood and yellowness. The more I know about
the mechanism underlying this connection, the
better I am able:

1. Given a lemon, to see when the mechanism
will fail to operate and so to see that I should
resist the projection from lemonhood to yellow-
ness, as when I know that the lemon has not
had time to develop its characteristic color.

2. Given a lemon, to see when the successful
operation of the mechanism may have been
later permanently undone and so to see that
I should resist the projection from lemonhood
to yellowness, as when I know that the lemon
has been daubed with a nonyellow dye
(because I know that a lemon cannot “grow its
color back”).

3. Given a yellow fruit, to see when the lemon-
hood/yellowness mechanism was not responsi-
ble for the yellowness and so to see that I should
resist the categorization from yellowness to
lemonhood, as when I know that the fruit has
been daubed with a yellow dye.

4. Given a nonyellow fruit, to see that the color of
the fruit is not produced in accordance with a
fruit/color mechanism and so to proceed (on
other grounds) to categorize the fruit as a
lemon despite its color, as when I know that an
otherwise lemony fruit owes its nonyellow color
to being daubed with a dye.

In the first three cases, knowledge of mechanism gives
you reason to refrain from making inferences that

would otherwise seem reasonable; in the fourth case,
knowledge of mechanism gives you reason to make an
inference that would otherwise seem questionable.

Note that the last, inference-enabling function
requires general knowledge of the mechanisms by
which fruits acquire their colors; such knowledge may
in fact play a role in any of the cases described. Note
also that knowledge of mechanism is even more use-
ful in categorization than in projection; this reflects
the greater in-principle complexity of categorical
inferences.

Virtues of the Mechanism Schema:
Efficiency

The information that we conceive of as concerning a
causal connection’s underlying mechanism is rele-
vant, I have shown, to the task of everyday inference.
By my working assumption, this information could
in principle be represented in statistical form. Why,
then, represent it causally?

I give two quite different, though complementary,
answers to this question. The first answer, presented in
this section, continues the strategy I have pursued so far:
It makes a case that the causal scheme does an excellent
job of representing practically significant information in
an efficient way. The next section presents the second
answer: The causal character of a representation might
encourage certain especially good search strategies for
the information that is to be represented.

First, let me discuss the explanation from effi-
ciency. Because information about underlying mech-
anism can be used in so many ways, a case for the
overall efficiency of the causal representation of such
information would be complex. Let me focus instead
on a single application, discussed above: the use of
mechanism information to recognize that an organ-
ism is an uncharacteristic, although genuine, mem-
ber of a species and, more particularly, to recognize
that the uncharacteristic appearance of the specimen
is no barrier to the categorization. When you con-
clude that an immature, green lemon is a lemon, that
a three-legged skunk is a skunk, or that a raccoon
transformed to look exactly like a skunk is a raccoon,
you use mechanism information in this way.

Consider three ways of dealing with uncharacter-
istic specimens:

1. Ignore them. Simply represent the characteristic
observable properties of each species and use
these as the basis for categorization. This is how
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uncharacteristic specimens are dealt with by, for
example, the prototype theory of concepts
(Rosch, 1978). Using this strategy, an uncharac-
teristic specimen may still be classified correctly
if it resembles the characteristic specimens of
the correct category more than those of any
other category.

2. Catalogue the exceptions. Store a separate
prototype, for example, for immature lemons
and three-legged skunks.

3. Think causally: Represent the mechanisms by
which a species’ characteristic properties are
caused and ignore, for the purposes of catego-
rization, properties that are not caused in these
ways.

Of the three, I suggest that the third, causal strat-
egy gives you the best ratio of accurate categoriza-
tions to cognitive effort. The second strategy,
maintaining a complete list of exceptions, is
extremely resource intensive. The first strategy
involves a rather modest commitment of cognitive
resources—although not that much more modest
than the causal strategy—but offers a much less
sophisticated handling of uncharacteristic speci-
mens. The sources of the uncharacteristic properties
are entirely ignored, and a crude resemblance heuris-
tic is used to classify nonparadigmatic specimens.
Such a strategy may be good enough much of the
time, but the causal strategy offers far more inferen-
tial control for little additional investment.

The causal, or mechanism-based, strategy, then,
offers a promising middle point between the prototype
and the exception list strategies. Like the prototype
strategy, it requires relatively few resources because
it stores information only about normal specimens,
not about abnormal specimens. Unlike the prototype
strategy, it stores information not only about
the observable properties of normal specimens, but
also about the process that leads to the appearance
of the normal properties. Because the appearance
of uncharacteristic properties is necessarily caused
either by some kind of irregularity or abnormality in
this process or by an overriding or reversal of the
process, the causal strategy is able to reliably
distinguish unusual category members from category
nonmembers.

To appreciate the efficiency of the causal strategy,
it is important to understand that a small amount of
knowledge about mechanisms can go a long way.
(This is just as well because humans tend not to know

much about mechanisms; Wilson & Keil, 2000.) No
deep insight into developmental biology is needed to
see that a normally four-legged creature can lose a leg
or that a dyed lemon does not receive its color natu-
rally. Much sophistication can be added to your
causal inferences, then, at a very low price. Observe
also that there is never an obligation to learn about
mechanisms. If a certain causal connection is unim-
portant to you, then you need not seek out and retain
any information about its underlying mechanism.

In a somewhat different vein, note that there is
nothing mysterious about mechanism information, by
which I mean that it is not hard to see how the same
information, or at least its practically useful compo-
nent, might be stated in statistical form. That lost legs
are not regrown or that the natural color of a lemon is
achieved without outside influence are observable
phenomena, although less easily observed, of course,
than the number of legs or the color themselves.
What is recorded, in a representation of an under-
lying mechanism, is not in the first instance some-
thing essentially metaphysical, but rather the stages
and symptoms of the sequence of events that leads to
the appearance of the relevant characteristic observ-
able property. These are the clues—the observable
clues because if they were unobservable they would
be useless—that distinguish the normal from the
abnormal production of the property.

What distinguishes the representation of the
mechanism, then, is first an attention to the details of
a process and second a concern with representing
what is normal rather than what is exceptional about
the process. My corresponding claims are first that
attending to some of the details of production can
have a real practical payoff, and second that by
recording the details of normal or paradigmatic
production processes only, these benefits come at
relatively little cost in cognitive resources.

Let me bolster this discussion of the uses of the
mechanism-based strategy in biological reasoning
with a few words on physical reasoning, drawing on
the investigations of Shultz (1982) (see also Ahn,
Kalish, Medin, & Gelman, 1995). Shultz showed
children of various ages between 3 and 10 years sce-
narios in which three events occurred, two of which
were candidate causes for the third. The subjects had
to decide which of the events was the actual cause,
the aim of the experiment being to pit against one
another two different rules for causal attribution.
What Shultz called the Humean rule picks out as the
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cause of an effect another event that is spatiotempo-
rally contiguous with the effect and that is of a type
that covaries with events of the same type as the effect.
The generative transmission rule, by contrast, picks
out as the cause the event that is connected to the
effect by way of the appropriate mechanism. The
signs of mechanical connection in Shultz’s experi-
ments are all observable and take the form of certain
conditions’ holding. For example, for a tuning fork to
cause a hollow container to resonate, the fork had
to be vibrating and situated in front of the open end of
the container, and the space between them had to be
unobstructed.

Shultz’s (1982) older subjects tended overwhelm-
ingly to favor the generative transmission rule: When
the conditions for the operation of the mechanism
obtained for one putative cause and not the other, the
event for which they obtained was named the actual
cause, even though, thanks to the clever design of the
experimental scenarios, the Humean rule pointed to
the other event.10 The children were using informa-
tion about mechanism in causal reasoning about
Shultz’s physical scenarios, then, in much the same
way that they are using information about mechanism
in the biological scenario considered above.

Shultz’s (1982) experiments, I must point out, take
information about causes as an inferential end in
itself. Thus, these are not cases for which thinking
causally is a means to a noncausal inferential end;
they do not directly support my conclusion that think-
ing in terms of mechanisms would be valuable, given
the event patterns in our world, even if everything
worth knowing could be cast as a statistical fact. What
they do show is that mechanisms play a similar role in
reasoning about physical correlations as they do in
reasoning about biological correlations; what remains
to be demonstrated is how great an advantage in effi-
ciency such reasoning might, on the whole, provide
by comparison with noncausal styles of statistical rea-
soning. What I have laid out here is the beginning,
not the end, of a mechanism-based explanation of the
efficiency of causal cognition.

Virtues of the Mechanism Schema: 
Search Strategies

Humans believe that, for every causal connection,
there is an underlying mechanism, or so I have
assumed, and will continue to assume, in this discus-
sion. The belief in an underlying mechanism can

manifest itself in three ways. First, as information
pertinent to the nature of the mechanism arrives, you
retain it and file it in the appropriate place. Second,
when making inferences to which mechanism infor-
mation is relevant, you retrieve the information and
put it to work. Third, and more proactively, you may
go looking for further information to apply in this
way; that is, you may search for more information
about mechanisms.

So far, I have focused on the first two aspects of the
commitment to mechanism, arguing that the infor-
mation we regard as concerning an underlying mech-
anism is particularly useful in our practical causal
inferences. This postulate about the practical utility of
the information can equally well be used to explain
the third aspect of causal thinking: If the information
is good to have, then there is every reason to seek
it out.

In what follows, I focus on the way that we search
for information about mechanism, describing a fur-
ther element of causal cognition that influences not
only the way that the information is put to use in later
inference, but also the way in which we go about
acquiring the information in the first place. As you
will expect, I want to suggest that there is something
about the causal way of thinking that makes for an
especially efficient search strategy, that is, a search
strategy that turns up a great deal of information for
relatively little investment.

I propose that our conceiving of mechanism infor-
mation as causal motivates us, when looking for such
information, to adopt what I call the constraint from
below. The content of this constraint is roughly that
any postulated mechanism ought to be “imple-
mentable,” and indeed implemented, by mechanisms
at the appropriate basic level. For example, any
physical mechanism must be at root constructed from
basic physical mechanisms, any biological mecha-
nism from basic biological mechanisms, any psy-
chological mechanism from basic psychological
mechanisms, and so on.

Clearly, the content of the constraint greatly
depends on what is meant by appropriate basic level. I
have three important remarks on this notion: First, as
suggested by my examples, there may be different basic
levels for different kinds of phenomena. The basic level
for mental phenomena, for example, may be distinct
from the basic level for physical phenomena.

Second, that a level is basic does not entail that it
is metaphysically fundamental. That the basic level
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for mental phenomena, for example, is different from
the basic level for physical phenomena allows—
although it certainly does not require—that basic
level mental processes are themselves physically
implemented. There may be a hierarchy of imple-
mentation, then, among the basic levels themselves. I
do not explore the inferential role of such a hierarchy
here, although belief in a hierarchy would clearly
affect the cognitive significance of the constraint from
below.

Third, the identity of the basic levels is not built
into the constraint from below and, indeed, is never
known apodictically. Your beliefs regarding the num-
ber, nature, and extent of the basic levels are always
under revision, sometimes radically so.11

What is useful about the constraint from below?
There are two separate questions to address. The first
concerns the validity of the constraint. The second
asks how, even if correct, a doctrine that sounds more
like a metaphysical thesis than a piece of helpful
advice could play a role in improving our everyday
inference.

I want to focus on the second question, so let me
assume without any argument that, with the basic
levels properly identified, the assumption about uni-
versal implementability explicit in the constraint from
below is more or less true. (The more radical antire-
ductionists among philosophers of science will
demur.) How is this fact practically relevant?

The wrong way to apply the constraint is to insist
that no mechanism be postulated—perhaps even no
causal connection posited—until an underlying
implementation is found, that is, until the operation
of the mechanism is completely understood in
terms of the appropriate basic level. Pursuers of this
policy will indeed be lost in thought (insofar as
teaching responsibilities and administrative duties
allow).

The aim of the constraint is not to place impedi-
ments on the path to finding an underlying mecha-
nism but, on the contrary, to clear the path and to
speed the search. Given a few beliefs about the appli-
cable basic level, the constraint from below will point
to certain areas, and away from certain others, as
sources of information about underlying mechanism.
To learn the truth about the mechanism underlying
the yellowness of lemons, look inside, not outside, the
lemon. Look for characteristically biological
processes, not mental processes. Ignore the possibility
that lemons get their yellowness the same way that

gold gets its yellowness, but take seriously the possibil-
ity that lemons get their yellowness in the same way as
grapefruit, and so on.

Even if you are wrong in many of your beliefs
about the basic levels, the influence of the constraint
from below will tend to be largely or wholly positive.
On almost any view that anyone has ever had about
the workings of biological mechanisms, the last para-
graph’s sage counsel regarding where to look for the
lemon/yellowness mechanism holds. The constraint
from below, for all its appearance of heavy-duty meta-
physicking, is a fount of good, practical advice in the
search for causal information. Ironically, the con-
straint is liable to cause trouble only when you
know—or think you know—much more about the
workings of the world than a modest, amateur causal
inquirer. But, that is a story for another time.

In short, then, the assumption, which I take to be
built into our system of causal reasoning, that every
causal connection has an underlying mecha-
nism, together with the meat added to the notion of
underlying by the constraint from below and some
rudimentary knowledge about the basic level,
prompts a search strategy for mechanistic information
that is better than most.

Virtues of the Mechanism Schema:
Overview

Let me now step back to summarize the various ways
in which thinking about causal connections as having
underlying mechanisms improves day-to-day causal
inference, even if the mechanistic information is
nothing but a certain kind of statistical information in
another guise.

1. The mechanism schema provides a compact
representation of certain information about
normal or characteristic specimens that can
be used to decide whether to proceed with var-
ious projections and categorizations in an intell-
igent way.

2. The mechanism schema invites us to make
mechanism-based inferences using the infor-
mation that it encodes, by representing it in a
form that makes its relevance to simple causal
inference—inference from cause to effect or
effect to cause—immediate.

3. This relevance made clear, the mechanism
schema invites us not only to make mechanism-
based inferences but also to search out the
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information we need to do so—to find the
mechanical reality underlying a causal
connection.

4. Because the mechanical information is subject
to the constraint from below, the search for
information about mechanism is guided in part
by wider beliefs about the workings of the
appropriate basic level.

It has been my working assumption in this chapter
that all of the information mentioned—the infor-
mation contained in a simple causal claim, the
information about the mechanism that underlies
the causal connection asserted by the claim, and the
information contained in beliefs about the appro-
priate basic level brought to bear by way of the con-
straint from below—can be represented in statistical
form.12

What, then, is the origin of the peculiar pheno-
menological character of causal beliefs? It cannot be
in their content (at least, not in their content exten-
sionally conceived, for example, not in their truth
conditions). This leads naturally to the suggestion that
the causal phenomenology is due to the particular
inferential role played by causal information in the
human mind, that is, the role characterized immedi-
ately above.

I am not sure that this suggestion can account for
the sense of causal oomph we experience when one
billiard ball strikes another. Perhaps the oomph ought
to be explained in some completely different way, for
example, as an aspect of our sensory phenomenology,
as suggested by Leslie (1994). I do think that the infer-
ential role investigated in this section is at least a part
of the explanation for the sense of hidden connected-
ness in the world as we experience it causally, the
sense that behind the scenes—or below the scenes—
something is going on, something on which every-
thing we see depends.

Conclusion

I have surveyed a number of quite different approaches
to explaining the prevalence of causal cognition.
They are all internal explanations: They focus on the
organizing power, rather than the expressive power, of
causal representation schemas.

Each of these explanations assumes that, even if
the world is Humean, in the sense that every fact can
be captured by some purely statistical claim or other,

it is a very particular Humean world: Its pattern of
correlations is a very particular pattern, with very par-
ticular properties. It has the Reichenbach asymmetry,
it exhibits certain asymmetric patterns of manipula-
bility, or it is the sort of pattern that is amenable to
characterization in terms of the language of underly-
ing mechanism, consistent with the constraint from
below.

It is this special, perhaps unusual, property of the
worlds’ correlations that makes causal cognition so
useful. The practical value of causal thinking lies,
then, not in its ability to capture facts in principle out
of the reach of statistical vocabulary, but in its ability
to organize statistical facts—given certain unusual
patterns in those facts—in an especially effective way
and perhaps also to organize the search for those facts
just as efficiently.

It is quite striking how much can be said in favor
of each of the proposed internal explanations of
causal cognition’s practical value and how many
opportunities there are for still more proposals. The
complete explanation of the form of causal cognition
looks to be rich and complex indeed.

That the existence and structure of causal cognition
is best explained internally allows, but does not imply,
that the world is Humean. A modern causal realist, or
opponent of Humeanism, will aim to explain the par-
ticular pattern of correlations we see around us—the
pattern that is so amenable to causal encoding—as a
consequence of something bigger than statistics at work
in the external world. It is only because of a meta-
physics that posits more than can be said in Humean or
statistical terms that the world contains these special
kinds of correlations, or so the causal realist argues;
they are our best clue that there is something else out
there. Our system of causal inference has developed to
exploit the unusual correlations for practical purposes
only; yet, despite its purely instrumental rationale, it
points past mere patterns of fact and gestures, however
vaguely, at a causal world beyond.
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This volume focuses on the relation between causal
understanding and theory formation. We address this
relation by concentrating primarily on one everyday
theory—theory of mind—and on causal understand-
ings as embodied in causal explanations. This volume
also aims, at least in part, to foster dialogue between
developmental scientists and the scholars in philosophy
and computer sciences who have developed causal
Bayes net accounts of causal knowledge and learning.
We contribute to this dialogue by highlighting an appar-
ent conundrum: On the one hand, explanations are
particularly characteristic of everyday causal under-
standing and particularly important in the development
of everyday conceptions. On the other hand, on the sur-
face at least, causal Bayes nets seem silent on how to
characterize explanations and on what role explana-
tions might play in causal learning. Our hope is to spark
more explicit inclusion of explanation in such causal
theorizing. This would importantly expand the implica-
tions of such theories for development and the implica-
tions of development for such theories.

Background

Certain features of our approach to theory of mind
and to causal development provide the context for our
primary claims and analyses.

Theory of Mind

Theory of mind refers to our everyday or folk psychol-
ogy. The key idea is that our everyday understanding
of persons is mentalistic—we construe people in
terms of their inner psychological states, such as their
hopes, ideas, plans, feelings and doubts.

Philosophers and psychologists often characterize
this everyday system of reasoning about mind, world,
and behavior as a belief-desire psychology (D’Andrade,
1987; Fodor, 1987; Stitch, 1983; Wellman, 1990). In
short, crucial to our understanding of persons’ actions,
lives, and minds is what the person thinks, knows, and
expects coupled with what he or she wants, intends,
and hopes for. Why did Bill go to the drawer? He
wanted his chocolate and thought it was in the drawer.
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Everyday psychological reasoning also includes reason-
ing about the origins of mental states (Bill wants candy
because he is hungry), so belief-desire psychology
incorporates a variety of related constructs, such as
drives and preferences that ground one’s desires and
perceptual-historical experiences that ground one’s
beliefs. It also includes emotional reactions that result
from these desires, beliefs, preferences, and percep-
tions: Bill will be disappointed because the chocolate is
not in the drawer.

Considerable research has demonstrated children’s
mental-state understandings generally and their belief-
desire reasoning specifically. One of the earliest and
most frequent demonstrations focused on children’s
understanding of beliefs, particularly false beliefs. In a
typical false belief task, a character, say Bill, puts some
chocolate in a drawer but then while he is away (and
cannot see), someone moves the chocolate to a cup-
board instead. On Bill’s return, children are asked,
“Where will Bill look for his chocolate?” or “Where
does Bill think his chocolate is?”

Even children as young as 3.5 and 4 years accu-
rately predict that Bill will mistakenly look for the
chocolate in the original location (Avis & Harris, 1991;
Moses & Flavell, 1990; Wimmer & Perner, 1983).
Such responses show, potentially, an understanding of
how mind causes action yet differs from reality,
because Bill’s action is predicted on the basis of his
thoughts about the world rather than the world itself.

More generally, numerous studies now document
that, during early childhood, children increasingly,
insistently view people as mental beings: beings that
intend, desire, think, know, remember, and feel emo-
tions (see Wellman, 2002, for review). Why do chil-
dren come to understand people in such mentalistic
fashions? Why do we adults do so? Arguably, a primary
reason is that these mentalistic construals allow us to
make sense of, to explain, people’s actions and lives.

Indeed, according to one theoretical perspective,
our everyday folk psychology is an everyday theory
about people and minds—hence the phrase theory of
mind. Theories explain phenomena; an everyday the-
ory of mind, therefore, is driven by explanation. This
theory theory account (see Gopnik & Wellman, 1994;
Wellman, 1990; Wellman & Gelman, 1998) is only
one account among several that have been proposed
for characterizing naïve psychological reasoning, as
we will discuss later. But a theory theory perspective
gives reason to think of explanations as central and
important for theory of mind.

Development of Causal Knowledge

Arguably, how causal reasoning develops gives us par-
ticular insight into its structure and character—what
is basic and what is less so. Traditionally, back to
Piaget (e.g., 1929), psychologists thought causal reaso-
ning was late developing and preschool children
were “precausal.” That Piagetian account has been
thoroughly replaced, however, by awareness that
even young children are sensitive to causal relations
and structures.

One reason for this shift in conclusions is a shift in
methods. Traditional investigations, such as Piaget’s,
depended on asking for and analyzing children’s expla-
nations. Thus, Piaget asked children questions like,
“Why does the sun come up in the morning?” or “How
does a bicycle go?” A number of authors have noted
that this reliance on explanations probably falsely char-
acterized children’s understanding (e.g., Bullock,
Gelman, & Baillargeon, 1982). Consequently, most
contemporary research has focused instead on simpler
judgment tasks that assess causal predictions. As
Bullock et al. (1982) report in their results (which focus
on children’s understanding of physical causality):

Children’s explanations for events did not seem to
reflect the same level of causal reasoning as did
their judgments or predictions. … The results are,
of course not a surprise to anyone working with
preschool-age children. Children are more likely
to demonstrate their reasoning in actions and sim-
ple choices than explanations. (p. 246)

It makes some sense, not only empirically but also
conceptually, that causal predictions could be easier
than (and developmentally precede) sensible causal
explanations. Arguably, causal predictions can be
based on detecting specific causal regularities (the
relation between X and Y), but causal explanations
typically require referring specific events to some
larger, more general framework, principles, con-
structs. That is, predictions involve inferring how ini-
tial events lead to or produce certain later ones (and
thus could be achieved just on the basis of statistical
regularities between specific events). But, causal
explanations involve understanding how some later
outcome was brought about by earlier events, as
understood in terms of some more general system or
framework of causal forces, factors, and processes. It
is in line with many developmental accounts to
assume that, developmentally, understanding
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specifics precedes understanding generalities. On
this view, more abstract generalities are developed
from specific details (as general categories are
abstracted from specific instances), so explanations
would be developed from specific causal inferences
or predictions.

In addition, consider Gopnik et al.’s (2004) insight-
ful article linking together children’s causal reasoning
and a causal Bayes net perspective:

Causal knowledge is important for several reasons.
Knowing about causal structure permits us to make
wide-ranging predictions about future events. Even
more important, knowing about causal structure
allows us to intervene in the world to bring about
new events—often events that are far removed
from the interventions themselves (p. 3).

If prediction and intervention manifest the everyday
importance of causal knowledge, then developmen-
tally they may be most fundamental and so earliest to
appear.

In contrast to the view that prediction has develop-
mental precedence over explanations, however, we
want to advance the exact opposite view. In develop-
ment and in everyday causal reasoning, explanation
often (perhaps typically) has precedence over predic-
tion. Beyond prediction and intervention, explanation
is fundamental to, and not just peripheral to or a
by-product of, human causal reasoning. Further, we
want to propose that explanation does important work
in the process of causal learning and development.
This does not mean that we believe that traditional
investigations, such as Piaget’s, accurately portray
young children’s abilities. The phenomena Piaget
presented for explanation were often difficult and
unfamiliar, the wording of his questions was often
ambiguous and confusing, and his coding of chil-
dren’s answers was problematic (see, e.g., Estes,
Wellman, & Woolley, 1989). But, we do claim that
young children often find simple explanations easier
than simple predictions and judgments.

Here is how we proceed. First, we argue briefly for
the idea that explanations often may be easier than
predictions. Then, we provide some data, mostly from
our research, that underwrite the importance of
explanations to even young preschool children. Then,
we provide evidence that explanations are central to
the processes that produce knowledge acquisition and
change within human development. What about the
beginning of causal understandings in infancy?

We argue that explanations may precede predictions
even in infancy. We conclude with proposals on how
emphasizing the role of explanations might reshape
our understanding of the nature of causal knowledge
and learning in general.

Explanations May be Easier 
Than Predictions

In several situations, it seems plausible to argue that
explanations could be generally easier than predic-
tions. Compare two scenarios. In a prediction scenario,
a person, Jill, wants to find her dog. Her dog might be
in the doghouse or at the park (or under the stairs, etc.).
Causal prediction essentially involves answering such
questions as, Where will Jill go to look for her dog?

In a parallel explanation scenario, Jill also wants to
find her dog. Again, her dog might be in the dog-
house, or at the park, or under the stairs, and so on.
Jill goes to the park to look for her dog. Causal expla-
nation essentially involves answering questions such
as, Why did Jill go there?

For prediction, the problem-space seems large. Jill
might go anywhere, any action outcome might be
plausible depending on what information Jill has
about her dog (what kind of places her dog likes best)
and about various locales (which is closer, further) and
depending on how strongly motivated Jill is, her other
interests, her ability to do the required acts, and so on.
For explanation, the problem-space seems more
restricted because we already know where Jill went,
and we only need to explain, to postdict, that.

Similarly, compare these two scenarios. In a pre-
diction scenario, we have a sidewalk (in Michigan)
and the fact that the temperature is dropping. The
prediction question is, What’s going to happen to the
sidewalk? (“Hmm?”)

In the parallel explanation scenario, we again have
a sidewalk, the fact that the temperature is dropping,
and an outcome; for example, there is ice on the side-
walk. The explanation question is, Why is there ice on
the sidewalk? (“It got so cold that water froze on the
sidewalk.”)

As captured in these paired comparisons, to
provide a convincing explanation often seems decid-
edly easier than to make a compelling prediction.
Explanation is not necessarily easy, because there
are multiple possibly relevant causes and frame-
works to consider and the causes must be understood.
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But, it seems easier than prediction because in the
case of explanation there is (at least) one additional
enlightening fact: what, in fact, actually did take
place—the outcome of the causal chain. Explanation
is a form of postdiction, and postdiction seems easier
than prediction because postdiction includes at least
one more piece of relevant information: The actual
outcome that was caused constrains what the reasoner
need consider.

Relatedly, in philosophy of science, it is an axiom
that more credit accrues to scientific theories that can
make accurate predictions of as-yet unobserved phe-
nomena and not merely explain observed phenom-
ena after the fact. In the practice of science, therefore,
it is commonly accepted that being able to provide
post hoc explanations is relatively easy and certainly is
not as rigorous a test of a theory as being able to pro-
vide predictions. Explanations are easier for scientific
theories because there has already been a peek at the
results. Similarly, explanations are easier for naïve the-
ories because there has already been a peek at the out-
comes.

Or, consider this phenomenon. Unexpected, sur-
prising things often occur, and they are especially
powerful prods to causal reasoning. When something
unusual happens, we want to know how and why.
Think about some such unexpected event (e.g., your
cousin Phil, who seemed so focused on his career as
a surgeon, moves to Hawaii to work as a bartender on
the beach). If it is surprising and unexpected, then it
may be difficult to explain, but often it is possible to
do so at least in part (“Oh, Phil always did seem so
stressed with work, and he really enjoyed the one time
he vacationed in Hawaii”). Note, however, in the
focal case in which the event is indeed surprising and
unexpected, then that same event (admittedly diffi-
cult to explain) was, in fact extremely difficult (even
impossible) to predict (“Many people are stressed
with work and enjoy vacationing in Hawaii. Who
would have guessed that Phil would actually quit his
job and move to Hawaii?”). If it was predictable, then
we would not have been surprised, and it would not
have been unexpected.

So, in multiple cases explanation seems easier
than prediction. It is possible to be somewhat more
precise about when and how this occurs. Our concern
here is everyday cases of thinking about the causal
relation between some cause or causes C and some
effect or effects E. In some situations, prediction and
explanation would be equally easy or hard; this is

most obvious if we are dealing with a case in which a
single cause necessarily produces a single effect. In
that case, reasoning from cause to effect (prediction)
or effect to cause (explanation) seems equally feasible,
easy, or difficult. In everyday life, however, we are
rarely in the situation of considering a single cause
that necessarily produces a single effect.

More often, multiple causes produce an effect;
multiple effects are produced by a cause; causes
require multiple enabling conditions to be effective;
and so on. In such cases, prediction will sometimes be
easier than explanation. For example, when a single
effect is necessarily caused by multiple causes, being
aware of the role of any of these causes could allow
prediction of the effect, whereas knowledge of the
effect still leaves many possible candidate causes. So,
in that case explanation seems more difficult.

Often, however, explanation will be easier than
prediction. For example, when a single cause can pos-
sibly produce multiple effects, other enabling condi-
tions are almost always necessary for the cause to
produce a particular effect. A drop in temperature
might cause ice to form on the sidewalk, but there
had to be water on the sidewalk and an absence of salt
or deicer for this process to occur. Knowing that Bill
wanted his chocolate and thought it was in the drawer
still does not translate into perfect prediction of Bill’s
behavior—other enabling conditions (such as that
Bill is at home where the drawer is) are necessary.
In all these cases, for the task of explaining that the
effect occurred, one already knows that the enabling
conditions must have been in place. They must have
been in place because the event did occur, so those
factors can be ignored.

More generally, as in the scenarios outlined, expla-
nation often presents the reasoner with at least one
additional piece of relevant information: the actual
occurrence of a specific effect E. That additional
information often prunes away several causal factors
or paths from consideration. In fact, knowing the out-
come provides a particularly important piece of infor-
mation because outcome information significantly
reduces the problem space in the same way that
reverse engineering does. It is far easier to engineer a
radically new sort of clock if one has a working clock
(from a competitor, say) to disassemble, to analyze,
and to work from. Similar to taking apart a clock to
see how it works, reverse engineering also occurs in
explanation in taking apart a causal chain to see how
it works. Instead of having to work out the forward
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causal chain, with its large number of possible out-
comes, working out the reverse causal chain narrows
the possibilities.

Consideration of childhood development also
offers at least one additional, empirical reason that it
is plausible that explanations might be easier than
predictions, at least for young children. This reason
follows from the fact that explanations proceed in a
backward (postdiction) direction, from E to C.
Predictions require looking forward to the future,
from C to the future occurrence of E. Numerous
studies show that early in life preschool children are
better at thinking and talking about the past than the
future (e.g., Sachs, 1983). A developmental prece-
dence for explanations over predictions would align
sensibly with this well-demonstrated childhood prece-
dence of thinking about the past over thinking about
the future. Indeed, it may be that thinking about the
past is easier for young children than thinking about
the future because, just as in the scenarios given, the
past has in fact occurred and in that sense is more
constrained than the future.

With these plausibility arguments as background,
we want to reconsider what children’s explanations
can tell us about their causal understanding. To reit-
erate, for the most part we consider explanations in
the realm of theory of mind—psychological explana-
tions. To foreshow our claims, we believe data show
that children’s causal explanations are often early
achieved, cogent, revealing of the nature of causal
reasoning, and crucial for the development of that
reasoning. We believe that because children’s concep-
tual development is theory-like, and thus motivated
by explanation, and because explanation is easier
than prediction, that explanation constitutes a corner-
stone for building causal knowledge.

Empirical Importance and Frequency of
Explanations in Childhood

As demonstrated in research, young children prove to
be interested in explanation. Specifically, they fre-
quently seek and provide explanations, including
especially psychological explanations of the sort
implied by theory of mind.

Consider, first, data regarding children’s seeking
of explanations from those around them. Callanan
and Oakes (1992) had mothers of preschoolers keep
2-week-long diary records of children’s causal

questions (e.g., “Why?” “How come?”) during every-
day activities, such as mealtime. Results showed that
children asked numerous causal questions about a
variety of events, including mechanical phenomena
(“How does that wheelchair work?”) and natural phe-
nomena (“Why do stars twinkle?”). Importantly,
however, the largest number of children’s questions
focused on the causes of human activity—requesting
explanations for people’s motivations and behaviors
(e.g., “Why did he do that?”).

Of course, diary records can be more a reflection
of parents’ concerns than their children’s. Therefore,
Hickling and Wellman (2001) examined extended
transcripts of everyday conversation for children’s nat-
urally occurring causal questions and explanations,
using explicit causal terms such as why, because, how,
and so. The analyses encompassed more than 120,000
child utterances from the CHILDES (Child Langu-
age Data Exchange System) database (MacWhinney
& Snow, 1985, 1990) for several children, recorded in
everyday parent-child conversation, week by week or
month by month, as these children grew from 2 to 5
years of age. On average, causal questions appeared as
early as there were recorded transcripts, with why-
questions some of the earliest causal utterances that
children produced. Indeed, causal questions
appeared earlier than causal statements (mean age at
earliest appearance 2 years 5 months vs. 2 years 8
months) and thus were produced more frequently
than causal statements at age 2.5 years (65% questions
vs. 35% statements). These conversational data thus
provide systematic, empirical support for the com-
monplace, anecdotal observation that there is an early
period during which young children engage in
intense explanation seeking, especially through use of
why-questions. Thus, the data confirm an early child-
hood interest in having things explained.

What are the topics of children’s everyday requests
for explanation? Consistent with the findings of
Callanan and Oaks (1992), the children in Hickling
and Wellman’s (2001) study requested explanations of
human activities—why a person did something—in
approximately 70% of their causal questions as 2-, 3-,
and 4-year-olds. Explanations for physical-object
events (20%), for events focusing on animals (5%), or
for a variety of other entities such as plants or natural
phenomena like clouds (5%) were also requested,
although less frequently. These findings show that
young children are concerned with explanation and
actively seek it out. Central to this early explanatory
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fascination is a curiosity about how to explain the
activities of human beings.

Explaining Actions

Young children not only seek explanations, but also
provide them. When children provide explanations,
they, like adults, include two parts: the topic or entity
to be explained and the explanation itself. Regarding
topic, in the Hickling and Wellman (2001) research,
81% of children’s explanations in their everyday con-
versations explained the actions, movements, and
states of themselves and others. That is, just as in their
requests for explanation, the focal entity for children’s
own explanations were largely people. This explana-
tory emphasis on persons is confirmed in other
research as well (Dunn & Brown, 1993; Hood &
Bloom, 1979). For example, Dunn and Brown
recorded 2-hour samples of conversations from fifty
3-year-olds and their parents and found that explana-
tions for human action and states constituted the
majority of children’s explanations.

How do children explain the various entities of their
conversations? Hickling and Wellman (2001) coded
the explanations children provided into several expla-
nation modes. These included psychological explana-
tions (“I’m going to get the door because I want to”);
social-conventional explanations (explanations citing
rules and conventions, such as “I have to stop now
because it’s lunch time”); physical explanations (“The
nail broke because it got bent”); and biological expla-
nations (“She got sick because of germs”). Hickling
and Wellman also included a category of behavioral

explanations (“I got my hands dirty because I ate blue-
berries”). Here, the child’s reasoning cited certain
behavioral connections or regularities but did not
explicitly mention any underlying cause or mechanism
(e.g., no mention of biological aspects of eating or psy-
chologically wanting blueberries). Such instances were
considered behavioral (or “associational”) and sepa-
rated from the other categories to avoid overinterpreta-
tion of children’s psychological reasoning. We
concentrate on Hickling and Wellman’s findings
regarding psychological versus physical explanations,
the two predominant and earliest-developing forms.
Figure 16-1 shows some of those data.

As is clear in Figure 16-1, when young children
provided explanations for human entities, they most
often provided psychological explanations, more
than 35% of the time, followed closely by social-
conventional explanations, more than 25% of the
time. In total, therefore, about 65% of children’s
explanations were psychosocial explanations.
Critically, children appropriately restricted these psy-
chosocial explanations in domain-specific ways: Even
children as young as 2 years rarely provided psycho-
logical explanations for physical objects. Rather, the
movements and properties of inanimate physical enti-
ties were almost always explained via physical expla-
nations (e.g., “The curtain moved because the wind
blew it”).

Conversational data like these are complemented
by experimental studies designed to elicit children’s
explanations (e.g., Inagaki & Hatano, 1993, 2002;
Lagattuta & Welman, 2001; Schult & Wellman, 1997). For
example, Schult and Wellman solicited explanations
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FIGURE 16-1 Explanations of humans versus objects from Hickling and Wellman (2001).
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from 3- and 4-year-olds for a variety of human actions
and movements: intended actions (a person wants to
do something and does what he or she wants); mis-
taken actions (a person wants to do something but
mistakenly does something else); physically caused
actions (a person’s movement is caused by the wind,
gravity, or some other physical force); and biologically
caused actions (a person’s movement is caused by a
biological mechanism, such as fever, fatigue).
Children’s responses were coded for psychological
explanations as well as for physical and biological
explanations.

Concentrating again on psychological versus phys-
ical phenomena and explanations, young children
often provided psychological explanations. Nearly
100% of children’s explanations for intended actions,
even those of 3-year-olds, were psychological explana-
tions. Moreover, 88% of 3-year-olds’ explanations
(and 93% of 4-year-olds’ explanations) for mistaken
actions were also psychological explanations (e.g.,
“He didn’t know . . .”). In contrast, preschoolers pro-
vided physical explanations almost exclusively for
physically caused human movements. Note that both
for mistakes and for physically caused acts, the target
character wanted something but in fact did something
else instead (as we have briefly outlined). Yet, chil-
dren’s explanations differentiated between those two
occurrences. For mistakes, their explanations referred
to psychological constructs such as beliefs, desires,
and so on. For physically caused actions, their expla-
nations referred to physical constructs such as con-
tact, solidity, gravity, and so on. Inagaki and Hatano
(1993, 2002) also showed that preschool children pro-
vide psychological explanations for voluntary, but not
involuntary, behavior.

Explaining Mental States

The phenomena and events to be explained by folk
psychology include much more than action. For exam-
ple, we appeal to beliefs and desires to explain a per-
son’s other mental states, such as their emotions: “Why
is he so sad?” because “He wanted a pet but didn’t
get one.”

As outlined, explanations not only attempt to iden-
tify the cause of some event that has occurred, but
also attempt to make that occurrence sensible by ref-
erence to a larger framework. We have found that
young children’s explanations of persons’ emotional
states provide especially revealing evidence of how

they refer to and depend on a larger framework of
connected, coherent understanding of minds and
lives.

Lagattuta and Wellman (2001) provided initial
data of this sort by having young children provide
explanations to scenarios such as the following:

One day Anne goes to the circus with her favorite
baby doll. When Anne is talking to Bozo the
clown, Bozo accidentally steps on the doll and
breaks it. Anne feels sad. Well, many days later
Anne is at her friend, Jane’s, birthday party. It is
time for the party show. Anne sees Bozo the clown
dance into the room. She starts to feel sad. Why
does Anne start to feel sad right now?

Across multiple studies, young children revealed
impressive competence in explaining such emotions
in relation to historical (past experience) and mental
(thinking) causes. The majority of 3-year-olds and
nearly all 4- through 6-year-olds explained the per-
son’s emotions as caused by thinking about the past
(e.g., “Anne’s sad because she’s thinking about her
doll breaking”), at least at times. Between 3 and
6 years, preschoolers became increasingly consistent
in producing such historical-mental explanations.
Often, children provided still more precise explana-
tions that we called cognitive cuing explanations
(e.g., “Anne’s sad because the clown makes her think
about her broken doll”). Note that these explanations
not only refer to thinking about the past, but also
explain further that the thoughts about the past had
been caused by a reminder in the present scene. By
5 years, the majority of explanations were cognitive
cuing ones.

In several ways, these explanations reveal that, in
reasoning backward from effects to causes, young
children’s explanations also appeal to larger coherent
systems of constructs and causes. First, young chil-
dren connected together several different kinds of
mental states and experiences into a single explana-
tion (e.g., thoughts about a past experience triggered
by seeing a visual reminder cause a current experi-
ence of feeling sad). Moreover, these explanations
revealed a crucial understanding that a person’s men-
tal states and experiences cohere in an individual-
specific, life-historical way. That is, young children
summed together episodes and mental states, over the
focal person’s experiences, to create an explanation
for that individual’s reactions. In contrast, children
consistently predicted that Anne’s friend Jane, who
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had not had the prior negative experience, would feel
happy instead of sad at the birthday party.

Using scenarios parallel to the one about Anne,
Lagattuta and Wellman (2001) also varied such things
as the valence of the emotion to be explained (if the
target character was sad or happy), the match between
the character’s emotion and the current situation (if
the character’s emotion was typical or unusual for the
current situation), and the match between two people’s
emotions in the same current situation (identical vs.
different emotions). Through these manipulations, it
became clear, developmentally, that young children
at first only consistently provide historical, mentalis-
tic explanations for scenarios just like the one for
Anne: when they are asked to explain why someone
was currently feeling negatively in a conventionally
positive situation (e.g., Anne feels sad at the party).
These experimental tasks, then, not only reveal
coherent explanatory understandings, they suggest
that young children’s explanations of negative emo-
tions provokes and encourages them to think about
people in relation to their thoughts and to their past
experiences.

Lagattuta and Wellman (2002) confirmed this pos-
sibility by examining, longitudinally, how parents and
preschoolers emphasize, ask questions about, and
explain emotions during everyday conversations
between the ages of 2 and 5 years. In brief, those analy-
ses showed that everyday conversations about negative
emotions are indeed rich in the topics and features
that seem critical for explanations of people in terms of
their minds and individual life histories. Specifically,
children and their parents provided more than twice as
many explanations for emotion during discussions
about negative versus positive emotions (M �37% vs.
13% for children and 45% vs. 14% for adults). Not
only did children and parents provide more explana-
tions about negative emotions, but also they were
more likely to seek explanations for negative emotions.
In addition, children’s conversations about negative
emotions, but not positive emotions, revealed frequent
discussions about connections between emotions and
other mental states—again revealing children’s appeal
to coherent systems of explanation.

Explanations Lead Development

Beyond evidence of early fascination with explanation
and production of sensible explanations that appeal to

larger causal frameworks, there is also evidence that
explanations may lead predictions in children’s devel-
opment of causal reasoning. Such evidence is avail-
able for children’s reasoning about false belief. Recall
the false belief task about Bill: Without his seeing it,
his chocolate is moved from drawer to cupboard. Bill
returns wanting his chocolate. The child is asked,
“Where will Bill look for his chocolate?”

That “standard” task of course is a prediction task:
The child predicts where Bill will look or what he
thinks. False belief tasks can be converted to parallel
explanation tasks, however. For example, Bill’s choco-
late is moved without his seeing. Bill returns wanting
his chocolate and goes to look for it in the drawer.
The child is asked, “Why did Bill go there?” In these
contrasting tasks, a false belief prediction requires say-
ing that Bill would go to the drawer, and a false belief
explanation requires saying that Bill went to the
drawer because “That’s where he thought it was,”
“He doesn’t know it was moved,” or similar explanations.

Bartsch and Wellman (1989) were the first to com-
pare these tasks of prediction versus explanation, and
they found something intriguing. Young children
were better at making false belief explanations than
false belief predictions. Young children who were
unable to predict Bill’s mistaken action (based on his
false belief) could provide a false belief explanation
(e.g., “He thought it was there”) when they saw Bill
mistakenly searching in the wrong place.

Perner (1991) advanced a critique of the Bartsch
and Wellman data by claiming that it was possible the
task demands might have been easier for explanations
than predictions (see also Wimmer & Mayringer,
1998). It is not clear that this critique is correct,
however. First, note that to be correct on prediction
the child need only choose one of two options
(drawer/cupboard). To be correct on explanation, how-
ever, the child needs to talk appropriately about beliefs
or knowledge when there are numerous other things
the child could talk about (appropriately or inappro-
priately). So, the probabilities of being correct by
chance alone seem to favor the prediction task rather
than the reverse. Moreover, versions of the explanation
task have been designed to overcome Perner’s objec-
tions. These revised tasks also show explanation to be
easier than prediction (Bartsch & Campbell, 2003;
Robinson & Mitchell, 1995). Indeed, Tardif,
Wellman, and Cheung (2004) showed that false belief
explanations were easier than false belief predictions
even for Chinese children. This provides a strong test
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of the relation between explanation and prediction
because Chinese preschool children are asked many
fewer explanation questions in everyday conversation
than young children in the United States (Miao,
1986).

Data like these suggest that, beyond a vehicle for
revealing emerging childhood insights, children’s psy-
chological explanations may lead their predictions. If
so, then explanations may well be part of the mecha-
nism for the development of children’s understanding
about false belief, narrowly, and about people and
minds more generally. Regarding this point, research
investigating individual differences in children’s theo-
ries of mind provides relevant evidence.

Individual Differences

Children rarely talk about people when alone but do
so with others. Although most families talk about peo-
ple’s actions and emotions during their everyday inter-
actions, these discussions vary from family to family.
Family conversations differ in the frequency with
which children and parents make references to their
own and others’ emotions and cognitive mental states
(Dunn, Brown, & Beardsall, 1991; Hughes & Dunn,
1998; Ruffman, Slade, & Crowe, 2002); the amount
of information (including talk about mental states)
that is encouraged and provided when describing past
experiences (Fivush, 1991; Reese, Haden, & Fivush,
1993); and critically, how often children and parents
talk about the causes and consequences of psycholog-
ical and physical phenomena, that is, engage in
causal explanatory conversations (e.g., Dunn &
Brown, 1993; Hickling & Wellman, 2001).

This early variability in how parents and children
talk about the social world does indeed predict the
development of children’s later performance on
sociocognitive tasks. Importantly, several studies have
shown that children’s affective perspective taking
skills and false belief understanding at 4 and 5 years
can be predicted by differences in how often children
talked about emotions and other mental states with
their mothers (Bartsch & Wellman, 1995; Dunn
et al., 1991; Ruffman, et al., 2002); their siblings
(Brown, Donelan-McCall, & Dunn, 1996); and even
their close friends (Hughes & Dunn, 1998) when they
were 2 and 3 years old.

Aside from talk about mental states generally, vari-
ability in the frequency of explanation during every-
day conversations is a critical predictor of individual

differences in children’s psychological understanding.
For example, Peterson and Slaughter (2003) used a
careful self-report instrument to assess mothers’ style of
conversation with their preschool children. After con-
trolling for chronological and mental age, mothers’
frequency of providing explanations for mental states
(by elaborating on the causes or consequences of
everyday mental occurrences—such as pretending,
forgetting, knowing, or not knowing) correlated signif-
icantly with their children’s performance on a battery
of false belief tasks. In contrast, mothers’ frequency of
simply mentioning mental states did not correlate with
their children’s theory-of-mind performance.

Longitudinal, naturalistic data provide still more
compelling information. For example, in an often-
cited longitudinal study, Dunn and her colleagues
(1991) collected speech samples of everyday conver-
sations of 50 mother-child pairs when the children
were 33 months old and then later assessed children’s
false belief understanding and affective perspective
taking using laboratory tasks at 40 months. Results
showed that the frequency at which children pro-
vided explanations about the causes and conse-
quences of everyday events at 33 months predicted
their affective perspective taking and their false belief
knowledge 7 months later. In a later report, Dunn
and Brown (1993) more precisely differentiated chil-
dren’s talk about causal phenomena at 33 months
into such categories as talk about physical reality, talk
about behavior, talk about social rules, and talk about
internal states (feelings, desires, thoughts, and
beliefs). Children’s causal talk about internal states
was the only category consistently related to their
performance on later sociocognitive tasks.

Ruffman et al. (2002) also report that causal talk
about persons in earlier time periods (at 3 years) pre-
dicts performance on theory-of-mind tasks at later
time periods (at 3.5 and 4 years). Bartsch and
Wellman (1995) report some complementary analy-
ses focusing solely on children’s conversations. They
correlated the age at which children first talked about
beliefs (by making genuine references to persons
thoughts, beliefs, and knowledge) to aspects of their
own and their parents’ talk about mental states at ear-
lier ages. By far the strongest correlation was the cor-
relation between earlier psychological explanations
and later references to beliefs, r � .84. Those children
who as 2.5-year-olds engaged in the most frequent
conversations about the psychological explanations
for persons’ behavior (by citing the actor’s desires)
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were the ones who first made reference to persons’
beliefs and knowledge as 3- and 4-year-olds.

Microgenetic Research

Of course, correlations between the frequency and
content of children’s or parents’ explanations during
everyday conversations and children’s later knowledge
about minds cannot prove direct causal relationships.
Evidence for such causal relationships are more per-
suasively confirmed through experimental studies.

For this reason, among others, Amsterlaw and
Wellman (2006) conducted an initial, microgenetic
study of theory of mind (focused on children’s acqui-
sition of an understanding of false belief). A microge-
netic study is a special type of longitudinal study in
which behavior is sampled frequently—two or three
times a week—to get a fine-grained picture of devel-
opmental change. Siegler (1995a), among others,
argues that not only does cross-sectional research
make the analysis of change impossible, even typical
longitudinal methods are problematic because data
collection is so widely spaced. Within research on
theory of mind, for example, the longitudinal study
with the most frequent sampling tested children on
false belief tasks three times at half-yearly intervals, at
age 3 years 11 months, 4 years 6 months, and then
5 years 0 months (Hughes & Dunn, 1998).
Microgenetic methods address these concerns. In one
sort of microgenetic design, to capture change,
researchers “choose a task representative of the cogni-
tion in question, hypothesize the types of everyday
experiences that lead to change, and then provide a
higher concentration of these experiences than ordi-
nary” (p. 413). False belief is a representative theory of
mind task; seeking and providing explanations may
well be an everyday experience leading to change.

Amsterlaw and Wellman (2006) began with
younger 3-year-olds for whom a pretest showed that
they systematically failed numerous false belief tasks
as well as several other classic theory-of-mind tasks. In
the course of everyday development, it would take
such young children about 1 year to go from consis-
tently making false belief errors to consistent correct
performance (Wellman, Cross, & Watson, 2001).
Amsterlaw and Wellman confirmed, with a control
group, that if such young “failers” engaged in their
typical, everyday experiences, then 10 or so weeks
later they had made virtually no progress in false
belief understanding or in their performance on other

theory-of-mind tasks (see also Flynn, O’Malley, &
Wood, 2004). Indeed, Amsterlaw and Wellman also
took a similar young group of failers and required
them to make false belief judgments (in standard pre-
diction tasks) again and again over many weeks and
multiple sessions. Children were given implicit feed-
back on their false belief predictions by showing them
endings to the stories or vignettes, endings in which
the actors acted appropriately, that is, acted mistak-
enly but in accord with the false beliefs specified by
the events (e.g., unseen changes of location). This was
Amsterlaw and Wellman’s comparison group. For this
group (in spite of many weeks experience of seeing
their false belief predictions fail), there also was little
change in children’s false belief understanding or
more general theory of mind knowledge.

Focally, however, Amsterlaw and Wellman (2006)
took a third group of failers, hypothesized that expla-
nation is key, and so presented those children false
belief situations and asked them to explain the char-
acters’ actions (much as in the illustrative explanation
task we described earlier). This third group was the
focal microgenetic group. For them (and them
alone), there was significant improvement from ini-
tially making consistent false belief errors (being
incorrect 88% of the time) to later being consistently
correct (performing correctly 79% of the time).
Moreover, these microgenetic children also improved
on several other theory-of-mind tasks. For example,
microgenetic children as a whole improved on the
explanations they gave when asked to do so during
their day-by-day sessions. Differences in children’s
explanations, as elicited by their experiences in the
different groups, accounted for their pre- to post-test
improvement or lack of improvement. Specifically,
regression analyses showed that explanations during
the microgenetic sessions were significantly related to
degree of improvement on false belief judgments dur-
ing the microgenetic sessions, controlling for a host of
other factors (R2 � .53). Moreover, children’s expla-
nations were also related to post-test gains, again con-
trolling for other factors (R2 � .64).

These microgenetic data are complemented by
some short-term training studies (e.g., Appleton &
Reddy, 1996; Lohman & Tomasello, 2003), but the
Amsterlaw and Wellman (2006) study is unique in pro-
viding extended microgenetic analyses of change,
approximating the protracted development of every-
day life. To reiterate, from a perspective that views
naïve psychology as undergoing theory change
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(in contrast to several other perspectives), explanation
should constitute a core mechanism for development
(see Box 1). Regardless of differing theoretical
emphases, the data suggest explanations are revealing
and important.

Infants

The claim that explanations are often easier than pre-
dictions, and might lead causal reasoning, might seem to

meet its doom when we consider infants. Infants do not
explain things, at least not so we can hear them. Earliest
conventional explanations, apparent in Hickling and
Wellman (2001), are at about age 2 years.

However, even infants understand causality; they
give causal judgments of a sort. In the realm of physi-
cal causality, for example, by the last half of the first
year, infants understand that physical barriers cause
physical movement to stop. In keeping with our focus
on social cognition more than physical cognition,
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Box 1: Explanations Foster Knowledge
Acquisition in Other Domains

Researchers who have studied students’ comprehen-
sion of texts have frequently demonstrated that read-
ers who ask themselves questions while they read
comprehend better (Trabasso & Suh, 1993). Indeed,
requiring students to answer questions about the text
as they go along—to answer inserted or adjunct
questions—enhances comprehension and learning
(e.g., Hamilton, 1985). Questions that ask for expla-
nations of what has been read are often particularly
effective (e.g., Andre, Mueller, Womack, Smid, &
Tuttle, 1980). More specifically, studies of science
learning have demonstrated that adults who more
actively explain to themselves textbook passages
show better comprehension of scientific principles
(e.g., Chi, Bassock, Lewis, Reimanm, & Glaser,
1989). Thus, when students learn physics from book
examples, better learners more often spontaneously
explain to themselves the authors’ underlying rea-
soning (Chi et al., 1989). And, when students are
trained to provide such explanations for themselves,
they learn more (Chi, de Leeuw, Chiu, &
LaVancher, 1994).

Siegler and his colleagues conducted several
microgenetic training studies that addressed directly
the role of explanation in younger children’s under-
standing of number and physical amounts. Siegler
(1995b) focused on children’s learning of conserva-
tion of number in Piagetian conservation tasks. In
that study, three groups of 5-year-olds, all of whom
initially failed conservation-of-number tasks,
received training on multiple conservation-of-num-
ber tasks over four successive training sessions.
Children in a feedback-only group were given cor-
rective feedback on their conservation judgments
by an experimenter (e.g., were told “No, actually

the two rows have the same number”). Children in
an explain-own-reasoning group were asked to
explain their own predictions (e.g., “How did you
know that?”). Children in an explain-experi-
menter’s reasoning group were given corrective
feedback by an experimenter, then asked to explain
the experimenter’s reasoning (e.g., “Actually the two
rows are the same. How do you think I knew that?”).
Across several different measures of performance and
learning, children in the explain-experimenter’s rea-
soning group outperformed the other groups. By their
final session, children in that group were essentially
70% correct on conservation tasks, whereas children
in the other two groups were 40% correct or less. Note
that children in both the explain-experimenter’s-rea-
soning and the feedback-only groups received infor-
mation about what could be considered to be the true
outcome of certain events (after counting or after
moving the items, the numbers are in fact the same).
However, only children in the explain-experimenter’s-
reasoning group had to explain those outcomes.

Pine and Siegler (2003) present two further stud-
ies, this time targeted to 5- to 7-year-old children’s
developing understanding of a balance beam (for
which children made predictions about whether
various combinations of weight would make the
beam balance and could see if their predictions
were correct). Their second study provides an
important contrast. In that study, they compared
producing explanations for the balance beam events
versus simply seeing the events and being asked to
think about them further. There was a significant
advantage for children who had to provide explana-
tions over just generally engaging in equal amounts
of extended thinking about the problems.

In short, providing explanations significantly
influences children’s causal reasoning and causal
learning.



we describe one representative infant study in the
realm of social cognition.

In attempting to track infant understandings that
might lead to later theory of mind, a key question con-
cerns intentionality—when do infants understand
that a person’s goals, their desires, cause and shape
their behaviors. Infants might understand intentional
human action as intentionally caused—as directed to
and shaped by the actor’s goals—or instead they might
see such actions as mere physical movements.

Consider the study of Phillips and Wellman (2005);
infants saw a person reach over a barrier and grasp an
object, as shown in Figure 16-2. Once the infants were
habituated, the barrier was removed, and they were
shown two test events. One test event showed a direct
reach for the object; the other showed an indirect
reach. These test events contrast two different constru-
als of the person’s actions, one in terms of goal direct-
edness and one in terms of physical motions of the arm.
If in habituation the infant interprets the actor’s action
as goal directed (as the actor going as directly as possi-
ble to get the target object), then when the barrier is
removed, the direct reach is the expected action, and
the indirect reach would be more attention worthy. In
the indirect reach test event, although the actor’s arm
movement remains the same as during habituation, the
actor is no longer going directly to get the object.

In fact, during the test 12-month-olds look longer
at the indirect reach. They dishabituated to the indirect
reach (even though it is showing the exact arm move-
ment as in habituation) and did not dishabituate to the
direct reach (even though it actually shows a different
physical arm movement). This pattern is consistent
with the hypothesis that infants construe the reach as
goal directed. (See Gergely, Nadasdy, Csibra, & Biro,
1995, and Sodian, Schoepper, & Metz, 2004, for
similar data.)

Several control conditions indicate the infants actu-
ally construe human action in terms of goal directed-
ness. The most critical condition, we believe, appears
in our research and involves showing the infant the
same actions as in Figure 16-2 but with no goal object.
In part, this controls for the possibility that infants
might just prefer to look at a curving arm motion. But,
more crucially, if infants see the actions in Figure 16-2
as goal directed, then they should react differently if
there is no goal object. So, for infants in the control
condition, habituation and test were identical to those
for infants in the experimental condition except that no
object was ever present. In this case, because there
was no object, there was no presentation of a goal-
directed action in habituation. And, in this case, appro-
priately, 12-month-old infants did not prefer the
indirect reach test event. So, the experimental data do
not just show a preference for looking at the curved arm
motion. Infants do not prefer that in the control con-
dition. They show appropriate differentiation between
actions with and without goal objects. In sum, infant
looking is sensitive to the goal directedness of the action.
Nine-month-olds (but not the 6-month-olds) evidenced
the same pattern of findings (Csibra, Gergely, Biro, &
Brockbank, 1999; Wellman & Lalonde, 2004).

These sort of habituation methods are often thought
to measure infants’ expectations, their predictions. But,
in fact, we believe these methods more clearly assess
postdiction than prediction. In the study depicted in
Figure 16-2 (and habituation or preferential-looking
studies more generally), the infant’s understanding can
(and most likely does) proceed backward. From seeing
the actor’s action successfully achieve an object (grasp a
ball), the infant could then understand it as an action
directed toward that goal (the ball). The infant, at
this stage, is not necessarily predicting at the outset
where the action will go but only recognizing its goal
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attainment after the fact (see Gergley & Cisbra, 2003,
for a similar analysis). The infant, after the outcome has
been observed, could recognize how it came about, that
is, postdict the event. Indeed, note in our control condi-
tion that if there was no target object (so the action does
not result in a clear object outcome), then infants did
poorly.

This sort of analysis applies to all the earliest
demonstrations of infant understanding of causality.
They all involve test event recognition of the causal
regularities that have already occurred—not expecta-
tions in advance (prediction), but appropriate recog-
nition after the actions have been completed
(postdiction) (see Box 2).
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Box 2: Infant Versus Toddler Findings

Analyzing infant looking-time findings as revealing
explanations or postdictions, rather than predic-
tions, helps explain a puzzling discrepancy in chil-
dren’s performances from infancy to toddlerhood.
This discrepancy has been increasingly commented
on and demonstrated in research, causing some
researchers to wonder what infant looking-time
methods show us at all.

To illustrate, Spelke et al. (1992) showed that
even 2-month-old infants react appropriately to the
displays in Figure 16-3. Infants were first habituated
to a ball rolling behind a screen and the screen being
raised to show the ball had come to rest behind it.
Then, they were shown two test events in which a
barrier (partly visible above the screen) was placed
behind the screen before the ball rolled. Infants
looked longer at the inconsistent test event (shown in
Figure 16-3), showing that they expected the rolling
ball to stop on contact with the solid wall, and found
it attention worthy when it did not. Such data sug-
gest that even young infants understand that solid
objects cannot pass through solid barriers.

However, Clifton and colleagues (Berthier,
DeBlois, Poirier, Novak, & Clifton, 2000) then
presented 2-year-olds with events of the sort shown in
Figure 16-4. In these displays, the ball rolls behind
the screen while the child watches. Then, the child
is asked to find the ball. The 2-year-olds performed
considerably below chance searching for the ball;
that is, they searched for it on either side of the solid
barrier. Thus, 2-year-olds acted as if they did not
understand that solid objects cannot pass through
solid obstacles. Hood, Cole-Davies, and Dias (2003)
present similar findings in which toddlers seemed not
to know something that infants appear to know, given
infant looking-time data.

From our current perspective, one factor that
differentiates these studies of infants versus toddlers
is that the infant studies require only postdiction.

After the outcome is shown, then (and only then) the
infant recognizes what should (and should not) have
happened. The toddler paradigm, however, requires
prediction. To search appropriately, in advance of
seeing any outcome, the toddler must predict where
the ball should be. So, by this analysis, the habitua-
tion method assesses postdiction—explanation—
whereas the toddler method assesses prediction. If
explanation, or at least postdiction, precedes (is eas-
ier than) prediction—as we argue—then looking-
time competence would precede later predictive
competence.

FIGURE 16-4

FIGURE 16-3



Implications for Theory Development
and for Causal Learning

Explanation plays a central role in children’s causal
learning, we contend—whether it is learning about
people and minds or, beyond the social and mental
world, learning about physical phenomena. This has
implications for how to characterize the nature and
development of theory of mind and how to characterize
human causal learning.

As mentioned at the beginning of this chapter, we
favor a theory theory account of theory of mind—our
everyday folk psychology is an everyday theory about
people and minds. Theories explain phenomena, and
explanations are central to theories; thus, a theory the-
ory account places explanations at the center of every-
day conceptual understanding and development (see
Bartsch & Wellman, 1989; Gopnik, 2000; Gopnik &
Wellman, 1994; Wellman, 1990). One reason we pre-
fer this account is because it is the only one that gives
a central role to explanations.

One alternative account (e.g., Baron-Cohen, 1995;
Leslie, 1994) argues for the existence of an innate
theory-of-mind module. Such a module “spontaneously
and post-perceptually processes behaviors that are
attended, and computes the mental states which con-
tributed to them” (Scholl & Leslie, 2001, p. 697).
Modular accounts do not emphasize explanations,
but rather they emphasize the modularized computa-
tions that lead to mental state attributions. In fact,
current evolutionary accounts of modular cognition
focus exclusively on how specialized information
processors increase the organism’s ability to solve
adaptive problems by making accurate predictions of
the environment and responding accordingly. In this
account, understanding and providing explanations
are unnecessary for solving adaptive problems. In these
adaptiveness accounts, for example, one needs to pre-
dict whether a conspecific will cheat in a cooperative
relationship, but one does not need to explain why a
conspecific cheated (Cosmides & Tooby, 1994). Any
sort of conscious understanding and explanatory
insights are mere epiphenomena of solving adaptive
problems. As another example, syntactic modules parse
linguistic inputs quickly without people having or need-
ing any explanatory insights into the structure of lan-
guage. According to modular accounts, theory of mind
works similarly.

A different alternative to theory theory proposes
that children and adults understand mental states not

through theoretical constructs like belief and desire
but rather through a simulation process in which they
assess their own possible experience in a situation and
attribute similar states to others (e.g., Harris, 1992,
2000). Explanations play no crucial role in simulation
accounts either, which concentrate instead on chil-
dren’s developing abilities to engage in attribution by
simulation. As with modular accounts, the central
focus of simulation accounts is simply solving the
problem of attribution. Development follows the
child’s increased ability to simulate.

In short, of the different accounts of theory-of-
mind development, only in theory theory do expla-
nations play a central role. Only theory theory
predicts a fundamental and motivating role for
explanations in development, predicts that explana-
tions lead development, and insists that explanations
provide part of the mechanism underlying develop-
ment. As we argue in this chapter, such an account
more accurately matches the empirical data:
Explanations provide a motivating role in children’s
thinking about people, they lead predictions in
development, and they influence how development
proceeds.

How does this emphasis on explanations relate to
or inform causal Bayes net approaches to causal
learning? Let us use the work of Gopnik et al.
(2004) as a springboard. In that article, the authors
use the construct of causal maps to help consider
how causal learning and reasoning proceeds. Causal
maps are to be understood on analogy to spatial cog-
nitive maps. Spatial cognitive maps “allow animals
to represent geometric relations among objects in
space nonegocentrically, generating new informa-
tion and relations not previously directly experienced,
and then to generate new spatial inferences” (p. 5).
An animal that maps the spatial layout of a maze
from limited exposure to it “can use that informa-
tion to make new inferences about locations in the
maze” (p. 5). On analogy to spatial maps, causal maps
assemble specific experiences into a larger system
that we use to infer new causally rich information/
knowledge as evident in future predictions and
interventions.

The philosopher of science Toulmin (1953/1967)
goes further to suggest a general analogy from theories
to maps.

We have seen how natural it is to speak of ourselves
“finding our way around” a range of phenomena
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with the help of a law of nature, or “recognizing
where on the map” a particular object of study
belongs. In doing so, we are employing a carto-
graphical analogy which is worth following up:
for . . . the analogy between physical theories and
maps extends for quite a long way and can be
used to illuminate some dark and dusty corners in
the philosophy of science. (chapter 4, “Theories
and Maps”) (p. 94)

Using this notion of causal maps helps us articulate
our conclusions.

Causal maps can be thought of as capturing larger
explanatory frameworks and knowledge. A map cap-
tures not only one or two local regularities, but also
provides a larger structured framework in which
numerous specific observations are placed and
ordered. In the case of causal maps, the idea is that
numerous causal regularities are assembled into a
larger coherent framework. Once assembled, such
causal maps certainly allow prediction and interven-
tion, but assembling a causal map in the first place
seems to us to be more like an act of postdiction than
prediction. And, once assembled, beyond prediction
and intervention, causal maps provide explanations.
That is, some single regularity is made sense of (i.e., is
explained) by its place within the larger map—the
larger system of causal forces of which it is a part (as
represented in the causal map).

To elaborate on this briefly, consider again spatial
maps. A spatial map can be importantly distinguished
from a set of directions. Directions (such as how to get
from the airport to home by turning left, then right,
etc.) provide spatial predictions and interventions—
following the directions gets you home. A spatial map
is more than a list of directions, however (and may or
may not be precisely useful for getting home). A map
shows that home is north of the airport, that there are
multiple routes home, and that in going from airport
to home the bay is on the left and the mountains are
on the right. In short, a spatial map organizes spatial
information into a larger informative network. The
same applies, we believe, to a properly rich notion of
causal maps. Causal maps not only spell out predic-
tions and interventions, but also organize causal infor-
mation into a larger, coherent explanatory network of
understandings.

What about causal learning? In their article,
Gopnik et al. (2004) devote much of their attention
to the question of how causal knowledge might be
learned and acquired. They answer in terms of Bayes

net modeling. In general, their answer points to
learning algorithms that use causal Bayes nets and
that adjust the nets when they generate failed predic-
tions rather than accurate ones. Crudely, the model
of learning they emphasize proceeds as follows: On
the basis of observation the learner assembles an ini-
tial causal understanding, then using that under-
standing makes a causal prediction (or predicts the
outcome of a causal intervention), then observes the
outcome that occurs, and when there is a difference
(the initial prediction mismatches the observed
outcome) the learner revises the initial causal under-
standing. Thus the emphasis for learning is on failed
predictions and the learning currency is predictive
accuracy.

We argue, however, that for everyday causal learn-
ing in the service of theory development, the empha-
sis actually is on unsatisfying explanations, and the
learning currency is explanatory adequacy. That is,
the learner does more than tally failed and successful
predictions. Effective learning depends on providing
explanations, not just predictions, then assessing and
reassessing one’s satisfying and unsatisfying explana-
tions. That is, we propose (yet again) that the engine
of naïve theory change in children and adults is simi-
lar to that of scientific theory change. In science, new
theories are constructed to explain existing data (so
explanations figure prominently in theory creation).
Failed predictions are useful in deciding between
competing scientific theories, but failed predictions
cannot create new theories. That is the role of expla-
nations.

In support of this perspective, recall that in the
Amsterlaw and Wellman (2006) microgenetic study,
children in the comparison group made predictions
and observed those predictions were wrong. But,
this yielded no change in their understandings.
Children in the focal microgenetic group explained
(or attempted to explain) their predictions. This
process of attempting to explain predictions did yield
significant changes in children’s understandings.
Thus, attempting to explain new information (e.g.,
explain what happened instead of what was mistak-
enly predicted) seems most important for causal
learning.

Our demonstrations of the power and precedence
of explanations in learning and development raise an
important question. What accounts for the power of
explanations? What is the special learning leverage
they provide? The answers to these questions are not
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clear yet, but we see several (probably interrelated)
possibilities. First, being motivated or provoked to
provide an explanation requires at the least more
extended processing of an event, outcome, or occur-
rence. However, we do not think that extended pro-
cessing is the most important part of the story (see
Box 1). So, second attempting to provide an explana-
tion requires the learner to construe the phenomena
in question in additional, “larger” terms, in terms of
constructs, concepts, frameworks recruited to explain
and make sense of the phenomena.

For learning, therefore, explanations recruit the
power (the computational leverage) of employing two
levels of analysis, not just one—in this case, the phe-
nomena themselves and the additional interpretative
constructs, causal maps, or frameworks that explain
the phenomena. That is, from our perspective, chil-
dren’s causal understandings include several levels of
analysis—at the least a level concerned with certain
surface phenomena and regularities (e.g., X precedes
Y with some sort of regularity) and another level that
frames, interprets, and provides a causal analysis of the
surface phenomena. Call this the interplay between
evidence and theory. At the level of evidence, children
see states of the world and patterns of behavior, but at
the level of theory, they also analyze or construe these
in terms of desires, beliefs, and intentions. Children
also distinguish between appearances and the mental
states that might produce appearances (e.g., the emo-
tion that might cause a facial display of sadness) and
between appearances and representations (e.g., the
conditions that might cause someone to misrepre-
sent—to believe falsely—some apparent object or
identity). Thus, construing actions in terms of under-
lying mental states embodies (at least) two levels of
analysis. Such alternative analyses fuel attempts to
compare, share, merge, and create new conceptions,
including especially new causal conceptions.

Indeed, if one construes everyday theory of mind
as embodying framework theories as well as specific
theories (Wellman, 1990) along with evidential phe-
nomena (observable behavior, appearances, and
states of the world), then explanations recruit and
require resources at multiple (not just dual) levels of
analysis. As Tenenbaum & Griffiths (this volume)
argue, these multiple levels are particularly fertile
ground for learning the causal structure of the world.

Last, we hark back to our plausibility arguments
about explanation being easier than prediction in
dealing with causality. In explanation, an additional

piece of information, the outcome of the causal
chain, is considered. This additional piece of informa-
tion constrains the problem space of the causal prob-
lem and reduces concern about enabling conditions.
Being easier, explanation provides the initial steps to
learning about a particular domain’s causal frame-
work. That is, explanation provides a smaller problem
space for working out the initial hypotheses that build
into a causal theory. Just as reverse engineering pro-
vides a smaller problem space for working out a
device’s design, over time children discover reliable
patterns in their reverse-engineered explanations and
from those form and strengthen connections in causal
maps that allow for predictions.

The confluence of people’s motivation to explain
along with explanation’s leading role in theory devel-
opment make explanation fundamental in any mod-
els of causal reasoning development. In this chapter,
we took theory of mind as a case study for demonstrat-
ing the precedence of explanation in learning and
development. However, we believe that the central
role of explanation extends to many domains of con-
ceptual development.
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In discovering causes of events, people evidently use
various types of evidence or cues (e.g., Einhorn &
Hogarth, 1986). Virtually all models of causal learn-
ing (e.g., Cheng, 1997; Rescorla & Wagner, 1972)
have focused on how causal relations are learned
based on covariation information—namely, infor-
mation about whether the presence or absence of
one event (C or ~C) co-occurs with the presence or
absence of another event (E or ~E). Thus, in all of
these models, relevant input data are classified as
CE, ~CE, C~E, or ~C ~E, as summarized in
Figure 17-1. Existing models of causal learning have
stipulated different ways in which these four types of
covariation evidence would or should be combined
to evaluate the causal relationship among events.
Yet, these models in their current forms share an
underlying assumption that all events of a given type
(e.g., CE) play an identical role in assessing causal
strength.

One model of causal induction combines covaria-
tion information into a contingency measure called

�P (e.g., Jenkins & Ward, 1965). The value of �P is
calculated as follow:

(17-1)

According to Equation 17-1, the different types of
covariation information play a static role in assessing
contingency. For example, all events of type CE play
a role in increasing �P regardless of the context. 
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FIGURE 17-1 A traditional two-by-two contingency
table used in models of causal learning.



It cannot be the case that some CE increases �P and
some CE decreases �P.

Another causal induction model computes a
measure called causal power from covariation infor-
mation (Cheng, 1997; Novick & Cheng, 2004). For
instance, the simple causal power for a generative
cause is computed as follows:

(17-2)

Again, it should not be difficult to see that, as in �P,
the types of covariation information play static roles in
computing an estimate of causal strength in the
PowerPC theory.

Another dominant class of models is associative
learning models, such as the Rescorla-Wagner (RW)
model (Rescorla & Wagner, 1972). In this model, the
associative strength V on the nth trial for each cue is
updated according to the following calculation:

�Vn���(���Vn�1) (17-3)

In this equation, � is 1 when the outcome is present
and 0 when the outcome is absent. The parenthetical
quantity is the amount of error on the nth trial; the dif-
ference between the outcome (�) and the summed
associative strength of the present cues (�Vn�1). The
saliency of the cue and the outcome are represented
by the positive quantities � and the � parameters,
respectively.

Like other models of causal learning, the RW
model treats all observations of a given type uniformly
(see Wasserman, Kao, Van Hamme, Katagiri, &
Young, 1996, for details). For instance, when encoun-
tering a CE event, the change in association strength
of C is as follows:

�VCause���(�Outcome��VCause�Context) (17-4)

Given normal values for the necessary parameters,
this quantity will be positive and increase the per-
ceived strength of the relationship between the cause
and effect. Similarly, for all C~E events, the change
in association is as follows:

�VCause���(�NoOutcome��VCause�Context) (17-5)

This quantity will be negative, leading to a decrease in
the perceived strength of the relationship between
cause and effect.1
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Unlike the assumption shared by the discussed
models, we believe that each type of evidence in
Figure 17-1 is open to multiple causal interpretations.
For instance, when C is present and E is absent, then
it may be because there is a negative relationship
between C and E, because there is no relationship
between the two, or because C is indeed a cause of E
but some necessary precondition was not satisfied.
Similar interpretations can be made for each type of
contingency information (see Table 17-1).

The decision about which interpretation to use is
presumably influenced by multiple factors. One
plausible influence is the reasoner’s belief about the
causal relationship at the time the observation is
encountered. Of course, such beliefs should in turn
depend on previously encountered observations. For
example, if prior observations lead a reasoner to
believe in a positive relationship between two vari-
ables, the reasoner may be more likely to interpret
subsequent events according to the positive interpre-
tation column in Table 17-1. If someone else believes
that there is a negative relationship between events,
that person may make interpretations more like those
in the negative interpretation column.

In this chapter, we review three sets of studies,
demonstrating that people spontaneously treat the
same type of evidence differently because of beliefs
developed during prior causal induction. In particu-
lar, our major thesis throughout these studies is that
people develop hypotheses about causal relations
early during causal learning and interpret subse-
quent data in light of these hypotheses. As a result,
the reasoner’s working hypothesis can then lead to
identical data playing different roles. Such dynamic
interpretations of data result in the primacy effect in
causal learning, inferences about unobserved, alter-
native causes, and interpretations of ambiguous
stimuli.

Primacy Versus Recency Effects 
in Causal Induction

The use of an existing hypothesis in the interpretation
of contingency information has great implications for
the evaluation of sequential information. If a reasoner
is given a set of evidence that suggests that C causes E,
subsequent negative information may be reinterpreted
in one of the ways shown in Table 17-1. For example,
a piece of C ~E evidence may be interpreted as an
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example of the failure to satisfy a precondition, and a
piece of ~CE evidence may be seen as the presence
of an alternative cause. Conversely, on first encounter-
ing a majority of negative evidence at the beginning of
an information set, people would interpret CE as a
spurious correlation and ~C~E as an absence of any
relationship.

Dennis and Ahn (2001) tested the prediction that
the order in which people encounter evidence would
influence causal strength estimates because people ini-
tially develop different hypotheses, which result in dif-
ferent interpretations of subsequent covariation
information. Participants observed a sequence of trials,
each describing the presence or absence of two events,
and then judged the causal strength between the two
events at the end of the sequence. Participants in the
positive-first condition observed the bulk of the positive
evidence, followed by the bulk of the negative evidence
without any explicit marking for when the second set
began. In the negative-first condition, participants
observed the bulk of the negative evidence followed by
the bulk of the positive evidence. Although the order
was different, all participants observed �P of 0.

The PowerPC theory (Cheng, 1997) does not pre-
dict an order effect. Contingency-based models calcu-
late the causal strength of an event over all available
trials at once when enough observations are accumu-
lated. Order of information does not change the prob-
abilities used in Equation 17-2. Therefore, the
ordering of information in Dennis and Ahn (2001)
should have no effect on estimates of causal strength
according to these models.

In the RW model, the strength of association
between cue and outcome is updated at each trial, mak-
ing the model sensitive to the sequence in which a series
of learning trials is presented. In our simulation of the
Dennis and Ahn (2001) experiments, the RW model
yielded clear recency effects for almost every logical
combination of parameters. The RW model predicts the
recency effect because the degree to which an outcome
is surprising determines associative learning. Evidence
suggesting a positive relationship would be more surpris-
ing after a bulk of negative evidence (negative-first con-
dition) than in the absence of such negative evidence
(positive-first condition). Similarly, negative evidence is
more surprising after presentation of positive evidence
(positive-first condition) than in the absence of such evi-
dence (negative-first condition). Consequently, in both
conditions, the later information is more surprising and
hence has a larger impact on associative strength, result-
ing in the recency effect.

Unlike the predictions of these two models,
Dennis and Ahn (2001) found a primacy effect:
Participants in the positive-first condition gave much
higher estimates than those in the negative-first condi-
tion. Given that the primacy effect can pose a critical
problem for all existing models of causal induction
and that some research has found the opposite order
effect of recency (Collins & Shanks, 2002; López,
Shanks, Almaraz, & Fernández, 1998), it is crucial to
understand the conditions under which the primacy
effect occurs. Dennis (2004) and Marsh and Ahn
(2005b) examined two possible reasons for obtaining
the recency effect in causal induction.
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TABLE 17-1 Possible Interpretations for Each Type of Evidence

Evidence Positive Interpretation No Relation Interpretation Negative Interpretation

CE C caused E, so E C has nothing to do with E, C suppresses E, but
occurred when C and C and E just happened to something went wrong,
occurred occur together so C and E occurred

together

~C~E C causes E, and E did not C has nothing to do with E, C suppresses E, and E
occur because C did not and it just happened that E did not change because 
occur did not occur when C did not its true cause did not occur

occur

C~E C causes E, but E did not C has nothing to do with E C spppresses E, so E did
occur because something not occur because C
went wrong occurred

~CE C causes E, but E was C has nothing to do with E C suppresses E, so E
caused by something else occurred because C did
in this case not occur



One possible methodological difference between
studies finding recency and those finding primacy is
the frequency with which estimates of causal relations
were made by participants. López et al. (1998) asked
participants to estimate causal strengths multiple
times during learning (step-by-step estimates),
whereas Dennis and Ahn (2001) asked for the esti-
mate only at the end of learning (end-of-sequence
estimates). Hogarth and Einhorn’s (1992) analysis of
tasks used in the impression formation literature
found that end-of-sequence estimates induced primacy,
whereas step-by-step estimates tend to induce
recency. Hogarth and Einhorn explain that impres-
sion formation involves belief updating, and the first
piece of evidence (or an amalgamation of the first few
pieces) serves as the anchor in end-of-sequence tasks.
The anchor then serves as the guide by which all other
information is updated, resulting in a force toward pri-
macy. On the other hand, in step-by-step tasks, people
are forced to revise their hypotheses whenever they
generate a new estimate, and thus the first piece of
evidence no longer serves as an anchor after an esti-
mate is made. According to Hogarth and Einhorn’s
belief-updating model, the weight of each new piece
of evidence is adjusted based on a mechanism similar
to the RW model: The more new information differs
from the current position, the more weight it receives.
Therefore, as in the RW model, the recency effect is
predicted for step-by-step estimation.

Collins and Shanks (2002) presented a more
direct investigation of the effects of estimate fre-
quency on causal induction judgments. Using the
same paradigm as in Dennis and Ahn (2001), they
found that an end-of-sequence estimation procedure
created a primacy finding, whereas more frequent
estimation (every 10 trials) produced recency. Careful
examination of Collins and Shanks’s procedure pro-
duces reasons to suspect that the recency effect might
have been induced by demand characteristics of the
frequent estimate condition. Asking for an estimate
only at the end of a sequence may implicitly cue par-
ticipants to integrate over all information they have
seen to make an estimate (e.g., “Because I have not
been asked to make an estimate yet, then they must
want me to use all of the information I have seen”).
However, when some type of judgment is asked for
every 10 trials, participants can interpret this as a cue
that only the current information should be used
(e.g., “Because I am repeatedly asked to make an esti-
mate, there must have been some change in the data

that warrants only using the most recent informa-
tion”). Collins and Shanks failed to take cautionary
measures to prevent this type of misinterpretation, as
has been done in other studies (e.g., Catena,
Maldonado, & Candido, 1998). Collins and Shanks
compounded this problem by instructing participants
that they will improve over the course of the experi-
ment (“Although initially you will have to guess, by
the end you will be an expert!” p. 1147).

Dennis (2004) replicated the work of Collins and
Shanks (2002) with two critical modifications.
Participants were asked to make causal strength
estimates at every trial. This frequency was the
strongest possible manipulation for the frequency of
estimation argument, but at the same time, it reduces
the demand characteristics in that there is no incre-
mental set of data that participants might think as
more important. Second, at each judgment, partici-
pants were asked to consider all data they had seen so
far. Adding these instructions favors neither the
recency nor the primacy effect, but eliminates the
potential demand characteristics. With these two
measures taken to eliminate the demand characteris-
tics, Dennis found a strong primacy effect despite 
the fact that participants had to make step-by-step
judgments.

A second possible explanation of recency effects is
task complexity. López et al.’s (1998) learning materi-
als were much more complex than those of Dennis
and Ahn (2001). López et al.’s participants received
information about a disease X and three possible
symptoms. In one half of the learning sequence (the
contingent block), one of these symptoms (A) was
always paired with another (B). When the compound
symptoms AB were presented, the patient usually had
the disease, but when symptom B occurred alone, the
disease was usually not present. This pairing suggests
B was a worse predictor of the disease than was A. In
the other half of the sequence (the noncontingent
block), Symptom A was paired with a new cue (C). In
this block, however, the disease occurred as often
with C alone as with Compound AC, suggesting 
that Symptom C was a better predictor than A.
Comparing the two blocks, higher ratings of the rela-
tionship between Symptom A and the disease should
be given for the contingent than the noncontingent
block. The order of these two blocks was manipulated
to create different conditions in which either the
contingent block was presented first or the noncon-
tingent block was first. López et al. found that ratings
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of the relationship between Symptom A and the
disease were higher in conditions in which the contin-
gent block was last (hence a recency effect).

López et al.’s (1998) design becomes complicated in
that they simultaneously presented another set of stim-
uli with the same structure during the same learning
phase (e.g., two contingent blocks each instantiated 
in its own disease). Furthermore, participants were
simultaneously presented with two more sets of materi-
als for the opposite order condition, thereby leading to
symptom information for four diseases presented simul-
taneously. As a way to approximately illustrate complex-
ity of the task given in this experiment (albeit in a
somewhat arbitrary way), we can say that across all four
sets of materials, participants had up to 20 hypotheses (3
single cues and 2 configural cues in each set times 4
sets) to keep track of by the time they got to the end of
the experiment. Under this situation, the recency effect
is more likely because participants would lose track of
the hypotheses that they were testing and base their
judgments on the most recent evidence. Participants
could also fail to develop any hypotheses until later tri-
als. In contrast, Dennis and Ahn’s (2001) participants
kept track of only one hypothesis. Marsh and Ahn
(2005b) propose that the recency effect found in López
et al. (1998) is an artifact of an overly complex proce-
dure. Using the identical stimuli and procedure as
López et al. but reducing the number of hypotheses to
be tested to 5, we found a strong primacy effect (Marsh
& Ahn, 2005b, Experiment 1).

In another experiment, Marsh and Ahn (2005b)
doubled the cognitive load during learning by using
two sets of stimulus materials, such that the number of
causal relations to be considered would be 10. (This
still would be half the amount López et al. found in
1998.) Given this increase, neither a recency nor a pri-
macy effect was found. In this study, participants’ spa-
tial and verbal working memory capacity was also
measured. We believe that the primacy effect did not
occur in López et al.’s study because there were too
many hypotheses to be examined early. If a subject has
a large working memory capacity, then that subject
would be more likely to be able to handle keeping track
of so many hypotheses and be more likely to show the
primacy effect. Indeed, Marsh and Ahn (2005b) found
that participants’ verbal working memory capacity pos-
itively correlated with the amount of primacy effect.

To summarize, work on order effects suggests that
basic covariation information can be interpreted dif-
ferently over the course of learning. As was indicated

by results from Dennis and Ahn (2001), Dennis
(2004), and Marsh and Ahn (2005b), information
early in a learning sequence can greatly color the
interpretation of later information. It is proposed that
this early information serves as a basis by which
hypotheses about causal relationships are formed.
Later information is then differentially interpreted in
overall estimates of causal strength. Such malleable
interpretations are in contrast with the standard view
of covariation data as uniform, static information.

Unobserved Alternative Causes

Models such as �P (Cheng & Novick, 1992),
PowerPC (Cheng, 1997), and RW (Rescorla &
Wagner, 1972) use information about whether an
event occurred (such as in Figure 17-1) to evaluate
the causal strength of variables. There are situations,
however, in which such information is not available.
Imagine a situation in which a doctor is treating a new
disease. The doctor believes that there are two poten-
tial causes of the disease. The first is exposure to high
levels of mercury, which can be measured using a
blood test. The second is thought to be a genetic
anomaly that is currently undetectable. In this case,
one of the ostensible causes (the genetic anomaly) is
unobservable. With respect to this cause, patients may
be grouped as either having the disease or not, but
they cannot be further broken down into the cate-
gories shown in Figure 17-1 (e.g., CE vs. ~CE and
C~E vs. ~C~E). Such situations thus pose a problem
for models that rely on contingency information as
their input; these models cannot render judgments
about the unobserved cause because the necessary
input is not available.

Luhmann and Ahn (2003, 2006) demonstrated
that, unlike the difficulties manifest in current models,
people spontaneously make causal judgments about
unobserved causes. The experimental situation used
in these studies mirrors the example given in the pre-
ceding section. In each case, there were two causes
and one effect. One of the causes was fully observable
(similar to the mercury levels), and one was unob-
served (similar to the genetic anomaly). The effect was
always observable. In their Experiment 1, Luhmann
and Ahn (2003) found that although they were
allowed to withhold their judgments, participants were
willing to make estimates on causal strength of unob-
served causes. Because unobserved causes do not yield
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covariation information, these findings imply that peo-
ple used a different source of knowledge to make judg-
ments about the unobserved causes.

A critical finding of Luhmann and Ahn (2003) was
that observations of what the authors refer to as unex-
plained effects led to differential causal judgments of
the unobserved cause. Unexplained effects are occa-
sions on which the effect occurs in the absence of any
observed cause. In the above example, unexplained
effects would be an instance in which a person
contracts the disease but tests negative for mercury.
Luhmann and Ahn (2003) found that people judged
the unobserved cause to be stronger when such
instances of unexplained effects occurred than when
they did not occur.

Unexplained effects imply the existence and oper-
ation of an unobserved alternative cause on those
occasions, and this belief triggers the creation of a
hypothesis about the unobserved cause. Because
unexplained effects indicate that the unobserved
cause was responsible for the effect on that occasion,
the hypothesis about the unobserved cause should ini-
tially posit a positive (i.e., generative) relationship of
nonzero strength between the unobserved cause and
the effect. This hypothesis is assumed subsequently to
operate as described in the preceding section; that is,
the hypothesis about the unobserved cause will color
the interpretation of subsequent experience.

Specifically, our prediction was that if people
maintain a hypothesis about the unobserved cause,
then observations should be interpreted as confirming
this belief (Lord, Ross, & Lepper, 1979). Thus, in
conditions with unexplained effects, participants
should believe the unobserved cause to be responsi-
ble for the target effect and thus interpret observations
to conform to this belief. For instance, in the subse-
quent CE trials (i.e., joint presence of the observed
cause and the effect), participants would believe that
the unobserved cause is likely to be present as well,
whereas in the subsequent ~C~E trials, they would
believe that the unobserved cause is unlikely to be
present. Next, we describe two experiments testing
this prediction.

The first study sought to evaluate people’s explicit
beliefs about the presence or absence of the unob-
served cause. To do so, we provided participants with
a causal learning task like that used by Luhmann and
Ahn (2003). To reiterate, one of the causes and the
effect were fully observable, and the other cause 
was unobservable. In addition, after each trial, we

explicitly asked participants to judge how likely it was
that the unobserved cause was present on that occa-
sion. Twenty-four participants viewed each of the four
contingencies shown in Table 17-2 and made their
likelihood judgments using an 11-point scale (0, defi-
nitely not pressed; 10, definitely pressed).

Table 17-3 shows mean ratings broken down by
the four conditions and four trial types. The first
finding to note is that the unobserved cause is most
likely to be present during unexplained effects (~CE)
trials, as expected. In the next analyses, we examined
whether participants interpreted trials in light of their
beliefs about the unobserved cause. If participants are
interpreting observations as consistent with their
beliefs about the unobserved cause, then they should
believe that the unobserved cause covaries with the
effect more in the two conditions with unexplained
effects than in the two conditions without unex-
plained effects.

To test this, we compared CE trials and ~C ~E tri-
als, the only trial types shared among the four condi-
tions. If participants believed the unobserved cause
covaried with the effect (which we predicted to be the
case in the conditions containing ~CE), then partici-
pants should believe the unobserved cause to be more
likely present on CE trials and more likely absent on
~C~E trials; the unobserved cause should covary with
the effect. Participants who do not believe the unob-
served cause covaried with the effect (which we pre-
dicted to be the case in the conditions without ~CE)
may believe that the likelihood of the unobserved
cause being present is more similar on these two trial
types; the unobserved cause should not covary with
the effect.

For each participant, their average rating for ~C
~E trials was subtracted from their average rating
for CE trials. This composite score serves as an index
of the degree to which participants believed the unob-
served cause to vary with the effect. A 2 (C ~E present/
absent)�2 (~CE present/absent) repeated measures
analysis of variance was performed on this composite.
This analysis revealed a significant main effect of
unexplained effects (~CE trials), F(1, 23)�8.77, mean
square error�84.52, p �.01, because the composite
was higher in conditions that included ~CE (Mean
[M]�3.60) than on conditions that did not include
~CE (M � 1.72). This analysis suggests that unex-
plained effects not only lead to the perception of a
stronger unobserved cause (as demonstrated by
Luhmann & Ahn, 2003), but also led participants to
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TABLE 17-3 Average Trial-by-Trial Likelihood Ratings for the Various Trial Types in Each Condition Plus
Marginal Averages

Condition ~CE Present, ~CE Present, ~CE Absent, ~CE Absent, 
C~E Absent C~E Present C~E Absent C~E Present

E ~E E ~E E ~E E ~E

Likelihood (U) C 5.80 5.80 C 5.38 3.41 4.40 C 4.10 4.10 C 5.26 3.76 4.51
~C 7.51 2.15 4.83 ~C 7.84 1.82 4.83 ~C 3.16 3.16 ~C 2.7 2.70

believe that the unobserved cause covaries with the
effect. Participants interpreted the unobserved cause
differently on identical trials depending on whether
they had observed unexplained effects.

Thus, we have demonstrated that unexplained
effects result in the belief that the unobserved cause
covaries with the effect and the belief that the rela-
tionship between the unobserved cause and the effect
is strong. An obvious question is whether these beliefs
are related. It seems plausible that people are able to
make causal judgments about unobserved causes
(and were confident in these judgments; see
Luhmann & Ahn, 2003) because they have informa-
tion about how the unobserved cause covaries with
the effect. This information is not present in the input
as current theories of causal learning assume but
rather is imposed on the input by the reasoner. To
explore whether people’s trial-by-trial beliefs influ-
ence their subsequent causal judgments, a second
experiment was conducted using a paradigm similar
to that of Dennis and Ahn (2001) as described in the
preceding section.

Fifty participants viewed each of two causal situa-
tions. The two situations used the set of trials
represented in Figure 17-2. This set of trials was
divided into two blocks, although there was nothing to
indicate this to participants. One block contained
unexplained effects, and the other did not. These two

blocks could be ordered in one of two ways; the block
containing unexplained effects could be presented
either first or second. After viewing all trials, partici-
pants were asked to judge the causal strength of both
the observed and unobserved cause. Note that,
because the only manipulation was the order of the
two blocks, participants always saw the same set of
covariation data by the end of the sequence. Thus,
any differences between conditions cannot be a result
of the number or type of trials observed.

We predicted an order effect for the following rea-
sons: When participants observed unexplained effects
early, considerably more evidence was available to
interpret as consistent with, and thus reinforce, the
hypothesis about the unobserved cause. This addi-
tional reinforcement would lead participants to per-
ceive the unobserved cause as a strong causal
influence. When participants observed unexplained
effects late in experience, a significant number of the
observations had already occurred and thus were not
interpreted in light of the newly formed hypothesis.
This would lead participants to perceive the unob-
served cause as a weaker influence.

As summarized in Figure 17-3, participants gave a
significantly higher rating for the unobserved cause in
the early unexplained effects condition (M�73.50,
standard deviation [SD]�25.90) than in the late-
unexplained-effects condition (M�61.66, SD�27.79),

286 CAUSATION, THEORIES, AND MECHANISMS

TABLE 17-2 Contingencies Used in Each of the Four Conditions

Condition ~CE Present, ~CE Present, ~CE Absent, ~CE Absent
C~E Absent C~E Present C~E Absent C~E Present

E ~E E ~E E ~E E ~E

Contigency structure C 10 0 C 10 10 C 10 0 C 10 10

~C 10 10 ~C 10 10 ~C 0 10 ~C 0 10

Each condition contains CE and ~C~E observations. Only the presentation of ~CE and C~E observations differs.



t(49)�2.89, p�.01. These results support the idea that
observations obtained after creating an unobserved
cause hypothesis act to reinforce the hypothesis.

Note that this is not the only possible outcome.
Theoretically, when participants in the late unex-
plained effects condition first observed an unexplained
effect, they could create an unobserved cause hypoth-
esis and reevaluate all previously obtained observa-
tions. Such retrospective reevaluation would likely
require significant cognitive resources and thus may
not be a generally economical strategy.

Consistent with the work of Dennis and 
Ahn (2001), these studies indicate that identical

observations can be interpreted differently depending
on the beliefs held by the observer. The two studies
reported in this section demonstrate that such
dynamic interpretations occur when evaluating unob-
served causes just as they do with observed causes.
Moreover, this differential interpretation influenced
both explicit likelihood ratings and causal strength
ratings. These findings suggest that unobserved causes
are sometimes treated very much like observed
causes. The observer can establish beliefs about an
unobserved cause, interpret observations to overcome
the absence of covariation information, and subse-
quently compute causal strength.
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FIGURE 17-2 A summary of the observations presented to participants. The contingency
table summarizes the covariation of the observed cause and the effect. The set of obser-
vations was divided into two blocks. One block contained unexplained effects; the other
did not. The order of these blocks was manipulated.

FIGURE 17-3 Participants’ mean causal strength judgments.
Error bars indicate standard error.



Dynamic Interpretations of 
Ambiguous Stimuli

As discussed, the major models of causal reasoning (e.g.,
Cheng, 1997; Cheng & Novick, 1990; Rescorla &
Wagner, 1972) deal with information that is uniformly
presorted into the standard contingency table (see
Figure 17-1). What occurs if information pertaining to
a possible causal relationship is not so clearly defined
regarding which of the four evidence types it represents?
For example, consider trying to assess whether high
stress causes insomnia. There are some events that are
obviously instances of the presence of high stress (e.g.,
taking medical school entrance exams) and some events
that are easily classified as the absence of high stress
(e.g., sunbathing on a tropical island). However, there
exists a wide spectrum of events between these two
extremes that are not so clearly classified as the absence
or presence of stress (e.g., waiting in a crowd, writing an
e-mail, celebrating a milestone birthday). How would a
reasoner assess a hypothesis such as “High stress causes
insomnia” when the great amount of ambiguously iden-
tified evidence has no clear place in the classic repre-
sentations of causal information?

Similar to how an existing hypothesis can affect
the interpretation of sequential information and influ-
ence beliefs about an unobservable cause’s operation,
a governing hypothesis can be used to assess ambigu-
ous causal information. For example, imagine that a
reasoner keeps experiencing events in which high
stress preceded a night of insomnia, whereas insomnia
never followed a stress-free day. The reasoner then is
asked to assess whether a friend was experiencing high
stress given the observation that after a day spent read-
ing the person did not sleep. The reasoner would use
the belief that high stress causes insomnia to interpret
the observation as an instance of a high-stress day.
Even though a day of reading in itself might not be
stressful (e.g., reading the latest romance novel) or
could be stressful (e.g., searching job postings in the
classifieds), the given instance of reading would be
classified as stressful because such an interpretation
matches the reasoner’s existing theory of the relation
between events. In this way, information not inherent
to the standard representation of covariation informa-
tion would influence causal estimation.

To test the hypothesis that a governing causal
hypothesis can cause an ambiguous event to be reinter-
preted as a specific instance outlined in Figure 17-1,
Marsh and Ahn (2005a) introduced ambiguous causal
candidates into a traditional causal induction paradigm.

Participants were presented with trial-by-trial evidence
that indicated a strong covariation between two easily
distinguishable, well-defined causal candidates and an
outcome (see Figure 17-4 for actual trial frequencies).
In one such sequence, for example, participants saw
evidence that depicted bacteria that were of long length
(the candidate cause) as predominantly paired with the
presence of nitrogen in soil samples (the effect event),
whereas bacteria that were short were paired with 
the absence of nitrogen. To this basic paradigm, trials
were added throughout the trial sequence depicting a
candidate cause that was ambiguous regarding its mem-
bership in the cause-present or cause-absent class. In the
previous example, these ambiguous trials would take
the form of bacteria of intermediate length paired with
the presence of nitrogen. The question of interest was
whether participants would be willing to include this
information in their assessments of causal information.

To address specifically if and how ambiguous infor-
mation may be incorporated into evidence about
causal relationships, Marsh and Ahn (2005a) in their
Experiment 1 had participants report how many
pieces of evidence they had observed by asking four
questions that corresponded to the types of informa-
tion found in  Figure 17-1 (e.g., “On how many cases
were the bacteria long and the nitrogen was present?”
represented the CE cell). It was hypothesized that par-
ticipants would use their current belief about the
causal relationship between events to incorporate 
the ambiguous information into the traditional types
of covariation evidence. For instance, if a participant
believed that long bacteria (C) were generally associ-
ated with the presence of nitrogen in soil samples (E),
then evidence depicting an ambiguous causal candi-
date (A) paired with the presence of nitrogen (i.e., a
piece of AE evidence) would be interpreted as a piece
of CE evidence. Under the same hypothesis, informa-
tion that depicted the ambiguous cause in the absence
of the effect (A~E) would be interpreted as evidence of
type ~C~E. Therefore, ambiguous evidence of type
AE should only be reflected in the CE estimate and
likewise for ambiguous evidence of type A~E and the
~C~E estimate. Estimates of the two types of negative
evidence should not be affected by ambiguous infor-
mation because the negative evidence does not
correspond to a way in which a hypothesis could be
used to interpret ambiguous information. These pre-
dictions are depicted in Figure 17-4.

Participants in Marsh and Ahn’s study (2005a) spon-
taneously assimilated ambiguous information into esti-
mates of causal information. (See Figure 17-4 for mean
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estimates of the four types of evidence.) Specifically, if
the ambiguous causal candidate was always paired with
the presence of the target effect (ambiguous-effect), sig-
nificantly more information was reported of type CE
(M�27.5) than of type ~C~E (M�20.7), t(19)�2.7,
p�.02. If the ambiguous causal candidate was always
paired with the absence of the effect (ambiguous-no
effect), more information was reported of type 
~C~E (M�28.8) compared to type CE (M�19.3),
t(19)�3.3, p�.01. In both of these conditions, there was
no difference in the amount of information reported
between the C~E and ~CE cells, p	.20. These findings
are as predicted if participants were using an existing
belief about the relationship between well-defined
events to interpret ambiguous information.

The described results could have been found
because participants felt forced by the constraints of
the task to report ambiguous information instead of
excluding this information or classifying it as a sepa-
rate type of evidence from Figure 17-1. To guard
against these possibilities, participants were not told
ahead how many or what frequency estimates they

would make. In this way, participants could have
represented ambiguous information as a separate class
of information during the experiment with the expec-
tation that they would be able to report it as such in
final estimates. As a further precaution along these
lines, the actual questions for estimation were pre-
sented one at a time in a random order. Ignorance of
the complete spectrum of questions to be asked would
have allowed participants to categorize ambiguous
evidence as an additional category of information not
represented in Figure 17-1. However, participants still
incorporated ambiguous evidence.2

Another interesting finding is that the assimilation
of ambiguous information was not complete, as can
be noticed in Figure 17-4. If all of the trials illustrat-
ing the ambiguous candidate cause were assimilated
by the governing causal hypothesis, then the key 
cells in Figure 17-4 should be closer to a total of 
38 trials. It appears that only about half of the ambigu-
ous trials that could have been incorporated into esti-
mates were assimilated as such. These results seem
sensible: For ambiguous information to be assimilated
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by an existing hypothesis, said hypothesis must first be
created. In the beginning of the experimental
sequence, participants have yet to form a theory of
how the possible causal candidates are associated with
the effect. At that point, participants would not be
able to informatively classify the ambiguous evidence.
After observing information, the relationship between
candidate cause and effect would have become
clearer, allowing the formation of a causal hypothesis
and subsequent interpretation of ambiguous evi-
dence. Because pieces of evidence depicting ambigu-
ous causes were sprinkled throughout the trial
sequence, the early ambiguous evidence was experi-
enced without the benefit of a governing hypothesis
and therefore would not have been included in fre-
quency estimates. As discussed with respect to unob-
served causes, the cognitive load involved may be too
great for the retrospective incorporation of ambiguous
information. Therefore, only ambiguous information
presented after the formation of a hypothesis could
have been interpreted through the lens of the hypoth-
esis and thereby included in frequency estimates.

In another study (Marsh & Ahn, 2006a), we fur-
ther examined if the strength of the hypothesized
causal relation would moderate the amount of
ambiguous information that is assimilated into causal
judgments, such that the stronger the causal relation
is believed to be, the more assimilation should occur.
For example, if a person believes that high stress is
always followed by insomnia, then any day with an
ambiguous level of stress that was followed by insom-
nia should be counted as an example of high stress
occurring with insomnia. However, belief in a weak
relationship implies that every time high stress is pres-
ent, insomnia does not necessarily follow. If a person
believes that high stress is not necessarily followed by
insomnia, then there is no principled reason to
believe that every ambiguous stress day would occur
with insomnia. This person should therefore be will-
ing not to incorporate all ambiguous stress/insomnia
days as examples of high stress and insomnia. In this
way, the incorporation of ambiguous information
would be mediated by the strength of the governing
hypothesis so that less ambiguous information should
be incorporated at weaker contingencies.

To test the effect of believed strength in causal
relations, Experiment 2 of Marsh and Ahn (2006a)
compared the treatment of ambiguous information 
in causal relationships of differing strengths. Four con-
ditions were presented, each portraying a different
strength relationship between the well-defined trials

and the presence of the effect: a perfect relationship
condition (�P�1.0), a strong relationship condition
(�P�0.6), a weak relationship condition (�P�0.3),
and a no relationship condition (�P�0). The exact
trial frequencies used in this experiment can be seen
in Figure 17-5. In all of the conditions, the ambiguous
causal candidate always appeared with the presence of
the effect, and there were 20 such ambiguous trials.
We predicted that for the no relationship condition no
preferential sorting of ambiguous evidence should
occur because no hypothesis regarding the relation-
ship between events could be formed. In contrast, for
the three conditions for which a relationship existed
between well-defined events (i.e., the perfect, strong,
and weak conditions), the ambiguous evidence would
be incorporated into the frequency estimate that
matched the governing hypothesis, specifically the CE
cell. Furthermore, the amount of assimilation would
be a function of the strength of the relationship
between the well-defined events.

Figure 17-5 depicts the results for the described
experiment (Marsh & Ahn, 2006a). For the three con-
ditions in which a relationship existed between the
well-defined events, ambiguous evidence was incor-
porated into the CE frequency estimates as predicted.
This finding is evidenced by significantly greater
information reported in the CE cell than the ~C ~E
cell for all three conditions, all t’s	2.82, all p’s�.009.
Also as predicted, this difference was not significant in
the no relationship condition, p	.18.

The results of this experiment also show that differ-
ent amounts of assimilation were reported depending
on the strength of the existing covariation relationship.
By subtracting the ~C ~E estimate from the CE esti-
mate for each condition, the amount of information
that was preferentially sorted into the CE cell was calcu-
lated. These difference scores were then compared
across conditions to see if more information was being
sorted into the CE cell at different causal relational
strengths. Figure 17-6 shows a graph of the mean differ-
ence scores for the four conditions. As the graph shows,
the stronger the covariation between well-defined
events, the more information was preferentially sorted
into the CE estimate. Significantly more information
was preferentially sorted in the CE estimate than the
~C ~E estimate in the perfect relationship condition
(M�7.8) compared to the weak relationship condition
(M�3.4). More information was also sorted preferen-
tially in the perfect condition compared to the no rela-
tionship condition (M�1.6) and into the strong
condition (M�6.7) compared to the no relationship
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condition, all t’s	2.37, all p’s�.03. In short, the
strength of the believed causal relations greatly affects
the amount of ambiguous information that is incorpo-
rated into estimates of causal information.

Having demonstrated the influence of the govern-
ing hypothesis on interpretations of ambiguous stimuli,
an interesting question is whether people would assim-
ilate any unknown information. That is, how robust is
this phenomenon? To examine this issue, we created
(Marsh & Ahn, 2006a) a condition in which the
ambiguous causal candidate was replaced with an
unknown candidate cause. More specifically, the
unknown candidate was marked with a question mark
and the word unknown appeared instead of a picture of
the bacteria. In the instructions, participants were told
that there was no information known about the candi-
date cause for these trials. Going back to our previous
example of the relationship between high stress and
insomnia, the unknown trials would be similar to a sit-
uation in which a reasoner has no information about
the stress of the target person’s day (or any information
that can be used to infer the level of stress that day) and
only learned that the person suffered from insomnia.

Note that, just like our ambiguous stimuli, an
unknown candidate cause does not inform whether a
given observation is positive or negative evidence
toward a hypothesis. Thus, participants could also
assimilate these trials in a way similar to how they
assimilated ambiguous stimuli. For instance, if partic-
ipants initially believed that the target effect is caused
by a target cause, then participants could infer that an
unknown cause paired with the presence of the effect
must have been a case where the candidate cause was
present, and when the unknown cause was paired
with the absence of the effect, then the causal candi-
date must have been absent. This would be the most
sensible inference to make if a person is forced to
guess about the state of the unknown causal candi-
date. For instance, if high stress correlates with insom-
nia, on encountering a person who suffers from
insomnia, it would be reasonable to guess that the per-
son experiences a lot of high stress. Therefore, it is
possible and even plausible in our experiments that
people would spontaneously make inferences about
unknown causal candidates as they did for ambiguous
causal candidates.
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In contrast, the mere presence of uncertainty might
not be sufficient to provoke assimilation. Instead,
ambiguous stimuli might need to be present for assim-
ilation to spontaneously take place. The presence of
ambiguous stimuli might trigger a need to classify the
stimuli one way or another, which in turn results in
assimilation. For instance, on encountering a bac-
terium with medium height, one might be enticed to
determine whether it is long rather than simply leaving
it as an undeterminable state and ignoring it.

To test the boundaries of which types of causal
candidates would be incorporated into estimates of
causal information, participants in Experiment 1 of
Marsh and Ahn (2005a) were also given two addi-
tional conditions that contained unknown candidate
causes. The representation of an unknown candidate
cause was paired with the presence of the effect in
one condition (unknown-effect) and the absence of
the effect in the other (unknown-no effect). Because
unknown information is lacking any type of structure
on which a hypothesis can operate, it should not be
incorporated into estimates of causal information.
This prediction was validated in that estimates in the
ambiguous conditions differed from the unknown
conditions only in the cells predicted if ambiguous
information was being incorporated via a governing
hypothesis. That is, in the ambiguous-effect condition
the CE cell mean estimate was greater than in the
unknown-effect condition, and the ~C~E cell was

greater in the ambiguous-no effect condition than the
unknown-no effect condition. Furthermore, estimates
for the four cells of the unknown conditions did not
significantly differ from the number of well-defined
trials presented (see Figure 17-4), demonstrating that
participants can choose to exclude covariation infor-
mation and are not bound to include it by the
demands of the task.

We have demonstrated that people will incorporate
information depicting an ambiguous causal candidate
into their reports of relevant causal information. This
was found despite the fact that participants had no
advance knowledge of trial frequencies they would be
asked to estimate. Participants could have excluded
the ambiguous information in favor of waiting to
classify it as a type of evidence not found in the classic
representation of covariation information. Instead,
participants spontaneously classified ambiguous
causal candidates as the presence or absence of the
candidate cause according to their governing hypothe-
sis of the causal relationship.

Conclusion

As posited in the beginning of this chapter, we believe
that covariation information can be dynamically inter-
preted during the process of causal learning. We have
shown that such hypotheses can result in the discount-
ing of later information in an information sequence,
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resulting in a primacy effect. We have also shown that
causal hypotheses can alter the interpretation of
covariation information into supporting an alternative,
unobserved cause. In the last section, we likewise
showed that an existing hypothesis could cause infor-
mation that does not fit the normal representation of
covariation information to be included into judgments
of causal relationships. In particular, evidence that was
ambiguous and normally has no place in the models
of causal reasoning was reinterpreted by existing
hypotheses and rendered usable.

The covariation-based models of causal induction
have often been described as models of how people
learn completely novel causal relations based on raw,
untainted covariation data (see Tenenbaum, Griffiths,
& Niyogi, chapter 19, this volume, for a more elabo-
rated approach). We would argue that even when
learning novel causal relations, people are driven to
interpret covariation data in light of their own govern-
ing hypothesis. Such dynamic interpretations of
covariation data are beyond the scope of existing
covariation-based models.

References

Catena, A., Maldonado, A., & Candido, A. (1998). The
effect of frequency of judgement and the type of tri-
als on covariation learning. Journal of Experimental
Psychology: Human Perception and Performance,
24, 481–495.

Cheng, P. W. (1997). From covariation to causation: A
causal power theory. Psychological Review, 104,
367–405.

Cheng, P. W., & Novick, L. R. (1990). A probabilistic
contrast model of causal induction. Journal of
Personality and Social Psychology, 58, 545–567.

Cheng, P. W., & Novick, L. (1992). Covariation in natural
causal induction. Psychological Review, 99, 365–382.

Collins, D. J., & Shanks, D. R. (2002). Momentary and
integrative response strategies in causal judgment.
Memory & Cognition, 30, 1138–1147.

Dennis, M. J. (2004). Primacy in causal strength judg-
ments: The effect of initial evidence for generative
versus inhibitory relationships. Unpublished doc-
toral dissertation, Yale University, New Haven, CT.

Dennis, M. J., & Ahn, W. (2001). Primacy in causal
strength judgments: The effect of initial evidence
for generative versus inhibitory relationships.
Memory & Cognition, 29, 152–164.

Einhorn, H. J., & Hogarth, R. M. (1986). Judging proba-
ble cause. Psychological Bulletin, 99, 3–19.

Hogarth, R. M., & Einhorn, H. J. (1992). Order effects in
belief updating: The belief-adjustment model.
Cognitive Psychology, 24, 1–55.

Jenkins, H. M., & Ward, W. C. (1965). Judgment of con-
tingency between responses and outcomes.
Psychological Monographs: General and Applied,
79, 1–17.

López, F. J., Shanks, D. R., Almaraz, J., & Fernández, P.
(1998). Effects of trial order on contingency judg-
ments: A comparison of associative and probabilistic
contrast accounts. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 24, 672–694.

Lord, C. G., Ross, L., & Lepper, M. R. (1979). Biased
assimilation and attitude polarization: The effects of
prior theories on subsequently considered evi-
dence. Journal of Personality & Social Psychology,
37, 2098–2109.

Luhmann, C. C., & Ahn, W. (2003). Evaluating the
causal role of unobserved variables. In R. Alterman
& D. Kirsh (Eds.), Proceedings of the 25th Annual
Conference of the Cognitive Science Society (pp.
734–739). Mahwah, NJ: Erlbaum.

Luhmann, C. C., & Ahn, W. (2006). BUCKLE: A model
of unobserved cause learning. Unpublished manu-
script, Yale University, New Haven, CT.

Marsh, J. K. & Ahn, W. (2003). Interpretation of ambi-
guous information in causal induction. In
R. Alterman & D. Kirsh (Eds.), Proceedings of the
25th Annual Conference of the Cognitive Science
Society (pp. 775–780). Mahwah, NJ: Erlbaum.

Marsh, J. K. & Ahn, W. (2006a). Ambiguity in causal
learning. Unpublished manuscript, Yale University,
New Haven, CT.

Marsh, J. K., & Ahn, W. (2006b). Order effects in contin-
gency learning: The role of task complexity.
Memory & Cognition, 34, 568–576.

Novick, L. R., & Cheng, P. W. (2004). Assessing interactive
causal influence. Psychological Review, 111, 455–485.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of
Pavlovian conditioning: Variations in the effective-
ness of reinforcement and nonreinforcement. In 
A. H. Black & W. F. Prokasy (Eds.), Classical condi-
tioning II: Current theory and research (pp. 64–99).
New York: Appleton-Century-Crofts.

van Hamme, L. J., & Wasserman, E. A. (1994). Cue
competition in causality judgments: The role of
nonpresentation of compound stimulus elements.
Learning and Motivation, 25, 127–151.

Wasserman, E. A., Kao, S.F., Van Hamme, L. J., Katagiri,
M., & Young, M. E. (1996). Causation and associa-
tion. In D. R. Shanks, K. J. Holyoak, & D. L. Medin
(Eds.), Causal learning: The psychology of learning
and motivation (Vol. 34, pp. 208–264). San Diego,
CA: Academic Press.

DYNAMIC INTERPRETATIONS OF COVARIATION DATA 293



294

One core of the idea of causation is that interventions
from outside a system would change things inside,
whatever the boundary may be. Another, according to
a long philosophical tradition, is that causal relations
are stable, regular, and invariant. On one side, I want
to emphasize that psychological theories that do not
distinguish intervention from association are non-
starters. On the other, I want to emphasize that, when
we turn to many kinds of causal relations, the connec-
tion between interventions and causation is broken,
and various kinds of invariance do not hold.

Did you hear the one about the statistician who
always carried a bomb with him whenever he flew
on an airplane?

No, why?
Because he calculated it would be very improb-

able that there would be two bombs on the same
airplane.

You drive your car to the auto repair shop for a
tune-up. Gas mileage has been slipping a bit. You
are assigned a mechanic named Pearson, who

disconnects the spark plug wires and then hooks
up a battery tester. “Why are you testing the bat-
tery?” you ask. “Well,” he says, “because I discon-
nected the spark plug wires, the battery may have
died.” “What!” you exclaim, “The battery was
charged when I drove in here. How could
unplugging the spark plug wires discharge the
battery?” “Well,” says Pearson, unfazed, “discon-
necting the spark plug wires means the engine
won’t start, you agree?” You agree, and he con-
tinues, “And a car not starting is positively corre-
lated with a dead battery, right?” “Yeah,” you say,
“but . . .” “So I have to check whether the battery
is dead.”

A paper by Sloman and Lagnado (2005) confirms
that when people are given verbal descriptions of sim-
ple causal systems and of interventions that change
the state of downstream features, most of them do not
make such stupid inferences. Of itself, this is an
utterly unremarkable result, and the reason some sub-
jects give contrary responses is, I expect, because the
problems are presented only verbally or deal with
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unfamiliar cover stories rather than with simple,
familiar physical systems. What is remarkable, as
Sloman and Lagnado explain, is that various psycho-
logical and normative accounts of the content
of causal claims say that the stupid inferences should
be made, say nothing about whether they should be
made, or have considerable difficulty explaining why
they should not be made, and that only one available
normative theory, the theory of causal Bayes nets,
straightforwardly agrees with normal, intelligent
reasoning in such problems and gives a systematic,
computational account of such inferences. The criti-
cisms Sloman and Lagnado advance turn on logical
points that have been made on many occasions by
philosophers (Dowe & Nordhoff, 2004; Lewis, 1999;
Mackie, 1974; Reichenbach, 1954), but they are
made more vivid by the experiments. Just as computer
scientists require a program for every point about
reasoning, psychologists require an experiment,
which is, of course, why philosophy is so much more
economical a subject.

Karl Pearson (1911) claimed that causation is
nothing but correlation, and influential contem-
porary psychologists seem to agree, as do some influ-
ential philosophers (Jeffrey, 2004). The general
version of that idea is that inference using causal
beliefs is no different from inference with condi-
tional probabilities—the probability of one event
given another. Taken literally, the statistical jokes
result. But, the view that probabilities on inter-
ventions reduce to conditional probabilities is consis-
tent with the causal Bayes net framework, and with
Sloman and Lagnado’s (2005) experimental findings,
if interventions are represented as exogenous vari-
ables that can affect the variable we think of as
manipulated, and if a joint probability distribution is
assumed on all variables, including the intervention
variables. With that representation and an appropri-
ate probability distribution, the probability of an
event conditional on an intervention can be calcu-
lated as a probability conditional on a value of the
intervention variable (Spirtes et al., 1993/2000, chap-
ter 3). In general, but not always, the probability of a
value x of a variable X on an intervention Iy that
forces a value y on a variable Y, is different than the
probability that x�X conditional on Y�y. The error
of the counterfactual reasoning-is-just-conditional-
probability-reasoning viewpoint is in omitting the
causal features—intervention variables that directly
influence one or more substantive variables but are

not influenced by substantive variables—that distin-
guish the proper variables to condition on, and their
relations to other variables, thus mistaking the rele-
vant conditional probabilities (Meek & Glymour,
1994).

Another alternative hypothesis is that people
understand causal claims as logical conditionals “A
causes B” means: “A and B, or B and not A, or not A
and not B,” which is equivalent to “not both A and
not B.” The 19th century mathematical philosophers
Boole and Frege suggested such a view, and it is
reasserted in contemporary mental model theory by
Goldvarg and Johnson-Laird (2001). No contempo-
rary philosopher I know of subscribes to the view
because of a century of reflection on the logica of
causal claims. For example, taken literally, the
account implies that any fact, actual event, or state of
affairs is a cause of any other. That hurricane Ivan
struck Pensacola is a cause of the election of a
German pope. Material conditionals are monotonic
in the antecedent—if “if A then B” is true, then “if A
and C, then B” is also true—but causal conditionals
are nonmonotonic. Sloman and Lagnado (2005)
point out that their experimental results are incon-
sistent with the supposition that subject understand-
ing of A causes B is that A materially implies B
because on that construal subjects should infer that
A is not the case given the information that B is not
the case, no matter how the absence of B comes
about.

Sloman and Lagnado (2005) propose that
Goldvarg and Johnson-Laird (2001) could reply that
subjects are assuming another causal factor, call it
C, so that their mental model for A causes B is as
follows: A and not C and B, or not A and not C
and B, or not A and not C and not B, or A and C and
not B. On this hypothesis, not A does not follow
from not B, so the majority of subjects are giving
normative responses, according to the mental model
theory, in Sloman and Lagnado’s experiments. No
distinction between observation and intervention is
required.

This does not work. If subjects use nothing but
deductive inference once they have formed causal
beliefs, which I believe is Johnson-Laird’s view (private
communication), then they should have no opinion
about the value of A given the value of B—there is no
deductive connection. Suppose instead they make
probabilistic inferences. The mental model model
for Sloman and Lagnado’s (2005) experiments is
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that A causes B, and C prevents B. We then have the
following table of possibilities and probabilities:

A C B Probability

T T F p1

T F T p2

F T F p3

F F T p4

F F F p5

where the sum of the pi values is 1. The probability
that A is true is p1�p2. Given the fact that B is false,
the probability that A is true is p1/ (p1�p3�p5). The
two values are different; therefore, subjects following
this model should think the information that B does
not occur changes the probability of A, which agrees
with Sloman and Lagnado if the value of B is
observed, not forced from outside. But, the probabil-
ity that A is true given that B is false and that C is true
is p1(p1�p3), again not equal to the probability of A.
If C�T represents an intervention, then on this
model the intervention should change the probability
of A, contrary to the experimental result.

What is needed to make the mental model frame-
work generate Sloman and Lagnado’s (2005) result
(i.e., that the probability that A is true is the same as the
probability of A conditional on the truth of C and the
falsity of B) is, in addition, that C and A are independ-
ent in probability. For if Pr(A�T)�p1�p2�p1/
(p1�p3)�Pr(A�T | C�T and B�F), then Pr(A�T and
C�T)�p1�(p1�p2)(p1�p3)�Pr(A�T)Pr(C�T).
This is formally equivalent to postulating a causal
Bayes net in which A and C partially determine B.

The upshot is that if psychologists want their
account of the content of causal judgement to agree
with banal facts, then they need the essentials of the
causal Bayes net framework, however those essentials
may be disguised. But, conundrums remain.

Social Effects, Interventions, and
Invariance

When psychologists design experiments about causal
judgment, the usual idea is that particular kinds of
objects have the power to bring about particular kinds
of events in kinds of specifiable circumstances. Blickets,
when placed on blicket detectors, have the power to set
off lights and sounds; liquids of a special type have the
power to make plants grow taller; chemicals of a certain

type have the power to prevent germs from living; and
so on. Although psychologists differ in the aspect of
causal power that interests them—conditions for its
exhibition versus measures of its strength, for
example—they seem to agree with philosophers that
causal powers must have some stability or “invariance”
properties. All of this makes a reasonable package to
account for what goes on in the development of chil-
dren’s understanding of the world: Children focus on
objects, including persons; attribute properties,
observed or not, to objects; and sort objects by their
attributed properties, including causal powers.
Children could not learn the causal powers of an object
if those powers were not stable, and there would be no
predictive or other value to sorting objects according to
an attribute that is not stable over a range of cases.

I wonder whether a class of events of a type that are
familiar and important in everyday life have causes of
this sort. The events I have in mind can occur in
physical contexts, but they are preeminently social:
events that constitute an outcome of cooperative or
competitive actions. Children discover early on the
value of adult help, perhaps somewhat later the value
of cooperation. They are engaged in competitions
the moment they are mobile and in the company of
other mobile children. I do not know how and when
a causal understanding of such phenomena emerges.
My question here is what that understanding could
be. Consider some adult examples:

My favoritie racehorse, Sunday Brunch, seldom
won races, but occasionally he did. He had, as they
say, a track record. Sunday Brunch had lots of abili-
ties, notably the ability to run pretty fast for a mile or
so, abilities he had because of his bloodline, good
care, and fair training. On the record, we should say
that Sunday Brunch had the capacity to win some
thoroughbred races. Here are my questions: Did
Sunday Brunch have a power, a causal power, to win
races? If so, how should that power be measured?

I own an old pickup truck, which is not so light; I
can only lift the front end with the help of two
fairly strong men. Do I have a causal power to lift
my pickup truck?

I vote for president. My candidates usually lose,
but the candidates I have favored have never won
by exactly one vote. Do I have a causal power to
elect the president?

It seems to me that in such cases our views
of mechanism and causation begin to come apart.



To win, Sunday Brunch must run, and the mecha-
nism by which he does is particular to him, an attrib-
ute of him. The same is true for every other horse.
But, Sunday Brunch wins only if an unstable rela-
tional property obtains—his competitors do not run
the track as fast as he does. The relation is unstable in
part because it is not a property of any particular set of
individuals, but of a collection with varying members
and because it does not reduce to any simpler, less-
relational property. Outcomes produced by coopera-
tion tend to have the same logical feature. Voting is a
combination of cooperation and competition. If the
candidate I vote for wins by more than a single vote,
then the mechanism by which that victory came
about was nothing other than the vote of each individ-
ual, including my own, but individual votes had no
causal power to bring about the victory: The result
would have been the same if I had not voted or had
voted differently. This is why, in the considerable
philosophical literature on attributing a causal role to
individual events, voting is never mentioned.

Cooperation and competition should therefore be
expected to present problems for formal models of our
understanding of causation, and I think they do.
Consider the examples discussed next.

In the considerable literature on the psychology of
causal judgment, one theory—sometimes referred to
as unconditional �P—holds the following: Given
information that A and B, both binary variables, are
potential, independent causes of binary E, people
take the causal power or efficacy of A to be

�PA�Pr(E | A)�Pr(E | ∼A) and analogously for B.
(18-1)

Another theory, Cheng’s (1997), holds that in the
same circumstances, people take the causal power of
A to be

pA�Pr(E | A)�Pr(E | ∼A)/[1�Pr(E | ∼A)]. (18-2)

A, B, and E are to be understood to take either 0 or 1
as values—the values may code for absent or present.
Where context should make it unambiguous, as in
Equations 18-1 and 18-2, I let, for example, A abbre-
viate A�1 and ∼A abbreviate A�0.

The �P relation accords with a linear representa-
tion in which

Pr(E)�aA�bB (18-3)

with a and b real constants with a sum that is between 0
and 1. The constants a and b represent the causal power
of A and B, respectively, to produce E (Griffiths &
Tenenbaum, 2000). Cheng derives her formula for
causal power (assuming generative causes) from

P(E)�Pr(A)pA�Pr(B)pB�Pr(A)Pr(B)pApB (18-4)

where pA, pB are real constants between 0 and 1.
Equation 18-4 results (Glymour, 2003) from

taking probabilities on both sides of the Boolean
equation:

E�(A�qA) � (B�qB) (18-5)

where A, B, qA, qB are jointly independent Boolean
(binary) variables; pA is the probability that qA�1, and
so on; � is Boolean addition (i.e., ordinary addition
except that 1�1�1); and � is Boolean multiplication
(i.e., ordinary multiplication).

The difference in the two theories seems simply to
be whether E is regarded as a real additive function of
A and B or a Boolean additive function of A and B.
There is, however, this question: Are the parameters
representing causal power in the �P model Equation
18-3, and in Cheng’s 1997 model Equation 18-4 and
Equation 18-5 invariant to the addition of further
independent causes?

The parameters representing causal power in
Equation 18-3 are not in general invariant. The
reason is obvious: If a further cause C is added to
Equation 18-3, with a real constant c, a�b�c must
now be less than 1. Either big causes (a�b close to 1)
must prevent supplementation of the system with a
new big cause or else the values of a and b must shrink
with the addition of a new big cause.

Consider a pan balance with a fixed weight W in
the left pan and two weights A and B that can be put
in the right pan, and let E�1 if the weights in the
right pan lower it below the left pan. Let the fulcrum
of the pan balance be stochastic and the probability of
the left pan rising be dependent on the total weight
in the right pan. We have Pr(E)�aA�bB, where A
now indicates that A is on the pan, B indicates that
B is on the pan, and a / b�Weight (A)/Weight (B),
with a�b∼1.

Assuming independent identically distributed tri-
als, �PA can be estimated as follows: Take a large
number of trials in which A occurs with probability
Pr(A) and B with independent probability P(B).
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Estimate Pr(E | A) by the frequency of E when A
occurs. Estimate Pr(E | ∼A) by the frequency of E
when A does not occur. The difference is �PA, which
gives a maximum likelihood estimate of a and is
similar for �PB and for b. If a third substantial weight
C now is available for the right pan, then we have
Pr(E)�a�A�b�B�cC. If a�b�c	1, then a� and b�

cannot be equal to a and b, respectively. The causal
power of A and of B to lower the right pan, as meas-
ured by �P, depends on the presence or absence of
C, although in any intuitive sense the causes A, B,
and C do not interact.

In Cheng’s theory (1997), Pr(E)�Pr(A)pA�

Pr(B)pB�Pr(A)Pr(B)pApB when only weights A and B
are considered, and when C is added, still assuming
independence,

Pr(E)�Pr(A)p�A�Pr(B)p�B�Pr(C)pc
�Pr(A)Pr(B)p�Ap�B�Pr(A)Pr(C)p�ApC
�Pr(B)Pr(C)pB�pC
�Pr(A)Pr(B)Pr(C)pA� pB�pC. (18-6)

The question is whether p�A�pA and so on, assuming
that all probabilities for A, B, and E conditional on
any values of A, B are unaltered given that C�0. But,
it follows from that assumption, and from the fact that
(6) implies that p�A can be estimated from cases in
which C�0, that

p�A�Pr�(E | A, C�0)�Pr�(E | ∼A, C�0)
/Pr� (E | ∼A, C�0)

�Pr(E | A, C�0)�Pr(E | ∼A, C�0)
/Pr(E | ∼A, C�0)�pA (18-7)

Cheng’s causal powers are invariant under expansion of
the set of independent potential causes.

The invariance is in a way an artifact of the
assumption that the occurrence of the causes,
weights A, B and C, are independent, and the balance
pan is stochastic, not deterministic. With a determin-
istic balance, each weight, or combination of weights,
would have a causal power of 1 or of 0. Voting is
something like this and is problematic for that very
reason. I have no causal power to determine the
outcome of an election unless all other votes are tied,
but in that case I do have the power to decide the
election and so, in analogy, do all other voters. So,
one cannot say that any individual voter could never
be a cause of the outcome, but the causal power of
any individual to determine the outcome is 0 or 1,

depending on how all others voters vote. Invariance
fails. The individual causal power cannot be meas-
ured in Cheng’s way (1997) or in any other I can
think of. Causal Bayes nets do not help here at all.
The result is a bewilderment in ethics, law, and
political philosophy whenever causality is taken to
imply counterfactual circumstances on interventions,
and responsibility is thought to require causality,
and degree of responsibility must be rationally meas-
ured. If a change in a single vote for George Bush
l’enfant would have changed neither the outcome
nor the probability of the outcome, then the vote is
not, on the principles we have been examining, a
cause of his presidency, but that cannot relieve
such voters of responsibility for it lest a supermajority
in any conspiracy guarantee the innocence of all
conspirators.

I do not know what human subjects would say if
asked about causal power or efficacy in an experi-
ment of the kind the stochastic pan balance suggests.
I recommend the experiment. There remains the
normative question regarding whether a quantity
should be called a causal power if it does not show
the kind of invariance to additional causes that
Cheng’s (1997) theory provides. Cheng says not,
and Woodward (2003), I think, should agree,
although this is not a sort of invariance he discusses.
I guess I think it is a complicated question about how
we sort out the metaphysics of causation. It is easy to
imagine cases that might prompt one to doubt that
invariance of this kind is essential to causal relations.
Zero sum competitions—examples of what is called
late preemption in the philosophical literature
(Dowe & Nordhoff, 2004)—illustrate one kind of
problem.

Consider the poor spermatozoon, trying to fertilize
an ovum, in competition with other spermatozoa.
Each has a certain probability of success, but that
probability changes with the number of competitors.
The success of any one defeats the success of any
other. I see no obvious way to represent the causal
power of a sperm cell so that it is invariant under
expansion of independent potential causes, that is,
competition from other sperm cells.

Consider the simplest modification of Cheng’s
framework, in which causal powers constrain one
another. In Cheng’s representation, pA�p(qA�1) is
the probability that A causes E given that A occurs,
and qA�1 asserts that if A occurs, then A causes E. 
So, to account for zero sum competition, we could



specify that at least one of A, B, qA, qB must be 
zero:

E�(qA�A) � (qB�B); (18-8a)

A�B�qA�qB�0 (18-8b)

I understand the invariance of the causal power of
A to mean that Pr(qA�1)�pA is insensitive to the
values of A, B, and qB. The causal power of A will be
invariant only if

Pr(qA�1 | A�1, B�1, qB�1)
�Pr(qA�1 | A�1, B�0, qB�1)
�Pr(qA�1 | A�1, B�1, qB�0)
�Pr(qA�1 | A�1, B�0, qB�0). (18.9)

But, it is immediate from (8b) that Pr(qA�1 | A�1,
B�1, qB�1)�0. Hence, the causal power of A
(respectively, of B) is invariant only if it is 0. The same
point can be made another way. For qA to be inde-
pendent in probability of A, B, and qB, and symmetri-
cally for qB, we must then have:

Pr (A�B�qA�qB)�Pr(A)Pr(B) Pr(qA) Pr(qB) (18.10)

for all values of the arguments. But, for A�B�qB�1,
from (8b) it follows that Pr(qA�1 | A�B�qB�1)�0.
Hence, if the probability that qA�1 is other than 0
conditional on any values of A, B, qB, then it follows
that pA is not invariant.

Cheng’s (1997) theory has resources. We might
represent the zero-sum competition as a case in
which each potential cause of E is also a preventive
cause of other potential causes of E, as with:

E�[qA�A�(1�qBAB)] � [qB�B�(1�qABA)] (18-11)

where qBA�1 if B occurs and B prevents A from
causing E and so on, But, this also does not produce
invariance of pA�Pr(qA�1). To ensure that A and B
do not both cause E, we must require that A�B�qA�
qB�(1�qBA)�(1�qAB)�0. Hence, pA�Pr(qA�1) can-
not be invariant under all variations of the values of A,
B, qB , qBA, and qAB. To beat the point, if A�B�qB*
(1�qBA)�(1�qAB)�1, then pA must be 0. Similar 
difficulties arise if we try to deal with the case by
supplementing (8a) with an interaction term as did
Novick and Cheng (2004).

One could try to represent the zero-sum case as an
interaction with a hidden cause of E, but that does

not seem to work naturally with causal powers. A
zero-sum competition of A, B, for example, could be
represented as:

E�(qA�A�C) � (qB�B�(1�C)) (18.12)

where C is a hidden variable. But, then we have the
oddity that qa�qb�1. In that case, we may as well dis-
pense with causal powers and assume that total causes
determine effects, as Thomas Richardson has sug-
gested children do, and as Luhmann and Ahn (in a
rather preposterous essay; in press) have claimed
everyone does. One solution, I suppose, is to argue
that experiments show that adults make judgments as
if they hold causal powers to be less than 1 in many
contexts, but treat causal powers as equal to 1 in zero
sum competitions. But, if that is so, then in experi-
ments with zero-sum competitions, elicited values of
efficacy or causal power should be close to 1. I doubt
they would be because I think with independent
variables elicited values are likely to approximate the
frequency with which a variable causes the effect.

The zero-sum case above is like a race, but more
extreme. In observing a race, data are presented
regarding who will win—whoever is in the lead just
before the finish line. The zero-sum formulas here
apply when there are no such data: One and only one
will win—cause the effect—but which one does win is
either random or determined by unseen values of an
unseen variable or variables. A question more interest-
ing to psychology than to metaphysics is whether peo-
ple do ever interpret sequences as zero-sum
competitions of this kind or whether they can be
brought to do so by data. After all, “effects” in a zero-
sum competition might be interpreted as not causal at
all, but as a random occurrence. Consider the follow-
ing experiment then: Show repeated trials in which
three balls of different colors move in parallel toward a
black ball, which changes color to match the color of
one of the approaching balls, with equal probabilities
for each color. Now, for each pair of colored balls, show
repeated trials in which the two balls approach the
black ball, which changes color at random to match the
color of one of the colored balls that is present. I suppose
it would be of some interest to know whether, given
such evidence and given a new trial in which a ball of
a single color is present and approaches the black ball,
people now predict that the black ball will change
color to match. No matter how that turns out, given the
outcomes of such single-color ball trials for balls of
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each color, I see little choice but to interpret the trials
with multiple balls as zero-sum competitions.

Cheng (private communication), has suggested
that the statistical and causal structure of a race might
be represented by the right-hand side of her equation
multiplied by a number that represents the probability
of winning the race. The proposal represents a sensi-
ble intuition: Individuals have no invariant causal
power for winning the race, only a probability of win-
ning. More or less invariant causal powers are attrib-
utable only to the component activities that go into
running, well or poorly. This brings us back to Sunday
Brunch, the horse I rode in on.

Sex, Race, and Bicycles

Finally, consider whether sex and race can be causes.
We cannot intervene to change someone’s race; we
cannot intervene to change someone’s sex; yet, we
think both features may influence a person’s circum-
stances and the events that befall that person. There
are standard remarks that try to evade the proposition,
for example, that it is the perception by others of some-
one’s race or sex that are causes, say, of employment or
favors or education, not race or sex itself. That will not
wash. Perception is the perception of something, and
that something, race or sex, seems a cause of resulting
treatment. Perception is merely an intermediate in the
mechanism by which the effect comes about.

It is the same with many properties. Mountain
bikes are stolen more often than touring bikes. If a
bicycle is stolen, then it may be because it was a
mountain bike, but no intervention on that bicycle
could have made that bicycle a touring bike. The
counterfactuals may remain in some vague sense true
if we understand them as claims about counterpart
objects or persons in other possible worlds—she
would have got the job if she had been a man; the
bike would not have been stolen if it had been a tour-
ing bike—but there are no corresponding interven-
tions. Yet, it can be true that the property of being a
mountain bike did cause the bicycle to be stolen, and
her sex did prevent her from getting the job. Causality
is still more subtle than our theories.
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Introduction

This chapter considers a set of questions at the interface
of the study of intuitive theories, causal knowledge, and
problems of inductive inference. By an intuitive theory,
we mean a cognitive structure that in some important
ways is analogous to a scientific theory. It is becoming
broadly recognized that intuitive theories play essential
roles in organizing our most basic knowledge of the
world, particularly for causal structures in physical, bio-
logical, psychological, or social domains (Atran, 1995;
Carey, 1985a; Kelley, 1973; McCloskey, 1983; Murphy &
Medin, 1985; Nichols & Stich, 2003). A principal func-
tion of intuitive theories in these domains is to support
the learning of new causal knowledge: generating
and constraining people’s hypotheses about possible
causal relations; highlighting variables, actions, and
observations likely to be informative about those
hypotheses: and guiding people’s interpretation of the
data they observe (Ahn & Kalish, 2000; Pazzani, 1987;
Pazzani, Dyer, & Flowers, 1986; Waldmann, 1996).
Leading accounts of cognitive development argue for
the importance of intuitive theories in children’s

mental lives and frame the major transitions of cogni-
tive development as instances of theory change (Carey,
1985a; Gopnik & Meltzoff, 1997; Inagaki & Hatano,
2002; Wellman & Gelman, 1992).

Here, we attempt to lay out some prospects for
understanding the structure, function, and acquisi-
tion of intuitive theories from a rational computa-
tional perspective. From this viewpoint, theory-like
representations are not just a convenient way of sum-
marizing certain aspects of human knowledge. They
provide crucial foundations for successful learning
and reasoning, and we want to understand how they
do so. With this goal in mind, we focus on three inter-
related questions (Table 19-1). First, what is the con-
tent of intuitive theories? What kinds of knowledge
are represented and in what formats? Second, how do
intuitive theories guide the acquisition of new knowl-
edge? Theories subserve multiple cognitive functions,
but their role in guiding learning is surely one of the
most fundamental. Third, how are intuitive theories
acquired? What, if anything, do mechanisms for the-
ory-guided learning have in common with mechan-
sisms for learning at this more abstract level—for
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acquiring or revising a theory itself? It goes without
saying that these questions are profound and difficult
ones. Our inquiry is at an early stage, and any answers
we can give here are at best preliminary.

We adopt a “reverse-engineering” approach to
these questions, aiming to explain what intuitive the-
ories bring to human cognition in terms that would
be valuable in designing an artificial computational
system faced with the same learning and reasoning
challenges (Anderson, 1990; Chater, 1999; Marr,
1982; Oaksford & Shepard, 1987). This approach pro-
ceeds in two stages. First, we identify a core set of
computational problems that intuitive theories help
to solve, focusing on the role of theories in learning
and reasoning about causal systems. Second, we pro-
pose a formal framework, based upon the principles
of Bayesian inference, for understanding how these
computational problems may be solved—and thus for
understanding how intuitive theories may fulfill some
of their crucial functions.

There are many places one could start in charac-
terizing the functional roles that intuitive theories
play in cognition. From a reverse-engineering view-
point, it makes sense to start with causal learning and
reasoning—behaviors that have dramatic conse-
quences for people’s success and survival in the world
and for which intuitive theories seem to play a critical
role. Everyday causal inference operates under severe
conditions, far more challenging than the scientist’s
preferred setting of a controlled laboratory experi-
ment. A medic arriving at a trauma scene may need to
make a snap judgment about what is wrong with the
victim after seeing just a few suspicious symptoms;
there is no time for exhaustive tests. A child may dis-
cover a new causal relation given only a few observa-
tions of a novel system, even in the presence of
hidden variables or complex dynamics. Successful
causal inferences in the presence of sparse data
require strong expectations about what types of causal
hypotheses are possible, plausible, or likely a priori.
To learn and reason about novel causal systems, these
expectations must go far beyond mere records of
previous experience. Intuitive theories provide the

necessary glue between the inferential past and
present. They specify general causal principles,
abstracted from prior experience, that allow us
quickly and reliably to generate appropriate spaces of
hypotheses for causal inference and to apprehend an
infinite range of new causal systems.

Because causal inference can unfold on multiple
levels of abstraction, intuitive theories must also be
defined on multiple levels. To reason about the causes
behind a specific observed event, we need intuitive the-
ories that generate hypotheses for alternative configura-
tions of causes for that event. To learn the structure of
causal relations between variables in a system, we need
intuitive theories that generate hypotheses about alter-
native causal structures for that system. To learn such a
theory itself, we need higher-order intuitive theories
that generate hypotheses about theories at the next
level down. The need to characterize theories at more
than one level of abstraction is familiar from debates in
the philosophy of science (Carnap, 1956; Kuhn, 1970;
Lakatos, 1970; Laudan, 1977; Quine, 1951; see
Godfrey-Smith, 2003, for a review) and has also been
introduced into research on cognitive development
through Wellman’s distinction between specific theo-
ries and framework theories (Wellman, 1990; Wellman
& Gelman, 1992). Such a hierarchy of theory represen-
tations provides a unifying approach to inferring the
causes of individual events, identifying the structure of
causal relations between variables in a system, and
learning about the abstract structure of higher-order
theories—all from finite and often sparse data.

Consideration of the role of theories in causal infer-
ence places constraints on the formalisms that can be
used to represent intuitive theories. In particular, we
argue that one widely used framework for representing
causal relationships, known as causal graphical models
or causal Bayesian networks (Glymour, 2001; Pearl,
2000), is not sufficiently expressive to represent intu-
itive theories in their full generality and power. While
Bayesian networks may be able to represent the lowest
level of causal theories in our hierarchy, they cannot
express the kind of abstract principles that are a key
part of higher-level theories. In making this argument,
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TABLE 19-1 Three Questions About Intuitive Theories

1. What is the content and representational structure of intuitive theories?

2. How do intuitive theories guide the acquisition of new causal knowledge?

3. How are intuitive theories themselves acquired?



we draw an analogy to generative grammar in linguis-
tics: a Bayesian network that describes the causal
structure of a particular causal system is like a parse
tree that describes the syntactic structure of a particu-
lar sentence. Of deeper and more general signifi-
cance in linguistics is the set of abstract
principles—the grammar—that generates all possible
parse trees for the infinite but constrained set of gram-
matical sentences in a given language. So, too, in the
study of causal inference should our focus be on the-
ories at this more abstract level: causal grammars that
generate hypothesis spaces of possible causal networks
in a given domain of reasoning.

Construing intuitive theories as causal grammars
helps to clarify the computational problems that a
formal account of theories must address, as each of
these problems has a direct analogue in linguistics.
The analogy also suggests how such problems can be
solved. The second stage of our reverse engineering of
intuitive theories consists of formalizing the infer-
ences involved in learning and reasoning about causal
systems in a Bayesian framework. Any Bayesian infer-
ence requires a space of candidate hypotheses and a
prior probability distribution over that hypothesis
space. We cast intuitive theories as hypothesis space
generators, systems of knowledge that generate the
hypothesis spaces that make Bayesian causal infer-
ence possible. Drawing on the idea that theories are
defined at multiple levels, we adopt a hierarchical
Bayesian framework in which intuitive theories
defined at each level of the hierarchy generate
hypothesis spaces for the more specific level below.
This hierarchical Bayesian proposal specifies precise
functional roles for intuitive theories in causal learn-
ing and offers an approach to answering our second
and third questions from Table 19-1: how theories
guide the acquisition of new causal knowledge and
how theories themselves can be learned.

Approaching the computational problems posed
by intuitive theories from the perspective of Bayesian
inference ultimately provides us with the opportunity
to assess answers to our first question—what is the
knowledge content of intuitive causal theories?—
in terms of how well they function in this formal
framework. Many possible representational structures
for causal knowledge could be interpreted as theories
in our hierarchical Bayesian framework, and they
may coexist at different levels of the hierarchy. In 
this chapter, we have little to say about the precise
nature of these representations, beyond the argument

that causal Bayesian networks are too limited to
capture the content of higher-level intuitive theories.
A detailed discussion of two more promising
approaches for representing higher-level theories, or
causal grammars, is the subject of a companion chap-
ter (Griffiths & Tenenbaum, chapter 20 this volume).

Intuitive Theories as Causal Networks

Although computational accounts of intuitive theories
have not been readily forthcoming, significant progress
has been made recently in the related area of causal
network modeling. By a causal network, we mean a set
of causal relations that holds among variables repre-
senting states of affairs in the world, which may or may
not be observable. The tools of causal graphical mod-
els, causal Bayesian networks, and functional causal
models (Heckerman, 1998; Pearl, 2000; Spirtes,
Glymour, & Scheines, 1993; see also this volume),
provide formal frameworks for representing, reasoning
about, and learning causal relationships. These
approaches explicate the connection between causal-
ity and statistical dependence. They distinguish
causality from mere correlation or association, and
they show how and under which-circumstances causal
relations can be induced from observations of the sta-
tistical dependencies between variables.

Causal networks have already received some
attention in the cognitive science literature as rational
accounts of adult and child behavior in causal learning
experiments (Glymour, 2001; Gopnik & Glymour,
2002; Gopnik et al., 2004; Gopnik & Schulz, 2004;
Griffiths, Baraff, & Tenenbaum, 2004; Griffiths &
Tenenbaum, in press; Lagnado & Sloman, 2004;
Sloman, Lagnado, and Waldmann, this volume; Sobel,
Tenenbaum, & Gopnik, 2004; Steyvers, Tenenbaum,
Wagenmakers, & Blum, 2003; Tenenbaum, Sobel,
Griffiths, & Gopnik, submitted; Tenenbaum &
Griffiths, 2001, 2003; Waldmann, 1996). These appli-
cations have been fairly small scale. Subjects typically
learn about one or a few causal relations from a small
number of observations. The successful application
of causal networks in these cases raises the question of
whether some of the same computational tools could
be applicable to larger-scale problems of cognitive
development, in particular to elucidating the struc-
ture and origins of our intuitive causal theories.

The most direct line of attack is simply to identify
intuitive theories with causal networks. This is how we
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read the proposal of Gopnik and colleagues (Gopnik &
Glymour, 2002; Gopnik & Schulz, 2004), and it is
related to Rehder’s proposal for modeling “theory-
based” categorization, or categorization based on
“theoretical knowledge,” using causal networks
(Rehder, 2003, chapter this volume). An appealing
feature of this proposal is that it suggests a set of
ready answers to our three guiding questions about
the structure and function of intuitive theories
(Table 19-1). What are intuitive theories? They are
(something like) causal graphical models. How are
theories formed? Using (something like) the existing
learning algorithms in the graphical models litera-
ture (Pearl, 2000; Spirtes et al., 1993). How are theo-
ries used to guide learning of new causal relations?
By providing constraints for causal model learning
algorithms based on the structure of previously
learned causal relations.1 In short, the proposal to
model intuitive theories as causal networks promises
to fill in the missing foundations of a computational
account of cognitive development by drawing on
already established and well-understood formal tools.

This proposition is tempting; there is clearly some-
thing “theory-like” about causal graphical models.
Yet, these models are also fundamentally limited in
ways that intuitive theories are not. Most accounts of
intuitive theories in cognitive development empha-
size the importance of abstract concepts and causal
laws, in terms of which people can construct causal
explanations for the phenomena in some domain
(Carey, 1985b; Wellman, 1990). Causal graphical
models may often be useful for representing the
causal explanations that an intuitive theory generates,
but they do not and cannot represent the abstract
concepts and causal laws that are the core of the
theory and that set the terms in which those causal
explanations are constructed.

To illustrate the strengths and weaknesses of
viewing theories as causal graphical models,
consider Graph 1, shown in Figure 19-1. This net-
work might represent some aspects of a person’s
knowledge about several common diseases, their
effects (symptoms), and causes (risky behaviors).
It can support probabilistic causal inferences (as a
Bayesian network) if we assign to each variable a
probability distribution conditioned on its parents
(direct causes) in the network (Pearl, 1988, 2000).
Such a representation is theory-like in several ways.
Most fundamentally, it permits causal inferences 
to be made from sparse data. Given one or more

observed symptoms in a sick individual, the network
suggests a constrained set of causal explanations: the
presence of one or more diseases causally linked to
those symptoms. The network also assigns relative
probabilities to those hypotheses. If some of the
patient’s relevant behaviors are observed as well,
then those probabilities over the hidden disease
variables will change to reflect the most probable
routes from observed behaviors to observed symp-
toms. For instance, if a person is coughing, then
that suggests they might suffer from bronchitis or
flu but provides no indication of heart disease.
Observing that they also suffer from a headache
would increase the probability of flu; observing
that they habitually smoke would increase the
probability of bronchitis.

What this network description misses is theoretical
knowledge of a more abstract kind: knowledge about
classes of causal variables and laws governing the
causal relations between those classes. For instance,
there appears to be a common domain theory under-
lying Graphs 1–4 but not Graph 5 or Graph 6.
Graphs 2–4 differ from Graph 1 in the precise causal
links they posit: Graph 2 posits that smoking causes
flu but not lung cancer; Graph 3 represents only
a subset of the conditions that Graph 1 does but
includes all the same causal links defined on that
subset; Graph 4 posits a novel unnamed disease
linking working in a factory with chest pain. Yet,
Graphs 1–4 all express the same abstract regularities,
which could be characterized in terms of two
principles:

P1: There exist three classes of variables: Symp-
toms, Diseases, and Behaviors. These classes are
open and of unspecified size, allowing the possibil-
ity that a new variable may be introduced, such as
the new disease in Graph 4.

P2: Causal relations between variables are con-
strained with respect to these classes: direct links
arise only from behaviors to diseases and from dis-
eases to symptoms. These links may be overlapping
(e.g., diseases tend to have multiple effects, and
symptoms tend to have multiple causes).

Principles P1 and P2 are not explicitly represented
in Graphs 1–4, although they are instantiated in those
networks. No single causal network defined over
particular behaviors, diseases, and symptoms (e.g.,
Smoking, Bronchitis, Coughing) could capture 
these principles. Rather, P1 and P2 specify a large
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(potentially infinite) but constrained class of causal
networks, which includes Graphs 1–4 but excludes
Graphs 5 and 6. We view this more abstract level of
knowledge as a core component of intuitive domain
theories. Although knowledge of a causal network
structure like Graph 1 may support reasoning from
effects to causes in specific situations, it is knowledge
of abstract principles like P1 and P2—transcending
any specific network—that allows people to formu-
late appropriate hypotheses for new causal structures
in a given domain and thereby to learn and reason

about novel causal relations or causal systems so
effectively.

Framework Theories and 
Specific Theories

Although not the focus of contemporary research on
causal learning and reasoning, abstract causal knowl-
edge at the level of principles P1 and P2 has tradi-
tionally been recognized as critical in both scientific
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and intuitive theories. Twentieth century philosophers
of science often distinguished the day-to-day level of
theorizing from a more abstract framework level of
theoretical knowledge—principles, concepts, or terms
that shape the possible specific theories a scientist can
construct (Godfrey-Smith, 2003). Such an abstract
level of knowledge appears in Carnap’s (1956) “linguis-
tic frameworks,” Kuhn’s (1970) “paradigms,” Lakatos’s
(1970) “research programs,” and Laudan’s (1977)
“research traditions.”

Inspired by this line of thinking, Wellman and
Gelman (1992) formulated a distinction between spe-
cific and framework theories that they argued would
be useful for understanding children’s intuitive theo-
ries of the world: 

Specific theories are detailed scientific formula-
tions about a delimited set of phenomena. . . .
Framework theories outline the ontology and the
basic causal devices for their specific theories,
thereby defining a coherent form of reasoning
about a particular set of phenomena. (p. 341)

Although she does not explicitly distinguish these two
levels of theory structure, Carey (1985b) clearly seems
to have framework-level knowledge in mind when she
characterizes a child’s theory as follows:

A theory consists of three interrelated components:
a set of phenomena that are in its domain, the
causal laws and other explanatory mechanisms in
terms of which the phenomena are accounted for,
and the concepts in terms of which the phenomena
and explanatory apparatus are expressed. (p. 394)

Traditionally, both philosophers of science and cog-
nitive developmentalists have considered framework-
level theories to be in some sense deeper and more
fundamental than specific theories. A framework
expresses the abstract causal principles that hold across
all systems in a broad domain, providing a language for
constructing specific theories of those systems. Specific
theories, though they carry much of the burden for
everyday prediction, explanation, and planning, thus
cannot be acquired or even formulated without the
machinery of framework theories. The most dramatic
instances of theory change are thought to take place at
the level of frameworks, as in Kuhn’s paradigm shifts, or
the conceptual revolutions of childhood studied by
Carey (1985a), Wellman (1990), and others. At the
same time, the role of specific theories and their inter-
action with framework-level knowledge cannot be

ignored. Framework theories typically come into
contact with the raw data of experience only through
the specific theories that they generate. A framework is
only as good as the specific theories it supports.

In sum, if our ultimate goal is a computational
understanding of intuitive theories and their place in
causal inference, we need to develop formal tools for
representing both framework and specific theories
and formal tools for inference and learning that
account for how specific theories support predictions
and explanations about specific events, how frame-
work theories support the construction and acquisi-
tion of specific theories in their domain, and how
framework theories themselves may be acquired.
Clearly, our current state of understanding is far from
meeting these requirements. We are in a position, how-
ever, to make progress on a more constrained version
of this program: developing formal tools that allow
us to represent abstract causal knowledge like princi-
ples P1 and P2, to understand the role of this knowl-
edge in learning and reasoning about specific causal
networks like Graph 1, and to explain how such
knowledge itself could be acquired. This is our goal
for the remainder of this chapter and chapter 20.

The relationship between principles P1 and P2 and
causal graphical models is analogous to the relation-
ship between framework and specific theories in several
ways. Like a specific theory, Graph 1 spells out the
causal relationships that hold among a delimited set
of variables. The network does not explicitly represent
any framework-level knowledge—anything that resem-
bles an ontology or causal laws defined over the enti-
ties identified within that ontology. The network also
does not define “a coherent form of reasoning” for the
disease domain, which would extend beyond the par-
ticular variables already specified in the network to
learning about novel diseases, symptoms, or behaviors.

Relative to a specific causal network like Graph 1,
the abstract principles P1 and P2 provide something
more like framework-level knowledge. These principles
specify an ontology of kinds of causally relevant
variables (P1) and the basic causal laws (P2) that can
be used to construct causal networks like Graphs 1–4.
Just as framework theories provide the explanatory
principles from which specific theories in a domain
are built, the principles P1 and P2 identify the rela-
tionships from which causal networks can be built in
the disease domain. If someone tells you about a new
disease Y, then P1 and P2 lead you to expect that Y
will have some symptoms and some behavioral
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causes, and that these causes and effects may overlap
with one or more familiar diseases. If you observe a
novel combination of familiar symptoms in a sick
individual, then P1 and P2 suggest that a possible
explanation is the existence of a new hidden vari-
able—a new disease causally linked to those symp-
toms—rather than a web of new connections between
the symptoms themselves.

A change in an individual’s framework theory may
fundamentally alter the specific theories they can
construct (e.g., Wellman, 1990) or even the concepts
they can be said to possess (Carey, 1985a; Gopnik &
Meltzoff, 1997). Likewise, a change in the principles
P1 and P2 would lead a learner to construct qualita-
tively different types of causal network structures and
to reason about diseases in fundamentally different
ways—perhaps even to the point at which we would
no longer say they had the same concept Disease.
Graph 5 appears to derive from the same ontology
as Graph 1 (i.e., P1), but instead of  P2 follows a set
of causal laws that we might call P2�: symptoms cause
diseases rather than the other way around, symptoms
also cause other symptoms, and there are no links
between behaviors and the other conditions. P1 and
P2� may reflect a logically possible alternative (if
nonveridical) theoretical framework, with a coherent
but different mode of reasoning from that of P1 and
P2. In contrast, someone whose beliefs correspond to
Graph 6 appears to lack a coherent mode of reason-
ing in this domain. Graph 6 is inconsistent with both
P1 and P2 or seemingly with any ontology and
causal laws that would give some regularity to its
structure of causal links. Somebody whose beliefs
are represented by Graph 6 not only has different
beliefs about how particular diseases work than
someone whose beliefs correspond to Graph 1 but
seems not to possess the same ontological concepts of
Disease, Symptom, or Behavior—at least not in the
causally relevant sense; they do not know how dis-
eases in general work.

To clarify, we do not mean to suggest that P1 and
P2 should necessarily be seen as a framework theory in
Wellman and Gelman’s sense, or that Graph 1 should
be seen as a specific theory, but only that the relation
between these two levels of causal knowledge is anal-
ogous to the relation between frameworks and specific
theories. When cognitive developmentalists speak of a
child’s framework theory, they are typically referring
to much more abstract knowledge than P1 and P2,
with much broader scope sufficient to encompass 

a full domain of intuitive biology or intuitive
psychology. Yet, we see value in treating the concepts
of framework theory and specific theory as relative
notions, with more abstract frameworks providing
constraints on more specific models across multiple
levels of abstraction and scope. Relative to knowledge
about a specific causal network such as Graph 1,
principles such as P1 and P2 do appear to play a
framework-like role. If we can develop formal tools for
understanding how theoretical knowledge operates at
both of these levels and how they interact in learning
and inference, then we expect to have made real
progress toward the larger program of a computational
understanding of intuitive theories.

Intuitive Theories as Causal Grammars

The proposal to identify intuitive theories with causal
networks appeared promising in large part because the
formal tools of causal graphical models offered ready
answers to the questions we raised in the introduction
(Table 19-1): What is the representational content of
theories, how do theories support new inferences, and
how are theories themselves learned? But, as we have
just argued, this view of intuitive theories does not
address the structure, function, or acquisition of more
abstract framework-like causal knowledge, such as prin-
ciples P1 and P2 or the relation between these abstract
principles and learning and reasoning with specific
causal networks. The remainder of this chapter and
chapter 20 describe some initial attempts to approach
these questions formally.

Our work on intuitive theories has been guided
by an analogy to the linguist’s project of working
out generative grammars for natural languages and
accounting for the use and learnability of those gram-
mars (Chomsky, 1965, 1986). This causal grammar
analogy (Tenenbaum & Niyogi, 2003) has been so
fruitful for us that it is worth discussing in some detail
here, both to motivate the specific proposals we offer
and to provide more general suggestions for how
future work on intuitive theories might proceed.

There is a long history of analogies between
linguistic grammars and scientific theories, dating
back at least to Chomsky’s early work on generative
grammar in language (Chomsky, 1956, 1962).
Chomsky characterized a native speaker’s knowledge
of grammar as “an implicit theory of that language
that he has mastered, a theory that predicts the
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grammatical structure of each of an infinite class of
potential physical events” (Chomsky, 1962, p. 528).
Chomsky (1956) explicitly speaks of an analogy
between theories and grammars:

Any scientific theory is based on a certain finite set
of observations and, by establishing general laws
stated in terms of certain hypothetical constructs,
it attempts to account for these observations, to
show how they are interrelated, and to predict
an indefinite number of new phenomena. . . .
Similarly, a grammar is based on a finite number
of observed sentences . . . and it “projects” this set
to an infinite set of grammatical sentences by
establishing general “laws”. . . [framed in terms of]
phonemes, words, phrases, and so on. . . . (p. 113)

It is striking—if not necessarily surprising—how
closely Chomsky’s characterization of grammatical
knowledge here resembles the characterization of
framework-level intuitive theories in cognitive devel-
opment, as exemplified by the quotations from Carey
and Wellman and Gelman in the preceding section.
Central to the Chomskyan program has always been
an analogy between the descriptive goals of the lin-
guist and the goals of the child learning language.
Both are engaged in a form of theory building, seek-
ing to identify the general laws and grammatical cate-
gories that govern a language’s structure, based on
observations of primary linguistic data and guided by
some (metatheoretic or innate) constraints on the
space of candidate grammars.

Chomsky’s grammars-as-theories analogy was
intended to motivate hypotheses about the content
and function of linguistic grammars, but here we use
the analogy in the opposite direction, to inspire mod-
els for intuitive theories based on the development of
generative grammar in linguistics. Arguably, this is
now the more profitable direction in which to run
the analogy. The last 50 years have seen significant
progress in formal and computational models for lan-
guage—but not so much progress in understanding
causal theories, either intuitive or scientific.2 We first
review some relevant ideas from generative grammar
in language and then discuss their implications for
theories of causal grammar.

A Bird’s-Eye View of Generative Grammar

Figure 19-2 introduces the grammar analogy through
several intuitive (if perhaps overly simplistic) examples.

Like the sample causal networks for different disease
theories shown in Figure 19-1, Figure 19-2 shows sam-
ples of hypothetical utterances and syntactic (phrase
structure) analyses for several simplified languages.
These examples clearly do not begin to approach the
richness of natural language, any more than the exam-
ples shown in Figure 19-1 approach the richness of our
intuitive knowledge about diseases (or biology more
generally). The aim is merely to illustrate how knowl-
edge of syntactic structure in language, as with intuitive
theories in causal domains, can be usefully character-
ized in terms of multiple interacting levels of abstrac-
tion and to suggest parallels between the sorts of
representations that could be useful in linguistic gram-
mars and causal theories.

Figure 19-2a shows utterances from a simplified
English-like language. Informally, each sentence con-
sists of a subject noun followed by a verb phrase, and
each verb phrase consists of a verb followed by a noun
(the direct object). This phrase structure is depicted
with the skeleton of a parse tree above each utterance
in the figure. It is a canonical form for many simple
sentences in English or other languages with SVO
(subject-verb-object) word ordering.

Figure 19-2b shows different utterances apparently
in the same language, obeying the same syntactic
principles. Hearing a speaker utter these sentences,
we would not doubt that the individual speaks
English (or a simplified version thereof), even though
we might be suspicious of the particular beliefs they
appear to hold. The situation is analogous to Graph 2
in Figure 19-1, representing the beliefs of an individ-
ual who has the standard framework-level under-
standing of what behaviors, diseases, and symptoms
are and how they are causally related, but who has
different beliefs about the specific causal links that
exist between particular behaviors, diseases, and
symptoms.

Figure 19-2c shows a case analogous to Graph 5 in
Figure 19-1: an individual who appears to follow a
consistent grammar defined over the same syntactic
categories and the same lexical items as the speakers
represented in Figures 19-2a and 19-2b, but with
different rules prescribing how these categories can
be combined to form possible syntactic structures.
In particular, the utterances in Figure 19-2c appear
to obey SOV (subject-object-verb) ordering, as is
characteristic of Korean, Japanese, Turkish, and many
other languages, rather than the SVO ordering
characteristic of English.
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Finally, Figure 19-2d shows a case analogous to
Graph 6 in Figure 19-1: an individual who appears to
follow no consistent grammar or at least no grammar
that constrains the set of possible utterances based on
syntactic rules or categories that are at all like those in
English.

More formally, theories of generative grammar posit
at least four levels of structure to knowledge of language,
which may serve as a guide for how to think about cor-
responding levels of abstraction in intuitive theories.
These levels of representation are quite distinct in their
forms but are functionally interdependent: each higher
level of abstraction generates the structures at the level
below, and thus constrains the possible lower-level
structures that could be encountered. Language com-
prehension and language acquisition—the main com-
putations for which the language faculty is
responsible—are processes of inductive inference that
can be defined in terms of this representational hierar-
chy. In both comprehension and acquisition, the chal-
lenge is to infer some unobservable structure at an
intermediate level of abstraction by integrating observed
data from a lower level generated by that structure and
constraints on possible forms for that structure gener-
ated by higher levels of the abstraction hierarchy.

These four levels of structure in language can
be loosely characterized as shown in Figure 19-3a
The lowest, most concrete level are utterances:
sequences of words, spoken or written. One level up

in abstraction are syntactic structures: parse trees or
other hierarchical representations of phrase structure
over which the meanings of utterances are defined.
Language comprehension—or, more precisely,
syntactic comprehension or parsing—is the process of
inferring the syntactic structure that gave rise to an
observed utterance. This inference problem presents
an inductive challenge because the set of possible
syntactic structures that can be inferred for any
language is, in principle, infinite in extent and com-
plexity, and the data almost always underdetermine
the true underlying structure.

To explain how people can recover an infinite set
of syntactic structures from appropriate linguistic
utterances, linguists posit a third level of knowledge
more abstract than any syntactic structure. The
grammar—or, more precisely, the syntax—of the
language generates a strongly constrained (but still
infinite) space of candidate syntactic structures that
could be hypothesized to explain utterances in that
language. Although there is no universal consensus
on the content or architecture of syntax, most theo-
ries are based on some set of abstract categories and
rules for how those elements in those categories can
be composed to generate allowable syntactic struc-
tures. Figure 19-3a labels this level of knowledge
“syntactic categories and rules,” but for shorthand we
may refer to it simply as the “syntax” or the “grammar”
of the language.
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To give a concrete example, in the case of the
simplified language in Figure 19-2a the syntax could
be specified by means of a context-free grammar, with
the categories N, V, VP, and S, and the following
rewrite rules:

S � N VP
VP � V N

(19-1)
N � {dogs | cats | fish | people | bones | . . . }
V � {eat | like | scare | . . . }.

A speaker who grasps these abstract rules of syntax, and
who recognizes that the syntactic categories of nouns
and verbs are open classes (capable of adding new
words), can effectively produce and understand an
infinite set of grammatical utterances—not just
the limited sample depicted in Figure 19-2a. On
hearing the novel utterance “Dogs like blickets,” these
principles would allow a competent listener to infer
that “blickets” is in the N (noun) category, and hence
that “people like blickets” and “blickets eat bones” are
also grammatical (if not necessarily true) utterances.

This grammar is sufficiently simple that there are no
parsing ambiguities for the utterances in Figure 19-2a.
Each utterance can be generated by the grammar in
exactly one way. But in natural language use, syntactic
ambiguity is common, which has led to the develop-
ment of probabilistic grammars. Probabilistic gram-
mars (see Charniak, 1993; Jurafsky & Martin, 2000;
Manning & Schütze, 1999) augment the deterministic
rules of traditional grammars with probabilities, so that
each grammar now specifies a probability distribution
over the possible syntactic structures in a language (and,
typically, over possible utterances as well). Identifying
the syntactic structure most likely to have given rise to a
particular observed sentence then becomes a well-
posed problem of statistical inference: selecting from
among all syntactic structures that represent consistent
parses of the sentence the structure that has highest
probability under the probabilistic grammar.

Besides the problem of parsing, the other great
inductive challenge in language is the problem of
grammar acquisition: inferring the correct categories
and rules of syntax from primary linguistic data. Like
parsing, grammar acquisition also requires would-be
language users to infer unobservable structures from
highly underconstrained data. In principle, there is no
limit to the number of grammars that could be posited
to explain a given corpus of utterances. For instance,
the utterances in Figure 19-2a could have been 
produced from the following grammar:

S � A A A
N � {dogs | cats | fish | people | bones | (19-2)

eat | like | scare | . . . },

in which there are no distinguished syntactic cate-
gories and no meaningful constraints on allowable
word combinations.

To explain how children acquire the grammar of
their native language, linguists have proposed a solu-
tion that is parallel to the standard account of parsing
but is elevated in abstraction. Hence the highest level
of structure shown in Figure 19-3, Universal Grammar
or UG. UG comprises the innate knowledge that
every child brings to the task of language acquisition.
Just as the grammar of a language generates a con-
strained space of syntactic structures that could serve
as hypotheses for parsing in that language, the princi-
ples of UG could be said to generate a highly con-
strained space of possible grammars for all human
languages, thereby enabling grammar acquisition to
occur in the face of what would otherwise be severely
inadequate data (Nowak, Komarova, & Niyogi, 2003).
For instance, it may be reasonable to posit that UG
rules out grammars such as (19-2) and allows gram-
mars such as (19-1).

As in the comprehension of syntactic structure,
deterministic constraints on possible hypotheses are
not sufficient to remove all ambiguities in acquisition
and ensure that the correct grammar can simply be
deduced from the observed data. Again, some type of
probabilistic inference is required. To illustrate why,
consider the following grammar:

S � N VP
VP � V N

(19-3)
N � {dogs | cats | fish | people | bones | . . . }
V � {eat | like | scare | fish | people | . . . }.

This grammar is just like (19-1) except that fish and 
people are now categorized as verbs (V) in addition to
nouns (N). It is surely not in violation of the principles
of UG for words to be categorized as both nouns and
verbs. Indeed, many words in English bear such dual
identities (including the words “fish” and “people”).
Or, consider another grammar,

S � N VP
VP � V
VP � V N (19-4)

N � {dogs | cats | fish | people | bones | . . . }
V � {eat | like | scare | . . . },
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which allows verbs to appear in intransitive forms,
such as “cats eat,” in addition to the transitive forms
(e.g., “cats eat fish”) shown in Figure 19-2a and 
generated by grammars (19-1) or (19-3). Again, UG
should clearly allow grammars of this sort.

How could language learners infer which of these
grammars is the true generative system for their lan-
guage? In particular, how are they to know that certain
rules should be included in the grammar, and others
that seem equally plausible by the standards of UG
(and that would in fact be correct in other languages)
should be excluded? Probabilistic inference again pro-
vides a principled framework for answering these ques-
tions (e.g., Charniak, 1993). Probabilistic methods can
identify the correct grammar underlying a corpus of
utterances because the correct grammar should assign
the observed utterances higher probabilities than will
incorrect grammars. Under the hierarchical scheme of
Figure 19-3, a grammar assigns probabilities to possible
utterances through a two-stage process, by generating
syntactic structures with various probabilities, which in
turn give rise to concrete utterances with various prob-
abilities. The correct grammar will generate all and
only the syntactic structures necessary to give rise to the
observed utterances. Alternative grammar hypothesis
will be hurt by undergenerating—failing to generate
syntactic structures necessary to produce a class of
observed utterances—or by overgenerating—generat-
ing syntactic structures that are not part of the language
and that would give rise to a class of utterances not in
fact observed. Either under- or overgeneration in a

grammar hypothesis would lead to less accurate proba-
bilistic expectations about the observed utterance data
and hence weaker inductive support for the grammar.

One final inference problem in language is worth
noting for the sake of the causal analogy: inferences at
the lowest level of Figure 19-3a, about partially
observed utterances. Because the speech signal is
inherently noisy, any individual word in isolation may
be mistaken for a similar-sounding word, and listeners
would be well served if they could interpolate poten-
tially misheard words from the context of more clearly
perceived surrounding words. Because language must
be processed online in real time, listeners would also
be well served if they could predict later words in an
utterance from the context of earlier words. These
inferences at the utterance level may be given the
same treatment as inferences at higher levels of Figure
19-3a. Just as UG generates a constrained hypothesis
space of possible grammars for a language, and just as
a grammar generates a constrained hypothesis space of
possible syntactic structures for an utterance, a syntac-
tic structure generates a constrained hypothesis space
of possible complete utterances that can be used to
guide interpolations or predictions about missing
words. For instance, if a speaker of the language in
Figure 19-2a hears “dogs scare . . .” it is a better bet that
“. . .” should be filled in by “cats,” “people,” or “fish”
than by “like” or “eat” (or by nothing) because
the most likely syntactic structure underlying “dogs
scare . . .” suggests that “. . .” should be a noun rather
than a verb or silence. This sort of inference is a
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central component of state-of-the-art speech-recogni-
tion systems based on probabilistic grammars
(Jurafsky & Martin, 2000) and is probably important
in human language processing as well.

In sum, human language users draw inductive
inferences about unobserved structure at each level
of the hierarchy in Figure 19-3a, based on data from
lower levels and constraints from higher levels. Each
level of structure can be viewed as a generator of
hypothesis spaces for candidate structures at the next
level down and, indirectly, for all levels below it.
Because every level above the utterance is unobserved
(and typically even the utterance level is only partially
observed), it is critical that inferences at all levels be
able to proceed in parallel, based on only partial input
from levels above and below. The child learning lan-
guage will typically be uncertain not only about the
grammar of that language, but also about the syntac-
tic structure of many utterances heard, as well as some
of the words in each utterance. Yet, somehow, after
only a few years of experience, every normal child
becomes an expert on all these levels. The inferential
machinery underlying language learning and use
must thus support a hierarchy of interlocking proba-
bilistic inferences, operating over multiple levels of
increasingly abstract representations.

Toward Causal Grammars

We have invested some energy here in reviewing
elements of generative grammar because all of these
elements—and the whole picture of language they
support—have valuable parallels in the realm of
intuitive causal theories. These parallels include:

� The decomposition of knowledge representation
into at least four levels of increasingly abstract
structure.

� The kinds of representational ingredients
required at each level.

� The nature of the inductive problems to be
solved at each level and the factors that make
these problems challenging.

� The manner in which levels interact, with each
level generating a hypothesis space of candidate
structures for the level below.

� The importance of probabilistic generative
processes, which support hierarchical proba-
bilistic inferences upward from observed data at
the lowest level to multiple higher levels of
abstraction.

Of course, there are other important disanalogies
between the fields, and flaws even in the parallels we
focus, on but still the analogy as a whole offers impor-
tant lessons for how to develop formal treatments of
intuitive causal theories.

Figure 19-3b shows a four-level decomposition of
representation in causal theories—analogous to the
four-level picture of linguistic knowledge in 19-3a.
The data at the lowest, most concrete level consist of
events, or instances in which the variables in a causal
system take on particular values. In causal inference,
these events are interpreted as having been generated
from a structure one level up, a network of cause-
effect relations, such as Graph 1 in the disease
domain. Just as a particular linguistic utterance may
be derived from an abstract syntactic structure by
choosing specific words to fill the abstract categories
in the structure, a particular event configuration may
be generated by choosing values for each variable in a
causal network conditioned on its direct causes. The
formal tools of causal graphical models can be used to
describe these two levels of structure and their inter-
action. In particular, the standard problem of infer-
ence in causal graphical models is just the problem of
inferring unobserved causes or predicting future effects
based on a hypothesized causal network structure—
analogous to the lowest-level linguistic inferences of
interpolating or predicting an incomplete utterance
based on a hypothesized syntactic structure.

As we have already argued, networks of cause-effect
relations such as Graph 1 are only the lowest level of
structural description in a hierarchy of abstraction.
Just as the specific phrase structures in a particular
language are generated by a more abstract level of
knowledge—the grammar or syntax of that lan-
guage—so are the specific causal networks in a partic-
ular domain generated by more abstract knowledge,
which we can think of as a kind of causal grammar or
causal syntax for that domain. Loosely speaking, in
the terminology of the preceding section, a causal
grammar corresponds to an intuitive domain theory at
the framework level, while the causal networks gener-
ated by the grammar correspond to specific theories
developed within the overarching framework theory
for that domain. The real payoff of the linguistic
analogy comes in its suggestions for how causal theo-
ries at this more abstract framework level may be rep-
resented, as well as how they function to guide new
inferences about causal structure and how they may
themselves be acquired.
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Just as theories of linguistic syntax are typically
framed in terms of abstract syntactic categories and
rules for composing phrase structures that are defined
over those categories, so can we start to formalize the
syntax of a causal domain theory in terms of abstract
causal categories of entities, properties, and states and
rules for composing causal network structures defined
over those categories. Principles P1 and P2 are a first
attempt in this direction for a fragment of the disease
domain: P1 specifies three categories of variables, and
P2 specifies the rules by which variables in those cate-
gories can be connected into networks of cause-effect
relations to generate causal networks like Graph 1, but
not those like Graph 5 or 6. In the following chapter, we
present two more formal schemes for representing the
grammars of causal framework theories and principles
such as P1 and P2. These two formalisms work differ-
ently, but they share the basic notion of a generative syn-
tax, with rules for constructing causal networks that are
defined over abstract causal categories.

The primary functional role of a grammar for
causal inference is essentially the same as the role
played by grammar in language comprehension: to
provide the constraints that make possible successful
inductive inferences of structure at the level below. As
in linguistic parsing, inferences about the causal net-
work structure that gave rise to a set of observed events
are highly underconstrained. Many logically possible
causal networks will be able to explain the sparse
event data that a learner typically observes. The
causal grammar reduces this problem by generating
only a constrained set of causal network hypotheses
that the learner need consider. The causal grammar
may also be probabilistic, generating some network
structures with higher probability than others, which
will further help to resolve ambiguities present in the
learner’s data.

Some of the causal grammar’s constraints on
network hypotheses may be domain-general, but
others will vary substantially across domains, in
keeping with the crucial role of abstract theories as
the frameworks on which people’s distinctive under-
standings of different domains are built. For instance,
causal grammars in many domains might assign higher
probabilities to structures with fewer causal links or
fewer hidden (intrinsically unobservable) causes, a la
Ockham’s razor. But in any one domain, a particular
hypothesis that posits strictly more unobservable
structure may be more likely under the causal gram-
mar if it accords better with the specific causal laws

of that domain. For instance, consider a learner for
whom Graph 1 describes that learner’s current the-
ory of specific diseases and P1 and P2 comprise a
framework-level theory. The learner now observes a
previously unseen correlation between a known
behavior B (e.g., Working in Factory) and a known
symptom S (e.g., Chest Pain) in a number of individ-
uals. Guided by P1 and P2, the learner may infer that
a causal chain is likely to go from B to S through some
particular but undetermined disease node Y. Because
no such path exists in Graph 0, the learner infers that
most likely one of the following new structures is
needed: either a new causal link from B to a known
cause of S (e.g., Heart Disease) or a new causal link to
S from a known effect of B (e.g., Bronchitis). If no new
link to or from an existing disease node can be added
without conflicting with other knowledge, P1 and P2
suggest that a new, previously unobserved disease
node Y may exist, and that Y is causally linked to both
B and S (as shown in Graph 4). Other logically sim-
pler hypotheses, such as inserting a single causal link
directly from B to S or from S to B, are ruled out by
the ontology of P1 and the causal laws of P2.

Note that this approach to learning causal network
structures from data is different from how that
problem has traditionally been approached, either in
machine learning (Spirtes et al., 1993; Pearl, 2000) or
cognitive psychology (Cheng, 1997; Gopnik et al.,
2004; Shanks, 1995), as a primarily bottom-up process
of fitting or constructing a causal model that best
accounts for the observed patterns of correlation
among events. The causal grammar view treats causal
learning as more of a parsing operation, integrating
top-down as well as bottom-up constraints in a search
for the best causal model among just those candidates
consistent with the learner’s domain understanding.
This view seems to offer more promise for explaining
how people can successfully infer causal structures
from so little data—sometimes just one or a few
observed events, or much less than would be needed
even to compute reliable correlations among events.

Finally, we turn to the problem of acquiring
framework-level causal theories. Just as probabilistic
grammars for languages may be learnable from a
finite observed corpus of utterances, causal grammars
could also be learnable via statistical methods from
observations of a finite observed sample of systems in
a given domain. Two aspects of this analogy are par-
ticularly worth noting. First, as with the grammar of 
a language, crucial constraints on causal domain
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theories may come from knowledge at higher levels of
abstraction. Some aspects of a causal grammar may be
conditioned by a truly basic (and innate) foundation,
a Universal Theory ‘UT’ by analogy to UG in linguistics.
But other constraints are likely to come from levels of
framework-like knowledge in between the innate
foundation and the frontiers of domain theories in
which learning typically occurs. For instance, princi-
ple P2 in the disease domain grammar only specifes
which kinds of causal links may be present; it does not
require that any particular causal link necessarily
exist. That may be a general quality of causal gram-
mars in biological or social domains, in which there
appears (at least to most novices) to be a fair amount
of arbitrariness in the causal relations that exist. In
contrast, causal relations in physical domains may be
more highly structured and lawful. For example,
every sample of a certain type of element or particle
necessarily interacts with other elements or particles
in the same way.

As with linguistic grammars, the empirical ade-
quacy of hypotheses about causal theories at the frame-
work level are evaluated only indirectly, on the success
or failure of the causal networks they generate. To the
extent that a causal-grammar hypothesis tends to gener-
ate causal networks that in turn generate the kinds of
events a learner frequently observes, that grammar will
receive inductive support. As in linguistics, a grammar
may fail to predict optimally either by undergenerating
or overgenerating. The peril of undergeneration
should be clear: if a causal grammar generates only a
small subset of the causal networks that the true gram-
mar does, then typically there will be many systems in
the domain for which that hypothetical grammar offers
no reasonable description. As an example of overgener-
ation, consider a grammar in the disease domain that is
equivalent to principles P1 and P2 except that it com-
bines disease and symptom variables into a single class
(“disymptoms”) and allows causal links between any
two variables in that class. This “disymptom” grammar
is strictly more general than principles P1 and P2. Now,
suppose that we observe data produced according to
Graph 1. Although both grammars are capable of
generating the correct generating network, the data
will provide more inductive support for principles P1
and P2 than for the “disymptom” grammar because the
overly general variant generates many more competing
causal-network hypotheses that are far from the truth
(and under which the observed data would be highly
unlikely).

Summary

Viewing intuitive theories in terms of a hierarchy of
increasingly abstract knowledge representations has
led us to formulate problems of causal inference on
three interlocking levels:

1. Inferring causes and predicting effects. Infer the
hidden causes of an observed event, or predict
its unobserved effects, given a theory at the
most specific level: a network structure relating
causes and effects in the relevant system.

2. Inferring causal networks. Infer the structure of
a theory at the most specific level—a network of
causal relations—that governs a system of obser-
ved variables given more general framework-like
knowledge: the principles constraining candi-
date causal structures in the relevant domain.

3. Inferring causal principles. Infer the principles
that organize a set of observed causal systems,
given higher-level theoretical frameworks: knowl-
edge about a larger domain that encompasses
those systems, or domain-general assumptions.

Everyday causal inference unfolds at all of these
levels simultaneously, although novel inferences at
higher levels may be relatively rare for adults (Gopnik
& Meltzoff, 1997). This formulation of causal induc-
tion raises a significant computational challenge:
explaining how all of these inference problems can be
solved in concert.

In the remainder of this chapter, we propose a
response to this computational challenge that exploits
the common form of all three problems: knowledge at
a more abstract level generates a constrained space of
candidate hypotheses to be evaluated based on data
from lower levels of abstraction. The tools of Bayesian
inference can be used to formulate any one of these
inferences in rational statistical terms. We propose a
hierarchical Bayesian framework in which hypotheses
are defined at multiple levels of abstraction and
coupled together based on the constraints that each
hypothesized structure imposes on hypotheses at
lower levels. This hierarchical framework unifies all
three levels of inference and shows how a learner may
in principle tackle them all simultaneously.

The next section introduces the technical machin-
ery of our hierarchical Bayesian framework. If this
appears to be a big step up in mathematical rigor with-
out a clear immediate payoff, then we suggest viewing
it as a long-term investment. Analogous hierarchical
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probabilistic models have been proposed in computa-
tional linguistics for integrating language acquisition,
syntactic parsing, and speech recognition (Charniak,
1993; Jurafsky & Martin, 2000; Manning & Schütze,
1999): candidate probabilistic grammars are evalu-
ated based on how much probability they assign to the
most likely parses of an observed corpus of utterances;
individual word outputs from a probabilistic speech
recognizer are constrained or reevaluated based on
how well they fit with the most likely parses of the sur-
rounding utterance. Although many important
aspects of representation and computation remain to
be worked out, it is fair to say that the introduction of
sophisticated probabilistic models with multiple
levels of knowledge representation has revolutio-
nized and reinvigorated the field of computational
linguistics over the last decade. We have similarly
high hopes for the future of research on intuitive
causal theories.

A Hierarchical Bayesian Framework for
Causal Inference

We begin with a brief review of the basics of Bayesian
inference and then show how to extend these ideas to
multiple levels of inference in a hierarchy of intuitive
theories, where each level functions as a hypothesis
space generator for the level below.

Basic Bayes

Bayesian inference provides a general framework for
how rational agents should approach problems of
induction. We assume an agent who observes some
data D and considers a space of hypotheses H about
the processes by which that data could have been
generated. The agent’s a priori beliefs about the
plausibility of each h � H, before seeing D but
drawing on background knowledge K, are expressed
in a prior probability distribution P(h|K). The princi-
ples of Bayesian inference indicate how the agent
should modify his or her beliefs in light of the data D,
computing a posterior probability distribution
P(h|D,K).

The key engine for updating beliefs in light of data
is Bayes’ rule,
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The likelihood P(D|h,K) encodes the predictions of
each hypothesis h—the probability of observing D if h
were true. The denominator P(D|K) is an average of
the predictions of all hypotheses in the hypothesis
space, weighted by their prior probabilities:

(19-6)

This denominator serves to normalize the terms that
appear in the numerator, ensuring that the posterior
P(h|D, K) can be interpreted as a proper probability
distribution over hypotheses.

The content of Bayes’ rule can be understood intu-
itively by thinking about what factors make for strong
arguments from observed data to hypothesized expla-
nations in science. To say that some observed data D
provide provide good reason to believe in hypothesis h,
at least two conditions must hold. First, the hypothesis
must predict the data. The stronger the predictions that
h makes about D, the more support h should receive
from the observation of D. Second, independent of the
data, the hypothesis must be plausible given everything
else we know. One can always construct some post hoc
hypothesis that is consistent with a particular experi-
mental finding, but such a hypothesis would not be
considered a good explanation for the data unless it was
a well-motivated and principled consequence of our
background knowledge. The combined influence of
these two factors is captured in the numerator of Bayes’
rule: the posterior probability assigned to some hypothe-
sis h on seeing D is proportional to the product of the
prior probability P(h|K), reflecting the a priori plausibil-
ity of h, and the likelihood P(D|h,K), reflecting the
extent to which D is predicted by h. The denominator
reflects a third factor that also influences belief dynamics
in science, although its rational status is not always appre-
ciated. Data D provide better support for hypothesis h to
the extent that the data are surprising. That is, either the
data are unlikely given our background knowledge, or
they would not be predicted under most plausible alter-
native hypotheses. The former condition is just equiva-
lent to saying that P(D|K) is low, and the lower this term,
the higher the posterior probability in Equation 19-5.
The latter condition is just a different framing of the
same situation, as expressed in Equation 19-6: P(D|K)
will be low when P(D|h�K) is low for plausible alterna-
tive hypotheses (those for which P(h�|K) is high).

In short, Bayesian inference provides a rigorous
mathematical representation of a basic principle of
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scientific common sense: to the extent that a given
hypothesis is well motivated and strongly predictive of
the observed data and to the extent that the predicted
data are surprising or otherwise unexpected, the
hypothesis is more likely to be true. Our contention
here is that this approach to inductive inference also
offers useful insights into commonsense reasoning
and learning with intuitive theories.

Bayes’ rule can be applied to any problem requir-
ing an inference about the process that produced
some observed data. Different types of inductive prob-
lems will involve different types of hypothesis spaces
and different types of data, with appropriately modi-
fied priors and likelihoods. In the next section, we for-
malize the three problems of causal inference identified
above in Bayesian terms, identifying the hypothesis
space and data used in each case and explaining how
the priors and likelihoods are determined.

A Hierarchical Bayesian Framework

Expressing causal inference problems in Bayesian
terms emphasizes the importance of constraints on
which hypotheses are possible or likely a priori.
Expressing multiple inference problems at different
levels of abstraction in a hierarchical Bayesian frame-
work emphasizes the coupling of these constraints
across levels of inference.

In presenting our hierarchical framework, we
adopt the following terms and notation. A system is a
set of causally related variables within a domain. For a
system of N variables X�{X1, . . . , XN}, an instance is
an assignment of values to these variables, x�{x1, . . .
xN}. We use uppercase letters to indicate variables,
lowercase to indicate their values, and boldface to indi-
cate a set of variables or their values. For any instance
x, a subset of variables xobs are observed (i.e., the values
of those variables in that instance are known), and the
remainder xunobs are unobserved (i.e., take on unknown
values). A data set d consists of the observed portions
of M instances of some system, d�{x(1)

obs, . . . ,x(M)
obs}.

Depending on the level of causal inference, the data
D available to the learner may consist of a single
observed instance of a system, a data set d of multiple
instances of the same system, or multiple data sets,
each from a different system in the same domain.

The three inference problems from the preceding
section—inferring causes from effects, inferring
causal networks from cause-effect observations, and
inferring the principles underlying causal network

structures in a domain—unfold at different levels of
abstraction. To cast all these problems in a unified
Bayesian inference framework, we define a hierarchy
of increasingly abstract theories T0, T1, . . . , TU as the
basis for a hierarchical generative model of the data.
The subscript indicates the level of theory, with U
the highest level (Figure 19-4). Theories at each level
of the hierarchy generate hypothesis spaces and prior
probability distributions for Bayesian inference at the
level below. The lowest-level theory T0 is a causal net-
work defined on the variables of a particular system,
generating hypotheses about the values of those vari-
ables and defining a distribution P(X|T0). The next
level T1 is a set of principles that generates a hypothesis
space of causal networks T0, defining a prior distribu-
tion P(T0|T1). This suggests a more precise definition of
a domain as the set of systems that can be generated by
a theory Ti for i	0. Higher-level theories are defined
recursively: for any i	0, a theory Ti generates a hypoth-
esis space of theories Ti�1 with an associated prior dis-
tribution P(Ti�1|Ti), giving rise to a hierarchy of
increasingly general theories, each with a correspon-
ding (increasingly general) domain.

Inferring Causes and Predicting Effects

Inferring hidden causes or predicting future effects can
both be formulated as problems of inferring the values
of the unobserved variables in an instance x. In many
cases where only a subset of variables are observed, xobs
are effects, and xunobs are their causes, but the problem
remains the same if xobs correspond to causes or a mix-
ture of causes and effects. In Bayesian terms, we seek to
compute the posterior distribution over xunobs given xobs.
Such an inference requires knowledge of a hypothesis
space of possible values that xunobs could take on, the
prior probabilities of those values, and the probability of
observing the data xobs conditioned on those values. A
causal network T0 can be used to generate values of x
and consequently supplies all of these ingredients.

Taking T0 as our background knowledge K, we
can compute the posterior distribution on xunobs by
applying Bayes’ rule (Equation 19-5), letting xobs play
the role of the data D and xunobs the role of the
hypothesis h. T0 specifies the hypothesis space H �

H0, the prior probability P (xunobs|T0), and the likeli-
hood P(xobs|xunobs,T0). We thus have
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where the denominator can be computed by summing
over all values xunobs allowed by T0:

(19-8)

Evaluating Equation 19-7 is just the standard process of
inference in a Bayesian network. The network not only
sets up the hypothesis space for these computations,
but also allows the computation to be carried out
efficiently. It provides a structured representation of
the joint probability distribution over all variables that
enables Equations 19-7 and 19-8 to be computed by
simple local computations (Pearl, 1988; Russell &
Norvig, 2002).

Inferring Causal Networks

The problem of inferring causal network structures
from cause-effect observations can be formalized as
identifying the T0-level theory that best explains a data
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set d of M partially observed instances of a system.
Standard “data-mining’’ algorithms for learning
causal networks (e.g., Spirtes et al., 1993; Pearl, 2000;
Heckerman, 1998) offer one approach to this prob-
lem, but for several reasons they are not promising
as rational accounts of human causal learning. These
algorithms require large samples to identify correla-
tions among variables, yet human learners are willing
to infer causal relationships from only a few observa-
tions, for which correlations cannot be identified
reliably (Gopnik et al., 2004; Gopnik & Schulz, et al.,
2004; Griffiths et al., 2004; Griffiths & Tenenbaum,
2005; Schulz et al., 2004; Steyvers et al., 2003,
submitted).

Human learners are able to learn causal structure
from such limited data because they draw on strong
prior knowledge that generic data-mining algorithms
for learning causal networks are not designed to
exploit. Rather than treating all variables of a causal
system as equal a priori, as those algorithms do,
people will typically conceive of the variables in terms
of properties and relations on objects. Domain-specific
theories at a more abstract level—knowledge about
classes of objects and predicates and causal laws relating
these classes—will set up strong expectations about
the kinds of causal network structures and functional
dependencies between variables that are likely to be
encountered. This is the function of principles P1
and P2 in the disease domain. The scenario in the
preceding section, in which a learner infers a novel
hidden disease variable to explain a newly observed
behavior-symptom correlation, is one example of how
such domain theories may guide human learning of
causal structure. People also have domain-specific
knowledge about how kinds of causal mechanisms
work. This knowledge may be quite skeletal (Keil,
2003), but it is often sufficient to generate useful con-
straints on the nature of the functional dependency
between causes and their effects. By specifying
whether a hypothetical causal link—if it exists—is
likely to be deterministic or probabilistic, generative
or inhibitory, strong or weak, independent of other
links or interacting with them, skeletal mechanism
knowledge may allow learners to infer, from much
less data than would be required without those expec-
tations, which causal relations do in fact exist. 

This knowledge-driven approach to causal struc-
ture learning fits naturally into our hierarchical
Bayesian framework. We want to compute a posterior
distribution over causal networks T0 given a data set d
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FIGURE 19-4 A hierarchical probabilistic model
corresponding to the hierarchy of abstraction in causal
theories shown in Figure 19-3. Theories at each level
of abstraction define a prior probability distribution
over candidate theories at the next level down, bottom-
ing out in the observed data X. Bayesian inferences
about theories at each level combine information
from the observed data, propagated upward by success-
ful lower-level theories, with top-down constraints from
higher-level theories (and ultimately perhaps some uni-
versal conceptual skeleton for all theories TU).



and relevant background knowledge K. The back-
ground knowledge K takes the form of a more abstract
theory T1, which generates a hypothesis space H1 of
causal networks T0 and a prior on that hypothesis
space P(T0|T1). The probability of the data set d under
each network T0 can be computed as follows: T0
specifies a joint distribution over the system’s variables
X� {X1,. . ., XN}, which determines the probability
P(xobs

(i) |T0) of the ith partially observed instance
(Equation 19-8). Assuming each instance in d is sam-
pled independently, the total probability of the data
set is 

(19-9)

We can now apply Bayes’ rule (Equation 19-5) to
compute the posterior probability of a particular
causal network T0 given a data set  d and a higher-
level theory T1:

(19-10)

where the denominator is

(19-11)

The sum over all possible networks in Equation 19-11
may be computed exactly for very small systems but in
general requires some kind of stochastic sampling-based
approximation scheme (e.g., Friedman & Koller, 2000).

Several cognitive scientists have proposed that
human causal learning is best thought of as a
knowledge-based, theory-based, or top-down process
(e.g., Waldmann, 1996; Lagnado & Sloman, 2004;
Lagnado, Hagmayer, Sloman, and Waldmann, this
volume). However, these proposals have been rela-
tively qualitative and informal. There has not been a
widespread effort to propose and test principled
domain-general frameworks for modeling theory-
based induction of causal structure, as there has been
for more bottom-up associative accounts (Rescorla &
Wagner, 1972; Cheng & Novick, 1990; Cheng, 1997;
Lober & Shanks, 2000; Danks, 2003). Our analysis
aims to formalize the knowledge that guides causal
structure learning, and to provide a rational acco-
unt of how it does so. The roles of both top-down
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constraints from prior knowledge and bottom-up
influences from observed data are reflected in the
two terms in the numerator of Equation 10: the
higher-order theory T1 defines the prior probability
P(T0|T1) and delimits the set of causal networks
under consideration, while the data favors some
networks within this set via the likelihood P(d|T0). In
a series of papers (Griffiths et al., 2004; Griffiths &
Tenenbaum, 2005; Tenenbaum & Griffiths, 2001,
2003; Steyvers et al., 2003), we have shown how this
theory-based Bayesian framework can be used to
build rational and quantitatively accurate models
of people’s inferences about causal structure from
limited data.

Inferring Causal Principles

The machinery for theory-based inference of causal
network structures T0 can be extended up the hierar-
chy of theories, making it possible, in principle, to
learn a theory at any level. For instance, given data D
drawn from one or more causal systems in a domain,
we can make inferences about the T1-level principles
that govern those systems (e.g., abstract classes of vari-
ables and causal laws such as principles P1 and P2 in
the disease domain). We compute a posterior distribu-
tion over T1 theories by applying Bayes’ rule
(Equation 19-5) to a hypothesis space H2 generated
by a higher-order theory T2.

(19-12)

Assuming that D consists of L independent data
sets {d1,. . ., dL}, we can compute the likelihood
P(D|T1) as

(19-13)

Each term P(di|T1) corresponds to the denominator in
Bayes’ rule applied at the next level down (Equation
19-11), obtained by summing over all causal networks
T0 generated by T1 for each of the systems represented
in D. P(T1|T2) is the distribution over theories at
level T1 defined by the higher-level theory T2. P(D|T2)
is computed in the same way as P(d|T1), except that it
requires summing over all theories T1 in H2, as well as
all causal networks T0 in the hypothesis space H1 asso-
ciated with T1. P(D|T2) can be used to make infer-
ences about T2 given D and so on up the hierarchy.
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This analysis shows that an ideal learner should be
able to acquire higher-level causal theories from data
given an appropriate hypothesis space of candidate the-
ories. In practice, as each new level of theory adds a
whole hypothesis space of hypothesis spaces that the
learner must sum over, carrying out all the required
computations quickly becomes intractable. Bayesian
statisticians often approximate exact inference in hierar-
chical models by replacing a sum over all hypotheses
with a search for the most probable hypothesis or with a
sum over a sample of hypotheses generated by Markov
chain Monte Carlo techniques (e.g., Gilks, Richardson,
& Spiegelhalter, 1996). An interesting open question is
how the cognitive processes involved in theory change
and acquisition might correspond to some of these
methods for approximating Bayesian inference with
complex, hierarchically structured hypothesis spaces.

There may also be processes involved in the
acquisition of higher-order theories that are not so
clearly evidential in nature, or that draw on types of
evidence that are different from direct observations of
systems in the world. For instance, when a child
hears an adult talking about the causal structure of a
complex domain such as intuitive biology or psychol-
ogy (e.g., Carey, 1985a; Gopnik & Meltzoff, 1997),
invoking various hidden causes and abstract con-
cepts, the child might receive useful evidence about
the relative value of alternative hypotheses for higher-
order, framework-level theories in these domains. It
is far from clear how to capture the inferences a child
might make from such data in terms of our hierarchi-
cal Bayesian framework, but this remains another
important open question for the research program to
address.

Summary

We began this chapter with three guiding questions
(Table 19-1): What is the knowledge content and rep-
resentational form of intuitive theories? How do intu-
itive theories guide the acquisition of new casual
knowledge? How are intuitive theories themselves
acquired? Rather than stipulating arbitrarily the prop-
erties that intuitive theories should have or trying to
give a fully general account of theories, we have pre-
sented a rational analysis of causal induction and
restricted ourselves to accounting for those aspects of
intuitive theories necessary to explain how people per-
form these tasks.

The key challenge of causal induction we identified
was the need to make inferences about unobservable
causal relations from sparse observed data. We argued
that these inferences are made possible by strong
constraints from more abstract levels of causal knowl-
edge. These constraints often arise from domain-
specific principles that run counter to simplicity or
other general-purpose inductive biases, such as when
a novel association between a risky behavior and a
known medical symptom is attributed to an indirect
link via an unknown disease rather than to a direct
causal link between the behavior and symptom.

Inspired by proposals from developmental psy-
chology and philosophy of science, we suggested that
both networks of causal relations and the more
abstract causal principles that constrain them may be
thought of as intuitive domain theories, but at differ-
ent levels of abstraction. These levels of abstraction
correspond roughly to the notions of specific theories
and framework theories introduced by Wellman and
Gelman (1992), but we expect there will typically be
multiple levels of increasingly abstract, broad-coverage,
framework-like causal knowledge. Each level in this
hierarchy of theories provides constraints on candi-
date theories at the next level down and is itself
constrained by knowledge at higher levels, perhaps
ultimately grounding out in a “universal theory” of
conceptual primitives underlying all intuitive
domains.

Viewed from this hierarchical perspective, our
initial questions about the structure, function, and
acquisition of intuitive causal theories now come
down to these two: How do we represent knowledge of
causal structure at multiple levels of theoretical
abstraction, and what processes of inference connect
those knowledge levels to support learning and rea-
soning across the hierarchy? Existing computational
formalisms based on causal Bayesian networks may be
appropriate for characterizing causal theories at the
most specific level, but they do not extend to the
higher levels of abstraction for which this hierarchical
picture calls out.

As a first step toward answering these questions, we
proposed the causal grammar analogy: a framework
for thinking about representation and inference in a
hierarchy of causal theories based on parallels with
some classic representational structures and infer-
ential mechanisms that have been posited to explain
language comprehension and acquisition. Just as the
grammar of a natural language generates a constrained
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hypothesis space of syntactic structures considered in
sentence comprehension, so does the set of abstract
causal principles (or the framework theory) for a
domain generate a constrained hypothesis space of
causal network structures  (or specific theories) con-
sidered in causal induction. Just as linguistic gram-
mars can be expressed in terms of a set of abstract
syntactic categories and rules for composing instances
of those categories into viable syntactic tree struc-
tures, so can higher-order causal theories—or causal
grammars—be expressed in terms of a set of abstract
categories of causal variables and rules for how vari-
ables in those classes can or must be related to form
plausible causal network structures. Both linguistic
grammars and causal grammars must also be reliably
learnable, based on a combination of the primary
data available to people and the constraints on possi-
ble grammars provided by more abstract, possibly
innate conceptual primitives. Hypotheses about lin-
guistic grammars or causal grammars can only be
evaluated indirectly, based on how well the specific
syntactic tree structures or causal network structures
that they generate explain the observed primary data.

Finally, we outlined a more formal approach to
learning and reasoning in a hierarchy of theories
based on the tools of hierarchical Bayesian models.
This analysis provides a principled and unified
approach to solving causal induction problems at all
levels of our hierarchy of abstraction. At its heart is the
idea that intuitive theories at each level of abstraction
generate hypothesis spaces for Bayesian inference
about theories at lower levels and are themselves
learned via Bayesian inference over hypothesis spaces
generated by higher-level theories. Thus, the induc-
tive mechanisms operating at each level of abstraction
are essentially the same, and they can proceed in
parallel to support coupled inferences at all levels.

This Bayesian framework provides a rational
analysis of how inference and learning can operate in
a hierarchy of intuitive causal theories, but it does
not directly address the question of how to represent
the structure and content of those theories. In terms
of Table 19-1, we have presented a formal answer to
the second and third questions, but only an incom-
plete answer to the first question: theories at the low-
est, most specific level might be represented as causal
Bayesian networks; higher-level theories will require
more expressive representations, somewhat like
generative grammars. The companion to this chapter
(Griffiths & Tenenbaum, chapter 20, this volume)

examines in detail two possible representational
frameworks for theories at higher levels of abstrac-
tion, based on graph schemas and predicate logic.
We show precisely how each of these two representa-
tional frameworks can fulfill the functional role of T1-
level theories in our hierarchical Bayesian picture,
how they support inferences about specific cause-
effect relations from sparse data, and how they may
themselves be learned or adjusted based on the data
observed. We identify complementary strengths and
weaknesses of each representation, ultimately argu-
ing that neither of these formalisms provides a fully
adequate account of the structure and function of
abstract causal theories. Still, a consideration of these
alternatives lays out the challenges for future work
and offers some possibilities for what the answers may
look like.
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Two Proposals for Causal Grammars

Thomas L. Griffiths & Joshua B. Tenenbaum

language. However, until now we have not presented
any specific proposals for formalizing the knowledge
content or representational form of causal grammars.
That is our goal here.

Just as linguistic grammars encode the principles
that implicitly underlie all grammatical utterances in
a language, so do causal grammars express knowledge
more abstract than any one causal network in a
domain. Consequently, existing approaches for repre-
senting causal knowledge based on Bayesian networks
defined over observable events, properties, or variables
are not sufficient to characterize causal grammars.
Causal grammars are in some sense analogous to the
“framework theories” for core domains that have been
studied in cognitive development (Wellman &
Gelman, 1992): the domain-specific concepts and
principles, that allow learners to construct appropriate
causal networks for reasoning about systems in a given
domain and the expectations about which causal rela-
tions are more or less likely a priori, which enable
causal learning to proceed from the sparse data typi-
cally encountered.

Introduction

In chapter 19 we introduced a framework for thinking
about the structure, function, and acquisition of intu-
itive theories inspired by an analogy to the research
program of generative grammar in linguistics. We
argued that a principal function for intuitive theories,
just as for grammars for natural languages, is to gener-
ate a constrained space of hypotheses that people con-
sider in carrying out a class of cognitively central and
otherwise severely underconstrained inductive infer-
ence tasks. Linguistic grammars generate a hypothesis
space of syntactic structures considered in sentence
comprehension; intuitive theories generate a hypothe-
sis space of causal network structures considered in
causal induction. Both linguistic grammars and intu-
itive causal theories must also be reliably learnable
from primary data available to people. In our view,
these functional characteristics of intuitive theories
should strongly constrain the content and form of the
knowledge they represent, leading to representations
somewhat like those used in generative grammars for



Chapter 19 describes a hierarchical Bayesian
framework that more precisely formalizes the relation-
ship between causal grammars and causal Bayesian
networks. A learner’s observations of the world are
interpreted in terms of a hierarchy of increasingly
abstract and general theories, with each level generat-
ing a hypothesis space and prior probability distribution
for theories at the level below, thereby allowing those
lower-level theories to be learned in a top-down fashion
based on only sparse bottom-up input. The most 
specific level of intuitive theories concerns cause-effect
relationships between observable events, properties, or
variables, which can be formalized as causal Bayesian
networks. Higher levels of abstraction require some-
thing like the representational powers of generative
grammars, specifying categories of variables and rules
for how composing those categories to construct the
constrained space of causal networks that are possi-
ble in a given domain. For instance, to recall an exam-
ple from chapter 19, a learner’s beliefs about possible
causal network structures in a simplified medical
domain might be characterized by these two principles:

P1 There exist three classes of variables: symp-
toms, diseases, and behaviors. These classes are
open and of unspecified size, allowing the pos-
sibility that a new variable may be introduced.

P2 Causal relations between variables are con-
strained with respect to these classes: Direct
links arise only from behaviors to diseases and
from diseases to symptoms. These links may
be overlapping (e.g., diseases tend to have
multiple effects, and symptoms tend to have
multiple causes).

Figure 20-1 shows several causal networks (Graphs
1–4) that are consistent with these principles, as well
as two networks (Graphs 5 and 6) that would be
impossible or “ungrammatical” under this theory.

In this chapter, we examine in detail two proposals
for formalizing causal grammars, the first based on a
type of graph grammar that we call a graph schema
and the second based on a typed predicate logic. We
present applications of each approach to characteriz-
ing several small-scale intuitive theories and show how
these approaches support quantitative modeling of
behavioral studies on causal learning and theory acqui-
sition with both child and adult subjects. Both propos-
als are defined in a probabilistic setting so that we can
show precisely how they support causal learning 
and how they themselves can be learned using the

hierarchical Bayesian framework of chapter 19. For
neither approach will we be able to give fully satisfying
accounts of learning at both of these levels because of
an inherent tradeoff in the representational power and
learnability of any grammar: To the extent that a
causal grammar generates rich and subtle constraints
on possible causal networks, it will be harder to
acquire that grammar from observed data. Presenting
two different proposals for causal grammars allows us
to explore this tradeoff and lay the groundwork for
future attempts to give a full account of the use and
origins of abstract causal knowledge.

Causal Grammars in a Hierarchical
Bayesian Framework

Before turning to our two proposals, we briefly recap the
necessary formal machinery for hierarchical Bayesian
learning from chapter 19. Causal Bayesian networks are
identified with theories at the lowest, most concrete
level of the abstraction hierarchy, level T0. We typically
identify causal grammars with the T1-level theories that
define hypothesis spaces of T0-level structures and
assign prior probabilities to those hypotheses, thereby
guiding inferences about the causal network structure
T0 most likely to have given rise to some observed data
set d. A Bayesian learner evaluates a causal network
hypothesis T0 based on its posterior probability,

(20-1)

where the denominator is 

(20-2)

The causal grammar T1 specifies a probabilistic
process for generating causal network hypotheses.
The total set of networks generated by the grammar
comprises the hypothesis space H1. The probability
with which the grammar generates any particular net-
work T0 yields its prior probability P (T0|T1).

Our hierarchical Bayesian analysis also provides a
framework for understanding how T1-level theories
may be inferred from data. Given a higher-level 
theory T2 that specifies a prior over causal grammars
P (T1|T2) and a collection of data sets D from one or
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more systems in the domain, the posterior probability
distribution over causal grammars is

(20-3)

The denominator P(D|T2) is computed in a similar
fashion to Equation 20-2 but sums over theories at 
levels T0 and T1. In discussing our two proposals for
causal grammars, one of the critical questions that
arises is how such representations could be learned.
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Equation 20-3 provides a theoretical answer to this
question, but actual application of these methods to
rich structures such as our causal grammars can pose
significant computational challenges.

Theories as Graph Grammars

One approach to formalizing causal grammars—or
higher-level causal theories—is in terms of a 
probabilistic graph grammar. In concrete terms, the
grammar can be thought of as a machine that outputs
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FIGURE 20-1 Causal networks illustrating different possible sets of beliefs about the relationships among
behaviors, diseases, and symptoms. The same underlying causal grammar generates Graphs 1–4 but not
Graphs 5 or 6.



samples from an infinite subset of labeled directed
graphs drawn from some probability distribution.
Each of these graphs represents the causal structure
underlying a causal Bayesian network, but the graphs
are not themselves equivalent to Bayesian networks:
they must be supplemented with a semantic interpre-
tation of the variable that each node represents, and a
specification of how each variable depends function-
ally or probabilistically on its parents in the graph.
Putting these complexities aside for now, a grammar
for causal graphs is still a useful starting point for for-
malizing some aspects of abstract causal theories.

This section focuses on one elementary family of
graph grammars sufficient to represent coarse proba-
bilistic constraints on candidate causal network struc-
tures. We call these models graph schemas. They
generalize an earlier proposal of Tenenbaum and
Niyogi (2003). Graph schemas are clearly not adequate
to express all theorylike knowledge at levels T1 or above,
but they provide a simple example of how we can begin
to formalize abstract causal theories at a level beyond
specific causal networks, how those theories could
guide Bayesian learning of causal network structure,
and how the theories may themselves be learned.

Graph Schemas

A graph schema G is a probabilistic generative model
for labeled directed graphs. The key components of
the schema are a set of node classes and the class
graph, a directed graph defined over the node classes.
(In the context of causal structure learning, each node
corresponds to a variable in a causal graphical model,
so we use the terms node and variable interchange-
ably.) Generating a graph from a graph schema
involves two stages: (a) creating some number of
graph nodes and assigning them to node classes; 
(b) creating connections between nodes in accor-
dance with the class graph, which specifies whether a
causal connection may (or must) exist from a particu-
lar variable i to a particular variable j as a function of
their classes C(i) and C(j). A probabilistic (or deter-
ministic) process must be defined for each of these
stages, the details of which may vary from domain to
domain. But, the basic structures of the set of node
classes and the class graph are often sufficient to char-
acterize some important features of a domain theory.

Figure 20-2 shows a graph schema that we refer to
as GDis, which is intended to capture the constraints
expressed by the principles P1 and P2 in our simpli-
fied disease domain. Consistent with P1, there are

three node classes, labeled B, D, and S. Corresponding
lowercase letters (b, d, s) are used to denote specific
nodes in each class. All classes are open, meaning that
the number of nodes in each class is potentially
unbounded. Consistent with P1, the two arcs in the
class graph specify allowed causal connections: D → S
specifies that variables in Class D may connect
causally to variables in Class S, and B → D specifies
that variables in Class D may connect causally to
variables in Class S. Both arcs are dashed to indicate
that they represent laws about possible causal relations:
links that may exist but need not. That is, any individ-
ual variable d∈D may be a cause of any individual
node s∈S, but need not be. A solid arc n the class
graph indicates a necessary causal relation, in which
every node in one class is causally linked to every node
in the other class.

Like a generative grammar for a language, GDis
specifies abstract classes of entities (variables, instead
of words) and rules about the relations (causal rela-
tions, instead of syntactic relations) that may exist
between entities of various types. By analogy with lin-
guistic grammars, we say that a graph schema G gen-
erates Graph i if there exists some way to partition
(parse) the nodes in Graph i into the node classes of
G such that all the edges in Graph i are consistent
with the possible or necessary connections specified
in the class graph of G. As with a grammar for
language, a graph grammar can be augmented with
probabilities to enable learning and inference. A
probabilistic model can be defined over a graph
schema by specifying (a) a distribution over the num-
ber of nodes in the graph and the number of nodes in
each open class and (b) distributions over which spe-
cific causal links exist between nodes in classes con-
nected in the class graph. For GDis, one way of
defining these probabilities is shown in Figure 20-2.
The number of nodes in each class follows a power
law distribution P(N) � 1/N�, with a class-specific
exponent α. After sampling an appropriate number of
nodes in each class, a causal link is generated inde-
pendently at random between each pair of nodes in
classes connected in the class graph, with some prob-
ability � characteristic of the parent and child classes.

The graph schema G assigns a probability P(Graph
i | G) to any causal network Graph i over a set of N
labeled nodes in its domain. P(Graph i|G) is nonzero
if and only if G generates Graph i. The sizes of the
graphs generated by a schema are not bounded but
must be finite. The probabilities P(Graph i|G) are
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normalized to sum to one over all labeled directed
graphs with any finite number of nodes. If Graph i rep-
resents the structure of a particular causal network
(T0), then G can be thought of as those aspects of the
T1-level theory that generate a hypothesis space and
prior over such structures: P (T0|T1). Figure 20-3 shows
two graphs sampled from P(Graph i|Gdis), each with
αB� αD �αS �2 and �BD ��DS �1/2.

Examples of graph schemas in 
different domains

Figures 20-4 through 20-6 show schema-based graph
grammars for several other domains. None of these
grammars comes close to capturing all of people’s
abstract causal knowledge in the corresponding
domain, and important details are oversimplified.
The point is merely to illustrate some of the variations
in abstract causal knowledge that can arise across
domains and how these variations can be represented
with different graph schemas. Only the qualitative
structure of the graph schemas are shown, specifying
the node classes and the possible and necessary causal
links between classes.

The essentialist theory GEss (Figure 20-4a) 
generates causal networks corresponding to simple 

essentialist concepts for natural kinds (inspired in part
by Rehder, chapter 12, this volume; Rehder and
Burnett, in press). Different networks (e.g., Figure 20-
4b) generated by this schema could describe different
biological species, with different features or different
causal relationships between features. They could
also describe the same species as a learner acquires
more or different beliefs about its characteristic 
properties and their causal connections. All of these
networks place a single essence node in the same
abstract causal role. The grammar captures this
shared essentialist framework that underlies, supports,
and constrains the infinite space of possible species
concepts (Gelman, 2003). Under GEss, every species
has a single essence, a single label, and one or more
features. In our terminology, the essence class E and
label class L are closed, but the feature class F is open.
Causal relations may exist between any pair of 
features (represented by the dashed F → F edge in
Figure 20-4a). The essence is also necessarily a cause
of every feature (represented by the solid E → F
edge); even for superficial features not directly a con-
sequence of the essence, the causal relations that give
rise to those features depend on the functioning of
mechanisms that are themselves generated by the
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FIGURE 20-2 A graph schema GDis for networks of diseases, their causes, and
their effects.



concept’s essence. Finally, a causal link necessarily
runs from the single essence variable to the single
label variable, reflecting the lexical assumption that
each concept has a single name.

The magnetism theory GMag, (Figure 20-5a) gener-
ates networks appropriate for reasoning about physical
causal relationships between the positions of a system
of magnets (Class M), magnetic objects (Class T), and
nonmagnetic objects (Class U). (Magnetic objects,
such as a ball bearing, are magnetizable but not
sources of magnetic force.) Different systems may
have different numbers of objects in these classes (e.g.,
Figure 20-5b), but in every system, the position of
every magnet causally influences the position of every
magnet and every magnetic object. The schema GMag
captures these abstractions by positing three open
node classes and necessary causal connections from
Class M to itself and from M to T.1

The rational agent theory GAgent (Figure 20-6),
generates causal networks appropriate for a simple
version of intuitive psychological reasoning. Different
networks generated by this grammar could be

appropriate for reasoning about different agents or dif-
ferent types of agents, with different specific beliefs,
desires, and actions available to them. The graph
schema is meant to capture the causal mental archi-
tecture that is in common across all these systems of
rational agency. An agent has some set of actions A
that can be produced, as well as two classes of mental
states, beliefs B and desires D. Which action is cho-
sen at a particular time depends on the agent’s beliefs
and desires. Variables in Class W describe relevant
aspects of the state of the world. Actions may affect
world states, and world states in turn affect the agent’s
beliefs. The agent’s desires are not directly affected by
the world but may be affected by the agent’s beliefs
about the world.2 As with the graph schema GDis for
the disease domain, all edges in the class graph for
GAgent are dashed, indicating only possible rather than
necessary causal relations.

An intriguing difference between causal theories in
different kinds of domains is suggested by the different
patterns of necessary and possible causal relations in
these graph schemas. Physical theories may be more
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FIGURE 20-3 Causal networks sampled from GDis.

FIGURE 20-4 (a) A graph schema GEss for essentialist categories of natural kinds (cf. Rehder, chapter 12, this
volume). (b) Causal networks sampled from the grammar.

(a)

(b)



likely to specify necessary causal links, as in GMag, in
which every variable of a certain class possesses the
same causal power (or lack thereof) with respect to
every variable of another class. Psychological or 
biological theories may be more likely to specify pos-
sible causal links, as in GDis, GAgent, or GEss, in which
a variable’s ontological class may constrain its possible
cause-and-effect relations but does not determine them
necessarily. The necessary relations that characterize
the essence of a natural kind concept in GEss may be
an exception that proves this rule: Essentialist 
intuitions give rise to some of the few inviolable and all-
or-none judgments about otherwise graded concep-
tions of natural species (Gelman, 2003). Admittedly,
this particular generalization is speculative, but some
such generalizations about broad classes of domains
could form the content of more abstract causal theories
at higher levels of the theory hierarchy—well above the
T1 level that is our focus here.

The Role of Graph Schemas in Learning
Causal Structure

As a model for T1-level theories in our hierarchical
Bayesian framework, probabilistic graph schemas
should support the learning of causal network 
structures (T0-level theories) and should themselves
be learnable given a suitable hypothesis space of
graph schemas (a T2-level theory). To illustrate how
graph schemas guide the learning of causal structure,
consider how the schema GDis explains an inference
discussed in chapter 19: positing the existence of a
new disease to explain the observation of a previously
unseen correlation between a symptom (e.g., chest
pain) and a behavior (e.g., working in factory).

We first need to define more precisely the proba-
bilistic model implied by each causal network of
behaviors, diseases, and symptoms. In particular, we
need to specify how the probability that an effect
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FIGURE 20-5 (a) A graph schema GMag describing the effects of magnets on other objects. (b) Causal networks
sampled from the grammar.

FIGURE 20-6 A graph schema GAgent corresponding to a simple theory of
mind for intentional agents.



causal structure hypotheses independent of the
domain constraints embodied in the graph grammar.
With no anomalous instances, these data are most
likely under Graph 1, consistent with the fact that
they were generated from this structure. As the 
number of anomalous instances increases, the data
become more likely under structures that allow for a
correlation between working in factory and chest
pain. The network with a direct link between working
in factory and chest pain and the network that postu-
lates a new disease linking these conditions (Graph 5)
give the highest probability to these data. The net-
work that postulates a link from working in factory to
lung cancer (Graph 3) starts off equal to those
hypotheses but declines in probability as more anom-
alous cases are observed (without any appearance of
coughing, the other symptom associated with lung
cancer).

We can compute the posterior probability of each
of these graph structures by applying Bayes’ rule, as in
Equation 20-1. We want to compute P(T0|d, T1),
where T0 refers to one of the five graphs described
above, and T1 is the graph schema GDis. The prior 
P(T0|T1) has both qualitative and quantitative impli-
cations for these posterior probabilities. Graph 5 is not
generated by GDis and consequently has a prior prob-
ability of 0. The remaining structures are all gener-
ated by the grammar, but with different probabilities.
Graphs 1–3 are all approximately equally probable.
Graph 4 is far less probable for two reasons. First, it is
less likely that a structure with five disease nodes will
be generated than a structure with four disease nodes
because the probability of the number of nodes is pro-
portional to 1/|D|2. Second, there are many more
structures with five disease nodes than four, and con-
sequently the average probability of any one of those
structures is lower than the average probability of any
one structure with four disease nodes.

Figure 20-7b shows the posterior probabilities of
the different causal networks. Despite receiving maxi-
mal likelihood (along with Graph 4) given three or
more anomalies, Graph 5 has zero posterior probabil-
ity because of its inconsistency with GDis. As the num-
ber of anomalous instances increases, there are three
discrete stages in the evolution of the posterior proba-
bilities of the other networks. At first, Graph 1 remains
favored by both the prior and the likelihood, and the
apparent correlation is dismissed as just a coincidence.
In the second stage, it becomes clear that the correla-
tion between working in a factory and experiencing
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occurs depends on the presence or absence of its
causes. We assume a noisy-OR functional form for
these cause-effect relationships (Pearl, 1988). This
function is a probabilistic generalization of a logical
OR gate, allowing each cause an independent
opportunity to bring about the effect. If an effect E is
caused by C1, … , CN, then the noisy-OR states that 

(20-4)

where E = 1 indicates that the effect occurs, and ci
takes on the value 1 if the cause occurs and 0 other-
wise. Here, wi is the causal power of cause i (cf.
Cheng, 1997), the probability that cause i will pro-
duce the effect. The parameter w0 represents the
probability that the effect will occur in the absence of
any causes. For the purpose of this demonstration, we
assume that the probability that a patient exhibits
each behavior is 0.1; that behaviors cause diseases
with power wi = 0.1, and diseases occur spontaneously
with w0 = 0.001; that diseases cause symptoms with
power wi = 0.8, while symptoms occur spontaneously
with w0 = 0.001. We also assume that αD = 2.

Figure 20-7 shows how the graph schema GDis
predicts that the posterior probabilities of five struc-
tures should change as evidence for a new correlation
accumulates. For simplicity, we assume that only the
first five structures shown in Figure 20-1 are under
consideration.3 Graph 1 is the null hypothesis, assert-
ing a set of relationships among behaviors, diseases,
and symptoms that is consistent with our medical intu-
itions. Graph 2 adds an additional link from bronchi-
tis to chest pain. Graph 3 adds an additional link from
working in factory to lung cancer. Graph 4 introduces
a new disease Y, which connects working in factory to
chest pain. Graph 5 adds an additional link from work-
ing in factory to chest pain; this link has causal power
wi � 0.8 � 0.15 0.08 for consistency with the assump-
tions of the other graphs. The data set d consists of
1,000 samples from Graph 1 together with some num-
ber of “anomalous” instances in which patients’ only
relevant behavior is working in a factory, and their only
symptom is chest pain. For each patient, only the
patient’s relevant behaviors and symptoms are
observed, not the diseases.

Figure 20-7a shows the log-likelihood log
P(d|Graph i) as a function of the number of anomalous
instances observed. This quantity embodies the 
bottom-up influence of the data on evaluating these
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chest pain is genuine, and the likelihood favors the
other structures. However, the prior is strongly against
a new disease, so it seems most plausible that working
in a factory is actually a cause of lung cancer, and it is
just a coincidence that these patients do not also have
the symptom of coughing associated with lung cancer.
Finally, the likelihood overwhelms the prior’s bias,
and it becomes apparent that this pattern of data is 
evidence for an entirely new disease.

Learning Graph Schemas

To the extent that the skeletal structure of intuitive the-
ories can be captured by graph schemas for causal net-
works, the development of intuitive theories may be
characterized in terms of changes in those graph
schemas. A theory may develop via changes in the
causal relations that are necessary or possible, as well
as in more radical ways—akin to what Carey (1985)
calls “radical conceptual change”: Node classes may
be added or deleted, split or merged. Often, the
explanatory power of a theory is deepened by adding a
new class of hidden causes. For instance, the 
construction of the disease class of unobservable inter-
vening causes between behaviors and symptoms might
have been an important development in medical
reasoning. Similarly, Rehder (chapter 12, this volume)
posits that essentialist concepts of natural kinds are a
relatively late development. Initially, the graph schema for
natural kind concepts might look more like a prototype

theory, GPro (Figure 20-8). There is no underlying
essence node and no explicit representation of causal
links between features. Concepts are simply a bundle
of one or more features, each linked directly and inde-
pendently to the concept label.

There are probably many ways by which knowl-
edge at the level of graph schemas can change or grow.
One mechanism could be inductive learning from
known causal networks or observed patterns of cause-
and-effect co-occurence. Kemp, Griffiths, and
Tenenbaum (2004) have developed a computational
framework for discovering class structures in relational
data that can be used to learn a version of probabilistic
graph schemas. The learning algorithm takes as input
one or more causal networks T0 and automatically dis-
covers the classes that are needed to capture the causal
relationships among nodes and the probability of a
relationship existing between nodes in each pair of
classes. This framework does not explicitly distinguish
laws for necessary or possible causal links but treats
them as special cases of a more general probabilistic
model. The learning algorithm makes no a priori
assumption about the number of node classes but
adopts a prior on node-class assignments that prefers to
cluster most nodes into a few large classes. The learner
can thus automatically discover the most parsimonious
grammar, with the smallest number of classes, capable
of generating the observed causal network structures.

The model defined by Kemp, Griffiths, and
Tenenbaum (2004) effectively computes P(T1|T0,T2),
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FIGURE 20-7 Learning from a correlation between working in factory and chest pain. (a) Likelihood functions
for different structures as a function of the number of new instances in which working in factory and chest pain
co-occur. (b) Posterior probabilities resulting from combining these likelihoods with the prior specified by GDis.



the probability of a graph schema given an observed
causal network generated from that grammar and
some T2-Level background knowledge. It does so by
defining the distributions P(T0|T1) in Equation 20-2
and P (T1|T2) in Equation 20-3. To learn a graph
schema directly from observations of the variables in
a causal system—that is, to compute P(T1|D ,T2)—
this model can be combined with the Bayesian frame-
work for learning the causal network structure
described, which specifies P(D |T0).

There has been relatively little empirical work
looking at how people learn abstract theories at the
level of a graph schema. Tenenbaum and Niyogi
(2003) found that people were able to discover a set of
classes and causal laws that determined the novel
causal relationships among a set of objects in a virtual
world. The objects in their experiments consisted of
blocks that could be moved around and brought into
contact with other blocks. When two blocks came
into contact, one or both (or neither) could light up,
depending on their class memberships and the causal
laws operative in the virtual world. The experiments
conducted by Tenenbaum and Niyogi (2003) exam-
ined how well people learned theories corresponding
to the graph schemas shown in Figure 20-9a.
Participants found it easiest to learn laws specifying
necessary causal links, such as “Every object belongs
to either Class A or B, and every object lights up
objects in the other class but not those in the same
class.” The graph schemas G1 and G2 have such a
structure. Laws specifying possible but not necessary
causal relations, such as G3 and G4, were more diffi-
cult to learn but still learnable when the node classes
played asymmetric roles, such as, “Every object
belongs to either Class A or B, and objects in Class A
may or may not light up objects in Class B.” When
the node classes played symmetric roles in a law spec-
ifying possible causal links—such as, “Every object
belongs to either Class A or B, and any object may
light up one or more objects in the other class but not
any in the same class”—the theory was most difficult

(indeed, practically impossible) for participants to
learn.

Kemp et al. (2004) applied their Bayesian algo-
rithm for learning graph schemas to the same tasks
and showed that it accounts for the relative difficulty
that participants had in learning these different gram-
mars. Figure 20-9b shows for all four graph schemas
how the evidence for the correct theory accumulates
as more objects are encountered (see Kemp et al.,
2004, for details). Evidence is computed as the loga-
rithm of the ratio of the probability of the data under
two T2-level theories: one in which the causal rela-
tions between the objects are generated by a graph
schema (with an unknown number of classes) and
another in which each object belongs to its own class
(and thus no nontrivial graph schema is appropriate).
The evidence for the correct grammar-based theory
increases in all cases as more objects and relations are
observed, but the rate of increase varies across the four
theories in accordance with their relative ease of
learning. Intuitively, graph schemas that make more
constrained predictions about possible causal networks
should be easier to learn because they assign higher
probability to the causal networks they do generate.
The empirical difficulty of learning was in accord
with this principle. For instance, graph schemas spec-
ifying necessary causal relations were the easiest to
learn, and they were the most constraining because
an assignment of objects to classes uniquely specifies
a single causal network that must be observed.

Extensions and Limitations

The notion of a graph schema can be extended in
many ways to capture richer domain structures. One
extension is to allow objects to belong to multiple
classes. These classes might form a hierarchy, with
each object in a set of nested classes, or a factorial
structure, with each object belonging to one class from
each of a number of groups. Furthermore, the
grammar might depend on the attributes of the objects
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FIGURE 20-8 A graph schema GPro for a prototype theory of natural-kind concepts.



in addition to their class. Another possibility is to allow
some type of generative intermediate representations
in the grammar, analogous to the nonterminals in
context-free grammars for language, which could cor-
respond to mechanisms of transmission linking causes
and effects (e.g., Shultz, 1982).

Although graph schemas provide a simple way to
capture some of the abstract knowledge in T1-level
theories, they leave out other knowledge that is 
fundamental to intuitive theories and essential for
generating hypothesis spaces of causal structures.
Foremost is their lack of a sufficiently expressive
ontology. They take the nodes or variables of a
causal network as primitive entities without explain-
ing how those variables—or the classes of variables
represented in a graph schema—derive from knowl-
edge about types of entities and their properties.
Their representations of causal relations and the
laws that generate those relations are also fundamen-
tally limited. The class graph of a graph schema
specifies which causal relationships are possible or
necessary but not which functional form those rela-
tionships take on if they exist. This knowledge of
how effects depend on their causes should form a
crucial part of both T0- and T1-level knowledge. At
the T0 level, it is necessary to compute the probabil-
ity of an observed data set given a causal network
structure or to make predictions about how novel
interventions will affect a causal system. At the T1
level, it provides valuable constraints on possible

causal network models and thus plays a critical role
in explaining how T0-level theories can be inferred
from limited data.

Theories as Logical Grammars

Just as there are many different formalisms that one
can adopt for representing linguistic grammars, vary-
ing greatly in complexity and coverage, so are there
different approaches to formalizing causal grammars.
Some of the shortcomings of graph grammars as
accounts of T1-level theories can be addressed by
adopting a richer representational language based on
a probabilistic version of predicate logic. Logical gram-
mars can specify more complex and realistic ontolo-
gies in which the types of entities and predicates
defined over those entities determine the space of
causal Bayesian networks generated by the grammar.
Unlike the graph grammars presented in the previous
section, which generate only the labeled directed
graph skeletons of causal networks, these logical gram-
mars generate full T0-level theories, each comprising a
set of semantically grounded variables, a network of
cause-effect relations, and the functional dependen-
cies between causes and effects. By defining a proba-
bilistic model over these logical grammars, analogous
to the introduction of probabilities in graph grammars,
we can specify a complete probabilistic generative
model for T0-level theories with a well-defined prior
distribution P(T0|T1). Probabilistic models defined
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FIGURE 20-9 (a) Class graphs and sample networks representing the four graph schemas explored in the exper-
iments of Tenenbaum and Niyogi (2003). (b) The evidence for a theory based on a graph schema increases as
learners encounter more objects exhibiting causal relations consistent with that schema but at a different rate
for different graph schemas. Human learners demonstrate the same ordering in the difficulty of learning these
graph schemas.



over logical knowledge representations are a promising
area of contemporary artificial intelligence research
(e.g., Friedman, Getoor, Koller, & Pfeffer, 1999;
Pasula & Russell, 2001). Our approach is closest in
spirit to the Bayesian logic framework of Milch,
Marthi, and Russell (2004).

The theories we consider in this section are defined
using a probabilistic typed (or many-sorted) form of
predicate logic. In predicate logic, a set of abstract enti-
ties are named with constants, and the properties of
those entities are stated using predicates that apply to
constants.4 When referring to logical notions, we will
write constants as lowercase letters or words and predi-
cates as capitalized words. For example, in defining a
theory of diseases, we could use ChestPain(p) to indi-
cate that a particular person, represented by the con-
stant p, had the property of having chest pain. In some
cases, we might want to talk about a predicate without
committing to a particular entity, which can be done
by introducing a logical variable, which we write as a
capital letter. Quantification over logical variables can
be used to define the set of entities for whom a predi-
cate holds. For example, if we had a world containing
three entities, indicated by constants p1, p2, and p3, we
could indicate that they all suffered chest pain using
the expression ∀ P ChestPain(P), where P is a logical
variable that can take on values corresponding to each
of the three entities, and ∀ is the universal quantifier,
indicating the truth of the proposition it concerns for
all values of the variable over which it quantifies. A
typed logic divides entities into types and places con-
straints on the types of entities to which predicates can
apply. We use the same notation used for predicates to
refer to types, because types are naturally translated into
predicates (e.g., Enderton, 1972). In the case of dis-
eases, we might want to distinguish two types of enti-
ties—People and Objects—and assert that ChestPain is
a predicate that can only apply to entities of type
People.

This discussion of the properties of logic already
reveals one of the ways in which logical representations
of theories can go beyond graph grammars: They sup-
port rich ontologies, defined in terms of types of enti-
ties and the predicates that apply to them. We will
illustrate some of their other properties and show how
such theories may constrain people’s causal inferences
via an in-depth discussion of the blicket detector exper-
imental paradigm (Gopnik, 2001; Gopnik & Sobel,
2000; Sobel, Tenenbaum, & Gopnik, 2004; Tenenbaum,
Sobel, Griffiths, & Gopnik, submitted). This paradigm

showcases people’s ability to make causal inferences
about novel physical systems from limited data—just
one or a few observations—when guided by appropri-
ate prior knowledge. Traditional bottom-up approaches
to learning causal relationships based on rational assess-
ments of correlation, partial correlation, or other 
statistical measures (e.g., Cheng, 1997; Glymour,
2001; Gopnik et al., 2004; Shanks, 1995) are not read-
ily applicable here because people do not observe suf-
ficient data to compute these statistics. Our framework
provides a rational account of both adults’ and chil-
dren’s causal inferences in this paradigm, as well as
strong quantitative predictions with a minimum of free
numerical parameters.

Relative to the graph grammar formalisms of the
preceding section, the added power of logical gram-
mars comes at a price. Their richer ontologies intro-
duce more details and greater complexity, making it
harder to define satisfying theories that go beyond the
simplest systems. It is also much less clear how these
logical theories could be learned in full generality,
although we can give analyses of several special cases
in the blicket detector paradigm. We discuss exten-
sions to our logical framework and prospects for
explaining learning at the end of this section.

The Blicket Detector

Gopnik and Sobel (2000) introduced a novel 
paradigm for investigating causal inference in chil-
dren; participants are shown a number of blocks along
with a machine—the blicket detector. The blicket
detector activates—lights up and makes noise—
whenever a blicket is placed on it. Some of the blocks
are blickets, others are not their outward appearance
is no guide. Participants observe a series of trials; on
each, one or more blocks is placed on the detector,
and the detector activates or not. Participants are then
asked which blocks have the power to activate the
machine.

Gopnik and Sobel demonstrated various conditions
under which children successfully infer the causal sta-
tus of blocks from just one or a few observations
(Gopnik et al., 2001; Sobel et al., 2004). Two experi-
ments of this kind are summarized in Table 20-1. In
these experiments, children saw two blocks, a and b,
placed on the detector either together or separately
across a series of trials. On each trial, the blicket detec-
tor either became active or remained silent. Table 20-1
gives the proportion of 4-year-olds who identified a and
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b as blickets after several different sequences of trials,
encoding contact between the blocks and the detector
with the variables A and B and the detector response of
the detector with the variable E. Tenenbaum, Sobel,
Griffiths, & Gopnik (submitted) tested adults with a
similar paradigm, obtaining quantitative judgments
that could be used to evaluate the precise predictions of
competing computational models. They also used
stimuli that were intended to provide ambiguous evi-
dence regarding whether blocks were blickets. These
data are not presented in Table 20-1 but are discussed
in the Comparison With Alternative Accounts section.

We explain the blicket-detector inferences that
children and adults draw with reference to a T1-level
theory, expressed using probabilistic logic. This
account elaborates on our earlier theory-based model
of blicket-detector inferences (Tenenbaum &
Griffiths, 2003) by making the theory used in that
analysis explicit. The theory should embody people’s

expectations about how machines (and detectors)
work, informed by the specific instructions and 
familiarization experience provided to experimental
participants. For the experiments described in Table
20-1, the blicket detector was introduced to children
as a blicket machine, and children were told “blickets
make the machine go.” In a familiarization phase
prior to the critical experimental trials, children saw
blocks that activated the machine identified as blick-
ets and blocks that did not activate the machine iden-
tified as not blickets. A theory expressing the relevant
background knowledge is sketched in Figure 20-10.

This theory has three parts, specifying an ontol-
ogy, prescriptions regarding causal structure, and
expectations about the functional form of causal rela-
tions.5 The constraints on causal structures and func-
tional form together constitute the causal laws
expressed in the theory. As a generative grammar for
causal Bayesian networks, the three components of
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TABLE 20-1 Probability of Identification as Blickets for 4-year-old Children and Deterministic and
Probabilistic Theories 

Children Deterministic Probabilistic

Condition Stimuli a b a b a b

One cause e�|a�b� .91 .16 1.00 .00 .99 .07

e�|a�b�

2e�|a�b�

Two cause 3e�|a�b� .97 .78 ? ? 1.00 .81

2e�|a�b�

e�|a�b�

Indirect screening-off 2e�|a�b� .00 1.00 .00 1.00 .13 .90

e2|a�b�

Backward blocking 2e�|a�b� 1.00 .34 1.00 � .93 .41

e�|a�b�

Association e�|a�b� .94 1.00 1.00 1.00 .82 .98

2e�|a�b�

Backward blocking (rare) 2e�|a�b� 1.00 .25 1.00 .17 .91 .26

e�|a�b�

Backward blocking (common) 2e�|a�b� 1.00 .81 1.00 .83 .98 .86
e�|a�b�

Note: The one cause and two cause conditions are from Gopnik, Sobel, Schulz, and Glymour (2001, Experiment 1). The indirect screening-
off, backward blocking, association, backward blocking (rare), and backward blocking (common) conditions are from Sobel, Tenenbaum, and
Gopnik (2004, Experiments 2 and 3). Boldface indicates the predictions of the model favored by the theory selection procedure outlined in
the section on learning logical theories.



the theory respectively generate the nodes of the net-
work, the causal links between nodes, and the local
conditional probability distribution for each node as
a function of its causes. We describe this generative
model but first we explain the content of the theory
in more detail.

The ontology identifies the types of entities in the
domain and predicates defined on those types. The
types are organized hierarchically, with the first cut
into Object, Power, and Trial. The Object type fur-
ther divides into Block and Machine. The predicates
are divided into structural and causal predicates. The
causal predicates specify the kinds of variables that
will appear as nodes in causal networks (T0-level
theories) describing systems in the domain. The
structural predicates concern the basic properties of
the entities in the domain and determine which
causal relationships can or must hold among causal
predicates applied to those entities—that is, the con-
straints on candidate causal networks defined over
grounded causal predicates.

In this case, there are two types of causal predi-
cates, variables that can participate in causal relation-
ships: Contact(O, O′, T) is true if objects O and O′
are in contact on trial T; Active(M, T) is true if
machine M is active on trial T. These predicates each
apply to a particular Trial, representing discrete tem-
poral intervals of the experiment. There are two struc-
tural predicates: Has(P, O) is true if object O has
power P (e.g., if an object is a blicket), and
Activates(P, M) is true if power P activates machine
M, (e.g., if a machine is a blicket detector). Under this
construal, being a blicket or a blicket detector is like
being an acid or a base. It is to belong to a class of
causal agents or causal patients, defined by the roles
that they play in certain laws of causal interaction
(White, 1995).

So far, we focused on the logical structure of the
ontology. The probabilistic aspect of the ontology
defines a distribution for the number of entities of
each type and specifies the probability with which
structural predicates hold. In Figure 20-10, the num-
bers of blocks, machines, powers, and trials are
assumed to follow power law distributions with para-
meters αB, αM, αP, and αT, respectively. These distri-
butions are not of consequence in the experiments
we analyze; all blocks and machines are assumed to
be observed, and there is just one relevant power con-
cept, blicket, that is introduced verbally at the begin-
ning of each experiment. The probability with which

each object has a particular power (e.g., is a blicket) �
is an important variable . Because there is only one
power, blicket, and one machine, d, and d is explicitly
called a blicket detector, the prior probability γ that
Activates(blicket, d) is true can be assumed to be 1.

The causal laws of a theory specify which causal
relations between variables may, must, or are likely to
exist and what form they take. We divide causal laws
into the aspects relevant to causal structure and those
that concern functional form. The structural prescrip-
tions of the theory determine the probability that 
particular causal relationships exist. Each rule con-
sists of a set of conditions stated in terms of structural
predicates, under which a causal relationship
between two causal predicates holds with some prob-
ability. The causal law in Figure 20.10 asserts that
contact between an object and a machine on a given
trial will cause the machine to be active on that trial
if the object has some power (e.g., is a blicket) and the
machine is activated by that power.

The structural component of the causal laws con-
cerns only the presence or absence of causal links
between variables. The strength of those links (e.g., the
probability that on any one trial, the presence of the
cause will indeed lead to the presence of the effect) are
determined by the functional form component of the
theory, which specifies the probability distribution asso-
ciated with each causal predicate. This theory posits a
noisy-OR form for the conditional probability distribu-
tion of any machine activating given contact with
objects that can activate it. For simplicity, we reduce
these noisy-OR functions to just a single parameter �,
representing the error rate of a detector, the probability
of a miss or false alarm. To begin, we assume a deter-
ministic detector with � � 0. This has two important
implications. First, the detector cannot activate unless
a blicket is in contact with it (ω0 � 0). Second, placing
a blicket on the detector will always activate the detec-
tor (ωi � 1). These two assumptions are equivalent to
the “activation law” of Sobel et al. (2004): A blicket
detector will be active if and only if one or more blick-
ets is in contact with it. Because people always observe
which objects are in contact on each trial, the prior
probabilities for contact relations are irrelevant.

The deterministic detector theory generates a
hypothesis space H1 of causal networks defined for
any set of trials involving any number of blocks and
detectors. The generative process defines a prior prob-
ability distribution over that space, indicating which
causal structures are more or less likely a priori.
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The process by which a causal network is generated
from the theory is as follows:

1. Generate nodes. Sample a set of entities of each
type from the distribution specified in the
Ontology. Sample the structural predicates for
these entities using the appropriate probabilities.
Generate the set of grounded causal predicates.
Each of these grounded predicates can be thought
of as a binary variable that is true or false. These vari-
ables comprise the nodes of the causal network.

2. Generate links. Conditioned on the values of
the structural predicates, sample causal links
between nodes from the distribution stated in
the Structure component of the theory’s
Causal laws.

3. Generate local conditional probabilities. For
each node, define a local conditional probabil-
ity as specified in the Functional form compo-
nent of the theory’s Causal laws and set the
appropriate parameters (or sample them from
some prior distribution). 

The set of grounded causal predicates is obtained by
applying each causal predicate to all entities that can act

as its arguments. Assuming that we have two blocks a
and b, a single detector d, a single power blicket, and
the knowledge that d is activated by this power, the set
of grounded predicates is as follows: Contact(a, d, T),
Contact(b, d, T), and Active(d, T) for each trial T. These
grounded predicates are the variables on which the pos-
sible causal networks (or T0-level theories) are defined.

Because causal relationships are constant over all
trials T, we can express these causal networks in terms
of four graph structures as shown in Figure 20-11a.
For shorthand, we use the variables A and B to repre-
sent Contact(a, d, T) and Contact (b, d, T), respec-
tively, and E to represent Active(d, T). The prior
probabilities of these networks P(Graph i|T1) are
determined by the parameter � in the T1 theory—that
is, the prior probabilities that Has(blicket, a) and
Has(blicket, b) are true—because a causal relation-
ship between a block and a detector exists if and only
if that block has the power that activates the detector.

The posterior probability distribution over the set
of causal networks generated by the theory can be
evaluated for each set of trials shown in Table 20-1,
identifying the observed events as the data set d and
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FIGURE 20-10 Sketch of a probabilistic logical theory for causal induction with blicket detectors.



applying Bayes’ rule as in Equation 20-1. In the
blicket detector experiments, learners are typically
asked to judge whether a block (such as a) is a blicket.
This question asks whether Has(blicket, a) is true.
Because Has(blicket, a) is logically equivalent to the
existence of a causal link between Contact(a, d, T)
and Active(d, T), this question can be reduced to a
Bayesian inference over causal network structures:
Given some observed trials with a blicket detector d,
the probability that a block is a blicket is the probabil-
ity that the causal link Contact(b, d, T) → Active(d, T)
exists in the causal network describing the observed
system. This can be evaluated by summing the poste-
rior probability of the models in which such a causal
relationship exists. For instance, to evaluate the prob-
ability that a is a blicket, we compute 

(20-5)

For the simple hypothesis space shown in Figure 20-11a,
this is just P(Graph 2|d, T1) � P(Graph 3|d,T1).

The predictions of the deterministic detector the-
ory are given in Table 20-1. The theory’s predictions
correspond qualitatively with children’s judgments but
cannot explain all of the inferences observed. In par-
ticular, they cannot explain the two cause condition in
Experiment 1 of Gopnik et al. (2004), which served as
an associative control for the one cause condition. In
the two cause condition, children saw the detector
activate when block a was placed on it (alone) on three
of three trials and saw the detector activate when block
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b was placed on it (alone), but only on two of three
trials. These data are not compatible with any causal
network generated by the deterministic detector theory,
and thus the theory’s predictions are undefined (indi-
cated by the question marks in Table 20-1).

The two cause data set can be explained by relax-
ing one of the assumptions of the deterministic detec-
tor theory to allow blickets to activate detectors only
some of the time. We can make this change by allow-
ing � to take on some value greater than 0. This pro-
babilistic detector theory not only gives the same
predictions as the deterministic detector theory in the
limit as � → 0, but also predicts that both a and b are
blickets with probability 1 in the two-cause condition.
Different values of � give different predictions. The
predictions of this theory with � � 0.1 and � � 1/3 are
shown in Table 20.1. This model captures some of the
finer details of children’s judgments that are not 
captured by the deterministic detector, such as the
fact that b is judged less likely to be a blicket than a in
the two-cause condition.

Comparison With Alternative Accounts

Besides our theory-based Bayesian account, at least
two other accounts have been proposed for how chil-
dren or adults might infer causal structure in the
blicket detector paradigm: (a) using a domain-general
algorithm for learning causal structure based on 
statistical dependencies; (b) using domain-general
deductive reasoning augmented with domain-specific
assumptions about the relevant class of causal mecha-
nisms (e.g., detectors). Each approach is simpler in
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FIGURE 20-11 Graph structures generated by the causal theory for the blicket detector. (a) The hypothesis
space for two blocks, a and b; (b) the hypothesis space with three blocks, a, b, and c. A, B, and C denote
Contact (a, d, T), Contact (b, d, T), and Contact (c, d, T), respectively; E indicates Active (d, T). These causal
networks are implicitly quantified over all trials T.



some way than our theory-based Bayesian framework,
but each is also unable to explain the full range of
people’s inferences in this paradigm.

Gopnik et al. (2004) advocate the first alternative,
proposing that children’s causal inferences can be
explained by standard bottom-up algorithms for
learning causal graphical models (e.g., Pearl, 2000,
Spirtes, Glymour, & Schienes, 1993). In particular, they
argue that these algorithms will infer the same causal
structure (which objects are blickets) that children do
in the blicket detector experiments, given observa-
tions of the variables A, B, and E across trials.
However, the Spirtes et al. and Pearl algorithms
require as input the probabilistic dependence and
independence relations among a set of variables, and
these relations cannot be inferred with any reliability
from the small number of trials presented to human
learners in the experiments. At least an order of mag-
nitude more data—or some domain-specific assump-
tions about the causal mechanisms at work—would
be necessary for one of these algorithms to work as a
rational account of human causal learning. Gopnik et
al. (2004) finesse this issue by proposing that learners
assume the observed data frequencies can be safely
multiplied by some large number, but this assump-
tion is clearly unjustified in many cases. Effectively, it
serves to introduce crucial aspects of the deterministic
detector theory without making them explicit because
it is justified only in those domains in which causal
systems are deterministic and fully observable
(Tenenbaum et al., submitted).

There is a clearer rational basis for accounts of
children’s reasoning in logical terms. An assumption
that the blicket detector activates if and only if there
is a blicket in contact with it, plus elementary deduc-
tive reasoning capacities, is sufficient to explain all of
children’s inferences discussed so far (except in the
two-cause condition). However, neither this deduc-
tive model nor the Spirtes et al. (1993) or Pearl
(2000) bottom-up structure learning algorithms can
address another core aspect of human causal infer-
ence. Under all these alternative approaches, learn-
ers evaluate candidate causal structures in a binary
fashion: each structure is either consistent or incon-
sistent with the data. There is no provision for repre-
senting graded degrees of belief about the existence
of a causal relation, either a priori, based on expecta-
tions about which network structures are more or less 
plausible, or a posteriori, after observing data that are
more or less compatible with multiple structures.

In contrast, our theory-based account naturally
explains these gradations, through the probabilistic
form of the theory and the probabilistic character of
the causal inference process. For instance, after all
trials have been observed in the backward blocking
condition, the posterior probability that block is a
blicket reduces to �, the prior probability that any
block is a blicket (assuming the deterministic the-
ory). This reduction to the prior occurs because,
having observed that block a unambiguously acti-
vates the detector (and hence is definitely a blicket),
the data now provide no evidence either way about
b. More generally, even if the data do not provide
unambiguous evidence about the status of any one
block, they can suggest that some blocks are more
likely to be blickets than others, while the prior prob-
ability � modulates the overall probability that any
block is a blicket. Sobel et al. (2004) and
Tenenbaum et al. (submitted) have shown that
adults and children reason in accord with these
graded predictions.

Tenenbaum et al. (submitted, Experiment 1) stud-
ied an analog of the backward blocking condition of
Sobel et al. (2004, Experiment 1) and attempted to
manipulate the � parameter—the prior probability of
encountering objects with the causal power to activate
the detector. The experiment was performed with
adults to measure more precise graded judgments.
They used a superpencil detector—rather than a blicket
detector—that determined whether apparently normal
pencils contained a special kind of lead called super-
lead. Participants were randomly assigned to two groups,
varying in how they were introduced to the notion of
superlead. Both groups of participants were initially
shown 12 pencils placed on the detector one at a time.
In what we refer to as the rare condition, only 2 of
these pencils caused the detector to activate. In the
common condition, the detector activated for 10 of the
12 pencils. It was hypothesized that learners would set
the � parameter in their theories to something like the
base rate of causally efficacious objects: 1/6 in the rare
condition and 5/6 in the common condition.

The judgment phase had three stages. In stage 1, the
baseline, participants were simply shown 2 new pencils,
a and b. In stage 2, participants saw a and b placed on
the detector together, and the detector activated. In
Stage 3 just a was placed on thedetector, and the detec-
tor activated. After each stage, participants were asked to
rate the probability that a and  b were superpencils.
Mean ratings after the first (baseline) stage in each
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condition were used to set � in our model. Then, the
same values of � were used to predict judgments in the
remaining stages. Mean ratings in the rare and com-
mon conditions are shown in Figure 20-12(a) and
12(b), respectively, along with our model’s predictions.

Manipulating the base rate of superpencils during
familiarization had the expected effect on people’s
baseline judgments: � was estimated at 0.19 in the
rare condition and 0.78 in the common condition. It
also affected subsequent judgments as predicted by
our Bayesian model under the deterministic detector
theory (or the probabilistic detector theory with 
ω � 1 � � as � → 0). The probability of a and b being
superpencils increases after the first trial; then, the
second trial provides unequivocal evidence that  a is a
superpencil, and the probability that  b is a superpen-
cil returns to the prior �. Sobel et al. (2004,
Experiment 3) replicated this study with 4-year-old
children using the blicket detector but collecting only
binary judgments (blicket, not a blicket) and without
the first two stages of judgment. Table 20-1 shows the
percentage of children who labeled the  a and  b
objects as blickets in each condition. These results
showed the same effect of varying prior probabilities
seen in the model predictions and adult judgments.

These results are consistent with our theory-based
Bayesian account of causal inference, but they do not
provide the strongest possible test of whether people’s
inferences are truly Bayesian. A deductive reasoning
account that simply defaults to the observed base rates
of causal powers when the data are ambiguous could
predict people’s judgments just as well. Tenenbaum et
al. (submitted, Experiment 2) also asked whether peo-
ple could make more subtle graded inferences from
ambiguous evidence in a fashion consistent with the
theory-based Bayesian account. This experiment was
equivalent to the superpencil backwards blocking (rare)
condition, except in the judgment phase. Now that
phase began by introducing three new pencils, a, b, and
c, and asking for baseline ratings of the probability that
each pencil was a superpencil. Participants then saw a
and b placed on the detector together, causing the
detector to activate, and gave new ratings. Finally, they
saw a and c placed on the detector together, causing the
detector to activate, and were asked to rate the probabil-
ity that each of the three pencils was a superpencil. The
mean ratings are shown in Figure 20-12c.

Model predictions are also shown in Figure 20-12c,
with � calibrated to the mean probability rating on the
first (baseline) judgment. Figure 20-11b shows the

hypothesis space H1 of causal network structures gener-
ated by the T1 theory. With three blocks, there are now
eight possible networks. As in Equation 20-5, the proba-
bility that any given block is a blicket is calculated by
summing the probability of all network hypotheses in
which that block’s position is a cause of the detector’s
activation.

In this experiment, people received no unambi-
guous clues that a particular pencil was a superpencil:
There were no trials on which a single pencil caused
the detector to activate. Nonetheless, after the final
trial, people were able to infer that  a was likely to be
a superpencil, while  b and  c were less likely to be
superpencils, with higher judged probability than at
the start of the judgment phase but lower than the
peak judgment after the first trial. These judgments
are strongly in accord with our theory-based Bayesian
account. Figure 20-12c shows that the Bayesian
model yields four qualitatively distinct levels of belief
over the course of the judgment phase, which are all
matched by statistically significant differences in the
corresponding ratings of participants. Qualitatively
similar inferences were made by 4-year-old children
in an analogous experiment with the blicket detector:
After the final trial, children were most likely to say
that  a, but not  b, or  c was a blicket (Tenenbaum
et al., submitted, Experiment 3).

In sum, our theory-based Bayesian framework can
explain how people make successful causal inferences
about novel physical systems from just one or a few
observations, as well as the gradations of judgment
and the effects of prior knowledge that arise. These
phenomena are not easily explained by other existing
approaches to rational causal inference based on
deductive reasoning or bottom-up detection of proba-
bilistic dependencies. Our framework also provides a
strong quantitative predictive model with essentially
no free numerical parameters. Qualitative assump-
tions were needed about the form of people’s intuitive
theories for how machines (or detectors) work, but we
would argue that these assumptions are necessary in
some form for any account that seeks to give a rational
explanation of people’s judgments in these scenarios.

Although our discussion here focused on the blicket
detector, the same approach of Bayesian inference over
logical theories provides a useful framework for under-
standing causal induction in a variety of settings. In
Griffiths (2005) and Griffiths and Tenenbaum (in
preparation), we show how this approach can explain
people’s judgments in identifying causal structure from
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contingency data (Griffiths & Tenenbaum, in press),
reasoning about mechanical systems (Gopnik et al.,
2004), identifying causal relations and hidden causes
with dynamic events (Griffiths, Baraff, Tenenbaum
2004), and evaluating evidence for causal relations
between variables in different domains (Schulz &
Gopnik, in press). The integration of Bayesian infer-
ence mechanisms with a logical theory for generating
causal network hypotheses accounts for the effects of
several important dimensions along which these learn-
ing scenarios vary: the number of independent data
points observed (ranging from just 1 or 2 samples to
60–100 samples); the availability of active interven-
tional data in addition to purely passive observational
data; the possibility of and strength of evidence for hid-
den causes; the availability of dynamic real-time obser-
vations rather than merely discrete trials; and the a
priori plausibility of a mechanism linking candidate
causes and effects.

Learning Logical Theories

The logical theories outlined in this section are a 
proposal for a T1-level representation, specifying one
level of our hierarchy of theories. As with graph gram-
mars, statistical inference can in principle be used to
learn these T1-level theories, but the greater represen-
tational expressiveness of predicate logic leads to a
vastly larger hypothesis space of candidate theories—
and thus a much more challenging learning problem
in general.

A constrained but quite tractable form of theory
learning is parameter estimation: inferring the values

of numerical parameters in the theory such as those
controling the number of entities of some type (e.g.,
the γ parameters in Figure 20-10), the frequency with
which some structural predicate holds (e.g., the � or γ
parameters), or the strength of probabilistic causes
(e.g., the � parameter). The rare-common manipula-
tion in the backward-blocking experiments shows
adults and children can rationally adjust their beliefs
about one parameter in the theory’s ontology (�) to
reflect the apparent abundance of a causal power
(being a blicket).

More formally, in these experiments people act as
if they are inferring the theory with maximum likeli-
hood out of all candidates in a one-dimensional
hypothesis space of possible theories parameterized
by �. This sort of learning is certainly less general
than discovering a full theory with new classes and
causal laws, as in the experiments of Tenenbaum and
Niyogi 2003), but it is also more general than just
learning the parameters or structure of a single causal
network (learning at the T0 level). The knowledge
acquired about � exists at the T1 level, specifying a
prior distribution over possible causal networks that
can be defined for any number of new entities in this
domain.

In the remainder of the section, we show how 
similar parametric learning can take place concern-
ing the functional form of a theory’s causal laws. The
blicket-detector theory in Figure 20-10 specifies the
error rate of a detector in terms of a parameter �. We
have outlined two different versions of the theory, for
deterministic detectors and probabilistic detectors
which take � � 0 and � 	 0, respectively. In some
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FIGURE 20-12 Adult judgments with superpencils, an analog of the blicket detector task, from Tenenbaum,
Sobel, and Gopnik (submitted). Parts (a) and (b) show inferences from the same set of trials, but with different
prior probabilities for superpencils, being rare and common respectively. (c) Inferences from ambiguous evi-
dence.



cases, such as the one cause and two-causes experi-
mental conditions, the probabilistic-detector theory
seems to better characterize children’s inferences.
However, the instructions the children received sug-
gested that the deterministic theory might be more
appropriate. This raises an interesting learning ques-
tion: How might a learner choose between these dif-
ferent theories as descriptions of a causal system? Our
hierarchical Bayesian framework provides an answer.
In this simple case, we have just two candidate T1 the-
ories that differ only in the functional form of their
causal laws: the deterministic theory and the proba-
bilistic theory. We can use Bayes’ rule to compute a
posterior distribution over these theories, P(T1| D,T2),
as shown in Equation 20-3.

Figure 20-13 shows how this process of inferring
the T1-level theory with an appropriate functional
form can operate concurrently with identifying which
blocks are blickets—an inference about causal net-
works at the T0-level. The figure shows how the poste-
rior distribution over the two theories—deterministic
and probabilistic—evolves as the data D grow with
each additional trial in the two-cause condition. The
bottom row shows the corresponding changes in the
judged probabilities that blocks a and  b are blickets,
an average of the predictions of each T1 theory
weighted by their posterior probabilities P(T1|D, T2).
The prior P(T1|T2) assigns a probability of .99 to the
deterministic theory and .01 to the probabilistic 
theory, consistent with both task instructions and an
intuitive bias toward determinism in mechanical 
systems. The base rate of blickets � is set to 1/3, 
and the noise level � for the probabilistic theory is 
set to 1/10.

In the two-cause condition, the first three trials are
all e+|a+b�: events in which block  a is placed on the
detector and the detector activates. This is sufficient to
identify  a as a blicket under either theory. The fourth
trial is e�|a� b+:  b is placed on the detector, and the
detector does not activate. Under the deterministic
theory,  b would definitely not be a blicket. Under the
probabilistic theory, there remains a small chance that
b is a blicket, and because the probabilistic theory is
still viable, the probability that  b is a blicket is nonzero
but extremely low. On the fifth trial, e+|a�b+, the
detector activates when  b is placed on it. The fourth
and fifth trials are mutually contradictory under the
deterministic theory—together they have a probability
of 0—so the posterior over theories now switches

suddenly to favor the probabilistic theory with proba-
bility 1. Under that theory, the data so far are uninfor-
mative about whether  b is a blicket because we
assumed equal probabilities of the two types of error in
the detector. It is just as likely that b is a blicket and the
fourth trial was bad luck, or that b is not a blicket and
the fifth trial was a fluke, so the probability reverts to
the prior �. The sixth trial provides further evidence
that  b is actually a blicket, e+|a�b+. The final predic-
tion is that  a is very likely to be a blicket, and b is
slightly less likely, matching the judgments of the chil-
dren in the work of Gopnik et al. (2001).

Ultimately, parametric learning of T1-level
theories is far from a complete solution to the prob-
lem of how people acquire rich representations of
abstract causal knowledge. It is an open question how
(and even whether) people learn T1 theories in their
full generality, not to mention theories at levels T2
and above. Techniques of inductive logic program-
ming (Muggleton, in press) may provide one compu-
tational approach to these problems, but it is not at all
clear that these techniques can scale up to humanlike
knowledge, or that they bear any similarity to human
learning mechanisms. Formal computational frame-
works for inductive learning will likely need to be
extended to incorporate other cognitive capacities,
such as analogy and natural language, that can pro-
vide crucial scaffolding for building appropriate
hypothesis spaces of candidate theories.

Conclusion

This chapter explored two proposals based on graph
schemas and typed predicate logic for formalizing the
content and representational form of abstract causal
theories. Each of these formalisms was cast as a prob-
abilistic generative grammar for causal networks,
inspired by an analogy between the computational
problems of causal inference and natural language
processing. We discussed each approach in terms of
how it could account for the functional roles that
abstract theories must play in a hierarchical Bayesian
framework for causal inference and learning
(Tenenbaum, Griffiths & Niyogi, chapter 19, this 
volume), chiefly, how the theory supports learning of
causal network structures (or lower-level theories) and
how the theory could itself be learned or tuned based
on observations.
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We hope that readers find each of these 
frameworks for causal grammar intriguing but hardly
satisyfing. We see them as proposals for what a causal
grammar might look like rather than fully developed
accounts. We close this chapter with three lessons that
we have learned in the course of trying to formalize
intuitive theories as causal grammars.

First, to approach human-level competence in
models of intuitive theories, as in natural language
grammars, it will be necessary to integrate two schools
of thought that have often been treated as incommen-
surate or in opposition: probability and statistics on
the one hand and logical and symbolic representa-
tions on the other hand. Although this view is not yet
fully accepted by researchers in generative linguistics,
many computational linguists have recognized that
probabilistic models defined over rule-based gram-
matical representations, such as stochastic finite-state
grammars or context-free grammars, offer significant
advantages over purely statistical or purely symbolic
models while preserving the best features of both
(Charniak, 1993; Jurafsky & Martin, 2000; Manning &
Schütze, 1999). Logical or rule systems provide repre-
sentational richness and the capacity for abstraction;
probabilistic models provide the capacity for inductive
inference from observed data. These same considera-
tions motivate our proposals for expressing intuitive
theories as probabilistic generative models defined over
graph grammars or typed logical systems. We believe
that some such integration of probability and structured
rule systems will be necessary to explain how abstract
causal knowledge guides the learning of new causal
relations and can itself be learned from experience.

Second, in formal models of intuitive theories, as
with formal models of grammar in linguistics, there
will often be a tradeoff between representational
capacity and learnability. For instance, hidden
Markov models are much more limited than stochas-
tic context-free grammars in terms of the syntactic
regularities they can represent, but their structure can
be induced from data much more readily by statistical
methods. Likewise, the graph schemas we presented
in the section third are much more limited as
accounts of intuitive theories than are the typed 
logics we presented in the section fourth, but we can
give a principled and tractable algorithm for learn-
ing graph schemas (Kemp et al., 2004), but we 
cannot yet do that for logical theories. At this early
stage, it is valuable to pursue multiple approaches to
formalizing theories with the hope of ultimately con-
verging on a framework that is both sufficiently and
learnable.

Finally, definitive accounts of people’s intuitive
theories are likely to be elusive, just as they are with
natural language grammars. It is not easy to work
backward, from observations of people’s judgments
about linguistic utterances or cause-effect relations to
formal accounts of the unobservable abstract knowl-
edge that they bring to bear in making those judg-
ments. In this chapter, we have not attempted to
claim that any particular formal model necessarily
corresponds in detail to people’s intuitive theory in
some domain. We have merely proposed some possi-
ble models of intuitive theories that could account for
aspects of people’s causal inference capacities
and argued for the importance of certain general
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FIGURE 20-13 Learning functional form. The bar graphs along the top of the figure show the probabilities of
two theories, with Det indicating the deterministic detector theory and Prob indicating the probabilistic detec-
tor theory. The bar graphs along the bottom show the probabilities that the blocks A and B are blickets. The
probabilities after successive trials are shown from left to right.



characteristics of these models. Progress on a formal
account of intuitive causal theories is likely to be slow
and painstaking for some time, and initially we may be
able to give precise accounts only for rather small-scale
domains such as the blicket detector paradigm. But, if
indeed there is an analogy between our project and
the career of linguistics, from the early days of gener-
ative grammar through the contemporary computa-
tional era, then we can look forward to a most
interesting journey.
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Chapter 1

1. See Hitchcock, 2001, and Woodward, 2003.
2. As Woodward, 2003, chapter 3, observes, the arrow-

breaking aspect of interventions reproduces a number
of other features of Lewis’s theory, including what
look like “miracles.”

3. For details, see Woodward, 2003, chapter 5.
4. Although I lack the space for detailed discussion, it 

is worth observing that examples of this sort have
implications for the claim, common among both
philosophers and psychologists, that interventionist
counterfactuals hold only “in virtue” of facts about the
existence of connecting causal processes and mecha-
nisms, with these capturing what is really fundamen-
tal to causation. On its most straightforward reading,
this claim is simply false: From the fact that there is a
connecting causal process, transmission of energy and
the like from the motion of the cue stick to trajectory
of the eight ball, we can deduce almost nothing about
which interventionist counterfactuals associated with
this process are true. Any explanation of why these
interventionist counterfactuals hold will need to
appeal to generalizations that are far more specific
(e.g., the laws of conservation of energy and momen-
tum), and it is plausible that these will also have a
counterfactual element built into them.

5. It is thus a mistake to think of a plausible account of
mechanisms and an interventionist account of causa-
tion (or Bayes net approaches) as in opposition to one
another. See Glymour, 1998, for a similar view.

6. In the interests of moving the discussion along, I am
riding roughshod over a number of complications and
possibilities. Of course, it is possible to hold that there
is no straightforward correspondence between what

causation is and how we think about it; this was
Hume’s view on one natural interpretation. My view
is that positions of this sort are not interesting when
advanced as mere logical possibilities; instead, the way
in which people think and learn about causation (and
how these fail to correspond to what causation is)
needs to be spelled out, and it needs to be shown how
these explain known experimental results. Unlike
Hume, contemporary philosophers rarely do this.

7. As Gopnik has noted, the obvious analogue here is
with vision. People do not just have visual experiences
and make visual judgments; in addition, these are
often veridical. An adequate theory should explain
how this happens.

8. In contrast, there is evidence (Schottmann & Shanks,
1992) that causal perception of collision phenomena
is not sensitive to such contingency information,
although judgment of causal efficacy is. In other
words, process theories fit better with causal percep-
tion than causal judgment tasks. One may thus con-
jecture that causal perception phenomena explain
some of the intuitions that underlie causal process
theories.

9. To guard against possible misunderstanding, let me say
explicitly that I do not regard it as a necessary condition
for subjects to possess and to be guided by an interven-
tionist conception of causation that they be able to rea-
son explicitly with counterfactuals; subjects also can
possess an implicit understanding of aspects of coun-
terfactual reasoning, as revealed, for example, in non-
verbalized planning. The argument is simply that
explicit use of counterfactual reasoning and explicit
recognition of its connection to causal claims is suffi-
cient to establish that subjects are operating with a
broadly counterfactual conception of causation.
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A similar point holds for subjects’ explicit recognition
of the connection between causal claims and inter-
ventions.

10. Exactly why this is true is a matter of ongoing discus-
sion; see Sommerville, chapter 3, this volume, and
Lagnado and Sloman, 2004, for some alternative
suggestions.

11. For some suggestions among broadly similar lines,
see Glymour, in press.

12. See Wegner, 2002. Of course, as Wegner documents,
there are illusions of agency, but their existence does
not show (and Wegner does not claim) that the feel-
ing of agency is generally an unreliable clue to vol-
untariness.

13. An example is as follows: Shortly after inserting the
key to unlock my car door, a car alarm goes off in a
neighboring car, leaving me with the very strong
impression that my action has caused the alarm to go
off.

14. Whether this is correct is of course an empirical mat-
ter. I do not claim that it is obvious, merely that it is
a conjecture worth exploring.

15. Thanks to Daniel Povinelli for a helpful conversation
that corrected a serious misunderstanding of his
views in a previous draft.

16. Indeed, it might be argued, uncharitably, that the
apes behave pretty much as though they are guided
by this heuristic, and that this simply shows what a
gap there is between use of the heuristic and full-
fledged causal understanding. In this connection, it
is also worth noting that if the human possession of
the concept of force is closely linked to the abilities
displayed in launching experiments, as both
Povinelli and Tomasello and Call suggest, and if apes
fail to possess such a concept, it would seem to fol-
low that they will behave quite differently from
human children in, for example, looking time exper-
iments involving launching phenomena. My predic-
tion is that there will be no dramatic difference,
again illustrating that, when linked to launching
phenomena in the way described, possession of the
concept of force is not sufficient for the kind of
causal understanding displayed by humans.

17. As the passage quoted above makes clear, the experi-
ments it describes have not actually been performed.
It would be worthwhile to do them.

18. David Danks, personal communication; Alison
Gopnik, personal communication. Needless to say, it
would be worthwhile to explore this issue in the con-
text of primate causal understanding by means of
more systematic experiments.

19. Note also that there is nothing unobservable about
this intermediate variable; that is, if the apes fail at
the task under discussion, then it is not because they
fail to postulate unobservable intermediate variables

but rather because they fail to recognize the rele-
vance of an observable intermediate variable.

20. The systematic interrelationships between causal
understanding and the ability to discern one’s inten-
tions and goals as well as those of others are also one
of the main themes of Sommerville’s chapter 3 in
this volume.

21. See Gopnik and Schulz, 2004, for a similar line of
thought.

Chapter 5

1. Throughout, we assume some familiarity with the
causal Bayes nets formalism (that is, we assume that
readers have already read the introduction to this
book). Thus, we use terms like causal graphs, the
causal Markov assumption, and conditional inde-
pendence and dependence without definition.

2. We kept the example deliberately simple. Of course, if
the state of the grass were measured as a continuous
variable (how wet is it?) rather than as a binary one (is
it wet or dry?), then you might observe that the front
yard was wetter when it had rained than when it had
not. In that case, the intervention to set the sprinkler
would not break the arrow between the weather and
the grass and knowing something about the front yard
would still tell you something about the back. The
arrow would be similarly preserved if you invested in
an expensive sprinkler that only turned on when it
had not rained, which might be a better choice for
your lawn but (because the state of the sprinkler is no
longer exogenous to the graph) a bad example of an
intervention.

Chapter 6

1. The implications of interventions cannot always be
derived from observations (see Pearl, 2000, chapter 3,
for a specification of the conditions).

Chapter 7

1. For further discussion of some of the details of
Reichenbach’s theory, see the asymmetry and
prediction section of Michael Strevens’s chapter 15,
this volume.

2. For a somewhat different take on this problem, see
Strevens’s chapter 15, this volume.

3. Woodward makes the same point at the end of the
interventionism section of his chapter 1, this 
volume.
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4. See, for example, Mellor (1995, chapter 12). Lewis
(2000) offers an account of “Causation as Influence,”
in effect denying the distinction. Collins (2000)
argues, against Lewis, for maintaining this distinction.

5. The chemical agents are not quite the same because
those found in birth control pills are synthetic hor-
mones that differ slightly from the hormones naturally
produced by the body. Moreover, the level of hor-
mones introduced into the body through oral contra-
ceptives is substantially less than the level created by
pregnancy. The first difference is not really essential to
the structure of the example, but the second is
because it is this difference in hormone levels that is
responsible for the difference in causal strength
between pregnancy and birth control pill use.

6. In general, however, it is not invariant under the addi-
tion or subtraction of variables elsewhere in the
model; see Hitchcock (2001b) for details.

7. The original version of Newcomb’s problem is pre-
sented in Nozick (1969), but this version of the problem
contains a distraction that hides the underlying moral.

8. Another interpretation is that moving the joystick is a
common cause of camouflage of the appearance of
the plane. On this interpretation, the camouflage is
not causally related to safe passage of the minefield at
all. But, if just some subjects interpreted the results in
the way described in the text and just some of those
interpreted “efficacy” in terms of net effect or compo-
nent effect, then we might expect the average efficacy
to be distinguishable from zero or at least to be slightly
positive if not statistically significant. In fact, the aver-
age efficacy rating was slightly negative.

Chapter 8

1. See Glymour and Cooper (1999); Pearl (2000); and
Spirtes, Glymour, and Scheines (2000).

2. See, for example, recent proceedings of Uncertainty
and Artificial Intelligence conferences, available at
http://www.sis.pitt.edu/~dsl/UAI/.

3. See, for example, www.phil.cmu.edu/projects/csr.
4. The computing tool R4 is available at www.r-

project.org/.
5. The computing tool TETRAD is available at

www.phil.cmu.edu/projects/tetrad.
6. See Eberhardt, Glymour, and Scheines (2005);

Murphy (2001); and Tong and Koller (2001).
7. See, for example, Glymour and Cooper (1999); Pearl

(2000); and Spirtes, Glymour, and Scheines (2000).
8. Ideal interventions are only one type of manipulation

of a causal system. We can straightforwardly use the
CBN framework to model interventions that affect
multiple variables (so-called fat-hand interventions), as
well as those that influence, but do not determine,

the values of the target variables (i.e., that do not
“break” all of the incoming edges). Of course, causal
learning is significantly harder in those situations.

9. Strictly, this is the CBN with parameters set to the
maximum likelihood estimates.

10. This team included Richard Scheines, Joel Smith,
Clark Glymour, David Danks, Mara Harrell, Sandra
Mitchell, Willie Wheeler, Joe Ramsey, and more
recently, Matt Easterday.

11. The Causality Lab is available free at
www.phil.cmu.edu/projects/causality-lab.

12. This is if the instructor writing the exercise allows the
student to “see” the population.

13. This is assuming, of course, that the statistical infer-
ences are correct.

14. The d-separation enables us to compute the inde-
pendence relations entailed by a causal graph.

15. For a detailed but accessible primer, read the chap-
ter on score-based versus constraint-based methods
in Glymour and Cooper (1999).

Chapter 10

1. See Tenenbaum and Griffiths (this volume) for a
general computational-level approach that aims to
incorporate such prior knowledge.

Chapter 11

1. Many-valued features can be modeled as multiple
binary features as in the SUSTAIN (Supervised and
Unsupervised STratified Adaptive Incremental
Network) model (e.g., Love, Medin, & Gureckis,
2004), although at some computational cost. Note
that a feature is binary or continuous based on values
that it might plausibly take and not the actually
observed values. For example, height is continuously
valued even though, in real life, we only see finitely
many values for height in a population.

2. We thus collapse together, for example, Erickson &
Kruschke’s (1998) ATRIUM (Attention To Rules and
Instances on a Unified Model), Kruschke’s (1992)
ALCOVE (Attention Learing COVEring map) model,
Lamberts’s (1998, 2000) EGCM (Extended Generalized
Context Model), and Nosofsky and Palmeri’s (1997)
EBRW (Exemplar-Based Random Walk), which are
all equivalent to Nosofsky’s (1986) generalized context
model for static problems. An interesting open ques-
tion is whether the equivalencies described here can
be used to understand the theoretic relationships
among the response time models.

3. The GCM is equivalently (and more typically)
expressed as the exponential of a sum of distances
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rather than as the product of exponentials used here.
The GCM also allows for other distance measures
(e.g., Euclidean); the equivalencies described in the
next section continue to hold for other distance
measures (although with different auxiliary conditions).

4. Early prototype models assumed that the similarity
ratings were the sum of the distance on each dimen-
sion rather than the product. Subsequent work has
shown these additive models to be worse than multi-
plicative ones (see, e.g., Minda & Smith, 2001).

5. More precisely, there must be a Bayes net in which
the graph is a perfect map for (i.e., is Markov and
faithful to) the probability distribution.

6. It does not actually matter whether the graphical
structure is treated as a Bayes net or a Markov ran-
dom field (where every directed edge is converted to
an undirected edge). The set of probability distribu-
tions is the same.

7. There is an apparent tension here between the con-
dition of a regularity constraint on the P(Fi | E) terms
(suggesting that the GCM cannot model all proba-
bility distributions) and Ashby and Alfonso-Reese’s
(1995) proof that the GCM can, in the limit of infi-
nitely many exemplars, model any probability distri-
bution. Given that the notion of infinitely many
exemplars is psychologically unrealistic, the equiva-
lencies described here require the category to have
only as many exemplars as E (the unobserved vari-
able) has values. That restriction results in the need
for the regularity constraint.

8. Using the Lauritzen-Wermuth-Frydenberg chain
graph Markov property, this graph implies F1 ⊥ F4;
F1 ⊥ F3 | {F2, F4}; and F2 ⊥ F4 | {F1, F3}.

9. Proof: Using the equivalencies in the Luce choice
rule yields P(respond “A” | X) � P(X | A)/�P(X | M).
Multiply the top and bottom by P(A) and use P(A) �

P(M) for all M to reduce to P(X | A) � P(A)/P(X),
which is just P(A | X).

10. This type of theory is frequently called Bayesian, par-
ticularly by computer scientists and statisticians. I
avoid using that term here because for many philoso-
phers and psychologists Bayesian includes a much
larger set of commitments than this theory requires.

11. The following discussion is qualitative, but the pro-
posed framework has a precise mathematical
description.

Chapter 12

1. Strevens (chapter 15, this volume) enumerates a
number of reasons why, in a particular case, the causal
laws associated with a category may fail to generate a
typical property: the conditions required for the causal

mechanisms to operate may be absent and something
may interfere with those mechanisms. The current
appeal to probabilistic causal mechanisms can sub-
sume both of these cases. Strevens also notes that
some outside force may operate to remove a property
after it is generated.

2. The hedge “all else being equal,” which appears twice
in this paragraph, refers to the fact that strength of the
evidence that Si provides for the disease D will of
course also depend on the evidence that it provides for
some other disease (and the prior probability of D and
those other diseases). This issue is discussed further in
Experiment 2. The purpose of the discussion to this
point is simply to establish how the likelihood of D
given a symptom P(D | Si) is going to vary as a func-
tion of the probability that D generates that symptom
P(Si | D).

3. Of course, many real-world cases of classification are
likely to involve both diagnostic and prospective rea-
soning. From symptoms (e.g., those of lymphoma),
one might hypothesize the presence of a particular
disease (HIV). One might then look for the presence
of potential causes of that disease (e.g., a blood trans-
fusion) to corroborate the hypothesis.

4. For example, in terms of causal model theory, each
feature i in Figure 12-11A would have a bi parame-
ter representing the probability that it occurs in
category members. The probability that a given
object was generated by that category, P(O|C),
would then be

p(O|C)�[�i�Pbi][�i�A(1�bi)]

where P is the set of C’s features present in O, and A
is the set of C’s feature absent in O. Alternatively, cat-
egory membership could be based on O’s similarity to
the category’s prototype. Note that these two alterna-
tives would be equivalent if a multiplicative similarity
rules was used (Hampton, 1998; Nosofsky, 1992; J. D.
Smith & Minda, 2000) because they would both
involve multiplying rather than summing evidence.
Of course, in Figure 12-11 we are again considering
only the evidence of an object O’s category member-
ship with respect to a single category. The extent to
which a feature provides evidence for category mem-
bership will also depend on the likelihood that that
feature is associated with other categories. See
Experiment 2 for discussion.

5. Strevens (2000, chapter 15, this volume) also considers
categorization a kind of causal inference but argues
that the causal laws relate observable properties and
the kind itself, rather than a defining or essential feature.
However, this approach provides no principled expla-
nation for why children younger than 2 or 3 years old
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are “phenomenalists” on transformation tasks like those
of Rips, concluding that an animal is what it looks like
(Keil, 1989). The current proposal explains the devel-
opmental shift in terms a specific developmental
sequence in which unobserved causes are first postu-
lated and then become defining (or near-defining) of
category membership.

Chapter 15

1. Reichenbach connected the asymmetry of his statis-
tical patterns to the statistical mechanical roots of the
second law of thermodynamics and ultimately to the
direction of time, but this aspect of his work is passed
over here.

2. I might add, though, that the ideas about causality
presented in The Direction of Time (1956), a work
left unfinished at the time of Reichenbach’s death,
are not easily understood as a unified whole. Like
another well-known philosopher of causality, he could
be accused of having given several incompatible def-
initions of cause. I suppose that Reichenbach would
have replied, in the logical empiricist spirit, that each
of his definitions has its advantages and disadvan-
tages, and that it would be a philosophical error to
insist that any one definition must be uniquely correct.

3. It might be better to say before or at the same time as
the focal event, but it is simpler to leave things as
they are in the main text.

4. The probabilistic facts about event types, note, will
themselves often refer to the temporal order of the
probabilified events. For example, the probability of
hearing a loud bang after the trigger is pulled is
much higher than the probability of hearing a bang
before the trigger is pulled, and so on.

5. Without the additional claim, nothing has been said
because there is a trivial dyad for any focal event in
which the set of parent events contains every other
event.

6. What follows posits a relationship that is closer than
anything Reichenbach would have endorsed; as I
remarked, I am simplifying his view considerably.
Specifically, what I identify as a necessary and suffi-
cient condition for one event to be the cause of
another is for Reichenbach only a necessary condi-
tion. See The Direction of Time (1956), section 22 for
the details.

7. An exception to this rule, the kind of case in which
you have some direct knowledge of events caused by
the focal event—a case of retrodiction, presum-
ably—can contribute to the internal explanation on
the introduction of statistical relations more complex
than those represented by Reichenbach dyads. These

relations are also very efficiently represented by a
DAG.

8. By species, here I mean what might be better called
a folk genus or a generic-specieme (Medin & Atran,
1999).

9. Psychological essentialists maintain in addition that
the causation is represented as going by way of an
essence, but the truth or otherwise of this posit will
make no difference to what I have to say here.

10. Only the 3-year-olds failed to show a definite prefer-
ence for the generative transmission rule and then
only in some scenarios.

11. A philosopher would say that everything that is
known about the basic levels is known a posteriori
rather than a priori, but in a psychological context,
the use of the term a priori tends to run together the
question of innateness and the question of immunity
to empirical refutation. My claim is that all beliefs
about the basic levels are considered subject to revi-
sion in the light of the empirical evidence.

12. How might the information contained in the con-
straint from below be reduced to statistical language?
Relative to a set of basic levels and some information
about their workings, the answer might go, roughly,
as follows: The constraint contains information
about where certain kinds of correlations—the corre-
lations that make up information about mecha-
nism—are found. The constraint identifies clues,
then, and says: Look for your correlations where you
find these clues. You might say that it asserts a kind
of meta-correlation, a correlation between the clues
and other correlations.

Chapter 17

1. When the cause is absent (the bottom row in Figure
17-1), the strength of the relationship is predicted not
to change (cf. van Hamme & Wasserman, 1994).

2. In an earlier version of this task (Marsh & Ahn,
2003), participants were likewise not given informa-
tion ahead of time about which estimates would be
requested. However, all four questions were pre-
sented simultaneously on the same screen.
Participants incorporated ambiguous information
into their estimates with this design as well.

Chapter 18

1. The observation that the additive �P model is not
invariant under addition of independent causes, while
Cheng’s model is, I owe entirely to conversation with
Patricia Cheng.
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Chapter 19

1. For example, suppose that a correlation is observed
between A and B, and it is known that no direct causal
connection exists between A and B. If a third variable
V is known to be a cause of A, then this knowledge
suggests two simple hypotheses for interpreting the
correlation between A and B: V may be a cause of B
or B may be a cause of V.

2. Readers familiar with linguistics literature will recog-
nize the questions in Table 19-1 as based on an anal-
ogy to Chomsky’s standard questions about knowledge
of language (e.g., Chomsky, 1986). It is no accident
where we started given where we figured to end up.

Chapter 20

1. This graph schema may look implausible as a template
for generating causal graphical models because it gener-
ates graphs with directed cycles. However, the problem
is easily remedied by imposing a simple discrete dynam-
ics on the variables. Each variable in each node class is
indexed by time step, and causal connections between
nodes x and y in fact connect x(t), the state of variable x

at time t, to y(t�1), the state of variable y at time t � 1.
By default, each state variable should also depend on its
value at the previous time step.

2. Like GMag, this graph schema oversimplifies by leav-
ing out the dynamic nature of these state variables.
But, those dynamics can be included here just as we
outlined for GMag in Note 1 by indexing each variable
by a time step and unfolding all causal connections
between each time step and the next.

3. Graph 6 provides such a poor fit to the observed data
that its likelihood would not show up on Figure 20-7.

4. The abstract entities referred to in a logical theory
need not correspond to any kind of physical object.
Logical approaches to number theory consider enti-
ties that correspond to numbers, and we consider enti-
ties that correspond to intervals of time.

5. The particular versions of those components shown in
Figure 20-10 represent just one of many possible
choices that could work here. We assume this particu-
lar theory because it is simple and fairly intuitive, not
because we think it corresponds precisely to people’s
theories in these experiments. However, we argue that
something like the key principles expressed in this
theory are critical to explain people’s inferences in
blicket detector tasks.
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accidental properties, 190
adjacency consistent-adjacency

inconsistent inclusion,
134–36

adjacency consistent error, 134–35
adjacency-integrity, 134–35
agent causal view, 32, 45, 46
alternative causes, unobserved,

284–87
alternatives, contrasting, 106
ambiguous stimuli, dynamic

interpretations of, 288–92
Anderson’s rational analysis model,

183
animals. See primate causal

cognition
associationist theories, 96. See also

associative theories
associative challenge, 141–44
associative learning account of

causal learning, 10
associative learning models, 281
associative theories, 94. See also

associationist theories
assumptions, 107–8
asymmetry

and control, 250–51
and prediction, 247–50

auditory observation, 45

backtracking vs. non-backtracking
counterfactuals, 21, 29

backward blocking, 11, 142–44
Bayes net approaches, 37. See also

causal Bayes nets
Bayes net assumption connecting
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Bayes net modeling, 275. See also

causal Bayes nets
Bayes net representations, 19–20,
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Bayes’ rule, 315–18
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320, 340
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inferring causal networks, 317–18
inferring causal principles, 318–19
inferring causes and predicting

effects, 316–17
Bayesian inference, 143, 216,

315–16, 340
Bayesian methods, 169. See also

causal Bayes nets
belief-desire psychology, 261–62
belief-updating model, 283

beliefs
false, 268–70
weighing new evidence against

old, 79–80
biologically caused actions, 267
blicket detector, 140, 143, 144, 184,

213, 220, 334–41
graph structures generated by

causal theory for, 337, 338
one-cause, 226
probabilistic logical theory for

causal induction with, 336,
337

two-cause, 226–27
blocking, 141–42

backward, 11, 142–44
boundary intensification, 195–97

categorical vs. projective inferences,
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core vs. perceptual, 191
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coherence, 200–202
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human, 173–74, 186–87. See also

similarity functions
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353

Index



categorization (continued)
models of, 199. See also catego-

rization theories; graphical
models

projection and, 252–55
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