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Preface 

This book presents the results of the research in one of the most complex 
and difficult areas of research such as research in the areas of thinking and 
understanding. This research that is carried out in the newly founded 

ing process. We are aware how complex this problem is and we are aware 
that the results of our research are only the first steps in building the 
thinking machine being able to solve complex visual problems. However, 
we believe that the results of our research will pave the way into the new 

supply the new scientific arguments about our human nature. 
Until now, the problem of understanding and thinking was the topic of 

research in the area of philosophy, psychology, or cognitive science. Philo-
sophical investigations of many thinkers such as Plato, Aristotle, Locke, 
Berkeley, or contemporary thinkers contributed into progress of understand-
ing and thinking processes. Although there are some research on this topic 
in the area of artificial intelligence (AI), researchers in AI do not pay 
sufficient attention into understanding/thinking problems. It was probably 
for that reason that they tried to tailor the problem of what they called 
“artificial intelligence” to the abilities of the existing computing machines.  

Queen Jadwiga Research Institute of Understanding www.qjfpl.org/QJRIU/ 

understanding and visual thinking. Visual understanding is part of the general 
understanding problem and it is not possible to carry out the research in visual 
understanding without reference to the nonvisual understanding problems. 
Understanding appears as the result of the thinking processes, and doing
research in the area of understanding there is a need to include thinking process 
as one of the research problems that should be solved in the context of under-
standing investigations. According to our knowledge, this book is the first 
attempt to investigate the complexity of the visual thinking problems in the 
context of building the thinking machine. The aim of our research is to build 
the machine that can have capabilities to solve visual problems during think-

way of thinking about designing the thinking machines and, especially, will 

Eng/Eng–QJRIU PO O.htm is focused on research on the problem of visual – –
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Another reason was that until now, there was no proper representation that 

could be compatible with other representations of the nonvisual knowledge. 
When existing systems are built based on the results of the scientific 

discoveries in the domain of psychology, cognitive science, computer science, 
or AI, our approach is based on the results of philosophical investigations 
of such thinkers as Aristotle, Locke, or Berkeley. In Chap. 1 of this book, 
the brief description of the results of main philosophical investigations 
concerning thinking and understanding is presented. In this chapter, shape 
that is regarded as the main perceptual category of thinking process and 
the important visual feature of the perceived world is briefly described. In 
the following sections of this chapter, the different problems connected 
with understanding are briefly presented. The relation between under-

The last section includes the short description of the shape understanding 
system (SUS). In this book, the problems connected with the implemen-
tation issues of the SUS are not presented. The reason for that is that the 
theoretical issues connected with thinking and understanding are very 
complex, and inclusion of the extended description of implementation 
issues could cause that the contents of this book would be less under-
standable. In Chap. 2, concepts of shape classes that are understood as the 
basic perceptual categories are explained. The classes are represented by 
their symbolic names. Each class is related to each other and based on 
these classes there is relatively easy to establish the “perceptual similarity” 
among perceived objects. In Chap. 3, the description of the reasoning 
process that leads to assigning the perceived object to one of the shape 
classes is given. Each class possesses its characteristic reasoning process. 
The result of the reasoning process is the assignment of the examined 
object to one of the shape classes represented by the symbolic names. The 
symbolic name is used to find the visual concept and next to assign the 
perceived object into one of the ontological categories. Ontological cate-
gories are part of the new hierarchical categorical structure of the SUS. 
The new hierarchical categorical structure is explained in Chap. 4. The 
categorical chains that represent the categories of visual objects and know-
ledge categories are applied to interpret the perceived object as the symbol, 
the letter, or the real world object. In Chap. 5, examples of the visual 
reasoning processes that can be considered as the thinking process are 
presented. The thinking process is regarded as the continuous computa-
tional activity that is triggered by perception of a new object, by perception 
of an “inner object,” or by the task given by the user. Thinking can lead to 
solving a problem where there is only one solution (e.g., the visual intel-
ligence test) or solving a problem where there are many possible solutions 

could capture visual aspects of the world and represent them in the form that 

standing and thinking is discussed in the following sections of this chapter. 
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(e.g., designing the tools). In this book, the focus is on thinking that leads 
to solving a problem that has only one solution. 

We are aware that this book could be written in a different way where 

conditions. During the most crucial part of writing of this book, we were 
notoriously expelled from our own flat where most work connected with 
preparation of this book was carried out. We think that for most of the 
readers, it would be difficult to understand how it could happen that in 
twenty-first century someone could be expelled from his home. We believe 
that it could happen only in country such as Australia where for more than 
15 years, we Polish scientists are subjected to psychological terror from 
some Australian people and institution. The details of our persecution in 
Australia are described on our Web site (www.qjfpl.org\Przesladowanie\ 
Eng\). We would like to take this opportunity and ask the Australian 
Government in Canberra to take responsibility for all damage that we 
suffered from Australian people and institutions. 

some issues could be explained in more details or presented in the different 
ways. We would like to explain that this book was written in very “difficult” 



1. Thinking, Visual Thinking, and Shape 
Understanding 

1.1. Introduction 

Thinking is the process that is connected with mental activities of our brain. 
We often say “I think that…” to indicate that our judgment is the result of 
thinking process. In the past thinking was highly praised and in some cultures 
thinkers (philosophers) had a very big influence on the development of culture 
and life of people. Philosophers played an important role in the development 
of the philosophical thinking and understanding of the real-world phenomena. 
Cartesian statement “cogito ergo sum” refers to thinking and it indicates the 
ontological status of the thinking process. Today scientists from different areas 
of sciences try to replace the philosophical investigation by speculative theo-
retical construction of scientific theories. Also philosophers of science tried to 
reduce philosophical thinking into the speculation about scientific description 
of the world. However, there are still questions that could not be answered or 
even formulated in the term of the today’s scientific theoretical concepts, 
models, or theories. This book is an attempt to show that it is possible to build 
the thinking and understanding machines. When there is possibility for re-
placement of materialistically oriented “thinkers” by thinking machines, the 
metaphysical problems could be only solved by thinkers who are able to 
understand the essence of our human nature. 

Understanding appears as the result of the thinking process. Understanding 
is a psychological process related to an abstract or physical object, such as a 
person, a situation, or a message, whereby one is able to think about it and use 
concepts to deal adequately with that object. In order to understand and solve 
a problem there is a need to engage thinking process. However, in some cases 
thinking does not lead to understanding. Understanding means knowing what 
is meant or intended by an utterance, a gesture, or a situation. Using an opera-
tional or behavioral definition of understanding, we can say that somebody 
who reacts appropriately to Y understands Y. For example, I understand 

Z. Les and M. Les: Thinking, Visual Thinking, and Shape Understanding, Studies in Computational 

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2008 
Intelligence (SCI) 86, 1–45 (2008) 
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English if I correctly obey commands given in that language. This approach,
however, may not provide an adequate definition. A computer can easily be 
programed to react appropriately to simple commands. 

Understanding is closely related to cognition and in many cases both terms 
have very similar meaning. For example, in the cognitive model the process 
of introverted thinking is thought to represent understanding through cause 
and effect relationships or correlations. One can construct a model of a sys-
tem by observing correlations between all the relevant properties. 

Understanding is often thought of as a special kind of seeing [1]. In com-
mon language very often instead of statement “I understand” people say “I 
see.” Also, thinkers pointed out into connection between seeing and under-

One aspect of thinking and understanding is the acquisition and utilization 
of knowledge in order to explain the world and to perform complex tasks. 
Another one is connected with application of knowledge in the problem-
solving process. Some people believe that knowledge is the simple awareness 
of bits of information and understanding is the awareness of the connected-
ness of this information. However, it is thinking during understanding process 
which allows knowledge to be put in use. In order to be able to effectively 
utilize the knowledge during the solving of difficult problems, the subject 
needs to have well-developed problem-solving skills. Problem-solving skills 
comprise wide range of competencies such as the capacity to understand 
problems situated in novel settings, to identify relevant information, to repre-
sent possible alternatives or solutions, to develop solution strategies, and to 
solve problems and communicate the obtained results. 

In the context of understanding of the visual forms, there is a need to dis-
tinguish between visual understanding that deals with understanding of the 
visual forms and nonvisual understanding that refers to understanding of non-
visual forms. Mental processes that are connected with visual understanding 
are called visual thinking. Visual understanding and visual thinking play an 
important role in understanding of the world’s objects and phenomenon’s. 
However, nonvisual thinking consists of the substantial part of the thinking 
process. The term visual thinking became popular after publishing the book 
by R. Arnheim titled “Visual thinking” [3]. In this book Arnheim tried to 
compare the process of reasoning that is performed by scientist with reason-
ing that is characteristic in the artistic creative act. Visual thinking, that is 
present in the artistic creative act, is the process of mental operations on the 

a kind of vision – our mental eye (onus, reason) [2]. The eye of the soul is 
standing. For example, Plato described the grasping of the forms or ideas as

endowed with intellectual intuition and can see an idea, an essence, and an 
object that belongs to the intelligible world. Once we have managed to see it, 
to grasp it, we know this essence and we can see it in the light of truth. 
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visual concepts in order to obtain a new form of the symbolic or visual repre-
sentation. During the visual thinking process visual concepts are often used to 
form “mental image” that allows better mental representation of knowledge. 

Visual understanding requires certain abilities of the subject to perform 
complex mental transformations that are part of visual imagination. In the 
visual understanding process visual imagination plays a significant role. For 
example, Copernicus needed a remarkable visual imagination, which let him 
apply a model from very different area to describe the situation he saw. He 
succeeded in seeing the intricate gyrations of the planets as simple move-
ments of these heavenly bodies. Visual understanding requires knowledge 
that is encoded in the brain and is the result of the learning process as well as 
the visual thinking processes. The visual thinking process is based on the 
visual reasoning that starts with perceiving of the visual object and uses ab-
straction and generalization in solving complex visual problems. Abstraction 
that is present in perception (understanding) of the visual object makes it pos-
sible to grasp of structural features rather than indiscriminate recording of 
detail. Also visual knowledge acquired in the past helps not only in interpreta-

object in the system of things constituting our total view of the world. 
When the existing knowledge-based systems are built based on the results of 

the scientific discoveries in the domains of psychology, cognitive science, 
computer science, or AI, our approach, presented in this book, is based on the 
results of philosophical investigations of such thinkers as Locke, Berkeley, or 
Kant. In this book, brief description of philosophical investigations of topics 
connected with understanding and thinking is presented. The shape that is the 
main perceptual category of thinking process and the important visual feature 

ferent problems connected with understanding investigated by philosophers 
such as Locke or Berkeley are described. The relation between understanding 

tion of the shape understanding system (SUS). In this book, the problems 
connected with the implementation issues of the SUS are not presented. The 
reason is that the theoretical issues, connected with thinking and understand-
ing, are very complex, and the attempt to describe the implementation pro-
blems could, instead of clarifying things, make them less understandable in 
the context of the material presented in this book. 

names. Each class is related to each other and, based on these classes, it is 
relatively easy to establish the “perceptual similarity” among perceived 
objects. 

basic perceptual categories. Shape classes are represented by their symbolic 
Chapter 2 presents the concept of shape classes that are regarded as the 

tion of the object appearing in the visual field but also places the perceived 

of the perceived world is briefly described in Sect. 1.2. In Sect. 1.3, the dif-

and thinking is discussed in Sect. 1.4. Section 1.5 includes the short descrip-
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Chapter 3 presents the description of the reasoning process that leads to 
assigning the perceived object to one of the shape classes. Assignment of an 
object to one of the general classes is based on the specific reasoning process. 
In other words, each general class is characterized by its specific reasoning 
process. As the result of the reasoning process, an examined object is as-
signed to one of shape classes where each class is represented by its symbolic 
name. The symbolic name is used to find the visual concept and next to assign 
a perceived object into one of the ontological categories. The ontological 
categories are described in Chap. 4. 

Chapter 4 presents the new hierarchical categorical structures of the differ-
ent categories of visual objects. The categorical chains that represent the vis-
ual categories are applied to interpret the perceived object as a member of one 
of the ontological categories: a figure, a sign, a letter, or a real-world object 
category.

Chapter 5 gives examples of the visual reasoning processes that can be 
considered as the special kind of the thinking processes. The thinking process 
is regarded as the continuous computational activity that is triggered by per-
ception of a new object, by perception an “inner object” or by a task given by 
the user. Thinking can lead to solving a problem where there is only one solu-
tion (e.g., the visual intelligence test) or solving a problem where there are 
many possible solutions (e.g., designing the tools). In this book, the focus is 
on thinking that leads to solving a problem that has only one solution. 

1.2. Shape and Form 

Shape understanding method presented in this book is based on the concept of 
shape classes. The shape classes (described in Chap. 2) are regarded as the ba-
sic shape categories, the main ingredients of thinking process. During think-
ing process, the perceived object (phantom) is transformed into the digital 
form (visual object) and next into the symbolic form (symbolic name) by fit-
ting it to one of the shape categories (shape classes). The visual object that ex-
ists in the mind (exemplar) can be transformed into another exemplar or into 
the symbolic form during the visual thinking process. The main ingredients of 
the visual thinking process are shape categories. 

Shape categories refer to shape as the visual aspect of the perceived object. 
In existing literature the term shape is differently defined and understood. 
External shape or appearance is often called form. The term form has been 
used in a number of ways throughout the history of philosophy and aesthetics. 
In contrast to the particulars that are finite and subject to change, Plato’s term 
eidos “eternal forms” identified the permanent reality that makes a thing what 
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it is. Plato’s “eternal forms” are the immutable essence that can only be 
“received” or “imitated” by material, or sensible things and are of a higher real-
ity than material objects. Aristotle distinguished between matter and form and 
argued that every sensible object consists of both matter and form. The matter 
was the undifferentiated primal element and the development of particular 
things from this germinal matter consists in differentiation, the acquiring of 
the particular forms of which the knowable universe consists. According to 
Aquinas the concept of form includes “accidental form,” a quality of a thing 
that is not determined by its essence. These “sensible forms” can be distin-
guished from matter by sense-perception. He distinguished space and time as 
the two forms of sensibility and 12 basic categories that act as structural ele-
ments for human understanding. When the form of philosophical thinkers can 
be, only to some degree, identified with the term “form” that is used in the 
area of the visual art, there is no doubts that these terms have one common 
source. In art form is related to shape and in some context they are used as 
synonyms.

Shape is a very important concept that is differently defined and under-
stood across many different disciplines. Mathematicians often use the visible 
shapes and reason about them although they are thinking not of these but of 
the ideas which they resemble. Shapes share several universal properties 
that are applicable to the definition of all shapes. The first of these properties 
is geometry, which concerns the relative placement of points within the shape 
or its embedding environment. The other property is topology. It concerns the 
adjacency relationship between the elements of shape. For example, a rect-
angle made of rubber could be inflated into a circle. Its geometry would 
change, but not its topology; the adjacency relationships between its edges, 
faces and vertices (its boundary elements), and between points that make up 
its interior, remains the same as before. Topology and geometry nevertheless 
are not completely independent of each other; at the limits, a change in geo-
metry may cause a change in topology. Based on the geometrical permis-
sions, Leyton [4] developed a theory that claims that all shapes are basically 
circles, which changed form as a result of various deformations caused by 
external forces, e.g., pushing. Geometry and topology, the components of 
shape information, has been the subject of study by such mathematicians as 
Euclid, Pythagoras, Archimedes, Euler, Mobus, Polya, and Lacatos. Most of 
the technical papers that deal with shape stress the importance of geometrical 
properties of shape. The perceptual aspect of the visual forms present in 
visual psychology is absent in conventional geometrical theories of shape. 
For example, in statistics shape is often treated as an independent field of 

cal information that remains when location, scale, and rotational effects are
research (see e.g., [5–7]). Kendal [8] defines shape as: “shape is all geometri-
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points on each specimen which are called landmarks. In statistics shape is 
analyzed by applying variety of mathematical and statistical methods. For 
example, in order to perform the shape analysis ratio of distances between 
landmarks or angles are selected, and then the data obtained is submitted to a 
multivariate analysis. 

Shape is a subject of study in many disciplines. For example, in biology 
and medicine the subject of study is how shape changes during growth; how 
shape changes during evolution; how shape is related to size; how shape is 
affected by disease; how to discriminate and classify using shape; and how to 
describe shape variability. In statistics, statistical shape analysis is applied to 
analyzing of hand shapes [9], the resistors in [10] or the mitochondrial out-
lines [11]. The statistical method, which was developed by Kendal, was applied 
in many different domains such as biology: analysis of the mouse vertebrae 
to assess whether there is a difference in size and shape between groups of 
selected specimen; in image analysis: postcode recognition; in archaeology: 
alignments of standing stones; in geology: microfossils agriculture; or in 

Visual objects are often characterized by their shapes. Shapes of visual 
objects can have different “details” that can reveal the useful information 
about the object or, alternatively, those varying “details” can be treated as ir-
regularities recognized as noise that comes from a nonperfect processing 
stage. The visual object that possesses the intricate details is called fractal. 
Magnifying the nonlinear shapes such as fractals allows the intricate details 
to be still visible. Fractals are not relegated exclusively to the realm of 
mathematics. If the definition is broadened, such objects can be found vir-
tually everywhere in the natural world. The difference is that “natural” frac-
tals are randomly, statistically, or stochastically rather than exactly scale 
symmetric. The rough shape revealed at one-length scale bears only an 
approximate resemblance to that at another, but the length scale being used is 
not apparent just by looking at the shape. Moreover, there are both upper and 
lower limits to the size range over which the fractals in nature are indeed frac-
tals. Above and below that range, the shapes are either rough (but not self-
similar) or smooth – in other words, conventionally Euclidean. The visual 
objects that are the result of physical processes such as soot aggregation in 
chimneys, zinc deposition in electrolytic cells, diffusion of gas bubbles 
through viscous liquids, and electrical discharge in air, possess shapes that are 
fractals [12]. Also organic forms often possess the characteristic intricate 
shapes that are fractals [13]. Figure 1.1 shows visual objects that are result of 
different physical processes and are regarded as fractals. 

robotics: harvesting of mushrooms [6–8]. 

filtered out from an object.” Shape is described by locating a finite number of
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Fig. 1.1. Objects with irregularities classified as fractals 

In many interpretations shape is not distinguished from an object. In 
engineering, the object is divided based on the shape that is considered as an 
object itself. Many different types of shape are distinguished, for example, rigid 
shapes whose proportions, angles, and sizes are independent of shape location 
and orientation in space, and nonrigid shapes, such as gases and liquids which 
are the subject of study of thermodynamics. 

Shape not only determines how an object looks, but also forms the basis for 
many of its other properties. Webster defines shape as “that quality of an 
object which depends on the relative position of all points composing its out-
line or external surface.” This definition emphasizes the fact that we are 
aware of shapes through outlines and surfaces of objects, both of which 
may be visually perceived. It also makes the distinction between the two-
dimensional outline and the three-dimensional surface. The term shape often 
refers to the geometry of an object’s physical surface [14]. For example, 
Marr treats shape as one of the forms of an object representation or a “special 
visual” feature of an object. A special class of shapes is shape contours which 
have the two-dimensional base and can yield information about the three-
dimensional shape. Perception research lays emphasis on the use of contours in 
decomposing objects into their parts, especially on describing rules for detec-
tion of part boundaries, e.g., based on notions as “concavities” of concave 

the contour seem to play an important role also at the conceptual level in the 
process of concept formation. 

Shape is also described as a silhouette of the object (e.g., obtained by 
illuminating the object by an infinitely distant light source). Silhouettes con-
tain rich information about shapes of objects that can be used for recogni-
tion and classification. Silhouette contours contain detailed information about 
object’s shape. In many cases it is possible, based on a silhouette to determine 
the parts that compose shape, identify their local orientation and rough aspect 
ratio, and detect convex and concave sections of the boundaries. When a sil-
houette is sufficiently detailed people can readily identify the object, or judge 
its similarity to other shapes. Computer vision systems use similar informa-
tion to classify objects. Silhouettes may be available to these systems as a 
result of segmentation. In either case, properties of silhouettes extracted auto-
matically and reliably provide (possibly in con junction with additional 

regions or the “minimal rule” (see [15], [16]). The characteristic features of 
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properties such as color and texture) a powerful cue for recognition. The 
computer vision literature contains numerous examples for the use of proper-
ties extracted from silhouettes. Various studies utilize parts and skeleton 
structures to determine shape category. Local properties are used for registra-
tion and recognition, as well as similarity judgment. In addition, various 
categorization methods use “qualitative descriptions” of shape boundaries. 
Existing methods of shape analysis are mostly concerned with recognition of 
shape as a binary image representing the extent of the object [17–26]. 

In dealing with recognition, shape is often interpreted in terms of an object 
where the object is represented by structural descriptions (see [27], [28]). In 
this view, objects (shape) are divided into parts and represented in terms of 
their parts and the relations between parts. This view has advantages over 
alternatives, such as a template and feature models, on computational and 
perceptual grounds ([15], [16], [29–31]). Parts-based representations allow 
for recognition that is robust in the presence of occlusion, movement, 
growth, and deletion of portions of an object, and play an important role in 
theories of objects categorization and classification. There is a strong evi-
dence for parts-based representations in human vision (see e.g., [32], [33]). 
Authors in [34] provide strong evidence that contours are psychologically 
segmented into visual parts at negative curvature minima. However, computa-
tion of negative curvature minima, as well as other extreme points is not ro-
bust in real digital images. Although remarkable progress has been made on 
this matter, the robust computation of extreme points in real digital images is 
an open problem. Since contours of objects in digital images are distorted by 
digitization noise and segmentation errors, it is desirable to neglect the dis-
tortions while at the same time preserving the perceptual appearance at a level 
sufficient for object recognition. One solution to this problem is to apply the 
evolution of planar curves in the scale space [35–37]. It was proven in [36] 
that an embedded plane curve, when evolving according to the heat equation, 
converges to a convex plane curve. 

Perception of shape is to see an object. The perception of shape consists in 
the application of form categories, which can be called visual concepts be-
cause of their simplicity and generality. In a typical life situation, a person 
concentrates on some selected areas and items or on some overall features 
while the structure of the remainder is sketchy and loose. Under such circum-
stances, shape perception operates partially. When the angle changes at which 
the object is perceived shape is affected by transformations, which are gen-
erally more complex than those provided by Euclidean geometry, that is, 
translation, rotation, or reflection in space. The objects of perception are not 
necessarily rigid; they move, bend, twist, turn, swell, shrink light up, or change 
their color. Constancy of shape does result when the various aspects of an 
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Laws of association are often used to support the thesis that perceptual laws 
exists. Laws of association say that items will become connected when they 
have frequently appeared together. Perception of shape is always to perform 
an abstraction because seeing consists in the grasping of structural features 
rather than in the indiscriminate recording of detail. If a percept is a categori-
cal shape rather than a mechanically faithful recording of a particular stimu-
lus, then its trace in memory must be equally generic. In the earliest classical 
theory, a perception of the shape was thought to consist of the memories of the 
eye movements that would have to be made in order to bring each point on its 
contour to the centre of vision. The psychological aspects of visual perception 
of shape ([38], [39]) led to the development of a dynamic shape model where 
visual perception is performed on several scales of resolution. In this model, 
any shape can be embedded in a morphogenetic sequence based on the solu-
tion of the partial differential equation that describes the evolution of the 
shape through multiple resolutions. 

In this book shape is regarded as the basic perceptual category to which ex-
amined object is fitted. The perceptual category that refers to the shape 
classes (described in Chap. 2) is an element of the visual concept. Visual con-
cept is the main ingredient of the visual thinking process and is described in 
Chap. 5. Shape as the basic perceptual category is the main ingredient of 
thinking process that leads to understanding an object as a part of the world. 

1.3. Understanding 

This section is not intended as a survey of literature on the vast topic concern-
ing understanding, but rather as presentation of the point of view of selected 
thinkers on this topic and a discussion of some aspects of understanding con-
sidered to have implication for material presented in other chapters. 

It is understanding that sets man above the rest of sensible beings, and 
gives him all the advantage and dominion which he has over them. Under-
standing appears as the result of the thinking process and can be the object of 
the scientific inquires. Locke [40] has no doubt that understanding can be 
studied like anything else: “we can observe its object and the ways in which it 
operates upon them” he wrote. Understanding that is often thought of as cog-
nition involves processes such as learning, problem solving, perception, 
intuition, and reasoning, and requires abilities such as intelligence. Under-
standing that is based on knowledge is often connected with interpretation or 
disclosing meaning of the language and the concept is the key element of 
understanding process. 

object can be seen as deviations from, or distortions of a simpler shape. 
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Understanding and thought were topics of many philosophical thinkers 
such as Plato, Aristotle, Locke, Berkeley, Laibnitz or Gadamer (see. e.g., [1] 
[40–45]) and were regarded in the context of the origins of human know-
ledge. The traditional Augustinian theory explained the cognition as the 
result of a divine illumination and was based on innate ideas. This Neo-Platonic 
view was that an essence of created things was “participations” of the divine 
essence. God, in contemplating them, does nothing but contemplate Himself. 
According to Aquinas, the direct object of human intellectual knowledge is 
the form abstracted from matter, which is the principle of individuation, and 
known through the universal concept. The senses apprehend the individual 
thing but the mind apprehends it only indirectly, as represented in an image 
or phantasm. There is no intellectual intuition of the individual thing as such. 
Scotus discarded the traditional Augustinian–Franciscan theory of a special 
divine illumination and held, with Aquinas, that Aristotelian doctrine of the 
abstraction of the universal can explain the genesis of human knowledge 

The fundamental principles of Locke’s thought concerning understanding 

of human knowledge. The Essay is divided into four books; the first is a 
polemic against the doctrine of innate principles and ideas. The second deals 
with ideas, the third with words, and the fourth with knowledge. Lock did not 
distinguished between cognition and understanding. According to Locke, 
what we know is always properly understood as the relation between ideas. 
He devoted much of the Essay to an extended argument that all of our ideas – 
simple or complex – are ultimately derived from experience. The conse-
quence of this empiricist approach is that our knowledge is severely limited in 
its scope and certainty. Our knowledge of material substances, for example, 
depends heavily on the secondary qualities by reference to which we name 
them, while their real inner natures derive from the primary qualities of their 
insensible parts. 

know can actually be derived from any idea that there are actual necessary 
connections between observed phenomena. We assume that certain things are 
connected just because they commonly occur together, but a genuine know-
ledge of any connection is mere habit of thought. So, a severe skepticism is the 
only rational view of the world. Hume’s investigations into human under-
standing lead him to doubts. He asks on what grounds we base our judgments 
and investigates their rational justification. Finding certain inconsistencies in 

illumination.
without it being necessary to invoke either innate ideas or a special divine

are presented in An Essay Concerning Human Understanding [40]. This 
essay was the culmination of 20 years of Lock’s reflection on the origins 

Hume’s An Enquiry Concerning Human Understanding appeared in 1748. 
The central themes of Hume’s book [42] are that very little of what we think we 
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our normal procedures, for instance, that our belief in necessary connection 
is not rationally justified, Hume is led to a kind of consequent doubt of our 
mental faculties. 

Descartes claimed that “natural light” of understanding is a faculty created 
by God [46]. We come to know not only created eternal truths but uncreated 
truth: that God exists, that God is not a deceiver, that God is immutable, a 
necessary being, causa sui. But God is not subject to the limits of our under-
standing, and we only have access to these uncreated truths through a faculty 
given to us by Him. If our understanding seeks some unconditional verifica-
tion of God’s existence and truthfulness, through means outside the scope of 
God’s creative will, it seeks in vain. Descartes initiates a critique of the under-
standing itself. It is immediately aimed at “eternal truths,” that is, mathemati-
cal truths which for Descartes are properly truths of the understanding. 

According to Kant understanding as a one of the higher faculties of know-
ledge, in general, can be defined as the faculty of rules. Ideas, as Kant argues 
in the Transcendental Dialectic, are a priori concepts whose source lies in 
pure reason alone. Their only legitimate theoretical use is to regulate the 
understanding’s cognition of objects: reason sets down the conditions under 
which the understanding’s activity will have achieved its ideal completion in 
the systematic interconnection of its cognitions, i.e., in an ultimate science. 
Reason thereby offers the understanding of a rule against which any actually 
achieved system of science must be measured [45]. Because human finitude 
makes it impossible in principle for any actual system to attain the ideal 
maximum, reason also spurs the understanding on towards ever new dis-
coveries and reorganizations. 

Natorp claims that the directedness towards a goal is implied by “method” 
that illuminates one of two senses in which his philosophy is idealistic, 
namely that science (and the other activities of culture) are guided by 
regulative ideas or limit-concepts. Given an object of scientific cognition, the 
cognition is conceived as a process never “definitively concluded,” but rather, 
“every true concept is a new question, none is a final answer” [47]. Natorp 
comments: “Just this is the meaning of the thing in itself as X: the infinite 
task.” In other words, the thing in itself is the ideal of an object exhaustively 
determined by concepts, that is, completely known. As with Kant, however, 
our cognitive finitude means that the process of conceptual determination can 
only approach this ideal asymptotically. This pursuit of total determination, 
what Natorp calls “method,” is the pursuit of science. The hypothesis as law 
or groundwork is for Natorp the transcendental foundation for scientific 
experience, i.e., for the activity of legislating and thus rationally under-
standing the phenomena. 

Hermeneutics started to emphasize the role of language in understanding. 
In hermeneutics understanding is the inversion of a speech act, during which 

1.3. Understanding
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the thought which was the basis of the speech must become conscious. Every 
utterance has a dual relationship to the totality of the language and to the 
whole thought of its originator, then understanding also consists of the two 
moments, of understanding the utterance as derived from language, and as a 
fact in the thinker. Hermeneutics is the art of understanding particularly the 
written discourse of another person correctly. A central principle of Gadamer’s 
hermeneutics is that language conditions all understanding [48]. The phe-
nomenon of understanding shows the universality of human linguistically as a 
limitless medium which carries everything within it. Not only the “culture” 
which has been handed down to us through language, but absolutely every-
thing because everything is included in the realm of understanding. Theo-
rists of language focus on the Mind/Language connection when they consider 
understanding to be the cornerstone concept, holding, for instance, that an 
account of meaning for a given language is simply an account of what con-
stitutes the ability to understand it. Many philosophers such as Locke or Frege 
have been attracted to the view that understanding is a matter of associating 
the correct ideas or concepts with words. Others have equated understanding 
with knowing the requirements for accurate use of words and sentences. 
Wittgenstein found the key to understanding in one’s ability to discern the 
communicative goals of speakers and writers, or more directly in one’s ability 
to “pass” linguistically, without censure. Nietzsche puts forward the hypothe-
sis that scientific concepts are chains of metaphors hardened into accepted 
truths [49]. On this account, metaphor begins when a nerve stimulus is copied 
as an image, which is then imitated in sound, giving rise, when repeated, to 
the word, which becomes a concept when the word is used to designate mul-
tiple instances of singular events. Conceptual metaphors are thus lies because 
they equate unequal things, just as the chain of metaphors moves from one 
level to another. Hegel’s problem with the repetition of the “this” and the 
“now” is thus expanded to include the repetition of instances across dis-
continuous gaps between kinds and levels of things. Today’s scientists, how-

Understanding is often described by cognitive activities of our brain that is 
called cognition. In the next sections the cognitive processes such as visual 
perception, knowledge acquisition and storing, learning, reasoning, problem 
solving, or thinking will be briefly described. 

language is exceeded by the power of our thinking. If we compare the power 
of a living language with the logical language then we will find that logic is 
even poorer. Therefore it seems to be impossible to guarantee a one-to-one 
mapping of problems and a model using a mathematical or logical language. 
It can be shown that it is very often extremely difficult to appropriately
assign semantic contents to logical symbols. 

ever, found the limitation of the linguistic theories. The power of a living
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1.3.1. Cognition 

By “cognitive” we often mean all mental operations involved in the receiving, 
storing and processing of information. Cognition can be seen as an activity 
which involves different cognitive processes such as: attention, creativity, 
memory, perception, problem solving, thinking, and the use of language. The 
essence of cognition is judgment, in which a certain object is distinguished 
from other objects and is characterized by some concept or concepts. The 
nature of cognition and the relationship between the knowing mind and 
external reality have been exhaustively discussed by philosophers since 
antiquity. Cognition and its development have been subjected to many 
viewpoints and interpretations. The psychologist is concerned with the 
cognitive process as it affects learning and behavior. There are two broad 
approaches to contemporary cognitive theory. The information-processing 
approach attempts to understand human thought and reasoning processes by 
comparing the mind to a sophisticated computer system that is designed to 
acquire, process, store, and use information according to various programs. 
The second approach is based on the work of Swiss psychologist J. Piaget 
who viewed cognitive adaptation in terms of two basic processes: assimilation 
and accommodation. Assimilation is the process whereby an individual 
interprets reality in terms of his own internal model of the world based on 
previous experience; whereas, accommodation is the process of changing that 
model by developing the mechanisms to adjust to reality. Piaget believed that 
representational thought does not originate in a social language but rather in 
unique symbols that serve as a foundation for a later, acquired language. 

Arnhaim extended the meaning of the term “cognitive” and “cognition” to 
include perception. The general cognitive problem is that the perceived object 
presents itself in the context and is modulated by that context. According to 
Arnheim cognitive process which produces the so-called constancies is of a 
very high order of intelligence since it must evaluate any particular entity in 
relation to an intricate context, and that this feat is performed as an integral 
part of ongoing perception. 

According to most cognitive theories, information picked up by the senses 

1.3. Understanding

activities are called information processes. The cognitive processes are the 

science. Cognition is the process involved in knowing, or the act of knowing, 

is analyzed, stored, recoded, and subsequently used in various ways; these

subject of the many research areas such as cognitive psychology or cognitive 

includes every mental process that can be described as an experience of 
which in its completeness includes perception and judgment. Cognition

knowing as distinguished from an experience of feeling or of willing.  
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Visual perception was often though as the “introduction” to understanding of 
the real-world phenomena. Visual perception was the subject of study from 
ancient times. One school of thought, called atomism, started with Aristotle. 
The atomistic view assumed a basic vocabulary of elementary sensations 
from which our perceptions are made. Attneave’s work [50] that investigates 
the significance of corners for perception, initiated further research on the 
topic of curve partitioning, and led to a vocabulary-based scheme made up of 
primitive shape descriptors called “codons” for describing two-dimensional 
plane curves [51]. The concept of a basic vocabulary was the subject of many 
controversies and Locke, in the theory of psychophysical dualism, tried to 
point out that perception is made up of sensations (input) and reflections. 
Wittgenstein in his work underlined the role of knowledge, which a particular 
context transforms and determines sensations and percepts. Also, Arnheim 
and Rock [52] suggested that perception is intelligent in that it is based on 
operations similar to those that characterize thought. However, due to the 
dependence of perception on sensory information there is a difference between 
“higher” cognitive functions such as imagination or thinking. 

The three major perceptual theories, namely, inference, Gestalt and Gibson 
attempt to explain perception. The inference theory, associated with the em-
piricist view, argues that knowledge is acquired solely by sensory experience 
and association ideas. The mind at birth is a tabula rasa upon which experi-
ence records sensations. Helmholtz postulated the existence of “primary” per-
cepts. Helmholtz claims that the primary percept contains all the distortions of 
projection but judgment intervenes and corrects them. Helmholtz assumed 
that these corrections are based mainly on knowledge previously acquired. 
Both Berkeley and Helmholtz later argued that we learn to interpret percepts 
through a process of association. Helmholtz described the process as one of 
unconscious inferences, such that sensations of the senses are tokens for our 
consciousness, it being left to our intelligence to learn how to comprehend 
their meaning. 

The Gestalt view originated with Descartes and Kant for whom the mind 
was far from being a tabula rasa (see e.g., [53], [54]). Kant argues that “the 
mind imposes its own internal conception of space and time upon the sensory 
information it receives.” Gestalt theory refers to the laws of association: 

1.3.2. Visual Perception 

is built up, including perceiving, recognizing, conceiving, and reasoning. 
It includes, in short, all processes of consciousness by which knowledge
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items will become connected when they have frequently appeared together; 
or when they resemble each other. These laws assume that relations connect 
piece by piece and that these pieces remain unchanged by being tied together. 
The simplest among the rules that govern these relations is the rule of similar-
ity: things that resemble each other are tied together in vision. Homogeneity 
is the simplest product of perceptual relation. When a sprinkling of items is 
seen on a sufficiently different background and sufficiently distant from the 
next sprinkling it will be seen as a unit. Similarity of location provides the 
bond. The Gestaltist of the twentieth century believed in holistic perceptual 
organization preordained by “given laws that govern unit formation and the 
emergence of a figure on a background.” Visual form is the most important 
property of a configuration. As opposed to the Gestalt school, Hebb argues 
that a visual form is not perceived as a whole but consists of parts [55]. The 
organization and mutual spatial relations of parts must be learned for success-
ful recognition. This learning aspect of perception is the central point in 
Hebb’s theory. However, as suggested in [56] recognition is not based on a 
single instantaneous impression. We look at objects in question and explore 
them with our eyes until we gather enough information to identify them. 

The Gibson theory [57] that is characterized by the stimulus (sensed data) 
view claims that sensory input is enough to explain our perceptions. The the-
ory seeks to associate percepts with physical stimuli. The first principle of his 
theory is that space is not a geometric or abstract entity, but a real visual one 
characterized by the forms that are in it. Gibson’s theory is centered on per-
ceiving real three-dimensional objects, not their two-dimensional projections. 
Gibson points out that the Gestalt school has been occupied with the study of 
two-dimensional projections of the three-dimensional world and that its 
dynamism is no more than the ambiguity of the interpretation of projected 
images. Marr [14] made significant contributions to the study of the human 
visual perception system and in his paradigm the focus of research was 
shifted from applications to topics corresponding to modules of the human 
visual system. Marr developed a primal sketch paradigm for early processing 
of visual information. 

Perception points to a different notion of abstraction, a much more sophisti-
cated cognitive operation. The concept is obtained based on the abstraction 
and generalization. According to Aristotle abstraction must be complemented 
with definition which is the determination of a concept by deriving it deduc-
tively from the higher genus and pinpointing it through its distinguishing 
attribute (differentia). Abstraction removes the more particular attributes of 
the more specific instances and arrives at the higher concepts. Higher con-
cepts are poorer in content but broader in range. Aristotle not only estab-
lished the universal as the indispensable condition of the individual thing’s 
existence and as the very character of the perceivable object. He rejected the 

1.3. Understanding
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arbitrary choice of the attributes that can serve as the basis of generalization. 
The qualities an object shared with others of its kind were not an incidental 
similarity but the very essence of the object. What was general in an individ-
ual was the form impressed upon it by its genus. An object existed only to the 
extent of its essence since the being of the object was nothing but what had 
been impressed upon the amorphous raw material by its form – giving genus. 
The object’s accidental properties were mere impurities, the inevitable contri-

Shared accidentals cannot serve as the basis for a genus. 
Perception can abstract objects from their context only because it grasps 

shape as organized structure, rather than recording it as a mosaic of elements. 
In more than one way, perceptual abstraction can differ from the kind des-
cribed in traditional logic. Typically, it is not a matter of extracting common 
properties from a number of particular instances. Perception points to a dif-
ferent notion of abstraction, a much more sophisticated cognitive operation. 
Perception (understanding) of shape is always to perform an abstraction be-
cause seeing consists in the grasping of structural features rather than in the 
indiscriminate recording of detail. For example, assume that subject has 
learned to choose a circle rather than another figure. Understanding assumes 
that the subject transfers the result of learning to an ellipse. By doing this he 
shows himself capable of abstracting the features which rounded shapes have 
in common from those in which they differ. This requires the twofold ability 
to discover the crucial common qualities and to disallow the irrelevant ones. 
Understanding of the object requires abstractions of general relationships that 
possess the differentiating characters. 

1.3.3. Visual Intelligence 

Understanding requires certain abilities of subject to perform complex mental 
transformations. An ability of grasping of structural features by organizing 
spontaneously stimulus material, according to the simplest overall pattern 
adaptable to it is called visual intelligence. Arnheim claim that in perception 

finding a basic similarity of character in the items that are compared and 
employing abstraction when dealing with visual pattern. The ability to solve 
the intelligence test is characteristic of the thinking process. 

it can only be done by recognizing the common essence of the specimens. 
bution of the raw material. When a perceptual generalization is to be made,

we can trace the source of the intelligent behavior. A capacity essential to per- 
ception and intelligence is to be capable of the spontaneous grasp of pattern.
Analogy problems are often used in intelligence tests because the cognitive
operations displayed in visual perception when a person discovers ana-
logies among patterns are intelligent behavior. Analogies are discovered by 
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The possibility of building of intelligent machines became reality in the 
time when the first computer was built. Artificial intelligence (AI) is one of 
the areas of research that investigates problems connected with intelligence. 
The performance of designed intelligent system is compared to performance 
of the human being. The question that is often given is: “What is the basic dif-
ference between today’s computer and an intelligent being?” especially in the 
context of visual problems. It is that the computer can be made to see but not 
to perceive. The existing visual systems that are based on the rule-based AI 
approach such as Acronym [58] are able to perform the very specific tasks. 
The agent-based technology is offering the new possibilities to built intelli-
gent systems. The agent paradigm appears to be mutation of the object-
oriented approach. An agent software abstraction intends to be more than a 
passive object with memory and behavior and can be seen as a kind of active 
object, autonomous, social and able to learn [59], [60]. Having control over 
its own behavior is the main issue distinguishing agents over objects. An ob-
ject can invoke public accessible methods of any object. Once the method is 
invoked, corresponding actions are performed [61], [62]. In this sense, objects 
are not autonomous because they are totally dependent on each other for the 
execution of their actions. Autonomy is often praised as one of the most ad-
vantageous features of agent technology. Autonomy is supported both by the 
agent own experience and by the built-in knowledge used when constructing 
the agent for the particular environment in which it operates. Therefore, if 
agent actions are based completely on built-in knowledge, such that it needs 
to pay no attention to its precepts, then we say that the agent lacks autonomy. 

1.3.4. Knowledge 

Understanding requires knowledge. The concept is a key element of know-
ledge that is stored in our brain. The concept was often viewed in relation to 
the universal terms. In the Middle Ages the problem of universal terms or 
class names was the topic of the many tractates [41]. These universal terms 
were thought of as a hierarchical structure of the class names. Also important 
problem: the relation between concept and object it represents, was investi-
gated by many philosophers. For example, for Kant [45] concepts when they 
relate to objects do so by means of feature which several things may have in 
common. Having a concept does not imply a relation to an object. Once an 
object is given, it can be thought about, but what allows it to be given in the 
first place is its relation to intuition. According to Kant intuitions are those 
representations by means of which objects are given to us whereas concepts 
are those representations by means of which we think about objects. The 

1.3. Understanding
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German for intuition Anschauung, means “looking at” (without any connota-
tions of special insight). The distinction between intuition and concept thus 
corresponds to the distinction between the particular and general. An intuition 
is a representation of one particular, individual thing, “a single object.” A 
concept is inherently general: necessarily a concept can apply to more than 
one particular, since to apply a concept to an object is to say that it belongs to 
a kind of which there are or could be other instances. 

Understanding of the visual object or phenomena is different from under-
standing a general concept, or abstract concepts such as mathematical objects. 
The understanding of the visual object can be called the visual understanding. 
In visual understanding visual concept and mental images play a key role. 
The problem of the visual concept is related to the problems of visual images 

thought is unlikely to be a complete, colorful, and faithful replica of some 
visible scene. For example, Berkeley insisted that generic mental images were 
inconceivable. There is, however, evidence that an artist makes a drawing of 
something he knows from memory and these things are called mental images. 
Mental images so-called eidetic images seem to be used as a target for active 
perception and they can serve as material for thought. The visual understand-
ing needs to refer to the certain kind of mental images. There are problems in 
the relation between concept and mental image. In Plato’s doctrine a relation 
between prototype and image was the “static coexistence” of the transcenden-
tal ideas and sensory appearance. Aristotle claimed that perception is a faculty 
in which we always perceive, in the particulars, kinds of thing general quali-
ties rather than uniqueness. According to Kant, noumena are essentially 
unknowable, yet must be posited to account for phenomena, or things as 
they appear to be. By contrast with phenomena, the objects of experience, 
noumena are things-in-themselves, unconditioned by the categories of under-
standing. The development of the computer graphics shows how images can 
be “perceived,” created, stored and manipulated to obtain required effect. The 
real-world images are generated by application of the mathematical model of 
the physical processes. The knowledge of the optical laws transformed into 
the computer program makes it possible to model the different physical phe-
nomena that produce very realistic images. There is a belief that the appear-
ance of objects in images may be understood by understanding the physics of 
objects and the imaging process. However, it is unlikely to explain the exis-
tence of the mental images by the computer graphic model. 

There is a conversion from the one sensory data into another. For example, 
when we describe sensory events we convert from sensory representation to 
verbal representation and when we speak we convert from verbal representa-
tion to vocalization representation. Images evoked by words such as hat or 

and their role in the thinking process. The kind of  “mental image” needed for 
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flag can be reasonably concrete, whereas the solution of theoretical problems 
requires highly abstract configurations, represented by topological and often 
geometrical figures in mental space. 

The psychological researchers treat the problem of role of knowledge in 
understanding process as the problem of knowledge representation. In psy-
chology the term “knowledge representation” has a different meaning for 
cognitivists and behaviorists. Behaviorists reject the scientific validity of refer-
ring to hypothetical internal representations, whereas cognitivists stress 
the need to use representational states in the explanation of psychological 
behavior. The observation of patients with a damage of the brain allows to 
obtain a knowledge about mental processes and a way of knowledge repre-
sentation and storing in the brain [63]. One of the conclusions from this re-
search is that semantic information is multiply distributed and represented in 
the brain and is linked to the input modalities in order to create knowledge of 
the world. It seems to be more appropriate to use the neural networks as a 
model of knowledge representation in the brain. For example, associative 
memories respond by retrieving exactly one of the previously stored patterns, 
even though the stimulus or cue might be partly distorted or missing in part. 
In contrast with the mode of address-addressing, associative memories are 
content-addressable. The words in the memory are accessed based on the key 
vector and the entire mapping is distributed in the associative network [64]. 

The machine to be able to understand and think needs to have some 
mechanism that makes it possible to utilize knowledge during thinking pro-
cess. In order to solve complex problems one needs both an appropriate know-
ledge representation and some mechanisms for manipulating that knowledge. 
Existing knowledge-based systems apply the different methods of knowledge 
representation. The knowledge representation is some chosen formalism for 
“things” we want to represent. There are two main important dimensions 
along which they can be characterized. At one extreme are purely syntactic 
systems, in which no concern is given to meaning of the knowledge. Such 
systems have simple, uniform rules for manipulating the representation. At 
the other extreme are purely semantic systems, in which there is no unified 
form.

We can distinguish structures in which knowledge can be represented: pro-
duction rules, semantic nets, frames, conceptual dependency and scripts. The 
production rules belong to syntactic systems because they usually use only 
syntactic information to decide which rule to fire. Semantic nets are designed 
to capture semantic relationship among entities, and they are employed with a 
set of inference rules. Semantic networks offer a convenient mechanism to 
describe semantics, syntax and pragmatics in the study of language [65]. The 
use of network structures is not new in knowledge representation. There are 
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two major types of networks that deal with imprecise information and thus 



20      1. Thinking, Visual Thinking, and Shape Understanding 

perform reasoning under uncertainty: Bayesian [66] and Markov [67]. Frame 
systems are typically more highly structured than are semantic nets, and they 
contain a large set of specialized inference rules. Conceptual dependence rep-
resentation can be thought of as instances of semantic nets but having a more 
powerful inference mechanisms that exploit specific knowledge about what 
they contain [68]. Script (very similar to frames) in which slots are chosen to 
represent the information is useful during reasoning about a given situation. 

One of the methods of knowledge representation that refers to the thinking 
process is representation that is based on the concept of frame. A frame is 
simply a data structure that consists of expectation for a given situation. A 
frame can consist of objects and facts about a situation, or procedures on what 
to do when a given situation is encountered. To each frame several kinds of 
information are attached. Some of this information is about how to use the 
frame, some is about what one expects to happen next, and some is about 
what to do if these expectations are not confirmed. Collection of frames is 
linked together into frame system. The frame-systems are linked, in turn, by 
an information retrieval network. A matching process tries to assign values to 
each frame’s terminals which are partly controlled by information associated 
with the frame and partly by knowledge about the system’s current goals. One 
of the advantages of this global model is that memory is not separate from the 
rest of thinking. The information-retrieval based on frame system explains 
differences between ways of thinking of the person, by assuming mechanism 
of quickly locating highly appropriate frames for “clever” persons. It indi-
cates that good retrieval mechanism can be based only in part upon basic 
innate mechanism. It must also depend on (learned) knowledge about the 
structure of one’s own knowledge. The short term memory is connected with 
sensory buffer and has also the suitable frames. 

cription of knowledge representation and its processing. The term “sub-
symbolic computation” refers to the fact that, in distributed representations, a 
node is not associated with one particular symbol, being able to take part in 
the distributed representation of the various concepts. One of the most impor-
tant features of neural networks is that they perform a large number of 
numerical operations in parallel. Almost all data stored in the network are 
involved in recall computation at any given time. The distributed neural pro-
cessing is typically performed within the entire array composed of neurons 
and weights. Most of classical information processing models utilize sym-
bolic sequential processing mechanism. In self-organization NN classes of 
objects are formulated on the basis of a measure of object similarity [69]. 
Most of measures of similarity are context free, that is, the similarity between 
any two objects A and B depends on the properties of the objects. In modified 
version of the BCM neuron, sets of these neurons, which are organized in 

The neural networks approach uses “sub-symbolic computation” for des-
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lateral inhibition architecture, forces different neurons in the network to find 

order to obtain knew description. However, neural systems seem to operate in 

extract semantic relationship that exists within the set of language data-
collection of words. The relationship can be reflected by their relative dis-
tances on the map containing words positioned according to their meaning or 
context. This indicates that the trained network can possibly detect the logical 
similarity between words from the statistics of the contexts in which they are 
used [64]. 

In more complex systems, for task such complex like an understanding of 
the editorial text or machine translation, mixture of the different ways of 
knowledge representation and manipulation is utilized. For instance, in under-
standing editorial text system abstract knowledge is organized by memory 
structures called Argument Units, which represent patterns of support and 
relationships among beliefs. When combined with domain specific know-
ledge, it can be used to argue about issues involving plans, goals, and beliefs 
in particular domain [70]. The hybrid method which is based on the know-
ledge graph and in which abstractions of the information and classification 
part of examples are explicitly stored is used for deriving production rules and 
generalization. These examples taken from field of AI can show how repre-
sentation of knowledge and its manipulation influence a way of perceiving 
some of the processes which has similar function in the brain. 

AI approach for knowledge representation gives only little attention to 
“pictorial knowledge” or tried to simplify pictorial information by use of 
“pictorial attributes.” The psychology of language describes how semantic 
representations of utterances are elaborated. On a certain level of analysis, 
theories of meaning need not account for the processes which enable meaning 
to be expressed in mental representation derived from sensory modalities. 
Accounting for meaning calls for the coordination of abstract symbols 
through application of appropriate rules. Images can reflect even divergent 
semantic content but are identifiable with meaning of the sentence. Coding of 
a picture and coding of words have similar functional properties. The differ-
ences that subsist between the processing of picture and symbols are not as-
sumed to reflect the existence of two distinct representational systems, each 
containing qualitatively different types of information. Differences between 
pictures and symbols stem from the different representation of image and 
symbol in memory. Pictorial information could be represented in memory in 
both modal and prepositional form [71]. 

1.3. Understanding

a more “holistic way” than inferential ones: they learn to associate entire input
patterns with the corresponding output decisions. For example, the semantic
maps are implemented based on the self-organizing feature map. The maps 

approach allowing, based on similarity of  “concept,” to reason by “analogy” in 
different features based on similarity relation. It is similar to classical 



22      1. Thinking, Visual Thinking, and Shape Understanding 

the visual aspect of the world given by the objects of the given shape. In our 
approach shape as the main attribute of the visual object is represented by the 
shape categories given as the shape classes. The visual structure of the world 
is linked with the categorical structure of the meaning of the world object 
[72–97].

1.3.5. Learning 

As it was shown in Sect. 1.3.4 understanding requires knowledge that is 
learned through individual experience of the perceived world. The discrimina-
tion learning, where a subject learns to respond to a limited range of sensory 
characteristics is one of the different types of learning that is important part of 

that are the most relevant to understanding process: concept formation, the 
process of sorting experiences according to related feature, problem solving, 
and perceptual learning (the effects of past experience on sensory percep-
tions). Associative learning is based on the ability to connect a previously ir-
relevant stimulus with a particular response. It occurs through the process of 
conditioning, where reinforcement establishes new behavior patterns. Essence 
of association lies in the observation that a subject perceives something in the 
environment (sensations) that result in an awareness of idea of what is per-
ceived. Associations are based on similarity, frequency, salience, attractive-
ness and closeness of objects or events in space or time. Gestalt psychologists 
believe that important learning processes involve a restructuring of relation-
ships in the environment, not simply associating them. Psycholinguists indi-
cate that some of the aspect of language learning such as a native “grammar” 
can be inherited genetically. The contemporary theories of learning indicate 
on the role of motivation in learning process. Arnheim introduced the concept 
of perceptual learning that is governed by “stimulus equivalence” or “stimulus 
generalization.” Perception in the broader sense must include mental imagery 
and its relation to direct sensory observation. Influence of memory on the 
perception needs to be taken into account in explanation of the visual percep-
tion. A perceptual act is never isolated and is modified by the learned or 
memorized facts that were perceived in the past. In order to transfer the visual 
perceptual material into the categories that are learned in the past, there is a 
need for visual concept that can combine the visual and nonvisual data. Visual 
knowledge acquired in the past helps not only in detecting the nature of an 
object but it also assigns the present object a place in the system of things 
constituting our total view of the world. The visual knowledge that is stored 
in memory needs to supply the working hypotheses, called expectation, about 

The representation of the visual information needs to some extent relay on 

understanding process. Learning includes the following mental processes 
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the possible perceptual object. Visual knowledge and correct expectation 
facilitate perception whereas inappropriate visual concepts will delay or 
impede it. For example, a Japanese reads without difficulty ideographs 
printed so small that a Westerner needs a magnifying glass to discern them, 
not because the Japanese have more acute eyesight but because they hold the 
kanji characters in visual storage. The percept must define the object clearly 
and must resemble sufficiently the memory image of the appropriate cate-
gory. Often, however, there is enough ambiguity in the stimulus to let the 
observer find different shape patterns in it as he searches for the best fitting 
model among the ones emerging from the memory storage. 

Scientists are looking for universal principles governed all learning pro-
cesses that could explain the mechanism of learning process. Rigorous, “ob-
jective” methodology was attempted so that the behavior of all organisms 

no single theory of learning may be appropriate. The last attempts to integrate 
all knowledge of psychology into a single, grand theory occurred in the 

The system that understands an object by utilizing the learned knowledge 
(during the thinking process) needs to have an ability to learn new know-
ledge. Existing systems apply the different machine learning methods in 

The different learning strategies and methods as the decision tree ID3 [98], 
CART [99], STAR methodologies [100], explanation-based learning [101], or 
connectionist model [102] were proposed. However, there is no method that 
can be used to learn the visual knowledge. 

1.3. Understanding

could be comprehended under a unified system of laws modeled on those posi-
ted in the physical sciences. However, today most psychologists believe that 

theory of learning. Guthrie reasoned that responses (not perceptions or mental
states) were the ultimate and most important building blocks of learning.
Hull argued that “habit strength,” a result of practiced, stimulus-response 
(S-R) activities promoted by reward, was the essential aspect of learning,
which he viewed as a gradual process. Tolman contributed the insight that

learning of new knowledge. Machine learning is an area of research which  
investigates the possibility of automated knowledge acquisition by machine. 

Machine Learning task is to construct complete, autonomous learning 
systems that start with general inference rules and learning techniques, 
and gradually acquire complex skills and knowledge through continuous 
interaction with an information-rich external environment. There are many
methods which are used in symbolic machine learning: symbolic empirical
learning, explanation-based learning, case-based reasoning (CBR), and
integrated learning methods [103], [104]. In symbolic machine learning 

learning is a process that is inferred from behavior. The psychological
theories of learning become a basis for the new automatic method of the
knowledge acquisition, so-called machine learning. 

1930s. Three thinkers Guthrie, Hull and Tolman had a big impact on the
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discovery), learning by deduction, and learning by analogy. For example, in-
ductive learning, is an inductive inference from facts provided by a teacher or 
the environment. The process of inductive learning can be viewed as a search 
for plausible general descriptions (inductive assertions) that explain the given 
input data and are useful for predicting new data. These assertions form a set 
of descriptions partially ordered by the relation of relative generality. The 
minimal elements of this set are the most specific descriptions of the input 
data in the given language, and the maximal elements are the most general 
descriptions of these data. The elements of this set can be generated by start-
ing with the most specific descriptions and repeatedly applying rules of gen-

learning is conceptual learning from examples (concept acquisition), whose 
task is to induce general descriptions of concepts from specific instances of 
these concepts. An important variant of concept learning from examples is the 
incremental concept refinement, where the input information includes, in 
addition to the training examples, previously learned hypotheses, or human-
provided initial hypotheses that may be partially incorrect or incomplete. In 
concept acquisition, the observational statements are characterizations of 
some objects preclassified by a teacher into one or more classes. The induced 
hypothesis can be viewed as a concept recognition rule, such that if an object 
satisfies this rule, then it represents the given concept. 

Neural networks (connectionist model) are often used in process of know-
ledge acquisition. One of the most important features of neural networks is that 
they perform a large number of numerical operations in parallel. These opera-
tions involve simple arithmetic operations as well as nonlinear mapping and 
computation of derivatives. The distributed neural processing is typically per-
formed within the entire array composed of neurons and weights [64]. For 
example, associative memories respond by retrieving exactly one of the previ-
ously stored patterns, even though the stimulus or cue might be partly distorted 
or missing in part. In contrast with the mode of addressing, associative memo-
ries are content-addressable. The words in the memory are accessed based on 
the key vector. The entire mapping is distributed in the associative network. 

1.3.6. Reasoning 

Understanding is to pursue new knowledge about the perceptual data based 
on the reasoning. The reasoning is performed as a part of the thinking 
process. Reasoning is a process of directed thinking to pursuit a specific goal 
in order to find a solution to a problem. Reasoning is sometimes narrowly 

the following learning methods can be distinguished: learning by induc-
tion (learning from examples, learning from observation, learning by 

eralization to produce more general descriptions. One of the types of inductive 
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contrasted to feeling, sensation, and desire and is treated as a process that fol-
lows the rules of logic. In this approach reasoning is the process building 
formal arguments from fixed premises in order to reach a conclusion. In less 
formal, psychological terms, reasoning is a loose combination of mental pro-
cesses aimed at gaining a more coherent view of some issues in particular or 
of the world in general. Feelings and desires are not excluded from such 
efforts. The logical structures that underlie such reasoning processes can be 
abandoned if necessary. Such reasoning is also called cognition, concept for-
mation and thinking. In logic the reasoning is used to derive of conclusions 
from given information or premises. Deduction draws out the conclusions 
implicit in their premises by analyzing valid argument forms. Induction argues 
from many instances to a general statement. Probability passes from frequen-
cies within a known domain to conclusions of stated likelihood. Statistical 
reasoning concludes that, on the average, a certain percentage of a set of enti-
ties will satisfy the stated conditions. 

area of research, which deals with process of reasoning, is AI. AI has shown 
great promise in application of the different forms of reasoning in the area of 
expert systems ([105]) or knowledge-based expert programs (see e.g., [106]) 
which, although powerful when answering questions within a specific do-
main, are nevertheless incapable of any type of adaptable, or truly intelligent, 

employed. Logic reasoning forward or backward is often used in the logic 
programming (see e.g., [110–112]). One of the logic programming languages 
such as PROLOG applies the goal-directed reasoning (backward) in order to 
manipulate symbols (actually words) and find the solution. Another form of 
reasoning is statistical reasoning based on Bayesian statistics implemented in 
expert systems such as MYCIN [113] or Bayesian networks [114]. The dis-

called agents) become one of the most popular (see e.g., [115]). 
Reasoning is often modeled as a process that draws conclusions by chain-

ing together generalized rules, starting from scratch. In case-based reasoning 
(CBR) the primary knowledge source is not generalized rules but a memory 
of stored cases recording specific prior episodes. In CBR, new solutions are 
generated not by chaining, but by retrieving the most relevant cases from 
memory and adapting them to fit the new situation. CBR is based on remem-

tasks, ranging from children’s simple reasoning to expert decision making. 
Much of the original inspiration for the CBR approach comes from the role of 
reminding in humans reasoning. The quite extensive description of the differ-
ent techniques of CBR can be found in [116]. 

1.3. Understanding

soning, statistical reasoning or fuzzy reasoning (see e.g., [107–109]) were

Existing intelligent systems utilize the different forms of reasoning. One 

reasoning. In the field of AI many forms of reasoning such as logic rea-

tributed reasoning systems that composed of a set of separate modules (often 

bering. Reminding facilitates human reasoning in many contexts and for many 
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1.3.7. Recognition 

One of the simplest forms of understanding is recognition of the known ob-
jects or phenomenon. A feature of an object or animal such as the red belly of 
a stickleback which elicits a response from an animal, is called a key or sign 
stimulus, and it greatly simplifies the problem of recognition. As long as red 
objects and fish with red markings are rare in the stickleback’s environment, 
it can use the key stimulus to recognize rivals and does not need to use infor-
mation about another fish’s detailed structure and coloration. 

Recognition presupposes the presence of something to be recognized. The 
most useful and common interaction between perception and memory takes 
place in the recognition of things seen. Visual recognition considers the issue 

model-based image interpretation whose primary domain of application has 
been the recognition of airplanes in aerial views of airports. 

1.4. Thinking 

Thinking accompanies nearly all mental operations. There is no basic differ-
ence between what happens when a person looks at the world directly and 
when person sits with his eyes closed and “thinks.” Thinking can deal with di-
rectly perceived objects, which often are handled physically. When no objects 
are present, they are replaced by some sort of imagery. Thinking accompanies 
all processes such as reasoning and problem solving. Thinking begins with 
the task of modifying a perceptual structure of the perceived data in order to 
interpret it or enable it fit the requirements of the solution to a given problem. 
Reasoning about an object starts with the way the object is perceived. An in-
adequate percept may cause an error in the reasoning process and in the final 
result of interpretation and understanding. To think of something is not to 
grasp it immediately in the way that perception grasps its object. Our thoughts 

such as the concept. 
The word thinking covers several distinct psychological activities. It is 

sometimes a synonym for “tending to believe,” (“I think that it will rain, but I 

identification, while the left hemisphere system (LHS) manages semantic 
system (RHS) handles perceptual organization and facilitates rapid visual 
of addressing and searching through the memory. The right hemisphere 

categorization. Perceptual categorization is matching and identifying of a
physical object. 

In technical recognition, image features and a subset of the most likely 
models is selected. Acronym [58] is an example of this approach. It is a 

can grasp object only by transforming it into one of the representational form 
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am not sure.”). Thinking was often understood very narrowly as a sort of rea-
soning. For example, when Aristotle talked about thinking he referred to the 
syllogism, that is, to the art of making a statement on a particular case by con-
sulting a higher generality. The higher generality refers to generality of 
thought that was concerned with whole class of general or potentially general 
entities such as forms, universals, essences and sensible species. 

In the psychological sense thinking is intellectual exertion aimed at finding 
an answer to a question or a means of achieving a desirable practical goal. 

player. However, there is no agreement among psychologists concerning the 
definition or characterization of thinking. Some psychologist schools claim 
that thinking is a matter of modifying perceptual representations of the world 
(cognitive structures), according to others view thinking is considered as in-
ternal problem-solving behavior. 

Thinking and thought were the topic of philosophical investigations. For 
example, Locke held that thought and idea is the same things. According to 
Locke the idea is “the representation of something in the mind” and to frame 
such a representation of an object is to be engaged in the thinking process. He 
claimed that ideas are not Real Beings but only mode of thinking. The insis-
tence that ideas are acts of thought, that to have an idea and to be conscious 
are the same, was a position taken by Arnaud in his dispute with Mela-
branche. According to Berkeley [43] thought and their contents possesses two 
strictly distinct but closely connected properties. The first one is called inten-
tionality – thought and their contents are about things other than themselves. 
The second one is called generality – near all our concepts express feature 
which an indefinite number of things might posses. Locke holds that discur-
sive thinking is mentally manipulating “abstract ideas” which he describes as 
attenuated images. Latest research support hypothesis that the thinking pro-
cess is based on transformation of the “mental data” in the form of concepts. 
Perception supplies perceptual material that can be used for thought because 
perception gathers types of things (concepts). Unless the perceptual material 
in the form of concepts remains present in the mind, the mind has nothing to 
think with. 

For Natorp, as for Kant, thinking is an activity which refers to the technical 
term “function.” Term “function” used by Natorp seems to mean something 

of thinking means laying down a hypothesis, where the hypothesis is always a 
concept, a generality that imposes a unity upon a phenomenal manifold. For 

to those usually attributed to the inventor, the mathematician, or the chess 
The psychology of thought processes concerns itself with activities similar

like subjective, psychic act, and as such is excluded from epistemological con-
sideration. “Function” signifies the spontaneity of thinking, not in psycho-
logical terms, but as the rational act of hypothetical legislation. For Natorp the
standard sense of “function” is an act or “operation” of thinking. “Operation” 
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the neo-Kantians “thinking” is restricted to “scientific thinking.” According to 
Natorp science is a movement of method via hypotheses regulated by an ideal 
of complete objective determination. Natorp’s logic is telling how thinking 
lawfully generates or synthesizes the unities that are its objects of knowledge.

The term thinking was often used to denote the different brain processes. 

brain. This claim is based on assumption that everything in the mind must 
have its counterpart in the nervous system. Under this assumption the brain 
contains the bodily equivalent of all concepts available to thinking as well 
as of all operations to which concept can be subjected. Similarly the 

proposed by Hilary Putnam (1961) and developed by Jerry Fodor. CTM is 

that CTM tried to explain. This theory is based on the computer metaphor 
[117], [14]. Researchers sought to endow machines with human-level com-
petences in reasoning, language, problem-solving, and perception. According 
to CTM the mind can be seen as the popwerfull computer due to successes of 
computational models of reasoning, language and perception that lent 
credibility to the idea that such processes might be accomplished through 
computation in the mind as well. 

The linguistic approach has an impact on the modern theory of mind such 

thinking occurs in an internal system of representation. Beliefs and desires 
and other propositional attitudes enter into mental processes as internal 
symbols. Modern versions of RTM assume that thought is not grounded in 
mental images. These philosophers maintains that the internal system of 
representation has a language-like syntax and a compositional semantics. 
According to this view, much of thought is grounded in word-like mental 
representations. This view is often referred to as the Language of Thought 
Hypothesis (LOTH) [118]. 

The latest result of philosophical investigations concerning thinking is the 
LOTH, which postulates that thinking take place in a mental language [118]. 
This language consists of a system of representations that is physically real-
ized in the brain of thinkers and has a combinatorial syntax (and semantics) 
such that operations on representations are causally sensitive only to the 
syntactic properties of representations. According to LOTH, thought is, 
roughly, the tokening of a representation that has a syntactic (constituent) 
structure with an appropriate semantics. Thinking consists in syntactic 
operations defined over such representations. Most of the arguments for 
LOTH derive their strength from their ability to explain certain empirical 
phenomena like productivity and systematicity of thought and thinking. 

that can be explained by using computational model of our brain. CTM was 
Computational Theory of Mind (CTM) treat brain processes as processes

as the representational theory of the mind (RTM). According to the RTM, 

Some scientists claim that thinking is purely physiological occupation of the 

one of the most important theories of mind and thinking is one of the problems 
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LOTH is an hypothesis about the nature of thinking with propositional 
content and is not applicable to other aspects of mental life such as sensory 
processes, mental images, visual and auditory imagination, sensory memory, 

According to Arnheim vision is the primary medium of thought. We can 
not think using category of smells and tests. In vision and hearing, shapes, 
colors, movements, sounds, are susceptible to definite and highly complex 
organization in space and time. Arnheim included the process of thinking in 

roots in perception. Arnheim claims that thinking is not the privilege of 
mental processes above and beyond perception but the essential ingredients of 
perception itself. He is referring to such operations as active exploration, 
selection, grasping of essentials, simplification, abstraction, analysis and syn-

The important part of thinking process is object of thoughts. Traditional 
Aristotelian and scholastic philosophy had distinguished between two kinds 
of objects of mental life. The first forms or species are universals and appro-
priate for intellect and thoughts. The second phantasms are objects for sen-
sory perception and are particular sensory images. In the past concept was 
often regarded as an idea, object of mental life. For example,Lock often used 
the term idea for description of concept. Locke’s idea means whatsoever the 
mind perceives in itself, or the immediate object of perception, thought or 
understanding [40]. Locke defines the term “idea” as “whatsoever is the object 
of understanding when a man thinks” and includes sensations and sensory 
images among ideas. Sensory images become paradigm ideas and are treated 
as sensory or quasi-sensory images. Locke tried to solve the problem of 
generality of “images” by invoking abstract general idea treated as abstract 
general images, e.g., an idea of triangle is an image which is, at the same 
time, every specific kind of triangle-isosceles, scalene, and none in particular. 
Berkeley [43] shows that there is no sense in the idea of such an image. His 
alternative theory is that a particular image becomes general by representing 
or standing for some class of images. From the point of view of the subject, 
this happens when he is selecting of the relevant feature of the image. When 
someone is imaging an equilateral triangle, he takes it as representing all tri-
angles by assuming that it has three sides, and ignoring their relative propor-
tions, its size, angle, color. Berkeley argues that we cannot form the idea of 
something unthought-of, for once we form such an idea its object is, ipso 
facto, thought of. It requires distinction between the thought and its object. 
The thought is in the mind, the object is not. This distinction is the intention-
ality of thought. From intentionality of thought we conclude: if everything 

perceptual pattern-recognition capacities, dreaming, or hallucinating. 

the process of visual perception and claims that thought process has its 

which the minds of both man and animal treat cognitive material at any level. 

thesis, completion, correction, comparison, problem solving, as well as com-
bining, separating, or putting in the context. These operations are the manner in 
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thinkable can be realized in an image as a feature of it, then the concept of 
mind-independent matter, and mind-independence, should be realizable. But, 
necessarily, such things can not be properties of images, which are essentially 
mental, so we cannot have idea of them. To overcome the problem solipsism 
he does have a doctrine of representation whereby an idea can stand for 
others. This doctrine is the source of the associationism theory, which was to 
be the principle empiricist account of meaning and thought until the end of 
the nineteenth century. 

According to Kant it is not images of objects, but schemata, which lie at 
the foundation of our pure sensible concepts. No image could ever be ade-
quate to our concept of a triangle in general. For the generality of the concept 
it could never attain to, as this includes under itself all triangles, whether 
right-angled, acute-angled, etc. while the image would always be limited to a 
single part of this sphere. The schema of the triangle can exist nowhere else 
than in thought, and it indicates a rule of the synthesis of the imagination in 
regard to pure figure in space. Still less is an object of experience, or an image 
of the object, ever adequate to the empirical concept. On the contrary, the 
concept always relates immediately to the schema of the imagination, as a 
rule of the determination of our intuition, in conformity with a certain general 
concept. The concept of dog indicates the rule, according to which our imagi-
nation can delineate the figure of a four-footed animal in general. We can 
say – the image is a product of the empirical faculty of the productive imagi-
nation – while the schema of sensible concepts is a product of the pure imagi-
nation a priori. According to pure imagination a priori image first becomes 
possible, which, however, can be connected with a concept only by means of 
the schema which they indicate. On the other hand, the schema of the pure 
concept of the understanding is something that can not be reduced into any 

conformably to the rule of unity according to concepts. It is a transcendental 
product of the imagination, the product which concerns the determination of 
the internal sense, according to conditions of its form (time) in respect to all 
representations.

According to Arnheim concept is the type of things that is gathered by per-
ception. In the philosophical investigation the visual concept is not present. 
Arnheim have tried to define the visual concept in context of the visual think-
ing. For Arnheim memory is a storehouse of visual concepts, some clear-cut 
and simple, some elusive and intangible, covering the whole of the object or 
recalling only fragments. Memory images serve to identify, interpret, and 
supplement perception. Memory concepts aid this search by being no less 
flexible than percepts. Arnheim gives an example of the visual concept of the 
cube. The visual concept of the cube embraces the multiplicity of its appear-
ances, the foreshortenings, the slants, the symmetries and asymmetries, the 

image. It is nothing else than the pure synthesis expressed by the category, 
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partial concealments and the deployments, the head-on flatness and the pro-
nounced volumes. 

One of the oldest questions about concepts concerns whether there are any 
innate concepts. Empiricists maintain that there are few if any innate concepts 
and that most cognitive capacities are acquired on the basis of a few relatively 
simple cognitive mechanisms. Empiricists claim that all concepts are derived 
from sensations. According to empiricists concepts were formed from copies 
of sensory representations and assembled in accordance with a set of general-
purpose learning rules. 

Nativists, on the other hand, maintain that there may be many innate 
concepts and that the mind has a great deal of innate differentiation into 
complex domain-specific subsystems. For example, Fodor argued that all 
models of concept learning treat concept learning as hypothesis testing [118], 
and the concept has to be available to a learner prior to the learning taking 

sequently that virtually all lexical concepts must be innate – a position known 
as radical concept nativism. 

Nearly all theories concerning thought assume that concept is the object of 

can represent the world nonconceptually without possessing any concepts at 
all. According to the classical theory, a lexical concept C has definitional 
structure in that it is composed of simpler concepts that express necessary and 
sufficient conditions for falling under C. A nonclassical alternative is the 
prototype theory. According to this theory, a lexical concept C does not have 
definitional structure but has probabilistic structure in that something falls 
under C just in case it satisfies a sufficient number of properties encoded by 
C’s constituents. The view that concepts are Fregean senses identifies 

states. According to this view concepts mediate between thought and 
language, on the one hand, and referents, on the other [119]. Concepts are 
psychological entities that play a key role in the RTM. According to another 
so-called theory, theory of concepts, concepts stand in relation to one another 
in the same way as the terms of a scientific theory, and that categorization is a 
process that strongly resembles scientific theorizing [120]. It is generally 
assumed that the terms of a scientific theory are interdefined so that a 
theoretical term’s content is determined by its unique role in the theory in 
which it occurs. According to conceptual atomism lexical concepts have no 
semantic structure [121] and the content of a concept is not determined by its 
relation to other concepts but by its relation to the world. 

Concepts become the important material for thinking process. Psycho-
logical description of thought process deals with the problem of how concepts 
are formed and related in the brain. Arnheim suggested that concepts are 

place. He claims that lexical concepts lack semantic structure and con-

thought. Only few scientists such as Peacocke [119] maintain that a thinker 

concepts with abstract objects, as opposed to mental objects and mental 
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Associationist explained thought and meaning by saying that the meaning 
of a mental episode consisted in its association with other mental episodes 
which tend to occur in close proximity of it. For Berkeley the fundamental 
form by which ideas represent one another is through resemblance, not simply 
by contingent association, like cause and effect, which need possess no simi-
larity. It is way one triangle can represent all triangles. 

The term visual thinking is used to denote the thinking connected with 
processing of the visual material and concerning visual objects. Visual think-
ing resembles the problem-solving process that leads to scientific discoveries. 
Perception, as the process that involves thinking, can abstract objects from 
their context only because it grasps shape as organized structure, rather than 
recording it as a mosaic of elements. In more than one way, perceptual ab-
straction can differ from the kind described in traditional logic. Typically, it is 
not a matter of extracting common properties from a number of particular in-
stances. The one possible explanation of the visual thinking process is as-
sumption that visual thinking is realizing in some medium that are called 
“mental images.” The kind of “mental images” needed for thought is unlikely 
to be a complete, colorful, and faithful replica of some visible scene. The 
“mental images” which are the main ingredient of the visual thought have the 
different nature than the nonvisual concept. Such a different constitution of 
both concepts has a big influence on the difference in thinking process. For 
example, the analytical formula of a geometrical figure such as a circle gives 
the location of all the points of which the circle consists. It does not describe 
its particular character, its centric symmetry or its rigid curvature. However, it 

perceptual images and that thought operate by handling of these images and 

Arnheim mental images serve as the vehicle of thought. Freud raises the ques-
tion of how the important logical links of reasoning can be represented in 
images. He claims that mental image is material for thinking that is not neces-
sarily consciousness. According to Kant schema that is the basis of the pure 
sensible concept exists in thought. For example, the schema of the triangle 
can exist nowhere else than in thought, and it indicates a rule of the synthesis 
of the imagination in regard to pure figure in space. 

A distinction is sometimes made between convergent thinking – the ana-
lytic reasoning measured by intelligence tests, and divergent thinking, a 
richness of ideas and originality of thinking. Both seem necessary to creative 
performance, although in different degrees according to the task or occupa-
tion (a mathematician may exhibit more convergent than divergent thinking 
and an artist the reverse). The directed thinking is the term that denotes think-
ing that is aimed at the solution of a specific problem and fulfills the criteria 
for reasoning. The term visual thinking is used to denote the thinking con-
nected with processing of the visual material and concerning visual objects. 

these images can be regarded on the many levels of abstractness. According to 
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is precisely this grasping of the character of a given phenomenon that makes 
productive thinking possible. 

The cognitive operations connected with visual thinking are remarkably 
rich. They are represented indirectly by what is remembered and known about 
them. Visual thinking is necessarily concerned with generalities of “mental 
images.” Mental images are governed by the rules of selectivity. The thinker 
can focus on what is relevant and dismiss from visibility what is not. They 
may be quite common and indispensable to mind that thinks generic thoughts 
and needs the generality of pure shapes to think them. Anaheim claims that if 
thinking takes place in the realm of images, many of these images must be 
highly abstract since the mind operates often at high levels of abstraction. He 
claimed that a good deal of imagery may occur below the level of conscious-

persons unaccustomed to self-observation. The thinking by using abstract 
images may utilize diagrammatic representation. Eidetic images seem to be 
used as a target for active perception. Therefore, they can serve as material 
for thought but are unlikely to be a suitable instrument of thought. 

Behaviorism as a materalistic movement claims that imageless thoughts are 
the only possible form of thoughts. Watson [122] in his ideological attack on 
existence of mental imagery show haw big role in establishing “scientific” 
methodology of psychological research play a materialistic prejudices. A 
similar doctrine was maintained by the logical positivists (Vienna Circle) in 
the early twentieth century. Their principle of verification required for a 
sentence or statement to be meaningful that it have empirical consequences, 
and, on some formulations of the principle, that the meaning of a sentence is 
the empirical procedure for confirming it. Sentences that have no empirical 
consequences were deemed to be meaningless. 

The problem of thought and language was investigated by philosophers and 
linguistics. There is a problem that until now is not solved – how big role lan-
guage plays in the thought process. This problem was often formulated in the 

properties of linguistic expressions are the semantic properties of the 
representations that are related to the conceptual structure of the linguistic 

language, whereas others, such as [125] have suggested that the kind of 
thought human beings are capable of is not possible without language. It is 
claimed that if the semantic properties of natural-language expressions are 
inherited from the thoughts and concepts they express, then an analogous 
distinction may be appropriate for mental representations. Even if it is agreed 

following form: can one think in words as one can think in circles or rect-
angles or other shapes? Many philosophers claim that the semantic properties 
of linguistic expressions are inherited from the intentional mental states they 
are conventionally used to express [123], [117]. On this view, the semantic 

ness and that even if conscious, such imagery may not be noticed readily by 

forms. Martin [124], for example, claimed that thought is possible without 
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that it is possible to have concepts in the absence of language, there is a 
dispute about how the two are related. Some maintain that concepts are prior 
to and independent of natural language, and that natural language is just a 
means for conveying thought [118]. Others maintain that at least some types 
of thinking (and hence some concepts) occur in the internal system of 
representation constituting our natural language competence. According to 

conceptual system; as a result, people who speak very different languages are 
likely to conceptualize the world in correspondingly different ways. This 
linguistic relativity is the weaker doctrine that the language one speaks 
influences how one thinks. Observation of the animals indicates that language 
can only to some extent facilitate the thinking process. Animal can respond to 
categories of things, and they display an astonishing disregard of the unique 
object. By means of their perceptual concepts, animals solve problems that 
look elementary if judged by human standard. However, the animal thinking 
can cope only with directly given situation. 

1.5. Shape Understanding System 

The short introduction which was given in this chapter shows how thinking 
and in particular visual thinking is complex and difficult problem. One of the 
ways to investigate the thinking problem is to build the machine that can 

the latest time within the research in cognitive science or AI. The expert sys-
tems that were built in order to assist in solving complex problems were often 
regarded as systems that have an ability to think and to understand. MYCIN 
[113] or DENDRAL are well known examples of expert systems that pave the 
way for the new research in building sophisticated knowledge-based systems. 

new facts about complexity of the brain processes. In robotics, the aim of 
which is to build the machine that will be able to act in a similar way as 
human being, the most of research is concentrated on a problem of navigation 
in unknown environment or to build a humanoid robot. However, the human-
oid robot should not only look similar to the human shape but also it needs to 
posses the thinking capabilities to be able to exist in the human world. In 
order to build the machine with the visual thinking capability there is a need 
to find the proper representation of the visual knowledge. 

There are systems that are built in order to interpret the perceived object or 
interpret an image, however, these systems do not assume understanding of 
the perceived object or the real-world scene. These systems are built based on 

ceptualize the world in certain ways while delimiting the boundaries of his 
linguistic determinism the language a person speaks causes him to con- 

show ability to think. The problem of building thinking machines appear in 

The neural network-based systems that learn knowledge from the data supply 
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the research in the area of computer vision and image understanding. The 
term image understanding has a range of meanings, but in general, image 
understanding refers to a computational, information processing approach to 
image interpretation. The term image understanding denotes an interdiscipli-
nary research area which includes signal processing, statistical and syntactic 
pattern recognition, artificial intelligence, and psychology. Image understand-
ing refers to knowledge-based interpretations of visual scenes that transform 
pictorial inputs into commonly understood descriptions or symbols (see e.g., 

([129], [130]), but while computer vision emphasizes the computational aspects 
of visual information processing, such as measurement of three-dimensional 
shape information by visual sensors, image understanding stresses knowledge 
representation and reasoning methods for scene interpretation. Another field 
of research which stresses modeling of the human visual system, called com-
putational vision can also be treated as a field of image understanding re-
search. Computational vision is a multidisciplinary and synergetic approach 
whose main task is to explain the processes of the human visual system and 

approach where interpretation of the image in terms of the real-world scene is 
the main goal of the understanding process, the shape understanding method 
is focused on interpretation of visual objects (called phantoms) in the context 
of knowledge of object categories. In our approach presented in this book the 
shape categories in form of the visual concepts and object categories are main 
ingredients of the thinking process. Object categories refer to meaning of the 
perceived object. The detailed description of object categories will be pre-
sented in Chap. 4. 

In shape understanding method an object extracted from the image is inter-
preted in the context of knowledge of object categories that are acquired dur-
ing the learning process [95]. In this approach the image is the basic source of 
visual knowledge about an object. The image supplies also the contextual 
knowledge that is used in interpretation of the image. However, the visual 
object can be also interpreted in the context of knowledge obtained during the 
examination of another image or knowledge given in other nonvisual form 
such as text or spoken words. In the method described in this book knowledge 
about the world is represented in the form of categories of visual objects. The 
perceived object is fitted to one of the shape categories and next classified to 
one of object categories. The perceived object triggers the thinking process 
that can lead to interpretation of the object in terms of the real-world object or 
in terms of the visual signs. The contextual information and the result of in-
terpretation of the perceived object can be utilized during the thinking process 
to perform the required task or to take an appropriate action. Visual informa-
tion acquired during perception is transformed into visual concepts and is 

[126–128]). Computer vision is also used to refer to a similar research area

build artificial visual systems [131]. In contrast to image understanding 
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combined with nonvisual information during the visual reasoning and the 
thinking process. Nonvisual information can be utilized to produce the lin-
guistic description about the object. Information conveyed by language is 
compatible with information acquired during perception of the visual objects. 
The thinking process can be also driven by perception of the “inner” objects 
that are results of the imagery transformations. 

According to Arnheim the perception of shape consists in the application 
of form categories, which can be called visual concepts because of their sim-
plicity and generality. In our approach the shape categories refer to the shape 
classes (described in Chap. 2) whereas the visual concept is the set of shape 

The proposed system of shape understanding operates based on knowledge 
of image processing, decision making and search strategies as well as know-
ledge of shape description and representation distributed among the special-
ized experts  [76–82], [84], [86–97], [132–146]. The analysis is carried out by 
invoking the “expert” that performs a suitable analysis employing a specific 
method. The expert performs the task given in a form of requirements by an-
other expert based on the internal ability to use the knowledge of its domain 
of expertise as well as communicate the obtained results with other experts. 
The SUS consists of the two main modules: the central reasoning module and 
the peripheral module. The central reasoning module consists of the master 
expert ME R, the manager expert QE , the processing 

PE EE
sists of the generating expert, the question expert, the self-correcting expert, 
the learning expert and the spatial-logic expert. The system may cooperate 
with distributed experts by utilizing Distributed Component Object Model 
(DCOM) technology. It makes it possible to have access to expertise from an 
expert that is part of the system from the different domains, e.g., text under-
standing.

The reasoning expert RE  is an expert that manages the process of reason-
M

formation of the description of the examined object s when passing stages 

, the reasoning expert E
. The peripheral module con- and the end-the analysis expert expert

ing and is invoked by the master expert E . The reasoning involves trans-

N.....10 , where 0  is the beginning stage, N  is the final stage 

represented by the categorical chain of the visual objects (described in Chap. 4). 

of the reasoning process and  denotes the move to the next stage of reason-
ing. If at a given stage of analysis there is a need to acquire the new data or to 
make a decision about further processing an appropriate expert is invoked. 
The reasoning expert RE  of  makes a decision based on the expertise 

categories given by their symbolic names and is part of the visual categories 
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BR EcxE
i

}]{[ , that means the reasoning expert R
i

E , based on 
expertise  supplied by the decision making expert, formulates protocol c 
and invokes another expert. The symbol  denotes that the new expert is 
invoked. 

Depending on the expertise  the following decisions are possible: 

1. The examined object s is assigned to the class i  and reasoning is 
moved to the next stage of reasoning 1i :

R
M

MR
i

i
i

EcEsxE
1

)(}]{[ 1 ,

where 1x  denotes that expertise  given by the decision-making expert 
DE  indicates that the object s can be assigned to the class i . The symbol 
 denotes that the reasoning expert returns the protocol Mc  to the master 

expert ME  and symbol  denotes that the new reasoning expert of the next 
stage of reasoning 1i  is invoked; 

2. The new data are needed to assign the object to one of the possible 
classes i  of the given stage of processing i . The requirements are formu-
lated as a protocol Qc  and an appropriate data acquisition expert Q

j
E  is in-

voked to gather new data: 
Q

Q
R

ii
EcxE }]{[ 2 .

3. The new data are acquired and the decision-making expert is invoked to 
make a decision about further processing:

D
D

R
ii

EcxE }]{[ 3 ; 

4. Based on the results of stage analysis and a result of the decision-making 
expert the reasoning expert RE  makes a decision that the reasoning reaches 

EE
E

E
R

ii
EcxE }]{[ 4 .

the last stage and the end-analysis expert  is invoked: 

During the process of reasoning the reasoning expert keeps track of the 
analysis process. The levels of detail d  as well as the exactness of the pro-
cessing results  are important factors that are set during the user session. 
The level of detail d  describes the level of description of the object, which 
needs to be obtained. 

the decision-making expert DE  and reasoning parameters supplied by the 
master expert ME . In this paper the following notation is introduced: 
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The reasoning involves transformation of the description of the object pass-
ing successive stages N.....10 . To stop the process of reasoning, 
information about the level of detail d  is needed. At each stage of reason-
ing the method StageEvaluation() of the reasoning expert checks if for the 
given stage the level of detail d  is obtained. In the case when the last stage 
is reached the reasoning expert invokes the end-analysis expert. 

At each stage, based on the expertise  obtained from the decision-
making expert DE , and the levels of the detail d  and the exactness of the 
processing results  supplied by the master expert, the following actions 
are undertaken: 

The reasoning is moved from the stage i to the stage i+1 in the se-
quence 110 ... ii .
The decision is not undertaken and the new decision making expert 
needs to be consulted or the new data needs to be acquired. 

For example, in the case when the examined object is a realization of the 
class )]([ 341

ES LLQ  the possible ways of reasoning, depending on the assumed 
level of detail d , can be as follows: 

)3()3()()( 1
4

1
4

1
4

1
4

1
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where the symbol  denotes moving to the next stage of the reasoning 
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2.1. Possible Classes of Shape 

The proposed method of shape understanding is based on the concept of 
shape classes that are understood as the basic perceptual categories. The 
Shape Understanding System (SUS) perceives the visual object by trying 
to fit it into one of the shape categories. Although shape is one of the most 
often perceived “properties” of the visual object, there is no satisfactory 
classification and definition of shape. An attempt to develop the system of 
shape classification that is based on the shape classes was made by Les [1]. 
Shape classes called shape categories (in the context of visual thinking) are 
used as the “material” of the visual thinking process. The shape classes are 
represented by the symbolic names and are defined in the context of visual 
understanding process. Each class is related to each other and based on 
relationships among classes there is relatively easy to establish the “per-
ceptual similarity” of visual objects. 

In this chapter, the description of the shape classes is presented within the 
framework of shape understanding method. Shape understanding method is 
based on the concept of possible classes of shape [1]. A member of the 
class that is defined in terms of its attributes is called an archetype of this 
class. In the case of a digital image, the shape is given as an image region 
or a set of pixels. A perceived object (phantom) is transformed into a 
digital representation called a digital object. The proper interpretation of 
the visual object is obtained during the visual reasoning process. During 
the visual reasoning the perceived object is transformed into its symbolic 
description called the symbolic name. The symbolic name is the name of 
the shape category (shape classes) to which the shape of the perceived ob-
ject is fitted. The symbolic name is used to find the visual concept and to 
assign the perceived object to one of the ontological categories. The visual 
concept is a set of symbolic names obtained in the learning process. The 
shape class is denoted by symbol , where  denotes the symbolic 

2. Shape Classes 
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description (the symbolic name) of a given class. A member of the class 
denoted by symbol  is called an archetype. 

In this book, for simplicity, the symbol of the class  is omitted and 
the class is often described by its symbolic name, e.g.,  instead of 
or [ ]( )nQ n  instead of ( )nQ n . Also n classes 1, , n

n

 that are 

identical i j  for all i = 1,…,n, j = 1,…,n, and i j  are denoted as 
n , whereas n classes 1, , n

n

 that are not identical are denoted as 
n .

The general shape classes are defined based on the general attributes of 
shape such as homotopy, convexity, or thickness. The general class is split 
into specific classes based on additional features that represent a priori 
information about local perceptual and geometrical properties of shape and 
is incorporated into the a priori model of the shape class. The deepness of 
the splitting process depends on the base class from which the specific 
class is derived. In this book, the following general classes are presented: 
cyclic–acyclic general classes – , convex–concave general classes 

– Q , and thick–thin general classes – .

2.1.1. General Classes: A Priori Classes 

The homotopy measure that is based on the computation of a number of 
holes is applied to derive the cyclic–acyclic general classes – . An 
element of the shape class, called an archetype, is called acyclic, if its 

1 b2 are equal to 0, and b0 = 1, where i

i

b
0

1

]H A ,
Ha

The convexity coefficient that is given as the ratio of the area of the 
object A  to the area of the convex hull A , /a A A  is used to 
derive the convex  class and the concave Q  class. The convex hull 
of a set of points X in the plane is the smallest convex polygon P that 

b ,i.e., the Betti numbers
rank H (X ) . The 0th Betti number b  stands for a number of components,
while b  denotes a number of wholes in shape. The derivation rule for

0where  [athe cyclic general class is given as follows: 

homology groups ( )iH X  coincides with homology groups of a point,  

 denotes an attribute called homotopy and symbol      denotes that class 
A .is derived from the class 
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encloses X, smallest in the sense that there is no other polygon P  such 
that
points in the plane has been studied extensively and some of the algo-
rithms as well as discussion of the complexity of the convex hull algo-
rithms can be found in [2, 3]. The derivation rule of the convex class is 
given as follows: [ 0]a , where a  is an attribute of the 
class. The convex general class  is related to the notion of a convex set 
(see, e.g., [4]). A set X  in 2  is convex if for any two points ,x y X ,
the (closed) segment xy  is wholly contained in this set ( xy X ) or, in 
another way, a set X is called the convex set if for any two points of this 
set the following relation takes place: (1 )x y X , for each 

[0,1] .
The thin class  is a class whose members are thin objects. The des-

tance transformation. The distance transformation is a mapping of a set of 
points into a set of predefined distances (see, e.g., [5]). The distance trans-

 described in [6] that assigns the number to each point F F
iu  based 

, : ,F F F
i i i i i iu u u

where the local transformation F
iu  is determined by the selected 

neighborhood. In the case of a distance transformation the local transfor-
mation is given as 

min | |,
F F
k

F F F
i k i

u
u u u

where | |F F
k iu u  denotes distance between a point F

iu  and an arbitrary point 
F F
ku . The detail description of the image transformations  is 

given in Chap. 3. The thin general class  is derived based on the thick-
ness measure which is the attribute of this class. The derivation rule for 
the thin class  is given as follows: [ ]a , where a
denotes a thickness measure and  is the threshold. 

PP X . The computation of the convex hull of a finite set of 

on the local properties and is given as follows: 

formation (the thickness measure) i s the image transformation points-number 

cription of the object in terms of thickness can be obtained utilizing a dis-
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         a   b  c      d           e 

Fig. 2.1. Examples of exemplars of the selected general classes (a–b) cyclic, 
(c) convex, (d) concave, (e) thin 

In the further parts of this book the description of the selected shape 
classes is presented. The a priori classes such as the convex polygon class 
or the concave polygon class are derived from the general class. The a pos-
teriori classes such as the star class or the spade class are derived from the 
specific a priori classes. 

The convex polygon class L  consists of elements that are called the 
convex polygons. A polygon is a simple closed plane figure that is 
bounded by a finite number of intersecting line segments (at least three 
segments are required). The polygon 2:[0,1]p R  is a piecewise linear 
continuous function. The convex polygon class L  is derived from the 
convex general class by assigning the value 0 to the curvature ( )t
of the border curve. The curvature  at 0P  for a continuous function  is 
defined as the instantaneous rate of change tangent angle with respect to 
the arc length 

0 1

1 0

0 1

( ) ( )lim ,
P P

P P

P P
where 1( )P  is the angle between the positive x-axis and the direction of 

0 0 1 0 1P .

2.1.1.1. Convex Classes 

the tangent line at a point P  and P P  is the arc length between P  and 
The detail description of the curvature in the context of the concepts of 

2.1.1.1.1. Convex Polygon Class and Its Subclasses 

In Fig. 2.1 exemplars of the four general classes, the cyclic class 
(Fig. 2.1a, b), the convex class (Fig. 2.1c), the concave class (Fig. 2.1d), and 
the thin class (Fig. 2.1e), are shown. 
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the differential geometry can be found in [7]. In the case when curve is 
given by the parameterized form ( ) { ( ), ( )}g t x t y t  with parameter 
t , the curvature is expressed in terms of derivatives of the curve 
as follows 

2 2 3/ 2 .
( )

xy yx
x y

The convex polygon class L  is given by the following derivation rule: 

1[ [ , ] : ( ) 0] L
i it t t t . Here, 1[ , ]i it t  is an interval where 

the first derivative of the polygon curve given by the equations 
( ), ( )x x t y y t  exists. 

: ,
nv L Ln N n a

where | |va V  denotes the attribute of the class (the cardinality of the set 
of vertices V). A mathematical object is a cardinal number (cardinality of a 
set) if and only if it is a power of a set [11]. For the set V of vertices, its 
cardinality is denoted as | |V . The classes with n = 3, 4, 5, and 6 (number 
of sides) are denoted by the symbolic class description nL  as follows: 3L
(triangle class), 4L  (quadrilateral class), 5L  (pentagon class), and 6L
(hexagon class). 

The class nL  is split into specific classes against the relations between 
selected attributes ,d

i ia a . For example, the right triangle class 3
RL  is the 

class whose archetypes are triangles with one interior angle that is equal to 
90 . The derivation of the right triangle class 3

RL  from the triangle class 
3L  is given by the following rule 

3 3: .
2

G
i i Ra A a L L

Several methods of the curvature computation were proposed. For  
example, curvature as the change of cosine over a region of support is 
given in [8], the curvature as the rate of change of slope expressed as a 
function of length is described in [9], or the curvature as a convolution 
with a Gaussian kernel is described in [10]. 

The convex polygon class L  is split into base convex polygon classes 
based on the derivation rules 
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The convex curve-polygon class M  consists of the geometrical figures, 
which have curvilinear parts as well as linear segments. The curve-polygon 
class M  is defined against the value of the curvature ( )t  as follows 

1[ : ( , ), ( ) 0] ,M
i ii t t t t

where it  (i = 1,…,N) is the value of a parameter for which the curvature 
( )t  does not exist. 
Splitting of the convex curve-polygon class M  into the base classes is 

based on a number of straight line segments and a number of curvilinear 
segments m of archetypes of the class M . The description of the base con-
vex curve-polygon class is related to the generic polygon class nL . Arche-
type of the generic polygon class nL  is constructed by joining vertices of 
the straight line segments as shown in Fig. 2.2. Archetype shown in Fig. 
2.2a is a member of the curve-linear class 1 4[ ]M L , where 1 denotes one 
curvilinear segment and 4L  denotes the generic polygon (rectangle Fig. 
2.2b). Examples of the archetypes of the base convex curve-polygon 
classes are shown in Fig. 2.2. The symbolic names for archetypes shown in 
Fig. 2.2 are as follows: 1 3[ ]M L  (Fig. 2.2c), 1 4[ ]M L  (Fig. 2.2d), 2 4[ ]M L
(Fig. 2.2e), 1 5[ ]M L  (Fig. 2.2f), and 1 6[ ]M L  (Fig. 2.2g). Construction of 

The class [ ]m nM L  is split into specific classes based on the type of the 
curvilinear segment and the description of the specific curve-polygon class 
is given in the form [ ]( )m n f

HM L m , where nL  is a generic polygon class, 

 a b   c       d  e f     g 

Fig. 2.2. Construction of the generic polygon: (a) an archetype of the convex 
curve-polygon class, (b) the generic polygon obtained by joining straight line 

2.1.1.1.2. Convex Curve-Polygon Class and Its Subclasses 

the generic polygon is presented in Fig. 2.2a–b. The generic polygon is ob- 
tained by joining straight line segment vertices.

segment vertices. Examples of archetypes of the convex polygon-curve class (c–g)
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m is a number of curvilinear segments, and f
H  denotes a type of the curvi-

linear segment. Each symbol of the type of the curvilinear segment f
H  has 

its meaning:  denotes convexity of the curvilinear segment [ , ]c w ,
where c is a convex curvilinear segment and w is a concave curvilinear 
segment; f denotes the curvilinear segment [0,1,2]f , where 0 denotes a 
“function,” 1 denotes a “nonfunction” only on one side, and 2 denotes a 
“nonfunction” on both sides. The “function” is a curvilinear segment that 
is the graphical representation of any function ( )y f x . H denotes the 
height of the curvilinear segment [0,1,2]H , where 0 indicates a low 
height segment, 1 indicates a medium height segment, and 2 indicates a 
high segment. The height is the perpendicular distance from the chord 
connecting the endpoints of a curvilinear segment to the farthest point on 
the curvilinear segment. The symmetrical curvilinear segment is denoted 
as f

H .
Archetypes of the class 1M  possess only one straight line segment and 

one curvilinear segment. The description of the specific class derived from 
the class 1M  is given in the form 1 f

HM . The examples of exemplars 
generated from the class 1M  are given in Fig. 2.3. The symbolic names of 
the exemplars shown in Fig. 2.3 are as follows: 1 2

1M c  (Fig. 2.3a), 
1 1

1M c  (Fig. 2.3b), 1 0
1M c  (Fig. 2.3c), 1 2

2M c  (Fig. 2.3d), 1 2
1M c

(Fig. 2.3e), and 1 2
0M c  (Fig. 2.3f). 

 a  b c  d e f 

Fig. 2.3. Exemplars generated from the class 1M : (a) 1 2
1M c , (b) 1 1

1M c ,
(c) 1 0

1M c , (d) 1 2
2M c , (e) 1 2

1M c , (f) 1 2
0M c

Archetypes of the class 1 3[ ]M L  possess two straight line segments and 
one curvilinear segment. The description of the specific class derived from 
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the class 1 3[ ]M L  is given in the form 1 3[ ] f
HM L , where f

H  denotes 
 curvilinear segment. Archetypes of the class 1 3[ ] f

HM L

Archetypes of the class 2 4[ ]M L

class 2 4[ ]M L  is given in the form 2 4[ ] f f
H HM L , where f

H  denotes 
the type of the curvilinear segment and 4L  denotes the generic polygon. 

   a          b            c          d     e        f        g      h 

     i         j            k          l             m        n      o         p 

Fig. 2.4. Archetypes of the class 1 3[ ] f
HM L  (a–h), 2 4[ ] f f

H HM L  (i–p)

The convex curve class K  consists of convex curves. A convex curve  
in E2 can be described in many different forms: an implicit equation 

tions, parametric B-splines, or wavelets. The approximated forms of curve 
representation, such as Fourier series, cubic-splines, B-splines, -splines,
and wavelets, are often used in geometric modeling (e.g., [12]) and are most 
promising as a model for the convex curve class. The Fourier series can be 
seen also as a definition of a curve in the parametric form. The curve  can 
be expressed in the form of its truncated Fourier series as follows:

0
1

0
1

2 2( ) cos sin ,

2 2( ) cos sin .

n n
n

n n
n

nt ntx t a a b
T T
nt nty t c c d

T T

F(x,y,z) = 0, a parametric equation (x(t),y(t)), the parametric Fourier equa-

 possess two straight line segments and 

the type of the
in Fig. 2.4(a–h).

two curvilinear segments (see Fig. 2.4(i–p)). The specific class derived from the 

2.1.1.1.3. Convex Curve Class and Its Subclasses 
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The equation for a single parametric cubic spline segment is given by 
4

1
1 2

1
( ) , ,i

i
i

P t B t t t t 1 2t t t

where t1 and t2 are the values of parameters at the beginning and at the end 
of the segment. P(t) is the position vector of any points on their cubic 
spline segment. The curve can be computed as 

3 3

1 2
0 0

( ) , ( ) ,k i k i
x ik y ik

i i
C t A t C t B t t t t

The constant coefficients Aik and Bik are determined by specifying four 
boundary conditions for the spline segment [12]. 

B-splines are given by the parametric equation 

,
0

( ) ( ) ,
n

i k i
i

f t b t q

where 0 1, , , nq q q  are n + 1 control points. The index k = 2,3,..., deter-
mines the number of control points that have influence on the points of the 
curve [14]. 

,( ) DPWT( , ) ( ),m n
m n

f t c m n t

where c is some constant dependent on ( )t . The discrete parameter 
wavelet transform is given by ,DPWT( , ) ( ) ( )m nm n f t t dt , where 

/ 2
, 0 0 0( ) m m

m n t a a t n , 0,0 ( ) ( )t t , and 0a  and 0  are con-

stants that determine the sampling intervals. 
2ˆ
2

is given by 
whose curvature is given as a piecewise continuous function : (a,b)

It can be proved (see, e.g., [7]) that a unit-speed curve f a: ( ,b)

The coefficients na , nb , nc , and nd  are computed as described in 
Brigham [13]. 

present curve f(t) as follows: 
Discrete parameter wavelet transform DPWT [15] can be used to re-

.
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0

ˆ ( ) cos ( )d sin ( )
,( ) ( )

f s s s c s ds d

s s ds (1)

where c, d, and 0  are integration constants. The curvature given as a 
piecewise continuous function  is characteristic for the curvilinear seg-
ment. Equation (1) can be used as a model of the curve class. However to 
derive the specific classes the heuristic rules are applied that make it pos-
sible to define the classes based on more perceptually oriented approach. 
The curve class K  is defined by using a curvature and is given by the 
derivation rules 1 2[ [ , ] : ( ) 0] Kt t t t , where parameter t
varies over a given range 1 2[ , ]t t t .

2 2

1,x y
a b

which is parameterized by two parameters a and b. The curvature of the 
ellipse is given by the equation 

3/ 22 2 2 2
.

cos sin

ab

b t a t

From the convex curve class 1K  the specific classes, the circle class 
1
CK  (Fig. 2.5a) and the ellipsis class 1

EK  (Fig. 2.5b, c), are derived. 
The class 2K  is a class for which curvature of each archetype has one 

clear maximum and each archetype is symmetrical. The maximum of the 
curvature is the point 1 2[ , ]t t t  for which the first derivative of the curva-
ture ( )t max  and 

2 . The derivation rule of the convex class 2K

max 2 ,KK
ha

where h  is the threshold. Archetypes generated from convex curve class 
2K  are shown in Fig. 2.5d, e. 

The class 1K  is the class whose archetypes are regular curves. The
regular curve is a curve that is convex and symmetrical. Archetypes of the 
convex curve class 1K  are defined by the ellipse equation 

max0 . The maximum of the curvature is denoted as 
attribute of the class K

is given as 
is the 
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The class 3K  is described as a class for which curvature of each arche-
type is in the range ( )l ht , where l  and h  are thresholds. The 
derivation rules of the convex class 3K  are given in the form 

3
max min ,KK

h la a

Fig. 2.5. Archetypes of the convex curve class 

The convex curve class 4K  is derived from convex class based on deri-
vation rules given in the form 

4
max ,KL L K

l la a

where curvature maxa , and elongation La  are attributes of  the  convex 
curve class K  and , L

l l  are thresholds. Archetypes generated from the 
convex curve class 4K  are shown in Fig. 2.5h, i. Elongation L is defined 
as 1 2L , where 1  and 2  are the first and second eigenvalues of the 
matrix of the first and second moments 

20 11

11 02

, ,p q
pq

m m
where m x y dx dy  and

m m

In the section “Convex Curve Class and Its Subclasses”  the specific convex 
classes were described. In this section the specific concave classes, derived 
from the concave general class, are presented. The process of derivation of 
the concave general class Q  was described in the previous chapters. The 
archetype of the concave class Q  consists of elements that can be decom-
posed into subregions (residuals) iteratively. In decomposition scheme the 
concave object is broken down into very simple primitives called residuals. 

where maxa , mina  are attributes of the convex curve class 3K , and ,l h

are thresholds. Archetypes generated from convex curve class 3K  are 
shown in Fig. 2.5f, g. 

a          b            c           d     e        f        g      h i

2.1.1.2. Concave Classes 

p,q [0,1, 2].
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At first the convex hull is used as a base for the decomposition of the 
object into the concave regions and residuals and next each residual is 
examined in the process called the first level of iteration (see Fig. 2.6). In 
the case when some residuals are concave they are examined in the process 
called the second level of iteration. The description of the concave class 
depends on the level of iteration and is given by a symbolic name 

[ ]( )nQ n , where n is the number of residuals,  is a type of the 
residuals,  is a type of the generic classes,  is one of the convex 
classes { , , }L K M , and  is one of the acyclic generic classes 

{ , , }Q .

 a   b    c 

As it was described, the description of the concave class depends on the 
level of iteration, the number of residuals n, type of the residuals , and 
type of the generic class . The description of the concave class at the 
first level of iteration is given by [ ]( )nQ n , where  is one of the 
convex classes { , , }L K M  and  is one of the acyclic general 
classes { , } . Depending on the number of residuals n, and type 

Fig. 2.6. Process of decomposition of the archetype of the concave class:  
(a) an archetype of the concave class 1 4 4[ ]( )Q L L , (b) the generic convex class 4L ,
(c) residual 4L

The convex hull shown in Fig. 2.6b is used as a base for the decomposi-
tion of the object into the concave regions and residuals and is called the 
generic convex object. The generic convex object is a member of the con-
vex rectangular class 4L . As it was described in decomposition scheme, 
the concave object is broken down into very simple primitives called 
residuals. Figure 2.6 shows the process of decomposition of the concave 

1 4 4

4

4

object (a) an archetype of the concave class Q L[ ](L ) (Fig. 2.6a), (b) the 
generic convex class L (Fig. 2.6b), and (c) residual member of the rectan-
gular class L (Fig. 2.6c). 

2.1.1.2.1. Levels of Iterations 
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of classes  and  the following concave classes are possible: 
( )nQ n , ( )nQ n , or ( )nQ k m , where k + m = n.

In the case when the generic class is the convex polygon class L  the 
class that is derived is given by ( )n

LQ n . The symbol ( )n
LQ n  denotes 

the concave class Q  whose generic class is the convex polygon class L
and archetypes of this class have n residuals. All residuals are archetypes 
of one of the convex classes (the polygon class L, the convex polygon-
curve class M, or the convex curve class K). The following concave classes 
are possible: ( )n

LQ nL , ( )n
LQ nM , ( )n

LQ nK , ( )n
LQ kLmM , ( )n

LQ kLmK ,
( )n

LQ kMmK , or ( )n
LQ hLkMmK , where k + m = n and h + k + m = n.

Similarly, the possible classes whose generic class is the convex curve-
polygon class ( )n

MQ n  or the convex curve class ( )n
KQ n  can be ob-

tained. The symbol 2 5 3[ ](2 )Q L L  denotes that the concave class Q
whose generic class is the convex polygon class (pentagon) 5L  has two re-
siduals. Both residuals are archetypes of the triangle class 3L . Examples of 
the concave class at the first level of iteration are given in Fig. 2.7. 

n

the generic class is given by the convex polygon class L. The residuals are 

bolic names: 2 5 3[ ](2 )Q L L  (Fig. 2.7a), 4[ ]( )Q L M  (Fig. 2.7b), and 
4 1[ ]( )Q L K  (Fig. 2.7c). 

n
M

symbolic names: 3[ ]( )Q M L  (Fig. 2.7d), [ ]( )Q M M  (Fig. 2.7e), and 
1[ ]( )Q M K  (Fig. 2.7f). 

L, the convex curve-polygon als are members of the convex polygon class 
class M , and the convex class K .  Archetypes are given by following 

generic class is given by the convex curve-polygon class M . The residu-

  a b   c d e f g h i 

Fig. 2.7. Archetypes of the concave classes at the first level of iteration 

members of the convex polygon class L, the convex curve-polygon class

Archetypes in Fig. 2.7a–c are members of the class Q L[ ](n ),  where 

M, or the convex class K. Archetypes are given by the following sym-

Archetypes in Fig. 2.7d–f are members of the class Q (n ), where the 
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M K
3  (Fig. 2.7g), [ ]( )Q K M  (Fig. 2.7h), and 

1[ ]( )Q K K  (Fig. 2.7i). 

Archetypes in Fig. 2.8 are members of the class [ ]( [ ]( ))Q Q ,
where the generic class of each archetype is one of the following classes: 
the convex polygon class L , the convex curve-polygon class M , and the 
convex class K . The residuals are members of the concave class Q .
Archetypes shown in Fig. 2.8 are given by following symbolic names: 

1 4 1[ ]( [ ]( ))Q L Q M M  (Fig. 2.8a), 1 1 4 3[ ]( [ ]( ))Q M Q L L  (Fig. 2.8b), and 
1 1 3[ ]( [ ]( ))Q K Q M L  (Fig. 2.8c). 

Fig. 2.8. Archetypes of the concave classes at the second level of iteration 

In the case when a number of iteration levels and the number of residuals 
are growing an archetype of the concave class can be described as an 
archetype of the thin class. Also for the class 1 ( )m

i
L

Q L  the following ex-
pression is true 1 1lim ( ) ( )m m

i
L Li

Q L Q K , where K denotes the curvilinear 

Archetypes in Fig. 2.7g–i are members of the class ( )n
KQ n  where the 

generic class is given by the convex curve class K . The residuals are 
members of the convex polygon class L , the convex curve-polygon class 

  a b   c 

Similarly, at the second level of iteration the description of the concave 
class is given by ( )nQ n , where  is one of the convex classes 

{ , , }L K M  and  is one of the acyclic general classes 
{ , , }Q . Depending on the number of residuals n, type of  

the class  and type of the generic convex class  the following 
classes are possible: [ ]( )nQ nQ , [ ]( )nQ kQm , [ ]( )nQ kQm , or 

n

class. For the convex polygon class [ ]( )n m kQ L nL , when n is large 

symbolic names:  Q K[ ](L )
.  Archetypes are given by the following,  and the convex class 

enough, the convex polygon class is called a noisy class and is denoted as 

types of the concave classes at the second level of iteration are given in Fig. 2.8. 
Q [ ](hQk m ),  where k + m = n and h + k + m = n. Examples of the arche-
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[ ]( ) lim ( )m
m k n k

Ln
L L Q nL . When all residuals are triangles (k = 3) the 

noisy class is denoted as 3[ ]( )mL n L  [16]. Examples of archetypes of 
the noisy class 4 3[ ]( )L nL  are given in Fig. 2.9. 

Fig. 2.9. Archetypes of the noisy polygon class 

In the previous section the specific concave classes, derived from the gen-
eral concave class, were described. In this section the subspecific concave 
classes, derived from the concave polygon class, are presented. The con-
cave polygon class is the class archetypes of which are concave polygons. 
The concave polygon class at the first level of iteration is described as 

[ ]( )n m kQ L nL . For the concave polygon class [ ]( )n m kQ L nL  the generic 
class is the convex polygon class L and all residuals are archetypes of one 
of the convex polygon classes. The concave polygon class at the second 
level of iteration is described as [ ]( [ ]( ))n m h m pQ L nQ L hL  and the concave 
polygon class at the third level of iteration is given by symbolic name 

[ ]( [ ]( [ ]( )))n m h m w u sQ L nQ L hQ L wL . Example of the archetype generated 
from the concave polygon class at the third level of iteration given by sym-
bolic name 3 6 3 5 1 4 4 3 3 1 4 4 1 4 3[ ]( [ ]( [ ]( ), , ), [ ]( ), [ ]( ))Q L Q L Q L L L L Q L L Q L L

3 6 3 5 1 4 4 3

1 4 4 1 4 3
[ ]( [ ]( [ ]( ), 2 ),Q L Q L Q L L L

6

3 5 1 4 4 3[ ]( [ ]( ), 2 )Q L Q L L L , 1 4 4[ ]( )Q L L , and 1 4 3[ ]( )Q L L . At the second 
3 5 1 4 4 3[ ]( [ ]( ), 2 )Q L Q L L L , 1 4 4[ ]( )Q L L ,

and 1 4 3[ ]( )Q L L  is considered as an archetype of the concave class whose 

is shown in Fig. 2.10. The symbol 
Q [L ](L ), Q [L ](L ))  denotes the archetype of the concave class Q
whose generic class is the archetype of the convex polygon class (hexagon) 
L  and the concave class is described at three levels of iteration. At the first 
level of iteration there are three residuals, archetypes of the concave classes

level of iteration each residual 

generic classes are archetypes of the convex polygon classes 5L , 4L , and 

2.1.1.2.2. Concave Polygon Class 
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4L . The archetype of the class 3 5 1 4 4 3[ ]( [ ]( ), 2 )Q L Q L L L  has three resi-
duals 1 4 4[ ]( )Q L L , 3L , and 3L . At the third level of iteration the residual 

1 4 4[ ]( )Q L L  is decomposed into the generic class 4L  and one residual 4L .

3 6 3 5 1 4 4

3 3 1 4 4 1 4 3
[ ]( [ ]( ),

, ) [ ]( ), [ ]( ))
Q L Q L L

L L Q L L Q L L

the convex and concave vertices. Let m denote the number of vertices of 
the generic convex polygon (convex vertices) of the archetype of the con-
cave class [ ]n mQ L . Let n denote a number of residuals and ih  (i = 1,…,n)
denotes a number of concave vertices i

jw  between two convex vertices iv
and 1iv . To obtain description of this class in a more convenient way, let 

iv a  denotes a convex vertex and 1 2, , ,
i

i i i
i hk w w w  denotes a set of 

iv  and 1iv

1 2[ , , , , ]n
m i nL ak ak ak ak . The description given by the concave ver-

tices string can be transformed into the description given by the iterative 

1
n m k k

n

](Q L[Fig. 2.10. The archetype of the class 

The concave polygon class can be described by applying the different 

class description can be represented by the string in the form 
concave vertices between two adjacent vertices  so as the

symbolic descriptions. One of the descriptions is based on the computation of 

model Q L[ ] L , , L . Examples of the transformations  of the des-
cription given by the concave vertices string into the description given by 
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the iterative model for the archetype shown in Fig. 2.11c is as follows: 
4 4 4 4 3 4 3
4 [ 4 3 4 3] [ ]( , , , )L a a a a Q L L L L L . Examples of archetypes defined 

by the description given by the concave vertices string are shown in Fig. 
2.11. Those archetypes are given by the following symbolic names: 

1
4[ 4 ]L a aaa  (Fig. 2.11a), 2

4 [ 4 3 ]L a a aa  (Fig. 2.11b), 3
4 [ 4 3 3 ]L a a a a

(Fig. 2.11c), and 4
4 [ 4 3 4 3]L a a a a  (Fig. 2.11d). 

 a  b c  d 

vertices string 

The archetype of the complex polygon class C  is obtained as the result 
of a certain type of topological operation called a complex polygon addi-
tion. The addition operation defines the way in which polygons are joined 
together. One of the addition operations that make the complex polygon 
object by joining two polygons along the common edge is the edge-sum. 
The edge-sum is defined as follows. Let 

n nL L  and 
k kL L ,

where ,
k nL L  are archetypes of the polygon class. The sum 
( )

n kL L
iv ( )

nL
iE  is defined to be a polygon resulted from 

adding
nL  with 

kL  by translating, rotating, and scaling 
kL  so that 

( )
kL

jE  coincides with ( )
nL

iE . The edge ( )
nL

iE  given by vertices 
( )

nL
iv  and 1( )

nL
iv  describes the bounding rectangle of the sum 

( )
n kL L

iv . The bounding rectangle is given by a line passing through 
vertices ( )

nL
iv , 1( )

nL
iv  and perpendicular to the line given by the 

edge ( )
nL

iE . The archetype of the complex polygon class can consist 
with more than two parts. The complex polygon class is denoted as 

( )iC nL , where n is a number of polygonal parts iL . There is a conversion 
from the notation of the complex class into the notation given by the itera-
tive model. Figure 2.12 shows an archetype of the complex polygon class 

Fig. 2.11. Archetypes of the class defined by the description given by the concave 

 at the edge 

represented by four different symbolic representations in the form of the 
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2 4 4 4 4 4

2
4 [ 4 4 ]L v vv v 12

Fig. 2.12. An archetype of the concave polygon class 

2 3 1 3 2 3 3[ [ ]]( , ) [ [ ]]( )Q M L M L W M L cl w  (Fig. 2.13a) 
2 4 1 4 2 4[ [ ]]( , ) [ [ ]]( )Q M L M L W M L cwcl  (Fig. 2.13b) 
3 4 1 3 1 3 3 4 3 1[ [ ]]( [ ], , ) [ [ ]]( )Q M L M L M L W M L cwl g (Fig. 2.13c) 

The regular concave curve-polygon class is the class given by symbolic 
name [ ]( )kQ M kM . For this class the generic class and all residuals are 

rated from class [ ]( )kQ M kM  are shown in Fig. 2.13d–f. Those arche-
types are given by the following symbolic names: 2 3 1[ [ ]](2 )Q M L M
(Fig. 2.13d), 2 2 4 1[ [ ]](2 )Q M L M  (Fig. 2.13e), and 2 1 4 1[ [ ]](2 )Q M L M
(Fig. 2.13f). 

The concave curve-polygon class is a class archetypes of which are  
the concave curve-polygons. The concave curve-polygon is the class  
archetypes of which need to have at least one curvilinear segment. At 
the first level of iteration the following concave curve-polygon classes 
are possible: [ ]( )kQ M kM , [ ]( )kQ L kM , [ ]( )kQ M kL , 1 2[ ]( )KQ L k Mk L ,
or 1 2[ ]( )KQ M k Mk L . The description of the specific concave curve-
polygon classes can be given using the concave vertices form 

, , [ ]( , , )i j k m nW L i j g k l , where  is a type of the concave curvilinear 
segment, g is the concave straight-curvilinear segment, and nl  is the con-
cave n-gon. There is a conversion from the notation of the concave vertices 
form into the notation given by the iterative model. For example, arche-
types shown in Fig. 2.13a–c are given by description both in a concave 
vertices form and by an iterative model: 

members of the curve-polygon class M. Examples of archetypes gene-

ing model 

4

iterative model Q L[ ](2L )  , the complex model C(L , L , L ) , the subtract- 
, and the cyclic model {(12 )(12d ) described 

in [17]. 

2.1.1.2.3. Concave Curve-Polygon Class 
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The archetypes of the concave curve-polygon class whose generic class 

[ ]( )kQ L kM  or 1 2[ ]( )KQ L k Mk L , where 1 2K k k . Examples of arche-
types generated from the class [ ]( )kQ L kM  are shown in Fig. 2.13g–i. 
Archetypes shown in Fig. 2.13g–i are given by the following symbolic 
names: 2 3

1[ ](2 )Q L M  (Fig. 2.13g), 2 4
1[ ](2 )Q L M (Fig. 2.13h), and 

2 5
1[ ](2 )Q L M  (Fig. 2.13i). Examples of archetypes generated from the class 

1 2[ ]( )KQ L k Mk L  are shown in Fig. 2.13j–l. Archetypes shown in Fig. 
2.13j–l are given by the following symbolic names: 2 3 3

1[ ]( )Q L M L  (Fig. 
2.13j), 2 5 4

1[ ]( )Q L M L  (Fig. 2.13k), and 3 5 1 3
1 2[ ]( )Q L M M L  (Fig. 2.13l). 

Fig. 2.13. Examples of archetypes whose descriptions are given both in a concave 
vertices form and by an iterative model 

class are members of a convex polygon class L , is called the concave 
curve-polygon star class and is given by the symbolic name 

[ ]( )k kQ L mMnL , m + n = k. The concave curve-polygon star class whose 
all residuals are members of the curve-polygon class is called the regular 
concave curve-polygon star class and is denoted as [ ]( )k kQ L kM . Exam-
ples of archetypes generated from the curve-polygon star class are shown 
in Fig. 2.14. Archetypes shown in Fig. 2.14 are given by the following 

Fig. 2.14. Archetypes of the regular concave curve-polygon star classes 

The concave curve-polygon class, for which archetypes of the generic 

   a          b            c        

  d     e        f        

                              
g h i j k l

  a     b        c        

is a member of the polygon class are given by the symbolic  name 
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As it was described in the section “Concave Curve-Polygon Class,” the 
thin class is a class whose members are thin objects. In this book the term 
the thin class is used to denote the acyclic-thin class. The thin class is 
represented by the acyclic graph called a tree. The undirected graph 
G = (V, E), where V is the set of nodes and E V V  is the set of edges, 
is called a tree if it satisfies two conditions: the graph is connected and the 
graph contains no cycles. It can be shown that in the case of the thin 
acyclic shape class a tree is a spanning tree. An edge of a spanning tree is 
called a branch and a spanning tree with H vertices consists of H-1
branches. The spanning tree represents an archetype of the thin class. The 
archetype of the thin class consists of edges and vertices. The two types of 
vertices are distinguished: the endpoint v  and the branching-point v .

The thin class, the archetype of which has a branch i jv v  connecting 
only the branching points, is called the thin bridge class and the branch 

i jv v  is called a bridge. Depending on the curvilinearity of the branch, two 
types of branches can be distinguished: the straight branch and the curvi-
linear branch. The class whose archetypes have all straight branches is 
called the straight thin class. For the straight thin class a set of angles and 
distances called the set of attributes of the straight thin class is computed. 
The set of attributes is denoted as 1 1 2 `2, , , , , ,d d d

N NA a a a a a b ,

where d
ia  is a distance computed as k i jd v v  for two different types of 

the vertices and k i jd v v  for this same type of vertices, and ia  is an 

angle computed as X X
k i k jv v v , where X  denotes vertices type  or 

, and k = 1,…,H-1, m = 1,….,M, and X X
k i k jv v v , where X  de-

notes vertices type , and k = 1,…,H-1, m = 1,….,M.
Depending on the type of branches the thin class is split into three 

classes: the 1-D class archetypes of which have only isolated branches 

1 2v v , the star class  archetypes of which have only external branches 

i jv v , and the thin bridge class 1
k  archetypes of which have both external 

i jv v  and internal i jv v  branches. Examples of the archetypes from the 
thin class are shown in Fig. 2.15. Archetypes from the 2  class are shown 

symbolic names: 3 3[ ](3 )Q L M  (Fig. 2.14a), 4 4[ ](4 )Q L M  (Fig. 2.14b), 
and  (Fig. 2.14c). 

2.1.1.3. Thin Classes 

5 5Q [L ](5M )
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1
k  are shown in Fig. 2.15f–h. 

    a          b            c           d         e  f  g 

Fig. 2.15. Archetypes of the thin class (a–c) the 2  class, (d, e) the star class ,
(f–h) the bridge class 1

k

Based on the relations between attributes the following thin star classes 
k  are derived: 

The equilateral-star class: this is a class for which all archetypes 
have all branches equal 
The equiangular-star class: this is a class for which all archetypes 
have all angles equal 
The ideal star class: this is a class for which all archetypes have all 
angles and branches equal 

The derivation rules applied for each individual class are as follows: 

, ,:d T d
i d i d k ka A T a T

ˆ, ,:T
i i k ka A T a T

( , ,: ) ( , ,: )d T d T
i d i d i i k ka A T a T a A T a T

 (the ideal star class) 
k

The archetype from the 3  class is shown in Fig. 2.16a, the archetype 
from the 3ˆ  class is shown in Fig. 2.16b, and the archetype from the 3

class is shown in Fig. 2.16c. 

    a  b  c 

Fig. 2.16. Archetypes of the straight star class k : (a) the equiangular-star class 
3 , (b) the equilateral-star class 3ˆ , (c) the ideal star class 3

 are shown in Fig. 
2.16.

in Fig. 2.15a–c, archetypes from the star class  are shown in Fig. 2.15d, e,
and archetypes from the bridge class 

(the equilateral-star class)

(the equiangular-star class) 

h 

Examples of archetypes of the thin straight star class
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Similarly, the bridge thin straight class 1
k  can be split into specific 

classes based on a set of attributes A . Examples of archetypes of the 
bridge thin class are shown in Fig. 2.17. The archetype from the bridge 
thin straight equilateral-class 2

4
ˆ  is shown in Fig. 2.17a, the archetype 

from the bridge thin straight equilateral-branch class 2
4  is shown in Fig. 

2.17b, and the archetype from the bridge thin straight equiangular-branch 
class 2

4  is shown in Fig. 2.17c. 

Fig. 2.17. Archetypes of the bridge thin straight class 1
k

class 2
4

ˆ 2
4

thin class 2
4

The special subclass of the thin class is a thin fractal class denoted as 
F . The fractal class is described in the form of the thin class as m

n ,
where m and n are numbers that characterize the L-system [18]. The thin 
fractal class defined by the L-system is restricted to the class for which its 
graph representation is a spanning tree. It imposes the constraints for the 
level of iteration of the system and a set of parameters of the model. Ar-
chetypes of the fractal class are generated by L-systems. L-system uses 
strings that are interpreted based on the notion of a LOGO-style turtle. For 
example, the dragon curve can be generated by repetitively substituting 
line segments by pairs of lines forming either a left or a right turn and is 
described by the following L-system: 

  : Fl 
  p1: Fl  Fl + Fr+ 
  p2: Fr Fl  Fr 

The symbols Fl, Fr are interpreted by turtle as the “move left” and 
“move right” commands, and p1, p2 are productions rules [18]. From the 
thin fractal class the following specific classes are derived: the equiangular-
branch thin fractal class 8F̂ , the equiangular-thin fractal class 5F , the thin 
fractal class k

mF 5

  a b c

: (a) the equilateral-thin 

, (b) the equilateral-branch thin class , (c) the equiangular-branch 

, the thin curved fractal class F , and the thin curved fractal
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Fk
m

specific fractal classes. These classes are defined in the similar way as the 
specific classes described in previous sections. The archetype of the class 

8F̂  is shown in Fig. 2.18a, the archetype of the class 5F  is shown in Fig. 
2.18b, the archetype of the class k

mF  is shown in Fig. 2.18c, the archetype 
of the class 5F  is shown in Fig. 2.18d, and the archetype of the class Fk

m  is 
shown in Fig. 2.18e. 

        a  b  c  d  e 

Fig. 2.18. Archetypes of the thin fractal class F : (a) the equiangular-branch 
thin fractal class 8F̂ , (b) the equiangular-thin fractal class 5F , (c) the thin fractal 
class k

mF , (d) the thin curved fractal class 5F , (e) the thin curved fractal class Fk
m

As it was described in the section “Concave Curve-Polygon Class” the 
1-D thin class 2  is the class archetypes of which have only isolated 
branches 1 2v v . From the 1-D thin class the specific classes are derived 
based on the properties of the graph function that is representative of the 
archetype of the class 2 . The function ( )y f x  is defined in the closed 
interval [a,b] and is prescribed by an analytical expression or a formula. It 
is assumed that the function fulfils the conditions: ( ) ( )f a f a c  and 

[ , ], ( ) ( )x a b f x c f x d , where c, d are the greatest and the 
smallest of all values of the function f(x). The 1-D thin class 2

F  is defined 
2 2

F
2

2 2
1 2

1 2 1 2

[ , [ , ],
(0,1) : ( (1 ) ) ( ) (1 ) ( )]

C

x x a b
f x x f x f x

2

respect to the vertical axis f( x) = f(x) is called 1-D symmetric class 2
S .

The derivation rules are as follows: 2 2[ [ , ] : ( ) ( )] Sx a b f x f x .

[ [x a,b], y c[ ,d ] : y f (x)] . The 1-D thinas follows: 
convex function class derived from  is defined as follows: 

. The 

1-D thin class derived from  for which their graph is symmetric with 

class . Figure 2.18 shows examples of archetypes generated from the 
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Examples of archetypes generated from specific 1-D thin class are shown 
in Fig. 2.19. Archetypes of the nonfunction classes  are shown in Fig. 
2.19a–c, the archetype from the convex symmetrical function class 

ˆ
 is 

shown in Fig. 2.19d, and archetypes from the convex nonsymmetrical (NS) 
function class ˆ  are shown in Fig. 2.19e, f. 

 a b  c  d e f 

Fig. 2.19. Archetypes of the nonfunction classes  (a–c) and archetypes of the 
convex function classes: (d) symmetrical 

ˆ
, (e and f) nonsymmetrical 

ˆ

2

cribed in relation to its generic class and is called the thin poly-line class 
. The archetypes of the generic class are obtained by joining the pseudo-

nodes of the archetypes of the class  as shown in Fig. 2.20. The arche-
type of the class 4[ ]L  shown in Fig. 2.20a is described in relation to 
its generic class 4L  (Fig. 2.20b) and the archetype of the class 

1 4 3[ [ ]( )]Q L L  (Fig. 2.20c) is described in relation to its generic class 
1 4 3[ ]( )Q L L  (Fig. 2.20d). 

 a  b   c  d 

Fig. 2.20. Archetypes of the thin poly-line class  and its generic class: (a) the 
class 4L 1 4 3[ [ ]( )]Q L L

1 4 3[ ]( )Q L L

The bridge tree class is the class derived from the bridge thin class. 
Archetypes of the bridge tree class are represented by the acyclic graph 
called a tree. The bridge tree class is described by the bridge notation that 

whereas branch by the bracket “( ).” The notation is based on the decom-
position of the tree into branches and bridges. During decomposition the 

, archetypes of which are straight poly-lines, is des-The 1-D thin class 

is explained in Fig. 2.22. The bridge is denoted by the bracket “[ ],” 

, (c) the class its generic class 4[ ]L and (b)  and (d)

its generic class 
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branches are removed and the bridge that is left becomes the generic 
bridge of the tree. For example, the archetype shown in Fig. 2.21a is an 
archetype from the bridge tree class [1]{[1](2)}{[1](2)}{[1](3)}{[1](4)} .
The result of removing branches is the string [1]{[1]}{[1]}{[1]}{[1]}
and finally after renaming bridges into branches the bridge class 

[1](2)(2)  is obtained. The bridge class [1](2)(2)  that is the result 
of decomposition is shown in Fig. 2.21b. Examples of the archetypes from 
the bridge tree classes are shown in Fig. 2.21. The archetype from the class 

[1](2)(1)[1](2)
[1](3)(2)

   
a  b c  d e

Fig. 2.21. Archetypes of the bridge tree class 

As it was described in previous sections each class can be described by 
applying the different notations. The archetypes in Fig. 2.22 are described 
by the notation of the bridge tree class [1](2)(2) , generic bridge tree 
class 1 4 3[1](2)(2) [ [ ]( )]Q L L , or by notation of the  class as 

1 4 3 3 4[ [ ]( )]{3 , }Q L L L L . The notation of the  class is derived 
from the notation of the  class described in the further part of this chapter. 
In order to explain the notation of the  class, an example of decom-
position of the archetype from the  class is shown in Fig. 2.22. Figure 
2.22a shows the archetype from the thin bridge class [1](2)(2) . The 

Fig. 2.22. Explanation of the notation of the  class 

class
 is shown in Fig. 2.21c, the archetype from the

a  b c

 is shown in Fig. 2.21d, and archetype from the class
[1]{(2),[1](2)}{(1),[1](2)}  is shown in Fig. 2.21e. 
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endpoints of this archetype are joined by straight lines as shown in Fig. 
2.22b, and as the result the object consisting of the four parts, three tri-
angles 3L , and one quadrilateral 4L , was obtained. The generic polygon, 
archetype of the class 1 4 3[ ]( )Q L L , is shown in Fig. 2.22c. 

As it was described in the section “Thin Classes,” the cyclic general class 
A  is defined based on the values of the attribute called a homotopy mea-

sure. The cyclic class A  consists of elements that can be decomposed 
iteratively into subregions (holes). The decomposition scheme in which the 
cyclic object is broken down into very simple primitives, called holes, is 
similar to the decomposition scheme of the concave object described in 
previous sections. At first all holes are filled and an object “without holes” 
is used as a base for the decomposition of the object into the filled regions 
and holes. Next each hole is examined in the process called the first level 
of iteration. In the case when some holes are cyclic they are examined in 
the process called the second level of iteration. The description of the con-
cave class depends on the level of iteration and is given by a symbolic 
name [ ]( )n

AA n , where n is the number of residuals, A  is a type of 
the holes, and  is a type of the generic classes. The base cyclic class is 
denoted as [ ]nA , where  is one of the acyclic general classes 

{ , }Q  from which the base cyclic class is derived and n is a number 
of holes. The description of the specific cyclic classes is based on a type of 
the generic class  as well as on the type of the holes A . The arche-
type of a cyclic class derived from the acyclic class can be seen as a result 
of subtraction of the acyclic region and holes. 

At the first level of iteration the symbolic representation of the cyclic 
class is given as [ ]( )n

AA n , where a hole can be a member of the thin 
or acyclic class { , }A . Depending on the number of holes n, and a 
type of generic class , and a type of holes A , the following specific 
cyclic classes can be derived: [ ]( )nA n , [ ]( )nA n , [ ]( )nA Q n ,
and [ ]( )nA Q n . In the case when there are n holes there are the follow-
ing classes given by the symbolic names: ( )nA n , ( )nA nQ , ( )nA n ,

2.1.1.4. Cyclic Class 

archetype consists of one bridge that has two branches on its ends. The 
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  a    b 

Fig. 2.24. Exemplars of the concave point class 

Similarly, at the second level of iteration the symbolic representation of 
the cyclic class is given as [ ]( )n

AA n , where at least one hole from the 
set A  is a member of the cyclic class A . Examples of exemplars gene-
rated from the cyclic classes at the second level of iteration are shown in 
Fig. 2.25a–d. The symbolic names of these exemplars are as follows: 

1

1 1[ ]( ).
Similarly, the archetype of the class 1[ ]( )A Q  for which the hole has 
common points with the border points is the archetype of the concave 
point class 1 1[ ]( ) [ ]( )A Q Q Q . Figure 2.24 shows exemplars gene-
rated from the concave point class 1 4 4[ ]( )Q L L  (Fig. 2.24a) and 

1 4 3 3[ ]( , )Q L L L  (Fig. 2.24b). 

The archetype of the class A [ ]( )  for which the hole has common points 
A Q[ ]( )with the border points is a concave point class 

Fig. 2.23. Examples of exemplars from the cyclic class 

a  b c d e  f g h  

( )n
QA n , ( )n

QA nQ , and ( )n
QA n

3 4 3L L

exemplar whose generic class is the convex polygon class 4L  (rectangle) 
and it has three holes. All holes are archetypes of the rectangle class 4L .
Figure 2.23e shows exemplar generated from the cyclic class 

2 4 8 4 1 4[ [

]

(4 )] ,EA Q L L K L , whose generic class is the concave polygon 
class [ ](4 )Q L L , and it has two holes. The first hole is an archetype of 
the rectangle class 4L  and the second one is the archetype of the curvilin-
ear class (ellipse) 1

EK .

. Figure 2.23 shows exemplars generat-

ed from the cyclic class. The symbol A [  (Fig. 2.23b) denotes ( )

]
4 8 4
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1 4 1 4 4
R R RA L A L L  (Fig. 2.25a) 

1 4 1 4 ( )R TA L A L K  (Fig. 2.25b) 
1 5 3 4 8 3[ [ ]( )]( [ [ ](4 )]( ))A Q L L A Q L L K  (Fig. 2.25c) 

(Fig. 2.25d). Example of exemplar generated from the cyclic classes at the 
third level of iteration, whose symbolic name is given as follows 

1 4 1 4 1 4 4
R R R RA L A L A L L , is shown in Fig. 2.25e. The symbolic 

name 1 4 1 4 4
R R RA L A L L  denotes an exemplar generated from the 

class whose generic class is the convex polygon class 4L  (rectangle) and it 
has one hole. The hole is an archetype of the cyclic class 1 4 4

R RA L L .
The generic class of the hole is the convex polygon class 4L  (rectangle). 
The hole is an archetype of the rectangle class 4L .

Fig. 2.25. Exemplars of the complex cyclic class given by symbolic names 

Archetypes of the complex cyclic class ( )C  are obtained as the result of 
the certain type of topological operation called a complex addition [19], 
[20]. The complex class is denoted as 1 2( , , , )NC , where 

1 2, , , N  are classes of the addition operation. In the case when 
N = 2, the complex class is reduced into the class of the two-element 
operation and denoted as 1 2( , )C . In the case when 1 , the class 
is called the complex convex class. In the case when 1 A , the class is 
called the complex cyclic class. Archetype of the complex cyclic class 
consists of parts, where one of the parts needs to be an archetype of the 
cyclic class. Examples of the archetypes of the complex cyclic class are 
given in Fig. 2.26. Symbol 1 4 4 3( ),RC A L L L  (see Fig. 2.26a) denotes 
that archetype of the complex class C consists of two parts, one archetype 

a  b c  d e 

2.1.1.5. Complex Cyclic Class

2 1 2 4 1 4 1 2 5 2 3 1 1 1 1[ [ [ ]]( )]( [ ]( [ [ ]]( [ ](2 ))), [ ]( ))TA Q M L M A L Q M L Q L M Q M M
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of the cyclic class 1 4 4( )RA L L  and the second archetype of the convex 
class 3L . In the case when 2 , the complex class is defined by the 
point-sum operation and the class is called the complex convex thin class. 
Examples of the archetypes of the complex cyclic-thin class are given in 
Fig. 2.26. Symbol 1 3( [ ]( ), )C A L K  (see Fig. 2.26f) denotes that an arche-
type of the complex class C consists of two parts, one archetype of cyclic 
class 1 3[ ]( )A L K  and the second archetype of the thin class .

Examples of archetypes generated from the complex cyclic-thin class 
given by symbolic names are shown in Fig. 2.26: 1 4 4 3( ),RC A L L L

(Fig. 2.26a), 1 4 4 ,R RC A L L K  (Fig. 2.26b), 1( [ ]( ), )C A M K K  (Fig. 

2.26c), 1 4 3[ ] ,RC A K L L  (Fig. 2.26d), 1( [ ]( ), )C A K K K  (Fig. 2.26e), 
1 3( [ ]( ), )C A L K  (Fig. 2.26f), 1 3 4( [ ]( ), )C A L L  (Fig. 2.26g), 
1 4 4 3 3, [ ]R TC A L L L  (Fig. 2.26h), 1 4 ( ), 2RC A L K

2.26i), 1 4 ( ),OC A L K  (Fig. 2.26j), 1 4 4( ), 2TC A L L  (Fig. 

2.26k), 1 1 3( ), , [ ]( )RC A L K Q M L  (Fig. 2.26l), and 
1 4 4 4 1 4, , , , ( )R R R RC A L L L A L K  (Fig. 2.26m). 

Fig. 2.26. Archetypes of the complex cyclic class 

The archetype of the cyclic class 1 ( )A  for which the type of the hole 
and the generic acyclic class is equal and area of the hole is close to the 
area of the archetype of the generic acyclic class is called the arche-
type of the cyclic-thin class 1 ( ) [ ]{ }A . Examples of exemplars 

4 4
R RL L ,

 (Fig.

a b  c  d e f g  h  i j

k l m   

2.1.1.6. Cyclic Thin Class: The G-Class

1 4

generated from classes given by the symbolic names: (a) 
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Fig. 2.27. Examples of exemplars of the cyclic-thin class 

Fig. 2.28. Archetypes of the cyclic-thin class 

a b c  d

a b c

(b) 4 43R RL L , (c) 4 3 4 43 , ,R R R TL L L L , and (d) 1 1{2 }EK M  are 

shown in Fig. 2.27a–d. The symbolic name 4 4
R RL L  denotes an ex-

emplar generated from the class whose generic class is the convex polygon 
class 4L  (rectangle) and it has one hole. The hole is an archetype of the 
rectangle class 4L . The symbol  denotes that the exemplar is generated 

The archetype of the cyclic-thin class [ ]{ }  can be represented by 
notation of the G-class. In this notati on the object is decomposed into the 
core object and the thin object. Example of this decomposition is shown 
in Fig. 2.28. Figure 2.28 shows archetypes from the cyclic-thin class 

1 6 3 5 3 4[ [ ]( )] [ ] ,3R TQ L L Q L L L  that are decomposed according to the 
convention of the G-class. The archet ype in Fig. 2.28a given by the sym-
bolic name 6 3 2(2)2 4 3[ [ ]( )]{ [ [ ]( )]}G Q L L Q L L  is decomposed into the 
thin object 2(2)2 4 3[ [ ]( )]Q L L  (Fig. 2.28b) and the concave core object 

6 3[ ]( )Q L L  (Fig. 2.28c) .  This archetype is represented as a member of the 
cyclic-thin class 1 6 3 5 3 4[ [ ]( )] [ ] ,3R TQ L L Q L L L  and is decomposed 

into the concave core object 6 3[ ]( )Q L L  and four objects: one concave 
5 3[ ]( )RQ L L  and the three convex 4

TL .

from the acyclic class whose area of the hole is close to the area of the 
archetype of the generic acyclic class. 
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Archetype of the convex cyclic-thin class can be decomposed into the core 
convex object  and holes. Figure 2.29 shows archetypes of the convex 
cyclic-thin class whose the core convex object is the member of the con-
vex triangle class 3L . Archetypes shown in Fig. 2.29 are represented by the 
following symbolic names: 3 3[ ] 2 RL L  (Fig. 2.29a), 3 3 4[ ]{ , }L L L  (Fig. 
2.29b), 3 3 3 3[ ]{ [ ]( ), }L Q L L L  (Fig. 2.29c), 3 4 3 3[ ]{ , [ ]( )}L L Q L L  (Fig. 
2.29d), 3 3[ ]{3 }L L  (Fig. 2.29e), and 3 4[ ]{3 }L L  (Fig. 2.29f). Figure 
2.30 shows archetypes of the convex cyclic-thin class whose the core 
convex object is the member of the convex rectangle class 4

RL . Archetypes 
shown in Fig. 2.30 are represented by the following symbolic names: 

4 32R RL L  (Fig. 2.30a), 4 3 4 3, ( )R RL L Q L L (Fig. 2.30b), 
4 34R RL L (Fig. 2.30c), 4 4 42 ,R Q RL L L (Fig. 2.30d), 4 44R RL L

(Fig. 2.30e), 4 4 32 ,R TL L L (Fig. 2.30f), and 4 3 1 4 32 , [ ]( )RL L Q L L
(Fig. 2.30g). 

    a  b  c d  e      f 

Fig. 2.29. Archetypes of the class triangle convex thin class 

    a  b c             d  e      f  g 

Fig. 2.30. Archetypes of the convex rectangle cyclic-thin class 

2.1.1.6.1. Convex Cyclic Thin G-Class 

Figure 2.31 shows the archetype of the convex cyclic class. The core 
convex object of this archetype is the member of the convex class nL .
The symbolic names for these objects are given in the form of the 
convex thin class { }{ }n mL kL  and the G-class { }{ }nG L . The sym-
bolic names are as follows: 6 4[ ] 3 OL L , 6 3 3[ ]{ [ ]}G L L  (Fig. 2.31a), 
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6 7 4 3 4[ ] 2 , ,–
O OL L L L , 6 7 4 4[ ]{ [ ]}–G L L  (Fig. 2.31b), 4 4 3 4[ ] 2 ,OL L ,L L ,

4 2(2)2 4[ ]{ [ ]}G L L  (Fig. 2.31c), 8 6 4[ ] ,3 OL L L , 8 2(2)2 4[ ]{ [ ]}G L L  (Fig. 
2.31d), and 7 5 4[ ] ,3 OL L L , 7 2(2)2 4[ ]{ [ ]}G L L  (Fig. 2.31e). The symbol 

6 7–L  denotes that the archetype is the member of the class 6L  or 7L .

Fig. 2.31. Archetypes of the class { }{ }nG L

    a b c d e

Archetype of the concave cyclic-thin class can be decomposed into  
the core concave object Q  and holes. Following the notation of the  
G-class the archetype is decompos ed into the concave core object Q
and the thin objects  or the complex thin objects ( )C . Figure 2.32 
shows the archetypes of the concave cyclic-thin class that are  

5
6 3 4 3[ [ ]( )] 3 ,T RL

Q L L L Q L , 4

6 3 2(2)2 3[ [ ]( )] ( )
L

G Q L L Q L  (Fig. 

2.32a), 37 3 4 , 47
3(2)2 33 ( )( )

LL
G Q LQ L  (Fig. 

2.32b), 6 8 5
3 4 3( ) 2 , ( )

L L
Q L L Q L , 5

3
6 8

3 ( )( )
LL

G Q LQ L

(Fig. 2.32c), and 4

6 4 4 3
6 8

2 3 ( )3 , 3 , ( )(2 ) O O LL
L L L Q LQ L , 6 8

2 3(2 )
L

G Q L

5

2(2)2(2)2(2)2 2 3(2 )
L

Q L  (Fig. 2.32d). Figure 2.33 shows archetypes of 

the concave cyclic-thin class that are decomposed into the core  
concave object and the complex thin objects ( )C . Archetypes are repre-

sented by the symbolic names as follows: 3

3 2 3
6

3 , 3 ,( ) LL
G C LQ L

(Fig. 2.33a), 7 3
3 3 2 3( ) ,3 ,

L L
G Q L C L  (Fig. 2.33b), and 

6 7
3 23 { ( , 4 )}( )

L
G C LQ L  (Fig. 2.33c). 

2.1.1.6.2. Concave Cyclic Thin G-Class 

.decomposed into the core concave object and the thin object 
Archetypes are represented by the symbolic names as follows: 

[ ]Q L (L ) 4L L,o

o
2( 2)1( 2) 2

[ ]
4
oL ,
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Fig. 2.32. Archetypes of the thin concave G-class { }{ }G Q

Fig. 2.33. Archetypes of the thin concave G-class { }{ ( )}G Q C

The class for which an archetype can be seen as consisting of adjacent 
regions of the different uniform colors is called the colored class . An 
archetype of the colored class  can be decomposed into the regions of 
the different colors and assigned to one of the specific classes. The decom-
position of the archetype is shown in Fig. 2.34. 

Fig. 2.34. Decomposition of the archetype consisting of adjacent regions of the 
different uniform colors 

by the different colors. The description of the convex colored class can be 
reduced into the description of the cyclic class [ ]( )n

AA n . The arche-
type of the colored class 2 4 4 4( ) ( ), ( )T R TL g L y L b  is shown in Fig. 

2.35. The symbol 2 4 4 4( ) ( ), ( )T R TL g L y L b  denotes that the convex 

    a b c d

    a b c

2.1.1.7. Colored Classes 

The colored class is the class archetypes of which have their parts marked 
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The first region 4 ( )RL y  is marked by the letter ( )y  denoting the yellow 
color whereas the second region 4 ( )TL b is marked by the letter ( )b  denot-
ing the blue color. 

Fig. 2.35. Archetype of the convex colored class 2 4 4 4( ) ( ), ( )T R TL g L y L b

The archetype of the concave complex colored class can be decomposed 
into the parts of the different colors. The concave complex colored class is 
denoted as 1 2( , , , )N , where 1 2, , , N  are general classes 
of shape. Archetypes of the concave complex colored class are given in 
Fig. 2.36. The symbol 4 4 4( ), ( )R R RL y Q L L o  denotes that the arche-

regions – the convex polygon class (rectangle) 4
RL  and the concave poly-

gon (rectangle with the one concavity) 4 4
R RQ L L . The archetype 

shown in Fig. 2.36b is represented by the symbolic name 
4 4 4 1[ ( )] ( ) , ( ) ( ( ))T RL g L b L y K r .

Fig. 2.36. Archetypes of the concave complex colored class 

The shape classes described in the previous chapters were established 
based on the geometrical properties of the figure. The derivation of the 
specific classes was based on constraining the values of selected attributes 
of the general classes. These classes are called a priori classes because 
derivation of the specific class is based on geometrical properties of arche-

lateral 4 ( )TL g  – color green) called background, has two regions of the dif-
ferent colors. Both regions are archetypes of the quadrilateral class 4L .

colored class , whose generic class (the convex polygon class – quadri-

2.1.2. The a Posteriori Classes 

type of the concave complex colored class , can be decomposed into two 

    a b
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as the perceptual category is used during the learning of the visual concept 
of the different ontological categories such as a letter, a sign, or a real-
world object. During categorical learning the specific shape classes that are 
good representative of the shape of the given ontological category need to 
be derived from the existing a priori classes. The classes of shape that are 
derived as the result of “specialization” of the existing a priori classes are 
called the a posteriori classes. 

As it was described in Sect. 2.1.2 the a priori classes are established based 
on the geometrical properties of the visual object. The a posteriori classes 
are derived from the a priori classes based on the specialization of the 
selected shape classes. Specialization means that the a posteriori classes 
are established to match shape of the sign or the real-world object. Example 
of the class that is established based on the existing meaningful objects 
called a sign is the star class. The star class is defined based on generaliza-
tion of the most often used visual representations of the star signs. The star 
class is a class derived from the concave class [ ]( )nQ n , where n>2.
The polygon star class is a class derived from the concave polygon class 
and is given by the symbolic name 3[ ]( )n nQ L nL . The curvilinear star 
class is a class derived from the concave class where all residuals are arche-
types of the curve-polygon class [ ]( )n nQ L nM . The concave star class is a 
class derived from the concave class where all residuals are archetypes 
of the concave class [ ]( )n nQ L nQ . The concave I-star class is a class 

[ ]( ( ))n nQ L nQ mQ
[ ]( ( ( )))n nQ L nQ mQ kQ [n nQ L

can be defined. 
The concave polygon star class is a class derived from the concave poly-

gon class where all residuals are archetypes of the concave polygon class 
[ ]( [ ]( ))n n h k lQ L nQ L L

residuals are archetypes of the concave polygon class, residuals of which are 
archetypes of the concave polygon class [ ]( [ ]( [ ]( )))n n h k b c dQ L nQ L mQ L L .

2.1.2.1. The Star Class

the concave class, residuals of which are archetypes of the concave 
derived from the concave class where all residuals are archetypes of

. In similar way the concave II-star class class
](nQ(mQ(kQ(hQ))))o r the concave III-star class 

types generated from the selected class. In this book shape is interpreted as 
the basic perceptual category to which the perceived object is fitted. Shape 

, where indexes h, k, and l denote: h-the number of 
residuals, the generic k-polygon, and the residual l-polygon. The concave poly- 
gon I-star class is a class derived from the concave polygon class where all 
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The star class can be described by using the notation of the complex-
core class. Objects shown in Fig. 2.37 explain the differences in the de-
scription of the object in terms of the concave class 5 5 3[ ](5 )Q L L  (Fig. 
2.37a) and the complex-core class 5 5 5 3[ ]{ }(5 )L L L  (Fig. 2.37b). The 
symbol in the bracket “[ ]” denotes the generic polygon, for example, 5[ ]L
(see Fig. 2.37a), whereas the symbol in the bracket “{ }” denotes the core 
of the archetype of the complex class, for example, 5{ }L  (see Fig. 2.37b). 
The advantage of the second approach is such that the object is interpreted 
as an object having the “arms.” Based on this interpretation we can estab-
lish the proper similarity relations among objects. For example, the objects 

description given by the symbolic name 5 5 5 3[ ]{ }(5 )L L L  but the differ-
5 5 3

(Fig. 2.37b) or 4 4 1 4 3[ ]( [ ],3 )Q L Q L L  (Fig. 2.37c). It seems that the com-
plex-core class description is more perceptually oriented. 

       
 a  b  c 

Fig. 2.37. Explanation of the different notations of the star class 

The archetype generated from the n-star class is represented by the sym-
bolic name 3[ ]( )n nQ L nL , where the 2n-star class is a class derived from 
the concave polygon class 2 3[ ]( )n nQ L nL . The class 2 3[ ]( )n nR L nL  derived 
from the class 2 3[ ]( )n nQ L nL , where all residuals have the common point, 
can be given by notation of the complex class 2 3[ ]( )n nS L nL . In the case 
when there is no common point the class will have description 

2[ ]{ }( )n n h kS L L nL . By generalization, the class 2 3[ ]( )n nS L nL  can be ex-
tended to the c-class { }nS n , where  is a general class. Examples of 
the n-star class are given in Fig. 2.38a–b, and the 2n-star class in Fig. 
2.38c–d.

Q [L ](5L )ent convex class description given by the symbolic names

from Fig. 2.37b, c that look very similar, have the same complex-core class 
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 a        b        c d

Fig. 2.38. Simple I-star classes (a, b) and simple II-star classes (c, d)

The curvilinear star class 2 3 1[ ]( [ ](2 ))nQ A nQ L M , where A denotes one 
of the classes 2{ , , ( )}n n n nA L L M L , is the specific class derived from 
the concave star class. In the case where all residuals have the common 
point the class can be given by the complex class description. The complex 
class description interpret the object in terms of petals (the parts of the 
object that are “glued” in one point) and described by complex class des-
cription as the c-complex class [ ]{ }nS n . When all petals are arche-
types of the curve class K  the class is the regular curve c-class 

[ ]{ }nS A nK . In the case where n is big enough n>M, the generic class 
becomes the polygon class and the regular curve c-class is given as 

[ ]{ }n nS L nK . In the case where petals are different (members of the arche-
types of the different curve classes) iK , the c-class is called the non-
regular curve c-class and is given as [ ]{ }nS A n K . Examples of archetypes 
of the regular curve c-class are shown in Fig. 2.39a–e and archetypes of 
the nonregular curve c-class are shown in Fig. 2.39f–g. 

Fig. 2.39. Examples of archetypes of the regular curve c-class and the nonregular 
curve c-class 

The c-class [ ]( )nS n , for which all petals are archetypes of the thin 
class , is the regular thin c-class [ ]( )n nS L n . In the case where 

2 , the class is reduced to the thin star class [ ]n nL . In the case when 
the thin star class has different sizes of the “rays” [ ]( ),n mS L n m n
the class is the thin para-star class [ ]n mL . Example of the archetype 
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generated from the thin star class 4 4[ ]L  is shown in Fig. 2.40a and the 
archetype generated from the thin para-star class 6 4[ ]L  is shown in Fig. 
2.40b.

The complex star point class is the class that has the nucleus and petals 
that are joined in one point with nucleus. This class is given by the nota-
tion of the complex class [ ]{ }( )nS n . The complex polygon star 

[ ]{ }( )n h k mS L L nL
4 8 4 3[ ]{ }(4 )S L L L

4 8 1 3[ ] (4 )CS L K L , and Fig. 2.40e 4 4 4 1[ ]{ } 4 ES L L K .

           
    a         b  c d e 

Fig. 2.40. Archetypes of the thin star class, exemplar of the concave c-class 

(' ' ) ( , )S C  is derived from the complex symmetrical thin class 
( , )C  archetypes of which consist of two parts, one called the blade 

and the other one called handle. The handle is a member of the thin class 
. The members of the a posteriori spade class are used as the structural 

archetypes of the real-world object called spade. The spade class 
2(' ') ( , )S C  is the class archetypes of which are obtained by joining 

the straight line with the object called the core that is a member of one of 
the classes: the convex, the concave, or the cyclic in such a way that the 
straight line has one common point with one of the sides of the core and 
the whole figure is symmetrical. Examples of the spade class are shown in 
Fig. 2.41a 4 2(' ') ,RS C L , Fig. 2.41b–c 4 2(' ') ,TS C L , Fig. 2.41d 

5 2(' ') ,TS C L , Fig. 2.41e 5 2(' ') ,MS C L , Fig. 2.41f 6 2(' ') ( , )S C L ,

Fig. 2.41g 4
1 2(' ') ,
L

S C M , Fig. 2.41h 1 2(' ') ,CS C K , Fig. 2.41i 

2.1.2.2. The Spade Class

the properties of the real-world object. The spade class denoted as 
The spade class is the a posteriori class that is established based on

complex polygon star point class is given by the symbolic name 
point class is the class whose nucleus and petals are polygons. The

point class are given in Fig. 2.40c ,  Fig.  2.40d 
. Examples of the archetypes of the complex star
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4 8 3 2(' ') ( [ ](4 ), )S C Q L L , and Fig. 2.41j 1 4 4 2(' ') ( [ ]( ), )S C A L L . The 
notation of the spade class can be expressed in the form of the  class. 
For example, the symbolic name of the archetype in Fig. 2.41a is 

5 3 4[ ] 2 R RL L 5 3 4,R TL
5 3 3 4[ ] 2 [ ]( ), TL Q L L L

                         
  a        b          c     d          e         f        g        h i         j        k       l 

The a posteriori T-spade class is derived from the complex thin class 
(spade class). The archetype of the T-spade class 3

1(' ') , ( )S C s
instead of the handle that is a member of the thin straight class has the 
handle that is a member of the s-star class 3

1( )s . The s-star class 3
1( )s

is the thin star class whose archetypes are symmetrical and have one l 
branch that is significantly longer from other branches. Examples of arche-
types from the s-star are shown in Fig. 2.42a–c. Archetypes shown in Fig. 
2.42a, c have the symbolic name 3 3

1( ) [ ]s L , whereas the archetype in 
Fig. 2.42b has the symbolic name 3 4

1( ) [ ]s L . Examples of the archetypes 
from the T-spade class are shown in Fig. 2.42d–f. The symbolic names of 
archetypes from the T-spade class shown in Fig. 2.42 are as follows: 

4 3 3
1(' ') , ( ) [ ]TS C L s L 4 3 3

1, ( ) [ ]RL s L
4 3 4

1(' ') , ( ) [ ]RS C L s L  (Fig. 2.42f). 

,

and the archetype in Fig. 2.41c is . This

 (Fig. 2.42e), (Fig. 2.42d), ('S C')

[ ]L L2, L , the archetype in Fig. 2.41b  is 

notation makes it possible to find the difference between the  archetype
shown in Fig. 2.41b and the archetype shown in Fig. 2.41c. The archetypes 

3 3 4 3 4[ ] ,R RL L L[[L ]{2L }] and in Fig. 2.41l shown in Fig. 2.41k

 and 

are similar to archetypes shown in Fig. 2.41a–j and are not members of the 
spade class. 

Fig. 2.41. Archetypes of the “spade” class (a–j) and archetypes at the classes simi-
lar to the spade class (k–l) 
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    a          b            c           d             e             f 

The a posteriori C-spade class is derived from the complex thin class 
(spade class). The archetype of the C-spade class consists of three parts: 
the blade, the handle, and the small handle. The C-spade class 

2(' ') ( , , ( ) )S C  is the class archetypes of which are obtained by 
joining the straight line with the object called the core and the other object 
called the small handle in such a way that the whole object is symmetrical. 
The core can be a member of the convex, the concave, or the cyclic 

4 2 3(' ') , , (RS C L 4 2 1, , (RL
 and 4 2 1(' ') , , ( )RS C L K  (Fig. 2.43c). 

              
        a b c 

Fig. 2.43. Examples of archetypes generated from the C-spade class 

Similarly like archetypes of the spade class, the archetypes of the R-
spade class are members of the complex symmetrical classes 
(' ') ( , )S C  consisting of two parts: one called the blade and the other 
one called the handle. The handle is a member of the elongated class ,
whereas the blade is a member of one of the classes: the convex class, the 
concave class, or the cyclic class. In the case when both the handle and the 
blade are members of the convex class we have convex R-spade class 

)M (Fig. 2.43b), )L (Fig. 2.43a), ('S C')
The symbolic names of the archetypes shown are as follows:
classes. Examples of the C-spade class are shown in Fig. 2.43.

Fig. 2.42. Archetypes of the T-spade class 
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(' ') ( , )S C . Examples of the convex R-spade class are shown in Fig. 
2.44. The symbolic names of exemplars shown in Fig. 2.44 are as follows: 

4 4(' ') ,R RS C L L  (Fig. 2.44a), 4 4(' ') ,T RS C L L  (Fig. 2.44b, c), 

5 4(' ') ,T RS C L L  (Fig. 2.44d), 5 4(' ') ,M RS C L L  (Fig. 2.44e), 

6 4(' ') , RS C L L  (Fig. 2.44f), 4
1 4(' ') , RL

S C M L  (Fig. 2.44g), 

1 4(' ') ,C RS C K L  (Fig. 2.44h), 1 1(' ') ( , )S C M M (Fig. 2.44i, j), 

1 1(' ') ,ES C K M  (Fig. 2.44k), and 4 4(' ') ,T TS C L L  (Fig. 2.44l). The no-

tation of the convex R-spade class can be expressed in the notation of the 
concave class. For example, the exemplar generated from the R-spade 
class shown in Fig. 2.44a–b has its symbolic name 2 5 3[ ] 2 RQ L L , where 
symbol 5L  denotes an archetype with a small side. 

                    
  a         b       c          d           e          f         g           h             i         j        k          l  

Fig. 2.44. Exemplars generated from the convex R-spade class 

In the case when the handle is a member of the convex class and the 
blade is a member of the concave class, we have Q-spade class 
(' ') ( , )S C Q . In the case when the handle is a member of the convex 
class and the blade is a member of the cyclic class we have the A-spade 
class (' ') ( , )S C A . In the case when both the handle and the blade are 
members of the concave class we have the Q-q-spade class (' ') ( , )S C Q Q .
In the case when both the handle and the blade are members of the cyclic 
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class we have the A-a-spade class (' ') ( , )S C A A . Example of exemplar 

from the Q-spade class 4 8 3 4(' ') [ ](4 ), RS C Q L L L  is shown in Fig. 2.45a, 

example of exemplar from the A-spade class 1 4 4 4(' ') [ ]( ), RS C A L L L  is 

shown in Fig. 2.45b, and exemplar from the q-spade class 
4 2 4 1(' ') , [ ](2 )TS C L Q L M  is shown in Fig. 2.45c. 

      
   a      b       c 

Fig. 2.45. Exemplars generated from (a) the Q-spade class, (b) the A-spade class, 
(c) q-spade class 

The spade-pike class is derived from the complex class ( , )C ,

where  is the elongated pike class. The archetypes of the spade-convex 

pike class are complex classes ˆ(' ') ( , )S C  consisting of two parts, 
where one part called the handle is a member of the convex elongated pike 
class . The convex elongated pike class  consists of archetypes that 
have at least one sharp corner. Examples of exemplars generated from the 
convex elongated pike class are shown in Fig. 2.46. Symbolic names of 

exemplars shown in Fig. 2.46 are as follows: 3L  (Fig. 2.46a), 1M  (Fig. 

2.46b), and 1K  (Fig. 2.46c). 

 a   b   c 

Fig. 2.46. Archetypes of convex elongated pike class E
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Examples of exemplars generated from the spade-convex pike class are 
shown in Fig. 2.47. Symbolic names of exemplars shown in Fig. 2.47 are 

as follows: 4 3ˆ(' ') ,RS C L L  (Fig. 2.47a), 1 1ˆ(' ') ,ES C K M  (Fig. 2.47b), 

4 1ˆ(' ') ,TS C L K  (Fig. 2.47c), 4 1ˆ(' ') ,R ES C L K  (Fig. 2.47d), 4 1ˆ(' ') ,T ES C L K

(Fig. 2.47e), 5 1ˆ(' ') , ES C L K  (Fig. 2.47f), 1 1ˆ(' ') ,E ES C K K  (Fig. 2.47g), 

and 4 8 3 1ˆ(' ') [ ](4 ), ES C Q L L K  (Fig. 2.47h). 

                                   
  a          b              c               d          e       f          g            h 

Fig. 2.47. Archetypes of the spade-pike class 

The a posteriori classes described in this section are derived based on the 
specialization of the a priori shape classes that means these classes are 
established to match shape of the letter. In this section the class that is 
derived from the thin class, which is established based on the properties of 
the letters, is presented. The letter class is defined based on generalization 
of the most often used visual representation of the letters. The archetypes 
of this class represent the structural archetype of the letter. 

To represent a letter, the descriptions of the specific classes need to 
include the specific parameters that refer to the straightness of the seg-
ments, the length of the segment, the angle between segments, type of 
thinness, as well as the orientation of the object. The attributes such as the 
length are expressed by applying the graded values: { , , , }d

ia s m L ,
where  denotes a “very small,” s  denotes a “small,” m  denotes a 
“medium,” and L  denotes a “large” value. The attribute such as the angle 
can be expressed by applying the graded values: { , , , }ia R O A , where 

O

2.1.2.3. The Letter Class

 denotes a “very small,” R denotes a “right,”  denotes an “obtuse,” 
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and A  denotes an “acute” angle. The orientation of the object is expressed 
by a selected type of the letter and a type of the transformation M – a mir-
ror transformation and a rotation RO  in a clockwise direction by the angle 

{ , , }ia R O A . Figure 2.48 shows archetypes of the specific class 2 .
The letters “L,” “ ,” “ ,” “V,” “J,” “ ,” “ ,” “ ” and the mathematical 
symbols , , , ,  are described by the symbolic names of the spe-
cific thin class shown in Figs. 2.48 and 2.49. For example, the letter “L” is 
given by the symbolic name 3 [ , ]RL l s  or by adding the letter “L” in 

bracket “[ ]” into the name of the class 3[" "] RL L .
The symbolic names of the letter classes show similarities of the objects 

from these classes. This property of the symbolic name is used in process 
of generalization (abstraction). Archetypes shown in Fig. 2.48 are repre-
sented by the symbolic names as follows 3 [ , ]RL l s  (Fig. 2.48a), 

3 [ , ]RL l m  (Fig. 2.48b), 3 [ , ]RL m m  (Fig. 2.48c), 3 [ , ]OL m m
(Fig. 2.48d), and 3 [ , ]L m m  (Fig. 2.48e). The generalization process 
shows that all objects shown in Fig. 2.49 are members of the class 3[ ]L .
In order to find the proper archetype that matches a given letter the sub-
specific class that includes the spatial orientation of the object needs to be 
introduced. Figure 2.49 shows archetypes of the subspecific letter class 
that is established to differentiate among the different letters that are mem-
bers of the same specific class 3 [ , ]RL l s . The symbolic names of the 

subspecific classes are as follows: 3 [ , ]{' '}RL l s L  (Fig. 2.49a), 
3 [ , ]{' '( )}RL l s L M  (Fig. 2.49b), 3 2[ , ]{' '( )}R

RL l s L MO  (Fig. 2.49c), 
3 2[ , ]{' '( )}R
RL l s L O  (Fig. 2.49d), 3 [ , ]{' '( )}R

RL l s L O  (Fig. 2.49e), 
3 [ , ]{' '( )}R

RL l s L MO  (Fig. 2.49f ), 3 3R
R

and 3 3[ , ]{' '( )}R
RL l s L O  (Fig. 2.49h). 

                        
a b c  d  e 

Fig. 2.48. Archetypes of the specific thin class 2

L l[ , s]{' 'L (MO )} (Fig. 2.49g), 

A



2.1. Possible Classes of Shape      91 

                        
a   b c        d e f g      h 

Fig. 2.49. Archetypes of the specific thin class 

to be able to predict a new font or to recognize a letter that is subjected to 
one of many distortions. The shape classes convey information about the 
similarities between archetypes of the members of the different classes. 
For example, from the function class the specific classes are derived in or-
der to represent the difference among letters that looks very similar. Fig-
ures 2.50 and 2.51 show examples of the archetypes of the convex function 

Spade Class.” The letters “V” and “U” and the mathematical symbols 
, , , , , , , , , ,  are described by the symbolic 

names of the symmetrical convex function class. Figure 2.50 shows arche-
types of the subspecific letter class that represent symbols 

, , , , , , ,  and letters “V” and “U.” The symbolic names 
of the subspecific classes for archetypes shown in Fig. 2.50 are as follows: 

1 1
OM K  (Fig. 2.50a), 3

AL  (Fig. 2.50b), 1 1
EM K  (Fig. 

2.50c), 1 4
TM L  (Fig. 2.50d), 1 1

SM K  (Fig. 2.50e), and 
1 2[ [ ]]M K  (Fig. 2.50f). Figure 2.51 shows archetypes of the subspecific 

letter class that represent symbols , ,  and letter “U.” The sym-
bolic names of the subspecific classes for archetypes shown in Fig. 2.51 
are as follows: 4

RL  (Fig. 2.51a), 4
TL  (Fig. 2.51b), 4

TL  (Fig. 

2.51c), 4[ ]L  (Fig. 2.51d), 1 3[ [ ]]M L  (Fig. 2.51e, f), 1 4[ [ ]]M L  (Fig. 
2.51g), and 1 4[ [ ]]M K  (Fig. 2.51h). The mathematical symbol “ ” is 
interpreted as the rotated version of the letter “U.” Archetypes in Fig. 

Fig. 2.50. Archetypes of the symmetrical convex function class 

Understanding of the letter requires identifying the similar objects in order 

a   b c       d e f 

2.51b–d can be interpreted as the representatives of the distorted version of
the symbols . ,

class. The concept of the function class is explained in the section “The 
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Fig. 2.51. Archetypes of the nonsymmetrical convex function class 

Archetypes of the nonfunction class are shown in Fig. 2.52. The letter 
“U” can be described by the symbolic names of the nonfunction class 

6[ ]L  (Fig. 2.52a). The letter “C” can be described by the symbolic 
names 1 1

EM K  (Fig. 2.52b), 2 4[ [ ]]M L  (Fig. 2.52c, d), 
1 4[ [ ]]M K  (Fig. 2.52e), and 1 3[ [ ]]M K  (Fig. 2.52f). 

Fig. 2.52. Archetypes of the nonfunction class 

classes that can be used for description of these letters are derived from the 
thin polygon-curve class . Because there is a big range of shapes that 
can be used as representatives of the letters type M, the M-letter classes 
has to be established during learning process described in Chap. 5. In this 
section, examples of the archetypes from the selected M-letter classes are 
presented. The poly-line version of the letter type M is described in 
Chap. 5. The symbolic names of some of the possible curvilinear ver-
sions of the letters are given by the following notations: 1 4 1[ [ ]( )]Q L M

(Fig. 2.53a), 1 2 4 1[ [ [ ]]( )]Q M L M  (Fig. 2.53b), 3 4 1[ [ ](3 )]Q L M  (Fig. 2.53c), 
1 2 4 2 3 1[ [ [ ]]( [ ](2 ))]Q M L Q L M  (Fig. 2.53d), 1 2 4 2 3 1[ [ [ ]]( [ ](2 ))]Q M L Q L M

(Fig. 2.53e), 1 2 6 2 3 1[ [ [ ]]( [ ](2 ))]Q M L Q L M  (Fig. 2.53f), and 
1 2 6 2 1 4 1[ [ ]] [ ](2 )TQ M L Q M L M  (Fig. 2.53g). 

                  

Fig. 2.53. Archetypes of the nonfunction classes 

a   b c       d e f g h

a   b c       d e f 

The letters “M” and “ ” can have their curvilinear versions. The specific 

a   b c       d e f g 
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2.1.3. String Form: Type of the Class 

Archetypes of the shape classes are described in the form of the symbolic 
names. For the purpose of the visual reasoning the symbolic name is trans-
formed into the string form. The string consists of combination of the se-
lected letters, numbers, and the symbol “|.” The string has a following 
form: B1|…|Bi|...|Bn|, where Bi denotes the symbolic name of the class. 
There is a conversion from the notation of the symbolic name into the 
string notation. For example, the convex class 3L  is expressed as L3 in the 
string form. 

The string notation is used to introduce the type of the class. The string 
without symbol “|” is denoted as the type P. It represents exemplars of the 
convex classes. For example, exemplars of the convex classes given in Fig. 
2.54 (L3A, L4R, M1L3A, M1L4R, and M2L4R) are all of the type P. 

Fig. 2.54. Exemplars of the type P 

Examples of exemplars that represent the different types of string forms 
are shown in Figs. 2.55–2.67. The type S that represents cyclic and con-
cave classes, is given in the form Sn|A|1X|…|iX|…|nX|. The type Sq (the 
concave type) is given in the form Qn|G|1R|…|iR|…|nR|, whereas the type 
Sa (the cyclic type) is given as An|C|1W|…|iW|…|nW|. Examples of the 
exemplars type Sn|A|1X|…|iX|…|nX| are given in Figs. 2.55–2.57. The 
type S1|A|1_S1|1_A|1_X| and the type S1|A|1_S1|1_A|2_S1|2_A|2_X| both 
represent the exemplar o of the concave or cyclic classes on the first and 
the second level of iteration. The concave class 4

4 3(4 )
L

Q L  is expressed as 

 as 4 4 4
1 1 1 4

R R R
RL L L

A A A L

A1|L4R|1_A1|1_L4R|2_A1|2_L4R|2_L4R|.
Examples of the general type string forms Sn|A|1X|…|iX|…|nX| that 

Q1|G|R|, A1|C|W|, Q2|G|1R|2R|, Q3|G|1R|2R|3R|, A3|C|1W|2W|3W| 
A1|Q1|G|R|W|, A1|Q3|G|1R|2R|3R|W|, A2|Q1|G|R|1W|2W| 
A1|Q1|G|1_Q1|1_G|R|W|, A1|Q2|G|1_Q1|1_G|1_R|R|W 
A1|Q3|G|1_Q1|1_G|1_R|1R|2R|W

generate the following patterns are as follows: 

Q4|L4|L3|L3|L3| in the string form. For example, an exemplar shown in Fig. 

2.59a given  is transformed into the string form as 
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Examples of general type string form S1|A|1_S1|1_A|1_X| that gener-

Q1|G|1_Q1|1_G|R|, A1|C|1_A1|1_C|W|, Q2|G|R1|1_1Q1|1_1G|1_2R|. 

Examples of the exemplars of the complex types are shown in Figs. 2.63 
and 2.64. 

Fig. 2.55. Exemplars of the type Q1|G|R| 

Fig. 2.56. Exemplars of the type A1|G|W| 

Fig. 2.57. Exemplars of the type Q2|G|1R|2R| 

Fig. 2.58. Exemplars of the type Q1|G|1_Q1|1_G|R| 

  

Fig. 2.59. Exemplars of the types A1|G|1_A1|1_G|W| and Q3|G|1R|2R|3R| 

Fig. 2.60. Exemplars of the type Q2|G|R1|1_1Q1|1_1G|1_2R| 

a   b c       

ates the following patterns are as follows: 
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Fig. 2.61. Exemplars of the type Q1|G|1_Q1|1_G|2_Q1|2_G|2_R| 

Fig. 2.62. Exemplars of the types Q3|G|1R|2R|1_1Q1|1_1G|1_R| and 
A1|Q2|G|1_Q1|1_G|1_R|R|W

Fig. 2.63. Exemplars of the type C2|K|T| 

Fig. 2.64. Exemplars of the types C2|Q1|G|R|T| and C2|A1|G|W|T| 

Fig. 2.65. Exemplars of the types A1|Q1|G|R|W| and A1|Q3|G|1R|2R|3R|W| 

Fig. 2.66. Exemplars of the type A2|Q1|G|R|1W|2W| 

Fig. 2.67. Exemplars of the types A1|Q1|G|1_Q1|1_G|R|W and 
A1|Q3|G|1_Q1|1_G|1_R|1R|2R|W
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Fig. 2.68. The archetype of the complex class 

The concave class is described by the symbolic name, the type of the 
sides (straight or curvilinear), and the symmetry and elongatedness as 
follows: 

<Q><L4>|{<L3>[O]}{<L3>[O]}|[AAAA][NS][El]|[AAA][NS][El]|[A
AA][NS][El].

The symbolic name <Q><L4>|{<L3>[O]}{<L3>[O]}, 4
2 3 3,O OL

Q L L
denotes an archetype of the concave polygon class with L4 as a generic 

[AAAA][NS][E1] denotes the polygon (straight lines – A), nonsymmetrical 
(NS), and medium elongated (E1). 

The translation of the symbolic name into a string form requires includ-
ing all details of the symbolic name. The level of details is marked by 

L0_L1_...Ln, where the level Ln denotes the level of the detailed descrip-
tion of the archetype of the class. For example, the triangle class 3

OL

2.1.4. Generalization 

polygon and two residuals L3[O] – the obtuse triangles. The symbol 

introducing the symbol “_.” The symbolic name is translated into the form 

form of the SUS representation. It is easy to translate the SUS representa-
tion into the form of the symbolic names. For example, the SUS repre-
sentation C[L3,L3] is translated into the symbolic name 3 3( , )C L L  and 
the SUS representation <Q><L4>|{<L3>[O]}{<L3>[O]} is translated into 
the symbolic name 4

2 3 3( , )O OL
Q L L . Figure 2.68 illustrates the meaning of the 

symbols used by the SUS. The complex class is described by a symbolic 
name, the type of vertices, the normalized size of the sides, and the type of 
angles as follows: C[L3,L3], [vvvqvq], and L{ mmslle}{apaoao}. The 
symbolic name C[L3,L3] ( 3 3( , )C L L ) denotes an archetype of the complex 
class (two triangles). The term [vvvqvq] denotes the convex v and concave 
q vertices. The term L{mmslle} denotes the normalized size of the sides 
(l – large, m – medium, s – small, and e – very small). The term {apaoao} 
denotes angles (a – acute, o – obtuse, and p – right). 

In the shape understanding system (SUS) a symbolic name is given in the 
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(m,m,m) is translated into the form L_3_A_mmm. An exemplar of the 
concave class (Fig. 2.69a) is described by the symbolic name, the type of 
vertices, the normalized size of the sides, and the type of angles: 

4
2 3 , 3O AL

Q L L , [vaqavvqv], and L{lmmsllml}{paaapaoa}. The symbolic 
names of exemplars of the concave class 4

2 3 , 3O AL
Q L L  and all detail des-

criptions are translated into the string form as follows: 

(Fig. 2.69a) Q_1|L_4_R_mlml_1010|L_3_A_mmm_2|L_3_O_llm_0| 
(Fig. 2.69b) Q_1|L_4_R_mlml_1100|L_3_A_mmm_2|L_3_O_llm_0| 

  a   b 

Fig. 2.69. Exemplars of the class 4
2 3 , 3O AL

Q L L

During generalization the symbol is dropped from the right to the left, 
e.g., for the symbol L_3_A, the two generalizations are possible: L_3 and 
L, where “L_3_A” is any acute triangle, “L_3” is any triangle, and “L” is 
any polygon. In the case of the concave polygon Q_1|L_4_R|L_3_A_2| the 
generalization involves dropping the letters in the “ordered” manner or in 
the “combinatorial” manner. 

An ordered manner takes into account the structural feature of the ex-
emplar, for example, for the concave class the generic class is treated dif-
ferently than residuals. The ordered manner required to compare only the 
“known” features of the shape. 

The combinatorial manner does not distinguish between the types of the 
class description treating all elements of the string as the symbols of the 
type L0_L1_...Ln. The generalization means to drop any combination of 
the letters. The final step of the combinatorial manner is interpretation of 
the final string (the string where selected combination of the letters was 
removed).

Example of the string obtained during generalization performed in the 
“ordered” manner: 

Q_1|L_4_R|L_3_A_2|Q_1|L_4_R|L_3_A|, Q_1|L_4 |L_3|, Q_1|L |L|, Q 

Example of the strings obtained during generalization performed in the 
“combinatorial” manner: 
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Q_1|L_4_R|L_3_A_2|, Q_1|L_4_R|L_3_2|, Q_1|L_4|L_3_A_2|, 
Q_1|L_4|L_3_2|, Q_1|L_4_R|L_3_A|, Q_1|L_4_R|L_3|, Q_1|L_4|L_3_A|, 
Q_1|L_4|L_3|, Q_1|L_4|L|, Q_1|L|L_3|, Q_1|L|L|, Q. 
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3. Digital Objects, Image Transformations,
and Reasoning Process 

3.1. Digital Image Representation 

In Chap. 2, the shape classes used for the object description in terms of the 
perceptual categories are described. The perceived object has to be fitted 
into one of the shape categories during the reasoning process. It is assumed 
that visual object is extracted from image and is represented as the digital 
object on the background. The digital object only to some extent can 
approximate the object given in the continuous Euclidean space. The 
archetype, which is a member of the shape classes, is seen as an ideal 
geometrical object that is represented by its symbolic name. In this chapter 
the description of the reasoning process that leads to assigning the 
perceived object into one of the shape classes is presented. 

In the presented method, a perceived object is transformed into a digital 
representation called the visual object given as an image region or a set of 
pixels. During understanding process, the perceived object called a 

. The terms 
visual object, exemplar, and a set of critical points can be understood as 
synonyms o . The term visual object is used to emphasize that an 
object, given as a set of pixels that can be observed on the screen, is 
understood as an object that is seen on the screen. The term exemplar is 
used to denote that an object, given as a set of pixels that is seen on the 
screen, is generated from one of the shape classes in the process called 
exemplar generation. The term a set of critical points is used to underline 
that that an object, given as a set of pixels, is transformed during 
processing stages into another set of critical points. The phantom u is 
transformed into a set of critical points  by the sensory transformation 

( )u o  and next into the symbolic name  by the symbolic transfor-
mation ( )o . During visual reasoning process the symbolic name  is 
used to find the visual concept  and next to assign perceived object into 
one of the ontological categories. Ontological categories are part of the 

Z. Les and M. Les: Digital Objects, Image Transformations, and Reasoning Process, Studies in 

object. The visual object o is given by a set of critical points  
phantom u is transformed into a digital representation called a visual  

Computational Intelligence (SCI) 86, 101–134 (2008) 
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categorical structures of knowledge about the world comprising the visual 
object categories and knowledge categories described in Chap. 4. The 
visual object categories that represent knowledge about the world objects 
are given in the form of the categorical chains. 

An archetype  of the class  ( k ) is an ideal realization of shape 
in the two-dimensional Euclidean space (E2). The exemplar o O  of the 
class  is a binary realization of the archetype in the discrete space. The 
exemplar (visual object) is one of the regions of binary image. The binary 
image is regarded as a set of pixels on the discrete grid (i, j). A set of all 
points (pixels) of a given grid is denoted as 0 1 1{ , , , }KP P P P . The 
mapping f(i, j) assigns one of the two values 0 and 1 to each pixel. The pixel 
for which f(i, j) = 1 is called the image point or the point. The exemplar 
(visual object) o O  is one of the regions of binary image given by a set 
of points F  represented by the mapping 

1, if ( , ) ,
( , )

0, if ( , ) .

F

F

i j
f i j

i j
The exemplar o O  is represented as a set of points F

1 2{ , , , }F F F
Ju u u .

Although it was assumed that visual object is represented by binary 
image it does not cause a serious limitation to the presented method. The 
visual object which consists of parts of different colors is assigned into 
colored class, and during processing stages these parts are interpreted as 
new visual objects. 

3.2. Processing Methods: Image Transformations 

It was described in Sect. 3.1 that the perceived object, during reasoning 
process, is transformed into a set of critical points  and next into the 
symbolic name . Perceiving object can be seen as the process of 
acquiring a new data. To fulfill the required task of acquiring data and 
processing it to obtain a set of descriptors , the processing methods 
are used. The processing method applies the image transformation to 
transform the data into one of the data types. The image transformation 
is the mapping from one set called the domain of mapping into another 
called the set of mapping values. As a result of applying the image 
transformation into a set of critical points , a  new set of critical points  
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obtained. The descriptor transformation  is applied to find a set of 
descriptors  used to assign perceived object to one of the possible 
classes . The set of descriptors is obtained by using one of the 
descriptor transformations  on the set of critical points , a set of 
transform numbers , or a set of mapping numbers . Finally, a set of rules 
is applied that allows assigning examined object to one of the shape 
classes given by symbolic names. 

3.2.1. Image Transformation and the Visibility Measure 

As described earlier the image transformation  is a mapping from one set 
called the domain of mapping into another set of mapping values. 
Depending on the type of these sets we can distinguish the image trans-
formation , which maps a set of critical points to one real number, the 
image transformations  and , which map a set of critical points into 
a set of real numbers, and the image transformations  and , which 

the image transformations  and  are essential part of the reasoning 
process, these transformations are described in more detail. The image 
transformation  is based on the concept of visibility measure. The 
visibility measure is used to select subset of points from a set of critical 
points. The visibility measure is computed based on the selected 
neighborhood of points ui, the function of the local parameter or relation to 
other set of points. The visibility measure  computed based on the 
selected neighborhood of the points u , given by their coordinates ( , )k kx y ,  
is expressed as 

, ,( ) ,
p P q Q

F l
k i p j q p q

p P q Q
u f T

where ,
l
p qT  is a given template, P and Q are parameters characterizing the 

neighborhood and ,
F

h kf  is a characteristic function given as 

,
1, if ( , ) ,
0, if ( , ) ,

F
F h k

h k F
h k

x y
f

x y
Fwhere

defined as the function of the local parameters, e.g., sum of the small dis-
tances, is given as 

is a set of critical points (visual object).  The visibility measure 

, a set of transform numbers , or a set of mapping numbers  are 

map a set of critical points into another set of critical points. Because 

k
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ˆ( , ) ,
k

i i k j
j i

u u

where ˆ
j  is a parameter computed for the given two points iu  and i ku .

The visibility measure given by the relation to other set of points  is 
expressed as 

1, if ,
( )

0, otherwise,
j

j

u
u

where a set  is the set of points to which a given point uj is related. 
The image transformation (discarding points) :  selects 

the subset of points from a given set of points based on the visibility 
measure . For an arbitrary point ui, the visibility measure ( )iu
is applied to find if point ui is a new critical point: [ :iu

( ) ]i i iu T u u , where T is a selected threshold and iu  is a new 
critical point at the higher level of processing. A set of critical points is 
obtained by applying one of the image transformations  based on the 
visibility measure i

i  to the set of critical points of the lower level 1i

to obtain a set of critical points i . Sets of critical points can be regarded 
as a hierarchical structure in which the set of critical points at one level 

 can be used to obtain the set of critical points at the higher level of 
processing.

To represent the sequence transformations in more convenient way, the 
symbol  in image transformation is omitted and image transformations 
are denoted using symbol of the visibility measure, e.g., 1

0 1( )
and 2

1 2( ) .
The image transformation (generating points)  generates the subset 

of points based on a subset of critical points . For an arbitrary point ui,
the transformation ( )iP  generates the points as follows: 1[ , ,i iu u

: ( )]k j k k jP P P P .
An example of the transformation ( )iP  that selects points that belong 

to the linear segment (generate linear segment) 1i iu u  is given as 
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11, if ,( )
0, otherwise,

i i i
i

P u uP

where the point j  is generated if pixel iP  belongs to the linear segment 

1i i iP u u . The set of j  points is denoted as .
An example of the application of the image transformations  and 

 is shown in Fig. 3.1. The perceived concave object is given as a set of 
critical points F  (Fig. 3.1a, black points). After application of the 
image transformations : F B

B , a set of border points B  is 
obtained (Fig. 3.1b). Next by application of the image transformations 

: B  and : H
H , a set of convex hull points 

is obtained (Fig. 3.1c, black color). After application of the image 
transformations : B  and : B , a set of convex 
points  (Fig. 3.1d, gray color) and a set of concave points 
(Fig. 3.1c, black color) are obtained. Finally after application of the image 
transformations : B , :

k
R

R

B , :
k
R O

O ,
a set of concave points O

3.3. Reasoning Process 

The reasoning process that is part of the visual reasoning process is 
performed passing the consecutive stages of reasoning. During each stage 
the sequence of image transformations is applied to find a set of 
descriptors. The sequence of image transformations type :

a  b

Fig. 3.1. Example of the reasoning process 

 c  d  e f

 is obtained (Fig. 3.1e, black color). Fig. 3.1f 
shows archetype a member of the class to which perceived object is assigned.
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that are used in reasoning process can be written as 0 1

1
: ,

1 2 1

2
: , , : M M

M 1 2 M

0 M . In the case when the image transformation is given in the 
general form as : W , the sequence of image transformations is 
given as 0

1 2
• • • : M

M
L L L , where L denotes one of the 

image transformations and  denotes the sequential operator. The example 
of the reasoning process that assigns the symbolic name to the object is 

The reasoning involves processing by applying one of the image 
transformations, computation of the descriptors using a descriptor transfor-
mation, and assigning the object to one of the possible classes. 

polygon class 4 3[ ]( )Q L L  passing consecutive reasoning stages 
[ ] [ ]( • )m m n m n iQ Q Q L Q L m L  which are presented below. The 

reasoning stages are denoted by the symbolic name classes to which an 
examined object is to be assigned. 

Processing stage 0 Q
–  The image transformation: 

: F B
B , : B , : H

H ,

: H

–  The descriptor transformation: 

| | 8( ) 0.14
| | 59C C F

–  The rule: 

0.05[ ] [0.14 ]Q Q
C CT s T s

Processing stage 1
mQ

–  The image transformation: 

: B  and : B

–  The descriptor transformation: 

( ) 1
–  The rule: 

1

[ ] [ 1]
mQ Qm s m s

:or as a c omposite

given in Fig. 3.1. 

An examined object given in Fig. 3.1 is assigned to the concave  
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Processing stage 2 [ ]m nQ L
At this processing stage, there is no need to apply the processing 

transformation.
–  The descriptor transformation: 

( ) 4
–  The rule: 

1
4[ ] [ ] [ 4] L

Qm nn s Q L n s
Processing stage 3 [ ]( • )

km n hQ L n L
–  The image transformations: 

: B , :
k
R

R

B , :
k
R O

O

–  The descriptor transformation: 
( ) 3

k

k
k

–  The rule: 
1 1 4 3[ ] [ ]( • ) [ 3] [ ]( )

k

k
k k m n hh s Q L n L h s Q L L

transformations • • • • • • :
R

F O
B H O , is shown 

in Fig. 3.1.
In the following paragraphs, examples of the reasoning process that 

leads to assigning the perceived object into the convex, concave, thin, or 
cyclic class are presented. During the reasoning process the different 

3.3.1. Convex Object: Reasoning Process 

In this chapter the reasoning process that leads to assigning the visual 
object into one of the convex classes is presented. Assigning the examined 
object to one of the convex classes  is performed during reasoning 
process that consists of a series of consecutive stages 0 1 N ,
where 0  is the beginning stage and N  is the final stage. The reasoning 
process involves applying one of the image transformations, computation 
of the descriptors using the descriptor transformation, and finally assigning 
an object to one of the possible convex classes given by the description i .

The reasoning process, expressed as the sequence of the image

image transformations are applied for each class. The detail description of 
the reasoning process is given in [1–10].
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0

0

object is an exemplar of the convex class . The reasoning process is 
shown in Fig. 3.2. The perceived object is given as a set of critical points 

F  (Fig. 3.2a, gray pixels). At first the image transformation 
: F B

B  is applied to compute a set of border points B

(Fig. 3.2b, orange and pink pixels) and next the image transformation 
: B  is applied to compute a set of vertices  called the 

convex hull vertices (Fig. 3.2b, pink pixels). The convex hull is obtained 
by using image transformation  based on the convex hull visibility 
measure ( )B

iu . The point B B
iu  is called a convex hull vertex iu  if 

the visibility measure ( )B
iu  has a minimum at this point that means

[ : min(B B B B B

h h j h ku u

1
B B
j i i j

for 1, ,j h M  and B
i hu u .

The image transformation : H
H  is applied to compute a set 

of convex points H  (Fig. 3.2c, black pixels). The convex points are 
obtained based on the image transformation  that generates a set of 
points based on a set of vertices of the convex hull . The point 

kP P  is called a convex point, when 1k i iP u u , where 1i iu u  is a 

linear segment obtained by joining the vertices iu  and 1iu  of the convex 
hull by the straight line. The convex point kP , denoted as 

k
, is defined 

as follows: 1[ , , : ( )]
j

H

i i k j k ku u P P P P , where the 
transformation ( )iP  is defined as 

11, if ,
( )

0, otherwise,
i i i

i

P u u
P

where 1i iu u  is a linear segment obtained by joining the vertices iu  and 

1iu  of the convex hull by the straight line. The set of convex points is 

At the beginning stage of reasoning

(u ) u u u ,and each vertex not yet included on the hull, denoted as
defined as a minimal angle between two selected vertices of the convex hull

(u ))] u u .  The visibility measure is defined

denoted as H  and includes all points that constitute the convex hull 
polygon 0 1{ , , , }H H H H

K .

Stage of Reasoning

, it is assumed that an examined 
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The image transformation : H  is applied to compute a set 
of convex hull area points (Fig. 3.2d, blue pixels). The point iP P  is 
called a convex hull area point, when the following condition is fulfilled: 
[ : ( )]i j i i jP P P P , where the transformation ( )iP  is 
given as 

1, if ( ),
( )

0, otherwise,

H

i
i

P I
P

and where ( )HI  is an interior of the H . The set of points j  is 
called the convex hull area set and is denoted as .

Figure 3.2 shows the perceived object given as a set of critical points 
F  (Fig. 3.2a, gray pixels) that is transformed into a set of border points 
B  (Fig. 3.2b, orange and pink pixels) and next into the convex hull 

vertices (Fig. 3.2b, pink pixels). Based on a set of convex hull vertices 
, a set of convex points H  (Fig. 3.2c, black pixels) is obtained. It 

should be noted that a set of B  is not identical with H  due to not 
F

small departure from convexity can be interpreted as the result of the noise 
caused by a transforming phantom into a digital object. Finally a set of 
convex points H  is transformed into a set of convex hull area points 

Fig. 3.2. Example of image transformations applied during reasoning process:  

: F B
B  and : B : H

H ,
 and (d) the transformation : H

a         b c d e

(a) an exemplar before processing, (b) the first stage transformations
, (c) the transformation 

ideally convex object given by set of critical points . The shape  cate-
gory (archetype) approximates only to some degree the perceived object. The 

class to which perceived object is assigned.
 (Fig. 3.2d, blue pixels). Figure 3.2e shows the archetype a member of the 
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The general descriptor called the convexity coefficient is computed as 
follows: | | / | |F

C , where | |  is a number of points in the 
convex hull area and | |F  is a number of points of the figure. An 
examined object is assigned to the convex class  according to the 
following rule: [ ]C CT s , where CT  denotes a selected 
threshold.

Stage of Reasoning 1 L M K

At this stage of reasoning, it is assumed that an examined object is an 
exemplar of one of the general classes L, K, or M. During the first stage of 
reasoning process, an examined (perceived) object F  is transformed 
into a set of border points B , a set of convex hull vertices , a set of 
convex hull points H , and a set of convex hull area points . In the 
case when examined object is an ideal convex object, a set of border points 

B  is extensionally equal to a set of convex hull points H,
( )H B H H H H B

j j j .
The set of convex hull vertices  obtained during the first stage of 

reasoning process divides the set of convex hull points into M linear 
segments H

m , where 1, ,m M . Because a set of convex hull vertices 
 can include vertices for which the angles between consecutive linear 

segments 1m mu u  and 1m mu u  can be small, a set of a new convex hull 

vertices  is computed. A set  is obtained by applying the image 
transformation :  based on the convex hull visibility 
measure ( )B

iu . The point iu  is called an ideal convex hull 
vertex iu  if the visibility measure ( )iu  fulfills the following condition 

[ : ( ) 1]m m m ku u u u . The visibility measure is defined as 

1, if ,
( )

0, otherwise,
m

m

T
u

where the angles 1 1m m m mu u u  between linear segments 1m mu u  and 

1m mu u  are computed based on the formulae 
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1 1 1 1 1
2 2 2 2

1 1 1 1

( )( ) ( )( )cos ,
( ) ( ) ( ) ( )

i i i i i i i i
i

i i i i i i i i

x x x x y y y y
x x x x y y y y

where ( , )i ix y  denotes the coordinates of the point iu .
In the case when the angle between more than two consecutive segments 

1, , ,i i i ru u u  is small, the distance between the line 0N i i rl u u  and 

each point 1 2 1, , ,i i i ru u u  is computed. The point iu  is called 

an ideal convex hull vertex ˆiu  if the visibility measure ˆ ( )iu  fulfills 
the following conditions: ˆ ˆ[ : ( ) 1]m m m ku u u u . The visibility 
measure is defined as 

ˆ

1, if for 0, , 2,
( )

0, otherwise,
i d

i

d T i r
u

The descriptor transformation uses a set of ideal convex hull points 
ˆ  to partition object into meaningful parts ˆ ˆ

i i i ku u  based on the 

distance ˆ ˆ
1i i iu u  between consecutive points of the ideal convex hull 

ˆ . The partitioning is performed based on the following rules: 
[ ]i d iT A , [ ]B iS T B ,  where 

1

k
jj

S  if 

j dT  for 1, ,j k.  Descriptor 1 2“ ”Y N  is given in the 
string form, where symbol i  can have two values A or B,
val( ) { , }i A B . The string can consist of letters A and B, e.g., 

where the distance di from the approximating line 0Nl  to a point su  given as 

( , ),s sx y where 1, , 1,s r is expressed as 2 2

1 2( ) ( ) ,i s sd x D y D

where 2 1 ,D AD B 1 ,b B
A aD ,s sB y Ax 1/ ,A a N Nb y ax ,

and 0

0
.N

N

y y
x xa  The point iu  is given by 0 0( , )x y  coordinates, the point 

i ru  is given by ( , )N Nx y  coordinates, and the point su  is given by ( , )s sx y
coordinates. As a result a set of distances 0 2{ , , }rd d  is obtained. 
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“AAAAA,” “B,” and “ABAABA.” In the case when string consists of the 
letter A, e.g., “AAAAA,” it means that perceived object consists of  
the linear segments and is assigning to the polygon class L  according to 
the rule: [ “ • ”] L

Y n A s . In the case when string consists of a 
single letter B, it means that perceived object is a curve and is being 
assigned to the curve class K  according to the rule: [ “ ”] K

Y B s .
In the case when string consists of letters A and B, e.g., “ABAABA,” it means 
that perceived object is a curve-linear object and is being assigned to the 
curve-polygon class M  according to the rule: [ “* * *”] M

Y A B s .

Stage of Reasoning i L

At this stage of reasoning, it is assumed that an examined object is an 
exemplar of the convex polygon class L. A set of the ideal convex hull 

ˆ  is used to compute a set of vertices of the convex polygon O . A set 
of vertices of the convex polygon is obtained by using the image 
transformation ˆ: O

O  based on the convex hull visibility 
measure ˆ( )O iu . The point ˆˆiu  is called a vertex of the convex 
polygon O

iu  if the visibility measure ˆ( )O iu  fulfills the following 
conditions: ˆˆ ˆ ˆ ˆ[ : ( ) ] O

m O m m m ku u u u u  and, as a result, a set 
of vertices of the convex polygon O  is obtained. Next, the image 
transformation : O V

V  is applied to compute a set of convex 
points V.  The convex points are obtained based on the image 
transformation  that generates a set of points based on a set of vertices 
of the convex polygon O . The point kP P  is called a polygon border 
point and is denoted as 

k
, when the following conditions are fulfilled: 

1[ , , : ( )] ,
j

O O O V
i i k j k ku u P P P P  where the transfor-

mation ( )iP  is given as follows 

11, if ,( )
0, otherwise,

O O
i i i

i
P u uP
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and where 1
O O
i iu u  is a linear segment obtained by joining the vertices O

iu
and 1

O
iu  by the straight line. The set of polygon border points is denoted as 

V . The set of polygon border points V  is matched against a set of 
border points B  of the examined object jo . The set of points V

perfectly matches the set of border points B  if B V . The 
descriptor is called the matching coefficient and is computed as 

| |V B
V .

An examined object is assigned to the convex polygon class 
nL

according to the following rule: [ ]
nL

V VT s , where TV denotes a 
selected threshold. 

Stage of Reasoning ˆ
i L

An exemplar that is a digital realization of the archetype only to some 
extent can approximate an archetype. An exemplar is described by 
essential and accidental features. The essential features are part of the 
shape model of the class and are usually selected as the attributes of the 
model. The accidental features are based on the extension of the a priori 
model of the selected class. To show the dependence between the essential 
and the accidental features, an example of the convex curve-polygon class 

4[ ]nM L  is given. The archetype of the convex curve-polygon class, 
described in Chap. 2, consists of the linear as well as curvilinear segments. 
The edge that is a curved line and where values of ir  (length of the 
curvilinear segment) are small is called the curvilinear corner. In the case 
when archetype of the class 4[ ]nM L  has the curvilinear corner 
(curvilinear segments are small), a class is called the quadrilateral class
with “round corners” or the corner quadrilateral class and is denoted by 
the hood 4L̂ , where “4” denotes the number of the round corners. The 
essential features are attributes of the class 4L̂  and the accidental features 
are “round corners.” A class description of which that is given by the 
accidental qualitative attributes is denoted by the hood ˆnL . Example of the 

4ˆ

corners (Fig. 3.3b), two curvilinear corners (Fig. 3.3c) and the one curvilinear 

archetypes of the L  class is shown in Fig. 3.3. Figure 3.3 shows example of 
exemplars that have all curvilinear corners (Fig. 3.3a), near all curvilinear 

corner (Fig. 3.3d).



114      3. Digital Objects, Image Transformations, and Reasoning Process 

       a   b          c  d 
Fig. 3.3. Examples of the exemplars that have (a) all curvilinear corners, (b) near 
all curvilinear corners, (c) two curvilinear corners, and (d) one curvilinear corner 

In this stage of reasoning, it is assumed that an object is assigned to the 
“smooth” corner polygon class ˆnL . To find the “smooth” corner, a set of ver-
tices of the ideal convex hull ˆ  is used. The smooth corner point is defined 
as the point for which its visibility measure has higher critical level than a 

1
, if for 1, , ,

( )
0, otherwise,

k

i i d
iZ i

T i k

where ˆ ˆ
1i i iu u .

The smooth corner points 1 , ,Z Z
ku u  are members of the set of smooth 

corner vertices denoted as Z
h , where 1, ,h H  is a number of smooth 

corners. A set of all smooth corner vertices is denoted as 
1

HZ Z
hh

.
A set of all vertices that are not smooth corners is obtained as a set 
operations: ˆY Z .

specified level. A smooth corner point is obtained by using image trans-
formation ˆ

: Z

O . The point ˆˆ
iu  is called the smooth corner 

point Z
iu  if the visibility measure ( )Z i  fulfills the following condition:  

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

1 1, , : 0 ( ) ( , , Z Z

i i k i i i Z i Z i i k ku u u u T u u

between the consecutive ideal convex hulls , ,i i ku u , and is expressed 
as

) (u , , u )

The smooth corner visibility measure is based on the sum of distances

.
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Fig. 3.4. The smooth corner points (gray colors) and a set of vertices of the 
convex polygon: (a) the vertex of the convex polygon obtained by applying image 
transformation A  and (b) the vertex of the convex polygon obtained by applying 
image transformation A

A set of vertices of the convex polygon is obtained by using the image 
transformation A  or A . Figure 3.4 shows the difference between these 
two methods. The point (marked by green color) shown in Fig. 3.4a is 
obtained by applying the image transformation A . The image trans-
formation : Z A

A  is based on the visibility measure ( )Z
A iu .

The point Z Z
i hu  is called a vertex of the convex polygon A

iu
if the visibility measure ( )Z

A iu  fulfills the following conditions: 
[ : ( )]Z Z Z Z A

i h A h n ku n u u

| | / 2, if | |even,
(| |)

| | 1, otherwise.

Z Z
Z h h

A h Z
h

n
n

As a result of application of the image transformation A , a set of 
vertices of the convex polygon A  is obtained. 

applying the image transformation A . The method based on the image 
transformation A  is applied when it can be assumed, based on the 
contextual information, that all linear segments are not corrupted by noise. 
The set of smooth corner vertices is transformed into set 1

1{ }Z Z

h u ,
2 { }Z Z

h ku , 1 1

1

HZ Z

hh
, 2 2

1

HZ Z

hh
, 1 1W Z V , and 

2 2W Z V . The point kP P  is called a vertex of the polygon,

. The visibility measure is defined as 

The point (marked by blue color) shown in Fig. 3.4b is obtained by 
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1 2 1 2
1 11, if ,( )

0, otherwise,

W W W W
i i i i i

i
P u u u uP

where 1 2 1 2
1 1

W W W W
i i i i iP u u u u .

Point iP  is the intersection point of two lines obtained by joining the 
vertices 1 2,W W

i iu u , and 1 2
1 1,W W

i iu u . As a result the set of vertices A  or A

is obtained. 
The descriptor is computed as | |Z

Z , where Z  is a number corner 
points. An examined object is assigned to the corner polygon class ˆnL
according to the following rule: ˆ[ ] n

Z ZT s L , where TZ denotes a 
selected threshold. 

Stage of Reasoning n
i L

At this stage of reasoning, it is assumed that an examined object is an 
exemplar of the convex polygon class nL . The set of vertices of the 
convex polygon O , described in previous section, is used to compute 

formation: ( )O O

O O . An examined object is assigned to the 
convex class nL  according to the following rule: 0[ 0] n

zn s L ,
where the descriptor Z , described in the previous section, denotes a 
number of corner points. 

Stage of Reasoning n
i RL

At this stage of reasoning, it is assumed that an examined object is an 
exemplar of the one specific polygon class. The perceived object is 
assigned to one of the specific classes based on the selected relations 
among features of the exemplars. The set of vertices of the convex  
polygon O  is used to compute the set of features 1 1{( , ),o df f

2 2( , ), , ( , )}d d

n nf f f f  of the exemplar o. The set of features o  is used to 

when the following conditions are fulfilled: 1
1 1[ ,WW W W W

i i i iu u u u
2 , : ( )]

j

W B
k j W k kP P P P ( )iP

 is given as follows 
, where the transformation 

a descriptor. The descriptor is computed by applying a descriptor trans-
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, 0, , ,a a a a
i j i j j n i j , where a a

i j .
The equality relation  can also be found using the clustering method. The 
clustering method is based on the similarity measure  that for the pair of 
descriptors ( , )a a

i j  assigns a real number , ( , )a a
i j i j . The similarity 

measure is described on the Cartesian product of the nonempty set W as 
:W W . As a measure of similarity the Euclidean distance is 

used. The distance for each descriptor is computed according to the formula 
2 2

, ( ), 1, , , 1, , 1a a
i j i j i n j n . The descriptor is computed 

by applying a descriptor transformation , ,i j i j

object o to the ideal convex polygon class nL  using an equality relation in 
n

ij
(the ideal polygon class). 

Stage of Reasoning [ ]m n
i M L

At this stage of reasoning, it is assumed that an examined object is an 
exemplar of the convex curve-polygon class [ ]m nM L . The description of 
the curve-polygon class is given in Chap. 2. The exemplar of the convex 
curve-polygon class [ ]m nM L  has at least one curvilinear segment. To find 
the curvilinear segment , a set of vertices of the ideal convex hull 

ˆ  is used. The computation of the curvilinear segments begins with 
computation of the straight-linear segment. A point of the straight-linear 
segment is obtained by using the image transformation 

ˆ: S .
The point 

ˆˆiu  is called the point of the straight-linear segment
S
iu  if the visibility measure ( )S i  fulfills the following condition: 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ
1 1 1 1 2[ , : ( , ) ] ( , ) ( , ).S S

i i S i i S i iu u u u T u u u u  The visibi-

lity measure is expressed as ˆ ˆ ˆ ˆ

1 1( , )S i i i iu u u u , where ˆ ˆ

1i iu u  is a 

distance between two points. The points of the straight-linear segment 

1 2
S Su u  are members of the straight-linear segment, denoted as S

m , where 

classes. The relation such as equality relation  is defined as
assign an examined object to one of the specific convex polygon

| | i n0, ,for all

the form of clustering is given as [ T i, j 1, ,n] s L

. The rule assigning the  

for all
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1, ,m M  is a number of straight-linear segments. A set of all straight-
linear segments is denoted as 

1

MS S
mm

.

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

1 1, , : 0 ( ) ( , ,i i k i i i i i i k ku u u u T u u

consecutive ideal convex hulls ˆ ˆ, ,i i ku u , and is expressed as 

1
, if for 1, , ,

( )
0, otherwise,

k

i i d
ii

T i k

where ˆ ˆ
1i i iu u . The points of the curvilinear segment 1 , , ku u  are 

members of the curvilinear segment denoted as h , where 1, ,h H
is a number of curvilinear segments. The set of all curvilinear segments is 
denoted as 

1

H

hh
. The descriptors are computed by applying a 

descriptor transformation: ( ) | |  and ( ) | |S S
S S .

An examined segment is assigned to one of the classes based on the 
rules: 1[ 1 1]S s M , 1 1[ 1 ] [ ]n

S n s M L ,  or 
2 2[ 2 ] [ ]n

S n s M L . The description of the curve-polygon 
class 1M , 1 1[ ]nM L , or 2 2[ ]nM L  is given in Chap. 2. 

Stage of Reasoning i K

At this stage of reasoning, it is assumed that an examined object is an 
exemplar of the convex curve class K. A curvilinear point is defined as the 
point for which its visibility measure has higher critical level than a 
specified level. A curvilinear point is obtained by using the image 
transformation based on the curvature measure. The curvature is obtained 
by applying the image transformation  that assigns the real number to 
each of the points B B

iu  based on the local transformation ( )B
iu .

mation ˆ: . The point ˆˆiu
i ( )i

A point of the curvilinear segment is obtained by using the image transfor-

fulfills the following condition: if the visibility measure unear segment
is called the point of the curvili- 

) (u , , u ) .

The visibility measure is based on the sum of the distances between the
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The image transformation based on the local properties is given as 
[ : ( )]B B B B

i i B i i iu u u , where the local transformation 
( )B

iu  of the point B
iu , given by its coordinates ( , )i ix y , is given as 

( )B
i i i i iu X Y Y X , where the discrete differences are expressed as 

follows:

1 1

2 2 1/ 2

1 1 1 1

( )
,

[( ) ( ) ]
i i

i

i i i i

x x
X

x x y y

1 1

2 2 1/ 2

1 1 1 1

( )
,

[( ) ( ) ]
i i

i

i i i i

y y
Y

x x y y

1 1

2 2 1/ 2 2 2 1/ 2

1 1 1 1

1/ 22 2

1 1 1 1

[( ) ( ) ] [( ) ( ) ]
,

1 1 1 1
( ) ( ) ( ) ( )

2 2 2 2

i i i i

i i i i i i i i
i

i i i i i i i i

x x x x

x x y y x x y y
X

x x x x y y y y

1 1

2 2 1/ 2 2 2 1/ 2

1 1 1 1

1/ 22 2

1 1 1 1

[( ) ( ) ] [( ) ( ) ]
.

1 1 1 1
( ) ( ) ( ) ( )

2 2 2 2

i i i i

i i i i i i i i
i

i i i i i i i i

y y y y

x x y y x x y y
Y

x x x x y y y y

A curvilinear point is obtained by using the image transformation 
: B C

C . The point B B
iu  is called the curvilinear point C

iu
if the visibility measure ( )B

C iu  fulfills the following condition: 
[ : ( ) ]B B B B C

i C i C i ju u T u u . The visibility measure is based 
on the curvature coefficient computed for this point ( )B

C i iu . The set 
of curvilinear points C

iu  is called a curvilinear segment C
h , 1, ,h H .

If all points B B
iu  are curvilinear points H = 1, the curvilinear 

segment is called the digital convex curve and is denoted as C . The 
descriptor is computed by applying the descriptor transformation 

| | | |B C
C . An examined segment is assigned to the convex 

curve class based on the rules [ ] K
C CT s , where TC is a selected 

threshold.
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Stage of Reasoning i
i K

At this stage of reasoning, it is assumed that an examined object is an 
exemplar of the convex curve class Ki. The digital convex curve given by a 
set C  can be represented as a sequence of 1D numbers. The 
transformation  that assigns the real number to each of the points 

C C
iu  is based on the local transformation ( ).C

R iu  The 1D 
representation is based on the image transformation given by the formula 
[ : ( )]C C C C R

i i i i iu R u u , ( )C
iu  is the image 

transformation given in the form 2 2( ) ( ) ( )C C C
i i iu x x y y , where 

C
ix  and C

iy  are the coordinates of the point C
iu , x and y are the 

coordinates of the centroid of the figure points F  computed as 
10 00/x m m  and 01 00y m

1 1

0 0

M N p q

pq x y
m x y . The set of distances 1 2{ , , , }R R R R

N  is used 

R

]r F , where ( )r  is the 
global image transformation given in the form of Fourier transformation. 
The Fourier transformation is given as a set 1 i 2 /

0
e

K kh K

h kk
R r , and a set of 

Fourier coefficients as 0 1{ , , , }R

HR R R . The descriptors are computed 
by applying a descriptor transformation max(| |)R R

R i for all 
,R R

i  where ,NR R

ii

max max for all ˆˆˆ ˆ(| |) ,k
i i

where ˆ ˆN

ii
, and ˆ

i  is the normalized curvature. The normalized 
curvature is obtained in such a way that the first point of the new series 

1ˆ  is the maximum point max  of the series before shifting 1 maxˆ .
The series are smoothed to retain only N = 100 values, 1

ˆ { ,

2 100, , } . An examined object is assigned to the convex class 
nK

according to the following rules: 

 where  

/ m , and the moment is given as

as a 1D representation of the curve. To compute the descriptors, a set of dis-
tances is transformed into frequency domain by applying the Fourier
transformations. The 1D Fourier representation is based on the glo-

[ ( )bal image transformation given as
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1

[ ] ,CK
R RT s

2

[ ] ,KT s
3

1
[ ] ,KT T s

4

1
[ ] K

R R RT T s , where TR, TK,
1RT ,

1
T  are selected thresholds. 

Classes K1, K2, K3, and K4 are described in Chap. 2. 

3.3.2. Concave Polygon Object: Reasoning Process 

In this section, the reasoning process that leads to assigning the visual 
object into one of the concave polygon classes is presented. Assigning an 
examined object to one of the concave classes Q  is performed during 
reasoning process that consists of a series of consecutive stages 

0 1 N , where 0  is a beginning stage and N  is a final 
stage. In the first part of the reasoning process (that is common for the 
convex and concave classes), the object is assigned to one of the concave 
classes Q  by computing a number of residuals m. In the second part of 
this reasoning process, the type of the generic convex class is found and an 
object is assigned into one of the concave classes [ ]mQ L , [ ]mQ M , or 

[ ]mQ K . The concave classes Q are described in Chap. 2. In the first stage 
of processing (see previous paragraphs), a set of border points B , a set 
of convex hull vertices , and a set of convex hull points H  are 
obtained. In the case when the examined object is assigned to the concave 
class, the set of border points B  is divided into m convex k  and 
concave k  segments, 1, ,k m . The reasoning process that assigns 
a perceived object into one of the specific concave classes is much more 
complex than the reasoning process that assigns the perceived object into 
one of the specific convex classes. For that reason in this book, only the 
reasoning process that assigns a perceived object to the selected specific 
class, the concave polygon class, is presented. 
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Stage of Reasoning n
m

i L
Q

At this stage of reasoning, it is assumed that an examined object is an 
exemplar of the concave parapolygon class n

m
L

Q . During this stage of the 
reasoning process, a set of convex vertices (a generic convex polygon) of 
the concave polygon is computed. A set of vertices of the generic convex 
polygon is obtained by using the image transformation : O

O

that is based on the convex hull visibility measure ˆ( )O iu . The point 
ˆˆiu  is called a vertex of the convex polygon O

iu  if the visibility 
measure ˆ( )O iu  fulfills the following conditions: ˆˆ[ :mu ˆ( )O mu
ˆ ˆ] O

m m ku u u . As a result of application of the image transformation 

O , a set of vertices of the generic convex polygon O  is obtained. The 
descriptor is called the matching coefficient and is computed as cardinality 
of the set O  expressed as | |o

o . An examined object s is assigned 
to the concave parapolygon class [ ]m nQ L  according to the following rule: 
[ ] [ ]m n

o n s Q L , where n is a number of convex vertices. 

Stage of Reasoning ( )n
m

i L
Q mL

At this stage of reasoning, it is assumed that an examined object is an 
exemplar of the concave polygon class [ ]( )m nQ L mL  that is the class 
whose archetypes are concave polygons. All concave segments 

, 1, ,k k m  are transformed into the residual objects. At first the 
image transformation : B

H k  is applied to compute a new set 
of border points. The border point kP P , denoted as k , is defined as 
follows: 1[ , , : ( )] B

i i m k j B k k ju u P P P P ,  where 
the transformation ( )iP  is given as 

11, if ,( )
0, otherwise,

i i i
i

P u uP
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and where 1i iu u  is a linear segment obtained by joining the vertices iu
and 1iu  of the concave segment by the straight line. Next, the image 
transformation : B F

F  is applied to compute a set of residual 
object points. The point kP P  is called a residual object point, when the 
following condition is fulfilled: [ : ( )]F F

k j F k k jP P P P ,
where the transformation ( )iP  is given as 

1, if ( ),( )
0, otherwise,

B
i

i
P IP

and where ( )BI  is an interior of the B . The set of points F
j  is 

called the residual object area set and is denoted as F
k . Each residual 

object rk given by the set F
k  is transformed into a set of convex hull 

vertices  and a set of convex hull points H , by passing stages 

0 3, ,  (described in previous sections of this chapter). An examined 
object is assigned to the concave polygon class ( )n

m h
L

Q mL  if all residuals ri

are the convex polygons: [ (1, , ), ] ( )
h

n
L m h

i L
i m r s Q mL . In 

the case when there is at least one residual that is assigned to the concave 
class: (1, , ), ii m r Q  this reasoning process is repeated at a higher 
level of iteration. 

Stage of Reasoning i

At this stage of reasoning, it is assumed that an examined object is an 
exemplar of the concave polygon class . The specific concave polygon 
class ( )n

m
L

Q mL  is denoted as {( ), ( )}n n nd  and is uniquely given by 
the specification of its attributes n, , and d, where n is the number of 
residuals, and  and d are attributes of the shape model. To assign an 
examined object to the concave polygon class  the method based on the 
curvature of the object is applied. In this method the image transformation 

 is used to the set of points B  to find a set of critical points called 
the linear segment or the corner segment. The point is called the straight 
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segment point if its visibility measure ( )B
ju  has a value close to zero: 

[ :| ( ) | ] ,B B B B
k k k ju u T u u where T  is the selected thres-

hold. The visibility measure ( )B
ju  is expressed as ( ) ( )B B

j ju u ,
where ( )B

ju  is the curvature of the set B . The set of linear segment 
points ju  is called the linear segment and is denoted as k . To find the 
corner points the mean of the curvature is computed as 

0

n
ii

. A 
( )B

ju

[ :| ( ) | ] RB B B B
k k k ju u u u . A set of corner points R

ku  is 
called the corner segment and is denoted as R

k . The points that are not 
corner points and not linear segment points are called the curvilinear
segment points ku  and a set of curvilinear segment points is denoted as 

. An examined object is assigned to the concave polygon class based 
on a descriptor computed as ( ) | | , where | |  is the 
cardinality of a set of curvilinear segment points. The process of assigning 
the examined object to the concave polygon class is based on the following 
rule: [ ]T s , where T  is a selected threshold. 

Stage of Reasoning n
i

At this stage of reasoning, it is assumed that an examined object is an 
exemplar of the one of the concave polygon classes n .

To find a set of vertices of the examined object, the image 
transformation  is applied to a set of corner points R

k . The point 
RB

j ku  is called a vertex of the concave polygon if it fulfills the follow-
ing condition: [ , 1, , , : ( ) 1]R RB B

k j k O jk K u u B O
j lu u .

The visibility measure ( )B
O ju  is expressed as follows: 

1, if max ( ),
( )

0, otherwise.

B R
j k

B
jB u

O j

u
u

is greater than the value of  and is expressed as follows: 
point is called the corner segment point if its visibility measure
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The set of vertices of the concave polygon is denoted as O . The 
descriptor is computed as ( ) | |O O

O O , where | |O  is the 
cardinality of a set O . An examined object s is assigned to the concave 
polygon class n  based on the rule [ ] n

O n s , where n is a 
number of the polygon sides. 

Stage of Reasoning {( ), ( )}n
i n nd

At this stage of reasoning, it is assumed that an examined object is an 
exemplar of the one of the concave polygon classes {( ), ( )}n n nd .
Based on the shape model M , an exemplar jo  of the class  is 
generated and matching between predicted and expected results is 
performed. The border points are obtained by applying the image 
transformation  that generates a set of points based on a given set of 
generic vertices O . The process of generation of points is given as 
follows:

11[ , , : ( )]
i i j

O
i i k j v v k kv v P P P P , where 

the transformation 
1
( )

i iv v kP  is given as 

1

11, if ,( )
0, otherwise.i i

i i i
v v i

P v vP

The point j 1j i iv v , where 

1i iv v  is a linear segment obtained by joining the vertices vi and 1iv  by 

the straight line. The set of polygon border points is denoted as V . A set 
of polygon border points V  is matched against a set of border points 

B  of the examined object jo . The set of points V  perfectly matches a 
set of border points B  if B V  (all points are perfectly matched). 
In the case of perfect matching a set of vertices of the concave polygon 

O  is  used to compute the set of descriptors  and d  that are used to 
assign an examined object to the class {( ), ( )}n n nd .

The method of understanding objects that can be considered as thin objects 
is presented in this section. The visual object that can be regarded as a thin 

3.3.3. Thin Object: Reasoning Processes 

 is called a polygon border point if 
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object can be found in many areas of research and technology. As it was 
described in previous sections of this book, understanding an object 
involves a reasoning process that assigns the examined object to one of the 
shape classes. In this section the reasoning process that leads to assigning 
the visual object into one of the thin classes is presented. 

Stage of Reasoning 1

In the first stage of the reasoning process, it is assumed that the perceived 
object is an exemplar of the thin class . The perceived object that is 
given as a set of critical points F  is transformed into a set of numbers 
called the distance map. The image transformation  that assigns the 
number to each point F F

iu  is applied. 
The image transformation  is based on the local properties of the 

selected neighborhood and is given as follows: [ ,F F
iu :i

i ( )]F
i i iu u , where the local transformation ( )F

iu  is deter-

the local transformation is given as F F
k

F F F
i k iu

| |F F
k iu u  denotes the distance between a point F

iu  and an arbitrary point 
F F
ku . A set of all distance measures k  is denoted as  and is 

called a distance map. To assign a given object to the thin class  the 
general descriptor is computed. The general descriptor is computed as the 
maximum value of the set  as follows: 1 2 , , }L .
The rule of assigning an examined object to the class  is given as 
follows: [ ]T s , where T  is a selected threshold. 

Stage of Reasoning n
i m

In the second stage of reasoning process, it is assumed that an examined 
object is an exemplar of the thin class n

m . The object given by the set 
F  is  transformed by an image transformation : F  that 

selects the subset of critical points from the set of points F  based on the 
visibility measure . The point F F

iu  is called the skeleton point

(u ) | |u u , where min
mined by the selected neighborhood. In the case of distance transformation,

max{ ,
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ju  if the visibility measure ( )F
iu  fulfills the following conditions: 

[ : ( ) ]F F F F
i i i ju u T u u , where T  is a selected threshold 

and ju  is a critical point called a skeleton point. The visibility measure is 
determined by the selected neighborhood of the point F

ku , given by its coor-
dinates ( , )k kx y , and is expressed as follows: , ,( ) ,p P q Q F l

k i p j q p qp P q Q
u f T

where ,
l
p qT  denotes a template, P and Q are the parameters that char-

acterize the neighborhood, and ,
F

h kf  is a characteristic function given as 

,
1, if ( , ) ,
0, if ( , ) .

F
F h k

h k F
h k

x y
f

x y
As the results a set of skeleton points 1 2{ , , , }Lu u u  is 

obtained. Figure 3.5 shows examples of the skeleton points. 
As it was described in Chap. 2, the thin class was characterized by a set 

of characteristic points: the end points v  and the branching points v . To 
assign an object to the one of the specific classes k

l , the characteristic 
points of the skeleton that corresponds to the characteristic points of  
the model need to be found. The characteristic points are obtained using 
image transformation :  that is based on the visibility 
measure . The skeleton point ku  is called the end point if its visibility 
measure ( )ku fulfills the following criteria: [ : ( )i iu u

] ,i jT u u  where T  is a selected threshold, 1T . The skeleton 
point ku  is called the branching point if its visibility ( )ku  fulfills the 
following criteria: [ : ( ) ]i i i ju u T u u , where T  is a 
selected threshold, 1T . The visibility measure ( )ku  of the point ku ,
given by its coordinates ( , )k kx y , is expressed as follows: ( )ku

,

p P q Q

i p j qp P q Q
f , where P and Q are the parameters that characterize the 

neighborhood and ,h kf  is a characteristic function given as 

,
1, if ( , ) ,
0, if ( , ) .

h k
h k

h k

x y
f

x y
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A set of end points 1 2{ , , , }Ju u u  and the set of branching 
points 1 2{ , , , }Ku u u  are called the set of characteristic points
denoted as 1 2{ , , , }Hu u u , , and H J K .
Figure 3.5 shows characteristic points of the skeleton points, end points 

iu  (pattern), and branching points ju  (black color). 
A set of descriptors is computed using the descriptor transformation 

given as | | J  and | | K , where | |  is a cardinality 
of a set . The rules of assigning an examined object to one of the base 
classes are given as follows: 

[ 2 0]
[ 2 0]

[ ]

k

l
k

s
k s

l k s

Fig. 3.5. Characteristic points of the skeleton points, end points iu , and branch-
ing points ju

Stage of Reasoning n
i m

In this stage of reasoning, it is assumed that an examined object is an 
exemplar of the thin class n

m .
To assign a perceived object to one of the specific thin classes, the 

skeleton is divided into the parts called branches. A set  is divided 
into K subsets called branches of the skeleton denoted as k . The branch 

             

(the1D class),
(the thin star class),

(the thin class).
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k  is the subset of a set of skeleton points  for which the first and the 
last elements are members of the characteristic points .  The branch 

k  is obtained by applying  a transformation : k

k
. The 

: ( , , )
k kh h t j h h tu u u

] k

k j iT u u , where 1
k

T  and the visibility measure is expressed as 
follows:

1, if , , ,
( , , )

0, otherwise.
k

k k

k h h t
j h h t

h j h t u u
u u u

A branch that has one end point k  and one branching 
point k  is called the external branch and is denoted as 

k

k  and k , is called the internal branch and is 
denoted as k .  A branch for which cardinality of a set  | |k  is less 
than assumed threshold T  is called a small branch and is denoted as k ,  
where [| | ]k k kT . The small external branch is denoted 
as k  whereas the small internal branch is denoted as k . Branches 
of the skeleton shown as differently shaded skeleton points are given in 
Fig. 3.6. 

Fig. 3.6. Branches of the skeleton shown as differently shaded skeleton points 

The small branch is removed if on the basis of the contextual 
information the small branch can be considered as a result of the “noise.”              

[ ,u usegment point is defined as follows:

. A branch that does not have any end points, that means
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Removing both, the small external branch and the small internal branch are 
obtained by applying the marking point transformation  that selects the 
subset of critical points from the set of points  and  based on the 
visibility measure .

In the case of the small external branch k , the marked end point is 
defined as follows: [ : ( ) ]j j j hu u T u u , where 1T
and the visibility measure is expressed as follows: 

1, if ,
( )

0, otherwise.
j k

j
u

u

The marked branching point is defined as follows: [ :ju
( ) ] ,j j hu T u u where 1.T The visibility measure is expressed 

as follows: 

1, if ,( )
0, otherwise.

j k
j

uu

h  is denoted as  and the set of 
marked branching points hu  is denoted as . In the case of the small 
internal branch k , the marked branching point is defined as follows: 

ˆ ˆ[ : ( ) ]j j j hu u T u u , where 1T  and the visibility 
measure is expressed as follows: 

ˆ
1, if ,( )
0, otherwise.

j k
j

uu

As a result of applying the image transformations, pair of marked points 
1ˆ ˆ( , )h h ku u  for each small internal segment is obtained. The point 

ˆhu  is a new branching point and a set of marked branching points 

1̂ ˆ ˆ{ , , , , }j Ku u u , where j = 2h, is denoted as ˆ .
The small branches interpreted as “noisy” are removed. Removing 

branches is performed as a set operations which produces the refined sets 
, , and . The refined set of end  points is obtained as the 

difference , denoted as . The refined set of 
branching points is obtained as the difference ˆ( ) , where sum 

The set of marked end points u
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ˆ( )  denotes both marked branching points from the internal and 
external branches: ˆ( ) . The refined set of skeleton 
points is given as the difference of the set of skeleton points  and sum of 
external branches, where expression 

1

K

kk
 denotes branching 

points that are not removed 
1 1

K K

k kk k
.

Figure 3.7 shows process of removing of the external branch (a) the digital 
representation and (b) the graph representation. Figure 3.8 shows process 
of removing of the internal branch (a) the digital representation and (b) the 
graph representation. 

Fig. 3.7. Removing external branch: (a) the digital representation and (b) the 
graph representation 

Fig. 3.8. Removing internal branch: (a) the digital representation and (b) the graph 
representation
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As a result of the branch removing, a refined set of characteristic points 

1 2{ , , , }Ju u u  is obtained. 
A set of descriptors is computed using the descriptor transformation as a 

cardinality of the refined sets  and  given as | |  and 
| |  and is used to assign an examined object to one of the specific 

classes.
The rules of assigning an examined object to one of the refined base 

classes are given as follows: 

[ 2 0]
[ 2
[ ]

k

l
k

s
k s
l k s

3.3.4. Cyclic Object: Reasoning Process 

Assigning an examined object to one of the cyclic classes A  is 
performed in the reasoning process. The reasoning involves the processing 
by applying one of the image transformations, computation of the 
descriptors using descriptor transformation, and assigning an object to one 
of the possible classes. In this book the reasoning process is presented for 
the case when a cyclic object consists of the convex core and one hole. For 
the objects with a more complex structure the reasoning process is much 
more complicated. 

Stage of Reasoning i A

In this stage of reasoning, it is assumed that an examined object is an 
exemplar of the cyclic class A .

At first the image transformation : F B
B  and next the point–

point image transformation : B  are applied to compute a set 
of vertices called a convex hull. Next, the image transformation 

: B H
H  is applied to compute a set of convex points. The set of 

(the1D class),
0] (the thin star class),

(the thin class).
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points j  is called the convex hull area set and is denoted as . The 
points that are called the hole points are obtained as a result of subtraction 
of the  set and F : H F . The general descriptor is 
computed as follows: | |H

H . An examined object is assigned to the 
cyclic class A  according to the following rule: [ ] A

H HT s ,
where TH denotes the selected threshold. 

Stage of Reasoning ( )i A A

In the stage of reasoning ( )i A A , it is assumed that an examined object 
is an exemplar of the cyclic class on the second level of iteration ( )A A .

For simplicity it is assumed that the object has one hole that is 
represented by a set of points H . Let us denote the set of H  as the 
set F  that refers to the second level of iteration. Similarly to the stage 

i A , the application of the image transformations : F B
B

and : B  gives a set of convex hull vertices. Next, the image 
transformation : B H

H  is applied to compute a set of convex 
points. The image transformation : H  is applied to compute 
a set of convex hull area points. The points that are called holes on the 
second level of iteration are obtained as a result of the subtraction of the 
set  and F : H F .  The general descriptor is computed 
as follows: | |H

H
.

An examined object is assigned to the cyclic class ( )A A  according to 
the following rule: [ ] ( )

H H
T s A A , where 

H
T  denotes the 

selected threshold. 
Assigning an object to the general cyclic class ( )A A  is performed 

independently for the core object and for the holes on the first level of 
iteration. This process is similar to assigning an object to the convex or 
concave class and is described in detail in Sect. 3.3.1 and Sect. 3.3.2.
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4. Categories

4.1. Introduction 

In Chap. 2 shape categories were introduced and briefly described. Shape 
categories are the main ingredient of the visual concept that is capturing 
the visual aspect of the world. The non-visual knowledge that is learned is 
represented as the categorical structure of knowledge categories. In this 
chapter the new knowledge representation based on the categorical chain is 
presented. The proposed knowledge representation plays a key role in 
designing systems that are able to understand environment (world objects 
and world phenomena). Understanding of the world is the result of think-
ing process. In this chapter object categories and knowledge categories are 
described in the context of the thinking processes. 

In this section the short literature review of the research in areas 
connected with categories is presented. Categories are result of the mental 
generalization processes. Categories were subject of the theoretical con-
siderations of many philosophical schools. In the middle ages, the problem 
of universal terms or class names was the topic of many tractates. These 
universal terms were thought of as a hierarchical structure of class names. 
For example, in the statement ‘Tom is a man’, ‘Tom’ is a proper name 
referring to a certain individual, while ‘man’ is a class name, denoting 
species. In another statement ‘cats are animals’, the word ‘cat’ denotes the 
class or species, while ‘animal’ denotes a wider class of a genus, of which 
cat constitutes the subclass. 

The categories are result of the men’s conceptualization. In [1] the study 
of men’s conceptualization of their natural and social environment was 
presented. It was shown that while individual societies may differ 
considerably in their conceptualization of plants and animals, there are a 
number of regular structural principles of folk biological classifications 
which are quite general. Study of men’s conceptualization presented in [1] 
promises to reveal important aspects of men’s conceptual organization. 

Z. Les and M. Les: Categories, Studies in Computational Intelligence (SCI) 86, 135–240 (2008) 
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The categories are subject of study of such disciplines as cognitive 
psychology, cognitive science, linguistics or artificial intelligence. In arti-
ficial intelligence, for instance, conceptual clustering described in [2] deals 
with classifying objects represented by structural description rather than by 
sequences of attribute values. In this approach objects are arranged into 
classes that represent a simple concept instead of the class defined solely 
by predefined measure of similarity among their members. Classification 
problem appears when there is a need to classify chemical or physical 
structure, analyse genetic sequence, build taxonomies of plants or animals, 
characterize visual scene, or split a sequence of temporal events into epi-
sodes with simple meaning. 

The categories come under different names such as taxonomies. For 
example, botanical research is focused on the taxonomy of botanical terms. 
It was suggested that such terms as the sets of botanical or disease 
terminologies can be arranged into a hierarchical taxonomy. In colloquial 
English, for instance, there are objects which are called plants, and within 
the class of plants there is a class of trees. Within a class of trees is a class 
of ‘needled trees’; ‘needled trees’ include ‘pines’ and pines in turn include 
‘jack pines’.

Some experiments in cognitive psychology revealed the mechanism of 
the category formation. For example, experiments described in [3] 
explored the hypothesis that the members of categories which are con-
sidered most prototypical are those with most attributes in common with 
other members of the category. Authors viewed natural semantic categories 
as networks of overlapping attributes. For example, a dog is understood in 
terms of things that have in common the following features: having four 
legs, having fur, barking. Some objects are seen as more reasonable 
exemplars of the given category than the others. For example, a chair is the 
more reasonable exemplar of the category of furniture than a radio, and 
some chairs fit the idea or image of chair better than others. The following 
are examples of categories used in the experiment: 

– Furniture (chair, sofa, table, dresser, desk, bed, bookcase, footstool, 
lamp, piano, cushion, mirror, rug, radio, stove, clock, picture, closet, 
vase, telephone) 

– Vehicle (car, truck, bus, motorcycle, train, trolley car, bicycle, 
airplane, boat, tractor, cart, wheelchair, tank, raft, sled, horse, blimp, 
skates, wheelbarrow, elevator) 

– Fruit (orange, apple, banana, peach, apricot, plum, grapes, 
strawberry, grapefruit, pineapple, blueberry, lemon, watermelon, 
honeydew, pomegranate, date, coconut, tomato, olive) 
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– Weapon (gun, knife, sword, bomb, hang grenade, spear, cannon, bow 
and arrow, club, tank, teargas, whip, icepack, fists, rocket, poison, 
scissors, words, foot, screwdriver) 

– Vegetable (peas, carrots, string beans, spinach, broccoli, asparagus, 
corn, cauliflower, brussel sprouts, lettuce, beets, tomato, lima beans, 
eggplant, onion, potato, yam, mushroom, pumpkin, rice) 

– Clothing (pants, shirt, dress, skirt, jacket, coat, sweater, underpants, 
socks, pyjamas, bathing suit, shoes, vest, tie, mittens, hat, apron, 
purse, wristwatch, necklace) 

[3] do not take into account that all these categories refer to visual objects. 
In the field of computational linguistics there are attempts to build the 

structurally connected concepts that often are called ontology [4]. 
Ontology as a part of larger lexical knowledge bases and annotated 
resources offer an ideal starting point for constructing structured represent-

Concept names (or concept labels) are called synsets. Synsets are groups 
of synonym words that are meant to suggest an unambiguous meaning, e.g. 
for bus#1: ‘bus, autobus, coach, charabanc, double-decker, jitney, motorbus, 
motor coach, omnibus’. In addition to synsets, the following information is 
provided for wordsenses: 

1. Textual sense definition called gloss (e.g. coach #5: ‘a vehicle 
carrying many passengers; used for public transport’) 

2. Hyperonymy-hyponymy links (i.e. kind of relations, e.g. bus #1 is a 
kind of public transport #1) 

3. Meronymy-holonymy relations (i.e. part of relations, e.g. bus #1 has 
part roof #2 and #2) 

4. Other syntactic-semantic relations

are designed to capture the visual aspects of the world. Only a few 
researchers tried to investigate the problem of the visual categories. For 
example, the latest research in perception [5] is focused on the identifica-
tion of the object in context of the visual object categories. In this research 
it is assumed that objects can be identified at several levels of abstraction. 
In [6] it was demonstrated the special status of one level of abstraction, 
called the basic level, at which most people tend to identify an object 

These categories refer to categories which in our methods, presented in this 
book, are called categories of visual objects. Authors of this experiments 

ations of word senses. For example, WordNet that includes over 110,000 
concepts is a lexical ontology in which concepts correspond to word senses. 

Important part of research that deals with categories are research 
focused on the categories of visual objects. The categories of visual objects 
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initially. Research with children and animals has pointed to the importance 
of visual features in determining the categories that are formed at different 
levels of abstraction (e.g. [7]). Moreover, behavioural and neuroimaging 
studies with adult subjects have shown that categorization at a subordinate 
level requires more visual processing than categorization at the basic level 
(e.g. [8, 9]). 

To investigate the perceptual constraints on the subordinate-level 
categorization, there is a need for a stimulus set with several properties. In 
[5] the simple line drawings as stimuli were used because most studies 
mentioned have used these stimuli and also because shape information is 
the most important attribute in the subordinate-level categorization. Using 
line drawings instead of more complex grey-level or coloured pictures 
gives more control on the information that is available to the subjects. 
Using line drawings make it possible to minimize the effect of non-
perceptual features and the availability of salient subordinate names. To 
obtain a reliable results there is a need for a fairly high number of sub-
ordinate exemplars from each basic-level category and the stimulus set 
should consists of a representative sample of basic-level categories. 

In the research on the categories of the visual object the important part 
of the experiment is to select the proper stimulus sets. There is a number of 
the stimulus sets found in the literature. For example, the standard set of 
stimulus described in [10] was not designed to investigate multiple levels 
of categorization and contains only one exemplar for each of a large 
number of concepts. Several studies [9, 11] have used sets of line drawings 
with the several exemplars from the different basic-level categories, but 
none of these sets had many exemplars from a range of categories, and 
little or no information is available about naming performance. The 
stimulus set described in [5] consists of 269 line driving stimulus that con-
tains several typical exemplars from a sample of 25 basic level categories: 

– Non-living [tool] (glass, vase), [musical instruments] (guitar), 
[furniture] (chair, table, cupboard, sofa), [vehicle] (bike, automobile, 
train, aircraft, bicycle, ship) 

– Living [animal] (mammal, fish, insect, bird) mammal <mouse, rabbit, 
dolphin, horse, dog, monkey>, insect <butterfly, beetle>, [plant] (tree) 

Although much research concerning different aspects of categories has 
been carried out there is no solution to the problem how visual information 
can be incorporated into concept. The perceptual features that are des-
cribed are not ‘translated’ into representation suitable for incorporation 
into conceptual structure. Also categories that are selected represent a very 
small part of all categories that represent the conceptual structure of 
knowledge about the world. 
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In proposed approach it is assumed that categories are part of the 
knowledge that is represented in the form of the connected categorical 
chains. The proposed method is based on an assumption that categories 
that play an important role in the thinking process are derived from two 
basic categories: categories of visual objects (visual knowledge) and cate-
gories of knowledge (non-visual knowledge). The notation of the category 
of the visual object is based on the categorical chain. The categorical chain 
is a hierarchical structure of categories derived from the categories of the 
visual objects. Three levels of categories are distinguished: the perceptual 
level, the structural level and the ontological level. In the next sections a 
short description of each category level as well as the description of the 
categorical structures of knowledge is presented. 

4.2. Category of Visual Objects 

To interpret (to find a meaning) of a given visual object there is a need to 
relay on the previously learned knowledge about the visual world. 
Knowledge that is stored in memory needs to have an appropriate know-
ledge representation. In the shape understanding method knowledge is 
represented as a hierarchical structure of the categories of visual objects. 
Categories of visual objects include the visual concept that represents 
visual appearance of the prototype of that category.

The categories are structured representations of the meaning of the visible 
objects or phenomena. Categories that are established for the purpose of 
this research refer to the visual objects. The visual object is an object that 
can be detected (sensed) by any existing sensing tools. The category of 
visual object such as a planet is different from the category of process such 
as a baking. The first one refers to an object that has a given visual appear-
ance whereas the second one refers to relations among objects. Introduction
of the general categories of visual objects facilitates process of inter-
pretation of the perceived object by classifying it into one of general 
categories. The knowledge of categories is acquired during process of 
categorical learning. Learning of the category supplies knowledge that is 
needed during understanding process. An interpretation of an object in 
terms of the real-world object, the sign or the letter is part of understanding 
process connected with perception, object recognition or naming. One 
aspect of understanding connected with perception of the visual object is 
its classification to the specific perceptual category based on utilization of 
the context information. The context information is used to filter possible 

The visual category is the category that is related to the visual object. 
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interpretations of that object by using knowledge about the world that is 
part of the learned categorical structure. For example, it is not very 
probable to find the car with wheels that have an elliptical shape. Each 
category is represented by its name. The general categories are established 
based on the general knowledge which can be acquired from all available 
sources. The category is described by its main characteristic features and 
its relations to other categories. The category of the visual object is the 
category from which all categories of the visual objects are derived. The 
main characteristic feature of this category is existence of the object that 
means that object can be perceived by one of the existing sensory devices. 

Each category is part of the conceptual structure of knowledge about the 
world. Categories have hierarchical structures and at the bottom of each 
categorical chain is the prototype. The prototype includes the visual con-
cept that captures visual features of the object that belongs to this category. 
The prototype is defined during learning process at the level for which the 
training exemplars are available. For example, the category of a triangle 
needs to include all triangles such as the right, the acute or the obtuse 
triangle. Learning at this categorical level (the level of triangle category) 
requires that the learned prototype includes all triangles such as the right, 
the acute or the obtuse triangle. Learning at the lower level (the level of 
right triangle category) requires that the prototype includes only right 
triangles. During understanding process when the visual concept of the 
object of the specific category such as a right triangle category is required, 
the prototype supplies all knowledge that describes that object. In the case 
when the visual concept of the category such as a triangle category is 
required, the prototype of all specific categories that are linked with the 
triangle category supplies information that is needed. In the case when 
there is a need to display the representative of this category the most 
probably specific category is drawn by random from all specific categories 
linked with the category of a triangle. 

Categories of the visual object are established based on the assumption 
that the visual object exists and can be perceived by accessible technical 
tools. Categories of the visual object supply knowledge about the visual 
aspect of the world. The non-visual knowledge is represented as a category 
of the body of knowledge. The notation of the category is based on the 
categorical chain. The categorical chain is a series of categories derived 
from the category of the visual object or the category of body of 
knowledge showing the hierarchical dependence of knowledge. The
categorical chain derived from the category of the visual object is given as 

O , , , , where the categories of 
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the visual object are derived from the visual object category O . The 
category at the first level of categorical chain is called the perceptual 
category  of the visual object. The category at the second level of the 
categorical chain is called the structural category  of the visual object. 
The ontological categories v  begin from the third level of the categorical 
chain. The symbol  denotes moving to the next level of categorical 
chain. Notation , , ,…  denotes different categories at the same level 
of the categorical chain. The symbol , , ,…  means that only selected 
categories are listed. In the case when both perceptual and structural 
categories are not specified the categorical chain begins with the object 
category denoted as O  and the categorical chain is given as 

, , , ,O … … .
In this section, three levels of categories were distinguished: the 

perceptual level, the structural level and the ontological level. Those 
categorical levels are described in the following sections. 

categories. Figure 4.1 shows examples of the perceptual categories: the 

4.2.1. Perceptual Categories 

The first level of the hierarchy of the categorical chain is called the 
perceptual category  of the visual object. At first, the object is perceived 
and next interpreted. The perceptual category refers to the visual represen-
tation of the visual object. Visual representation is the way in which the 
3D object is presented as the 2D representative of the 3D object. Depen-
ding on the technique used to record the object the following 2D visual 

line drawing or the shaded version of the object. The perceptual categories 
are established based on the 2D representatives of the 3D object. The 
perceptual category consists of the silhouette category Si , the line-
drawing category Ld , the colour-object category Co , and the shaded-
object category Sh . Categories at the same level of the categorical chain 

given as O Si Ld Co Sh, , , . In the case when the perceptual category 
is not specified the categorical chain is given as O . The perceptual 
category is inherited by all categories of the object. Each visual object has 
its 2D representation given as the member of one of the perceptual 

are represented using brackets. The chain of perceptual categories is 

representations of the perceived object can be obtained: the silhouette, the 
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    a  b c d

Fig. 4.1. Examples of members of the different perceptual categories 

(Fig. 4.1d). 
For simplicity the term ‘an object from the silhouette category’ will be 

denoted as the silhouette, an object from the line drawing category will be 
denoted as the line drawing, an object from the shaded-object category will 
be denoted as the shaded object. 

The silhouette can be obtained from the line drawing or the shaded 
object. The silhouette can be any black and white object such as a letter, a 
sign or a real-world object. The line drawing can be obtained by proper 
segmentation of the image. The silhouettes obtained from the line drawing 
or the shaded objects convey only a part of the visual information. Because 

pretational sketch of the object. Based on the interpretational sketch it is 
possible to find possible interpretations of object. To select only one 
interpretation the additional visual information can be acquired from the 
line drawing or shaded object. The symbolic name of the line-drawing 
object includes the symbolic name of the silhouette. Figure 4.2 shows 
silhouettes obtained from the line-drawing objects. 

Fig. 4.2. Examples of silhouettes obtained from the line-drawing object 

silhouette category (Fig. 4.1a), the line-drawing category (Fig. 4.1b),
the colour-object category (Fig.  4.1c) and the shaded-object category

of loss of the visual information, the silhouette is used to obtain the inter-
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4.2.2. Structural Categories

The structural categories refer to the complexity of the visual represent-
ation of the object. The visual object does not often appear as an isolated 
object. Very often it is a part of the picture or the image that shows the 
object among other objects or as a part of the visual structure such as the 

categorical chain. The visual object can be an isolated visual object called 
an element category, the object composed from the simple elements called 
the pattern category or a complex visual object composed from the regions 
that are interpreted as the elements of the different ontological categories 

 called the picture category. These objects are members of the second 
level of categories of the visual object called the structural categories of the 
visual objects. The structural categories of the visual objects are divided into 
the element category El , the pattern category Pt , the picture category Pi
and the animation category An . The structural categories are shown as the 
second level of chain categories given as O El Pt Pi An, , , . The 
visual object that is built from the simple well-established visual elements 
called symbols is the member of the pattern category Pt . The complex 

An .

The element category El  is a category that represents the isolated visual 
object of one of the ontological categories. The ontological categories 
will be explained in the next paragraphs and in this section only a short 
description of the ontological category is given. As it was described in 
previous section the visual object is always given as a member of one of 

structural category called the element category. This is represented by the 

4.2.2.1. Element Category 

categorical chain as O Si El . In the case when the category of 

of the picture category. The set of elements, patterns or pictures, which are
interpreted as the series of time dependent images, is called the animation
category

the perceptual categories. For example, objects in Fig. 4.3 are members 

tural categories of the visual objects are established as a second level of the 
engineering schema. Based on the relations among visual objects, the struc- 

of the perceptual category called silhouette, and the members of the 

objects that is built from the different meaningfull regions is called member
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Fig. 4.3. Examples of members of the element category 

the perceptual level is not specified the categorical chain is denoted as 
O El  or, in a simplified notation, El . Figure 4.3 

shows examples of members of the element category. 

El Sg VSym Mth Mus EnSym Sg  is a 
sign category, VSym  is a visual symbol category, Mth  is a mathematical 
symbol category, Mus  is a musical symbol category and EnSym  is an 
engineering symbol category. The category of the engineering symbols, 

the category of the electronic engineering symbols. The category of the 
engineering symbols EnSym  is divided into the category of electronic 
symbols SEnEc , the category of electrical symbols SEnEe  or the cate-
gory of mechanical symbols SEnMe  and is represented by the categorical 
chain: El Sg VSym EnSym SEnEc SEnEe SEnMe, , .

The ontological category of visual symbols, such as engineering sym-
bols or mathematical symbols, that is derived from the structural
element category is given by the following categorical chain: 

The ontological category is derived from the structural category.

, , ,  where 

The category of electronic symbols is divided into the resistor  
category Rez , the inductor category of Ind  the transformer category 

Tfo  the capacitor category Cap category Tran , and is 

El Sg VSym EnSym SEnEc

Rez Ind Tfo Cap Dio Tran, , , , , . To avoid writing the whole categorical 
chain, in the situation where there is no possibility of misunderstanding, 
the beginning of the chain will be marked by dots at the beginning  
of the chain SEnEc Rez Ind Tfo Cap Dio Tran, , , , , ,.… . In this 
example the beginning part of the categorical chain can be easy to  
find from the context of the previously given description. 

SEnEc Cap CapE CapC…

such as a resistor, a transistor, a capacitor given in Fig. 4.4, is derived from 

,

, , the transistor 
given by the categonical chain: 

, . Figure  4.4  shows specific catego-
ries of the visual symbols: a capacitor, a capacitor electrolytic, a bipolar
transistor and a field-effect transistor. 
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Fig. 4.4. The category of electronic symbols: a resistor, a capacitor, a capacitor 
electrolytic, a bipolar transistor, a field-effect transistor 

Engineering visual symbols refer to the real-world objects. For example, 
electronic elements such as transistors are used to build the complex 
devices such as an amplifier or a TV set. The structural element category 
of electronic symbols refers to the structural element category of the 
electronic elements. The category of electronic elements is given by the 
following categorical chain: 

El Re Ear NLiv MMad AsP EAsP Re Ind Tfo Cap Dio TranO z .

man-made objects MMad . The ontological categories that are shown in 

Fig. 4.5. Category of parts of electronic assembly 

, , , , ,

The specific electronic elements categories are derived from a category of 

this categorical chain will be described in detail in the following chapters. 
In this section we would like to show the difference between two 
categorical chains derived from the same structural category, namely,  
the element category. When we compare two categorical chains  

El Sg VSym EnSym SEnEc Re Ind Tfo Cap Dio Tran, , , , ,z and

El Re Ear NLiv MMad AsP EAsP Re Ind Tfo Cap Dio Tran
, , , , ,

O z

Re Ind Tfo Cap Dio Tran, , , , ,z

and differ in that respect that categories shown in the first chain are derived 
from the category of the sign Sgv  whereas categories shown in the second 
chain are derived from the category of the real-world object ReOv . These 
categorical chains show the difference between meaning of the visual 
symbols shown in Fig. 4.4 and the real-world objects shown in Fig. 4.5. 

we see that both have the common part 
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In Fig. 4.5 examples of real-world categories: a resistor, a capacitor, a 

shown.

simple electronic elements such as transistors. These complex objects that 
are composed from the simple elements are members of the pattern 
category. The pattern category refers to objects that are composed from the 
simple components of the element category. Examples of the objects from 
the pattern category are shown in Figs. 4.6 and 4.7. For example, the 
pattern category of the visual symbols that are derived from the structural 
pattern category is shown in Fig. 4.6. From the visual symbol category, the 
category of mathematical patterns, the category of musical patterns, the 

chains that are derived from two different structural categories: the 
element category El Sg VSym  and the pattern category 

Pt Sg VSym , we can observe that there is no difference 
in the part of the chain of ontological category. However the specific 
categories are different. The specific visual element categories 

Mth Mus EnSym, ,  derived from the category of visual symbols 

El VSym…  are different from the specific pattern categories 

MtEx MsNt EnSh, ,  derived from the category of visual patterns 

Pt VSym… . The notation Pt VSym…  indicates that 
only part of the categorical chain which includes the meaningful 
information is shown. The dots are used to show where the parts of 
categorical chain are missing. To illustrate the relation between the 
structural element categories and the structural pattern categories examples 
of different ontological categories will be given. For example, the category 
of mathematical expression MtEx  is derived from the pattern category 
of the mathematical symbols and consists of the category of equations, 

Pt MtEx Eqt Fun Alg, , .
Mathematical expression consists of different mathematical symbols 

El Mth Cyp Rel Op…

4.2.2.2. Pattern Category 

the engineering symbols is derived. From comparison of two categorical 
category of coordinate system patterns or the category of pattern of 

functions or algebraic  expression …

, , that are members of the cipher 

transistor that are representatives of the category of electronic elements are 

Schema of electronic circuits consists of symbols of simple electronic elements. 
The complex electronic devices such as a computer are built from relatively 
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Fig. 4.6. Examples of the pattern category derived from the category of the visual 
symbols

 a  b c       d         e     f       g 

Fig. 4.7. Examples of patterns consisting of elements of the different categories 

category Cyp , the mathematical relations category Rel  or the 
mathematical operator category Op . The mathematical symbols used to 
build the complex mathematical expressions are members of the category 
of mathematical symbols. The valid mathematical expression is formed 
based on the knowledge of rules of composition of mathematical 
expressions. Not all combinations of mathematical symbols result in valid 
mathematical expression. Similarly the musical symbols, such as the clef, 
or the note can be combined into the pattern by the following rules of the 
musical notation. The musical pattern can be read by musician or musical 
system that converts the musical pattern into the musical sound. Figure 4.6 
shows examples of the pattern categories: the category of mathematical 
expressions, the category of musical scores and the category of the 
engineering schema. 

The pattern category includes such complex visual objects as the 

The member of the pattern category, which is composed of different 
objects that belong to the category of mathematical elements such as axes 
or graphs, is called the category of the coordinate system (Fig. 4.7a). The 
member of category of the coordinate system consists of many different 
objects that are members of the category of mathematical elements such 
as axes Axi , labels Lab , frames Frm  or graphs Grh . The 

El CoSym Axi Lab Frm Grh… , , , . The category of mathematical 
categorical chain of the elements of the coordinate system is as follows: 

engineering drawings (Fig. 4.7b–d), the mathematical objects (Fig. 4.7a), maps 

(Fig. 4.7g). 
(Fig. 4.7f), the visual intelligence tests (Fig. 4.7e) or the biological schemas 
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coordinate system is divided into the category of the Cartesian coordinate 
system or the category of the polar coordinate system and is given as 

Pt CoSys Cart Pol…
specify the location of a point in a space. For example, the coordinates of 
the polar coordinate system are written as ),(r , in which r is the distance 
from the origin to any desired point and  is the angle made by the vector 
r and the axis. A simple relationship exists between Cartesian coordinates 
given in terms of two reference axes (x,y) and the polar coordinates ),(r ,
namely: x r

, . Coordinates are sets of numbers that 

defined visual symbols such as the schematic representations of the  
real-world object or the phenomena (physical object), labels, arrows, 
lines or arcs. These predefined visual symbols are members of the 
category of visual physical models that is derived from the structural 
element category and given by the following categorical chain: 

El PhMod SPhO Lab Arc Lin Arr, , , , . A member of the pattern 
category of the different categories of the physical visual model is 
composed from different elements of categories of the physical visual 
model and is given as Pt PhMod Lew Wed Rol Pen InP, , , , . The 
category of the physical visual model is divided into the category of lever 

Lew Wed Rol

InP Pen .
The diagram category derived from the pattern category consists  

of predefined visual symbols such as geometrical figures or letters.  
The predefined visual symbols such as geometrical figures, letters, 

gram elements derived from the element category and given as 
El EDia GeoF Lab Arc Lin Arr, , , , . The diagram category 

is divided into the phase diagrams, phylogenetic tree, Feynman diagram or 
Venn diagrams. Phase diagrams are used to illustrate the conditions 
under which certain minerals are stable. Feynman diagram is a graphic 
method of representing the interactions of elementary particles. 
Phylogenetic tree also called a dendrogram is a diagram showing the 
evolutionary interrelations of a group of organisms derived from a 
common ancestral form. Venn diagrams are representing logic and set 
theory as a purely symbolic calculus. The categorical chain of these 
categories is as Pt PDia PhD PhT Ven Fen Arr, , , , .

sin .cos , and y r

words, arrows, lines and arcs are members of the category of dia-

The physical visual models shown in Fig. 4.7b–c consist of pre- 

, the category of rollers , the category of wedge , the 
, and the category of pendulumcategory of inclined planes 
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Map is a graphic representation, drawn to scale and usually on a flat 
surface, of features (for example, geographical, geological or geopolitical), 
of an area of the Earth or of any other celestial body. Cartography is the art 
and science of making maps and charts. Cartography is allied with 
geography in its concern with the broader aspects of the Earth and  
its life. The predefined visual symbols such as geometrical figures, 
labels, arrows, lines and arcs are members of the category of map 
elements derived from the structural element category and given as 

El EMap GeoF Lab Arc Lin Arr, , , , . The map category can be 
divided into geographical, geological or geopolitical map. The categorical 
chain is represented as Pt PMap Geo Glg Gop, , .

4.2.2.3. Picture Category 

The picture category refers to the complex visual object that conveys 
visual information about the visual world. The complex visual object 
consists of parts that are distinguished as meaningful regions. Meaningful 
region, called visual object, is interpreted as one of the ontological 
categories. In comparison to the object from the pattern category, the
complex visual objects of the picture category are composed without 
application of rules of picture composition. Picture provides the visual 

such as planets or galaxies as well as very small objects such as viruses or 
bacteria can be extracted from the picture and interpreted as members of 
the ontological real-world categories. The picture category is most often 
the member of the perceptual shaded-object category Sh . The category of 
pictures that is derived from the perceptual category of shaded object Sh

is divided into the micro-world category, the macro-world category and the
world category and given as: O Sh Pi ReO Mic Mac Ear, , .
The category of pictures can be divided into categories specified by 

Pi Mic Mac Ear

categorical chain establishes the picture classification based on the 
ontological categories of the different scales of the visual world. Figure 4.8 
shows pictures that are classified based on the ontological categories: the 
picture of the real-world category (Fig. 4.8a), the picture of the micro-
world category (microscopic image) (Fig. 4.8b) and the picture of the 
macro-world category (picture of the astronomical objects) (Fig. 4.8c). 

the perceptual and ontological level given by the categorical chain
in the following form , , .  This form of the

description of the different scales of the visual world. The visual objects 
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a  b       c   d  e

Fig. 4.8. Examples of the different categories of pictures: (a) The picture of the 
real-world category, (b) the picture the micro-world category, (c) the picture of the 

There is a class of pictures that does not refer to the real-world object but 
is a product of the scientific visualization or imagination of the illustrators 
of the mythical stories. The category of the picture that is derived from the 
category of imagery objects ImO  is divided into category of scientific 
visualization objects ScV Mit

Fai

O Pi ImO ScV Mit Fai

There is a class of pictures that is distinguished based on their aesthetic 
quality. The class of pictures that is established based on the reference to 

Pi DifO Man ManL MNoL, , .

Fig. 4.9. Examples of works of art members of the landscape category 

or the fairy-tale category and is represented by the following cate-
gorical chain:
shows a picture that is a member of the scientific visualization category,
and Fig. 4.8e shows a picture that is a member of the fairy-tale category.

the category of a set of living objects or the category of a set of 
non-living and living objects given by the categorical chain

The category of a set of non-living and living objects is divided into the 
category of man-made objects, the category of man-made and living 
objects or the category of man-made and non-living objects given by the 

, the category of mythological objects

.   Figure 4.8d 

the category of landscapes, the category of a set of non-living objects,
can be classified as a member of real-world picture categories such as

Figure 4.9 shows examples of

, ,

macro-world category, (d) the picture of the scientific visualization, (e) the picture 
of the fairy-tale category 

their aesthetic quality is called a category of works of art. The work of art 

works of art that are members of the landscape category. 
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following categorical chain: Pi DifO Man ManL MNoL, , .
The category of a set of non-living and living objects refers to the term 
‘still life’ that is used to denote paintings (pictures) that usually contain 
fruits, flowers or other objects setting on the table. An object that is the 

will be described in the following chapters of this book. Figure 4.10 shows 

The picture does not need to refer to the real-world categories. The 
pictures that consist of geometrical figures are called abstract paintings. 
The category of pictures that are derived from the ontological figure 
category is divided into the category of picture division PDiv  or the cate-

FigB

O Pi Fig 2DF PDiv FigB, .
Figure 4.12 shows examples of abstract paintings that are members of the 
category of picture division PDiv  (Fig. 4.12a–c) and the category of 

ing categorical chain:
 and is represented by the follow-gory of figure on background 

Fig. 4.10. Still life – members of man-made category 

called a style. The style refers to the one of the perceptual categories and it 
object of artistic work is represented by the conventional representation 

examples of works of art called ‘still life’ members of the category of man-

category of man-made  and living objects.

Fig. 4.11. Examples of still life – members of the category of man-made and living 
objects

made objects. Figure 4.11 shows examples of works of arts members of  the 
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Fig. 4.12. Examples of abstract paintings 

Fig. 4.13. Examples of the abstract pictures members of the silhouette category 
(a–d) or the line-drawing category (e,f)

figure on the background FigB  (Fig. 4.12d,e). All pictures shown in 
Fig. 4.12 are derived from the perceptual shaded-object category Sh .
Pictures shown in Fig. 4.13 are members of the silhouette category Si

Ld

Understanding of the visual object is focused on understanding of the 
object that is extracted from the image. Extraction of the visual object from 
the picture can be obtained by applying existing segmentation methods. 
These methods need to be further elaborated to be applicable to the 
specific picture categories. By applying the simple segmentation methods, 

Fig. 4.14. Different pictures from which phantom can be extracted 

a b c        d         e 

a b c

a b c d         e f

the picture is divided into two regions: the figure and the background. The
result of segmentation depends on the type of background Fig. 4.14a–c. The
simplest case is an object on the background of the uniform colour (see Fig. 
4.14c). In this book the main focus is on the problems connected with visual 

(Fig. 4.13a–d) or the line-drawing category (Fig. 4.13e–f).
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thinking. Thus the perceived object needs to be fitted to one of the shape 
categories that are the main ingredient of the visual thinking process. In 
this book it is assumed that a visual object is extracted from the image by 
applying one of the existing segmentation methods.

The category of animation refers to the category of process that is one of 
the ontological categories. Animation is often defined as the process of 
giving the illusion of movement or life to cinematographic drawings, 
models or inanimate objects. The category of process refers to the changes 
of the visual object that can be observed during the period of time. The 
member of the category of animation is the sequence of pictures, patterns 
or elements that are interpreted as a series of time dependent images. The 
category of processes does not depict the object itself but rather the 
changes of the object. The category of processes is described in more 
details in the following sections. Figure 4.15 shows examples of the 
objects from the animation category.  

4.2.3. Ontological Categories

Fig. 4.15. Example of members of the animation category 

4.2.2.4. Category of Animation 

The third-categorical level is called the ontological level and refers to the 
meaning of the object. The ontological level includes ontological 
categories  such as the category of real-world objects ReO , the cate-
gory of imagery objects ImO , the category of letters Let , the category 
of signs Sig  and the category of figures Fig . The derivation chain is 
given as O ReO ImO Sig Let Fig, , , , . In the case when 
both perceptual and structural categories are not specified the categorical 
chain is given as ReO ImO Sig Let Fig, , , ,O , where the letter O
denotes the category of the visual object.
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The symbol O  at the beginning of the categorical chain means that any 
combination of the specific categories from the perceptual level and the 
structural level can be used. The real-world category is divided into the 
micro-world category, the macro-world category and the world category. 
The categorical chain is given as ReO Mic Mac Ear, ,O . The 
ontological categories will be described in detail in the following sections. 

The perceptual and structural categories give information about the way in 
which the visual object is perceived. The ontological categories refer to 
the meaning of the visual object and can be seen as a new form of the 
knowledge representation. Knowledge represented in the form of the 
categorical chains is used in the process of interpretation of the perceived 
object during thinking process. Information obtained during understanding 
process connected with interpretation of the perceived object can be passed 
to another system during the conversation session. Interpretation of the 
perceived object involves application of non-visual knowledge that is part 
of symbolic description of the world to find the meaning of the visual 
object. Non-visual knowledge is represented by the category of knowledge 
object that is derived from the category of body of knowledge. The 
categorical chain of the knowledge categories is related to the categorical 
chain of the visual object. The knowledge that is represented by the 
categorical chain of knowledge is acquired from the existing sources of 
knowledge such as books or scientific journals. The process of knowledge 
acquisition is an iterative process in which new learned facts are linked 
into learned knowledge of the categorical chains. At the first stage of the 
learning process, there is no need for inclusion of all visual object cate-
gories and knowledge categories or even for their specific representation. 
The specific categories can be added during further stages of the learning 
process and knowledge of each category can be more precisely defined. 
The learned categorical chains, although do not have all specific know-
ledge needed for proper interpretation of all objects, they make it possible 
to find the general category of objects that describes the object in under-
standable way. That means the object will be interpreted in the context of 
all learned knowledge. For example, the unknown object can be interpreted 
as a rose, a flower or a plant. In all cases the interpretation is under-
standable and gives the description that can be used during further 
investigation of the properties of the perceived object. 

4.2.3.1. Interpretation of the Visual Object 
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aspect of knowledge can be differently described and defined. The cate-
gory of body of knowledge refers to any kind of knowledge that can be 
represented in any form that is transferable into the conceptual form of the 
categorical chain. In general, knowledge can be given by scientific 
theories, scientific descriptions, scientific models or common knowledge. 
Knowledge categories are denoted by the letter . The category of 
knowledge body is divided into the category of scientific discipline (the 
knowledge object) KOb , the category of scientific theories KTh , the 
category of scientific description KDe , the category of scientific model 

KMo  or the category of common sense knowledge KsK . The cate-

KB KOb KMo KTh KDe KsK

categories derived from the visual object will be called the visual 
categories whereas categories derived from the knowledge object will be 
called the knowledge categories. 

Science is any system of knowledge that is concerned with the physical 
world and other phenomena and that has its own research methodology to 
pursuit new knowledge. In general, science involves pursuit of knowledge 
covering general truths or the operations of fundamental laws. Scientific 
knowledge is divided into different scientific disciplines such as the 
physical sciences, the earth sciences, the biological sciences, the medicine, 
the engineering and the social sciences. These disciplines are divided into 
sub-disciplines that are focused on acquiring specific knowledge. For 
example, physical science is the systematic study of the inorganic world. 
Physical science consists of four broad areas such as astronomy, physics, 
chemistry and the Earth sciences. The category of scientific discipline (the 
knowledge object) KOb  is the most important in supplying knowledge 
needed in interpretation of the visual objects. Other categories supply 
knowledge, which is needed to obtain the deep understanding of the real-
world phenomenon that does not always have the visual representation. 
The category of scientific discipline (the knowledge object) KOb  is 
divided into the category of physical sciences, the biological sciences, the 
medicine, the engineering or the social sciences given by categorical chain: 

KB KOb PhS BiS MeS EnS SoS, , , , .
Knowledge of a given category of science, e.g. mathematics is given by 

objects such as mathematical figures, mathematical symbols or mathematical 

For simplicity, theis given as: , , , ,  .
gorical chain that represents the first level of knowledge categories

Knowledge can be regarded at many different levels and the different 

the category of mathematical objects that refers to the category of visual 
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expressions. Mathematics is the science of structure, order, and relation 
that has evolved from elemental practices of counting, measuring and des-
cribing shapes of objects. It deals with logical reasoning and quantitative 
calculation, and its development has involved an increasing degree of 
idealization and abstraction of its subject matter.

The lower category of the categorical chain is the prototype. Each 
prototype has its knowledge schema that is inherited through the hier-
archical categorical structure of the chain. The knowledge schema includes 
the characteristic categorical features and definitions. The knowledge 
schema is represented by symbols in brackets a b c d, , , . The 
symbol c  denotes the feature c that is characteristic for a given category 
(prototype). For example, the knowledge schema of the ellipse prototype 
consists of the visual concept ViC , the name Nam , the mathematical 
formula MaF , the definition Def  and the method of generation of figure 

MGe . The knowledge schema is given as the part of the categorical chain: 

NamC Eli ViC Nam MaF Def MGe{ , , , , }… . The knowledge schema of 
the ellipse category is inherited from the category of the closed curves and 
the category of mathematical curves. The knowledge schema of the 
general category that includes the more general categorical description is 
passed into the specific category that includes the specific categorical 
description. The knowledge schema of the specific category can be 
different from the knowledge schema of the general category. The specific 

The category of mathematical objects such as mathematical curves Cur

is linked with the category of the visual objects. The categorical chain of 
visual objects supplies knowledge concerning the general properties of the 
visual object. Based on this chain we can infer that specific category such 
as an ellipsis is a member of the convex-closed curve category and a member 
of the more general category such as the category of the geometrical figures. 

Fig 2DF Cur ConC NamC Cir EliO v
The categorical chain of the knowledge objects (knowledge chain) sup-

plies knowledge concerning non-visible aspect of the visual objects. The non- 
visible properties such as temperature or weight can give the additional 
information that makes it possible to identify an object. For example, the 
categorical chain of knowledge objects such as the ellipse category is given 
as KB KOb Mat Fig 2DF Cur ConC NamC Cir Eli, .

category can have additional features that are responsible for supplying the 
specific knowledge about the specific category.

The categorical chain that represents the visual knowledge of the ellipse cate- 
gory is given as .,



4.2. Category of Visual Objects      157 

For simplicity, the categories derived from the visual object will be 
called the visual categories whereas categories derived from the 
knowledge object will be called the knowledge categories. 

The categorical chain can be linked and form a very complex structure of 
knowledge that is used to interpret the visual object. The linked chains are 
used for the categorical reasoning that is based on the ‘moving’ through 
the linked chain categories. To illustrate the dependence of the different 
ontological categories of the linked chains the musical categories are given 
as an example of the complex structure of the relations among categories. 
Visual categories such as the category of musical notation are linked 
together to provide the interpretational structure of the world. Figure 4.16 
shows examples of members of the different visual musical categories. 

Fig. 4.16. Example of members of the different visual musical categories 

Musical notation is a visual record of heard or imagined musical sound, 
or a set of visual instructions for performance of music. It usually takes 
written or printed form. Musical notation serves as a means of preserving 
music over long periods of time, facilitates performance by others, and 
presents music in a form suitable for study and analysis. The categories of 
musical notation include the categories of musical symbols. The categories 
of musical notation supply knowledge that makes it possible to understand 
the musical visual symbols, to play the musical composition and to ‘record’ 
the composed musical work by writing it in the form of the musical scores. 
The category of the musical elements, such as the note Not , the rest Res

or the clef Cle , supplies knowledge that makes it possible to recognize 

El Sg VSym Mus Not Res Cle

The lower level of the category of musical symbols is the level of specific 
category of musical symbols such as the category of the bass clef, the 

4.2.3.2. Dependence Among Ontological Categories 

and name musical symbols. The categorical chain for the category of musi- 
, , . cal symbols is given as
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Mus Cle CTre CBas C_C… . The 
knowledge of the specific category of musical elements makes it possible 
to interpret correctly musical symbols.

Visual categories of musical symbols are linked with knowledge cate-
gories of musical symbols. The knowledge category of musical symbols 
supplies knowledge that makes it possible to interpret musical visual 

KB KOb Mus Not Res Cle

Understanding musical symbols means knowing how to make the sound 

sound on the musical scale. As it was described in the previous section 
each prototype has its knowledge schema that is inherited through the 
hierarchical categorical structure. The knowledge schema includes char-
acteristic categorical features. The knowledge schema for the prototype of 
the treble clef includes the visual concept ViC , the name Nam , the musical 

MGe Mus Cle CTre ViC Nam MIn Def MGe{ , , , , }… .  
The visual symbols used as the means of musical notation create a set of 

elements that are used to form more complex musical expression. These 
complex expressions are formed according to the rules of the musical com-
position. For example, musical symbols placed on the staff are interpreted 
in terms of the musical notation and can be used to produce the musical 
sound. The musical symbols placed on the staff are members of the musical 

Pt Sg VSym Mus Bea Phr MLi

sequence of musical symbols in terms of a melody or a rhythm. Sequence 

knowledge chain supplies knowledge that is needed during interpretation 
KB KOb VMus Bea Phr MLi, , ,

where symbol VMus  denotes the category of visual musical knowledge. 
Non-visual aspect of the musical knowledge is represented by knowledge 
chain. The category of non-visual musical knowledge includes the category 

interpretation MIn , the definition Def

, and is g iven as
and the method of the figure generation

of the sequence of musical symbols:

, ,treble clef or the C clef

, , .symbols as a specific musical sound

, , .the categorical chain:

using the musical instrument. The musical element such as Q note refers to 

categories such as beaming category, the phrase category, the rhythm category, 
the harmony category or the melody category (sequence of musical symbols 
on the staff) derived from the structural pattern categories given by

The category of pattern of musical elements refers to the interpretation of the 

of musical symbols placed on the staff can be transformed into musical 
sound by a musician playing on one of the musical instruments. The 

the elements of musical sound such as Q pitch or the location of musical 
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of rules of composition of the musical works, the category of style or the 
category of musical theories: KB KOb NVMus MRul MSty MThe

Music is played by musicians who transform the music scores into 
musical sound. The category of musicians is derived from the category of 
professionals Prf  and is given by the following categorical chain: 

El ReO Ear Liv Man Prf MCom MMus, .
There are two main categories of professionals that make music, the 
category of musicians MMus  and the category of composers MCom . The 
musical works are composed by composers and can be performed by 
musician or a group of musicians (trio, quartet and orchestra). Orchestra is 
instrumental ensemble of varying size and composition. The different 
musicians use the different instruments. The knowledge chain that supplies 
knowledge that is needed during interpretation of the visual object  
(from the category of professionals that make music) is given as 

KB KOb Man Work Prf MCom , . The category of 
musicians is divided into different categories of musicians such as the 
violinist category MVio , the drummer category MDr  or the trumpeter cate-
gory MTr Prf MMus MTr MDr MVio, , .
The knowledge schema derived from the category of professionals include 
the category of worker P

Man , the category of tools P
Tol , the category of 

materials P
Mat , the category of knowledge P

Kno , and the category of 
results P

Res  and is given in the following form P P P P P
Man Topl Mat Kno Res, , , , .

The category of professionals such as violinists is given by the following 
P P P P P

Prf MMus MVio MVi Vio ViK ViW, , , ,… .
This knowledge schema supplies knowledge for categories of musicians 
such as the category of violinists and consists of the following categories: 
the category of violinists P

MVi , the category of violins (the category of 
musical instruments) P

Vio , the category of knowledge that violinists need 
to perform the musical work P

ViK , and the category of musical works that 
is the result of the violinist performance P

ViW . The musicians use 
instruments to perform the musical work. The different musical 
instruments have to be used to play the different parts of the musical work. 
Musical instrument is any device for producing a musical sound. The 

, , .

MMus

knowledge schema

…and is represented as
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principal types of such instruments, classified by the method of producing 
sound, are percussion, stringed, keyboard, wind and electronic. Based on 
this classification of the musical instruments the category of the musical 
instrument is divided into the percussion category MIP , the stringed cate-
gory MISt , the keyboard category MIK , the wind category MIW , and the 
electronic category MIE  and is given by the following categorical chain:  

El ReO Ear NLiv MMad MIn MISt MIW MIP MIK MIE, , , , .

sound by the vibration of strings, which may be made of vegetable fibre, 
metal, animal gut or plastic. In nearly all stringed instruments the sound of 
the vibrating string is amplified by the use of a resonating chamber or 
soundboard. The specific categories of stringed musical instrument are: 
viola category Vio , the cello category Cel , the lute category Lut , the 
balalaika category Bal  or the guitar category Git  and are represented as 

MIn MISt Vio Cel Lut Git Bal…
the knowledge object supplies knowledge about the way of producing 
sound by a given instrument and is given by the following categorical 
chain: KB KOb MIn MISt Vio Cel Git, ,
instrument is produced by instrument makers. Instrument makers 
specialize in production of the specific instruments such as a viola or a 
cello. The visual category of instrument makers MMIM  is derived from the 
category of professionals Prf . The visual chain for these categories is 

Prf MMIM IMVio IMGit,…
previous example the visual chain is linked with the knowledge chain. 

The music that is performed in the special building can be recorded and 
stored on the magnetic tape or CD. Music recording is physical record of a 
musical performance that can then be played back, or reproduced. Sound 
recording is transcription of vibrations in air that are perceptible as sound 
onto a storage medium, such as a phonograph disc. In sound reproduction 
the process is reversed so that the sound stored in the medium is converted 
back into sound waves. The three principal media that have been developed 
for sound recording and reproduction are the mechanical (phonographic 
disc), magnetic (audiotape) and optical (digital compact disc) systems. The 
recorded music can be played by using electronic devices such as gramo-
phone or CD-player. The category of the electronic devices is derived from 

For example, stringed instrument is any musical instrument that produces 

, , , , . Category derived from 

. The musical 

. Similarly like in the given as

the pattern object to indicate that the devices are assembled from the simple 
elements. The electronic devices that are used for the purpose of music 
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.
The music is performed in the special places such as concert halls, opera 

houses, musical schools that are members of the musical house category. 
The musical house category derived from the house category is divided 
into the concert hall category HCon , the opera house category HOper  or 
the musical school category HSco  and is given by the following chain: 

El MMad Hou HMus HOper HCon HSco, , .
Opera houses are built by building workers and designed by architects that 
are members of the building worker category Bul  or the architect category 

Arh  represented by the following chain: 
Man Prf Arh Bul,… .   

playing are members of the electronic sound device categories such as gramo-

device is assembled from the electronic elements such as transistor. The 
category of the electronic sound device is represented by the following visual 
chain El MMad AsP EAsP Rez Ind Tfo Cap Dio Tran, , , , , .
This chain was described in previous section in the context of the des-

circuit. The category of the electronic sound devices is derived from the cate-
gory of the electronic devices ElDev  and is divided into the gramophone 
category Gra , the radio category Rad , the TV-set category TV , the tape 
recorder category Mag  or the CD-player category CD . The categorical chain 
of categories of the electronic sound devices is given in the following form: 

Pt Dev ElDev EDSo Rad TV Gra Mag CD, , , ,

duce the music which is a special kind of the sound wave. The musical 
sound is characterized by physical properties of the sound wave. Sound 

called acoustic. Acoustic is the science concerned with the production, 
control, transmission, reception and effects of sound. The sound can be 
visualized and considered as the sub-category of the category of the 
visual processes. The visualization of the sound wave can be obtained 
by applying the different transformations such as Fourier or Wavelets. 
The category of musical sound Mus  is derived from the category of  

cription of assembling of electronic devices based on the electronic 
schema. Members of the category of electronic sound devices such as a gramo-
phone or a CD-player are assembled based on the schema of electronic 

Music is played by a musician who uses the musical instrument to pro-

results from the vibration of elastic bodies such as a violin string or 
a human vocal chord and is the subject of research the branch of science 

phone, a radio, a TV-set, a tape recorder or a CD-player. The electronic sound 



162      4. Categories 

categories of different processes will be described in the further sections of 
this chapter.

Acus Mus ViC Nam Def Fet MGe{ , , , , }… . The definition has two 

The definition is given in the term of the different categories. For example, 
‘the result of vibration of elastic body’ Son is vibrat ElBodresult ,

Son is APWav

Air

transmited _
. Amp Fre

Spe

Son Fet Amp Fre Spe, ,F F F .
The relations among categories are represented by the dependence 

diagram. The dependence diagram keeps the links to all visual categorical 
chains that are related to each other. Figure 4.17 shows the dependence 
diagrams of categorical chains that are related to the music category. 
Based on the dependence diagram the visual objects such as the violin (the 
category of the musical instrument) can be interpreted in the context of 
the learned knowledge represented by linked categorical chains. The 
dependence diagram makes it possible to infer that musical instrument is 
used by musician to play the music that is composed by composer and that 
is given in the form of the musical scores. From the categorical chain of 
the category of the musical instrument we can have access to knowledge 
about the specific instruments such as a violin or a guitar. The dependence 
diagram makes it possible to establish any connection with all categorical 
chains of the dependence diagram and by this we can have access to 
knowledge supplied by both visual and knowledge chains. Each category 
of the dependence diagram can have link to other dependence diagrams 
that have knowledge of the different aspects of the visual world. For 
example, the musical symbols that are part of the dependence diagram of 
the musical categories can give link to the mathematical symbols that are 
part of the dependence diagram of the mathematical categories. Inference 
that is based on dependence diagrams is part of the thinking process that 
can offer nearly infinite possibilities of the creative exploration of the 
different categorical links. 

the acoustic processes Acus  given by the following visual chain: 
ReO Ear NLiv NatP Acus Mus Son Spi Noi, , ,O . The 

The knowledge schema of the sound category is given as 

‘air_preasure_wave transmitted through air’
 orFeatures  suc h as amplitude F ,  frequency Fthrough

power spectrum F are given as the part of the knowledge shema: 

parts, the first one that defines sound (that is ) and the second one that
defines sound (as consist of ). The definition is related to other categories
that are defined or will be defined within the scope of the system. 
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Fig. 4.17. The dependence diagram of the musical categories 

As it was described, ontological categories are members of the third-
categorical level. The ontological level includes ontological categories 
such as the category of the real-world objects ReO , the category of 
imagery objects ImO , the category of letters Let , the category of 
signs Sig  and the category of figures Fig  and are given by the 
following categorical chain: O ReO ImO Sig Let Fig, , , , .
The category of figures is described in the next section. 

The figure category is defined based on geometrical and perceptual 
properties of the visual object. This definition is related to the shape 
classes and is given as a class description, e.g. ‘the concave figure’, ‘the 
complex figure’, ‘the thin figure’, ‘the concave figure with one hole’. The 
figure category is part of the hierarchical knowledge of ontological 
categories. At the bottom of each categorical chain is the prototype of the 
category. The prototype of the category refers to the specific meaning of 
the visual object. The category of figures is derived from the category of 
visual objects. The category of figures consists of the category of 2D 
figures 2DF , the category of 3D figures 3DF , the category n-D
figures M3DF  (more than 3D figures). The category of 3D figures refers 
to geometrical objects that ‘exist’ in the 3D space. The category of n-D
figures is the category members of which are objects that can be found in 
more than 3D space. These objects can be visible by projection from n-D
into the 3D or 2D space. The categorical chain for the specific categories 
derived from the figure category is given as Fig 2DF 3DF M3DF, ,O .
The beginning of the categorical chain is marked by letter O  to show that 
any combination of both perceptual and structural categories can be 
selected.

4.2.3.3. Figure Category 
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The category of 2D figures consists of the category of polygons, the 

Fig 2DF Pol CuPo Cur, ,O . In 

Polygon is the figure that is made of the straight lines. The category of 
polygons is divided into the category of named polygons and the category 
of non-named polygons and is represented by the following categorical 
chain: Pol NaP NNaP,… . The category of the named polygons is the 
category that is connected with the category of mathematical figures derived 
from the mathematical objects. These figures are well defined and their 
properties are well described. Knowledge of these figures is a part of geo-
metrical knowledge. The category of non-named polygons is divided into 
the category of open convex polygons OpCoP , the category of open concave 
polygons OpCcP , the category of closed convex polygons ClCoP , and the 
category of closed concave polygons ClCoP  and is given by the following 

Pol NNaP OpCoP OpCcP ClCoP ClCcP

shape class from which the polygon is generated. Properties of the non-
named polygon are described in the context of the shape classes. The shape 
classes were described in Chap. 2. The non-named figures can resemble 
some letters or even real-world objects. In that case the visual object has 
more than one interpretation and can be named by the name of that real-
world object to which it is similar. Examples of members of the category 
of non-named open polygons are shown in Fig. 4.18. 

The category of the open polygons refers to the thin shape class. The 
knowledge needed to interpret a perceived object is given by the 
knowledge schema. The knowledge schema for the convex close polygons 
category includes the visual concept ViC , the name Nam , the defi-
nition Def  and the method of exemplar generation MGe  and is given as 

Fig. 4.18. Examples of members of the category of non-named open polygons 

the next section, these specific categories will be shortly described. 
the following categorical chain: 
category of curve polygons and the category of curves, and is given by

categorical chain:… , , , .  The name  
of the non-named polygon is given by the symbolic name of the 

4.2.3.3.1. Polygon Category 
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Pol NNaP ClCoP ViC Nam MIn Def MGe{ , , , , }… . The name Nam

is given in the form of linguistic expression of the existing languages and 
is expressed as Pol NNaP ClCoP Nam C1 C 2 CN{ } || NLan || , , ,… … ,
where 1 2 CN, , ,C C …  denotes the name categories that depend on the 
selected language category NLan|| || .

The figure category is related to the hierarchical structure of the shape 
classes. For example, the category of convex polygons refers to the convex 
polygon class denoted as nL . From the category of the convex polygon the 
category of the named convex polygon is derived. From the category of the 
named convex polygon the category of the specific named polygon is 
derived. Each prototype of this category has its characteristic name that 
refers to category of mathematical objects.

The name of the object that is a member of the category of non-named 
objects Nam  is the symbolic name of the shape class or a linguistic des-
cription. The category of concave polygons has its name expressed in the 
form of the linguistic description, e.g. ‘a polygon with one triangular 
concavity’, or ‘a rectangle with two rectangular concavities’. The name of 
this category is given by both the symbolic name that refers to the shape 
class and the linguistic description. For example, the name is given as the 
symbolic name Q1_L3_L3 and the linguistic description ‘triangle with one 
triangular concavity’; the symbolic name Q1_L3_L4 and the linguistic 
description ‘triangle with one rectangular concavity’; the symbolic name 
Q1_L4_L3 and the linguistic description ‘quadrilateral with one triangular 
concavity’; or the symbolic name Q2_L4P_2L3 and the linguistic 
description ‘rectangle with two triangular concavities’. 

The name of the category of the cyclic objects is expressed in terms of 
the number of holes. For example, the name is given as the symbolic name 
A1_L3_L3 and the linguistic description ‘triangle with one triangular 
hole’; the symbolic name A1_L3_L4 and the linguistic description 
‘triangle with one rectangular hole’ or the symbolic name A1_L4P_L3 and 
the linguistic description ‘rectangle with one triangular hole’. 

The definition of the polygon category Def  is given in the form of attri-
butes of the class or in the generative form. The prototype category of non-
named object is defined in relation to attributes of the polygonal object 
given by the class description. The method of generation of the object from 
the polygon category MGe  is given by the procedure that randomly selects 
the value of attributes and next generates vertices of a polygon, or in a 
form of templates that can be subjected to affine transformation.
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The visual concept of the polygon category ViC  is obtained during the 
learning process. The prototype of the figure is learned by selecting 
representative of objects generated from the specific class and finding their 
symbolic names. Naming of the polygon is based on the visual concept 
obtained during the visual reasoning. The name of the specific category of 
the polygon is given by a symbolic name whereas a name of a general 
category of a polygon is given by a set of symbolic names – the visual 
concept. These problems are described in more detail in Chap. 5. The 
visual concept of the prototype of the non-named object consists usually of 
one symbolic name and is denoted as { }i .

The polygon is a well-defined geometrical figure and can be relatively 
easy to recognize. Geometrical curves are also well defined however the 
recognition is not so easy process. For the purposes of the present research 
curves are classified according to the knowledge of geometry and 
perceptual properties of figures. 

The category of curves is divided into the category of curves in 2E , the 
category of curves in 3E  and the category of curves in more than three 
dimensions. The category of curves in 2E  is divided into four groups: 
the category of convex-closed curves ClCoC , the category of concave-
closed curves ClCcC , the category of convex open curves OpCoC , or  
the category of concave open curves OpCcC  and is given as: 

Cur NNaC OpCoC OpCcC ClCoC ClCcCv v…

curves is divided into the category of function curves, and the category non-
function curves. Taking into account properties of the function graphs the 
category of function curves is divided into the category monotonic curves 

Mon , the category of non-monotonic curves NMon  or the category of 
periodic curves Per . The categorical chain for the category of function 
curves is  as  Cur NNaC OpCcC Fun Mon NMon Per, ,v v… . The  
category of periodic curves is divided into the category of regular-periodic 
curves, the category of para-periodic curves and the signal category. 
Examples of different categories of curves are shown in Figs. 4.19–4.21. 
As we can see curves from the different visual categories have clearly 
visible visual features. 

, , , . A large number of 2D open 
curves can be regarded as the graphs of functions. The category of open 

4.2.3.3.2. Category of Curves 
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Fig. 4.19. Example of members of the category of open non-function curves 

Fig. 4.20. Example of members of the different categories of open monotonic and 
non-monotonic function curves 

Fig. 4.21. Example of members of the different categories: the category of para-
periodic curves and signal category 

The closed curves in E2 can be often represented by mathematical 
equation. The different types of mathematical equations are used to 
represent the closed-convex and the closed-concave curves. Similarly, the 
category of non-named closed curves is divided into the category of 
convex curves and the category of concave curves. Based on the 
classification of the shape classes described in Chap. 2, the category of 
convex curves is divided into the category of K1 curves, the category  
of K2 curves, the category of K3 curves and the category of K4 curves. 
These curves are represented by the following categorical chain: 

Cur NNaC ClCoC K1 K 2 K3 K 4, , ,v v… . The category of closed 
concave curves is divided into the category of cyclic and the category of 
non-cyclic curves. Examples of the members of categories of closed curves 
are shown in Figs. 4.22–4.24. 

Fig. 4.22. Members of the category of closed convex curves 
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Fig. 4.23. Members of the category of closed concave curves 

Fig. 4.24. Members of the category of closed convex cyclic curves and the 
category of closed concave cyclic curves 

fication of the curve-polygon classes described in Chap. 2. The convex 
curve-polygon class M  consists of geometrical figures, which have curvi-

the curve-polygon figures refers to one of the specific curve-polygon classes. 

CPo M1 M2 M3, ,v… .

The category of figures is related to the category of mathematical objects 
and the category of statistical objects. When the category of figure refers to 
the perceptual or geometrical visual properties of the visual object, the 
category of mathematical object refers to the category of objects defined 
in terms of mathematical (geometrical) properties of the mathematical 
objects. The category of mathematical objects includes mathematical 
knowledge (that does not need to refer to the visible object) concerning the 
knowledge of the object as a mathematical object. For example, the 
category of hyperbolas includes the definition of the curve as a mathe-
matical object, and the mathematical equation that makes it possible to 

Category of 2D Mathematical Objects 

The category of the curve-polygon figures is divided based on the classi-

linear parts as well as linear segments. The name of the specific category of 

The category of curve-polygon figures is divided into the category of
M1, the category of M2 or the category of M3 figures and are represented
by the following categorical chain: 

4.2.3.3.3. Category of Curve-Polygon Figures 

4.2.3.3.4. Category of Mathematical Objects 
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generate the visual object. The category of hyperbolas derived from mathe-
matical object includes the knowledge about the mathematical properties 
of the hyperbola as well as its relation to other mathematical objects. For 
example, hyperbola can be defined in the context of the differential 
equations and given as the result of the solution of the differential 
equation.

From the category of the convex polygon the category of the named 
convex polygon is derived. The members of the category of named poly-
gons are polygons that have the special properties and are subject of the 
geometrical investigation. From the category of the named convex polygon 
the category of the specific named polygon is derived. Each prototype of 
this category has its characteristic name that refers to the category of 
mathematical object. For example, the category of named closed polygons 
is divided into the category of triangles, quadrilaterals, pentagons or 
octagons and represented by the following categorical chain as: 

Pol NPol ClCoP Tri Qua Pen, ,…

trapezes and represented as follows Qua Sqa Rec Rho Tra, , ,… .
The definition of the known geometrical figures such as polygons is 

based on the geometrical knowledge of the properties of the geometrical 
figures. For example, the concept of the polygonal figure such as a triangle 
is defined in the context of the convex polygon class L . The triangle is 
defined based on the cardinality of the set of nodes V, | |va V . The 
triangle is a polygon that has three vertices 3va . The right triangle is 

The definition of the figure can be given by the formal definition. 
Because SUS needs to communicate the results of the visual experience, 
the formal definition of the figure needs to be transformed into description 
given in one of the existing languages, e.g. Polish. The figures such as 
polygons were defined within geometry, and the definition as well as 
properties of the polygons that are described in geometrical literature can 
be used to represent knowledge about the figure concept. For example, the 
triangle can be defined by formal description and expressed in the form of 

language needs to be translated into an intermediate representation. The 
intermediate representation makes it possible to translate the description 

,  whereas the category of quadri-
laterals is divided into the category of squares, rectangles, rhombus or 

ation is a general form of the definition. For example, the definitions ‘the 
from one language into another language. An intermediate represent-

a triangle with one interior angle that is equal to 90 .

the one of the existing languages (Polish, English) as follows: ‘a triangle is a 
polygon that has three sides’; ‘a triangle is a polygon that has three angles’; 
‘a triangle is a convex figure’. The definition expressed in the natural 
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triangle is a polygon that has three angles’ and ‘the triangle is a polygon 
that has three sides’ are given in the intermediate representation as ‘O is R
that has p’ denoted  as ( O R p ), where O and R are categories and p
is the characteristic property of the category. The formal definition refers 
to the attributes of the class. For example, the definition given in the 
linguistic form ‘the triangle is a polygon that has three sides’ has its 
symbolic form: 3[ 3]va L L . These forms are stored in the file in 
the following form ‘triangle (side = 3)’. During the conversation process 
these forms are translated into the intermediate representation ‘O is R that 
has p’. The intermediate representation makes it possible to express the 
same meaning by using different linguistic descriptions. For example, the 
sentence ‘the triangle is a polygon that has three sides’ is translated into 
the intermediate form O R p . The definition can describe a different 
aspect of the category, for example: ‘The triangle is a polygon that has three 
vertices’; ‘The triangle is a polygon that has three sides’; ‘The triangle is a 
polygon that has three angles’.

The definitions include the relations among different categories of the 
categorical chain. For example, ‘the triangle is a convex figure’ means that 
triangle category is derived from the convex polygon category. In the case 
of the parallelogram the different aspects of the geometrical properties are 
used as its definition, for example: 

‘A parallelogram is a quadrilateral that has opposite sides pairwise 
equal’

‘A parallelogram is a quadrilateral that has two sides parallel and equal’ 
‘A parallelogram is a quadrilateral that has the diagonals that bisect each 

other’

The definition can have the same meaning but it can be expressed in 
different words, and after translation into intermediate representation the 

parallelogram that has all its angles right’ or ‘A triangle is a polygon that 
has three sides’ is translated into intermediate representation in the form: 
R O p .

The category of curves refers to curves as mathematical objects that are 
defined in the area of mathematics or physics. In general, a curve – a graph 
of an equation in two variables is the set of points in the plane whose 
coordinates satisfy the equation. The graph of the equation 1xx yy ,
for example, is the unit circle with the centre at the origin. The category of 

‘A parallelogram is a quadrilateral that have the opposite angles equal’ 

meaning is easy to find. For example, the definition ‘A rectangle is a 

mathematical curves is derived from the category of figures. For example 
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Fig. 4.25. Example of members of the category of the open mathematical curves 

The category of the closed named curves is derived from the curves 
category. The curve that has name is given by mathematical equation with 

equation can cause clearly visible changes of shape (see example in 
Fig. 4.26). Based on these prosperities of the curve given in the form of the 
mathematical equation, the category of closed curves is divided into the 
category of the one shaped curves and category of the many shaped curves. 
The category of one shaped curves OneS  is divided into the category of 
double heart curves or the category of the trifolium of Cramer: 

Cur NCur ClCcC OneS DHer TCrm, . 
Pascal’s snail. Pascal’s snail is given by the mathematical equation in 

the following form: the explicit equation 2 2 2 2 2 2( ) ( )x y ax l x y , 
the parametric form 

2cos cos
cos sin sin

x a l
y a l

 

or the polar coordinates cosa l . The values of parameters a  and 
l  in the equation have a big influence on the shape of the generated curve. 
There are three different shape classes to which objects generated from the 
model given by Pascal’s snail equation can be assigned, the convex curves, 
the concave curves and the cyclic curves. Figure 4.26 shows the example 
of curves generated for the selected values of parameters. For the values of 
parameters a  and l  given as 2l a , the result is the convex curve 
(ellipsis) 1

EK  (Fig. 4.26a). For the values of parameters ala 2  and 
l = 1.006, the result is the concave curve (Fig. 4.26b). For l = 1.4 the result 
is the concave curve shown in Fig. 4.26c, for l = 1.8 and l = 1.9 the result 
is the nearly concave curve (Fig. 4.26d,e), for a l  and l=0.9 and l=0.7 
 

the category of parabola is derived from the category of the open convex 
curves Cur NCur OpCoC Par Hip

bers of the category of open mathematical (named) curves is given in 
Fig. 4.25. 

the result is the nearly cyclic curve (Fig. 4.26f,g), and for l=0.4 and l=0.08 

, .  Example of the mem-

one or more than one parameters. Changing values of parameters in the 

{
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Fig. 4.26. Example of members of the category of Pascal’s snail curves 

Fig. 4.27. Examples of members of the category of Bonet curves (a,b) and members 

the result is the cyclic curve (Fig. 4.26h,i). Each curve is represented  
by the symbolic name. For example, curve shown in Fig. 4.26b is given  
as 1 1 1 2 3 1

E[ [ ]]( [ ](2 ))Q M K Q L M , whereas the curve shown in Fig. 4.26h is 
given as 1 1 1 2 3 1 2[ [ [ ]]( [ ](2 ))]( )A Q M K Q L M K .

    a b c d e f g h i 

    a b c d e f g 

    h i j

In the case of Bonet curve, shown in Fig. 4.27, the shape is changing 
from archetype of the class C1 into archetype of the class C2. The Pearl 
curve can be seen as an object that changes shape from archetypes of the 
class C1 through C2,…C6 into the archetype of the class C7. As we can 
notice objects in Fig. 4.27a, b (Bonet curve) and objects in Fig. 4.27f,g 
(Pearl curve) are very similar and the visual concept of Bonet curve  
will be the ‘subset’ of the visual concepts of Pearl curve. The equation  
of the Bonet curve is 4 3 2 2 0x ax a y , whereas the equation of  
the pearl curve is ( ) /s r p px a x y b . Figure 4.27a, b shows mem-
bers of the category of Bonet curves generated from the equation 

4 3 2 2 0x ax a y , for a = 1.2 (Fig. 4.27a) and for a = 0.5 (Fig. 4.27b). 
Figure 4.27c–j shows members of the category the Pearl curve generated 
from the equation ( ) /S R P Px A x y B  for (A = 1, B = 1, P = 6, 
R = 5, S = 1) (Fig. 4.27c), (A = 1, B = 1, P = 6, R = 3, S = 1) (Fig. 4.27d), 
(A = 1, B = 1, P = 4, R = 3, S = 1) (Fig. 4.27e), (A = 1, B = 1, P = 2, R = 3, 
S = 1) (Fig. 4.27f), (A = 1, B = 1, P = 4, R = 3, S = 7) (Fig. 4.27g), (A = 1, 
B = 1, P = 4, R = 3, S = 3) (Fig. 4.27h), (A = 1, B = 1, P = 6, R = 7, S = 1) 
(Fig. 4.27i), (A = 1, B = 1, P = 6, R = 9, S = 1) (Fig. 4.27j). 

E

of the category of Pearl curves (c–j)
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The visual concept of categories such as the category of hypocycloida 
curves or the category of petal curves shown in Fig. 4.28 consist of 
symbolic names of the big range of shapes. Figure 4.28 shows the changes 
of shape for members of the category of hypocycloida curves and Fig. 4.29 
shows the changes of shape for members of the category of petal curves. 

The visual concept that is part of the knowledge schema of the category 
of the mathematical curve, given by its name, is obtained during the 
learning process. During learning process visual objects, representatives of 
the selected curve category, are generated and for each visual object the 
symbolic name is obtained. The visual concept i  is a set of different 
symbolic names 1 2{ , , , }i

n…  obtained from the learning sample of 
visual objects. In the case when the specific name of the curve refers to 
one shape, e.g. circle, ellipse or trifolium of Cramer the visual concept is 
given by the one symbolic name { }i . Examples of members of the 
category of closed curves that are represented by one shape are shown in 
Fig. 4.30. Figure 4.30a shows the category of circle ( 222 ryx ), 

Fig. 4.28. Example of members of the category of hypocycloida curves 

Fig. 4.29. Example of members of the category of Petal curves 

 

( )cos cos( )
( )sin sin( )

,R mR mt m t mt
R mR mt m t mt  y

x

Fig. 4.30b shows the category of ellipsis, and Fig. 4.30c shows the category 
of hypocycloida  

{
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 a  
Fig. 4.30. Examples of members of the category of closed curves that are repre-

4 2 2 4 2

3 2 2
2 6y x y x axy

ax a x
0)(2 2244 yxaxyx .

2cos cos
cos sin sin

x a l
y a l

or the polar coordinates: cosa l . The definition Def  can be 

  b  c   d  e  

given in many different forms and can be added during further stages of 

(e) trifolium of Cramer 
sented by one shape (a) circle, (b) ellipsis, (c) hypocykloida, (d) double heart, 

Fig. 4.30d shows the category of double heart
0 , Fig. 4.30e shows the category of trifolium of Cramer, 

perceived object as a curve there is a need to learn the knowledge of the 
knowledge schema of the curve category. The knowledge schema for  
the curve category includes the visual concept ViC , the name Nam , the 
definition Def MGe

Pol NNaP ClCoP ViC Nam MIn Def MGe{ , , , , }. The n
of the learned category Nam  is given in the form of the linguistic ex-
pression of the existing languages, for example, the language – English: 
‘Pascal snail’, the language – Polish: ‘Slimak Paskala’, and is expressed 
as: Pol NNaP ClCoP Nam NLan C1 C2 CN

languages can be added during further stages of learning process. The 
method of exemplar generation MGe  is given by the mathematical 
formula that can be expressed in the different forms such as explicit 
equation, parametric form or polar coordinates. For example, Pascal’s 
snail, which was described in previous section, is given by explicit 
equation 2 2 2 2 2 2( ) ( )x y ax l x y

{ }|| || , , , . The

the first stage of the learning process. The name expressed in other 
number of languages in which the name is expressed can be limited at 

and the method of exemplar generation and is given as
ame 

Learning of the category of many shaped curves such as Pascal snail req-
uired generation of the whole range of objects of the different shapes from the
mathematical equation of the Pascal snail. The knowledge needed to interpret
the perceived object is given by the knowledge schema. To interpret a 

, or in    parametric form  

{
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Fig. 4.31. Examples of members of the polyhedrons category 

learning. The definition can be expressed in the form of the symbolic 
representation or in the form of the linguistic description. The visual 
concept ViC is a set of symbolic names of the objects that are 
representatives of a given curve category. 

As it was described in the previous section the category of figure consists 
2DF 3DF , the 

category n-D figures M3DF . The category of 2D figures was described 
in the previous sections. In this section the brief description of the 3D 
polygon category that is derived from the 3D figure category is given. The 
category of 3D figures refers to geometrical objects that ‘exist’ in the 3D 
space. The category of 3D figures consists of category of 3D curves, 
category of 3D surfaces and category of 3D solids. From the category of 
3D solids the category of polyhedrons is derived. The category of named 
polyhedrons NPol  consists of the category of cube Cub , the category  
of prism Pri  or the category of cone Con  and is given as 

Fig 3DF Pol NPol Cub Pri Con, ,O . Figure  4.31 shows 
examples of the named polyhedrons. 

The graph of function is often plotted with additional visual information 
called the coordinate system. To locate points, lines, planes or other 
geometric forms their position must be referenced to some known position 
called a reference point. The position of geometric forms in 2D or 3D 
space is located by applying the coordinate system. When graph is plotted 
the axes can be included, labels can be put on the axes, the text of the 
different fonts can be used, frame can be plotted around the plot, labels can 
be put around the frames, thick marks can be drown and grid lines can be 
included. In Fig. 4.32a the most common representations of the graph of 

Category of 3D Figures 

Category of Mathematical Coordinate Systems 

, the category of 3D figures  of the category of 2D figures  
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 a  b  c 

Fig. 4.32. (a) The most common representation of the graph of the function with 

To interpret visual mathematical objects the category of mathematical 
coordinate systems is introduced. The category of the mathematical 
coordinate system is derived from the pattern category that is composed 
from the category of mathematical elements. The element category of the 
coordinate system consists of many different categories such as axes, 
labels on the axes, the text of the different fonts, frame around the plot, 
labels around the frame, thick marks and grid lines and category of 
mathematical object such as curves: 

El Sg VSym MCoS Ax Lab Fra Mar Gra, , , , .

category of mathematical coordinate systems makes it possible to identify 
and remove the labels during process of interpretation of the visual object. 
The definition that is supplied by the knowledge schema gives the des-
cription of the element in terms of the visual attributes (e.g. the arrow 
marks the direction of axis). The category of mathematical coordinate 
systems includes graphs of functions or curves. The categorical chain of 
the elements of the coordinate system is as

MOb MCoS Ax Lab Fra Mar Gra ViC Nam Def Int, , , , { , , , }.…

space. The Cartesian coordinate system locates points in the plane with 
reference to a fixed point (origin) and the distance from two intersecting 
lines, called axes. The coordinates (x, y) of a point are distances measured 
along lines parallel to two fixed perpendicular axes. The polar coordinate 
system locates points in a plane with reference to a fixed point (origin) and 
an axis through that point. The coordinates are written ( , )r , in which r is 
the distance from the origin to any desired point and  is the angle made 

The knowledge that is supplied by knowledge schema of the element 

Coordinates are sets of numbers that specify the location of points in a 

and (c) grid lines are added 

functions with axes and labels on the axes are shown. In Fig. 4.32b axes 
are drawn on the frame around the plot, and in Fig. 4.32c grid lines are
added.

axes and labels on the axes. (b) Axes are drawn on the frame around the plot 
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coordinates given in terms of two reference axes (x, y) and the polar 
coordinates ),(r , namely cosx r  and siny r . The pattern cate-
gory of coordinate systems consists of the elements of coordinate systems. 
The category of mathematical coordinate systems is divided into the 
category of Cartesian coordinate systems Car  and the category of polar 
coordinate systems Pol . The categorical chain of the pattern of coordinate 
systems  is  as Pat Sg VSym MCoS Car Pol, ,

Statistics makes extensive use of various types of pictorial representations 
such as graphs. A pictorial representation displays at a glance much of the 

graph the data are represented by points that are joined by straight-line 
segments. A ‘pie’ graph presents data in the form of slices of a pie, with 
the size, or angle, of each slice proportional to the quantity it represents. 

by the vector r and the axis. A simple relationship exists between Cartesian 

whereas the knowledge chain is given as MOb MCoSP Car ,…
Pol ViC Nam Def Int{ , , , }.The category of Cartesian coordinate systems 

is divided into the different types depends on the number of the different 
elements from element categories that are included into the object from the 
pattern category of coordinate systems. The specific categories derived 
from the category of Cartesian coordinate systems consist of the category 
of type A CartA , the category of type B CartB  or the category of type C 

CartC  and is given by the following categorical chain: VSym…
MCoS Car CartA CartB CartC

shown in Fig. 4.33. 

, , . Example of the different specific
categories derived from the category of Cartesian coordinate systems is

4.2.3.3.5. Category of Statistical Objects 

quantitative behaviour of the variables involved. The pictorial representations

(Fig. 4.37f) or ‘pie’ graphs (Fig. 4.3a–b) or box plots (Fig. 4.37c, d, g). 
A bar graph consists of a series of parallel bars or rectangles, the 
lengths of which are proportional to the data being presented. In a line 

Fig. 4.33. The different type of the category of the Cartesian coordinate system 

that are often used in statistics include bar graphs (Fig. 4.37e), line graphs
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Fig. 4.34. Data transformed by applying the graphical transformation ( )G  into 
phantom u  (a) profile glyph, (b) sun glyph, (c) star function and (d) blob glyph 

In statistic data that are gathered need to be transformed into more suitable 
form. The data can be transformed by one of the graphical transformations 

from the transformation of the multidimensional data. The profile glyph is 
constructed similarly to histobar, except the bar heights are connected with 
a single profile. The star function is a profile function in polar coordinates. 
The sun glyph substitutes rays for the perimeter star. Blobs (plotted in 
polar coordinates) are obtained by applying the Fourier transformation 

1
2 3 4 5( ) sin( ) cos( ) sin(2 ) cos(2 ) .

2
xf t x t x t x t x t

Cases that have similar values across all variables have comparable 
wave forms (the Fourier function is used). Figure 4.35 shows different 
geometrical transformations that transform a set of dots (data points) into 
the visual object.

Fig. 4.35. Example of the different geometrical transformation that transform data 
points into the visual object 

gory consists of objects that are members of the structural element 

cal graphs StGra , the visual representations of the multidimensional  
category. Members of the category of statistical elements are statisti-

into a visual object such as a histobar, a profile, a star function, a sun glyph 
or a blob glyph. These geometric objects are used in multidimensional repre-
sentations of data. Figure 4.34 shows an example of objects obtained 

The statistical visual object a member of the structural pattern cate-
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visual inspection of the scatter-plot data. The visual inspection of the 
scatter-plot data makes it possible to select the proper statistical procedure. 
The category of the scatter-plot data is divided into the category of the 
regression analysis gRe , the category of cluster analysis Clu  or the 
category of the discriminate analysis Dis  and is represented as: 

Fig. 4.36. Examples of objects from category of statistical graphs – continuous 
distributions

data Mul , the graphs of the statistical distributions StGra , the visual 
patterns of the scatter plots TSe
gories such as axes Ax  or labels on the axes Lab  and are given as 

El Sg VSym StCoS Ax Lab StGra Mul TSe SPlo, , , , , .

The category of statistical graphs is divided into the category of discrete 
distributions and the category of continuous distributions. The category  
of discrete distributions is divided into the category of geometric 
distributions, the category of hypergeometric distributions or the category 

Uni,
Exp

distributions NPDF , the category of normal CDF distributions NCDF , or the 
category of gamma distributions Gam . Members of the category of con-
tinuous distributions are defined by using statistical knowledge. For 
example, the normal (Gaussian) distribution is the distribution function 
that is the indefinite integral of the normal density function, the graph of 
which is the typical bell-shaped normal curve. The visual chain of the 
category of statistical graph is given as

El Sg VSym StCoS StGra ConD Uni Exp NPDF NCDF Gam, , , , .

 and members of the different cate-

of negative binomial distributions. The category of continuous distribu-

the category of exponential distributions  , the category of normal PDF 

The category of scatter-plot patterns refers to objects that are result of the 

StCoS SPlo Reg Clu Dis… , , . The category of the regression ana-
lysis is divided into the category of linear regression, the category of 

tions (see Fig. 4.36) is divided into the category of uniform distributions 
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Fig. 4.37. Members of the category of statistical objects 

nonlinear regression or the category of weighted least-square regression. 
Examples of members of the different categories of statistical objects are 
shown in Fig. 4.37. 

The statistical object is often shown in the context of the coordinate 
system. The category of the statistical coordinate system is very similar to 
the category of the mathematical coordinate system. Examples of members 
of the category of the statistical coordinate system are shown in 
Fig. 4.37e–j. 

menon and, as such, includes only those aspects relevant to the problem. A 
model of freely falling bodies, for example, does not refer to the colour, 
texture or shape of the body involved. Furthermore, a model may not 
include all relevant variables because a small percentage of these may 
account for most of the phenomenon to be explained. Many of the sim-
plifications used produce some error in predictions derived from the 
model, but these can often be kept small compared to the magnitude of the 
improvement in operations that can be extracted from them. The earliest 

tanks and wind tunnels. Physical models are usually easy to construct, but 
only for relatively simple objects or systems, and are usually difficult to 
change. The next step beyond the physical model is the graph, easier to 
construct and manipulate but more abstract. Since graphic representation 
of more than three variables is difficult, symbolic models came into use. 
The visual representation of the physical model supply information that 
cannot be conveyed by any other means. The category of physical model is 
derived from the pattern category. The category of the physical model is 
combination of the different element categories. The element category of 
the physical model consists of letters, words, arrows, lines, arch and the 
schematic representation of the physical phenomena. The pattern category 

A model is a simplified representation of the real-world object or pheno-

4.2.3.3.6. Category of Visual Physical Models 

models were physical representations such as model ships, airplanes,  
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real-world object or phenomena. When the 2D representation of the 3D 
real-world object is usually given by one of the image projections, the 2D 
representation of the visual physical model is given by the conventional 
transformation. The 2D visual representation can be given by the realistic 
drawing, the schematic engineering drawing or the schematic conventional 
drawing. For example, Fig. 4.38 shows the different visual representations 
of the gears: the realistic drawing (Fig. 4.38a), the schematic engineering 
drawing (Fig. 4.38b) and the schematic conventional drawing (Fig. 4.38c). 

The category of physical visual models consists of predefined visual 

El Sg VSym PhMo PhOb Lab Ax Mar Gra, , , , .

category, the wedge category, the axle category, the pulley category, the 
inclined plane category or the pendulum category, and is expressed as 

Pt PhMo Lev Wed Pul Rol Pen InPl, , , , , . The per-
ceived object is interpreted as a member of the category of the of physical 
visual models based on knowledge supplied by the knowledge schema of 
the knowledge category and the of physical visual models given as 

PhOb PhMo Lev Wed Pul Rol Pen InPl, , , , ,… . The category of 
the visual physical models is linked with the category of the real-world 
objects and is denoted as

.

perceived object both as a category of the real-world object and as a 
category of the physical model. Examples of members of the different 
categories of physical visual models are shown in Fig. 4.39. 

 a   b   c 

Fig. 4.38. Different visual representations of the gears 

El ReO Ear NLi v MMad SimM EAsP Lev Wed Pul Rol Pen InPl, , , , ,

symbols. The element category of the category of physical model in-

This link between two categories makes it possible to interpret the

of the visual physical models refers to the 2D visual representation of the 

cludes the schematic representation of the real-world object or and is   
given as: phenomena (physical object), letters, words, arrows, lines, arcs

The pattern category of the category of the physical visual models composes 
the different elements of the element category into one of the visual objects. 
The category of the physical visual models is divided into the lever 
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Fig. 4.39. Examples of members of the different categories of physical visual 
models

In literature terms a sign, a letter and a symbol are not well defined and are 
often used as synonyms. In contrast to the letter, the sign is not part of the 
system of any existing language. In contrast to the word that consists of the 
string of letters and is the meaningful element of the language, there are no 
rules that make it possible to compose the word-like unit from the system 
of signs. Symbols such as mathematical symbols can be used to compose 
complex expressions however there are no strict rules that govern the 
composition of the meaningful units such as words, sentences or text. Sign 
has been defined as a ‘concrete denoter’ possessing an inherent specific 
meaning. The most common signs are pictures or drawings, although a 
human posture like a clenched fist, an outstretched arm, or a hand posed in 
a ‘Stop’ gesture are signs. A sign contains meanings of an intrinsic nature. 
Images of the real-world objects are often used as a sign. Such an image is 
produced by applying conventional rules of drawing rather than geometric 
projections. Examples of signs are shown in Fig. 4.40.

Signs may be presented graphically, as in the cross for Christianity, the 

Islamic countries. Signs that do not resemble any real-world object are 
often called symbols. These symbols (e.g. the musical score) are similar to 
the letters of the existing languages. Language is a system of conventional 
spoken or written symbols by means of which human beings communicate. 
Figure 4.41 shows examples of mathematical symbols, musical scores, 
currency symbols, letter-like symbols or symbols of engineering schema.  

4.2.3.4. Category of Signs 

Fig. 4.40. Examples of signs 

Red Cross or the crescent for the life-preserving agencies of Christian and 
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In this book visual symbols are defined in the context of structural 
category of patterns. Visual symbols are signs that can be composed into 
complex expressions or schemas (pattern). Meaning of the visual symbol 
that is part of the complex expression or schema depends on the meaning 
of the others symbols. The category of the visual symbols refers to the 2D 
usually black and white objects that have relatively well-established shape. 
Members of the sign category are usually members of perceptual cate-
gories such as the silhouette category or the line-drawing category. 

The variation of shapes of the selected signs is often meaningful. For 
example, in the case of letters, the different shape of the same letter refers 
to the different fonts of this letter. To distinguish visual symbols from 
other signs such as the road sign, the signs that are not visual symbols will 
be called the symbolic signs. In contrast to visual symbols, symbolic signs 
are visual objects that cannot be used to compose the meaningful patterns. 
The symbolic sign has its conventional meaning that does not depend on 
the meaning of other symbolic signs. For example, road signs are related to 
each other, however, there are no rules to construct the meaning of the 
complex expressions that consist of signs or are based on the sequence of 

The category of visual symbols is the category of the well-defined objects 
that are used to compose the complex objects (patterns). The category of 
visual symbols is derived from the structural category – the element 
category or the pattern category. Examples of members of the structural 
element category El  and the ontological category of visual symbols 

VSym  are shown in Fig. 4.41. 

The sign category refers to the visual object meaning of which is based 
on the system of conventional rules (the code). The category of the sign is 
derived from category of the visual object that is given as follows 

ReO ImO Sig Let Fig, , , , .O  From the category of signs, the category 
of 2D signs and 3D signs is derived. The category of 2D signs is divided 
into the category of visual symbols VSym  and the category of symbolic 
signs SymS  and is given as: El Sig 2DSig SymS,

VSym .  The category of the symbolic signs will be described further in 
this chapter. 

signs.

4.2.3.4.1. Category of Visual Symbols 
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From the category of visual symbols the category of the mathematical 
symbols Mth , the category of logical symbols Log , the category of 
musical symbols Mus , the category of currency symbol Cur  or the 
category of engineering symbols EnSym  is derived that is given as 

El Sg VSym Mth Log Cur Mus EnSym, , , , .  

From the category of the visual symbols, the category of mathematical 
elements is derived. The category of mathematical symbols (elements) is 
divided into the category of mathematical operators Opr , the category of 
mathematical relations Rel , the category of logical operators Log , the 
category of special mathematical symbols SSym  or the category of ciphers 

Cip  and given as VSym Mth Cip Opr Rel Log SSym, , , ,… .
The category of knowledge of mathematical elements supplies knowledge 
needed during interpretation of the perceived object as a member of the 
category of mathematical symbols. The category of knowledge of 
mathematical elements is derived from the category of the mathematical 

The logician uses a symbolic notation to express proposition clearly and 
unambiguously and to enable manipulations and tests of validity to be 
more easily applied. The symbolic notation and connectives are used to 
establish categories of logical symbols. Connective is a word or group of 
words that joins two or more propositions together to form a connective 
proposition. Commonly used connectives include conjunction (‘and’), 
disjunction (‘or’), negation (‘not’), conditional (‘if  then’), and bi-
conditional (‘if and only if’).  The connective has been denoted by the 

A 5  ® §  % 1 / *  .
Fig. 4.41. Examples of members of the structural element category and the 
ontological category of visual symbols 

Category of Mathematical Symbols 

objects MtOb  and given as: MtOb Cip Oprr Rel Log Syn, , , , .…  The 
category of cipher is derived from the category of mathematical symbols 
and is divided into the Arabic cipher (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), Roman 
cipher (I, V, M) and denoted as VSym Mth… Cip Ara ,

Rom .  From the cipher elements the bigger units can be composed to 
denote numerals. 
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symbols is derived from the category of mathematical symbols. The 
category of the logical symbols consists of the conjunction category, the 
disjunction category or the negation category and is given as 

VSym Mth Log Dis Con Neg, ,v v v v… .
Elementary arithmetic is concerned primarily with the effect of certain 

operations, such as addition or multiplication, on specified numbers. The 
integral operator (symbol) is used to denote integration as a technique of 
finding a function g(x) the derivative of which, Dg(x), is equal to a given 
function f(x). The category of mathematical operator is derived from the 
category of mathematical visual symbols. The category of operators is 
divided into the addition category Add , the multiplication category Mul ,
the differentiation category Dif  or the integration category Int . The 

VSym Mth Opr Add Mul Dif Int…
members of the category of mathematical operators are as +, , /, *, , ,

, , . The knowledge schema of the category of mathematical operators 
Opr  includes the visual concept ViC , the definition Def

MGen

Link , the  name of  the  operator  Nam

MOb MCoSP Opr ViC Nam Def Link MGen{ , , , , }… . The link 
to the category of pattern supplies the knowledge of composition of the 
mathematical expression. The knowledge schema can be shared by the 

category of operators such as the addition category shares the knowledge 
of the category of mathematical operators: 

Opr Add ViC Nam Def Link MGen{ , , , , }… .

, , , . as  Examples  of 
categorical chain of the category of mathematical operators is given

symbols that are taken from the set theory. The category of logical 

several levels of the categorical hierarchies. For example, each specific 

The specific symbols are used to denote the relations such as equality or 

follows: =, , , , , . The category of symbols of mathematical 
relations is derived from the category of mathematical symbols. The 
category of symbols of mathematical relations is divided into the equality 
relation category or the inequality relation category and is represented as: 

VSym Mth Rel Equ NEq Big Les, , , . The knowledge 
schema of category of mathematical relations includes the visual concept, 
the method of generation, the link to the pattern of possible expressions, 
the name of the operator and the definition.

, the method  
of exemplar generation , the link to the pattern of possible expres- 

 sions and is given as:

inequality relations: Examples of symbols of mathematical relations are as 
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the category of mathematical expressions includes rules that make it 
possible to check if a perceived object is a member of a given category of 
mathematical expressions. The member of the category of mathematical 

Category of Musical Symbols 

Members of the category of mathematical symbols that is derived from 
the structural element category are used to compose the complex mathe-
matical expressions. The mathematical expression is a combination of 
ciphers (numbers), letters and other mathematical elements into the  
unit that has the mathematical meaning. The mathematical meaning  

matical expressions is derived from the structural pattern category.  
The category of mathematical expression consists of the category  
of equations Eqt , the category of functions Fun , the category of dif-
ferentiations Dif  or the category of integrations Int  and is expressed as 

Pt MtEx Eqt Fun Dif Int, , , . The knowledge schema of 

Music has been called both the most mathematical and the most abstract of 
the arts. Unlike words musical tones in themselves have no concrete 
associations, and only gain meaning when they are combined into musical 
patterns. Musical tones can be expressed in the graphical form by using 
musical notation. Musical notation is any set of symbols used to convey in 
written form the composer’s wishes to the performer. It includes not only 
the signs that communicate pitch and duration but also the various terms 
and marks that explain what the notes alone cannot. Notation must serve 
many types and styles of music – concert, popular and folk – and must 
convey information quickly, enabling the performer to read the composer’s 
instructions at the speed the music is to be performed. The category  
of musical symbols derived from the category of visual symbols is 
divided into the note category Not , the rest category Res , the clefs cate-
gory Cle , the flat category Fla  or the sharp category Sha  and is given  
as: El VSym MuS Not Res Cle Sha Fla

gory, 1/4 note category, 1/8 note category, 1/16 note category,  
1/32 note category and 1/64 note category and is given as: 

expressions (pattern) is composed of elements from the category of mathe-
matical symbols. For example, the expressions a + b = c, , ,a b a b c d

, 2 3, 4 5a b h x , 3 6 0x y x  are members of the cate-
gory of mathematical expressions. 

, , , , . The cate-  

is given by rules of mathematical expressions. The category of mathe-

Not 1 1/ 2 1/ 4 1/8 1/16… , , , , .  Similarly, the category of rest is
divided into the whole rest category, 1/2 rest category, 1/4 rest category, 1/8 

gory of notes is divided into the whole note category, 1/2 note cate-
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treble clefs category Tre , the bass clefs category Bas

C  and is given as: Cle Tre Bas C, ,… . The visual categories of 
musical symbols are linked with the knowledge categories of musical 
symbols. The knowledge category of musical symbols supplies the 
knowledge that makes it possible to interpret the musical visual symbol as 
the specific musical sound. The knowledge category of musical symbols is 
derived from the category of musical object MusO  and is given by the 

KB KOb MusO Not Res Cle, , .
Understanding the musical symbols means knowing how to make the 
sound using the musical instruments. The musical element such as note 
refers to the elements of musical sound, such as pitch or the location of 
musical sound on the scale. 

The musical elements that are members of the category of musical 
symbols can be combined into musical patterns by placing these symbols 
on the staff. The musical symbols placed on the staff are interpreted in 
terms of the musical notation and can be used to produce the musical 
sound. The musical categories such as the beaming category Bea , the 
harmony category Har  or the melody category Mel  are derived from the 
structural pattern category and are given by the categorical chain 

Pt Sg VSym Mus Bea Har Mel, , . Sequence of 
musical symbols placed on the staff can be transformed into musical sound 
by musician playing on one of the musical instruments.

Engineering is the creative application of ‘scientific principles’ to design 
or develop structures, machines, apparatus or manufacturing processes. 
Associated with engineering is a great body of special knowledge. 
Professional practice involves extensive training in the application of that 
knowledge. When scientist produces systematized knowledge of the 
physical world the engineer utilizes this knowledge to solve practical 
problems. Engineering is based on physics, chemistry and mathematics, 
and their extensions into materials science, solid and fluid mechanics, 
thermodynamics, transfer and rate processes, and systems analysis. There 

following categorical chain: 

Category of Engineering Symbols 

are different branches of engineering such as chemical engineering, 

rest category or 1/16 rest category. The category of clefs is divided into the 
 and the C clefs category 

mechanical engineering or electronic engineering. For example, mecha-
nical engineering is the branch of engineering concerned with the design, 
manufacture, installation, and operation of engines and machines and with 
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The category of engineering symbols (elements) is divided into the 
category of electronic symbols ElES , the category of mechanical symbols 

MeES , or the category of chemical symbols ChES  as shown by the 
categorical chain: 

El Sg VSym EngS ElES MeES ChES, , .
Each category of engineering symbols refers to the specific branch of 

engineering such as electronic engineering. To understand the functionality 
of electronic tools or to solve the electronic problem the knowledge from 

circuits. The scheme of the electronic circuit is used to solve the electrical 
problems or to build the electronic tools. The category of electronic 
symbols is ‘linked’ with the category of the real-world electronic elements. 
Electrical symbols are interpreted as a ‘substitute’ of the real-world objects 
such as a resistor or a battery.

Figure 4.42 shows members of the different categories of electronic sym-
bols (a) the resistor category, (b) the inductor category, (c) the transformer 
category, (d) the capacitor category, (e) the electrolytic capacitor category, 
(f) the diode category, (g) the light emitting diode category, (h) the bipolar 
transistor category, (i) the field-effect transistor category. 

Fig. 4.42. Members of the different categories of electronic symbols 

manufacturing processes whereas electrical and electronic engineering is 
the branch of engineering concerned with the practical applications of 
electricity in all their forms, including those of the field of electronics. The 
visual knowledge in engineering is given in the form of engineering 
schemes that consist of engineering symbols.  

the area of electronic engineering is needed. The visual knowledge in the 
field of electronic engineering is given in the form of schemes of electronic 

The category of electronic symbols ElES  is divided into the resistor 
category Rez , the inductor category Ind , the transformer category Trn ,
the capacitor category Cap , the diode category Dio

category of Trz , and is given as:

El ElES Rez Ind Trn Cap Dio Trz, , , , , .
The capacitor category is divided into the electrolytic capacitor category 

Elec  and given as:

El ElES Cap CerC EleC, .

, the transistor 

or the ceremic capacitor category CerC
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Fig. 4.43. The category of electronic elements the resistor, capacitor, capacitor 
electrolytic, bipolar transistor, field-effect transistor 

Fig. 4.44. Examples of members of the category of schemes of electronic circuits 

The category of electronic symbols is linked with the category of 
electronic elements that is derived from category of real-world objects. 
Figure 4.43 shows examples of members of the category of electronic 

Each member of the category of the electronic symbols refers to the 
member of the category of electronic elements derived from the category 
of the real-world objects. The specific categories such as the resistor 
category Rez , the capacitor category Cap , the diode category Dio , or 
the transistor category Trz  that are derived from the category of real-
world objects are represented by following categorical chain: 

El ReO Ear NLiv MMad AsP ElAsP Rez Trn Cap Dio Trz, , , , .
The electronic engineering symbols are parts of the schemes of 

category of the ERC ERC  (battery, resistor and capacitor) circuits, the 
category of the ERLC ERLC  (battery, resistor, capacitor and inductor) cir-
cuits or the category ERLCT ERLCT  (battery, resistor, capacitor, inductor 
and transistor) circuits. The categorical chain of the specific categories 
derived from the category of schemes of electronic circuits is as

Pt Sg VSym EngSh ElESh ERC ERLC ERLCT .

electronic circuits (Fig. 4.44). The category of schemes of electronic circuits  
is derived from the structural pattern category and is divided into the 

, ,

elements that refers to members of the category of electronic symbols.
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The most common signs encountered in daily life are pictures or drawings. 
As it was described in the previous section the category of signs is derived 
from the category of visual objects. The category of signs is divided into 
the category of visual symbols and the category of the symbolic signs. As 
it was mention at the beginning of this chapter, in contrast to the members 
of the category of the visual symbols, members of the category of 
symbolic signs cannot be used to compose any complex meaningful object. 
The meaning of elements of the category of symbolic signs does not 
depend on the meaning of other elements of the same category. From the 
category of symbolic signs the category of the trademark signs TrS , the 
category of road signs RoS  or the category of cross signs CroS  is derived: 

Sig 2DSig SymS RoS CroS TrS, ,O .
The category of road signs is derived from the category of symbolic 

signs. The roadways signs advise the driver of special regulations and 
provide information about hazards and navigation. The meaning of  
the complex road signs depends on the shape of its ‘background’ or 
shape of a sign as a whole. Shape of the sign as a whole (e.g. circle, 
triangle) refers to the general category of the road signs. For example, 
an octagon is used for stop signs, a triangle for warning signs or a rect-
angle for free way directions. The category of road signs are  
divided into the category of warning signs or the category of 
information signs and are given by the following categorical chain: 

Sig 2DSig SymS RoS war InfO
different categories of road signs. 

The category of road signs is interpreted based on the first meaning and 
the second meaning of the sign. The first meaning of the sign refers to the 
visual object that is interpreted as a member of the category of real-world 
objects or the category of letters. For example, the visual object shown in 
Fig. 4.46a is interpreted as a member of the category of letters, the letter 
‘P’, whereas the visual object shown in Fig. 4.46d is interpreted as a 
member of the category of real-world objects, the cup. The second  

, .  Figure 4.45 shows 

meaning refers to the visual object that is interpreted as a member of  
the category of road signs. For example, the visual object shown in 

Fig. 4.45. Examples of members of the different categories of road signs 

4.2.3.4.2. Category of Symbolic Signs
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Trademark is any visible sign or device used by a business enterprise to 
identify its goods and distinguish them from other business enterprises. 
Trademarks may be words or groups of words, letters, numerals, devices, 
names, or the object of the different shape. The trademark category refers 
to a modern trademark that interprets the character of its wearer by 
associating it with sharply defined signs. Modern trademarks are 
characteristic symbols of the company. They can resemble real-world 
object or can have any ‘abstract’ shape (see Fig. 4.47). The member of the 
category of symbolic signs has meaning independent from other members 
of this category. For example, trademark has the meaning that does not 
depend on the meaning or concurrence others trademarks. The category 
of trademarks is divided into the category of editorial trademarks  
or the category of the industrial trademarks and is given as: 

Sig 2DSig SymS TrS PrCo IndO
gories of the category of editorial trademarks such as the category of 
Elsevier trademarks, the category of Prentice-Hall trademarks or the 

Fig. 4.46. Examples of members of the category of information signs 

Fig. 4.47. Examples of modern trademarks 

Fig. 4.46d is interpreted as a member of the category of road signs – the 
cup indicates that there is a café n ear by. The different categories of 
information signs that give the specific information include both the 
letters and schematic representations of the real-world objects. The 
category of information signs is divided into the category of restaurant, 
the category of parking or the category of post, and is given as 

Sig RoS Inf Par Pos ResO
examples of members of the category of information signs. 

, . The specific cate-

a b c d e f

g h i j k l

, , . Figure 4.46(a–l ) shows 
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category of Springer-Verlag trademarks are derived from the category of 
editorial trademarks, and are given as follows: 

Sig TrS PrCo Els PrHO
The cross is a sign both of Christ himself and of the faith of Christians. 

The cross became the principal symbol of Christianity. More than 50 
variants were to develop, but the most important are the Greek cross, with 
its equilateral arms, and the Latin cross, with a vertical arm traversed near 
the top by a shorter horizontal arm. Other major shapes include the 
diagonal, or x-shaped, cross of Saint Andrew, and the cross paty (or patee), 
in which the arms widen at the extremities. A variant of the cross paty is 
the Maltese cross, which has eight points. The Chi–Rho is a cross formed 
by joining the first two letters of the Greek word for ‘Christ’. The Celtic 
(Iona) cross is distinguished by a circle surrounding the point of crossing. 
Two graduated crossbars indicate the Lorraine cross, whereas the Papal 
cross has three graduated crossbars. A commonly used Eastern Orthodox 
variant of the cross of Lorraine has an additional crossbar diagonally 
placed near the base. The category of the cross sign is based on the 
existing knowledge of the different types of the cross. The proposed 
categories are based on the visual aspect of the visual object that is 
interpreted as the cross. The category of cross is divided into: the Latin 
cross category Lat , the Saint Andrew cross category X , the Paty cross cate-
gory Pat , the Papal cross category Pap , the Lorraine cross category Lor , the 
Maltese cross category Mal , the Chi–Rho cross category ChR  or the Celtic 
(Iona) cross category Cel  and is given by the following categorical chain: 

.

Fig. 4.48. Examples of members of the different categories of the cross 

Sig 2DSig SymS CroS Lat X Pat Pap Lor Mal Cel ChR, , , , , , ,O
Figure 4.48 shows examples of members of the different categories of the 
cross.

, .  
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The letter, in this book, denotes any written symbol that is part of the script 
of any language. Writing is form of human communication by means of a 
set of visible marks that are related, by convention, to some particular 
structural level of language. Language is a system of conventional spoken 
or written symbols by means of which human beings communicate. 
Written symbols are used to aid our own thought and to communicate with 
other people. Writing has a long history. Early Chinese ideograms are 
similar to Egyptian hieroglyphics. The first full language was developed in 
the fourth millennium BC by the Sumerians. This is the cuneiform script 
that evolved from picture-writing employing some 900 different symbols. 
These picture symbols gradually become simpler, until the original picture 
symbols can only just be distinguished. The symbols were rotated and 
these rotated pictograms become the cuneiform characters of the first 
written language. It was found that writing could be done far more 
efficiently by changing the earlier system of writing from right to left in 
columns to writing from left to right in lines and by moving the angle of 
the signs 90 , so that the sign pictures then appeared horizontally instead 
of vertically. Figure 4.49 shows examples of evolution of the pictograms – 
the early script. Figure 4.50 shows examples of hieroglyphs, early 
Sumerian script and cuneiform script. Figure 4.51 shows examples of the 
Chinese and Japanese script. The category of pictograms and the category 
of hieroglyph are derived from category of logographic languages. 

Fig. 4.49. Examples of evolution of the pictograms 

 a    b

  
 c 

Fig. 4.50. Examples of (a) hieroglyphs, (b) early Sumerian script, (c) cuneiform 
script

4.2.3.5. Category of Letters 
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The category of letters is derived from the category of the visual objects 
ReO ImO Sig Let Fig, , , ,O . The category of letters is very closely 

related to the category of languages. The category of languages is divided 
into the specific categories of the different languages, e.g. the category of 
the Polish language or the category of the English language. 

In most cases the letter is used as a part of the bigger unit such as a 
word, a sentence or a text. The rules of constructing words and sentences 
are part of the knowledge of any particular language. These problems will 
be discussed in Chap. 5. In this chapter the specific categories derived 
from the category of letters are described. To represent language adequately, 
a full writing system must maintain fixed correspondences between its 
visual symbols and the elements of the language. A writing system that has 
a visual symbol for each word in the language is called logographic, a 
writing system that has visual symbols for different syllables that occur is 
called syllabic, and a writing system that has visual symbols for each 
sound of the language is called alphabetic. The specific categories of 
letters are based on different types of writing systems. The category of 
letter is divided into the category of logographic letters Log , the category 
of syllabic letters Syl , and the category of alphabetic letters Alp  and is 
represented by the categorical chain as Let Log Syl Alp, ,O . The 
category of alphabetic letter is divided into the category of Latin letters, 

Let Alp Lat Gre Cyr Heb AraO , , , , .

the category of Greek letters, the category of the Cyrillic letters, the cate-
gory of Hebrew letters or the category of Arabic letters and is given by the
following categorical chain:
Examples of members of the specific categories derived from the category 
of alphabetic letters such as the category of Latin letters (c), the category 
of Greek letters (e), the category of the Cyrillic letters (d), the category of 
Hebrew letters (b) or the category of Arabic letters (a) are shown in 
Fig. 4.52. 

The letter appearance differs depending on type of letters: uppercases or 
lowercases. In some alphabet the uppercase and lowercase of the same 
letter looks very differently. For this reason the category such as the 

Fig. 4.51. Examples of Chinese and Japanese letters and their distorted versions 
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A B C D E F G H I J K L M
N O P Q R S T U V W X Y
Z

 a  b  c  d  e 

Fig. 4.52. Examples of members of the specific categories derived from the 
category of alphabetic letters 

UppC  and the category of the lowercase letters LowC  and is given as 

Let Alp Lat LowC UppC,O . Figure 4.53 shows example 
of the category of the lowercase Greek letters. 

 µ 

Fig. 4.53. Example of the category of the lowercase Greek letters 

category of Latin letters is divided into the category of uppercase letters 

The shape of letter can have the big different appearance depending 
on the selected category of font. Important details in a definition of 
prototype of the category of font are appearance of the ending of a 
stroke. The category of letters (upper cases and lower cases) is divided 
into category of printed letters PrF  and handwritten letters HwL . In 
technical drawings freestanding lines are marked off with small cross 
strokes. Almost all techniques of writing and drawing have produced 
their own different ways of marking line endings. The category of font 
describes the lowest category called the prototype. The prototype has  
a well ‘defined’ shape. For example, the prototype of the letter font  
such as an Arial font or a Times New Roman font has well-defined 
shapes. The category of font such as the category of Latin lowercase 
letter font is divided into the category of the Times New Roman font TNR ,
the category of the Arial font Ar , or the category of the Bold font Bo .
The categorical chain of the specific categories of the letter font is as  

El Let Alp Lat LowC UppC PrF Ar TNR Bo, , , , .
Examples of members of the different categories of fonts of the letter
‘T’ are shown in Fig. 4.54. In the case of the category of handwritten letters
there is a big diversity among shapes of member of the selected specific
category, e.g. the category of handwritten letter ‘r’. 
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T T T T T T TT TTTT T T T T T
TT T T T T T T T T T T TT T
T T T T T T T T T T T T T T T T T T T

T T T T T T T T T T T T
the letter ‘T’ 

The category of the real-world objects refers to the 3D objects that exist in 
the real world and can be perceived through accessible technical tools such 
as a camera, a telescope or a microscope. The perceived object (phantom) 
that refers to the real-world object is given as one of the perceptual 
categories such as a silhouette, a line drawing, a colour object or a shaded- 

4.2.3.6. Category of Real-World Objects 

The letter is composed into the bigger units such as words, sentences, 
paragraphs or text. The visual objects such as words or sentences are 
members of the category of words Wor , the category of phrases Phr , the 
category of sentences Sen , or the category of texts Txt  that are derived 
from pattern category: Pt Let Alp Lat PrF

Wor Phr Sen Txt, , , . The knowledge schema of knowledge categories 
supplies knowledge that is needed during reading and understanding of the 
text. A phrase consists of one or more adjacent words. Phrases have names 
that reflect the type of word they contain for example, the noun phrase 
contains nouns and the verb phrase contains verbs. The sentence can be 
dissected into its component phrases, and those phrases into their com-
ponent words. The analysis of sentences by application of the grammar 
rules is the task of syntactic analysis. A grammar represents the syntactic 
rules of the language that are learned as a part of the knowledge schema of 
the knowledge object. The phrase category is divided into the noun phrase 
category Nou  or the verb phrase category Ver  and is represented by cate-
gorical chain as Pt Let Phr Nou Ver, .

Fig. 4.54. Examples of members of the different categories of fonts of the 
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Fig. 4.55. Examples of members of the different perceptual categories and 
structural categories 

object O Si Ld Co E, , , . Examples of members of the different 
perceptual categories and structural categories are shown in Fig. 4.55. At 
the first stage of the visual interpretation, the object is assigned to one of 
the perceptual categories, next it is assigned to one of the structural 
categories O El Pt Pi An, , ,  and, at the end, it is interpreted 
as a member of one of the ontological categories given by the categorical 
chain as: O ReO ImO Sig Let Fig, , , , .

The category of the real-world objects is the category of the third level 
of the categorical chain. The category of real-world objects can be a 
member of many different perceptual or structural categories. If these 
categories are not specified the beginning of the categorical chain is 
denoted by the symbol O . In the case when these categories are specified, 
symbols of these categories are shown in the categorical chain. The 
simplest perceptual category of real-world objects is a silhouette. The 
silhouette often represents the isolated real-world object. The categorical 
chain for the real word object represented by silhouette is given as 

O Si El ReO . Silhouette can be obtained from the line 
drawing or shaded object. The silhouette can be obtained from a 
photograph of a real-world object or can be obtained by process of 
schematization and visual abstraction. Figure 4.56 shows the silhouettes of 
selected animals obtained as the result of schematization. 

The line drawing can be obtained by proper segmentation of the image. 
The silhouette obtained from a line drawing or a shaded object conveys 
only part of the visual information needed for the interpretation of the 

Fig. 4.56. The silhouettes obtained as the result of schematization 

object. During the visual interpretation a silhouette is used to obtain the 
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interpretational sketch of the object (see Fig. 4.57). The category of 
silhouette of a given object, e.g. a glass consists of different shapes of the 
glass that is the result of variation of shapes across the different types of 
glasses as well as the different views of glasses. There is a big difference 
among shapes of objects from the different ontological categories and 
usually a big difference among a set of characteristic views of the same 

The visual representation of the human figure, as shown in Fig. 4.58 can 

The real-world objects can be represented visually by the line drawing. 
The line drawing can be obtained by proper segmentation of the 
photograph of the object or can be obtained as the result of schematization 
and visual abstraction. For example, the schematic line drawing of the 
different category of birds is shown in Fig. 4.59. 

Fig. 4.57. Examples of silhouettes obtained from the line drawing 

Fig. 4.58. The different visual representations (silhouettes) of the human figure 

Fig. 4.59. The different schematic representations of birds 

be the result of schematization and shows the difference in gender and pose.

object. For simple objects from categories such as the glass category the
number of characteristic views is rather small.
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The living object has its part moving and by this the visual repre-
sentation needs to capture not only the changes of the visual aspect of the 
object but also the changes of the object when the parts are moving. 
Figure 4.60 shows the changes of the visual representation of the horse 
when the movement of the parts occurs. 

Real-world object is represented by 2D object that is obtained as the 
result of the conventional schematization or as the result of application of 
the projection method. Projections method is basic tools of the engineering 
and technical graphics. Projection theory comprises the principles used to 
represent graphically 3D objects on 2D media. Drawing more than one 
face of an object by rotating the object relative to the line of sight helps in 
understanding the 3D form. A line of sight is an imaginary ray of light 
between an observer’s eye and an object. In perspective projection, all 
lines of sight start at a single point. In parallel projection, all lines of sight 
are parallel. Orthographic projection is a parallel projection technique in 
which the plane of projection is positioned between the observer and the 
object and is perpendicular to the parallel lines of sight. Multi-view 
projection is an orthographic projection for which the object is behind the 
plane of projection, and the object is oriented such that only two of its 
dimensions are shown. Multi-view drawing employs multi-view projection 
techniques. In multi-view drawings, generally three views of an object are 
drawn. The perspective of central projection is divided into linear 
perspective and aerial perspective. The parallel projection is divided into 
oblique projection and orthographic projection. The orthographic 
projection is divided into the axonometric projection and multi-view 
projection. Figure 4.61 shows examples of different projections. 

Fig. 4.60. The changes of the visual representation of the horse when the move-
ment of the parts occurs 

To solve problems of perspective distortion the perceptual category  
of the line drawing is divided into the different specific categories  
such as: the category of structural archetype StAr , the category of  
the segmentation edge SeE , the category of the conventional 3D 
drawing CoD , the category of the intentional geometrical drawing InG ,
the category of the multi-view drawing , the category of view from  
the top ViT , the category of frontal view ViF , the category of 

MuV
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Fig. 4.61. The different projections 

orthographic projection OrP , the category of perspective projection PeP ,
the category of folding sheets FoSt , the category of many aspects drawing 

and is represented as O Ld El ReO StAr SeE InG MuV|| , , , ,
.ViT ViF OrP, , , PeP MaAs FoSt, , | | These subcategories of perceptual 

categories of line drawing object make it possible to interpret the visual 
object in terms of perceptual distortions caused by application of the 
different methods to generate the visual object (e.g. projection methods). 
Figure 4.62 shows members of the different specific line drawing 
categories such as: the category of the segmentation edge (a), the category 
of the conventional 3D drawing (b), the category of the intentional 
geometrical drawing (c), the category of the multi-view drawing (d), the 
category of view from the top (e,f), the category of frontal view (g,h), the 
category of orthographic projection (i), the category of perspective 
projection (j), the category of folding sheet (k), the category of many 
aspects drawing (l). 

MaAs
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Fig. 4.62. Examples of members of the different specific line drawing categories 

The category of the real-world object refers to the 3D geometrical 
figure. The real-world object is perceived as the three-dimensional object 
and as a result of abstraction the real-world object can be interpreted as the 
3D geometrical figures called solids. Selected specific categories derived 
from the category of solids were described in the previous section. Each 
solid category can be represented by the line drawing category. There are 
many different 2D representations of the same solid that show the different 
visual aspects of the solid. To be able to interpret the different visual 
aspects of the object as the same object, the visual schema or the generic 
visual concept based on multi-view representation is introduced. The 
category of multi-view drawing (the perceptual category) is denoted  
by upper subscript M

Ld  where M denotes the multi-view 
representation and Ld denotes the category of the line drawing: 

M
O Ld El Fig 3DF Pol NPol Cub Pri, . The 

multi-view drawing is used to learn the generic visual concept of the object 
that can be used in performing of the mental transformation.

The visual schema of the knowledge category includes the visual 
concept that is obtained during learning process. The generic visual 
concept that is learned based on the multi-view representation consists of 
three visual names. For example, the generic visual concept of the cylinder 
(Fig. 4.63a) consists of symbolic names of the circle and two rectangles 

MV 1 4 4
Cylinder C R R{ , , }K L L . The top view of the cylinder shown in Fig. 4.63a 

is represented by the circle whereas the frontal view is represented by two 
rectangles. The orthographic projection of the cylinder is given as 

OP 2 4 1 1 1 4 1
Cylinder R E R E

Chap. 5. 

geometrical projections of the selected object. The selected issues of the
learning of the visual concept of the real-world objects will be given in 

{ [M [L ]]{K , Q [M [L ]](M )}}. Figure 4.63b,c shows
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Fig. 4.63. The different categories of the perceptual category (a), the multi-view 
drawing (b), geometrical projections (c)

The category of the real-world object is represented by the different 
visual aspects of the object. Only some of the characteristic aspects of the 
object can be used as representatives of the object. Figure 4.64 shows 
example of different visual aspects of the object. As we can see only some 
of them can supply the visual information that makes it possible to identify 
the object uniquely. 

In some tests or problems that need to be solved the object is 
represented as an object seen from the top. The object seen from the top is 
called the bird’s eye view. The member of this category can be represented 
by the shaded object and its visual drawing line representation. The visual 

Fig. 4.64. Examples of the different visual aspects of the object 

concept of the member of the category of view from the top includes the 
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symbolic name of the object seen from the top. Examples of members of 
the category of view from the top are shown in Fig. 4.65. 

The 3D solids can be produced by folding flat sheet. The shape of the 
flat sheet from which 3D solid is produced is part of the visual knowledge 
about the 3D objects. The knowledge schema of the category of the folded 
sheet consists of visual concept of the sheet, the visual concept of 3D solid 
and the name of the solid. Examples of members of the category of folding 
sheets are shown in Fig. 4.66. 

The existing real-world objects have different size. Based on the size of 

ReO Mic Mac Ear

       ….    

Fig. 4.65. Objects seen from the top 

Fig. 4.66. Examples of members of the category of folding sheets 

the objects the category of the real-world objects is divided into the 

are described in more detail in the following sections.
, , .  Those categories 

category of micro-objects, the category of macro-objects and the category
Oof earthy-world objects:
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objects of our today’s experience. These objects can be seen only by 
applying special tools such as a telescope. The category of macro-
objects Mac  is divided into the universe category Uni , the galaxy 
category Gal , the star category Str , the solar system category SolS ,
the moon category Mon , the asteroids category Ast  or the comet 
category Com  and is given by the following categorical chain: 

ReO Mac Uni Gal Str SolS Ast Mon Com, , , , , ,O . Galaxy is 
any system of stars and interstellar matter that makes up the Universe. The 
galaxy category is divided into the irregular galaxy category Irr , the 
elliptic galaxy category Ell  or the spiral galaxy category Spi  and is given 
as ReO Mac Gal Irr Ell Spi, ,O . The stars category  
is divided into the nebula category Neb , the supernova category Sup

or the black hole category BlH  and is given as: 
ReO Mac Str Neb Sup BlH, ,O . The knowledge about 

the invisible aspects of the category of macro-objects is given by the 
category of astronomical objects. The knowledge schema of the specific 
categories of astronomical objects supplies knowledge about properties of 
members of macro-objects categories. The category of astronomical 
objects that is derived from knowledge object, supplies non-visible 
knowledge that is used in interpretation of the macro-objects. Knowledge 
of the category of astronomical objects is based on knowledge of the 
scientific branch of science called astronomy. Astronomy is science that 
deals with the origin, evolution, composition, distance and motion of all 
bodies and scattered matter in the universe. Examples of members of the 
category of macro-objects are shown in Fig. 4.67. 

Fig. 4.67. Examples of members of the category of macro-object 

4.2.3.6.1. Categories of Macro- and Micro-Objects 

The category of macro-objects includes objects, size of which is bigger than 
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Objects that are too small to be seen by naked eye belong to the 
category of micro-objects. Members of the category of micro-objects can 
be registered by applying the one of the methods of photomicrography. 
Photomicrography is the photography of objects under a microscope. 
Microscope is an instrument that produces enlarged images of small 
objects, allowing them to be viewed at a scale convenient for examination 
and analysis. For example, metallographic microscopes are used to identify 
defects in metal surfaces and to determine the crystal grain boundaries in 
metal alloys, whereas the electron-probe micro-analyser allows a chemical 
analysis of the composition of materials to be made by using the incident 
electron beam to excite the emission of characteristic X radiation by the 
various elements composing the specimen. These X-rays are detected and 
analysed by spectrometers built into the instrument. Such probe micro-
analysers are able to produce an electron scanning image so that structure 
and composition may be easily correlated. Electron microscope is a 
microscope that attains extremely high resolution using an electron beam 
instead of a beam of light to illuminate the object of study. Modern 

Org

Ogn

ReO Mic Liv Org Ogn,O
objects is represented by the category of micro-particles or the category of 
micro-dust Dus  and is  given as NLiv Dus Par,… . Examples of 
members of the micro-objects category are shown in Fig. 4.68. 

Fig. 4.68. Examples of objects of the micro-world category 

The visual objects, size of which is such that can be visible by the naked 
eye, are objects of the earthy-world objects category. The earthy-world 
objects categories are divided into the category of living objects Liv  and 
the category of non-living objects NLiv  and are given by the following 

than 250,000. The category of micro-world is divided into the category of  
living and the category of non-living object. The category of living objects 

 and is given by the following categorical 
chain:
organisms (bacteria, viruses) 

electron microscopes provide detailed images at magnifications of more

. The category of non-living

, or the category of micro-is divided into the category micro-organs 

4.2.3.6.2. Category of Earthy-World Objects 
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categorical chain: ReO Ert Liv NLiv,O . Category of non-
living objects NLiv  includes category of the man-made objects MMan  and 
the category of non-man-made natural objects NMan .

The non-living objects such as minerals or rocks are objects of study of 
scientific disciplines called geology. Geology is branch of science that 
studies of the Earth, including its composition, structure, physical pro-
perties and history. Geology is divided into a number of sub-disciplines. 
The disciplines concerned with non-living objects are mineralogy (the 
study of minerals), petrology (study of rocks), geomorphology (study of 
landforms), palaeontology (study of fossils). The category of natural 
objects (non-man-made) includes the category of minerals and the 
category of rocks and is given by the following categorical chain: 

El ReO Ear NLiv NMan Min Rock, .

Category of non-living non-man-made natural objects

and the category of rocks. Mineral is any naturally occurring homogeneous 
solid that has a definite chemical composition and a distinctive internal 
crystal structure. Although minerals are usually formed by inorganic 
processes some synthetic equivalents of various minerals, such as emeralds 
and diamonds, can be produced in the laboratory. Most minerals are 
chemical compounds and only a small number of minerals (e.g. sulphur, 
copper, gold) are chemical elements. Minerals are classified into groups 
based on the identity of its anionic group and the composition of a mineral 
can be defined by its chemical formula. A mineral is considered to be a 
crystalline material because it crystallizes in an orderly, three-dimensional 
geometric form. The crystalline structure of a mineral determines such 
physical properties as hardness, colour and cleavage. Minerals are the 
materials that make up the rocks of the Earth crust. The category of 
minerals is divided into the native elements category, the sulphides cate-
gory, the sulfosalts category, the oxides category, the hydroxides category, 

Min Nel Sul Sfo Oxi Hyd Hal Sfo, , , , , , ,… .
and the silicates category and is given by the categorical chain as 

The category of non-man-made objects includes the category of minerals 

Category of Non-Living Objects 

the halides category, the carbonates category, the nitrates category, the  
borates category, the sulphates category, the phosphates category,

Car
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Rock is naturally occurring and coherent aggregate of one or more 
minerals and constitutes the basic unit of which the solid Earth is 
comprised. Rocks are divided into three major classes according to the 
processes that resulted in their formation igneous rocks, sedimentary and 
metamorphic. Igneous rocks are rocks which have solidified from molten 
material called magma. Sedimentary rocks are those consisting of frag-
ments derived from pre-existing rocks or of materials precipitated from 
solutions. Metamorphic rocks are rocks which have been derived from 
either igneous or sedimentary rocks under conditions that caused changes 
in mineralogical composition, texture and internal structure. These three 
classes, in turn, are subdivided into numerous groups and types on the 
basis of various factors, the most important of which are chemical, 
mineralogical and textural attributes. Based on the rock classification 
the following specific categories are derived from the rock category:  

Sed , the category of igneous  
rocks Ign  and the category of metamorphic rocks Met  given as: 

Rock Sed Ign Met, , . Sedimentary rocks are made of particles of 
sediments such as sand or clay. The category of sedimentary rocks is divided 
into the flint category Fli , the chalk category Cha , the limestone category 

Lim  or the sandstone category San  and is given by the following cate-
gorical chain: Rock Sed Fli Cha Lim San, , , . Igneous rocks 
are created when magma cools and become solid. The category of igneous 
rocks are divided into the obsidian category Obs , the granite category Gra ,
the porphyrite category Por  or the gabbro category Gab  and is given by the 
following categorical chain: Rock Ign Obs Gra Por Gab, , , .
Metamorphic rocks are formed when the minerals in rocks are changed 
underground by heat and pressure. The category of metamorphic rocks  
is divided into the slate category Sla , the gneiss category Gne , the marble 
category Mar  and is given as: Rock Met Gne Mar Sla, , .
The non-visual knowledge that is needed in the process of interpretation  
of the visual objects that are members of the category of minerals or  
the category of rocks is derived from the knowledge object 

KB KOb GeOb Min Rock, . Figure 4.69 shows examples of 
members of the mineral category and the rock category. 

the category of sedimentary rocks 
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Fig. 4.69. Examples of members of the mineral category and the rock category 

One of the most popular man-made category is the furniture category. 
Furniture is household equipment, usually made of wood, metal, plastics, 
marble, glass, fabrics or related materials and having a variety of different 
purposes. Furniture ranges widely from the simple pine chest or stickback 
country chair to the most elaborate marquetry work cabinet or gilded 
console table. The functional and decorative aspects of furniture have been 
emphasized more or less throughout history according to economics and 
fashion. The ideal of furniture design is to integrate utility, craftsmanship 
and beauty into a harmonious whole. Accessory furnishings are smaller 
subsidiary items such as clocks, mirrors, tapestries, fireplaces, panelling 
and other items complementary to an interior scheme. The specific cate-
gory that is derived from the furniture category is the chair category. Chair 
is a seat with a back, intended for one person and it is one of the most 
ancient forms of furniture. The category of chair needs to take into account 
chairs that were built in the different historical periods. These chairs are 
regarded as a new subcategory called the category of old chairs. During the 
learning process the category of chair is learned with reference to visual 

Category of non-living man-made objects 

objects that are made for different purposes. The category of man-made 
objects is divided into the category of tools, vehicles, furniture, buildings, 
arms or machines: 

Pat ReO Ear NLiv MMad Tol Veh Fur Bul Arm Mach, , , , , .
The category of man-made objects can be always broadened about a 

new model that was lately designed. The category of man-made objects 
needs to refer to the diversity of objects that are made in the different 
period of time and the diversity of objects that are results of the new 
design. For example, furniture of ancient Egypt such as beds is different 
from today’s beds.

The category of non-living man-made objects covers the broad range of
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Fig. 4.70. Examples of the different categories of chairs represented by the 
silhouette one of the perceptual category 

During learning category of the real-world object such as the category of 
chair, the members of different perceptual categories such as silhouette or 
line drawing and the different aspects of the object need to be also taken 
into account. Furniture is result of the work of the furniture makers. For 
example chairs are made by carpenter. Figure 4.70 shows the silhouettes of 
chairs. The silhouette of chair supplies enough visual information to recog-
nize it as the ‘chair’. 

similarities of members of the different categories. Figure 4.70 shows 
examples of chairs that are ordered according to the degree of similarity. 

Another man-made category is the wearing category. Wearing such as 
clothes are garments for the human body and dress is covering for the 
human body. The variety of dresses is immense, varying with different 
genders, cultures, geographic areas and historic eras. The term dress encom-
passes not only such familiar garments as shirts, skirts, trousers, jackets 
and coats but also footwear, caps and hats, sleepwear, sports clothes, 
corsets and gloves. During establishing of the wearing category there is a 
need to take into account the period of time when the wearing were 
produced. Taking into account the time when the wearing were produced 
the category of wearing is divided into the category of old wearings (in the 
ancient times), the category of middle ages wearings, the category of new 
wearings (before the second world war) and the category of today’s wearings: 

MMad Wer OldW MidW NewW TodW, , , .
wearings is divided into the categories that refer to the part of the human 
body such as head, hand, legs or arms: MMad Wer OldW ,

MidW NewW Hed Hnd Leg Arm, , , , , .
over, trousers, breeches, plus-fours; knickerbockers are examples of the 
wearing category. Examples of members of the category of wearing are 
shown in Fig. 4.71. 

The category of

TodW The clothes such as hat, pull-
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Fig. 4.71. Examples of members of the category of wearing 

The machine category covers a big range of man-made objects. 
Machine is the device, having a unique purpose that augments or 
replaces human or animal effort for the accomplishment of physical 
tasks. The category of machines are divided into the category of simple 
machines (levers, wheels, pulleys, screws and gears), the category  
of electrical machines or the category of mechanical machines and is 
given  as: Pt MMad Mach SMac EMac MMac, , .  
The category of mechanical machines is divided into the category of 
vehicles or the category of non-moving machines. The category of vehicles 
is divided into the category of air vehicles, the category of space vehicles, 

El MMad Veh AirV SpcV WatV LanV

Figure 4.72 shows examples of members of the different categories of land 
vehicles. Figure 4.72a–d shows silhouettes of the members of the car 
categories. Figure 4.72e,f shows the line drawing of the different visual 
aspects of the member of the same car category. 

In contrast to the category of the visual objects that refers to the object 
that can be detected by the perceptual devices, the knowledge object can 
refer to the non-visual object. The non-visual object that is part of the 
general knowledge about the world can describe the visual object only by 
indicating the relationships among the visual and non-visual properties of 

    a        b        c       d   e f 

Fig. 4.72. Examples of the different perceptual categories (the silhouette category 
and the line drawing category) used to represent members of the ontological 
category, namely, the vehicle category

, , , .given as: 
the category of water vehicles or the category of land vehicles and is

the category of the general concepts such as the work category, the
the world. One of the categories derived from the knowledge object is



4.2. Category of Visual Objects      211 

Fig. 4.73. The visual representations of the selected categories of work 

knowledge chain: KB KOb GenC Work Ent Spr, , . The 
visual object that is a member of the category of the general concept such 
as a work category can be represented by a member of one of the 
perceptual categories such as shaded object or coloured object. The 
member of the work category can refer to the visual aspect of this category 
showing characteristic parts of the workers dress, characteristic tools or 
result of his work. One of the visual representatives of the work category is 
the worker with characteristic tools. Figure 4.73 shows the visual 
representatives of the selected categories of work.

Wrk

KB KOb GenC Wrk Prf Soc, . The category of professions 

Prf  consists of the category of tools Tol , the category of materials Mat ,
the category of knowledge Kno , the category of results Res  and is given as: 

KB KOb GenC Wrk Prf Tol Mat Kno Res( , , , ) . These 
categories are inherited by all categories derived from the category of pro-
fessions. The category of professions is divided into the builder category, 

KB KOb GenC Wrk Prf Mas Car Meh Elc Tay Sec, , , , , . 
The category of professions that is derived from the visual object  
refers to the visual representation of the man that is a representative  
of a given profession. The categorical chain is given as 

El ReO Ear Liv Man Prf Mas Car Meh Elc Tay Sec, , , , , .

Builder category is written as: Bul Tol Mat Kno Res( , , , ) . The 
tools are represented by the builder-tools category such as the trowel 
category or the hammer category: Bul Tol Trw Ham( ) ( , ) .

As an example of profession category the builder category is given. 

entertainment category or the sport category and given by the following 

work category    
cept and refers to relations amongst a man and other objects.

consists of the category of professions
or the category of social contexts and can be denoted as

The work category is derived from the category of general con-

The

the carpenter category, the mechanic category or the secretary category: 
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The material is represented by the builder-material category such as the 
Bul Mat Brc Stn( ) ( , )… .

The results are represented by the builder-result category such as the house 
Bul Res Hou Brd( ) ( , )… . The 

knowledge category such as the tools category refers to the visual object. 
Tool is an instrument for making material changes on other objects, as by 
cutting, shearing, striking, rubbing, grinding, squeezing, measuring or 
other process. Tools are the primary means by which human beings control 
and manipulate their physical environment. A hand tool is a small manual 
instrument traditionally operated by the muscular strength of the user; a 
machine tool is a power-driven mechanism used to cut, shape or form 
materials such as wood and metal. Modern hand tools were developed in 
the period after 1500 BC and are now considered in the following classes: 
percussive tools, which deliver blows (the axe, adze and hammer); cutting, 
drilling and abrading tools (the knife, awl, drill, saw, file, chisel and 
plane); the screw-based tools (screwdrivers and wrenches); measuring 
tools (ruler, plumb line, level, square, compass and chalk line); and 
accessory tools (the workbench, vice, tongs and pliers). The specific tools 
category such as the category of the carpenter tools is divided into the 
hammer category, the chisel category, the saw category, the hook category, 
the plane category or the handle category and is given as: 

Prf Car HamC ChisC SawC PlaC HanC…

Usually the result of the work of men of a given profession is an object 
from the category of visual objects. For example, the result of the musical 
instruments maker is the musical instrument. The musical instrument is 
any device for producing a musical sound. The principal types of such 
instruments, classified by the method of producing sound, are percussion, 
stringed, keyboard, wind and electronic. The category of musical 
instruments is derived from the category of man-made objects. The 
musical instrument can be treated as the product of the musical instruments 
maker or as tools for musician. Examples of members of the different 

Fig. 4.74. Category of gardener tools 

brick category or the stone category:

category or the bridge category: 

categories of different instruments are shown in Fig. 4.75. 

, , , , . ExamplesTol

of tools are shown in Fig. 4.74. 
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In contrast to non-living objects, the visual representations of the living 
objects need to take into account changes of shape of the object when parts 
of organism are moving. In general, an animal is a living organism that is 
incapable of synthesizing carbohydrates and proteins from inorganic or 
simple organic substances but must ingest them in complex form as food. 
Every animal species has a unique Latin name. The first word is the genus 
name, which is shared with closely related animals. The second word is a 
specific name which together with the genus is unique to particular 
species. In the case of the small animals or plants that cannot be seen by 

described in the previous section. Categories that are described in this 
section are established based on the knowledge from zoological and 
botanical science.

Category of Living Objects 

The category of living objects Liv  are divided into the category of human 
beings Hum , the category of animals Ani , the category of plants Pla , the 
category of fungus Fun , the category of protoctist Pro  and the category of 
moneran Mon and is given as: Liv Hum Ani Pla Fun Pro Mon, , , , , .
Within the plant kingdom, plants are divided into two main groups: the 
plants that produce seeds (flowering plants) and the other group that 
contains the seedless plants that reproduce by spores. 

naked eye they are members of the micro-objects category that were 

Fig. 4.75. Examples of members of the different categories of different instruments
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In the case when taxonomy is well established, it can be used to describe 
the abstract structure of the categories. Each part of hierarchy is linked 
with its characteristic knowledge that describes the general features of the 
category of the given part of the hierarchical structure. During learning of 
knowledge of the category of the visual object there is a need to learn the 
visual concept of all possible visual representations such as the silhouette, 
the line drawing, the coloured object or the shaded object. These visual 
representations are members of the perceptual categories described in 
previous sections.

The scientific knowledge needed in understanding of the visual object that 
is visual representative of the category of animals is supplied by branch of 
science called zoology. Zoology is a branch of biology concerned with the 
members of the animal kingdom and with animal life in general. Zoology 
is divided into a number of sub-disciplines such as cytology, embryology, 
morphology, physiology, pathology, palaeontology, genetics and evolution, 
taxonomy, ecology, and zoogeography. The zoological taxonomy is focused 
on the taxonomy of zoological terms. The zoological taxonomy is based on 
the scheme that consists of phylum, class, order, family, genus and species. 
The taxonomy of animals can be given in the following form: 

Phylum-{porifera, cnidaria, platyhelminthes, annelida, nemotoda, 
crustacean, mollusca, echinoderms, chorodata} 

Phylum-{porifera, }-class-[calcarea, hexactinellida, demospongiae] 
Phylum-{cnidaria}-class-[anthoza, scyphoza, hydroza, cuboza] 
Phylum-{crustacean}-class-[branchiopoda, cirripedia, malacostraca, 

insects, arachnida] 
Phylum-{crustacean}-class-[arachnida]-order-(scorpionida, acarina, 

araneae)
Phylum-{mollusca}-class-[bivalvia, polyplacophora, gastropoda, scapho-

poda, cephalopoda] 
Phylum-{echinoderms}-class-[astoreidea, echinoidea, crinoidea, holothu-

roidea]
Phylum-{chorodata}-class-[cyclostomata, chondrichtyhyeas, osteichtyles, 

choanichtyles, gymnophiona, anura, caudate, reptiles, aves, mamalia]

The categorical chain of the animals category can be given in the form 
that reflects the scheme of the zoological taxonomy given in the form: 

.

Category of Animals 

El ReO Ear Liv Ani Phy Cla Ord Fam Gen Spc
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tiger or monkey and the Latin term can be easily translated into English or 
Polish. Each category is described by the specific knowledge that is 
represented in the form of the knowledge schema at a given categorical 
level. The knowledge schema represents the main features (attributes) of 
the category. For example, the category carnivore is represented by the 
following features: flesh eating, sharp check, teeth to cutting flesh. The 
intermediate categories reflect the knowledge of the general animal 
categories and are used in the process of interpretation and understanding 
of the visual object. For the human subject there is easy to understand the 

El ReO Ear Liv Ani Cho Mam Car Fel Pan PLeo . 
The non-visual knowledge is given by the following knowledge chain: 

KB KOb BioOb ZooO Liv Phy Cla Ord Fam Gen Spc .

be given by the following categorical chain: 
According to this scheme of zoological taxonomy the lion category can 

Animals that are members of the chorodata class often are classified to 
the groups such as fish, amphibians, reptiles, aves and mamalia. Based on 
this classification, the following specific categories are derived from the 
chorodata category: the category of fish Fis , the category of amphibians 

Amf , the category of reptiles Rep , the category of aves Ave  and the cate-
gory of mamalia Mam  and given as Ani Cho Fis Amf, ,

Rep Ave Mam, , . The category of reptiles is divided into the category of 
squamata Squ , the category of crocodilian Cro  and the category of testu-
dines Tes : Ani Cho Rep Tes Cro Squ, , . The category 
of aves is divided into the category of passeriformes Pas , the category of 
falconiformes Fal , the category of piciformes Pic , the category of anseri-
formes Ans , the category of apodiformes Apo , the category of columbi-
formes Col , the category of charadriiformes Cha  and the category of 
galiformes Gal  and is given as Ani Cho Ave Pas Fal, ,

Pic Ans Apo Col Cha Gal

Ani Cho Mam Mon Dip Per Car Cet, , , , ,

, , , , , . The category of mamalia is divided into the 
monotremata category, the diprotodonta category, the perissodactyla category, 
the carnivore category, the cetacean category, the primate category and the
rodentia category: 

Prim Rod .,

categories of the lower level refer to the name of the animal such as lion, 
The name of the zoological categories is given in the Latin language. The 
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difference between two terms such as ‘sparrow’ and ‘lion’ by invoking 
pictures of both animals and next refers to categories described by these 
pictures. SUS in order to understand these differences at first invokes the 
visual chains that represent categories given by these names and next uses 
the knowledge of each category to find the difference. The problem of the 
visual inference based on the categorical chain will be described in 
Chap. 5. 

The biological taxonomy does not take into account the size of the 
animal. In present categorical classification the animals that are too small 

the visual appearance of the young and adult animal can be very different. 
To enable naming and recognition of animals, the additional categories are 
introduced, the category of young animals and the category of adult 
animals.

      
Fig. 4.76. Example of members of the category of aves (birds) 

Fig. 4.77. Example of members of the category of mammalian (mammals) 

As it was described in previous sections, the knowledge that is 

cess. During learning process knowledge of the specific category such 
as the lion category PLeo  given by the categorical chain 

El ReO Ear Liv Ani Cho Mam Car Fel Pan PLeo ,
all intermediate categories given by this categorical chain need to be 

intermediate levels these not known categories can be left blank in the first 
stage of the learning process. For example, when during learning of the 
category ‘tiger’ the genus is not known, this part is left ‘blank’: 

Figure 4.76 shows examples of members of the aves category. Figure 4.77 
shows examples of members of the category of mamalia. 

included in categorical chains is acquired during the learning pro- 

El ReO Ear Liv Ani Cho Mam Car Fel Tig .

fulfilled (learned). In the case of the lack of knowledge of categories at the 

to be visible by naked eye are members of the micro-objects category. Also, 
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The tree is a woody plant that renews its growth every year. Most trees 
have a single self-supporting trunk containing woody tissues. The trunk 
usually produces secondary limbs, called branches. A general definition 
describes a tree as a perennial woody plant that develops along a single 
main trunk to a height of at least 4.5 m at maturity. Conifers include trees 
and shrubs in seven extant families and 550 species. Familiar repre-
sentatives are araucarias, cedars, cypresses, firs, hemlocks, junipers, larches, 
pines, redwoods, spruces or yews. Angiosperms dominate the Earth’s 
present flora and they contain more than 250,000 species. Angiosperms are 
divided on the basis of a group of characteristics into two classes: the 
monocotyledons and the dicotyledons. The most numerous of the 
monocotyledonous trees are palms; others include agaves, aloes, 
dracaenas, screw pines and yuccas. The greatest number of tree species is 
dicotyledons and they are represented by such familiar groups as apples, 
birches, elms, hollies, magnolias, maples, oaks, poplars and willows. A 
shrub is defined as a woody plant with multiple stems that is, in most 
cases, less than 3 m tall.

thetic nutrition, unlimited growth at localized regions, cells that contain 
cellulose in their walls, the absence of organs of locomotion, the absence 
of sensory and nervous systems. Photosynthetic nutrition is the process in 

Plants that are too small to be seen by the naked eye are members  

section of this book where the description of the taxonomy of animals 

tion is based on the botanical taxonomy. In the case when dif-
ferentiation of the plants assumes taking into account only the rough 
approximation of the botanical knowledge the so-called plant taxonomy 
is used. In this chapter the plant taxonomy is briefly described. The 
plant category is divided into the category of trees Tre , the category  
of shrubs Shr , the category of undershrubs UnS  and the category of 
vines Vin  and is represented in the form of the categorical chain as 

El ReO Ear Liv Pla Tre Shr UnS Vin, , , . 
The category of trees is divided into the broad-leaved trees BrT  and 
conifers Con  and is given as: Pla Tre BrT Con, .

was presented, the taxonomy of plants that is presented in this sec- 

which chemical energy is produced from water, minerals and carbon di-
oxide with the aid of pigments and the radiant energy of the Sun. 

Plant is multicellular, eukaryotic life forms characterized by photosyn-

Category of plants 

of the micro-objects category. Similarly like it was described in previous 
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Fig. 4.78. Examples of members of the different categories of tree represented as 
the silhouette – one of the perceptual categories 

The category of plants is based on the botanical taxonomy. The category 
of real-world objects such as plants can have many different perceptual 
representations. Examples of members of the different categories of trees 
are shown in Fig. 4.78. Examples shown in Fig. 4.78 are members of the 
silhouette category that is one of the perceptual categories. As we can see 
even this simple visual representation makes it possible to differentiate 
among the different trees. 

Pla Tre Rot Trn Stm Lef Flw Frt Sed[ , , , , , , ]… . Each part category 
such as the roots category Rot , the trunks category Trn , the stems 
category Stm , the leaves category Lef , the flowers category Flw , the 
fruits category Frt  and the seeds category Sed  refers to the parts of the 
tree. Figure 4.79 shows characteristic parts of the tree. The part can be 
treated as the independent object that in turn consists of other parts. For 
example, a fruit shown in Fig. 4.80 consists of characteristic parts such as 
seeds. Most fruits grow on tress, whereas some of them such as 
muskmelons grow on creeping vines that feature large, lobed leaves and 
yellow flowers. The muskmelon has a hard rind that encases the juicy 
pulp, and flat seeds that form a netlike mass in the hollow centre. 
Figure 4.79a shows the tangerine, whose fruits are produced from a small, 

The real-world object such as a plant consists of different parts. The 
part category is introduced to represent the different parts of the object. 
The part category is an auxiliary category that can be derived from any 
part of the categorical hierarchy. The schema of the part category 
shows the links to categories that constitute an object. For example, 
typical flowering plants such as a tree consists of roots, the trunk, 

gory includes the specific categories that refer to parts of the object. 
For example, the tree category consists of the different specific 
categories given by the following schema of the part category: 

stems, leaves, flowers, fruits and seed. The schema of the part cate-
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thorny tree that bears simple leaves and orange like blossoms. Figure 4.79b 
shows the common orchard fig, a bush-like tree with deeply lobed leaves. 
Its fruit is a fleshy receptacle (cross section, centre) containing numerous 

Fruit is the ripened ovary of any flowering plant, or angiosperm, and 
usually contains one or more seeds. The knowledge schema for the fruit 
category includes the visual concept ViC , the name Nam , the definition 

Def  and the method of exemplar generation MGe  and is given as 

Fru ViC Nam MIn Def MGe{ , , , , }… . For example, the definition of 
the category of the fruit includes, among others, the following parts and 

of-[blade, core], fruit-is-[outgrowth from the stem of plant]. The definition 
includes links to other knowledge categories that usually contain the non-
visual knowledge. 

The fruit can be grown on the tree, shrubs or vines. The tree fruits 
category is divided into the category of plums, apples or pears: 

Pla Tre Frt Plu App Pea…
tree fruits categories are given in Fig. 4.81 such as the quince category (a), 
the pear category (b), the lime category (c), the plum category (d), the 
mango category (e), the papaya category (f), the papaw category (g), the 
citrus category (h) and the grapefruit category (i).

[ ] , , . Examples of the different

can be given in the following form: fruit-is-part-of-[plant], fruit-consists

Fig. 4.79. The example of the category of parts of tree and the category of parts 
of shrubs 

Fig. 4.80. Examples of the category of parts of plants 

small seeds.
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Fig. 4.81. Examples of members of the tree fruits category 

Apple is the most widely and one of the oldest cultivated of all fruit 
trees. Today about 7,500 varieties are grown worldwide. The visual 
features of the apple category such as size or colour that are part of the 
knowledge schema supply important information used during visual 
recognition of the different objects. For example, the colour of members of 
the apple category ranges from various shades of red to yellow or green. 
The non-visible features such as sweetness, aroma and crispness vary 
greatly from one apple to another, and can supply the valuable information 
during naming and recognition of the different objects. These features 
make it possible to establish the links between the apple category and the 
food category. Apples can be eaten as fresh fruit, can be canned as sauce 
or pie filling or can be made into cider, cider vinegar, juice, jelly or apple 
butter. The name of the apple category is derived from the name of the tree 
category, so the name of the tree is used to denote the name of the fruit. 
The category of apple is divided into the special categories such as the 
McIntosh category, the Delicious category, the Stayman category, the 
Rome Beauty category or the Jonathan category and in symbolic notation 

Pla Tre Frt App McI Del Sty RoB Jon[ ] , , , ,… .
Figure 4.82 shows examples of members of the apple category. 

The flower is the reproductive structure of angiosperms or flowering 
plants. Compared with reproductive structures of other plants, the flower is 
unique in several ways. For example, it consists of four kinds of modified 
leaves, two of which (stamens and carpels) bear pollen and seeds. Flower 
is a part of the plants and the flower category is the category that is derived 
from the category of part of plants such as trees or vines. Petals that form 
the main visual part of flowers are often shows with other parts as a stem. 
Colour is very important visual feature of the flower category. Examples 
of members of the different flower categories are given in Fig. 4.83.

Fig. 4.82. Examples of members of the apple category 

given as
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Fig. 4.83. The example of members of the different flowers categories 

The leaf is part of the plant that intercepts light, exchange gases, and 
provides a site for photosynthesis. Some leaves also store food and water, 
provide support, or form new plants. The leaf category is the category that 
is derived from the category of part of plants. The name of the leaf 
category is derived from the name of the plant category, so the name of the 
plant is used to denote the name of the leaf. For example, the tree leaf 
category is divided into categories such as: the oak category, the lime cate-
gory, the poplar category, the elm category, the hornbeam category, the 
ash-tree category, the beech category or the birch category and is given as 

Pla Tre Lef Oak Pop Lim Elm Hor AsT Bee Bir[ ] , , , , , , ,… .
The tree such as oak has many different types. Each type of oak has its 

name (in Latin) and characteristic parts such as leaves. Examples of names 
of the tree-oak leaves are given in the form of the names expressed in two 
languages (English and Latin) – [Mongolian oak (Q. mongolica), Oriental 
oak (Q. variabilis), Armenian(pontic) oak (Q. pontica), chestnut-leaved oak 
(Q. castaneaefolia), golden oak (Q. alnifolia), Holm(holly) oak (Q. ilex),
Italian oak (Q. frainetto), Lebanon oak (Q. libani), Macedonian oak  
(Q. trojana), Portuguese oak (Q. lusitanica), blue Japanese oak (Q. glauca),
daimyo oak (Q. dentata), Japanese evergreen oak (Q. acuta), sawtooth oak 

(Q. coccifera)…]. The name of specific category of the tree leaf is derived 
from the name of the specific category of tree. For example, naming the leaf 
as the ‘oak leaf’ indicates that this leaf was grown on the tree called oak. The 
category of oak leaves is divided into the specific category of oaks such as: 
African oak, Australian oak, bull oak, Jerusalem oak, poison oak, river oak, 
she-oak, silky oak, tanbark oak, Tasmanian oak or tulip oak and given as

(Q. acutissima), English oak (Q. robur), pin oak (q.v.; Q. palustris) northern 
red oak (Q. rubra). White oak (Q. alba) bur oak (q.v.; Q. macrocarpa),
Aleppo oak (Q. infectoria), cork oak (Q. suber), tannin-rich kermes oak  
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Fig. 4.84. Examples of members of different categories of leaves 

Fig. 4.85. The different leaves (shaded representation) and its silhouettes 

Figure 4.84 shows examples of members of the different categories of 
leaves.

The leaf is an example of the visual object (real-world object) that can 
be regarded as a 2D object. The silhouette of the leaf supplies nearly all 
visual information about the shape of the leaf. Figure 4.85 shows members 
of the different leaf categories. Each pair of leaves shown in Fig. 4.85 is 
given as members of the different perceptual categories, the silhouette 
category and the shaded-object category. The silhouette is obtained by 
segmentation of the image.

Members of any ontological category that consists of the different 
elements (objects) are called complex objects. These elements from which 
the complex object is built are called parts. Parts are regarded as a special 
kind of categories (part categories) that refer the selected categorical chain 
category. In the categorical chain the derivation of the part category is 
denoted as Tre Lef[ ] , where symbol  denotes that the part category 
[ ]  is derived from one of the ontological categories . The part 
category is denoted by symbol  in the brackets [ ] . Parts that are 
members of the category of man-made objects are complex objects. 
Objects from which the complex object is assembled are called 
components.

Pla Tre Lef Oak Afr Aus Bul Jer Poi Riv ShO Sil Tan Tas Tul[ ] , , , , , , , , , , .

The leaf category Lef[ ]  is the part category that is derived from one of  
the specific plant categories such as the tree category Tre . The leaf 
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category Lef[ ]  consists of different elements, members of the part cate-
gory. Categories such as the blade category, the stalk category or the 

Pla Tre Lef Bla Stl Ven[ ] [ , , ] .
The knowledge schema of the leaf category includes the visual concept 

ViC , the name Nam , the definition Def  and the method of exemplar gene-
ration MGe  and is given as Lef ViC Nam MIn Def MGe{ , , , , }.
For example, the definition of the leaf category can be given in the 
following form: leaf-function – [to produce food for the plant by 
photosynthesis]; leaf-part_of – [plant]; leaf-part_of – [stem system]; leaf- 
is – [outgrowth from the stem of vascular plant]; leaf (attributes) – [size, 
colour, the nature of the blade margin, the type of venation (arrangement 
of veins)]. 

The category of imaginary objects includes the category of objects of 
scientific visualization SciV , the category of objects of literature fiction 

InvL , the category of visual art objects InvA , the category of 3D 
fictious figures FarT  and the category of mythological objects Mit .
Dwarfs (dvergar) play a part in Norse mythology. They were very wise 
and expert craftsmen who forged practically all of the treasures of the 
gods, in particular Thor’s hammer. Four of them are supporting the sky, 
made of the skull of this primeval giant. They may have been originally 
nature spirits or demonic beings, living in mountain caves, but they 
generally were friendly to man. Greek centaurs (in Greek mythology) 
are part horse and part man, dwelling in the mountains of Thessaly and 
Arcadia. Sphinx is a mythological creature with a lion’s body and 
human head, an important image in Egyptian and Greek art and legend. 
Brownie in English and Scottish folklore, a small, industrious fairy or 
hobgoblin believed to inhabit houses and barns. The category of 
imaginary objects can be represented by following categorical chain:

El ImO SciV InvA InvL Mit FarT, , , , , , . Figure 4.86 
shows examples of members of the category of imaginary objects: 3D 
fictious (invented) tree and the category of the mythological objects. 

4.2.3.7. Category of Imaginary Objects 

by following categorical chain: 
venation category are derived from the leaf category and are represented
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Fig. 4.86. Examples of category of imaginary objects: 3D fictious (invented) tree 
and the category of the mythological objects 

Fig. 4.87. Category of the scientific visualization 

The scientific visualization is focused on generation of the visual object 
that is visual representative of the model of the examined phenomenon. 
The category of scientific visualization is divided into the category of the 
schematic visualization and the realistic visualization. The category of 
schematic visualization is divided into the category of diagrams, the cate-
gory of maps, the category of diagrammatic representations or the category 
of schematic data visualization. The category of the realistic visualization 
is divided into the category of modelling of the non-visible phenomenon 
and the category of realistic data visualization. Figure 4.87 shows examples 
of the different categories of scientific visualization that involves the 
category of schematic visualization and the category of realistic visual 
representations.

objects, the category of non-living objects and the category of processes: 
ReO Ear Liv NLiv Proc, ,O . The category of processes refers 

to changes of the visual objects that can be observed during the period of 
time. The visual process is often represented by the category of animation 

into the natural process category and the artificial process category:
that is one of the structural categories. The process category is divided

4.2.3.8. Category of Real-World Processes 

The category of Earthy-world objects is divided into the category of living 



4.2. Category of Visual Objects      225 

Fig. 4.88. Example of the visual representative of the acoustic process – the sound 
wave

into atmospheric processes, acoustic processes, physical processes, 
chemical processes, geological processes or biological processes: 

Proc NatP AtmP AcuP PhyP ChmP GeoP BioP…

ReO Ear NLiv NatP Acus Mus Son Spi Noi, , ,O .  The 
visual representative of the acoustic processes is the sound wave that can 
be given as the signal in the time domain or transformed into the frequency 
or time-frequency domain. 

of music, the category of songs or the category of noise: 
The category of acoustic processes is divided into the category

Knowledge that is used to interpret the visual object is supplied by 
categories derived from the category of acoustic objects. Acoustic is  
the science concerned with the production, control, transmission, recep-
tion and effects of sound. Sound results from the vibration of elastic 
bodies such as violin string or human vocal chords. Knowledge of  
the category of music sounds is given by the following schema: 

Acus Mus ViC Nam Def Fet MGe{ , , , , } . The definition has two 
parts, the one that defines the sound in the form ‘that is ..’, and  
the second one that defines sound in the form ‘consist of ’. The defini-
tion includes the characteristic properties of the sound that are related  
to other categories such as the amplitude category or the power spec-
trum category that are members of the different knowledge categories. 

Proc NatP ArtP,… . The category of natural processes is divided 

(melting, boiling, freezing), the category of heat transfer processes (con-
vection, conduction, radiation), the category of radioactivity processes, the 
category of magnetism processes, the category of sound waves processes 
or the category of electromagnetic wave processes (light, ultraviolet, infra-
red). For example, the category of chemical processes is connected with 
the chemical reactions. 

, , , , . T he category 
of physical processes is divided into the category of changing state processes
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Fig. 4.89. Example of visual objects representatives of the category of the 
atmospheric processes 

as duration amplitude, frequency or power spectrum are given by the part 
of the knowledge schema: Son Fet Amp Fre Spe, ,F F F .

Proc NatP AtmP Win Hur Tor Twi Cld Ran

processes.
The category of geological processes is divided into the category  

of tectonic processes (earthquake, volcano), the category of erosion 
processes or the category of sedimentation processes: 

Proc NatP GeoP TecP Ero Sed, , . Figure 4.90 shows the 
geological process as a sequence of pictures representative of the 
perceptual animation category. In Fig. 4.91 the schematic representation of 
the geological processes is shown. 

For example, ‘the sound is result of vibration of elastic body’ – 
Son is vibrat ElBodresult , ‘air_preasure_wave transmitted through 

air’ Son is AirAPWav transmited _ through .  The features such

The category of the atmospheric processes is divided into the winding 
category, the hurricane category, the tornado category, the twister category, 
the clouding category, the raining category, the hail category or the snowing 

, , , , , .  category:  
The visual representatives of the atmospheric processes are shown in Fig.  
4.89. The sequence of changing objects shows changes of atmospheric 

Fig. 4.90. Category of geological processes – schematic representation 
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Proc NatP BioP BotP ZooP MedP, ,… .
The category of the botanical processes refers to the category of plants 
described in the previous section. The category of the botanical processes 
is divided into the category of growing plants or the category of making 
fruits. Examples of members of the category of the biological processes 
are shown in Fig. 4.92. 

From the category of artificial processes, the category of engineering 
processes, the category of medical processes or the scientific processes is 

Proc Art EngP SciP MedP, ,… .  From 
the category of the engineering processes, the specific engineering 
categories such as electrical, mechanical or chemical are derived and given 
as Proc Art EngP ElectE MechE ChemE…
processes can be represented in the form of schema, diagram, photograph 
or animation. The schematic representation in the form of the diagram 
refers to the category of phenomenon. The knowledge of both the 

phenomena makes it possible to interpret the diagram in terms of the 
properties of the process. The category of schema of the industrial process 
is derived from the category of engineering processes. Figure 4.93 shows 
examples of members of the category of schema of real-world processes. 
Members of the category of schema of real-world processes are 
representatives of the category of coloured object. 

Fig. 4.92. Examples of members of the category of the biological processes 

+
Fig. 4.91. Schematic representation of the geological processes 

the medical process: 
of the botanical, or the category of the zoological or the category of

The category of the biological processes is divided into the category

the information that schema (diagram) conveyed. The knowledge of the 
phenomena and interpretation of the diagram is needed to understand 

derived and is given as: 

, , .  Engineering
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The category of visual tests is derived from the pattern category. The 
member of the pattern category can be composed from figures, signs or the 
real-world objects. In the case of the category of visual intelligence tests, 
the visual objects that consist of the visual intelligence test are called the 
visual symbols. The category of the visual test is divided into the category 
of the visual psychological test and the category of the visual educational 
test and is denoted as: Pt Sg VSym VEduT VPshT, .

Knowledge category of the visual psychological tests such as the cate-
gory of the projective tests is derived from the category of the psychological 
objects. The category of the psychological objects is derived from the 
knowledge object and supplies the non-visual knowledge that is needed to 
interpret the perceived object. The category of the psychological object is 
divided into the category of visual psychological tests, the category of 
psychological diagnosis or the category of psychological therapies and is 
denoted as: KB KOb PshO VPsT PsyD PsyT, , .

One of the categories of the visual psychological test is the projective 
test category that is represented by following categorical chain: 

Pt Sg VSym VPshT PrjT . Projective tests are 
techniques in psychology that rely on ambiguous stimuli to assess 

Fig. 4.93. Examples of the category of schema of real-world processes  

4.2.3.9. Category of Visual Tests 



individual’s personality structure as a whole. One of the visual 
psychological tests is the Rorschach inkblot test. The Rorschach inkblot 
test is an example of the widely used projective test. Figure 4.94 shows 
examples of objects used in the Rorschach test. The Rorschach test 
consists of ten bisymmetrical inkblots, five in black and white and five in 
colour. The subject is asked to say what the inkblots look like. A subject’s 
style of response – such as reacting to colour or shading, describing an 
object in motion, placing an object within a specific location, or making a 
wholly original observation also became an important determinant of 
personality.

Intelligence tests are series of tasks designed to measure the capacity to 
make abstractions, to learn, and to deal with novel situations. Intelligence 
tests that include tasks that deal with visual forms (shapes) are called the 
visual intelligence tests. The visual intelligence test category is divided into 
the category of the comparison–selection tests, the category of matrix tests or 
the category of spatial tests and is represented by the following categorical 
chain: Pt Sg VSym VEduT VisT CST MtT SpT, , .

Knowledge category of the visual educational test is derived from the 
category of the educational object. The category of the educational object 
is derived from the knowledge object and supplies the non-visual 
knowledge that is needed to interpret the visual object. The category of the 
visual test is derived from the category of the educational object and is 
divided into the category of visual intelligence test, the category of the 
educational task or the category of the educational learning theories: 

KB KOb EduO VisT EduT EdLT, , .

Fig. 4.94. The ten bisymmetrical inkblots used in the Rorschach test 

The category of comparison–selection test includes comparison of the 
stimulus object v  with other objects called answers objects , 1,io i N… ,
and selection one that is identical to the stimulus object [12–18]. The 
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category of the comparison–selection tests is divided into the category of 
visual discrimination tests, the category of visual memory tests, the 
category of visual–spatial relationship tests, the category of visual form 
constancy tests, the category of visual sequential memory tests, the 
category of visual figure ground tests or the category of visual closure 
tests: VEduT VisT CST VMem VFoC VDis, ,… .  The  know-
ledge schema supplies knowledge of the test in the form of the name of the 
test, the definition in the form of the verbal description, the definition in 
the form of the formal specification and the proposed solution. The formal 
specification gives the description of the test in terms of the stimulus form 
that is compared with N answer forms. Knowledge category of the visual 
test is divided into the category of the visual memory test, the category of 
the visual form constancy test or the category of the visual discrimination 
test: KB KOb EduO VisT CST VMem VFoC VDis, , .

The category of knowledge of the visual test is derived from the 
category of knowledge. The knowledge schema includes the name, the 
(linguistic) verbal description, the formal description and the solution: 

VisT CST Nam LinD ForD Sol{ , , , }…

name of the specific category such as the visual discrimination test refers 
to the test that can consist of figures, signs, letters or the real-world 
objects. The category of the visual discrimination test is divided into the 
discrimination test of figures, the discrimination test of letters, the dis-
crimination test of signs and the discrimination test of real-world objects. 
Examples of members of different categories of visual discrimination tests 
are shown in Figs. 4.95–4.97.

. The name of the cate-
gory of test is expressed in the form of one of natural languages. The 

Fig. 4.95. Examples of the visual discrimination test A (consisting of figures) 



Fig. 4.96. Example of the visual discrimination test B and C (consisting of letters 
or signs) 

Fig. 4.97. Example of the visual discrimination test D (consisting of real-world 
objects)

The linguistic description is given in the linguistic form and describes 
the task that needs to be performed. For example, the category of the visual 
discrimination test is described by verbal description: ‘Look at this object 
and find it among the five objects below’. The visual memory test is  
also known as information processing test – observing, seeing and 
remembering. The task is formulated in the form of the question: ‘Look at 
this form and remember it so that you can find it on another page. Find it 
among these forms’. Visual form constancy test can be described by verbal 
description: ‘Look at this form and find this form from among these five 
forms, even it may be smaller, bigger, darker, turned or upside down’. The 
category of the visual sequential memory test can be described by verbal 
description: ‘Look at this form very closely, remember it so that you can 
find it among other forms and next find it among these forms’. The 
linguistic description can include description of action that needs to be 
undertaken, e.g. the visual form constancy test includes comparison of the 
objects and selection one that is similar to the given one.

In the visual discrimination test or the visual memory test the stimulus 
form is compared with N answer forms to find one that matches each 
other. In these tests the stimulus form (the form to which all forms are 
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compared) is denoted as v
denoted as , 1, ,io i N… , where N is a number of forms for comparison. 
The task is formulated as: ‘Find , 1, ,io i N…  that matches an object 

io v : [ : , for 1, , ]i i io o v i N o… .’ The object io  for which 
this matching is obtained is denoted as . In the visual discrimination test 
the stimulus form v , and answer forms , 1, ,io i N… , consist of the one 
object, whereas in the visual sequential memory tests the number of 
objects is greater than one. In the case of the visual sequential memory test 
the stimulus form is given in the form of the string , 1, ,jv i M… , and all 

, 1, , , 1, ,j
io i N j M… …  (Fig. 4.99). 

Fig. 4.98. Example of the visual discrimination test 

Fig. 4.99. Example of the visual sequential memory tests 

Fig. 4.100. Example of the visual form constancy test 

Fig. 4.101. Example of the visual figure ground test 

 (see Fig. 4.98) and all answer forms are 

answer forms are given in the form 
In the visual form constancy test the task is formulated as: ‘Find 
, 1, ,io i N io v : [ : , for
1, , ]

i i

i

o o v
i N o

image , 1 , ,iI i N iv I :  

that is similar to an object 
 4.100). The  (see Fig. visual similarity assumes that

objects can be different only in this respect that is the result of application
of the affine transformation such as rotation or scaling.

i i that includes object [ o : v I , for

In the visual figure ground tests the stimulus form v  (Fig. 4.101) is  
the figure whereas all answer forms are images from which this figure 
needs to be extracted , 1, ,iI i N , where N is a number of images for 
comparison. In the visual figure ground tests the task is formulated as: ‘Find 



Fig. 4.102. Examples of the visual figure ground tests 

The test type of arithmetical operations (AO) consists of eight patterns 
of two different types of figures that code the arithmetical operations such 
as the addition or the subtraction. Each of eight patterns consists of two 
different figures that are meaningful for arithmetical operations. The test 
can be thought of as a matrix consists of n-different figures. In the test type 
of geometrical addition (GA) two different figures in column one and 
column two (or in rows one or two) makes the figure in column three by 
applying the geometrical operator.

In the test type of finding relationships FR figures are arranged in such a 
way that six objects are used to find the general rules of prediction and two 
objects are used to find the possible solution. Figure 4.103 shows examples 
of the tests type FR. 

                                    
Fig. 4.103. Examples of the category of the matrices tests type FR 

i .i 1,…, N ] I Examples of the visual form constancy test are 
shown in Figs. 4.101 and 4.102. 

The matrix test consists of eight objects that are placed in the pattern of 
matrix. The task is to find the ninth object in the matrix (selected from  
the given answer objects) based on the relationship discovered among 
the eight objects. The category of matrix tests is divided into the cate-
gory of arithmetical operations (AO) test, the category of geometrical 
operation test (GO) and the category of finding relationships test  
(FR) and is represented by the following categorical chain: 

VisT MtT AO GO FR, , , . These tests are described in 
Chap. 5. In this section only short description of these tests is given. 
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The category of ‘bird’s eye view’ test is divided into the category of 
‘bird’s eye view’ of the side view and the category of the ‘bird’s eye view’ 
of objects on the table. The category of ‘bird’s eye view’ involves views of 
one or more shapes (e.g. cylinders, spheres, cones) on a table top. In the 
category of bird’s eye side view test the table top has marked on it a square 
grid.

The proposed categorical learning is the task to induce the general 
description of the categories from the specific instances (phantoms) of the 
concepts. Learned concept on the bottom of the hierarchy of the categories 
is called a prototype. The prototype is the definition of the learned 
phantom (the visual concept) in terms of the symbolic names and char-
acteristic features of the category (the phenomenal concept, the meta-
lingual concept) given by its name. During learning the new case is 
evaluated in the context of all learned categories. The visual concept of  
the general category includes all prototypes of the specific categories. 
Learning of the visual object consists of the two stages. At the first stage 
the visual concept is learned. At the second stage the non-visual know-
ledge is learned. In this chapter the learning of the visual concept is 
presented. Learning of the visual concept of the object independently from 
other conceptual ingredients is a new approach in machine learning 

The category of spatial test is divided into the folding sheet test category, 
the cubic box test category, the bird view test category or the spatial transfor-
mation test category: VisT SpT FST CBT BWT BWT STT, , , ,

three-dimensional figures can be produced by folding a flat sheet of 
specified shape.

In the category of spatial test type cubic boxes the task is given in the 
form of cubic boxes and the nets of these boxes (unfolded cut-outs). There 
are two kinds of questions. One kind shows a net and four boxes, labelled 
A, B, C and D. The task is to choose which one of these boxes could be 
made from the net. The second kind of questions shows a box and four 
possible nets. The task is to choose which one of the nets belongs to the 
box shown. The category of the cubic box is divided into coloured boxes 
and pattern boxes: VisT SpT CBT CCBT PCBT, .

In the category of the folding flat sheet the task is to find which of four
.
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methods. All visual information that is extracted from the object is 
transformed into the symbolic representation called the visual concept. 
Such an approach makes it possible to concentrate on the visual aspect of 
the learned object. The visual concept  is obtained during the learning 
process. It is assumed that the visual concept is uniquely described by the 
name . During the learning process the set of phantoms P OU U  that is 
representative of a given visual category is selected and next for each 
phantom P

iu U  the symbolic name i  is obtained. As the result of the 
learning process a set of symbolic names 1 2{ , , , }n…  that 
represents the visual concept is obtained. The visual concept represented 
by the category pv  is called a prototype.

An object that belongs to the category pv  is defined by application of 
the rules. The phantom u  is assigned to the category pv  based on the 
values of attributes ia :

([ ] [ ] ) ([ ] [ ] )i j k l p
i j k la A a A a A a A v… …

An object that belongs to the category pv  is defined by application of 
the rules, for example,

0
0[ ] ,pa A u v

0 1
0 1([ ] [ ] ) ,qa A a A v…

0 1 0 1
0 0 1 1([ ] [ ]) ([ ] [ ]) .ra A a A a A a A v

An object that belongs to the category pv  is defined by application of 
the set of rules, for example,

0
0[ ] ,pa A u v

1 2 1 2
1 1 2 2([ ] [ ]) ([ ] [ ]) ,pa A a A a A a A v

3 4 4
3([ ] [ ]...) pa A a A v

where ia  denotes the symbolic name of the ‘parts’ of the visual object or 
the characteristic feature. The prototype is learned starting from the 
definition of the general category. The definition of the general category is 
expressed in terms of symbolic names. During generalization the symbolic 
name is translated into the string form L0_L1_ Ln, where the level Ln 
denotes the nth level of description of the archetype of the class. Learning 
of the figure pentagon is given as an example of the learning process. The 
symbolic name WL5[aaaaa][sssss] obtained during the reasoning process 
is transformed into the string form W_L_5_[a]_[s]. The concept defined by 

,

⊂
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a set of rules is learned by starting from the definition of the general 
category. The general category is defined in the context of all learned 
prototypes. Let us assume that the first learned prototypes are 

The general concept of the learned figure  is defined as
HUL = “W”, NAME = “ConvexObject”,
if[m_CHul = HUL] 
{m_Name = NAME}. 

The variable m_CHul denotes the symbolic name of the examined 
object obtained during the process of visual reasoning. The variable 
m_Name is the name of the prototype defined by the definition of that 
prototype. This definition well describes the differences (dissimilarity) 
among objects. All learned prototypes are concave objects. In the 
categorical learning, testing and learning processes are complementary. 

During testing of the learned categories where the figures  are 
given as an input, these figures will be assigned to the name ‘convex 
object’. The answer given by SUS is correct however the definition given 

in the previous stage is too general. The figure  is not distinguished 
from another two figures. In this situation there is a need to use a symbolic 
name in the definition of the prototype at the more specific level. The 
definition is as follows:

HUL = “W_L”, NAME = “Polygon”, 
if[m_CHul = HUL] 
{m_Name = NAME}. 

, , . In 
this case there is a need to use the symbolic name in the definition of the 
prototype at the more specific level. The definition is as follows: 

HUL = “W_L_5”, NAME = “Pentagon”, 
if[m_CHul = HUL] 
{m_Name = NAME}. 
In the next stage the additional figures are learned 

 Their symbolic name, at the 
specific level, is given in the form W_L_5_[a]_[s]. The symbol [s] denotes 

In the next stage the additional figures are learned



symbol [a] denotes the term {aaaaa}, where the symbol ‘a’ can have one of 
the values from a set of normalized angles (a, acute; o, obtuse and p, right). 

During process of learning the specific description in the form _[a]_[s] 
is attached to the name of the object for further reasoning. For example, 

HUL=“L5”, HULSIDES=“[mmmmm]”,
HULANGLE=“[oaapo]”, m_Nazwa=“Pentagon”, 
if [ m_CHul=HUL] 
{m_Name=NAME+HULSIDES+HULANGLE}.
There is also possibility to define all pentagons that are given by  

the combination of the symbols {sssss} and {aaaaa}. For example, the 
object called “Pentagon_Ideal” is given by the symbolic name 
L5[mmmmm][ooooo]. However the number of definitions will grow very 
rapidly and there is also problem with the checking errors when the values 
of parameters are misinterpreted. 

In the second approach the new sub-specific classes are derived from 
the pentagon class. For example, by applying description ‘L5[nP], where 
nP denotes a number of right angles of the pentagon, the pentagons will be 
divided into five groups described by symbolic names ‘L5[0P]’, ‘L5[1P]’, 
‘L5[2P]’, ‘L5[3P]’, ‘L5[4P]’. The new characteristic feature, such as 
‘symmetry’, can be used to derive the additional sub-specific classes. The 
rules are given in the form: 

HUL=“L5”, NAME0=‘pentagon’, NAME1=‘pentagonNS’, 
NAME2=‘pentagonS’, NAMETYPE[0]=‘P0’, NAMETYPE[1]=‘P1’, 
NAMETYPE[2]=‘P2’, NAMETYPE[3]=‘P3’, NAMETYPE[4]=‘P4’, 

if[m_CHul=HUL] 
[m_Name=NAME0
if[m_Sym=0] 
[m_Name=NAME1+NAMETYPE[i]]
else
[m_Name=NAME0+NAMETYPE[i]]]].
In the categorical learning, testing and learning processes are com-

plementary. Figure such as a pentagon is uniquely described by the geo-
metrical properties of the object. In the case of mathematical object such as 
the graph of the function the definition of the visual concept can be learned 
from phantoms that can be generated from well-described formulas. All 
phantoms that are needed for learning can be analysed and the definition 
can be verified by applying the generated phantoms. The definition of the 
special class of the graphs of a function called ‘peak’ is given as an 
example of learning.

of normalized sides (l-large, m-medium, s-small and e-very small). The 
the term {sssss}, where the symbol s can have one of the values from a set 
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Fig. 4.104. Examples of graph function called ‘peak’ 

HUL=‘L3’, NoRes=2, RES=‘M1’, NAME=‘FunkcjaPeak_”; 
If[m_CHul=HUL]
[If[m_Res=RES]
[if[NoResR=0]
[[m_Name=NAME]]]]
The definition of the prototype gives good results in the case of the 

symmetrical figure of the type of ‘peak’. In the case of the non-
symmetrical object  the object is assigned to the prototype called 
‘peak’. However an object that is defined by the learned definition of 
‘funkcja-peak’ and is non-symmetrical can also be called ‘funkcja-peak’. 
In this situation there is a need to find the characteristic feature that makes 
it possible to discriminate between the prototype called ‘funkcja-peak’ and 
instances of the prototype that can be called ‘quneiform’. 

The definition of the complex object can be given in terms of the 
concavities, holes and thin parts. In some cases the definition of the 
learned object is very similar to the description of the object given by 

human subject. For example, for the cipher  the description can be as a 
symmetrical concave object having two holes and two concave residues. 
The additional description is given in terms of the complex object as 
‘consists of two circular parts with one hole’. The learned definition that 
does not specify the exact shape of the cipher 8 is formulated by 
application of the symbolic name on the general level of description. This 
definition does not specify the type of holes. These holes can be any 
curvilinear shape. In the case when there is a need for the definition of the 
specific font of the cipher ‘8’ the symbolic names at the specific level are 
given in the definition. The symbolic names are expressed in the form of 
the SUS representation. Understanding of the definition of the cipher ‘8’ 
given in this example does not require understanding of the meaning of 
symbolic names. 

C_HUL=“Q_M(2,2)”, RES1= “Q_L3”, RES2= “Q_L3”, PAR1=“M1”, 
PAR2=“K”, CON1=“M1”, CON2=“M1”, HOL1=“K”, HOL2=“K”, 
m_Nazwa= “cipher_8”. 

The specific description is required when there is a need to give the 
symbolic name in the specific form: 

The definition of the prototype of function ‘peak’ shown in Fig. 4.104 is 
given as: 



C_HUL=“Q_M(2,2)[L4]”, RES1=“Q_L3_O”, ES2=“Q_L3_O”, 
PAR1=“M1_(Hh), PAR2=“K_K1”, CON1=“M1_Hm”, CON2=“1_Hl”, 
HOL1=“K_K1”, HOL2=“K_K1”; 

m_Nazwa=“cipher_8A”;

The rules of the definition are given in the following form: 
if[[m_ResP1=RES1 & m_ResP2=RES2] ||
[m_ResP2=RES1 & m_ResP1=RES2]] 
[if[[m_PartP1=PAR1 & m_PartP2=PAR2] ||
[m_PartP2=PAR1 & m_PartP1=PAR2]] 
[if[[m_Nazwa1Con=CON1 & m_Nazwa2Con=CON2] || 

[m_Nazwa2Con=CON1 & m_Nazwa1Con=CON2]] 
[if[[m_NazwaHoleOne=HOL1 & m_NazwaHoleTwo=HOL2] || 

[m_NazwaHoleTwo=HOL1 & m_NazwaHoleOne=HOL2]] 
[MakeName(m_Nazwa,m_ResP1,m_ResP2)]]]]]]

In the case when an object is made from the different parts there is a 
need to learn the concept of the different parts. Learning and application of 
knowledge of the learned parts of the object is called the conceptual 
magnification. Part that is partially invisible can be learned independently. 
In the case of the assembled object the invisible part of the object need to 
be identified during the examination of an object part by part. Conceptual 
magnification makes it possible to learn independently parts that can not 
be visible at given scale. The conceptual magnification is used to solve an 
interpretational problem. The conceptual magnification uses the back-
ground knowledge in interpretation of the object. For example, under-
standing the concept of man requires understanding that the human body 
consists of parts such as hands, head or legs. Conceptual magnification 
makes it possible to reveal details such as fingers that are invisible in 
Fig. 4.105. 

Fig. 4.105. Parts that are learned independently and revealed during conceptual
magnification
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5. Visual Thinking: Understanding 

5.1. Understanding in the Context of Shape 
Understanding System 

To find if the subject understands a sentence, a task, or a phenomenon, 
there is a need to evaluate the response to a given task. One of the methods 
of evaluating the response, that is the result of understanding of the task, is 
to evaluate if an appropriate action was undertaken by the subject (or 
robot). Performing rational actions by subject indicates that subject under-
stands the task. 

Similarly, it is assumed that the shape understanding system (SUS) should 
be able to perform actions that are evaluated as rational actions in order 
to demonstrate understanding of the perceived object. The term a visual 
object used in this context has a broad meaning range from the simple visual 
symbols such as a mathematical symbol, a written text, an engineering 
scheme to the complex real-world objects. In this context the term “under-
standing of the visual task” will be often used instead of “understanding of 
the visual object.” The ability to visualize forms in the mind enhances ability 
to understand both existing objects and objects that may not yet have been 
seen. The ability to visualize makes it possible to spatially analyze more 
detailed visual problems [1]. For example, sketching is based on seeing and 
visual thinking through the process of seeing, imaging, and representing. 
Seeing is our primary sensory channel because so much information can be 
gathered through our eyes. Imaging is the process used by the mind that 
takes the visual data received by our eyes to form some structure and 
meaning. The mind’s eye initially creates the image whether real or imag-
ined, and these are the images used to create sketches. Representing is the 
process of creating sketches of what our mind see. Seeing and imaging is a 
pattern-seeking process where the mind’s eye actively seeks those features 
that fit within our interest, knowledge, and experience. 

241–399 (2008) 
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Understanding even a simple task requires performing complex mental 
operations. The task can be given by the user or can be formulated by the 
system based on the perceived object. For example, understanding task 
given in the form of the spoken sentence that requires performing grouping 
of the different objects (see Fig. 5.5) involves, among others, understand-
ing spoken words and concepts such as “similar objects,” “grouping similar 
objects,” “selecting objects,” “moving objects,” “transforming objects,” 
“naming objects,” and “performing an appropriate action.” To evaluate if the 
system understands given task there is a need to evaluate if an appropriate 

ent objects the evaluation is not a very difficult problem whereas the task 
formulated by a system as the result of perceiving the visual object can be 

objects shown in Fig. 5.5 can begin performing grouping of different  
objects. However, in this case criteria of grouping are not known. Evalua-
tion of this type of action is difficult because in many cases, there is no 
unique solution in selection of the appropriate action. Undertaking a given 

the similar perceptual experience in the past. For example, seeing the letter 
“P” can indicate undertaking an action “read the word” or it can indicate 
undertaking action “park the car” (it is parking near by). 

SUS assumes that the world consists of learned objects and other not 
known objects. In the case when an examined object belongs to the general 
category of objects that were learned based on a few examples, SUS inter-
prets it as a possible object and describes it as “it can be x.” When an 
examined object belongs to the learned specific category the answer is 
“this is x.” SUS is able to find occluded objects or the incomplete figure by 
learning the visual concept from the partially occluded objects. The  
occluded objects are interpreted in the same way as a part of the object. 
For example, a triangle can be interpreted as a part of arrow, or as an  
occluded arrow. Learning of the occluded objects is the topic of further 
research focused on the understanding of the distorted objects and is not 
included in this book. 

The result of understanding of the visual object (visual task) is under-
taking of an appropriate action, denoted as, ( ) :LU u a , where U  denotes 
understanding process, Lu  denotes a phantom (perceived object), and a  de-
notes an action that is undertaken as the result of understanding process. This
schema an object->action, or a situation->action can be used to represent 
the process of interaction of the system with an environment. For example, 

sometimes difficult to evaluate. For example, the system after perceiving 

action was undertaken. In the case of tasks that require grouping of differ-

action depends on the contextual knowledge that the system possesses which 
can come from perception of other objects or can be obtained as the result of 
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understanding a road sign such as “stop” sign means to perform an appro-
priate action when the sign is perceived on the road. 

the visual representation of the object, but it can be based on the nonvisual 
knowledge of the categorical chain. For example, the sentence “Explain 

them. All knowledge that is used to explain the differences is obtained 
from the knowledge schema of the category of geometrical figures. 

Understanding of the sentence “Explain the difference in shape between 
the letter ‘B’ and the letter ‘L’” requires finding the visual concept for each 
letter and next the symbolic names that are visual representatives of struc-
tural archetypes of both letters are assigned to these letters. Symbolic 
names of the structural archetypes are used to find the differences between 
objects. Understanding of the sentence “Explain the difference in shape 
between the object that you see and the letter ‘L’” requires at first to find 
the visual concepts of both objects. The visual concept of the first object is 
found by applying the visual reasoning whereas the visual concept of the 
letter “L” is invoked from memory. Next, the structural archetype for each 
object is selected and symbolic names of structural archetypes are used  
to find the differences between objects. Understanding of the sentence 
“Explain the difference between those two objects that you see” requires 
interpreting these objects in terms of a figure, a letter, a sign, or a real-
world object. At first, the name for each object is found and next the dif-
ference between these two objects is established based on the meaning of 
each category. The difference is found by specifying the lower categorical 
levels for which the differences between members of those two categories 
are significant. For example, let us assume that two objects that are per-
ceived are named as the apple and the lion. The solution to this problem is 
found by the reference to the categorical chain. The answer is the first 
object represents a plant whereas the second one represents an animal. To 
explain understanding of the differences among objects of the different 
categories the example that is shown in Fig. 5.1 is given. Figure 5.1 shows 

  a   b   c 

Fig. 5.1. Example of the different intelligence tests, each one with three different 
objects

the difference between a triangle and a rectangle” refers to the categories
of geometrical figures and there is no need to imagine a triangle and a
rectangle to be able to give explanation about the differences between 

Understanding of the sentence that refers to a visual object often invokes 
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three intelligence tests with three different objects. One of the three objects 
in the test is shown to the observer to remember and next the observer 
needs to find one that is exactly the same that this which was shown. In the 
first test shown in Fig. 5.1a all objects belong to the category of animal 
and the differences among objects are found at the lower categorical level 
(the category of fish, the category of frogs, the category of crocodiles). In 
the second test shown in Fig. 5.1b all objects belong to the animal cate-
gory; two of them are members of the different dog categories and another 
one is a member of the bear category. The differentiation is much easy task 
when objects that are shown are members of the different categories of 
animals. The third test shown in Fig. 5.1c is more difficult because the dif-
ferentiation occurs at the lowest categorical level. All objects are animals, 
and all objects are dogs. To solve this problem the knowledge of the specific 
dog categories is required. The subject who has knowledge of the different 
breeds of dogs will find this task much easier than the subject who does 
not have that knowledge. This task can be also solved without reference to 
any real-world object by matching the visual objects (the same shape). 

Understanding and solving the task by machine can only to some extent 
be compared to our human understanding. In the first chapter of this book 
it was shown how the term “understanding” was differently understood by 
philosophers and scientists. There is no agreement how to define under-
standing process and which aspect of understanding can be used to give 
the best description of it. Similarly thinking, shown in Chap. 1, is very dif-
ferently understood in the scientific world. In this book all processes that 
are performed in the context of perception of the visual object or under-
standing of the visual task will be considered as part of thinking processes. 
The necessary condition of the thinking process is that the system needs to 
be complex enough to perform this process spontaneously. 

In this book understanding is defined in the context of the problem-
solving issues. Thinking is understood as a complex reasoning process that 
leads to understanding. Understanding presented in this book is considered 
in two different aspects. In the first aspect, the understanding process is 
connected with learning, acquiring a new knowledge and memorizing what 
was learned. The second aspect is related to naming, recognition, and solv-

The thinking process is the process that is always present during human 
life and is connected with the normal activities of our brain. It will be topic 
of the next sections. 

ing problems. In this approach a given problem such as understanding 

that was previously learned. 
of the perceived object is interpreted and solved in the context of knowledge 
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5.2. Thinking and Visual Thinking 

Understanding and thinking are processes that cannot be separated. In this 
book the terms understanding and thinking are used to denote often very 
similar aspects of processes that are connected with interpretation of the 
perceived object. Thinking is the process which is always connected with 
activities of our brain. Thinking is understood as a complex reasoning 
process that leads to understanding. Thinking involves many processes that 
are responsible for transformation of the input data (visual object, visual 
task) into different forms (symbolic or visual) that leads to understanding 
of the phenomenon or solving the problem. 

Visual thinking refers to processes that are connected with transforma-
tion of the visual object (visual transformation) into the action that is the 
result of understanding. As it was described in the previous chapters think-
ing (visual thinking) need  not lead to understanding. We can think about 
something to imagine it or sometimes only to have awareness of it. How-
ever, in the present book the term thinking will be used to denote the pro-
cess that leads to understanding. Visual thinking is part of the thinking 
processes that can lead to understanding of the complex problems. How-
ever, the term visual thinking will be often used to denote the process that 
leads to understanding of visual forms. The visual thinking process con-
sists of the different steps that involve transformation of the different 
forms of data stored in memory. Visual thinking is part of the thinking 
process that deals with the visual material. Visual thinking process can 
start when an object is perceived and one of the results of the thinking 
process is assigning the perceived object to one of the object categories. 
On the other hand, the task that is given to the system can require produc-
ing an image (visual object). The image is the result of the imaginary pro-
cess and is a part of the thinking process. The image (visual object) can be 
also used during intermediate stage of the visual thinking process. 

As it was described in the previous chapter there is no unique definition 
of the thinking process. According to Arnhaim, the machine needs to pos-
sess the following capabilities in order to be able to engage in the thinking 
process, it should:

Respond to the categories of things and disregard of the unique object 
Solve problems by means of they perceptual concepts 
Connect items of their environment by relations that lead to solution 
of a given problem 
Suitably restructure the situation facing them 
Transfer the solution to different but structurally similar instances 
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As it was presented in the first chapter, thinking is the process that uses 
knowledge during interpretation of the visual object. Visual thinking process 
starts when an object is perceived and the result of the thinking process is 
to understand of the perceived object. Visual thinking is the process of 
“mental” operations on visual concepts (categories) and can be the source 
of a new knowledge. The knowledge in the system is represented by the 
complex structure of the linked categorical chains. 

The image (visual object) can be produced by the system at any stage of 
the visual thinking process. The visual object (image) can be the result of 
imagery transformation during the reasoning process and can be given as 
the result of the visual thinking process during communication session. It 
is assumed that all transformations performed on categories of the visual 
objects or their parts are part of the visual thinking process. Thinking is 
considered to mediate between inner activities such as imaginary transfor-
mations and external stimuli. Thinking plays a key role in problem solving. 
In the case of solving the relatively easy problem, thinking can be regarded 
as the reasoning process. As it was shown in the first chapter thinking was 
often understood very narrowly as a sort of reasoning. In our approach 
thinking and understanding is regarded as the process that is connected 
with problem solving. In this book the term “understanding” will be used 
to denote the result of the thinking process and will be often used to denote 
the thinking process itself. This is justified in the case of the convergent 
thinking where understanding is the result of the thinking process. The 
term “thinking” will be also used to underline processes that are connected 
with imaginary transformations. Imaging is the process of producing the 
image during the thinking process and is one of the steps in obtaining the 
understanding of the visual object or the phenomena. For example, reading 
the sentence “the leaf is on the table” may lead to imagining the leaf. 
Shape of the leaf that is the result of the imaginary process can be given as 
a visual illustration of the meaning of the sentence, or as the chain of the 
thinking operations that can lead to the creative artistic process. Without 
any additional information the sentence “the leaf is on the table” is inter-
preted that the leaf from any leaf categories such as tree leaf is on the table. 
The system cannot generate image of the general leaf category and the leaf 
that is generated during thinking process is the representative of the most 
common shape of leaves that system learned. The term “the most common 
shape” refers to the visual concept of the leaf category and indicates that 
the object that is a member of the leaf category is interpreted as the visual 
object, part of tree, given by the visual representative of the leaf category. 

We have decided not to provide a more formal definition of the visual 
thinking process. At this stage processes that are connected with the vis-
ual thinking process are represented by a sequence of transformations. 
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5.3. Visual Thinking as a Problem Solving Process 

As it was described in Sect. 5.2 the visual thinking processes lead to under-
standing. Understanding of the task is connected with problem solving. 
The task is solved during the thinking process. At the beginning of the 
thinking process the task is transformed into problem that needs to be 
solved. The visual thinking process consists of many different stages and 
at each stage the specific problem is solved. The simplest thinking process 
involves transformation of the data during the visual reasoning process. 
The thinking process of the understanding system that is focused on the 
problem solving is limited to solving problems that appear as a result of 
perception of the visual object or the tasks that are given by users. The 
important part of the thinking process is the reasoning process. Depending 
on the type of the visual problem that is solved many different forms of the 
transformations of the data during the reasoning processes are involved. 
The visual thinking process is very complex and even the simplest form 

There is still the area of research in the domain of understanding and think-
ing where further research is needed to be able to define the visual thinking 
in a more formal way. In this book the main emphasizes is laid on the vis-
ual thinking processes and the problem of the nonvisual thinking is pre-
sented only in the context of issues connected with visual thinking. Also, 
the problem of thinking needs to be formulated and solved before the for-
mal definition of the visual thinking can be given. The visual thinking is 
part of the thinking process and the definition of the visual thinking proc-
ess needs to refer to the definition of the thinking process. Because the 
formal definition of the thinking process does not exist we will describe 
thinking process in the context of different aspects of the thinking process 
presented in Chap. 1 as well as in the context of the learning, reasoning, 
and problem solving outlined in other chapters of this book. Someone can 
argue that the process that we call “visual thinking process” is different 
from the “visual thinking process” that is described in the context of the 
human mental processes. It would be difficult to prove that what we call 
the visual thinking process has the same meaning as the meaning of this 
term described in the context of the different scientific disciplines. How-
ever, we believe that building the complex visual thinking machine can 
only be possible by applying an approach presented in this book. In this 
book we will focus on thinking processes that are connected with problem 
solving.
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given by the visual reasoning involves application of the complex image 
transformations, shape categories, and visual object categories as described 
in Chaps. 2–4. 

The thinking process consists of many stages where different image 
transformations are applied to transform perceptual data. One of the trans-
formations is the sensory transformation : ( )u  that transforms 

. A set 
of critical points  is transformed into the symbolic name :
R
formations given in the following form: ( )u R . The 
image transformations used in reasoning process were described in Chap. 3. 

In this book it is assumed that all problems that system needs to solve 
can be formulated in the form of the problem-solving tasks. These tasks 
such as naming and recognition of objects of the different categories 
(figures, signs, letters, real-world objects), the visual diagnosis, the data 
analysis, or the visual intelligence tests are examples of the different pro-
blems that occur in the different areas of human activities. 

The visual problem solving is often a very complex task that involves 
many stages of thinking processes. In the problem formulation, visual 
thinking involves the problem transformation uv)( , where v  is a 
visual problem category and u  is a phantom (visual object) that represents 
a given problem. The problem can be also described in the form of the lin-

formed into a visual object (graphical representation) by transforming it to 

the visual symbols (e.g., engineering schema), can show only some aspects 
of the real-world object or can be “realistic” visual representation of the 
object. In solving the real-world problem instead of the problem transfor-
mation, the image  that is representative of the real-world phenomenon, 
is transformed into a phantom u  by perceptual transformation uP )(
and next, by applying the imagery transformations and visual inference, 
the solution is found. 

during the reasoning process by a sequence of image trans-

real-world scene. The problem given by the linguistic description is trans-
guistic description or it can be given in the form of the objects of the 

Thinking process as a problem solving can be described by the sequence 
uv)( -> )(u -

> R ->T … R -> ia][ , where 

the perceived object (phantom) u  into a set of critical points 

one of the schematic representations. The schematic representation that uses 

of sub-processes and expressed as follows: 
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uv)(

R T R
R T R…
sentation given as a set of critical points into the symbolic names (image 
transformations), and at the end the solution is obtained by applying the 
visual inference. In solving the complex real-world problem a number of 
sub-processes can be very big. These sub-processes will be described in 
the following sections of this chapter. 

As it was described, problems that the system needs to solve are formu-
lated in the form of the problem-solving tasks. One of the simplest tasks is 
the naming task. During the naming process the phantom u  is transformed 
into a set of critical points  and next into a symbolic name . The sym-
bolic name is used to find a category of the perceived object. The naming 
process is expressed in the form of the visual inference rule 
[ ] ia , where  is the symbolic name obtained in the rea-
soning process,  is the shape category (the visual concept), and ia

( )u R N , where N  denotes  the 
naming process given by the visual inference rule. The sequence of trans-
formations will be called the categorical transformations and denoted as 

( )iC u i . The naming process is described in more detail in the fol-
lowing sections of this chapter. 

The visual diagnosis is similar to the naming process where instead of 
the name of the category of object, the name of the illness category is at-
tached. In visual diagnosis, cells and organs with pathological changes are 
described by the pathological symptom category. The pathological sym-
ptom category (the visual concept) h  is used in the visual inference to 
find the illness category iH . The inference rules are expressed in the fol-
lowing form [ ]h ih H . The categorical transformation is des-
cribed as ( ) i

iC u H , where iH  is the illness category. The category of 
illness is linked with the category of treatment of illness so the diagnosis is 
connected with the recommendation of the treatment. The visual thinking 
process can be also present in the process of recommendation of the treat-
ment.

the sequence of transformations
member of the problem category into the visual form (phantom), next

transforms the internal repre-

in the form of the sequence of transformations as follows: 
denotes the naming process. This type of thinking process can be written

at first “the problem transformation”  transforms a given 
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In analogical reasoning, thinking process involves obtaining the visual 
category for each phantom that represents similar objects as well as esta-
blishing relationships among categories. At first, the phantoms 1u  and 2u
are transformed into categories described by categorical transformations: 

1 1( )C u  and 2 2( )C u . Next, the conceptual similarity relation 

1 2( , )  between category 1  and category 2  is found. The category 
that fulfills the relation 3( , )  is obtained and the phantom u  that is 
representative of the category  is selected as the solution. 

Assembling tools is one of examples of the problem solving that  
involves application of the different thinking processes. For example, the 
visual scheme of a category of tools is used for solving the problem of as-
sembling the spade from the three parts. This task is formulated as follows: 
having parts 1,..., nu u  make the complex object u  given by the name .
The name  is used to find the category of the object  and its visual 
concept . Having the category of object , the knowledge concerning 
parts and assembling process can be obtained from the knowledge schema 
of this category. It is assumed that this knowledge was previously learned. 
Based on this knowledge each part is identified during thinking processes 
and the appropriate parts are selected from the given parts 1,..., nu u . At the 
end, the assembling process is represented as a sequence of “events” 

( ) iu R N
categories of the part iu .

Visual process control is thinking (observing) about the changes of the 
visual aspects of the process. The changes of shape during the certain  
interval of time can “produce” the characteristic sequences of shapes that 
are characteristic for changes of the process. The sequence of shapes is 
represented as a sequence of the symbolic names 1 2 3, ,..., . The failure 
category (visual concept) h  is used in the visual inference to define the 
failure (critical points) of the process iP . The rules of visual inference are 
expressed as follows: 1 2[ , ,..., ]n p ip P .

Solving problems in statistics is thinking in the form of images that are 
obtained during data visualization. Points given in the scatter plot are 
called a set of 2D dot patterns. The numerical data given as an input in 

example, for each part, during the thinking process, transformations
(transformations) that leads to assembling the final object. In this

 are applied to obtain visual

the form of a set of points )},),...(,(),...,,{( 11 NNii yxyxyx  are 
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transformed into the image : ( )V  by applying the visual trans-
formation and the image  is transformed into the phantom u by the per-
ceptual transformation: uP )( . Thinking during the visualization 
process can be described as transformation that transforms data points into 
the phantom u and is denoted as: uPV )()( , where )(V  is 
the visual transformation and  is an image; or by applying the graphical 
transformation )(G , that is denoted as uGV )()( . Next, 
the phantom is used to find the visual category of the statistical problem 
that is denoted as ( )u R N . The selected 
statistical model is next applied to perform statistical analysis and finally, 
during the nonvisual thinking process, the data are interpreted in terms of 
the statistical parameters. 

Thinking can lead to formulate the problem by asking outer or inner 
questions. For example, when seeing the unknown object the inner ques-
tion is “what is this?” and SUS needs to find the answer to understand the 
problem. When formulating diagnosis of the illness, SUS needs to com-
municate the findings to the doctor and ask for another data if needed. 
Problem can be formulated by user and given to the system as a task or can 
be formulated by SUS as the result of its perceptual activity. The task that 
is performed by the system can be the result of perception of the visual 
object (e.g., sign STOP) or can be given by the user. 

Visual processes connected with thinking can be described in terms of pro-
blem solving processes and are topics of the following sections of this book. 

5.4. Problem Solving 

Problem solving process is one of the mental processes where thinking 
plays a key role. Problem solving can be viewed as the process of trans-
formation some initial states of the world into a goal state by application of 
a sequence of known operators. Operators define a search space that must 
be explored to discover how the goal state can be achieved. There are 
classes of problems that require the visual representation in formulation of 
the problem as well as in finding of the solution. However, many problems 
can be given in the form of the symbolic description without the need for 
visual representation. There is a class of problems such as mathematical 
problems that can be precisely defined [2]. Solution to a mathematical 
problem contains the following parts:



252      5. Visual Thinking: Understanding 

Complete specification of givens; that is, a unique given state from 
which the goal can be derived via sequence of allowable operations 
Complete specification of the set of operations to be used 
Complete specification of the goals 
An ordered succession or a sequence of problem states, starting with 

The problems contain information concerning givens, actions, and 
goals. The solution of a problem can be defined in terms of a sequence of 
states (terminating with the achievements of goal). It is very useful to 
represent both the possible sequences of actions and the possible sequences 
of states in a common diagram called a state-action tree. 

As it was described in previous sections problem is solved during the 
thinking process. Thinking involves many different processes that are res-
ponsible for the transformation of input data given in the form of the phan-

Problem solving requires different representations of the problem. In 
this book we will focus on the representations that are given in the form of 
the verbal description, a schematic visual representation, or realistic repre-
sentation of the world phenomena. The verbal description can be translated 
into the visual form and often can be very useful in solving problems. In 
the case when the visual representation is too realistic, showing parts that 
are not relevant to a given problem, it can lead to misinterpretation of the 
task and finally to fail in solving a given problem. 

The term problem solving is defined in different ways in the different 
areas of human activities. For example, the term problem solving in artifi-
cial intelligence has been used to denote the disparate forms of intelligent 
action to achieve well-defined goals. Each area of knowledge such as 
mathematics or physics has its specific method of solving problems that 
are connected with the specific knowledge of this area. To solve the problem 
there is a need to understand the concept of the area to which problem 
belongs, and next to transform the problem into the form that can be easy 
to solve. For example, a mechanical problem formulated as follows: “What 
constant force will cause a mass of 3 kg to achieve a speed of 30 m per 
second in 6 s, starting from rest?” requires understanding the concepts 
from area of mechanics. Understanding concepts such as “force,” “mass,” 

successive state is obtained from the preceding state by means of 
allowable action 

the given state and terminating with a goal state, such that each

tom into many different forms, symbolic or image that lead to understanding
of the phenomenon or solving the problem. Visual understanding that is
focused on application of imagery transformations during problem solving
process is called the visual problem solving. 
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“speed” requires knowledge from the area of physical sciences. In SUS 
knowledge is represented in the form of linked categories that are accessible 
during thinking process. 

To find the solution to the problem there is a need for finding a proper 
representation of the problem. For example, the fox, goose, and corn pro-
blem is given in the form of the linguistic description as follows: “A man 
(M), a fox (F), a goose (G), and some corn (C) are together on one side of 
the river (straight line) with a boat (B). The goal is to transfer all of these 
entities to the other side of the river by means of boat, which will carry the 
man and one other entity. The fox and goose cannot be left together, nor 
can the goose and the corn.” To solve the problem the visual representation 
in the schematic or the realistic form can be used. However, the realistic 
representation does not help in finding the solution. An example of the rep-
resentation that can be useful in solving this problem is given in the form 
of symbolic representation “M F G C B |.” The solution can be obtained by 
transforming beginning state of the problem into the goal state as follows:

Given M F G C B |              Goal | M F G C B 
Solution:
Given M F G C B |          FC | MG  B         MFC  B |  G    C | MFG B   
MGC B | F
G | MFC B   MG B | FC     |  MFGCB

The mathematical problem can be represented in either symbolic or dia-
grammatic form. Symbolic form refers to the expression of information in 
terms of words, letters, numbers, mathematical symbols, or symbolic nota-
tion. Problem can be formulated as a problem of path-finding and can be 
solved by applying the graph representation. Example of such an approach 
is described in [3]. Verbal symbolic representation is probably more  
important than visual diagrammatic representation in problem solving and 
in abstract thinking. Even when diagrams in the solution of problems are 
employed they are usually labeled with symbols that are attached to the 
points, lines, and angles. The simplest and most frequent step in symbolic 
representation of the information in problems is to choose some symbols 
(or a sequence of symbols) to stand for a concept. 

Many practical problems are stated in terms of physical objects or phe-
nomenon and can be transformed into mathematical expression. The 
mathematical problem consists of givens and operations. Givens refer to a 
set of expressions representing objects, things, assumptions, definitions, or 
facts. Operations refer to the actions that allowed to be performed on the 
givens or on expressions derived from the givens by some previous  
sequence of actions [2]. The goal of the problem is a terminal expression. 
For example, consider the problem of finding the value of x, given the 
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expression 5x + 9 = 19. The goal expression is in the form x = 2 where 2 is 
the correct number that was to be found. There may be one or more than 
one correct solutions to the problem. 

To understand and solve many problems there is a need to find the 
proper visual representation. Some problems can be solved by using the 
schema where the real-world objects are represented by the visual symbols. 
For example, in the schema of the electric circuit the real-world object 
such as resistor is represented by the visual symbol. Industrial processes 
are often represented by schematic representations that applied the cross 
section or even visual symbols. The visual representation can be close to 
realistic representation as shown in Fig. 5.2 or can be more abstract as 
shown in Fig. 5.3. 

In the visual problem solving the visual representation is used to under-
stand and formulate the problem (see Fig. 5.4). For example, a schema of 
electrical circuit (Fig. 5.4a) is used to formulate the problem in the form of 
the mathematical model. The visual representation is very often used in the 
case of formulation of the mechanical problems (Fig. 5.4b–e). 

 a     b 

Fig. 5.2. The problem represented in realistic form 

Fig. 5.3. The schematic visual representations that are used to understand the 
visual problem 

    
 a  b  c  d       e 

Fig. 5.4. Examples of visual representations used to formulate and solve the 
different problems 
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given in the form of the symbolic representation, the problem given in the 
form of the visual representation, and the problem given in the form of 
both symbolic and visual representations. 

5.4.1. Problems Given in the Form of the Symbolic 
Representations

In this book it is assumed that all information is given by the visual means. 
It is also assumed that the information that is obtained through auditory 
channel can be transformed into the visual form. For example, speech can 
be transformed into the written text, and music can be transformed into the 
visual form of the signal and next into the musical scores. However, the 
symbolic visual representation applies visual symbols as the means to per-
form nonvisual transformation. Problem is often stated originally in some 
linguistic form, often relying upon verbal language. The first step in solv-
ing such a problem is to translate it to a more adequate representation 
applying knowledge of the mathematical expression. 

One of the simplest tasks, given in the form of combination of words 
and mathematical expression, is the task to perform the arithmetical opera-

that is called the problem difficulty and indicates the difficulty to solve the 
problem. In solving the simple problem such as multiplication of the two 
numbers the problem difficulty can be differently defined for the human 
subject and for the machine. For the human subject who is doing multipli-
cation without any tools the difficulty of the multiplication task depends on 
the number of ciphers that need to be multiplying. For example task 3*4 
can be performed by nearly all children, whereas task 23456*235687563 is 
very difficult for nearly all people. However, the machine can solve the 
problem of multiplication of very big numbers without noticeable increase 
in the difficulty when solving a problem of multiplication of small and big 
numbers. 

the knowledge that makes it possible to transform the problem into the re-
quired solution but also understanding visual mathematical symbols. Even 
a simple mathematical expression requires understanding of the concept of 
members of the visual category. The category of mathematical symbols de-
fines the rules of interpreting of the mathematical symbols such as opera-
tors, relations, logic operators, special symbols, ciphers. Even an isolated 
symbol can be interpreted as the mathematical symbol meaning of which is 

ation, problems can be divided into three different classes: the problem 
Depending on the utilization of the symbolic and the visual represent-

tion (e.g., multiply 2 by 3). The factor that characterizes problems is a factor 

Solving a problem that involves a mathematical formula requires not only 
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given by the knowledge schema. The most important of the mathematical 
symbols is the category of ciphers that is interpreted as the number that 
often refers to the number of objects or expresses the quantitative pro-

where

Cip  denotes the cipher category. 
The most of mathematical knowledge is represented in the form of the 

mathematical expressions. The mathematical expression is the combina-
tion of the numbers, letters, and mathematical symbols that have the 
mathematical meaning described by the rules of mathematical operators. 

expression because it consists of nonmathematical symbols, the expression 

x + 5 = 7 is an example of the mathematical expression. As it was des-

among others, the equation category Eqt , the function category Fun , the 
algebraic operation category Alg , the differentiation category Dif , or the 
integration category Int , and is represented by the following categorical 
chain: Pt MtEx Eqt Fun Alg Dif Int, , , ,…
mathematical expressions includes the rules that make it possible to check 
if a given expression is the member of the category of mathematical  
expressions. If the expression is recognized as the mathematical expression 
the further interpretation is based on knowledge supplied by the know-
ledge schema. For example, the expression that is interpreted as the 
mathematical equation can be interpreted as the model of the real-word 
phenomena or as a task that needs to be solved. 

Many mathematical problems require transforming tasks given in the 
form of the linguistic description into the mathematical formula (expres-
sion) such as the equation, the system of algebraic equations, the differen-
tial equation, or the integral equation. The linguistic description consists of 
the visual objects called letters. System that is used for problem solving 
should be able to understand the letter and the linguistic expressions such 
as words or sentences. For example, the task given in the following form: 

hierarchical categorical structure given by the categorical chain: 

perties of the phenomena. The category of mathematical symbols 
is described in Chap. 4. The cipher is placed in the context of the 

. The category of 

“Z has bought three fish and one apple and paid 5$. In another day Z 

…

El Sg VSym Mth Cip Opr Rel Log Syn, , , ,

For example, the expression ®§ %1/* is not a mathematical 

+ 2-/*34  is not a mathematical expression because the symbols do not 
follow rules of composition of the mathematical expression; the expression 

cribed in Chap. 4 the category of mathematical expressions consists of, 
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bought one fish and two apples and paid 5$. How much costs apple and 
fish” needs to be transformed into a mathematical expression. The first 
step to solve this problem is to translate the linguistic description into a 
more adequate (quantitative) mathematical representation. The system 

In the context of categories of the visual objects the interpretation means to 
find the meaning of the concept that is expressed by linked categorical 
chains. For example, in this task the concept “apple” is understood as the 
“market” category not as a plant category. The meaning of the words 
“apple” and “fish” is modified by the contextual information of the words 
“cost,” “bought,” and “paid.” The task can be translated into intermediate 
form by denoting market items, “apple” by the symbol A, and “fish” by the 
symbol B, and using the simple verb forms. After inserting symbols the 
description is given as: “Z buys 3 A and 1 B pay 5$. Next Z buys 1 A and 
2 B pay 5$. How much cost A and B.” From this form it is easy to find 

3x + y = 5 and x + 2y = 5. The next step is to solve these equations which 
gives the solution x = 1, y = 2. 

In the previous example the concept such as fish or apple refers to the 
visual real-world object. The interpretation of these concepts in terms of 
the plant or the animal categories can lead to misinterpretation of the task. 
In the second example, the concept such as minutes, walk, and velocity 
that refers to area of physics needs to be properly understood to solve a 
problem. The visual illustration of this problem is not very helpful, 
whereas it is possible to obtain solution by designing a simple graphical 
model and solving the problem by applying the method of computer simu-
lation. The problem is stated as follows: “In 3 min G can walk 300 m. In 
5 min M can walk 600 m. They started walking at the same time along the 
same track. How far apart were they after 4 min (a) 80 m, (b) 100 m, (c) 
120 m, (d) 300 m.” To find the solution there is a need to understand the 
concept of velocity. Marking velocity of G by X1 and velocity of M by X2 
the solution can be given in the form of equation. 

3*X1 = 300     5*X2 = 600    X1 = 100     X2 = 120 
4*X1 = 400       4*X2 = 480          d = 480 400 = 80 
As we can see, the solving of this task depends on the proper under-

standing of the concept such as velocity. 
In another example: “There were 29 children on the school bus. After 

three boys got on the bus and five girls got off, there were twice as many 
boys left on the bus as the were girls. How many of the original 29  
children were boys?” the task is given in terms of visual objects. This task 
was given as the school test where the answers from which correct one 

needs to understand such concepts as “bought,” “apple,” “fish”, or “paid.” 

mathematical representation in the form of the system of linear equations 
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needs to be chosen were given as (a) 14, (b) 15, (c) 18, (d) 27. The linguis-
tic description can be translated into the visual form and interpreted as the 
categories of the visual objects. However, when this description is as-
signed to the nonvisual mathematical tasks category all visual concepts 
will be interpreted in terms of the abstract terms of a set categories. It can 
be expressed in intermediate form: “It was 29 girls and boys (29 GB). 
After 3B in and 5G out there was twice B as were G. How many of the 
29GB were B?,” where the symbol B denotes boys and the symbol G de-

G = 14, B = 15 the proper answer is selected (b) = 15. This problem can be 
solved using computer simulation in which visual object such as geometrical 
figures can represent the boys and girls. Let assume that circles represent 
girls and triangles represents boys. At first randomly the 29 figures, from 
which there is m circles and n triangles, are generated (n + m = 29). Next 
three triangles are added (the number of triangles after adding are denoted 
as n1) and five circles are removed (the number of circles after removing 
are denoted as m1). The condition if n1/m1 = 2 is checked by counting the 
number of triangles. If condition is fulfilled the number of triangles is the 
proper answer, if not the 29 new figures are generated and the process is 
started again. The solving this task by applying the computer simulation 

capabilities of the system. Each stage is to imagine the situation that is des-
cribed and solution is obtained by comparison of the results of the imagi-
nary transformation (generation figures, adding, and removing figures) 
with expectation that is expressed in the numerical form. 

5.4.2. Problem Given in the Form of Both Symbolic and Visual 
Representations

In the previous chapter the problem that needs to be solved was given in 
the form of the linguistic description. There was no need for the visual rep-
resentation. In this chapter, the examples of problems that utilize the visual 
representation to help solving problems are presented. The problem that 
needs to be solved is often given in the form of the linguistic description 
with addition of the graphical illustration (e.g., in the form of the engineer-
ing schema). When a problem involves spatial concepts such as points, 
lines, angles, directions, vectors, surfaces, or plane figures, diagrammatic 
representation may by useful aid to the symbolic representation, whether 
verbal, logical, or algebraic. Diagrammatic form refers to the expression of 

equations is obtained: G + B =    2  9  (B + 3)/(G 5) = 2  and after solution 
notes girls. From this form the solution in the form of the system of linear 

method is an example of solving problems by applying the visual thinking 
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matrices, plots of functions, or graphs. Often the same information should 
be represented using a variety of symbolic or diagrammatic notations. Ex-
amples of tasks that are represented in both symbolic and diagrammatic 
notations are shown in Fig. 5.4. These tasks are formulated as follows:

1. A series circuit contains a resistor and a capacitor as shown in Fig. 
5.4a. Determine the differential equation for the charge ( )q t  on the capa-
citor if the resistance is R, the capacitance is C, and the impressed voltage 
is ( )E t . This task can be expressed in intermediate form as follows: S cir-
cuit [resistor, capacitor]. Given [resistance R, capacitance C, impressed 
voltage ( )E t ], find [differential equation for charge ( )q t  on capacitor]. 
To solve this task the concepts from the domain of the electrical engineer-
ing need to be understood. 

2. A uniform beam of length L carries a concentrated load 0P  at 
x = L/2. The beam is clamped at both sides (see Fig. 5.4b). 

3. A mass m having weight W is suspended from the end of a rod of 
constant length l. For motion in a vertical plane, we would like to deter-
mine the displacement angle , measured from the vertical, as a function 
of time t (see Fig. 5.4c). 

zontal. If the coefficient of sliding friction is , determine the differential 
equation for the velocity v(t) of the weight at any time. Use the fact that 
the force of friction opposing the motion is N , where N is the normal 
component of the weight (see Fig. 5.4d). 

5. The conical tank shown in Fig. 5.4e loses water out an orifice at its 
bottom. If the cross-section area of the orifice is 21/ 4 ft , find the differ-
ential equation representing the height of the water h at any time. 

The problems shown in this section refer to the category of the physical 
models. The visual inference is expressed in the form of rules as follows 
[ ] ia , where  is the symbolic name obtained in the rea-
soning process,  is the visual concept, and ia  denotes the subtask 

i  to be performed. The visual concept  includes one of the visual 
representations of the task. The subtask i  consists of selection of the 
models (the differential equations), verification of the parameters and vari-
ables of the model with those shown in an image, formulation of the pro-
tocol to be sent to the subsystem such as Mathematica, and interpretation 
of the solution obtained both in the symbolic and graphic form. The solu-
tion for the problem (2) is the differential equation

4. A weight of 96 lb slides down an incline making a 30  with the hori-

information by a collection of points, lines, angles, figures, vectors, and 
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The solution for the problem (3) is the differential equation given as 
2 2( / ) sinml d dt mg .

5.4.3. Problem Given in the Form of the Visual Representation 

Visual problem is formulated in terms of visual objects or phenomena. The 
problem can be formulated in the form of the linguistic description, for ex-
ample, “select convex objects” or, based on the perceived objects, “name 
the perceived object.” 

Solving visual problems is performed during the visual thinking process. 
For example, derivation of mathematical formulas based on the visual ob-
jects is an illustration of application of abstraction as a part of the thinking 
process. Solving visual intelligence tests is an example of application of 
the visual thinking in solving visual problems. Visual analogical reasoning 
is an example of the application of the selected problem’s solving strategy 
in solving a visual task. Examples of solving of the visual problems by 
visual recognition and abstraction are described in the following sections 
of this chapter. 

In this section, the problem formulated by the user in the linguistic form, is 
described and analyzed in more detail. The problem can be formulated as a 
simple task that requires undertaking the appropriate action or as the com-
plex task that requires utilization of the complex visual reasoning pro-
cesses. The task given by a user can be given in the linguistic form such as 
a written text or the spoken words. To perform the task SUS needs to under-
stand the spoken words of a given language. Understanding the spoken 
words of a given language requires transformation of spoken words into 
text (words, sentences) and next interpretation of the text. Complexity of 
the formulated tasks can vary. In the case of a simple task, its description 
can be given in the form of one sentence describing the specific action that 
needs to be undertaken or a simple problem that needs to be solved. In the 
case of a complex task, the task description needs to be given in the form 
of a few paragraphs.

The simple task given in the form of the linguistic description describes 
an action that needs to be undertaken. Understanding such a task requires 
understanding the concept that is included in a task description. The task 

5.4.3.1. Performing Task Given by the User 
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description can include concepts that refer to one of the ontological cate-
gories such as a figure, a letter, a sign, or a real-world object. The linguis-
tic description of the task that refers to figures can be often found in the 
different intelligence tests such as IQ tests. SUS has ability to understand 
the task given by the description of the visual object in terms of its visual 
features (attributes). This description refers to concepts such as concavities 
or holes. For example, the description “select a concave object with n
polygonal concavities and with n curvilinear holes” requires understanding 
of the following concepts: a convex object, a concave object, a cyclic object, 
the polygonal concavities and a curvilinear hole. The description can refer 
to the general figure category such as a “convex object” or a specific figure 
category such as a “right triangle.” The task description refers to the non-
visual category called the action category such as: select one, select n,
select all, find an object given by a name, and find an object similar to that 
one. The following are examples of tasks formulated in the form of sen-
tences, where the one of the action categories is applied: “Select a convex 
object,” “Select all convex objects,” “Find if a convex cyclic object is a 
member of a set,” “Find if  is a member of a given set,” “Compare if 

 and  are the same,” “Find the name for this object ,” “Find if 
this object  is concave,” “Find the meaning of this object .”

the task description. The concept can refer to one of the ontological cate-
gories such as a figure or a real-world object. In the case of members of 
the figure category, description can be given in terms of the general cate-
gories such as a “convex object” or the specific categories such as a “right 
triangle.” Understanding these concepts makes it possible to “see” differ-
ences among objects and undertakes actions that require discrimination 
among very similar objects. 

object” that includes different levels of the object description, are given. 
This type of tasks is formulated in reference to the figure category and is 
given in terms of features of the visual object on the four different cate-
gorical levels of description: 

1. Select a cyclic object, select an object with n-holes

concavities) with n-holes, select a concave object with a convex hole 
3. Select a rectangle with n-holes, select a triangle with a triangular hole 
4. Select a right triangle with an acute triangular hole 

2. Select a convex object with n-holes, select a concave object (n-

As it was described, to find the solution to the task that requires perform-
ing an action, there is a need to understand the concepts that are included in 

cal levels of descriptions, an example of the tasks formulated as “select an 
To explain the problem of understanding by SUS at the different categori-
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As a result of solving of this type of tasks, a division of the set of objects 
into two subsets is obtained. Examples of objects used in the experiment 
are shown in Fig. 5.5. At the first stage of performing the task given by the 

stand the concept of a hole, was examined. The task was given to SUS as a 
series of queries where a number of holes were increased from 1 to 3. The 
results of a query “select an object with 1-hole” are shown in Fig. 5.6, the 
results of a query “select an object with 2-holes” are shown in Fig. 5.7, and 
the results of a query “select an object with 3-holes” are shown in Fig. 5.8. 

Fig. 5.5. Set of all objects used in the experiment 

user in the form “select an object with n-holes”, SUS abilities to under-

Fig. 5.6. Objects selected by a query “select an object with 1-hole” 

Fig. 5.7. Objects selected by a query “select an object with 2-holes” 
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The results of solving tasks given at the second categorical level are 

with one concavity and with 1-hole” are given in Fig. 5.11, and the results 

are shown in Fig. 5.12. The results of solving task given at the third cate-
gorical level are shown in Figs. 5.13 and 5.14. The tasks are formulated as 

Fig. 5.9. Objects selected by a query “select a convex object with 1-hole” 

                           

and one cyclic hole” 

1-hole”

given in Figs. 5.9–5.12. The results of query “select a convex object with 
1-hole” is given in Fig. 5.9, the results of query “select a convex object with 

of query “select a concave object with two concavities and one cyclic hole” 

“select a rectangles with 3-holes” and “select a triangle with a triangular hole.” 

Fig. 5.8. Objects selected by a query “select an object with 3-holes” 

Fig. 5.10. Objects selected by a query “select a  convex object with 2-holes” 

Fig. 5.11. Objects selected by a query “select a concave object (1-concavity) with

Fig. 5.12. Objects selected by a query “select a concave object with two concavities 

2-holes” are given in Fig. 5.10, the results of query “select a concave object 
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Fig. 5.13. Objects selected by a query “select rectangles with 3-holes” 

Very often the task description instead of giving the description of the 
visual object in the linguistic form indicates a visual object by pointing to 
one of the visual objects. An example of such tasks descriptions can be of-
ten found in the description of the tasks of the visual intelligence tests, e.g., 

“Find the following object:  among objects shown in Fig. 5.15 or 
“Find a given object among these five objects.” 

The solution of the task that refers to the category of the geometrical 
figure does not need to relay on the naming process. As it was described in 
the Chap. 4, most of members of the figure category do not have specific 
names. Naming process refers to the categorical structure of categorical 
chains. Solving this task requires finding the name at an appropriate cate-
gorical level. For example, the task “Select the different one” from the set 
of objects shown in Fig. 5.16 requires naming by selection of an appropri-
ate level of generality of categories. This task can be accomplished by se-
lection of the object at the figure level without reference to the real-world 
object. However, all figures are different so there is a need to find the 
name of the real-world object which these visual objects (phantoms) repre-
sent. Let us assume that the result of the naming is as follows: the apple, 
the elephant, the ox, the rabbit, and the fish. All categories are different; 
the naming is given at too specific level. To find the solution there is a 
need to perform the conceptual grouping. The conceptual grouping is 
based on the categorical chains that move toward the categories of the 
higher level. The categorical chains are as follows:  

Fig. 5.14. Objects selected by a query “select a triangle with a triangular hole” 
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Fig. 5.16. Task given in the linguistic form: “Select the different one” 

           
Fig. 5.15. The task in which the visual object is “described” by pointing to one of 
the objects 

El EAR Liv Ani Cho Fis Amf Ave Mam, , , , ,
and specific categories derived from the mammal category are given by the 
following chain Ani Cho Mam Ele Ox Rab Tig, , , .  The cate-

gory of plant is given as follows El ReO Ear Liv

Pla Tre Shr UnS Vin, , , ,  where apple is described as a part cate-
gory derived from the tree category shown by the following categorical 
chain Pla Tre Frt Plu App Pea[ ] , , .

Ani Cho Mam Ele Ox Rab Tig, , , we can infer that elephant, 

ox, and rabbit are mammals Mam Ele Ox Rab Tig, , , .  These objects are 
now named: apple, mammal, mammal, mammal, and fish. There are three 
categories of objects, namely, apple, mammals, and fish. There is a need 
for another conceptual grouping. Based on the categorical chain 

Liv Ani Cho Fis Amf Rep Ave Mam, , , , we can infer that 

the fish and mammals are members of category of animals Ani .

Fis Mam, .

El Reo EAR Liv Pla Tre Frt Plu App Pea[ ] , ,

and El Reo EAR Liv Ani we can find the name of the 

RepRe O

 The result of perceptual grouping is the new names for

all objects: apple and animals. Based on the categorical chains  

From the categorical chain  
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object called “apple” at the level corresponding to the level of the objects 
named animals. From comparison of these two categorical chains (moving 

four same objects – animals and one different – plant. The explanation 
can be given in general terms of the differences between plants and  
animals. In a similar way the task shown in Fig. 5.17 can be solved.  
The solution is obtained based on the categorical chain 

Ani Cho Mam Ele Ox Rab Tig, , ,…
Mam Ele Ox Rab Tig

Fis Mam.. ,.., .
To solve the task given in Fig. 5.18 there is a need to refer to the know-

ledge schema. As it was described in Chap. 4 each category has its know-
ledge schema that defines the main property of the object of this category. 
The physical properties of the animal supply the knowledge about the 
weight of the animal. The weight is given as three values (min, mean, 

Fig. 5.17. Task given in the linguistic form: “Select the different one” 

Fig. 5.18. Task given in linguistic form “Place these objects from lightest to heaviest” 

, , ,that elephant, ox, and rabbit are mammals 
and from the animal category the two different categories, fish and mam-
mals are selected 

such as weight are obtained from the knowledge schema of the category 
indicated by the animal’s name. The knowledge schema of the animal is 
inherited by the lower categories of the categorical hierarchy. For each 

. F rom this chain   we infer

max). When objects in Fig. 5.18 are named, for each object the properties 

from the lower to the higher level) the plant category is selected. The category 

living objects and the category of plants is at the same level as the category 
of apples and the category of animals have the common category of the 

of animals. The answer is given in a very understandable way: there are 
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animal such as an elephant or a rabbit, knowledge from the knowledge 
schema gives the value of its weight. The task “place these objects from 
lightest to heaviest” is solved by finding the mean weight for each animal 
and next by sorting the name of animals according to their weight. The ad-
ditional information concerning other specific features can be found from 
the knowledge schema of the knowledge object given as follows: 

5.5. Visual Thinking as a Problem Solving 

The first problem that system needs to solve is recognition of the visual 
object. The recognition is connected with naming of the object. An exa-
mined object can have the name assigned to it if the examined object is 
classified to one of the object categories. Recognition depends on the type 
of category to which the object belongs. The object recognition is view 
dependent and it depends on the different factors such as occlusions [4]. In 
these section, examples of the visual thinking engaged in solving different 

problems formulated as the result of perceived object or phenomenon is 
given.

5.5.1. Perception: Problem Solving 

In previous sections problems were formulated in the form of the linguistic 
descriptions and given to the system by another user. In this section the 
description of the problem formulated as the result of perceived object or 
phenomenon is given. The problem can be formulated on the perceptual 
level without involving ontological (meaningful) categories such as a sign 
or a real-world object. For example, derivation of the mathematical for-
mula, solving of the problem that involves completing of the figure, the 
problem of a modal completion, or a simple visual analogy problem are all 
problems that can be regarded as problems given at the perceptual level. 

KB KOb BioOb ZooO Ani Cho Mam Ele Ox

Rab Tig Nam Weg, Col Sig

, ,

visual problems is presented. In the first sections the description of the 

, , { , , }.
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Derivation of the mathematical formulas (operations) is an example of 
the problem solving process that makes it possible to invent mathematical 
operations such as summation or multiplication based on the application of 
abstraction and generalization during the visual thinking process. Mathe-
matical thinking refers to the mathematical objects such as figures, to 
properties of these figures or to a set of figures. Mathematical operations 
such as summation or multiplication can be derived by abstracting proper-
ties of a set of visual objects. The operation such as summation can be 
obtained by counting elements that are obtained as the result of operations 
on the visual objects. Visual objects that are used in derivation process can 
be members of one of the ontological categories such as the category of the 
real-world objects or the category of the geometrical figures. In Fig. 5.20, 
examples that illustrate the summation process in the case of real-world 
objects and geometrical figures are shown. In Fig. 5.21, examples that 
illustrate the multiplication process are given. 

Fig. 5.19. Summation of geometrical figures 

At the perceptual level, objects given in Fig. 5.19 are regarded as  
elements of a set of objects. These objects are interpreted as elements  
of two sets of rectangular objects, where each object is represented  
by its symbolic name 4L . At first objects are clustered into two groups 
based on the proximity relation. The symbolic names of objects 

4 4 4L L L 4L 4L 4L , 4 4 4 4L L L L 4L 4L 4L 4L  are transformed into elements of 
two sets by substituting the symbolic name with the selected symbol, “a”
in our example, during abstraction process. The result of this substitution 
are two sets { , , }a a a  and { , , , }a a a a . Next, after summation of two sets 
{ , , } { , , , }a a a a a a a , the result { , , , , , , }a a a a a a a  is obtained. At the 
end cardinality of the set { , , , , , , }a a a a a a a , which is the result of the 
summation operation, is computed. In the case of visual objects shown in 
Fig. 5.19 the symbolic names 3 3L L 3L 3L  and 1 1 1 1K K K K  are obtained. 
The next the similar transformations are applied as in the previous exam-
ple. In the case of the objects shown in Fig. 5.20, the objects are trans-
formed into symbolic names. At first, the object is interpreted as an apple 
or fish and next after abstraction the two groups of objects o o o o o o
are obtained. 
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Fig. 5.20. Summation of real-world objects 

Similarly, multiplication was derived by application of the perceptual 
laws (shown in Fig. 5.21). At first, the objects were clustered into three 
groups based on the proximity relation. Next, objects were transformed 
during abstraction process into the three groups of objects o o o o o o
o o o  and next into three sets { , , }o o o { , , }o o o { , , }o o o . By denoting 
{ , , }o o o  as O a set { , , }O O O  was obtained. Computing cardinality of sets 
|{ , , } |O O O  and |{ , , } |o o o  operator of multiplication 3*3 was obtained. 

Mathematical operation such as matrix multiplication can be derived by 
using the special representation of matrices in the form of the colored tables. 
Figure 5.22 shows matrices represented as colored tables. The different 

Fig. 5.21. Multiplication as a summation 

Fig. 5.22. Derivation of rules of matrix multiplication 
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assumed strategy. For colored tables that are represented as members of the 

4 4 4 4 4 4 4 4 4 4
1 2 3 4 5 6 7 8 9{ }{( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) }R R R R R R R R R RL c L c L c L c L c L c L c L c L c L

or, alternatively, as the numbered convex thin class given as: 
4 1 4 1 4 1 4 2 4 2 4 2 4 3 4 3 4 3 4

1 2 3 1 2 3 1 2 3{ }{( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) }R R R R R R R R R RL L L L L L L L L L .
4 4 4 4 4

4 4
1 2 3 4

5 6

{ }{( ) , ( ) , ( ) , ( ) ,
( ) , ( ) }

R R R R R

R R

L d L d L d L d L
d L d L or 4 1 4 1 4 1 4 2 4 2 4 2 4

1 2 3 1 2 3{ }{ ( ) , ( ) , ( ) , ( ) , ( ) , ( ) }R R R R R R RL L L L L L L ,
1 4 1 4
1 2( ) , ( ) ,...R RL L

4 4 4 4 4 4 4
1 1 1 2 3 3 5( ) ( ) *( ) ( ) *( ) ( ) *( )R R R R R R Re L c L d L c L d L c L d L .

Derivation of mathematical formulas from the visual objects is an illus-
tration of application of abstraction during thinking process. Another 
example is completing of the figure that is based on application of percep-
tual laws. One of the perceptual laws (the heuristic) is that the archetype of 
the curve-linear class is seen as the archetype of the distorted curve class. 

1 1[ ]M K
is an incomplete part of the archetype of the curve class 1K . Figure 5.23 
shows an example of the task that is to complete distorted object. The 

1 1[ ]M K  can be completed by adding 
the curvilinear segment to obtain the curved object 1K .

Fig. 5.23. Example of the task completing of the figure 

the colored convex thin class, the following symbolic notation can be applied: 

The matrix B can be described as:

denotes the symbolic name of the box inwhere symbols
the table. The symbolic names that represent the box in the table are used
to derive the procedure of multiplication of the matrices in the forms of
mathematical symbols. The multiplication of the matrix can be described
(in SUS notation) as follows: 

For example, the archetype of the symmetrical curve-linear class 

archetype of the curve-linear object 

types of mathematical operations can be derived by utilization of the differ-

rix multiplication can be derived by making a new table according to the 
ent configurations of the elements of the colored table. For example, the mat- 
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1 4 3 1 1 3 1 4 1 1 4 1[ [ ]( )]{ [ ]( ), [ ]( ), [ ]( )}R C R C TQ L L Q M L Q L M Q L M

(a) 4 2 3 1 4 1[ ]{ [ ], [ ]( )}{ }TL M L Q L M l ,
 (b) 4 2 3 1 4 1 / 2[ ]{ [ ], [ ]( )}{ }TL M L Q L M l , (c) 4 3[ ]{2 ]}RL L . The symbolic 
name of the whole (not cut) object obtained by applying the perceptual law 
(“the archetype of the symmetrical curve-linear class 1 1[ ]M K  is an in-
complete part of the archetype of the curve class 1K ”) is given as 

4 1 1 4 1[ ]{ , 2 [ ]( )}C CL K Q L M
whole made up from parts (symbolic names) a, b, c with the whole (not 
cut) object obtained as the result of application of the perceptual law. As 
the result of comparison the part (a) is selected. Only part one can give the 
whole that is given by the symbolic name 4 1 1 4 1[ ]{ , 2 [ ]( )}C CL K Q L M .

The problem of a modal completion has often been investigated by  
using partially occluded shapes that are regular or quasi-regular [5]. In the 
world that surrounds us most objects are partly hidden from our view by 
other objects. The available information from the visible part of the partly 
occluded object can be used to see this object as a whole object. Existing 
theories such as local theories, global theories, and integrated theories are 
used in explanation how the brain accomplishes the visual completion [5]. 

In this book the problem of completion is solved by application of the 
perceptual laws that can be formulated in terms of the shape categories. 
Finding general perceptual laws is the complex problem that is investi-
gated within framework of the research on the visual thinking. In this book 
only a small sample of these problems is presented. 

2 6 3 3 4 3 4 3 4

4 3 4 4 3 3 4

[ [ ]( , )]{ [ ]{ , [ ]( )}, }

[ [ ]( ), ] [ [ ]( ), , ]
R R R R R

R R R R R

Q L L L L L Q L L L
Q L L L Q L L L L

Finding solution to the problem shown in Fig. 5.24 requires application of 
laws of spatial decomposition of the object. The object shown in Fig 5.24a 

2 6 3 3 4 3 4 3 4[ [ ]( , ){ [ ]{ , [ ]( )}, }R R R R RQ L L L L L Q L L L

. The solution is found by comparison of the 

has the following symbolic names 
5.23) from which one needs to be selected to form the complete object

. Parts (see Fig. 

given by a symbolic name can
be decomposed based on the rules of decomposition given in the follow-
ing form: 

shown in Fig. 5.23 has its symbolic name given as 

is more complex and requires using the line drawing represent-
ation, described in Chap. 4. The object that is cut (incomplete),

The problem of completing pattern such as shown in Fig. 5.23

(Fig. 5.24b)
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2 6 3 3 4 3 4 3 4

4 3 4 4 3 3 4 4 3 4 4 3

[ [ ]( , )]{ [ ]{ , [ ]( )}, }
[ [ ]( ), ] [ [ ]( ), , ] [ , , ] [ , ]

R R R R R

R R R R R R R R

Q L L L L L Q L L L
Q L L L Q L L L L L L L L L

2 6 3 3 4 3 4 3 4

4 3 4

[ [ ]( , )]{ [ ]{ , [ ]( )}, }

[ [ ]( ), ]
R R R R R

R R

Q L L L L L Q L L L
Q L L L

    a                            b                                    c                                     d 

Fig. 5.24. Figure (a) and possible decomposition into parts (b), (c), and (d)

These rules are obtained by transforming the symbolic name 
2 6 3 3 4 3 4 3 4[ [ ]( , ){ [ ]{ , [ ]( )}, }R R R R RQ L L L L L Q L L L

4 3[ ]( )R RQ L L , one triangular part 3L  that is fitted into the concavity so it 
forms the rectangular object 4

RL  and the quadrilateral 4L  that is “glued” 
into the rectangular object forming the concave object 2 6 3 3[ ]( , )RQ L L L , or 
in the notation of the complex object as 4 4[ , ]RC L L . The second interpreta-
tion is the triangular transparent object 3L  placed onto the rectangular 
object 4

RL . The last interpretation is that the concave rectangular object 
with one triangular concavity 4 3[ ]( )R RQ L L
object 4L  to form cyclic object 2 6 3 3 3[ [ ]( , )]( )RA Q L L L L , (concave object 
with one triangular hole). 

Similarly an object shown in Fig 5.25a and given by a symbolic name 
2 6 3 3 4 3 3[ [ ]( , ){ [ ]( ), }R R RQ L L L Q L L L  can be decomposed based on the follow-

ing rules of decomposition: 
2 6 3 3 4 3 3 4 3 3

R R R R R

2 6 3 3 4 3 3

4 3 3 4 3

[ [ ]( , ){ [ ]( ), }

[ [ ]( ), ] [ , ]
R R R

R R R

Q L L L Q L L L

Q L L L L L

(Fig. 5.24c) 

(Fig. 5.24d) 

(Fig. 5.25c)

 is glued with the quadrilateral

using decomposition scheme.

parts: the concave rectangular object with one triangular concavities 
The most probable interpretation is that the figure consists of three

[ [Q L ](L , L ){Q L[ ]( )L , L } [ [Q L ](L ), L ] (Fig. 5.25b)
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          a                b                         c 

Fig. 5.25. Figure (a) and possible decomposition into parts (b) and (c)

To find the perceptual laws concerning occlusion problem at first the 
simple cases are investigated. Let object (shown in Fig 5.26) given by the 
name [ ] { , }W Q A  is composed of two convex objects. The name W
represents the whole concave object, the name Q  represents the concave 
part that is result of occlusion of the convex part B by the convex part A ,
and A  is part that is put on the top of the part B . The interpretation of 
the part B depends on the type of class to which the object A and Q
belongs. If objects A and Q are polygons the whole object is given as 

[ ]{ [ ], }nW Q Z A  and the object B is given as 1nB Z , where n is the  
n-sided polygon of the generic class of the concave object Q. The percep-
tual law is discovered by analyzing the sample of cases that represent  
occlusion of the two convex objects. 

The first example of the occlusion problem is to interpret perceived  
object as the occlusion of the two convex objects. Objects shown in Fig. 
5.26a, b are given by the name 2 6 3 5 3 4[ [ ](2 )]{ [ ]( ), }R R RQ L L Q L L L , where 

2 6 3[ ](2 )RW Q L L , 5 3[ ]( )R RQ Q L L . Two interpretations of the occluded 
parts are possible. The first interpretation is – two objects A  and Q
( 4

RA L  and 5 3[ ]( )R RQ Q L L ) are joined together; the second interpretation 
is – two objects A  and B  (rectangles 4

RA L  and 4

RB L ) placed one onto 
another.

2 6 3 3 4 3 3[ [ ]( , ){ [ ]( ), }R R RQ L L L Q L L L
class. The archetype of this class can be interpreted as joining the concave 
rectangular object with one of the triangular concavities 4 3[ ]( )R RQ L L  and 
triangular part 3L  that is fitted into the concavities 4 3 3[ ]( )R RQ L L L . The 

3

 object 4
RL  to form 2 6 3 3 4 3 3[ [ ]( , )]{ [ ]( ), }R R RQ L L L Q L L L  object. angular

second interpretation is the triangular object L  placed onto the rect-

The object in Fig. 5.25a is a member of the
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         a           b              c      d               e       f                        g                 
Fig. 5.26. Solving occlusions problem 

2 5 3 5 3 3[ [ ](2 )]{ [ ]( ), }RQ L L Q L L L , where 2 5 3[ ](2 )W Q L L , 5 3[ ]( )RQ Q L L ,
3A L , and 5 1 4

R RB L L . Interpretation of the occluded parts is given as 
follows: the first interpretation – two objects A  and Q  ( 3A L  and 

5 3[ ]( )R RQ Q L L ) are joined together; the second interpretation is – two  
objects A  and B  ( 3A L  and 4

RB L ) are placed one onto another. 

2 5 3 4 3 4[ [ ](2 )]{ [ ]( ), }RQ L L Q L L L , where 2 5 3[ ](2 )W Q L L , 5 3[ ]( )RQ Q L L ,
3A L , and 5 1 4

R RB L L . Interpretation of the occluded parts is given as 
follows: the first interpretation – two objects A  and Q  ( 3A L  and 

5 3[ ]( )R RQ Q L L ) are joined together; the second interpretation – two  

2 6 3 3 5 3 4[ [ ]( , )]{ [ ]( ), }R TQ L L L Q L L L , is interpreted in the context of perceived 
2 6 3 3 5 3 4

R R

(Fig. 5.26f). For perceived objects given by the following symbolic names 

                        h    

2 6 3 3[ ]( , )RW Q L L L , 5 3[ ]( )RQ Q L L , 4
TA L , and 5 1 4

R RB L L ; the inter-

The object shown in Fig. 5.26c is given by the name 

The object shown in Fig. 5.26d is given by the name 

objects A  and B  ( 3A L  and 4
RB L ) are placed one onto another. The 

object given in Fig. 5.26c can be interpreted as the object given in Fig. 
5.26d that is turned off. These two objects given in Fig. 5.26c, d, are inter-
preted as objects that are “turn over.” During interpretation process, the 
object such as the object in Fig. 5.26c will be interpreted by taking into ac-
count two versions of the object – the object in Fig. 5.26c and its “turn 
over” version – the object in Fig. 5.26d. The “turn over” version can be ob-
tained by following schema: perceived object 1[ ]{ [ ]( ), }z k m

RW Q Z K M  and 

2[ ]{ [ ]( ), }n g h
RW Q N G H , where 1 2W W , 1h z

R RH Z ,
1n mN M , and g kG K .

The object shown in Fig. 5.26e, given by the name 

“turn over” object given by the name [Q [L ](L , L )]{Q[L ](L ), L }

its “turn over” version 
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pretation of occluded parts is given as follows: the first interpretation – 
two objects A  and Q  ( 4

TA L  and 5 3[ ]( )RQ Q L L ) are joined together; the 
second interpretation – two objects A  and B  ( 4

TA L  and 4
RB L ) placed 

bolic names 2 6 3 3[ ]( , )RW Q L L L , 5 3[ ]( )Q L L , 4
RA L , and 5 1 4B L L

4
TB L ) placed one onto another. 

Based on these cases the perceptual law can be formulated as follows: 

1[ ]{ [ ]( ), }z k m
RW Q Z K M

version 2[ ]{ [ ]( ), }n g h
RW Q N G H , where 1 2W W , 1h z

R RH Z , 1n mN M ,
and g kG K . For the perceived object, the interpretation of the occluded 
parts is given as follows: the first interpretation – two objects A  and Q
( mA M  and [ ]( )z k

RQ Q Z K ) are joined together; the second interpreta-
tion is – two objects A  and B  ( mA M  and 1z

RB Z ) placed one onto 

2
n g h

R

tion of the occluded parts is given as follows: the first interpretation – two 
objects A  and Q  ( h

RA H  and [ ]( )n gQ Q N G ) are joined together; the 
second interpretation is – two objects A  and B  ( h

RA H  and 1n
TB N )

placed one onto another. 
Similarly two convex objects such as polygons and curves can  

5

2 1 3 1 5 1 1[ [ EL
Q M

5

2 1 3 1 1 3 4[ [ ](2 [ ]( ))]{ [ ]( ), }RL
Q M Q L M Q M L L  (Fig. 5.26h). For perceived ob-

jects given by the following symbolic names 5

2 1 3 1[ ](2 [ ]( ))
L

W Q M Q L M ,

](2Q[L ](M ))]{Q[ ]L (M ), K } is interpreted in the con-

the interpretation of occluded parts is given as follows: the first inter-
pretation – two objects A  and Q  ( 4

RA L  and 5 3[ ]( )Q Q L L ) are joined 
together; the second interpretation – two objects A  and B  ( 4

RA L  and 

5 1[ ]( )Q Q L M , 1
EA K , and 5 1 4

R RB L L ; the interpretation of the  
occluded parts is given as follows: the first interpretation – two objects  
A  and Q  ( 1

EA K  and 5 1[ ]( )Q Q L M ) are joined together; the second  

 has its “turn over” the object given by the name 

[W ]{Q[N ](G ), H } interpreta-

be interpreted. The object shown in Fig. 5.26g given by the name 

text of perceived “turn over” version given by the name 

one onto another. For the “turn over” version given by the following sym-

another. For the “turn over” version

,
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interpretation is – two objects A  and B  ( 1
EA K  and 4

RB L ) placed one 

names 5

2 1 3 1[ ](2 [ ]( ))
L

W Q M Q L M , 1 1 3[ [ ]]( ),Q Q M K L 4
RA L , and 

1
cB K ; the interpretation of the occluded parts is given as follows:  

the first interpretation – two objects A  and Q  ( 4
RA L  and 

1 1 3[ [ ]]( ) ,Q Q M K L )  are joined together; the second interpretation is – 
two objects A  and B  ( 4

RA L  and 1
cB K ) placed one onto another. 

Similarly the perceptual law can be derived for more than two objects 
such as given in Fig. 5.27. 

In the case of the concave object the interpretation of the object is not 
always unique and there is a need to use the contextual knowledge to find 

Another example of application of perceptual laws is to solve visual 
analogy problems. Visual analogy problem that is solved at the perceptual 
level is based on the similarity relations. The visual analogy problem will 
be discussed in more details in the following sections of this chapter. In 
this section an example that is taken from Arnhaim’s book [6] is given. 
The problem shown in Fig. 5.29 can be formulated as follows: apply the 
similarity relation between objects in Fig. 5.29a, b to select one of the  
object d1, d2, d3, d4 that fulfill the similarity relation that is found between 
objects a and b. To solve this problem the visual reasoning is applied and 

onto another. For the “turn over” version given by the following symbolic 

an appropriate interpretation. Example of the occlusion of two concave
objects is shown in Fig. 5.28. The derivation of the perceptual laws is left
as the exercise for readers.

Fig. 5.27. Solving the occlusion problem 

Fig. 5.28. Solving the occlusion problem 
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a. A2|L4Q|1_A1|K1C|K1C|L4Q| 
b. A2|L4Q|1_A1|K1C|L4Q|K1C| 
c. A2|L4Q|1_A1|L3E|L4Q|K1C| 
d1. A2|L4Q|1_A1|L3E|L4Q|K1C| 
d2. A3|L4Q|L3E|K1C|K1C| 
d3. A2|L4Q|1_A1|L3E|K1C|L4Q|. 

The transformation of symbolic names into the string forms is explained 
in Chap. 2. After comparison of strings obtained from objects shown in 
Fig. 5.29a, b the part of strings that shows no differences is removed and 
as the result strings K1C|L4Q| and |L4Q|K1C| are obtained. The result in-
dicates that strings vary in the last two symbols of the string. The string (c) 
is of the same type as strings (a) and (b). The string (d1) is the same as the 
string (c) so it is excluded from the solution. Because the string (d2) is the 
different type than strings (a) and (b) it is excluded from the possible solu-
tion. The solution is found by looking for the part of the string (c) 
|L4Q|K1C| that is the same type as the string (a) and (b) and has the same 
configuration of the last two symbols. As the result of comparison of 

The class of problems that was shown in this chapter can be regarded as 
the class of perceptual problems. This type of problems can be found in lit-
erature concerning explanation of the perceptual phenomenon. 

Fig. 5.29. Example of the visual analogy problem 

symbolic names of each object in Fig. 5.29 are found. The symbolic names 
are transformed into the string form, as follows:

strings |L4Q|K1C| and |K1C|L4Q|, the object (d3) is selected as the solution.
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5.5.2. Naming and Recognition of the Different Categories  

In previous sections problems that belong to the class of perceptual pro-
blems were described. In this chapter problems connected with naming 
objects are presented. Naming process can be regarded as a special class of 
problem solving, where the task is formulated by SUS as the result of per-
ceiving a given object. Seeing object yields the “inner” question “What is 
this?” or “What is the name of this object?.” To find the answer to this 
question there is a need to find the name of the object. 

Names are words or groups of words of one of existing languages that 
are used to denote object categories. There are names for general catego-
ries and names for the prototypes of objects. For example, the object 
“tuna” can be described by the name of the general category – animal, the 
specific category – fish or a prototype – tuna. 

In general, naming is the process of associating and recalling the symbol 
for a concept when given its nonsymbolic or sensory object, and imaging 
is the process of associating and recalling concept when given its symbolic 
representative. Naming takes place when we describe a scene and imaging 
takes place when we imagine a scene which is being described verbally. 
Naming translates a sensory data into a symbolic form. Naming is often 
thought of as the result of the recognition process. Recognition is one of 
the main parts of many cognitive processes such as naming or reading. The 
recognition of the object does not assume that the object has its name but 
only that it was the object of the previous visual experience. For example, 
the flower that was seen in the botanic garden can be recognized but not 
named because we do not know the name of this flower. The flower which 
we know (e.g., rose) is recognized and named by the name “rose.” 

Within the human visual system naming is often regarded as the assign-
ment of a class token to the image of an object: a square, a circle, a shoe, a 
tree, a radio. The visual system first encodes the retinal image of the object 
to be named into an internal representation called a pictorial pattern. The 
resulting pattern is delivered to the naming store for the final assignment of 
its symbolic name. The naming store finally associates the symbolic encod-
ing with the pictorial encoding and hence can be used both for naming and 
imaging.

Naming is a process of attaching name to the perceived object. The first 
step in naming of the object is to assign it to one of the object categories 
and next attach the name of the category into the perceived object. Naming 
is performed during the visual inference process. At first, the phantom u

of Objects 
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given as an input is transformed into a set of critical points  by the sen-
sory transformation and a set of critical points  is transformed into 
symbolic name . The symbolic name  obtained during visual reasoning 

1 2{ , ,..., }i
n . The name n  is assigned to the perceived object dur-

ing the visual inference and is expressed in the form of rules: 
[ ]u u n , where  is the symbolic name obtained in the reason-
ing process, u  is the shape category (the visual concept), and u n  de-
notes the naming process. As it was described in the previous section the 
perceived object can be named by the name of one of general categories or 
the name of the lower category (prototype). For example, an examined ob-
ject can be named on the lower categorical level (prototype level) as the 
capital letter “A” font times new roman or on the general level as a letter. 
The selection of an appropriate categorical level depends on contextual in-
formation supplied by the task description. 

In this chapter naming refers to classification of the object into one of 
the object categories. The name can be given as a letter, e.g., “A,” as a 
word, e.g., “a triangle,” “an apple,” or as the word description, e.g., “a 
concave object with a hole.” The name can represent the lower level cate-

defined classes of objects, recognition of the visual object described in this 
chapter involves classification of an object to one of the categories of vis-
ual objects. The object that is recognized is always named by the name of 
one of the general categories. For example, the unknown flower can be 
named as a “flower” or a “plant.”

Naming refers to two different processes: learning the name of the un-

knowledge acquisition process. The knowledge is represented as a set of 
connected categorical chains. Learning consists of two main processes: 
learning of the visual knowledge (the visual concept) and learning the 
nonvisual knowledge (knowledge schema). Each category is given by its 
name that is attached to the categorical chain during learning process. The 
process of learning of the new name (the name that is invented) is a com-
plex problem because the name as the linguistic category is used in the 
communication process. The new name that is proposed has to be accept-
able for all users of a given language. 

of space of visual concepts given as a set of symbolic names 
process is used to find the name of the visual category by searching

objects recognition where examined object is classified to one of the well-
gory (the prototype) or the higher level category. In contrast to area of

object. Learning of the name of the unknown object is connected with the 
known object and object naming that attaches the name to the perceived
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Visual thinking is immanent part of the naming process that involves 

perceived object, and starting further interpretational process. Usually the 
naming begins complex thinking process that leads to understanding visual 
object as the part of the interpretational task. For example, when perceived 

that leads to reading and understanding text. During the naming process an 
important issue is the selection of an appropriate categorical level. The se-
lection of an appropriate level is based on the contextual information. For 
example, reading text requires interpreting perceived object at the letter 
level. The interpretation of the perceived object at the lower level (font) is 
too specific and can cause unnecessary delay in reading process. Reading 

Figure naming refers to the figure category and is based on the previously 
learned knowledge about the figure category. Figure naming is connected 
with recognition of the object as a member of one of the figure categories. 
As it was described in Chap. 4, a figure is an object that is defined based 
on the geometrical properties and refers to a mathematical object such as 
the 2D closed curves or any abstract object. An abstract object is an object 
meaning of which does not refer to a sign, a letter, or a real-world object. 
At first stage of naming, a perceived object is classified to one of the figure 
categories. The basic figure categories includes: the convex polygon cate-
gory, the concave polygon category, the convex curve category, the con-

polygon category. The figures that play an important role in area of mathe-
matic or physic are given by its name. For example, the circle, the ellipsis, 
the pearl curve are examples of named curves (curves that are given by its 
name). Naming of a perceived object that is a member of the named figure 
category is obtained by assigning the name to this object. Naming process 
involves finding an appropriate categorical level and using the name and 
knowledge of the category of this level to form the concept of the object. 
The concept that is formed during naming process can be used during 
communication session to supply information about the object that is 
perceived. The concept of the perceived object is the result of the interpre-
tational process. Figure can be interpreted based on geometrical and per-
ceptual properties of the visual object. This interpretation is related to the 

of the texts does not require knowing the font of the letter. 

object is named as a given letter, this can start a complex thinking process 

the visual object into one of the object categories, assigning the name to the 
transformation of the perceptual data into symbolic name, assigning

5.5.2.1. Figure Naming: Assigning the Name to the Figure 

cave curve category, the convex curve polygon category, or the concave curve 
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shape classes and the name of the figure that does not have its characteris-
tic name can be given in the form of a class description, e.g., “the concave 
figure,” “the complex figure” that refers to the one of the general figure 
categories. At the lower level, for the figure that does not have the name, 
the symbolic name that was assigned to the learned figure category is 
assumed to be the name of the perceived object. In some cases figure does 
not need to be named but only recognized as the member of one of the figure 
categories. Recognition does not need to assign a name to the figure but 
only an index that makes it possible to use the other information about 
recognized category. 

As it was shown in Chap. 4 the 2D figure category consists of the  
polygon category Pol , the curve category Cur , and the curve polygon 
category CuPo , and is given by the following categorical chain: 

Fig 2DF Pol CuPo Cur, ,O . Only few polygons or curves have 
theirs name. For example, the name “triangle” denotes an object (polygon) 
that has its characteristic properties, has three sides. Similarly, the name 
“quadrilateral” or “rectangle” denotes an object that has characteristic 
properties. For the polygon that does not have name, the name can be 
given in the form of the definition. The definition of the polygon is given 
in the form of the attributes of the class or in the generative form. The first 
step in naming of the object as a polygon is to assign it to the polygon 
category and next convert a symbolic name into a class description during 

experience requires that the formal definition of the figure needs to be 
transformed into the description given in one of the existing languages, 
e.g., English. The figure such as a polygon is defined within the domain of 
geometry, and the definition as well as properties of the polygons that are 
described in geometrical literature can be used to represent knowledge 
about the figure concept. These properties are incorporated into the knowl-
edge of the knowledge schema of a polygon category during learning 

an object to a curve category and next to find the description of the curve 
in terms of its attributes. Naming is performed during the visual inference 
process as described in previous chapters. 

stage. Similarly, the first step in naming of an object as a curve is to assign 

concept formation process. Communication of the results of the visual  

5.5.2.1.1.  Naming of the Figure Without Name 
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The figures such as polygons or curves that have their names are mem-
bers of the named figure categories. These categories are described in 
detail in Chap. 4. The members of the category of named polygons are 

part of the geometrical knowledge. An example of the categorical chain 
for specific named categories derived from the quadrilateral category is 
as follows: Pol NPol ClCoP Qua Sqa Rec Rho Tra.. , , , .
Similarly the category of the closed named curve that is derived  

Cur NCur ClCcC OneS DHer TCrm.. , , where the category 
of the one shaped curves and the category of the many shaped curves, is 
distinguished. Naming of the object that belongs to the category of named 
polygons is very similar to naming a polygon described in the section 

object is assigned to the category of named polygons, the name of this 
category is assigned to the perceived object. In the case when the per-
ceived object is assigned to the category of named curves, the further nam-
ing process depends on the lower category (the category of the one shaped 

or phrase category and is given by the following categorical chain: 
Pt Let Phr Nam c1 c2.. , . The category of 

name refers to the knowledge of the naming process that contains  

KB KOb Lin Phr Nam c1 c2, , shows how know-
ledge of naming process is derived from the linguistic object. The lower cate-
gories 1 2,c c  denote the names of the all known ontological categories. 
Each specific name category 1c  refers to a set of names of this category. For 
example, the name of person consists of the finite set of person’s name. Each 
named category (prototype) that is learned has its name connected with the 
visual concept. For example, the visual concept given by the symbolic name 

3 1 4 2 3 1 2 3 1
Tr { [ [ ]](2 [ ](2 ), [ ](2 ))}Q M L Q L M Q L M  is connected with the 

name “trefoil.” 

from the curve category is given by the following categorical chain: 

polygons that have the special properties that are well defined and are 

the rules of naming process. The knowledge chain given as follows: 

“Naming of the Figure Without Name.” In the case when the perceived  

5.5.2.1.2. Naming of the Figure with Name 

curves and the category of the many shaped curves). 
The name, the word or a group of words, is derived from the word  
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The name can be given as a word or a group of words that are  
expressed in one of the existing languages. The name that is assigned to 
the perceived object is expressed in English language. The knowledge of 
the naming process given by the knowledge schema of the name cate-
gory makes it possible to translate name expressed in English language 
into the name expressed in any existing languages. At the end of naming 
process the language is selected and the name is given in the form  
of the expression of the selected language. For example, let us assume 
that as the result of the reasoning process the symbolic name 

3 1 4 2 3 1 2 3 1[ [ ]](2 [ ](2 ), [ ](2 ))Q M L Q L M Q L M  was obtained. During the 
3 1 4 2 3 1

Trefoil { [ [ ]](2 [ ](2 ),Q M L Q L M
2 3 1[ ](2 ))}Q L M

inference by applying the rules [ ]u u n . As the result of nam-
ing process the name “trefoil” is assigned to the examined object. When 
the name is found the thinking process that leads to understanding is 
continued. The first thinking task is to exploit the knowledge of the  
selected category. The interpretation of the curve is based on the cate-
gorical chain. When the name of the category is found the general des-
cription of the curve can be obtained by moving into the higher level of the 
categorical chain. For example, when an examined object is named  
“trefoil” (category of trefoil curve TCrm ) we can infer that it is a closed 2D 
mathematical curve 2D

Cur NCur ClCcC OneS DHer TCrm.. , . The knowledge 
schema of the named curves consists of the visual concept ViC , the name 

Nam , the mathematical formula MaF , the definition Def , and the method of 
generation MGe  and is given as the part of the knowledge chain as follows: 

KB KOb Mat Cur NCur ClCcC OneS TCrm ViC{ ,
.Nam MaF Def MGe, , , }

gorical chain) we can obtain the definition that gives the description of the 
curve and supplies the link to other geometrical categories. The mathe-
matical formula given in a form of the mathematical equation gives the 
link to the category of mathematical equations. The method of generation 
of the curve makes it possible to generate the different visual aspects of the 
curve, e.g., rotated version of the curve. The generated curve can be used 

From the knowledge schema (shown in the cate-

, as shown in the following categorical chain:

visual reasoning, the visual concept 
was found and the name was found during the visual  
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in the thinking process during the visual explanation or as a part of the im-
agery process. The thinking process can utilize the analogical reasoning 
based on similarity relation. For example, the trefoil is the concave  
symmetrical curve that has three residuals. The curve is similar to non-
symmetrical curve that has three residuals. These curves can have the simi-
lar mathematical properties. The thinking process can exploit meaning of 
the name “trefoil” that gives a link to the category of plant. This link sup-
plies the knowledge of the botanical categories from which the different 
properties of plant can be derived. 

5.5.2.2. Naming of the Sign 

As it was described in Chap. 4 the sign category refers to the visual object 

ing of elements of the category of symbolic signs does not depend on the 
meaning of other elements of the same category. Examples of perceived 

The prototype of the category of the named curve has its knowledge 
schema that is inherited from the categories at higher level of the categori-
cal chain. When the perceived object is named all knowledge that is acces-
sible by the links among categories can be used in process of understanding 
of the object. The knowledge can be accessible through the categorical 
chain. For example, the object named the “trefoil curve” is understood as a 
mathematical closed curve and can be described by applying all general 
knowledge of the curve category Cur . The hierarchy of the categorical 
chain supplies the knowledge schema at each categorical level as shown in 

Cur ViC Nam Def MGe.. { , , , },

ClCcC ViC Nam Def MGe.. , , , , TCrm ViC Nam MaF Def

MGe

.. { , , , ,
}.

the prototype of the trefoil curve TCrm  includes additionally the mathe-
matical formula MaF  as the knowledge of the prototype. In the case when 
an examined object is recognized as the curve but does not have any specific 
name the object can be named by the name of the more general category, 
e.g., a concave curve. The curve can be named by using the similarity 
relation, e.g., “the curve similar to the trefoil curve.” This type of naming 
makes it possible to use all knowledge of the trefoil curve to describe an 
unnamed object. 

As we can see from these categorical chains the knowledge schema of 

objects that can have many interpretations are shown in Fig. 5.30. For ex-
ample, objects shown in Fig. 5.30a–d can be interpreted as mathematical 

in the following categorical chains:

meaning of which is based on the system of conventional rules and the mean-
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 a  b c     d  e     f 

symbols, the object in Fig. 5.30e as a letter P, whereas the object in Fig. 
5.30f as a real-world object. 

Naming of the sign is based on the previously learned knowledge about 
the sign category. Signs that do not resemble any real-world objects are of-
ten called symbols. They are similar to the letters, e.g., the musical score. 
Naming of the sign is to classify the perceived object to one of the sign 
categories and naming of the visual symbols is to classify the perceived 
object into one of the visual symbol categories. The visual symbol cate-
gory is divided into specific categories shown by the categorical chain: 

EL Sg Sym Mth Mus EngS, , .  The category of each 
visual symbol is interpreted according to the knowledge supplied by the 
knowledge scheme. Each category has its own rules that govern the com-
position of the visual symbols into the complex expression. 

The mathematical symbol is a representative of the category of visual 

object as a mathematical symbol is to assign it to the category of mathe-
matical symbols and next assign a name to the perceived object. As it was 
shown in Chap. 4 the category of mathematical symbols is derived from 
the category of the visual symbols and is divided into the category of 
mathematical operators, relations, logic operators, special symbols, or 
ciphers. 

From the category of the visual symbols, the category of mathematical 
elements is derived. The category of mathematical symbols (elements) is 
divided into the category of mathematical operators, relations, logic opera-
tors, special symbols, and ciphers VSym Mth Cip Opr Rel, , ,

Log Syn, . The category of mathematical expressions is derived from the 
category of pattern of the mathematical elements and consists of the 
category of equations, functions, simple operations, differentiation, and  

Fig. 5.30. Examples of signs that have many interpretations 

symbols described in detail in Chap. 4. The first step in naming a perceived 

5.5.2.2.1. Naming of Mathematical Symbols 
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integration: Pt MtEx Eqt Fun Alg.. , , . Naming of the per-
ceived object by the name of one of the specific mathematical expres-
sions requires classifying it to one of the specific categories of the 
mathematical expressions. The knowledge schema supplies knowledge 
that is needed to perform the syntactic analysis that classifies the 

will be classified as the category of linear equations and named “the  
linear algebraic equation.” When the name is found the system during 
further thinking process will try to solve this equation. The knowledge 
that is needed to perform a nonvisual reasoning aimed at solving the 
problem represented by the mathematical expression, is given by the 
knowledge chain: MthO MtEx Eqt Fun Alg, , . The know-
ledge about how to solve the problem that is named as “mathematical 

During the thinking process aimed at solving mathematical problem 

priate action that transforms a mathematical expression into required solu-

mathematical expression refers to the perceptual pattern category and 
requires the knowledge derived from the pattern category. For example, 
the sign “+” between two ciphers indicates that an appropriate action needs 
to be undertaken; two ciphers need to be summed up. In the case of the 
complex operators such as integral the mathematical operation can be per-
formed by Mathematica. It should be noticed that even the simple expres-
sion “8 + 4” is interpreted as “seeing” pattern of three visual symbols in 
the form of the mathematical expression. Each object is first interpreted as 
a member of one of the number categories (“8” and “4”) and as a category 
of algebraic operators (“+”). Next visual inference is performed and action 
is undertaken. The category of algebraic operations supplies the know-
ledge about the action that needs to be undertaken. 

Solving task given by the mathematical expression requires performing 
the mathematical operation that is indicated by the mathematical operators. 
The results can be examined visually by exploring the results in the form 

that is obtained can be further interpreted during the thinking process. 

tion needs to be undertaken. The interpretation of the visual symbols of the 

After sending the mathematical expression to Mathematica the solution 

each mathematical expression needs to be interpreted and next an appro-

expression” can be obtained by making link to Mathematica package. 

represents. For example, the following visual object “2x + 5 = 4x  3” 
thinking process that leads to solving the problem that a given expression 
categories. Naming of the mathematical expression can start further 
mathematical expression into one of the mathematical expression 
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of graphs or can be interpreted based on the results of the symbolic compu-
tation. For example, solution given in the form 20.5y x x  can be 
evaluated by examining properties of the graph of the function 2y x .

During the learning stage the visual concepts of mathematical symbols 
are learned and are represented in the form of the categorical chains. 
During understanding process the knowledge that is learned is utilized to 
interpret the visual object based on the knowledge stored in the knowledge 
schema.

Naming of the object as a sign is to classify the object to one of the  
sign categories. The sign category is derived from the category of visual 
objects. As it was described in Chap. 4 the category of signs is divided 
into category of visual symbols and the category of the symbolic  

Sig 2DSig SymS RoS CroS TrS, ,O . The meaning of ele-
ments of the category of symbolic signs does not depend on the meaning of 
other elements of the same category. The name of the sign is assigned to 
the sign category during the learning process. During the naming, the per-
ceived object is classified into one of the sign categories. For example, the 
sign with a letter “P” is classified to the category of the information sign. 
The knowledge about relation to other general sign categories is obtained 
from the categorical chain. Based on the categorical chain reasoning we 
can infer that the information sign is part of the category of the road sign 
and meaning of the object is obtained from the knowledge schema of the 
road signs. 

In this section an example of analysis of the specific category of signs, 
namely, the cross signs is presented. This section is not intended to analyze 
all existing cross signs but rather it is an attempt to show how shape cate-
gories can be utilizes to provide the tools needed for formal description  
of the signs category. It is assumed that the cross sign is the 2D object.  
Examples of category of cross signs are shown in Fig. 5.31. Meaning of 
the cross sign is given by the knowledge of the cross sign category. To 
learn the visual concept of the selected category of the cross signs, a set of 
phantoms that are representatives of a given cross sign category needs to 
be selected and analyzed. The general category of the “cross” is obtained 
by selecting representatives of most often used crosses. The representative 
of the specific category of the cross, for example, the “Maltese cross” is  

signs. The specific categories derived from the category of symbo-
lic signs are represented by the following categorical chain: 

5.5.2.2.2. Naming of Symbolic Signs 
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obtained by selecting representatives of most often used “Maltese crosses.” 
The categorical chain of the different cross categories is as follows: 

SymS CroS Grk Lat X StA Pat Pap Lor Mal Cel Chr, , , , , , , , , . Learn-
ing of the categorical knowledge consists of two stages: learning of the 

visual object. As it was described in previous parts of this book to perform 

knowledge (contained in knowledge schema of the visual object) and con-
nection among the general categories. The specific knowledge can be 
“added” during learning of the knowledge from the selected specific 
knowledge domain. For example, to understand the visual object, let us say 
an apple, there is a need to know that the apple is a part of the tree, that 

that can be obtained from the apple. The specific knowledge concerning 
some chemical or biological processes can be learned when SUS will be 
used as an expert in the area of botanic. 

The general visual concept of the visual object is given by the structural 
archetypes and archetypes of classes that are “perceptually” linked with 
the class of the structural archetypes. The structural archetype represents 
the simplest form of the visual concept of the object of a given ontological 
category. The visual concept of the cross is given by classes “perceptually” 
linked with the class of the structural archetypes of the cross class. For 
example, the visual concept of the cross is given by the shape classes “per-
ceptually” linked with the class of the structural archetypes of the cross 
class, that are derived from the star class. The star class, described in Chap. 2, 
is a class derived from the concave class. The different crosses have differ-
ent shapes and are result of the conventional transformation of the general 
visual concept of the cross. However, visual objects that are conventional 
visual representations of the cross category have the common structural 
elements. These representations are members of the classes that are per-
ceptually linked with the class of the structural archetypes. 

The cross class is the a posteriori class that is derived from the star 
class. Posteriori classes, described in Chap. 2, are derived from one of the 
general classes where specific classes are established based on a set of 
objects that are members of the selected ontological category. The struc-
tural archetype of the cross class, the thin cross class, is derived from the 
thin star class  (described in Chap. 2), and is given by the symbolic 

visual knowledge (visual concept) and learning of the nonvisual know-
ledge. The nonvisual knowledge is part of the knowledge schema of the 

thinking and understanding there is no need to learn very specific know-
ledge for each category. In learning, the important issue is to learn the basic 

a tree is a plant, that a plant can be found on the earth. In addition, we need 
to know some features of the apple and have some links to some products 



5.5. Visual Thinking as a Problem Solving      289 

name 4 3[ ] / [ ]{4 }C L L . The symbol [ ]C  denotes that the thin cross class 

ence among archetypes of the thin star class 4 3/ [ ]{4 }L L
class 4 3[ ] / [ ]{4 }C L L  is such that archetypes of the thin cross class are 
symmetrical and regular. Classes that are “perceptually” linked with the 
structural archetype of the cross class are derived from the 2n-star class 
when n = 4 4 8 3[ ] [ ](4 )C Q L L . Attributes of the archetypes of this class are 
constrained by fulfilling special conditions. One of the conditions is that 
the archetypes of the cross class are symmetrical objects. For example, the 

4 8 3
R

ever, it is not a member of the cross class 4 8 3[ ] [ ](4 )RC Q L L . From the cross 
class the specific cross classes are derived. For example, the Latin cross 
class is the class in which the residuals are archetypes of the right tri-
angle class, and the length of the sides has to fulfill special conditions 

{ , , , }d
ia s m L , where  denotes a “very small,” s s  denotes a “small,” 

m  denotes a “medium” and L L  denotes a “large” value. The Latin cross 
4 8 3

R

4 8 3 3
A O

4 8 3[ ](4 )[ ]RQ L L mm mm mm mm .

     

          

   a        b         c d e f g 

h        i   j 

is derived based on the properties of the existing cross signs. The differ-
 and thin cross 

the attributes such as the length are expressed by applying the graded values: 

Q [L ](2L 2L )[ ll mm ll mm],
 and 

class is given by the symbolic name Q [L ](4L )[ mm ml l mm]. Similarly
the Saint Andrew cross class Fig. 5.31d  and the red cross class Fig. 5.31c,e,f,g 
are given by symbolic names as follows:

Q [L ](4L )  class , how-object shown in the Fig. 5.31i, j is member of the

(e.g., the established proportions) Fig. 5.31b, h. As it was described in Chap. 2 

Fig. 5.31. Structural archetype of the cross (a) and different crosses generated 

(i, j) not members of a cross class
from the class, (b, h) a Latin cross, (d) a Saint Andrew cross, (c, e, f, g) a red cross,
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Classes that are named as the cross-like classes are established through the 

4[ ](4 )Q . Generalization is the process in which a part of the symbolic 
name is “removed” to represent the unconstrained value of the selected attri-
butes. For example, the general red cross class is given as 4 8 3[ ] [ ](4 )RC Q L L
and is obtained by removing [ ]mm mm mm mm  part from the symbol 

4 8 3
R

The visual concept of the cross category is obtained during the learning 
process. During the learning process objects (phantoms) that represent the 
cross sign are selected. Examples of the selected signs are shown in Fig. 
5.32. As the result of the learning process the visual concept is obtained. 
The visual concept reflects the similarities among the visual objects that 
are members of the same concept. Learning of the visual concept of the 
cross sign includes learning of the visual concept of the specific categories 
of the cross sign. At first the most often used categories of cross sign are 
selected and the most typical representatives of these categories are used to 
learn the visual concept. Figure 5.32 shows the sign from the different 
categories of cross sign used for learning of the visual concept. The simi-

that these elements represent. For example, all classes archetype of which 
4

8

symbolic names. The symbolic name can be given in the form of complex 
class described in Chap. 2. The notation in terms of the complex class 
gives description in terms of the different cross “arms” that seem to be 
more perceptually oriented. As it was mentioned before, the visual concept 
of the cross sign is a set of symbolic names obtained during the learning 
process. In this example, the visual concept of the different specific cate-
gory of the cross sign (e.g., red cross) is represented by the one symbolic 
name. For example, the visual concept of the specific category of the  

Fig. 5.32. Examples of members of the cross category used in learning the visual 
concept

larity of visual objects is reflected by the symbolic names of shape classes 

   a        b         c d e f g h i j

Q [ ]L (4L )[ mm mm mm mm] .

are shown in Fig. 5.32e, f, h are derived from Q [ ](4 ) class, whereas 
classes archetype of which are shown in Fig. 5.32a, b, c, d, g, i, j are derived 
from Q [ ](8 ) class. Figure 5.32 shows the different crosses given by their

generalization process (abstraction) and are given by their symbolic names as 
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cross sign – the red cross sign is given by the symbolic name 
4 8 3 4 8 4 4{[ ]{ [ ](4 )} [ ]{ }(4 )}R R RC Q L L S L L L . Similarly, the visual concepts of 

the specific cross sign category shown in Fig. 5.32 are obtained and  
are given by the symbolic names as follow: (a) 4 8 3[ ] [ ](4 )AC Q L L ,

4 8 3[ ]{0}(4 )S L L , (b) 4 8 3[ ]{ [ ](4 )}RC Q L L , 4 8 4 4[ ]{ }(4 )R RS L L L ,

(c) 4 8 3[ ] [ ](4 )AC Q L L , 4 8 4 4[ ]{ }(4 )A TS L L L , (d) 4 8 5[ ] [ ](4 )C Q L L ,
4 8 4 4 3[ ]{ }(4 [ ](2 ))R TS L L Q L L , (e) 4 4 5[ ] [ ](4 )C Q L L , 4 5 3[ ]{ }(4 [ ](2 ))RS L L Q L L ,

(f) 4 4 5[ ]{ [ ](4 )}C Q L L , 4 5 3[ ]{ }(4 [ ](2 ))R RS L L Q L L , (g) 4 8 1[ ]{ [ ](4 ( ))}f

lC Q L M c
3 1 4 4 2 3 3

4 4 4 5[ ]{ }(4 )RS L L L , ( i)  8 8 3 3[ ]{ [ ](4 ( ))RC Q L L L , 4 8 4 4 3[ ]{ }(4 [ ]( ))R RS L L Q L L ,

( j) 8 8 3 3[ ]{ [ ](4 ( ))AC Q L L L , 4 8 4 4 3[ ]{ }(4 [ ]( ))R TS L L Q L L .
Naming requires finding differences between similar objects and  

because of this learning of the visual concept of the category of cross signs 
requires learning of the visual concept of different categories. For exam-
ple, the different mechanical tools shown in Fig. 5.33 can be called cross-
like because they are similar to the cross signs. Visual objects shown in 
Fig. 5.33 are members of the figure category (cross-like figure). The 
symbolic names of the phantoms shown in Fig. 5.33 are as follows:  
(a) 4 4 3[ ](4 )Q L L , (b) 4 8 3[ ](4 )Q L L , (c) 8 8 3 3[ ](4 )Q L L L , (d) 8 8 3 4[ ](4 )Q L L L ,
(e) 4 8 1[ ](4 )Q L M , (f )  8 8 1 4[ ](4 )RQ L M L , (g) 8 8 1 2 3[ ](4 [ ](2 ))Q L M Q L M ,

(h) 4 4 3ˆ[ ](4 )Q L L , (i) 4 4 1ˆ[ ](4 )Q L M , ( j) 8 8 1 3ˆ[ ](4 )Q L M L ,
(k) 4 4 2 3ˆ ˆ[ ](4 [ ](2 ))Q L Q L M , (l) 4 4 2 3ˆ ˆ[ ](2 [ ](2 ))Q L MQ L M , (m) 4 4(4 )MQ L ,

(n) 4 3[ ](4 )Q M L , (o) 4 2 3̂[ ](4 [ ](2 ))Q M Q L M . As we can see some of these 
parts have the visual concept represented by the symbolic name which is 
very similar to the visual concept of the category of the cross sign. 

   a        b         c d e f g    h         i        j k l m 

   n        o 

4 4

4 4

S L[ ]{0}(4Q[L ](2M )) , (h) [ ]C Q [L ](4 Q [L ](2 L )) ,

Fig. 5.33. Cross-like figures

4 4
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5.5.2.3. Letter Naming 

The letter naming is to classify the visual object as a member of one of 
letter categories. Classification of the object into one of the letter catego-
ries refers to the knowledge of the language category. The category of al-
phabetic letter is divided into the category of Latin letters or the category 
of Greek letters and is represented by the following categorical chain: 

Let Alp Lat Gre Cyr Heb Ara, , , ,O . Knowing that perceived 
object is a member of the letter category of the given alphabet makes it 
possible to predict the next perceived object by assuming that it is another 
member of this category. Naming letters makes it possible to understand 
the text and performing an action that can be described by the text. Nam-
ing letters is the first step in understanding of the text that involves the se-
quences of complex thinking sub-processes. Classification of the examined 
object into a letter category may start the thinking process that can lead to 
different conclusions. For example, the letter in the book can start process 
of reading whereas letter that is part of the information sign can give in-
formation about some road facilities. 

During naming process the examined object is classified into one of the 
letter categories. The letter is understood in the context of the language and 
it refers to the rules of the composition of the word and text given by the 
knowledge of the language categories. Although there is a difference bet-
ween the category of nonalphabetic languages and the category of alpha-
betic languages understanding an object as a member of the category of the 
nonalphabetic language is similar to understanding a letter as a member of 

turn consist of words. During the thinking process, at first the language cate-
gory is identified based on the sample of letters. When the language category 
is identified the knowledge schemas of this language category supplies 
knowledge that make it possible to read the text. Understanding of the text 
requires nonvisual knowledge that is supplied by knowledge categories. 

The letters naming requires knowledge that is acquired during the learning 
process. In this section an example of the learning of the category of  
selected fonts of the letter “T” is presented. To learn the visual concept of 
a given letter category there is a need to learn the prototype of the specific 
font of this letter. The visual concept needs also to include the prototype of 

The letter naming requires knowledge supplied by the letters category. 

an alphabetic language. Most often the letter is understood in the context of  
a text that conveys given information. The text consists of sentences that in 

5.5.2.3.1. Naming of the Different Fonts of the Letter 
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The font of the letter “T” can be well represented by the structural  
archetype. The structural archetypes of the different fonts of the letter “T” 
are learned based on visual representatives of these fonts. At the first stage 
of learning process representatives of most typical fonts are selected. The 
most typical representative of the letter “T” shown in Fig. 5.34a is used to 
learn the visual concept of the basic prototype of the letter “T.” The visual 
concept of the basic prototype of the letter “T” is given by the symbolic 
name 3 3[ ]{2 }RL L . Examples of structural archetypes of the different 

fonts of the letter “T” are shown in Fig. 5.34. The symbolic names  
of structural archetypes of the letter “T” are as follows (see Fig. 5.34): 

3 3
R

2 6 3 4[ ](2 ) (2 )R RQ L L C L . Exemplars generated from the class 2 6 3[ ](2 )Q L L

2 6 3

archetypes of which can be regarded as the representatives of the letter 
“T,” the constraints need to be imposed on values of attributes of the  
archetype of the class 2 6 3[ ](2 )Q L L . Constraints that are obtained during 
learning process are used as a criterion of the derivation of the specific 

   a        b         c d e f g 

the handwritten letters. The visual concept of the selected handwritten let-
ter needs to include the huge spectrum of the different shapes of this letter. 

classes that are used as shape categories in matching the categories of the 
letter font. To derive the specific class from the class 2 6 3[ ](2 )Q L L  angles 
of the archetypes of this class need to be specified and the archetypes need 

(a) 3 3[ ]{2 }RL L , ( b) 4 4[ ]{2 }TL L ,  (c) 5 4[ ]{2 }TL L , (d) 5

4 4

[ ]

{2 }T R

L

L L , (e) 6 4[ ]{2 }TL L , (f ) 1 4 1 4 1 3 1[ [ ]]{ [ ], [ ]( )}]M L M L Q L M ,

(g) 4 4 1 3 1[ ]{ , [ ]( )}L L Q L M

tually linked with structural exemplars generated from the class 
“T” / [L ]{2L } are  percep-The structural archetypes of the letter

Fig. 5.34. Examples of structural archetypes of the different fonts of the letter “T” 

generated from the class Q [L ](2L ) . Archetypes shown in Fig. 5.35b, c,
and g cannot be regarded as the representatives of the letter “T.”
The archetypes shown in Fig. 5.35d–h can be regarded as representatives
of the distorted version of the letter “T.” To find the specific class,  

can have different visual forms. Figure 5.35 shows different  archetypes
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 a b    c   d    e      f       g  h 

Fig. 5.35. Exemplars generated from the class 2 6 3[ ](2 )Q L L

to be a member of the complex class 2 6 3 4[ ](2 ) (2 )RQ L L C L . Exemplars 
generated from the class that is too “general” cannot be interpreted as a 
letter “T.” Exemplars generated from the class 6

2 3 4(2 ) (2 )R RL
Q L C L  can be 

perceived as exemplars of the class 2 3 6 3 4[ ](2 ) (2 )R RQ L L C L , where 3 6L

2 3 6 3 4[ ](2 ) (2 )R RQ L L C L , members of which are symmetrical “T” shaped 
polygons, are good representatives of the letter “T.” 

The description of specific classes derived from the class 6

2 3(2 )
L

Q L  is 
given using the notation of the cyclic model {( ), ( )}n

i in nd , where 
symbol ( )in  denotes angle and symbol ( )ind  denotes length of sides of 
the archetype. The angle can have values { , , , }o a , where  – de-
notes right angle, o – an obtuse value, a – an acute value and  – a very 
small angle whereas the side can have values { , , , }d s m L , where 
denotes a very small value, s – a small value, m – a medium value and L – 
a large value. Examples of the exemplars generated from classes 

8 {(8 ), ( )}mmLmLmmL or 8 {(8 ), ( )}mL Lm L  are shown in Fig. 
5.36b and Fig. 5.36e. The visual concept of the prototype of the letter fonts 
is based on the structural archetype 3 3/ [ ]{2 }RL L  and consists of the 
symbolic names of the specific classes {( ), ( )}n

i in nd .

Fig. 5.36. Structural archetype 3 3/ [ ]{2 }RL L 3 3[ ]{2 }RL L  and exemplars 

generated from the class 2 6 3 4[ ](2 ) (2 )R RQ L L C L

a b    c   d    e      f       g   h i  

The letter can be subjected to the different forms of distortions (e.g., 
handwritten letter). Different fonts can also have the shapes that are differ-
ent from the “typical” representation. Examples of the distorted versions of 
the letter “T” that can be interpreted as special “fonts,” generated from the 

denotes polygon that has 3–6 sides (see Fig. 5.36 (a–h)). The class 
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Fig. 5.37. Examples of distorted versions of the letter “T” 

class 2 6 3[ ](2 )Q L L  are shown in Fig. 5.37. During learning of the visual 
concept of the letter “T” there is a need to include distorted version of the 
letter “T” under category of the distorted versions of the letter “T.” The 
symbolic names of the selected representatives of the distorted versions of 
the letter “T” generated from the class 2 6 3[ ](2 )Q L L are as follows: 

2 3 6 3 4[ ] (2 ) (2 )Q L L C L (Fig. 5.37a–c), 3

2 3 6 1 3 3 4[ ] ( ( ) , ) (2 )
L

Q L Q L L C L
(Fig. 5.37d), 3

2 4 1 3 4[ ](2 ( )) (2 )
L

Q L Q L C L (Fig. 5.37e), 2 4 6 3[ ](2 )Q L L
4(2 )TC L  (Fig. 5.37f), 4

2 3 4(2 ) (2 )TL
Q L C L (Fig. 5.37g). 

chetypes. As it was mentioned, the structural archetypes that are members of 
thin classes are “perceptually” linked with archetypes of concave classes that 
have the “similar” appearance. Examples of structural archetypes and exem-
plars generated from the “perceptually linked class” are shown in Fig. 5.38. As 

plar generated from the “perceptually” linked class given in Fig. 5.38b, c. The 
“perceptual” link can be expressed by showing all symbolic names “linked” 
with a structural archetype. For example, Fig. 5.38a–c, (a) 5 4/ [ ]{2 }TL L ,
(b) ( 2 6 1 3 3 4 1 4 4ˆ[ ](2 [ ]( )) ( , [ ]( ))R RQ L Q L L C L Q L L , (c) 2 5 8 1 3 3̂[ ](2 [ ]( ))Q L Q L L

4 1 4 6 4( , [ ]( ))RC L Q L L 2 5 8 1 3 3 4 1 4 6 4ˆ[ ](2 [ ]( )) ( , [ ]( ))RQ L Q L L C L Q L L ). Figure 

5.38d–e, (d) 6 5/ [ ]{2 }L L 4

2 5 6 2 5 3 4 1 4ˆ
R

R L

Fig. 5.38f–g, (f) 5 4 4/ [ ]{2 , }T RL L L , (g) ( 3 5 6 1 3 3 4ˆ[ ](2 [ ]( , ))Q L Q L L L

4

4 2 4( , (2 ))
R

R L
C L Q L .  

   a        b         c d e f g 

        a        b        c    d        e        f         g 

Fig. 5.38. Structural archetypes and exemplars of the letter “T” 

example, the structural archetype shown in Fig. 5.38a is linked with the exem-
letter “T” and usually there is more than one “perceptually” linked class. For 
we can see the structural archetypes represent only the main features of the 

, (e) (Q L[ ](2Q L[ ](L )) C(2L , Q (L )) ,

              

Different fonts of the letter “T” are represented by the different structural ar-



Figure 5.39 shows the different fonts of the letter “T” that correspond to 
the structural archetype 6 4/ [ ]{2 }TL L . Differences in “ending” of the 
stroke of the letter and similarity of the “general” shape are reflected in  
the symbolic names of the shape. The first two fonts shown in Fig. 5.39 are 
very similar that is reflected in their symbolic names, for example, in  

2 6 5 2 4 3 1 4 4[ ](2 ) ( [ RQ L L C Q L
2 6 5 2 4 3 1 4 4[ ](2 ) ( [ ]( ), [ ]( ))Q L L C Q L L Q L L . The fonts in Fig. 5.39c–e have 

curvilinear segments that are shown in symbolic names (the residuals are ar-
chetypes of the curve polygon classes M ). The symbolic names for the 
fonts shown in Fig. 5.39c–e are as follows:  (c) 2 6 2 4[ ](2 [ ])Q L M L

2 4 2 4 1 4 2 4( [ ](2 [ ]), [ ]( [ ]))C Q L M L Q L M L , (d) 2 6 2 4 3 1 3 1[ ]( [ ]( , [ ]( )))Q L Q L L Q L M
2 4 2 4 3( [ ]( [ ]), [ ](2 ))RC Q L M L Q L L , (e) 2 6 2 2 6 3 1 3 1[ ]( [ [ ]]( , [ ]( )))Q L Q M L L Q L M
2 4 2 4 1 4( [ ]( [ ]), [ ](2 [ ]))C Q L M L Q L M L .

Fig. 5.39. Similar fonts of the letter “T” and their symbolic names 

Different fonts of the letter can have different visual appearances that 
are very often similar to another letter. For example, the structural arche-
types of the letter “T” for the different fonts with curvilinear segments are 
shown in Fig. 5.40. The structural archetype preserves only the essential 
features of the letter “T.” Learned structural archetype is part of the visual 
concept of the fonts of the letter “T.” Based on the visual concept during 
the visual interpretation we can find all letters that have similar visual ap-
pearance. The symbolic names show similarities among archetypes and 
based on these similarities we can predict other fonts that can be inter-
preted as the letter “T.” Symbolic names of structural archetypes of dif-
ferent fonts of the letter “T” shown in Fig. 5.40 are as follows:  
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(c) 1 2 5 1 1 2 5 3 1 2 5 1/ [ [ [ ]]( )]{ , [ ], , [ [ ]]( )}Q M L M M M L L Q M L M , (d) 
1 2 5 1 1 3 1 2 5 1[ [ [ ]]( )]{ , , [ [ ]]( )}Q M L M M L Q M L M .

(a) 2 5 2 5 3/ [ [ ]]{ [ ], }M L M L L , (b) 2 5 2 2 5 2 3/ [ [ ]]{ [ [ ]](2 ( )), }M L Q M L c L ,

The symbolic names of the letters that are obtained during analysis are 
used during categorical learning of the different categories of the letter 
“T.”

](L ),Q [L ](L )) ,Fig. 5.39 a and in Fig. 5.39b 

2 4 6

2 4 6



Fig. 5.41. Examples of the phantoms that can be recognized as the letter “A” 

       
        a          b            c      d 

Fig. 5.40. Structural elements of the different fonts of the letter “T” 

Learning of the letter concept could be reduced to learning of the visual 
concept. The nonvisual knowledge is learned independently and placed in 
the context of the categorical chain. This categorical learning is performed 
in many stages in which testing of the learned result by using of the “dis-
torted” version of the letter are important part of the categorical learning 
process. Testing is concentrated on redefinition of the visual concept by 
investigating the different “distortions” of the most common visual repre-
sentations of the letter. For example, the “redefinition” of the visual con-
cept of the letter “A” was investigated as part of the experiment aim of 
which was to learn distorted version of the letter “A.” During testing stage 
of this experiment 50 cyclic objects were given to SUS and SUS needed to 
select phantoms that are representatives of the visual concept of the letter 
“A.” Examples of phantoms that were recognized as the letter “A” are 
shown in Fig. 5.41. The result of SUS performance was evaluated by  
human observer. Performance of the SUS was very good (100% cases) in 
the case when parts of letters were “well visible.” 

The proper interpretation of the object depends on the level of details of 
the symbolic name that was obtained in the process of visual reasoning. 
The level of detail refers to the class description. For example, the concave 
object with a hole (shown in Fig. 5.41) can be interpreted as a letter “A.” 
The visual concept of the letter was obtained during the learning stage. The 

        a          b            c      d      e      f      g      h 
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these objects that were evaluated as the letter “A” were used to form a 

the hole can be any convex object. In the case when the hole is concave 
object there is a need to learn a new concept (definition) of the letter “A.” 

learning was concentrated on defining of the visual concept by investi-
gation of the different “distortions” of the most common visual re- 
presentations of the letter “A.” All changes were evaluated and only 

tion of such objects by human observers. The letters in Fig. 5.41g, h can be 
This problem is rather complex because of lack of agreement in interpreta-

visual concept of the letter “A.” In the case of objects shown in Fig. 5.41(a–h) 



interpreted as special fonts of the letter “A.” However, not all human sub-
jects can interpret these objects as a letter “A.” To define the concept of 
the letter “A” that can be used in interpretation of all possible cases of the 
letter “A” two solutions are possible. The first solution is to select all pos-
sible fonts of the letter “A” and assume that these objects are representa-
tives of the visual concept of the letter “A.” The second solution is to 
define the letter “A” as the concave objects with a hole (shown in Fig. 
5.41). The hole can be any convex or concave object. The definition can be 
extended to include more than one hole, or the hole that is the cyclic object. 
The second solution has a big advantage because of the application of the 
generalization process. In the proposed approach a letter with a “big distor-
tion” could be easy to recognize. This capability can play a big role when 
recognizing (reading) the signs (e.g., road signs) represented in the form of 
the letters as well as reading the patterns that are not easy to interpret, e.g., 
in science, in archeology. 

In the previous section learning of the different fonts of the same letter was 
described. In this section learning of letters from different alphabets is des-
cribed. As it was shown at the beginning of the previous section naming 
letters requires learning of a letter as a member of the category of alpha-
betic letters. An alphabet is usually given as a set of letters, where each of 
letters is characterized by specific shape and the position of the letter in the 
alphabetical order. The letter is one of the characters (visual objects) of the 

Fig. 5.42. To show the difference among letters an Arial font was selected 
because the Arial font gives the simplest form of the printed letter. Due to 
the big variation between letters of the different font comparison of the 
letters of the different alphabets needs to take into account these differences. 
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the different alphabets. For example, letters that are extracted from the dif-
alphabet and the same visual object can represent different letters from

ferent alphabets (Hebrew, Arabic, Cyrillic, Greek, and Latin) are shown in 

 L  J  V  U C 
N  Z  M W  S  G  T 
 Y  E  F  X

 H K  D  O P 
 R  Q 

Fig. 5.42. Example of letters that are extracted from the different alphabets 
(Hebrew, Arabic, Cyrillic, Greek, and Latin) 

5.5.2.3.2. Similarities of Different Letters 



During learning of the visual concept of the letter category the visual 
similarities among representatives of the different category of alphabetic 
letters as well as the different sign categories or the real-world object cate-
gories needs to be taken into account. 

Learning of the visual concept of a given letter category requires select-
ing representatives of that letter as well as representatives of other cate-

shape classes that well discriminate among letters and other objects are es-

called the a posteriori classes. These classes are described in Chap. 2. The 
Fig. 5.42 shows selected letters of the different alphabets (Hebrew, Arabic, 
Cyrillic, Greek, and Latin). The general classes such as the thin convex 
class or the cyclic class do not well discriminate among objects shown in 
Fig. 5.42. All objects shown in Fig. 5.42 are thin objects. Specific thin 
classes need to be derived from the thin class to supply the shape cate-
gories that will well match the different letters. During the learning process 
the objects of other categories such as visual symbols need to be consid-
ered as similar objects. 

In this section examples of the letters from Latin, Cyrillic, Greek,  
Arabic, and Hebrew alphabet will be analyzed. The visual appearance of 
the different letters can be very similar. Understanding letters requires dif-
ferentiating between similar categories of letters of the same alphabet and 
interpreting the letter as the letter from one or more than one alphabet. For 
example, the visual symbol of the letter “C” has different meanings in 
Latin and Cyrillic language. The general visual concept of the letter is 
given by the structural archetype that represents the simplest form of the 
letter concept. As it was described in previous sections, the visual concept 
of the letter is acquired during the learning process. Learning of the visual 
concept of the letter is based on learning of the general structural descrip-
tion given by the structural archetype of a given letter. The aim of the 
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learning process is to find visual concepts of different letters that makes it 
possible to recognize a later among other similar objects. For example, the 
structural archetype of the letters “I” (Fig. 5.43a) and letters “L” and “ ”
(Fig. 5.43b, c) is different. The symbolic names of these archetypes are as 
follows: 2  (Fig. 5.43a) 3[ ]RL  (Fig. 5.43b, c). Not all archetypes gene-
rated from the class 3[ ]RL  can be regarded as the letter “L.” To match the 
archetypes of the letter “L” the new specific class

gories will be used to match both letters “L” and “ .” To find the proper 

tablished. The shape classes that are derived from a priori classes, based on 

⊗
⊗

3
R⊗[ ]L l[ , s] described in

properties of the visual object such as properties of the different letters, are 

gories similar to that letter. Next, based on selected representatives, the 

Chap. 2, is introduced.  Archetypes of this class regarded as shape cate-



archetype that matches the letter “ ” the sub-specific class that indicates 
the spatial orientation of the object is introduced. Letter “ ” is described 
by the class 3 2[ ][ , ] ' '( )R

RL l s L O , where 2' '( )RL O  is the symbol 
used for denotation of the spatial orientation of the visual object. The sym-
bol 2RO  denotes rotation of the object, and R denotes the right angle. The 
letter “L” is given by the visual symbol 3 2[ ][ , ] ' '( )R

RL l s L OH  or 
3[ ] [ ]RL L , where letter “L” at the beginning indicates the sub-specific 

class, the letter “L” class. Figure 5.43 shows similar letters from the 
classes 2 , , and . The symbolic names of the structural archetypes 
of the letters shown in Fig. 5.43 are given as follows: (a) 2 ,

These letters are different in this respect that they are rotated or they are 
curvilinear version of the selected letters. For example, the letter “ ” is the 
rotated version of the letter “L.” Figure 5.43 shows letters that are different 
in this respect that some of them have the curvilinear segments instead of 
the linear one. 
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L J
     
V U C

they are rotated versions of one another. The structural archetypes of the 
letters “N,” “ ,” and “Z” are as follows: 4 3/ [[ ]{2 }]{' '}RL L N . The 

⊗

⊗
⊗

Θ

  a     b     c      d   e    f     g    h        i    j    k     l   m n   o        p        q     r        

(b) { }3[ ][ , ] ' 'RL l s L⊗ , (c) { }3 2[ ][ , ] ' '( )RRL l s L MO⊗ ,

(d) { }1 3 2[ [ ]][ , ( )] ' '( )RM L l C s l O⊗ , (e) { }1 3 2[ [ ]][ , ( )] ' '( )RM L m C m l O⊗ ,

(f) { }1 3[ [ ]][' ', ( )] ' '( )M L l C s l M⊗ , (g) { }1 3[ [ ]][ , ( )] ' '( )M L m C m l M⊗ ,

(h) 3 1 1 3 1/ [ ]{ , [ ]( )}]L M Q L MΘ ρ , (i) 1 4 1 1 3 1/ [ [ ]]{ [ ]( )}M L M Q L MΘ ρ ,  
(j) 3[ ]{' ' }AL V⊗ , (k) 3 2[ ]{' '( ) }R

AL V O⊗ , (l) 4 2[ ]{' '( ) }R
RL U O⊗ ,

(m) 1 4[ [ ]]{' '}M L U⊗ , (n) 1 4[ [ ]]{' '}M L n⊗ , (o) 1 3[ [ ]]M L⊗ ,
(p) 1 4 1[ [ ]]( )Q L M⊗ , (q) 1 1[ [ ]]{' ' }EM K C⊗ ,

(r) 1 1[ [ ]]{' ' ( ) }EM K C M α⊗ .

Figure 5.45(a–f) shows letters that are different in this respect that 

Fig. 5.43. Similar letters from the letter classes 

,



4 3 R
R

4 3/ [[ ]{2 }]{' '}RL L N .
The letters “M,” “W,” “ ,” and the mathematical symbol “ ” are des-

cribed by the symbolic name 1 4 3[ [ ]( )]RQ L L  (see Fig. 5.44a). The letter 
“W” and a specific font or a distorted version of letters “M,” “ ,” or the 
mathematical symbol “ ” are described by the symbolic name 

1 4 3[ [ ]( )]Q L L  that is generalization of the class 1 4 3[ [ ]( )]RQ L L . The 
most common font of the letter “W” is described by symbolic name

1 4 3 3[ [ ]( )]{2 }]T AQ L L L  and the most common font of the letter “M” is 
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}]{' N 'O }) are rotated versions of theand “Z”(Fig. 5.44c) [[L L]{2
structural archetype of the letter “N”  (Fig. 5.44a)

              
 a b     c     d        e 

Fig. 5.44. Similar letters “M,” “W,” “ ,” and the mathematical symbol “ ”

The letter can be often seen as the distortion version of the structural

1 6 3 1 1 5 1 3 1 3/ [ [ ]]{ , [ [ ]]( [ ]), [ ]}]M L L Q M L M L M L  (Fig. 5.45g),  and 
2 5 1 3 1 1 3 1/ [ [ ]]{ [ ], [ [ ]]( )} ]M L M L Q M L M  (Fig. 5.45h) can be seen as the 

symbolic names of the letters “ ” (Fig. 5.44b) 4 3[ ]{2 }]{' ' }RL L N M

archetype. For example, letters “ ” and “ ” given by the symbolic names: 

⊗ ⊗

/

/

/

⊗

described as 1 4 3 3/ [ [ ]( )] {2 }]R RQ L L L  Fig. 5.44d. The distorted version of 
the letters “M,” “W,” “ ,” or the mathematical symbol “ ” is given by 
the symbolic name 1 5 3 3/ [ [ ]( )]{2 }]Q L L L  Fig. 5.44c. The letter “W”
(Fig. 5.44e) letter “ ” and the mathematical symbol “ ”are rotated ver-
sions of the structural archetype of the letter “M.” The proper identifica-
tion of the letter requires finding the sp ecial orientation of the letter. The 
sub-specific classes are introduced to supply the shape categories for 
matching a given letter. As the base of the spatial orientation of the letter 
type M, the letter “M” is selected and a sub-specific class of the letter M is 
denoted by adding the symbol {' ' }M , e.g., 1 4 3[ [ ]( )]{' ' }RQ L L M . The 
shape classes that are used to match the letter “W”, the letter “ ” and the 
mathematical symbol “ ”are denoted by adding the symbol {' ' }RM O  at 
the end of the symbolic name, for example, the letter “ ” is denoted by the 
symbolic name 1 4 3[ [ ]( )]{' ' }RQ L L M O .



N ZMW S G
Fig. 5.45. Similar letters 

Y E F
Fig. 5.46. Similar letters 

X H K D O P R

Fig. 5.47. Similar letters 
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a b     c     d        e       f g     h     i        j        k l     m     n        o 

.

In the previous sections learning of the visual knowledge given in the 
form of the visual concepts was described. Learning is part of the thinking 
process aimed at acquiring a new knowledge and restructuring knowledge 
that was previously learned. The learned visual concept is “attached” to the 
knowledge schema of the categorical chain. During learning new catego-
ries are added. In the first stage of learning of the letters category from the 
different alphabets the “Arial” as the simplest form of font is selected. 
Learning starts from learning of the category that is represented by the 

El Let Alp Lat LowC PrF Ar a

categorical chain. In the case of the categorical chain given as follows

the learned prototype is described by the categorical chain as follows: 
the letter “a” a , font – Arial Ar , printed form Pr F , lower case ,
Latin alphabet Lat . In the case when all letters specified by categories 
of this categorical chain are learned, the category such as “lower  
case”  can be exchange for the category “upper case” 

Lat UppC PrF Ar.. a
letters specified by this categorical chain will start again. The nonvisual 

LowC

LowC

an d process of learning of the 

distorted versions of one another. Similarly the specific shape classes (categories)
can be derived to match letters shown in Figs. 5.45(i–o), 5.46 and 5.47. 



Lat UppC PrF Ar a ViC Nam LIn Def MGe{ , , , , }… .

concept ViC , the name Nam , the linguistic interpretation LIn , the defini-
tion Def  and the method of generation MGe . During learning process the 
knowledge schema is “filled” with learned nonvisual knowledge that leads 
to reorganization of the knowledge in the categorical chains. The consis-
tency of acquired knowledge is checked and new connections among dif-
ferent categorical chains are established. 

The letter is properly understood by linking it to the language category. 
Understanding letter in the context of the language categories make it pos-
sible to use the knowledge of the language categories to read and write the 
text. Text is composed from the category of words which are string of let-
ters. Understanding of the word requires reading a given string of letters 
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knowledge is represented as the knowledge schema of the knowledge chain 

Pt Let Alp Lat PrF Wor Phr Sen Txt, , ,

El Sg

VSym EngS ElES MeES ChES Rez Ind Cap Dio Trz, , , , , ,
object given by the categorical chain as follows: 

Cap , derived 
from the visual engineering symbol. As it was described in Chap. 4 the 
category of electronic symbols is linked with category of electronic ele-

El ReO

Ear NLiv MMad Asp ElAsP Rez Ind Trn Cap Dio Trz, , , , , .
From this categorical chain it is easy to infer that capacitor is an element of 
the electronic assembly and it is a man-made object. The visual representa-
tive of the capacitor can be generated during the imagery process and used 
in the process of the visual explanation or imagery transformation. Images 

realistic representation. From the category of knowledge we can infers that 
capacitor is part of the electronic devices and has its symbolic equivalent 
that is part of the electronic schema. 

ments given by the following categorical chain 

where the name “capacitor” refers to the category capacitor 

. One 
of the word categories is the name category. The name category of the 

gory of words, the category of phrases, the category of sentences, or  

Pt Let Alp Lat PrF Wor Phr Sen Txt, , , . To 

Chap. 4 the visual object such as a word is a member of the category of words

The knowledge schema for the prototype of the letter “a” includes the visual 

and converting it into the word of a given language. As it was described in 

signs, or figures. For example, the name “capacitor” refers to the visual  
visual object refers to the categories such as the category of real-world objects,

invoked by words “capacitor” can be given in the form of the schematic or 

The visual object such as a word or a sentence are members of the cate-

the category of texts that are derived from the pattern category 



understand text the knowledge from area of linguistic need to be learned 
and represented in the form of the knowledge objects derived from the 
category of the linguistic object. The category of linguistic object is  
divided into the category of lexical analysis, the category of syntactic 
analysis, the category of semantic analysis, the category of discourse 
analysis or the category of pragmatic analysis KB KOb LinO

Lex Syn Sem Dis Prag, , , ,
that is needed to understand text. 

During “seeing” of the visual object the first step of the visual under-
standing is recognition and naming. Finding the name of the visual object 
makes it possible to give the description of the visual object in the linguis-
tic form. This process is very similar to the process of understanding of the 

Naming of the object that is classified as a member of the category of the 
real-world object is to find the proper categorical level and next find the 
name of the category at this level. Naming can be regarded as recognition 
of the object of the known categories. To recognize object there is a need 
to discriminate among objects of the different categories. The object that is 
classified to the category of the real-world object can be a member of the 

categories, described in Chap. 4, are used to interpret an object in the con-
text of other visual objects. The real-world object in image is often a part 
of the scene and can be partially occluded by other objects. The image 
from which a phantom (visual object) is to be extracted can belong to the 
different perceptual categories such as silhouette, colored object, drawing 
line, or shaded object. 

The phantom that is 2D representative  of the 3D real-world object needs 
to be extracted from a picture and transformed into one of the perceptual 
categories. Extraction of the visual object from a picture is obtained during 
the segmentation process. Through the simple segmentation method a pic-
ture is divided into two regions: a figure and a background. The result of 
segmentation depends on the type of background. The simplest case is an 
object on the background of the uniform colors. Process of extraction of an 

5.5.2.4. Naming and Recognition of Real-World Objects 

object from an image depends on the type of background. Figure 5.48 
shows images with the different backgrounds from which the object needs 
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. The linguistic object supplies the knowledge

word.

structural categories such as a picture, a pattern, or an element. The structural 

ground from which extraction of the object (animal) is difficult. Object 
to be extracted. In Fig. 5.48a is gi ven an example of a very complex back-



 a  b   c   
Fig. 5.48. Examples of pictures from which phantoms are extracted 

The “segmentation problem” is the problem of dividing up a visual 
scene (picture) into a number of distinct objects. The segmentation method 
consists of two stages. In the first stage, surface objects are segmented at 
discontinuities which can be detected by examining the zero crossing and 
the extreme values of the surface curvature measure. Then these detected 
discontinuities are used to segment a complex surface into the simpler 
meaningful components called patches. Finally, these patches are grouped 
into meaningful 3D objects, and attributed graphs are generated to describe 
these objects (Fig. 5.49). 

Fig. 5.49. The 2D object segmented into patches can be interpreted as a 3D object 

shown in the image in Fig. 5.48b make extraction of the object more diffi-
cult than in the case of image shown in Fig 5.48c. The image in Fig. 5.48c 
illustrates an object that can be regarded as the isolated object that belongs 
to the structural category of the element rather than to the category of the 
picture.

In this book the segmentation is regarded as one of the sensory trans-
formations that transform an image into regions called phantoms (the visual 
objects). The visual object can be regarded as a member of one of the per-
ceptual categories such as: the silhouette, the line drawing, or the colored 
object. Naming (understanding) of the visual object perceptual category is 
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The silhouette is often used during naming process. The naming often 
called recognition occurs when object is perceived during actions per-
formed by robot (SUS). The robot needs to understand environment to per-
form task. In the case of naming the object that is perceived by robot is 
usually transformed into the silhouette. The silhouette can be extracted 
from existing images (e.g., picture in the book) or can be the result of the 
visual transformation of the object perceived by the camera. In the first 
case the perceived object refers to the real-world object that cannot be 

ceived object can be manipulated by robot (e.g., moved, handled, rotated). 
This contextual information is used during interpretation of the object. 

  

Fig. 5.50. Examples of different leaves (shaded representation) and their silhouettes 

ruled by the specific method of processing and reasoning. The visual ob-
ject is at first assigned to one of the perceptual categories and next inter-
preted in terms of the real-world object, a sign, or a figure category. The 
perceived object that is assigned to the real-world man-made category 

distortion caused by the projection into the plane. 

Naming an object as a leaf means that the leaf is classified to one of 
the leaf categories. The leaf category is derived from the plant category, 
so the name of the plant is used to denote the name of the leaf. The typi-

Pla Tre

Rot Trn Stm Lef Flw Frt Sed

..
[ , , , , , , ] . The category of the tree leaf is divided 
roots, a trunk, stems, leaves, flowers, fruits and seeds: 
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The silhouette is the perceptual category that shows only part of the  
visual information about the object. There is, however, category of visual 
objects such as the leaf category that can be well represented by the  
silhouette. The silhouette of leaves can be obtained by scanning the leaves 
by applying the scanner. This method makes it possible to obtain good 2D 
representation of leaves. Figure 5.50 shows both the scanned leaves and 
their silhouettes obtained from the scanned form of the leaf. For example, 
Fig. 5.50a, c, e, g, i shows the scanned leaf whereas Fig. 5.50b, d, f, h, j 
shows its silhouette. 

cal flowering plants such as a tree consists of different parts such as

a b c d e f      g       h      i       j 

needs to be learned from many aspects of the object, taken into account the 

reached at that moment when perception occurs. In the second case the per-



Leaves from the different leaf categories can look very differently. 
These visual differences make their recognition relatively easy. For exam-
ple, leaves shown in Fig. 5.51 can be easily classified to the different leaf 
categories. In the case of leaves that are derived from the different oak tree 
categories the naming process is not so easy. Although leaves derived from 
the different oak tree categories are different, there is a big variation of the 
shapes within each category (see Fig. 5.52). 

Fig. 5.51. Leaves from different categories that are easy to recognize 

Fig. 5.52. Leaves from different specific categories derived from the oak tree category 

of blade, stalk, and venation Pla Tre Lef Oak Aus.. [ ]
Bla Stl Ven[ , , ] . During the naming process the stalk is removed from the 

leaf. The leaf category is represented by the categorical chain that shows 
the hierarchical categorical dependence of the leaf category. During learn-
ing of the new prototype of the leaf all categories that are part of the cate-
gorical chain need to be learned. 

Pla Tre

Lef Oak Pop Lim Elm Hor AsT Bee Bir

..
[ ] , , , , , , ,
into categories such as the oak, the lime, or the poplar 

. The leaf of the spe-
cific category such as the Australian oak Oak Aus  consists usually 
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Fig. 5.53. The different categories of leaves 

As it was mentioned in the previous section, leaves from different 
plants can be easily distinguished from other leaves if their shapes are 

needed during the naming process. Naming process involves learning of 
the visual and nonvisual knowledge. As the result of learning of the vis-
ual knowledge the visual concept is obtained. The visual concept con-
sists of the symbolic names that refer to the representatives of the most 
typical leaves of the learned prototype. For the prototypes of leaves 
shown in Fig. 5.53 variation of shape within a given shape category is 
not big. During learning process visual concepts of the different proto-

For prototypes of leaves shown in this example there is a small diversity  
of shapes among leaves within a given prototype of the leaf. However, for 
some leaf prototypes (we call it prototype 7) shape can fluctuate in all ranges 
of shape shown in Fig. 5.53. The visual concept for this prototype 7 is given 
as 7 2 3 4 1 1 1 2 1 3 1 3 2 5 1{ , , , [ ]( ), [ [ ]](2 ), [ [ ]](2 ,K K K Q M M Q M L M Q M L M

2 3 1[ ](2 ))}Q L M . Leaves that come from the same plant can differ due to 
many biological factors that are responsible for the growth of leaves. To 
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to take into account also other features such as color or venation. 
recognize leaf (classify it to one of the plant category) there is a need  

different. To name the perceived object SUS needs to learn knowledge 

types of leaves are obtained as follows: the prototype 1 – { }K  Fig. 
5.53a, the prototype 2 – 2 2{ }K  Fig. 5.53b, the prototype 3 as 

3 4{ }K  Fig. 5.53c, the prototype 4 – 4 1 1 1{ [ ]( )}Q M M  Fig. 5.53d, 
the prototype 5 – 5 2 1 3 1{ [ [ ]](2 )}Q M L M  Fig. 5.53e, and the prototype 
6 – 6 3 2 5 1 2 3 1{ [ [ ]](2 , [ ](2 ))}Q M L M Q L M  Fig. 5.53f. 

3



                  

Fig. 5.54. Archetypes from the star class, the para-star class, and the like-star class 

During naming process the leaf is “fitted” into one of the specific shape 
categories. To have a big range of the shape categories to which perceived 
object can be “fitted” there is a need to derive the specific a posteriori 
classes. In the case of the leaf that can be classified as a concave object, it 
can be approximated by the archetype of the star class. As it was shown in 
Chap. 2 the object from the star class is represented by the symbolic name 

3[ ]( )n nQ L nL

3n m m n . The 

3 3[ ]( [ ]( ), ),n n h gQ L kQ L hL mL where n k m . Example of the archetype of 
the star-like class given by symbolic name 4

4 4 3 1 3[ ](3 , ( ))
L

Q L L Q L  is shown 
in Fig. 5.54c. For the generic class 4 4[ ]Q L  the following archetypes of 
the specific star-like classes can be generated 4

4 4 3 1 3[ ](2 , 2 ( ))
L

Q L L Q L ,
4

4 4 3 1 3[ ](3 , ( ))
L

Q L L Q L , or 4

4 4 1 3[ ](4 ( ))
L

Q L Q L . The star class can have differ-
ent symbolic representations in the form of the complex class description. 
The symbolic name reflects the difference in interpretation of the visual 
object. The description of the concave class is given in terms of the convex 
generic class and concavities, whereas the description of the complex class 

5 5 3 5 5 3[ ](5 ) [ ](5 )Q L L L L . The complex class description is more percep-

same symbolic name 5 5 3[ ](5 )L L , whereas the convex class description 
gives the different symbolic name 5 5 3[ ](5 )Q L L  in the case of object shown 

4 4 1 4 3[ ]( [ ],3 )Q L Q L L

archetype of the star-like class (Fig. 5.54c) is given by the symbolic name 
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a b c d e 

(Fig. 5.54a). To match the broad range of objects that can be 
assigned to the leaf category, the new classes, the para-star class and the star-

(Fig. 5.54b) is given by the symbolic name Q [L ](nL ) , where 

divide object into the core object and parts as it shown in Fig. 5.54d, e 

tually oriented. In this description the object from Fig. 5.54c, d has the 

in Fig. 5.54d and  for the object shown in Fig. 5.54c. 

like class are derived from the star class. The archetype of the para-star class 



The star class only to some extent approximates the leaf shape. The 

ities of shape. The Fig. 5.55 shows the difference between the objects 
from the para-star class and the para-star leaf class. The archetype  
of the para-star class is given as Fig. 5.55a 4 5 3[ ](4 )Q L L  whereas the  
leaf class is given as an object shown in Fig. 5.55b–d. The symbolic 
name of the object shown in Fig. 5.55b–d is as follows: 

5 7 (4 )
L

Q A 3 3

3 3 2{ , , (2 ), ( )}
L L

A L L Q M Q M .

Fig. 5.55. The objects from the para-star class and leaf class 

Object from the star class and star-leaf class has the different concavi-

5 5 3

5 5

Q  show the significant differences. The Fig 5.56g, h shows the objects 
from the star-leaf class which is given by the symbolic name 7 7[ ](7 )Q L Q .
Objects shown in Fig. 5.56 can be classified into two categories 5Q  and 

7Q , where both symbols refers to the star-leaf classes 5 5[ ](5 )Q L Q  and 
7 7[ ](7 )Q L Q . The symbolic name not only allows for identification of the 

object but also gives a very understandable explanation. Object from the 
category 5Q  differs from the object from the category 7Q  in that respect 

5

from the category 7Q  has seven residuals. Objects from both categories 
have the different generic classes, the category 5Q  the pentagon 5L , and 
the category 7Q  heptagon 7L .
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star-leaf class that is introduced to describe the leaves needs to take into 
account the departure from straightness of the sides and small irregular-

ties. The symbolic name of the archetype from the star class (Fig. 5.56a) is 
as follows: Q L[ ](5L ) . All objects, representatives of the star-leaf class 
(Fig. 5.56b–f) have the symbolic name Q L[ ](5Q) , where the concavities 

 has five residuals whereas the object that the object from the category Q



 a b c d e f      g       h 

Fig. 5.56. Objects from the star class and star-leaf class 

Many objects are similar and the visual concept of learned categories 
needs to take into account the similarity among objects. The similarity of 
objects makes it possible to name the objects in the form of the mushroom-
like or s-shaped object. The name “mushroom-like” indicates that named 
object is similar to typical mushroom. The Fig. 5.57 shows objects that are 
similar; all objects are concave objects having two concavities. The sym-
bolic names of the similar objects shown in Fig. 5.57 are as follows: 

2 1 4 3[ [ ]](2 )T RQ M L L  (Fig. 5.57a), 2 2 4 1 3 1[ [ ]](2 [ ]( ))TQ M L Q L M  (Fig. 5.57b), 
2 1 3[ [ ]]( )Q M L W (Fig.5.57c–f ), where 2 3 1 2 3 1{2 [ ](2 )} { [ ](2 ),W Q L M Q L M
1 3 1 1 3 1[ ](2 )} {2 [ ]( )}Q L M Q L M , 2 1 3 2 3 1[ [ ]](2 [ ](2 ))Q M L Q L M  (Fig. 5.57d). 

Abstraction reveals the similarity of objects at the different levels of details 
– all objects in Fig. 5.57 are concave object 2Q , all objects came from the 
same generic class 2[ ]Q M , the objects 5.57c–f come from the same spe-

2 1 3[ [ ]]Q M L , all objects 5.57c–f can be recognized as an 
2 1 3[ [ ]]( )Q M L W

Fig. 5.57. Similarity of the objects of the different categories 

a b c d e f 

The objects from the star-leaf class are very similar to objects from the 
leaf-irregular class. The leaf-irregular class is described by the symbolic 
name 1 2

1 2[ ]( , , ...., )n n n
nQ L a Q a Q a Q , where i

ia Q  denotes the archetype of 
the convex or concave class. Members of the leaf-irregular class have ir-
regular concavities. Examples of these objects are shown in Fig. 5.60. 
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symmetrical are not likely to be a member of the plant category; symmetry 
indicates that both objects are members of the man-made category. 

The detailed description of these objects, members of the leaf-irregular 

. The objects in Fig. 5.57a, b that are 
cific generic class 
object from the class 



Fig. 5.58. Residuals are members of the concave classes at the first level of iteration 

Fig. 5.59. Residuals are members of the concave classes at the second level of  
iteration

class, is given by showing the statistical distribution of residuals. Exam-
ples of the different residuals are given in the Figs. 5.58 and in 5.59. The 
symbolic names of these residuals shown in Fig. 5.58 are as follows: (a) 

1( )q M , (b) 2 3 1[ ](2 )Q L M , (c) 2 1 4 1 1[ [ ]]( , )Q M L M M , (d) 2 3 1 1[ ]( , )Q L M M ,
(e) 3 3 4 1[ ](3 )Q L M , (f) 3 3 4 1 1[ ](2 )Q L M M , (g) 4 1 5 6 1 1[ [ ]](3 , )Q M L M M ,
where the symbol ( )q  denotes small residuals, 3L  denotes the polygon (tri-
angle) with smooth corners, 1M  denotes small curve-polygon residual.  
Residuals shown in Fig. 5.58 are members of the concave classes at the first 
level of iteration [ ]( )nQ n . The term “the first level of iteration” means 
that all residuals are members of the convex class . Residuals shown in 
Fig. 5.59 are members of concave classes at the second level of iteration 

[ ]( )nQ nQ . The archetypes of the concave classes at the second level  

3 1 5 6 1 1[ [ ]]( , ,Q M L M M 3 4 1 1[ ](2 , ))Q L M M ,

(b)  4 5

2 2 5 2 1 3 1 1[ [ ]]( (2 ), (2 , ))
L L

Q M L Q M Q M M , (c) 3 1 4 1 1

2 3 1

[ [ ]]( , ,

[ ](2 ))

Q M L M M

Q L M , 3 1 5 1 2 3 1 2 4 1][ ]( , [ ](2 ), [ ](2 ))L M Q L M Q L M .
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these residuals are as follo:ws (a) 

(d) Q M[

    a b c d e f g 

of iteration are perceived as more “irregular.” The symbolic names of  



When some categories of leaves have a small diversity of shapes and are 
easy to identify, there are categories of leaves that have a very big diversi-
fication of shapes. For example, sample of leaves, members of the leaf-
irregular class are shown in Fig. 5.60. These leaves were randomly picked 
up so that they preserve variation of shapes that are typical for population 
of the leaves of that category. These leaves represent two different proto-
types P1 and P2. The symbolic description of the leaf type P1 and type P2 
is given in the form of the residuals. Residuals have the complex symbolic 
representation; examples of these residuals are shown in Figs. 5.58 and 
5.59. To decrease the number of learning exemplars the abstraction can be 
applied. The abstraction means that the small residuals will be eliminated 
(e.g., smoothing contour) from objects that are used to learn the visual con-

bolic names. In the case when the visual concept of the different leaves 
type, e.g., P1 and P2 has the same symbolic name the naming of the un-
known object as the leaf of type P1 or P2 can be not unique. In the case 

ordered (simple symbol to the very complex). Lets the visual concept of 
the leaf of type P1 is given as follow 1

1 2{ , ,..., }P
N , and the visual 

concept of the leaf of type P2 is given as 2
1 2{ , ,..., }P

M  where 

Fig. 5.60. Sample of the leaves from two different types P1 and P2 
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cept. The visual concepts of the leaves type P1 and P2 have the same sym-

when symbolic names consist of the different symbols these symbols are 



During the learning process there is a need to take into account not only 
the diversity of the different shapes of leaves but also the perceptual ability 
of SUS to perceive small parts. The small part is the part of the object that 
cannot be visible. For example, the small concavity can be interpreted as 
distortion and the object can be assigned to the convex class. These prob-
lems are quite complex and description of these problems is not included 
in this book. 

2D objects was described. In this section application of the silhouette of 
objects that are representatives of 3D objects, in the naming process is 
described. The silhouette as a perceptual category is interpreted as a 3D 
object by utilization of the contextual information. In shape understanding 
method all convex or concave symmetrical objects are interpreted as 3D 
objects as the result of application of the method of body of revolution. 
Figure 5.61 shows examples of objects that are interpreted as 3D objects. 
As we can see, only some of them are representative of the category of 
real-world objects. An object is classified into one of the real-world cate-
gories during the naming process. 

Fig. 5.61. Example of phantoms interpreted as a 3D imagery objects and real-
world objects 

The silhouette as the 2D visual object (phantom) can be interpreted  
4
RL  can 

be interpreted as a parallelepiped or pyramid that is denoted as 

that means the last N–n symbolic names of the visual concept of leaf type 
P1 and the first m symbolic names of the visual concept of leaf type P2 are 

1 2 1{ , ,..., n

ined object is given by symbolic name 1{ , ,..., }m m M  it is classified as 
the leaf of the type P2, when an examined object is given by symbolic 
name 1 1 2{ , ,..., } { , ,..., }n n N M m  the contextual information 
need to be used to select the proper leaf category. 

1 2
1{ , ,..., }P P

n n N  and 1 1 2{ , ,..., } { , ,..., }n n N M m ,
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In the previous section the leaf category, members of which are nearly 

as a 3D object or a real-world object. For example, the rectangle 

the same. In that case when an examined object is given by the symbolic name 
} it is classified as the leaf of the type P1 when an exam-



The interpretation given in the form of 3D symbolic names for 
the phantoms shown in Fig. 5.62 are as follows: 4 4{ }{ }R RL D R L ,

4 4{ }{ }T TL D R L , 3 3{ }{ }L D R L , 1 1{ }{ }K D R K . The 

a. 2 4 3 2 4 3[ ](2 ) { }{ [ ](2 )} { }Q L L D R Q L L jug
b. 2 5 3 2 5 3[ ](2 ) { }{ [ ](2 )} { }Q L L D R Q L L jug
c. 2 4 6 3 2 4 6 3[ ](2 ) { }{ [ ](2 )} { , }Q L L D R Q L L glas vazon
d. 2 6 3 2 6 3[ ](2 ) { }{ [ ](2 )} { }Q L L D R Q L L vaza
e. 2 4 2 4 1 1 2 4[ ](2 [ ]( [ ])) { }{ [ ](2Q L Q L M M K D R Q L 2 4

1 1

[ ]
( [ ]))} { }

Q L
M M K vaza

When the 3D interpretation is found SUS can generate the rotated 
version of the 3D object in the explanatory process. 
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{ }{ }{ , }R RL D R L pyramid paralelepiped− >< > , where symbol D< >  de-
notes 3D object one aspect of which is given by rectangle 4

RL  and which is 
given by names { , }pyramid paralelepiped  The letter {R} denotes the 

metrical object is regarded as a representation of the possible real-world 
object. During naming process a phantom (silhouette) shown in Fig. 5.62 
is, at first, interpreted as a 3D visual object obtained by the body revolu-
tion procedure. Next this 3D visual object can be transformed (rotated) in 
order to obtain the different visual aspect of the examined object. This vis-
ual rotation (imagery transformation) is part of the visual thinking process 
that can lead to the explanation of the visual features of the object. An 
object that is interpreted as the object formed by procedure of the body 
revolution can be fully restored based on the 2D silhouette. The phan-
toms that are members of symmetrical and elongated classes are inter-

category of 3D geometrical figures or as a category of known real-world 
objects. The interpretation in terms of 3D geometrical object is shown by 
indicating that the object is obtained by rotating along the axis of sym-
metry (solid of revolution). During learning process a 3D representation 
is obtained by converting the symbolic name η  into the 3D symbolic 
representation: { }D η< >

2 4 3 2 4 3[ ](2 ) { }{{ [ ](2 )} { }Q L L D R Q L L jug⋅ − >< > ⋅ − > .

the form of the known real-world objects the name of the objects to 
. In the case when interpretation is given in 

which phantom can refers is added at the end, for example, 

following is an example of the interpretation given in the form of the 3D 

body revolution procedure. The phantom interpreted in terms of 3D geo-

symbolic name and real-world objects for the phantoms shown in Fig. 5.63:  

preted as the 3D objects. These objects are interpreted as objects of the 



                      
   a  b  c d  e f g 

Fig. 5.62. Examples of phantoms interpreted as 3D object 

 a b c  d e 

Fig. 5.63. Example of phantoms interpreted as real-world objects 

It is assumed that the object that is assigned to the convex or the con-

interpretational process can be continued based on the knowledge supplied 

ject perceived by SUS can be rotated to show the different aspects of the 
object. Figure 5.64 shows the characteristic visual aspects of the perceived 

Interpretation of the phantom in terms of the real-world object can be 
based on the common aspect of the visual object and can utilize silhouette 
of the object in the process of learning and understanding. This method 
gives good results in the case when understanding is reduced into recogni-
tion of the known objects (e.g., machine vision). In this interpretation 
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imposes constraint on the process of selection the most possible represent-
ation of the 3D object. At first the 3D interpretation is found and next the 

by the knowledge schema. To explain the results of understanding, the ob-

object (rectangle) (Fig. 5.64a) interpreted as a 3D object. Figure 5.64(b–e)
shows some possible interpretations generated by SUS. 

generated during explanatory process

cave symmetrical class is interpreted as the 3D object. This assumption 

Fig. 5.64. (b–e) Characteristic visual aspects of the perceived object (a) that are



phantom is treated as the result of the conventional visual transformation 

houette of the object often represents the most common aspect of the 

visual side of the object. In the case of the category of man-made object 

of different categories of objects. 

Fig. 5.65. Phantoms (silhouette) interpreted as a real-world object 

The selection of the sample of objects that will be used for learning the 
category of the real-world object is a complex task. Depending on the 
category of the real-world object that is selected to learn the visual con-
cept, the different perceptual categories can be used. There is dependence 
among perceptual categories of the visual object. For example, a silhouette 
can be relatively easy to obtain from the line drawing or colored object. 
Although there is the lost of information that could be useful in interpreta-
tion of the silhouette, analyzing the silhouette is the simplest way of identi-

process. The additional visual information can be obtained from the cate-

from the line drawing. As it can be noted some silhouettes supply enough 
visual information to be identified as an object of a given ontological 
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rather than one of the geometrical transformations, e.g., projection. The sil-

visual object. In the case of the flat object such as a leaf, it shows the natural 

the tools in its natural position. Figure 5.65 shows phantoms (silhouettes) 
such as the category of the tools the selected visual aspect of the object shows 

fication of the object. The silhouette can be used at first stage of naming 

gory of line drawing. Figure 5.66 shows examples of silhouettes obtained 



category. During learning of the hierarchy of categories of visual objects 

most typical visual representation of a given category of the real-world ob-
ject is learned. In the first stage of learning process the silhouette of the 
real-world object and objects from the different categories such as figures, 
signs, letters, and real-world objects are learned. In the second stage the 
line drawing of the real-world object is learned in the context of the other 
categories. And finally the shaded form of the real-world object is learned 

Fig. 5.66. Members of the different perceptual categories of the glass category 
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Learning of the visual concept of the real-world object is connected with 
solving problem of discrimination among similar objects (visual similari-
ties). The similarity of objects can be regarded on two levels: the concep-
tual level and the visual level (the visual concept). The conceptual similarity 
of objects came from belonging to the same category, e.g., tools for eating 
(the fork, the knife). The visual similarity is concerned with similarity of 
visual objects (phantoms). For example, during learning of the visual con-
cept of the spoon category there is a need to learn the visual concepts of 
similar objects. Similar objects are objects that share some visual features. 
Figure 5.67 shows examples of the similar objects. In all cases of objects 
shown in Fig. 5.67 there is the thin part that is “glued” with the convex 
part in such a way to become the symmetrical whole. Figure 5.67b–f 

follows: (a) 2 1 3 1 3ˆ[ [ ]](2 [ ]( ))Q M L Q L M , (b) 2 5 1 3ˆ[ ](2 [ ]( ))Q L Q L M ,
(c) 6 4 2 6 3( , ) [ ](2 )T OC L L Q L L , (d) 4 4 2 6 3( , ) [ ](2 )T T SC L L Q L L , (e) 4 4( , )T RC L L

2 6 3
R

4 4 2 5 3ˆ ˆ
R R RQ [L ](2 L ) , (f ) C(L , L ) Q [L ](2 L ) . T he learned visual con-

During naming (recognition) these similar objects can be interpreted as a
spoon when the perceived object is not well visible and the contextual
information indicates that the perceived object can be the spoon.

the most important task is finding the visual object (prototype). At first the 

in the context of other categories. 

shows objects that are similar to objects that are representative of the spoon
category Fig. 5.67a. The symbolic names of objects shown in Fig. 5.67 are as 

cept of the spoon includes the symbolic names of the most similar objects. 



Fig. 5.67. Examples of similar objects 

Fig. 5.68. Examples of similar objects (special cases) 
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used in learning of the visual concept of the spoon. These phantoms can be 
seen as representative of the schematic construction (abstraction) where  
selected features of the real-world object are used. In the case of objects 
shown in Fig. 5.68f when applying abstraction we can infer that objects in 
Fig 5.68a–d given by the same symbolic name 4 4 2 6 3( , ) [ ](2 )R R RC L L Q L L
are similar. The specific classes derived from the class 2 6 3[ ](2 )RQ L L

(a) 4 4 2 6 3( , ) [ ](2 )R R RC L L Q L L , (b) 4 4 2 6 3( , ) [ ](2 )R R RC L L Q L L , (c) 4 4̂( , )R RC L L
2 5 3ˆ[ ](2 )RQ L L , (d) 4 4 2 5 3ˆ ˆ( , ) [ ](2 )R R RC L L Q L L ). In similar way it can be 

symbolic name 4 4 2 6 3( , ) [ ](2 )R R RC L L Q L L  is similar to an object in Fig. 
5.68e given by the symbolic name 2 2 4 3( , ) [ [ ]](2 )T RC M M Q M L L

2 3
R

2 2 4 3, ) [ [ ]](2 )T RM Q M L L

2 2 4 2 3 1
T

class 2 2 4[ [ ]](2 )TQ M L C .
Naming real-world object depends on the perceptual category to which 

perceived object is assigned. As it was described in Chap. 4 the perceptual 
category of the line drawing is divided into category of: the segmentation 
edge, the conventional 3D drawing, the intentional geometrical drawing, 

   a b  c d e f

bolic names of the objects shown in Fig. 5.68a–d are as follows:  

Figure 5.68 shows objects that could be regarded as similar to objects 

shows the differences between objects shown in Fig. 5.68a–d. The sym-

shown (by applying abstraction) that the object in Fig 5.68b given by the 

; these 
objects are members of the same class Q [ ](2 L ) . Similarly, the object in 

is similar to the object in Fig. 5.68f given by the symbolic name 
;Q [M [L ]](2 Q [L ](2M ))  these objects are members of the same 

Fig. 5.68e given by the symbolic name C M(



Re ,, , , , , , ,O Ld El O SeE InG MuV ViT ViF OrP PeP MaAs

FoSt

interpreted as a 3D object or a real-world object. The interpretation of the 
line drawing was one of the major concerns in computer vision. The line 

that is limited to be planar-faced solid can be specified by vertices, edges, 
and polygonal faces. A view of an object becomes a line drawing obtained 
by perceptively projecting all the visible (or partially visible) edges of the 
object onto the image plane. This projection is also referred as an aspect of
the object. In our approach (shape understanding method) a line drawing 
object is regarded as an object of the G class. Each archetype of the G 

interpretation of the line drawing object members of the G class are geo-
metrical solids.

The real-world object represented by the perceptual category of the line 
drawing often refers to the most common visual aspects of the object. 
During naming (visual understanding) process the object is at first decom-

posed into the core object and holes and assigned to the cyclic thin class. 
Based on these decomposition object of the G class is finally interpreted as 
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gory such as the orthographic projection make it possible to interpret the 

posed into the thin or the thin complex object and the convex or the concave
core object, and is assigned to the G class. Next, the object is decom-

orthographic projection drawing, the perspective projection drawing, the 
folding sheet drawing or the many aspects drawing and given as follows:

the multiview drawing, the view from the top, the frontal view, the 

. Classifying a perceived object as a member of the perceptual cate-

line drawing object as the 2D object that is obtained as the result of the 

the 3D object or the real-world object. 
For example, object shown in Fig. 5.69a is a member of the perspective 

projection perceptual category. The object in Fig. 5.69a is decomposed 
into the thin object 2(2)2 4 3[ [ ]( )]Q L L  (Fig. 5.69b) and the concave core 
object 6 3 6 3[ ]( )}L L

2(2)2 4 3{ [ [ ]( )]}Q L LΘ class. Next object shown in Fig. 5.69a is decomposed 
into the concave core object 6 3[ ]( )Q L L  and four holes: the one concave 

5 3[ ]( )RQ L L  and three another convex 4
TL , and assigned into the 

orthographic projection of the 3D object. 
The object as a member of the perceptual line drawing category can be 

class is interpreted as a possible 3D objects. Simplest examples of 3D 

drawing as the 2D images (visible-point perspective projections) was  inter-
preted as the 3D real-world object. According to this approach the object 

Q L[ ](L )  Fig. 5.69c, and assigned into the G Q{

[ [ ]( )]{ [ ]( ),3 }R TQ L L Q L L L  class. Finally, the object is interpreted as  
the 3D concave figure or as the shelf – the real-world object. Description 
of the cyclic thin class is given in Chap. 2. Figure 5.69d shows the same 



Fig. 5.69. Members of the G class and result of the decomposition into the thin 
bridge class 
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Naming object that is assigned to the category of man-made objects such 

(solids). Many objects, members of the category of the 3D geometrical figures 
can be also interpreted as members of the category of man-made objects. 
Also, real-world objects such as simple tools can be interpreted in terms of 
the 3D geometrical figures called solids. During learning process the learned 
object of the line drawing category is transformed into the visual representa-

similar shapes. These categories are expressed by following categorical chains: 

Fig Pol NPol Cub Pri,M
O Ld El 3DF  and 

Ear NLiv NMan Min
M

O Ld El ReO . The 
multiview representation (described in Chap. 4) is denoted by upper sub-
script of the symbol that denotes in the perceptual category M

Ld , where M 
denotes the multiview drawing. The visual concept of the multiview  
representation of solids consists of three visual names. For example, the 

are often interpreted as members of the category of 3D geometrical figures  
as a machine part utilizes the category of the line drawing. The 3D objects 

object given by the different perceptual category – the orthographic pro-
jection. The result of decomposition (the thin object) is shown in Fig. 
5.69e. Figure 5.69f, h show another examples that are more complex and 
the result of decomposition of these objects into the thin object is shown 
in Fig. 5.69g, i. 

tion called the visual schema or the generic visual concept given by the multi-
view representation. The learned category of the 3D solids has its link with 
category of the 3D world objects such as the category of minerals that have very
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OP 2 4 1 1 1 4 1
Cylinder { [ [ ]] , [ [ ]]( )}R E R EM L K Q M L M . 

Fig. 5.70. Examples of multiview representation of members of the category of 
convex 3D figures 

the circle and two rectangles MV 4 4 4
Cylinder { , , }R R RL L L . The top view of the 

multiview representation of the cylinder consists of the symbolic name of 

view is represented by a rectangle. The orthographic projection of cate-

{ }
The multiview representation is used to learn the generic visual con-

cept of the object and can be used in performing mental transformations 

istic view. For example, the object shown in Fig 5.70b is represented by 
the visual concept 1 4 4

1 { , , }MV
O C R RK L L . Examples of the visual concepts 

1 1 1
1 { , , }MV

O C C CK K K ,
MV 1 4 4
Cylinder { , , }C R RK L L , (c) 4 4 4

1 { , , }MV
O R R RL L Lϕ = , (d) 1 3 3

1 { , , }MV
O C E EK L L ,

(e) 4 3 3 3 3
1 { [ ]{2 2 }, , }MV

O R A O E EL L L L L , (f) 1
MV
O

1 1 1{ , , }C C CK M M ,
(g) 1 1 1 4 4

1 { [ ]( ), , }MV
O C C T TA K K L L . Examples of visual concepts of objects 

shown in Fig. 5.71 are as follows: (a) 4 4
1 { [ ]{2 },MV

O R RL L
4 4 1 5 3[ ]{2 }, [ ]( )}R R RL L Q L L , (b) 4 4 1 5 3 1 5 3

1 { [ ]{ , [ ]( )}, [ [ ]( )]MV
O R R R RL L Q L L Q L L

4 1 5 3 4{2 }, [ [ ]( )]{2 }}RR RL Q L L L ,  (c) 5 3
1 { [ [ ]( ) {MV

O R R RQ L L Qϕ ρ=
3 5 3 4 4 5 3 4 4 52 )}, [ [ ] ( ) ]{ }, [ [ ]( )]{[ ]( ), , , , [ ]R R R R R R R R sL Q L L L L L L L Q L L L L LQ Qρ ρ

3 4( ), }}L L  (d) 4 4 4 8 3 4 3 6 1
1 { [ ]{4 , [ ](4 )}, [ ]{2 , }, [MV

O R R R R RL L Q L L L L L Qϕ ρ ρ ρ= ⋅ ⋅
5 3 4[ ]( )]{2 }}R RL L L⋅ , (e) 5 4 4 5 4 6

1 5

1 { [ {2 , },

[ [ ]

MV
O M R R M R ML L L

Q L

ϕ ρ

ρ

= ⋅ ⋅
3 4 1 5 3( )]{2R R RL L⋅
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gory of line drawing of the cylinder shown in Fig. 5.70b is given as 

cylinder shown in Fig. 5.70 is represented by a circle whereas the frontal 

during thinking process. The generic visual concept (the multiview repres-
entation) consists of three symbolic names that refer to each character-

of  objects  shown in Fig.  5.70 are as  follows:  (a) 
(b)

] 5[ ]L (L ), L Q, [ ]L3 4 2 6

( ,5 3 4

R s ,

]M

,Q [L ]( )L }}.

]{2 ,L L L, }, ρ[L6



Fig. 5.71. Examples of multiview representation of members of the category of 
concave 3D figures 

Fig. 5.72. Examples of multiview representation of members of the category of 
cyclic 3D figures 
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During the learning process of members of the perceptual category of 
the line drawing, the object is at first transformed into the symbolic 
name and next visual concept is learned by finding possible 3D visual 

bolic names for the projections of the parallelogram (Fig. 5.73a–c) are 
as follows: (a) 6 4 4[ ]{2 , }O QL L L , (b) 6 4 4[ ]{2 , }QL L L , (c) 6 4 4[ ]{ , }T RL L L .

Fig. 5.73. Example of solids used in learning of the visual concepts 

   a b c d e

   f g

interpretations. For example, the object shown in Fig. 5.73a represents 
the orthographic projection of the parallelogram, whereas objects in Fig. 

The symbolic names of the multiview representations as well as the sym-
bolic names of the main aspects of the projections such as orthographic or 

2 6 3[ ](2 )}RQ L L . As we can see based on the generic visual concept there is 
a possibility to “see” visual object in the context of other objects. 

Examples of visual concepts of objects shown in Fig. 5.72 are as follows: 
(a) 1 4 1 4 4

1 { [ ]( ), , }MV
O R C R RA L K L L , (b) 1 4 1 2 6 3

1 { [ ]( ), [ ](2 ),MV
O R C RA L K Q L L

5.73b, c show the projective projection of the parallelogram. The sym-



The perceptual category of the shaded object is most often used 2D vis-
ual representation of the real-world object category. Deriving shape infor-
mation from intensity variation in a single image is a difficult problem. 
Shape from shading is concerned with the extraction of the shape informa-
tion from the intensity variation in the image plane. In this research the 
shading is concerned with the coloring of the different patches of the ob-
ject. It is assumed that all patches are uniformly colored and there is a sig-
nificant difference between the different colors of patches. In the case of 
objects where shading can be interpreted as the patches of the uniform 
color the interpretation is given in the terms of the objects of the colored 
class . During the naming process phantom is decomposed into patches 
and assigned to one of the G or classes. For example, object shown in 

4L  and is assigned into 
class 6 4 4{ }{2 }O RL L L . The symbolic representation in the form of thin 
complex G class is next obtained an given as: 6 3 3{ }{ [ ]}G L L . Descrip-

The ontological categories of the real-world objects such as category 
macro, micro, or earth objects categories are learned based on the selected 
visual representatives of the perceptual or structural categories. Each pro-
totype of the selected category need to be learned based on the larger set of 
phantoms that represents the different perceptual as well as the different 
structural categories. The category of living objects need to take into ac-
count the difference in shapes that are caused by the movement of parts 
(e.g., legs) and the different pose (e.g., sitting). 
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the iterative learning the selected 2D representation can be learned. For 

the following symbolic names: (d) 4 3 3[ ]{ }EL L L , (e) 6 4 4[ ]{2 }O TL L L ,
(f) 8 4 6[ ]{3 }L L L , (g) 7 4 5[ ]{3 }L L L  were used. 

example, learning of the visual concept of solids shown in Fig. 5.73d–g 

Naming of the minerals often called mineral recognition required not only 
visual information but also additional information that can be obtained by 
utilizing the measurement of the specia l features such as hardness. The  

Fig. 2.34 is decomposed into three convex objects 

tion of the G class is given in Chap. 2. 

mineral recognition requires often the microscopic photographs that belong  
to the micro category of the real-world object. As it was described in Chap. 4, 

projective projection are part of the visual concept of the real-world  

spectrums of different shapes of the real-world object. In the first step of 
object. Learning of the visual concept does not assume learning of all 
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El ReO Ear NLiv Man Min Nel Sul Sfo, , .

such as the category of minerals or rocks require also learning the scien-
tific knowledge. Minerals are materials that make up the rocks of  
the Earth crust. Understanding of minerals is connected with mineral 
recognition and requires knowledge of the mineralogy that is learned 
and represented by the knowledge chain given in the form: 

KB KOb GeOb MinO NLiv NMan Min Rock, .
The real-world object from the category of earthy living object is named 

according to the classification scheme taken from the biological science. 
The visual concept of each prototype is learned utilizing different percep-
tual categories. During the first stage of learning selected categories of 
animals are learned based on the representatives of selected perceptual 
categories of object. For example, at the first stage of learning of the visual 
knowledge of the animal category, representatives from the silhouette 
shown in Fig. 5.65 can be used. The nonvisual knowledge can be learned 
independently and need to include the detail scientific knowledge as well 
as more general common knowledge. Learning of the visual concept of the 
animal requires learning of the visual parts of the animal such as legs, eyes 
as well as the anatomical parts. The knowledge of the anatomical parts can 
be seen as the knowledge of the veterinary surgeon or butcher. 

parts of the plant. For example, when learning of the visual category of 
the three there is a need to learn the parts category of the tree such as 
leaves, fruits, or flowers. The part category is an auxiliary category that 
can be derived from any part of the categorical hierarchy. The part 
schema shows the links to the categories that constitute of the object. For 
example, the part category of plant such as flowers or fruits is derived 
from the tree category and is given by following categorical chain: 

Pla Tre Flw Frt.. [ , ]

such as “Jonathan” indicates a special category of the apple tree. Each vis-
ual category of plants has its knowledge schema that includes other visual 
features such as color and the nonvisual features such as size or weight.

Learning knowledge of the category of the nonliving natural objects 

Learning of the botanical category such as a plant requires learning of 

. The category of tree leaf indicates that the
leaf is part of the tree. The category of tree fruit such as an apple indicates
that the apple is a part of tree. The specific category of the apple tree

the category of minerals is derived by following categorical chain 



Fig. 5.74. Example of task from the mathematical test 

The naming of the perceived object can be only one of the tasks in solv-
ing mathematical problem. Mathematical problem can be formulated as 
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matical object requires interpretation of the object in terms of general mathe-

object can be named on the different categorical levels: the lowest level – the 
cosines function category; the specific level – the trigonometric function 
category, or the general level – the periodic function category as shown in the 
categorical chain: Cur NCur OpCoC Per Trig Cos.. .
Selection of an appropriate level depends on the contextual information 
and type of the examined object. For example, naming an examined object 
as the periodic function whereas it is representative of the cosine function 

general level is that the perceived object was not well visible or the task 
was formulated in such a way that requires only the general information 

nate system are often used to formulate the visual test. The example of the 
tasks from the mathematical tests is shown in Fig. 5.74. These tasks are 

5.5.2.5. Naming of the Mathematical Objects 

such as the named mathematical figure. Naming perceived object as a mathe-

The category of mathematical object that is derived from the knowledge object
refers to the structural categories such as the element category and pattern
category. Naming of the mathematical object refers to mathematical elements 

matical concepts such as a periodic function or a function with discontinuity. 
Naming refers to the different categorical levels. For example, perceived  

is referring to general level. The reason for naming a perceived object at the 

about the perceived object. Many problems are often defined in the term of 
mathematical objects and the objects from the category of Cartesian coordi-

formulated in terms of the mathematical curves. The tasks were formulated
as follows: “Find the graph that corresponds to a given relationship, e.g.,
XY = a, Y = X/a, Y = XX,” or “Find the graph of a given type of function,
e.g., a periodic function with discontinuity.” 

follows ‘find the graph that corresp onds to a given relationship’, e.g., 



with two maximums and one minimum” “function with an inflection 

shows examples of curves that can be named at the different categorical 

Fig. 5.75. Example of the named curves 

In mathematics very often mathematical elements (curve, graphs) are 

plotted with additional visual information such as axes, labels on the axes, 
the text of the different fonts, or frame plot around the plot. These complex 
objects that are composed of objects of many categories are called mathe-
matical pattern derived from the pattern category. The category of pattern 
refers to the visual object that is composed from the different element cate-
gories.
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pattern is understood in the context of the knowledge of this category. 

about elements of the coordinate system such as axes and knowledge 
about interpretation of the graph in the context of information that co-

locate geometric forms in reference to a reference point. The category of 

El Sg VSym MCoS Ax Lab Fra Mar Gra, , , , , 

point,” or “the graph of  a monotone increasing function.” Figure 5.75 (a–g)

specific categorical level or a convex curve at the general categorical level 
whereas the curve given Fig. 5.75g can be called the periodic function at 
the specific categorical level. 

   a b c d e f 

placed in the context of the coordinate system. The graph of function is often 

The object that is classified to one of the categories of the mathematical 

For example, the category of the coordinate system supplies knowledge 

ordinate system supplies. Application of knowledge makes it possible to 

supplied by the knowledge schema of the category of the coordinate
system make it possible to identify and remove labels, texts, and axes. As it
was described in Chap. 4 the element category of the coordinate system
consists of many different categories and is given by the categorical chain:

g

XY = a, Y = X/a, Y = XX or ‘find the graph which can be described by the 
name: the periodic function, the function with discontinuity’, “a function 

levels. For example, a curve in Fig. 5.75e can be named a parabola at the

mathematical coordinate systems consists of axes, labels on the axes,
the text of the different fonts and frame around the plot. The knowledge



MOb MCoS Ax Lab Fra Mar Gra ViC Nam Def Int, , , , { , , , }… .

ferent coordinate systems such as Cartesian or polar. The categorical chain 
of the pattern category of the coordinate system supplies the knowledge 
about the visual aspect of the perceived object. The nonvisual knowledge 

Fig. 5.76. Examples of decomposition object from category type C 

system refers to the process category and is represented by the perceptual 
category of animation. An example of this type of the differential equa-
tions is the Duffing’s equation [8]. For this equation, in a suitable 2D 
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follows: Pat Sg VSym MCoS Car Pol, . The 
knowledge chain of the element category of the coordinate system supplies 
knowledge about any particularly element and is given as follows: 

This categorical chain supplies knowledge about interpretation of the dif-

MOb MCoSP Car Pol ViC Nam Def Int, ,. { , , , } . The know-
ledge about interpretation of the mathematical object is learned during the 
learning process. During (naming) understanding process an examined  
object needs to be interpreted as the one of the category of the coordinate 
system. In the first stage of understanding process the appropriate process-
ing methods are applied to find proper interpretation of all parts of the  
visual object and to find the type of the coordinate system. For example, 

mathematical figure. During processing stage, at first two labels are identi-
fied and removed, next two axes are identified and removed, and next the 
mathematical figure is identified. The further interpretation is based on the 
knowledge that is obtained from the knowledge schema. 

examined object is supplied by knowledge object given as follows: 
that is needed during interpretation of the mathematical aspect of the

whereas the categorical chain of the pattern of the coordinate system is as 

equation is often used as a model of the dynamical systems. The dynamical 

the object in Fig. 5.76 is interpreted as an object from the category type C. 
The object from this category consists of two axis, two labels (X, Y) and the 

A member of the category of mathematical objects such as a differential 



parameter plane, characteristic points can be formulated as double (singu-
lar) points of plane curve defined by a bifurcation equation. The visual 
inspection of the surfaces of section can be used for tracing behavior of the 
dynamical system. Figure 5.77 shows an example of the evolution of the 
dynamical system. These shape changes are interpreted in terms of the dif-
ferent characteristic regions that can indicate the different behavior of the 
system.

Fig. 5.77. Example evolution of the dynamical system that is represented by 
members of animation category 

Similarly as the category of mathematical object, the category of statistical 

of the statistical object refers to the category of statistical objects and the 
statistical knowledge. Statistics makes extensive use of various types of 

or element category.
Examples of members of the category of statistical elements are shown 

in Fig. 5.78. Naming of these objects is connected with solving problem of 
data interpretation. Objects shown in Fig. 5.78 represent the following 
categories: the box plots category, the pie chart category, and the bar 
graphs category. Understanding of these statistical objects is the task that 
involves knowledge of the interpretation of the statistical data. 

                   

      

Fig. 5.78. Examples of members of the category of statistical elements 
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5.5.2.6. Identification of Statistical Visual Objects 

object can be regarded as one of the structural categories such as the element 
category or the pattern category. Naming of the perceived object as a member 

graphs and naming these objects require identifying it as a pattern category 



which visual concepts of visual categories are learned. For each specific 

Fig. 5.79. Data transformed into phantom by applying the perceptual transformation 
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Problem solving in statistical data analysis is concerned with interpreta-
tion of data in terms of the category of statistical object. The visual  
object that is to be interpreted is obtained by applying one of the data 
visualization procedures to the rough data. In data analysis the visualiza-
tion of data is often the first step in analysis of data. One of the most  
often visualization methods used in statistic are the scatter plot or the 
multidimensional representation. Data given in the form of a set of points 

)},),...(,(),...,,{( 11 NNii yxyxyx  is called a set of 2D dot patterns 
(a scatter plot). During visual data analysis these points are transformed 
into 2D visual object (phantom) (Fig. 5.79). 

The statistical categories are learned during learning stage and after 
learning they are used during naming process. Learning statistical catego-
ries involves learning of the visual knowledge in the form of the categori-
cal chains of statistical objects and the categorical chains of the knowledge  
objects. The category of the scatter plot data is derived from the category 
of the visual object and is divided into the category of the regression 
analysis, the category of cluster analysis or the category of the discrimi-
nant analysis StCoS SPlo Reg Clu.. , . The category of the regres-
sion analysis is divided into the category of linear regression, the category 
of nonlinear regression or the category of weighted least-square regression 

StCoS SPlo Reg LiR NLR WSR.. , , .
Learning prototypes of the category of the linear regression requires 

generating the most typical representatives of the category of the scatter 
plot data. The data that are generated are used to obtain the visual objects from

5.5.2.6.1. Data Analysis 



category derived from the category of the regression analysis the visual 
concept is learned. The nonvisual knowledge concerning the statistical 

the knowledge schema of the knowledge object. The visual concept was 

is big enough to form near homogenous distribution of the points inside 
the pattern. The visual concept is used to extract the inferential rules in the 
following form: [ ] ia , where  is the symbolic name of the 
perceived object obtained during the reasoning process,  is the shape 

ia
obtained during the learning process: (a) [ ]T Ta ,
(b) [ ]L La , (c) [ ]N Na . The visual concept 

{ ( , )}T C  denotes the whiskers class and T  denotes action “trans-
form data.” The visual concept { }L E  denotes the convex class and 

L  denotes action “linear regression model.” The visual concept 
{ }N Q  denotes the concave class and N  denotes action “nonlinear 

regression model.” In the case when there is a need for a specific regres-
W W

{ }W W  denotes the trapeze-like class and W  denotes action 
“weighted least-square.” 

Fig. 5.80. Example of reasoning process that assigns the dot pattern (a) into the 
category of weighted least-square regression 
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obtained during the learning process assuming that a number of data points 

method of data analysis as well as interpretation of the results is stored in 

category (the visual concept) obtained during the learning process, and 
denotes the action that needs to be undertaken. Example of rules

sion the rule are applied [ ] a  where visual concept ,

During the data analysis, the data transformed into a phantom are inter-
preted as one of the statistical data categories and the visual  inference
is used to select appropriate statistical procedures for further processing.



a model, and interpretation. 

the following steps: 

,11 NNii y

Fig. 5.81. Application of the perceptual transformation 

2. The phantom u  is transformed into a set of critical points  by the 
sensory transformation ( )u .

3. A set of critical points  is transformed into the symbolic name 
during reasoning process R .

4. The visual inference [ ]T Ta , where  is the symbolic 
name obtained in the reasoning process, is applied. 

{ ( , )}T C  denotes the whiskers class (whiskers category) and T

6. Steps 1, 2, 3 are repeated. 
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5 . In the case of data given in this example the visual concept

denotes the action “transform the data [y = log(Y) x = log(X)]” (see Fig. 5.82).

7. The visual inference [ ]L La  is applied. The symbol 
denotes the symbolic name of the perceived object obtained during the rea-

{ }L E

L

regression model.” 

Another category that is derived from category of statistical objects is 
the category of cluster analysis. Clustering algorithms are effective tools 
for exploring the structure of the complex data set. Most of the clustering 

data, a regression analysis is given. The regression analysis consists of
the following stages: the data analysis, a model selection, fitting data to 

denotes the visual concept that consist 
of one symbolic name (convex class)  and   denotes the action “apply a linear

)} , are transformed into 

The regression analysis that utilizes the visual inference is performed in 

the phantom u  (see Fig. 5.81). 

soning process, whereas 

1. The data  {(x , y ),..., (x , y ),...(x

As an example of applying the visual inference in understanding the 



algorithms perform well in the case when data makes regular clusters. In 
[9] authors propose a new clustering algorithm to cluster data with arbi-
trary shapes. In comparison to algorithms presented in [9] our approach is 
based on “seeing” pattern instead of computation of some statistics. During 
learning of cluster category only cases (samples of the data that generate 
pattern) for which the number of data points was big enough to form near 
homogenous distribution of points inside the pattern, were selected. In 
many real-world statistical problems the number of points is often not very 
big and further research is needed to deal with the problem when the num-
ber of data points does not create a homogenous pattern. For the purpose 
of this research data were generated from the known statistical distribu-
tions (e.g., the normal distribution). Using the synthetic data does not limit 
the usefulness of the presented method. The real-world data, where the 
number of data points is big, have the same statistical properties as data 
generated from the statistical distributions. 

Members of the category of cluster analysis were learned by generating 
points from the known distributions, or by using clusters that were  
reported in literature as a difficult to approach by a classical cluster analy-
sis method. Examples of the data used in cluster analysis are shown in Fig. 
5.83. The categories that are learned make it possible to identify clusters 
based on their visual properties. During naming process each cluster was 
identified as a member of one of the shape classes. Clusters shown in Fig. 
5.83 were easily identified as members of the known shape categories. 

analysis
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Fig. 5.82. Application of the visual and perceptual transformations 

Fig. 5.83. Examples of the data used in the learning of the category of cluster 



model requires understanding it in the context of category of the real-world 

only selected features of the real-world object and the visual representation 
of the model is usually given in the form of the schematic representation. 

The object that is a member of the category of the physical model needs 
to be understood in the context of the real-world object to which this 
physical model refers. The interpretation is based on the knowledge 
schema that is supplied by the knowledge object. One of the important 

of the real-world object or phenomena (e.g., pendulum) is to recognize it 

knowledge schema of the category of the real-world object (pendulum) 
contains the link to the category of the visual physical model of the pendu-
lum. The category of physical model (pendulum) supplies the schematic 
visual representation of the real-world phenomena – pendulum. The 
knowledge schema supplies the knowledge connected with the mathemati-
cal model (equation) as well as the interpretation of the mathematical  
results. Perceiving pendulum refers to the pendulum category that is  
derived from the category of real-world objects and at the same time refers 
to pendulum category derived from the category of physical model. This 
categorical link makes it possible to “think” about the real-world object in 
terms of the model of this object. 
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The category of physical visual models consists of predefined visual 
symbols. The element category of the category of physical model includes 
the schematic representation of the real-world object or phenomena 
(physical object), letters, words, arrows, lines, arcs El Sg

VSym PhMo PhOb Lab Ax Mar Gra

Naming of the perceived object as an object of the category of physical 

5.5.2.7. Category of Physical and Engineering Models 

problems in understanding of the visual object is to interpret it in the context 
of the known category of the physical model. The first step of understanding 

as a member of a given category of real-world object (pendulum) and to
interpret it in the context of the category of the physical model. The 

the category of physical visual models composes the different elements of  
this category into one of the visual objects. The category of the physical 

object to which the category of physical model refers. A model represents 

visual model is divided into the category of lever, wedge, axle, pulley,

, , , , .  The pattern category of 



Fig. 5.84. Example of task to draw a drive rollers connected by the drive belt 

During naming and interpretation of the object that is a member of the 
category of physical visual models all auxiliary objects are interpreted and 
removed. Figure 5.85 shows interpretational steps in understanding of the 
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model of uniform beam that carries a concentrated load. 

The visual model is often used to understand the functionality of the vis-
ual phenomena. In that case understanding is focused on the problem “how 
it works” and the schematic form of the visual model shows only this  
aspect of the object (machine) that carries out information that is related to 
its functionality. The schematic form of the visual model is often given as 
a task when testing the understanding abilities of the student. For example, 
a set of rollers or rollers connected by the drive belt are tasks that are often 
used in these tests. The tasks given to the students is about designing a set 
of rollers that turn in a particularly way. A set of rollers can be made by 
placing rollers in contact. One roller (shown in grey) is the driving roller 
and it makes the other to run. The task is formulated as follows: “which 
rollers will turn in the same direction as the drive roller, and which will 
turn in the opposite direction?.” Another task is formulated as follows: 
“Draw a drive belt around the set of rollers (shown in Fig. 5.84) so that all 
the large rollers turn clockwise and all the small rollers turn anti-
clockwise. The belt must not cross over itself.” 

Pt PhMo Lev Wed Pul.. , , ,
Rol Pen InPl, , .

inclined plane, or pendulum: 



Fig. 5.85. Steps in interpretation of the visual model 

are many different forms of reasoning and short review of this topic was 
given in Chap. 1. Reasoning that is based on analogy is called analogical 

The similarity relation that is found between object X and Y and is used to 
find the object Q that is similar to object Z. In general problem solving ap-
proach the operational definition of the analogical reasoning is formulated 
[10]. Reasoning based on analogy is often used in problem solving. 

The visual analogical reasoning is based on the similarity relation of the 

results of performing the task “select objects similar to the cipher 9” are 
shown in Fig. 5.87. In the first row, objects that were selected based on 
visual similarities among objects are shown. Objects shown in the second 
row are objects that were selected based on the conceptual similarity of 
members of the specific category derived from the cipher category. Objects 
shown in the third row are objects that were selected based on the concep-
tual similarity of members of the specific categories derived from the cate-
gory of cart symbols. Objects shown in the forth row are objects that were 
selected based on the conceptual similarity of members of the specific 
categories derived from the category of mathematical symbols. 

The main difficulty (for SUS) in selection of the similar objects based 
on the visual similarities among objects was to discriminate among the 
very similar visual objects. To find visually similar objects at first the 
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In order to solve the problem there is a need to apply reasoning. There 

5.5.2.8. Visual Resemblance: Visual Analogy 

a conceptual grouping at a set of objects shown in Fig. 5.86. Example of the 

reasoning. The term analogy is referring to the type the of reasoning that is 
described in psychometric tests in the following way: “X is to Y as Z is to Q.”

visual objects. The similarity, both visual and conceptual, is used to find 
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Fig. 5.86. Examples of visual objects used in experiment 

Fig. 5.87. Results of selection of the objects similar to the cipher 9 
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process objects that have the same symbolic name are selected. For example, 
objects shown in the first row Fig. 5.86 (the first group) are members of 

1

are members of the cyclic class 1[ ]A Q .

among group of objects. These relations are often expressed in the form “X 

sible “answer.” The analogical reasoning can be based on the visual simi-
larities of objects or conceptual similarities which have been described in 
the previous example. In the case of the visual similarities of objects the 
similarity relation is based on the selected visual features of the objects. In 
the case of the conceptual similarities the visual analogical reasoning is 
based on the conceptual similarities of the object categories. Examples of 
tasks that need to use visual analogical reasoning based on the conceptual 

The conceptual similarities are found during categorical reasoning. The 
categorical reasoning is performed by moving through the categorical 
chain El Sg VSym Mth Mus EnSym CarSym, , , . Mov-

Mth Mus EnSym CarSym, , ,

cube so the circle is a visible aspect of the ball. As the result of the visual 
analogical reasoning the ball is selected from other “answers.” Using SUS 

4 4 1 1(3 ) (3 )R R C CL D L K D K ,
where 4 1(3 ) , (3 )R CD L D K  denotes symbolic name of the thin G class. A tri-

is a visible aspect of the cube. As the result of the visual analogical reason-
ing the cube is selected from other “answers.” Using SUS notation these 

3 3 4 4) (3 )R RL L D L .

denotes object that is to be selected from the set of objects given as the pos-

Fig. 5.88. 

the cyclic class A [Q](K ) , whereas all objects in the first row in Fig. 5.86 

.  Next, moving further up the category of signs 
can be selected. 

The visual analogical reasoning is based on the relations discovered

is to Y as Z is to?” where X, Y, Z are given objects whereas symbol “?” 

similarities of the categories, in order to solve these tasks, are shown in

In the first example (Fig. 5.88a, b) the visual analogical reasoning is 
based on the perceptual category of line drawing that utilizes spatial rela-
tions 2D–3D. A square, in Fig. 5.88a, is one of the visible aspects of the 

notation these relations can be written as: 

angle, in Fig. 5.88b, is one of the visible aspects of the prism so the square 

L D(3relations can be written as: 

symbolic name for each object is obtained and next during generalization 

gories: mathematical, musical, currency, cart, or engineering symbols: 
ing one level up indicates selection of following visual symbol cate-



Fig. 5.88. Examples of task where analogical reasoning is used to solve this task 

Figure 5.89 shows visual objects that represent relations between the 
different categories of the real-world object. The task is formulated in the 
terms of the visual objects. Two objects are given to find the similarity  
relation, and next based on this similarity relation one of the four objects 
that represents possible solution is selected. The selected object has to  
be similar to the third object that is given as part of the similarity relation. 
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Fig. 5.89. Examples of task where analogical reasoning is used to solve this task 

During finding of the solution the visual objects are assigned to the proper 
categories and next the similarity relations among objects are established. 



El ReO Ear Liv Ani Cho Fis Amf Rep Mam
, , , , .
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Ave

The category of animal is divided into the category of the young animals 
and the category of adults. The visual appearance of the young animal  

reasoning refers to the two categorical chains. The first one is used to 
establish the similarity relation between two categories. When two  
objects are assigned to the proper categories the similarity relation is 
found by “cutting the categorical chain” where these two categories dif-
fer. In the second stage the proper visual object is selected based on the 
relation that was found. For example, in the task shown in Fig. 5.89a 
the similarity relation is obtained by cutting the categorical chain 

Ani Cho Ave Hen hen chc.. ,  moving to the right of 
the Hen  category. As the result the two categories are obtained 

hen chc,  (the hen and the chicken). The relation between two objects is 

Ani Cho Mam

Dog dog sdo, ,
right of the Dog  category the two categories are obtained dog sdo, .
These two categories represent the same relation young-adult as the rela-
tion that is found between two first objects. The relation that is found 
based on the categorical chain is the same for two pairs of objects 

hen chc dog sdo

Solution of tasks shown in Fig. 5.90 is based on relations such as wear-

category of wearing is divided into the category of the part of the human 
body such as the head, hands, legs, or arms: MMad Wer..

OldW MidW NewW TodW Hed Hind Leg Arm, , , , , , . The specific wear-
ing categories that are derived from the part of the human body shown in 
Fig. 5.90a are as follows: for the head category: Hed Hat Cap.. , ,
and for the leg category: Leg Sho Soc.. , . Based on the categorical 

animals that is given by the following categorical chain: 
For example, the task given in Fig. 5.89 refers to the category of

next object that is found is the dog ..
such that chicken is a young animal and hen is an adult animal. The

, , so the selected object is the small dog. Similarly 
the task given in the Fig. 5.89b can be solved. 

is different than the visual appearance of the adult animal. The analogical 

. Cutting this categorical chain by moving to the 

ing and a part of body or tools and material, and is more difficult to find. The 
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is as follows: Wer TodW Hed Hat.. . Similarly for the 

Wer TodW Leg Sho..
the relation described by the part of the categorical chain 

Hed Hat and Leg Sho

The task shown in Fig. 5.90b is more complex. In this example not only 
knowledge given by the categorical chains but also knowledge supplied by 
the knowledge chain is used to solve this task. At first two objects are inter-
preted as the category of mechanical tools: a hammer and a nail. The cate-
gory of the mechanical tools is derived from the men’s profession category 

El ReO Ear Liv Man Prf Mas Car Meh, , ,

Elc Tay, , Sec . The tool category is derived from a man-made object, for 
example, the hammer category is derived from the category of mechanical 
tools: MMad Tol Mech Ham Wrn.. , . The nail category is 
derived from the material category and given by the following categorical 
chain MMad Mat Mech Nal ScD.. , . From the categorical 
chain of the knowledge category the relation between hammer and nail is 
found. The hammer category is derived from the tool category of the cate-
gory of mechanical profession Mech Tol Ham ScD.. ( ) ( , ) . The 
nail category is derived from the material category of the category of mecha-
nical profession Mech Mat Nal Scr.. ( ) ( , ) . From the category of 
casual relation between the tool category and the material category given 
as follows: Tol Ham Nal.. ( ) ( ) [ ]  the relation between the first and 

is interpreted as a member of the screwdriver category. The similarity  

chains the relation is found for the first two objects and is used to find the 
fourth object. The first object in Fig. 5.90a is a member of the hat category 
and the second object is a member of the head category. Based on the 
categorical chain the relation that is found by cutting the categorical chain 

third object that is a member of the leg category the fourth object is
selected from the categories obtained by cutting the categorical chain as

 is selected based on the visual objects 
shown in Fig. 5.90a. The result of the selection is an object – the member
of the leg category. 

follows

the second object in Fig. 5.90b is established. The third object in Fig. 5.90b  

.  The forth object that fulfills



given in the form of intelligence tests. For example, in the test “a stack of 
overlapping tiles” the task is formulated as follows. The stack is turned 

shows how the stack looks after turning from left to right. Solving this 
problem requires interpretation of the visual object as a member of the 
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Tol Ham Nal.. ( ) ( ) [ ]
fourth object is based on the knowledge chain of the third object 

Tol ScD.. ( ) ( ) Scr[ ] . As the result the object that is a member of 
the screwdriver category is selected. 

category of 3D figures or the category of real-world objects. For example, 
object in Fig. 5.91a (left on top) given by symbolic name 

4 4 4 4 8 3 4[ [ ](4 )]{ [ ](4 ), 4 }Q R R QQ L L Q L L L  can be interpreted as a concave  
object 4 8 3[ ](4 )RQ L L  and four squares 4

QL  attached to this concave object 
or as four squares 4

QL  placed on the bigger square 4
QL . The visual objects 

Fig. 5.90. Example of tests with analogical reasoning (a) the relation ‘wearing- 

relation that is found by comparison of the knowledge chains for the first 
and for the second objects  and selection the  

corner. Figure 5.91 shows how the stack would look after turning. Solving 
over from left to right, so that the top left corner become the top right

5.5.2.9. Spatial Problems

transformations. These visual problems are often formulated as the tasks 
Solving of visual problems often requires abilities to perform visual spatial 

this task by choosing one of the four alternatives (A, B, C, and D)

part of body’ (b) the relation ‘tool-material’



shown in Fig. 5.91a belong to the “bird’s eye view” line drawing percep-
tual category. The problem called “a stack of overlapping tiles” is similar 
to the problem described in previous sections of this chapter which was 
solved without reference to ontological categories. In this section the per-
ceptual problems that are presented requires reference to ontological cate-
gories in order to be solved. In contrary to the tasks described in previous 
sections proper interpretation of the visual objects is selected based on the 
contextual information given by the linguistic description – “overlapping 
tiles.” Each combination of tails is learned during the learning stage. 
During learning process the visual objects are learned as the linked pattern 
– composition of tails and theirs turned over version, as shown in Fig. 
5.91a. Each tile represented by its symbolic name has its “turning” version 
that is marked by an arrow and is given as follows: 

3435.5. Visual Thinking as a Problem Solving

4 4 4 4 8 3 4 4 4 4 4 1 5 3[ [ ](4 )]{ [ ](4 ), 4 } { [ ](4 )}{ , 4 [ ]( )}Q R R Q Q R Q RQ L L Q L L L Q L L L Q L L
4 4 4 1 6 3 4 1 5 3 4 4 4 1 6 3{ [ ](4 )}{ [ ](2 ),2 ,2 [ ]( )} { [ ](4 )}{ [ ](2 ),R R R R RQ Q QQ L L Q L L L Q L L Q L L Q L L

4 1 5 32 , 2 [ ]( )Q RL Q L L }
4 4 4 1 5 3 4 1 5 3 4 4 4 1 7 3 4{ [ ](4 )}{ [ ]( ), ,3 [ ]( )} { [ ](4 )}{ [ ](3 ),3 ,R R R R RQ Q Q QQ L L Q L L L Q L L Q L L Q L L L

1 5 3[ ]( )}RQ L L

Fig. 5.91. Examples of tasks called “a stack of overlapping tiles” 



“bird’s eye view” line drawing perceptual category. At first the 2D figures 
are interpreted as the 3D solids or real-world objects and next they are 
placed on a given background. The 3D view of the scene is obtained from 
the 2D projection and matched with the scene given in the control image. 
The solids in the scene can be represented by the line drawing category 
(Fig. 5.92a–c) or as the category of shading object (Fig. 5.92d). The pro-
blem shown in these tests can be seen as the simplification of the real-

the linguistic form as follows: “Each question (visual object) shows a 
‘bird’s eye view’ of a table top with a number of objects on it. Below are 
shown four possible plans of table top. The task is to select from A, B, C, 
and D the one which shows the correct positions of the objects on the top.” 

on the table”). The visual concepts of ontological category of “objects on 

Fig. 5.92. Examples of tasks “objects on the table” 
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bolic names of the “turned” version of stacks. Similarly, the task shown in 
Fig 5.91b, c can be solved. 

Solving the task for the tests given in Fig. 5.92 requires knowledge 

objects shown in Fig 5.92a–c belong to the perspective projection or 

From this representation the solution is easy to obtain. The solution is 
found by comparison the symbolic name of the given stack with the sym-

about the scene interpretation. The object needs to be interpreted as the real-

world spatial problem, solution of which requires transformation of the
visual scene into the ‘bird’s eye view’. The description of the test is given in 

The solution to this problem requires interpreting the perceptual category 
of line drawing as the member of the ontological real-world category (“objects 

world scene that consists of objects on the table and is seen from the “bird’s 
eye view.” Solving this task requires interpreting a visual object (on the top 
in Fig. 5.92) as the ontological category “objects on the table.” The visual  



Fig. 5.93. Steps in finding the solution to the task “objects on the table” 

is found and the position is reconstructed from the generic parallelogram 
and the marked lines. The solution is found by applying the following  
algorithm:

1. Find the 3D objects in the test in the relation to the lines that mark 
the location of each object 

2. For each 3D object find all possible “bird’s eye view” 
3. Find placement of the object on the table 
4. Transform the 3D object on the table into the “bird’s eye view” 

view” obtained in step 4 

The view of the solids can be found from the characteristic views of 

3455.5. Visual Thinking as a Problem Solving

The pattern category of the category of real-world scene such as (“ob-
jects on the table”) supplies knowledge about processing the visual object 
in order to extract the information needed during solving this type of tasks. 
The transformations (processing) of perceived object during solving of the 
task are shown in Fig. 5.93. At first, the generic class of the “scene” is 
found and next, the border points are removed. The generic parallelogram 
and marked lines are found and removed. Objects are identified and inter-
preted in terms of 3D object and next, the “bird’s eye view” for each figure 

the table” are learned as the structural pattern category. The structural pat-
tern category of “objects on the table” consists of the elements – members of 
such categories as geometric solids, fruits, or cups. 

5. For each possible answer select one that matches the “bird’s eye 

solids. Learning of the category of solids involves learning of the visual 
concepts of solids. Learning of the visual concept of the ontological
category “objects on the table” requires learning of the different visual
aspects of this category. 
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each visual object are obtained. Example of the object that are representa-

(a) 4 4[ ]{4 }R RL L , (b) 4 1 4 4 4 4 4[ }{ [ ]( ), , , }R R R R R RL ] A L L L L L , (c) 4 1 4 4[ ]{ [ ]( ),R R RL A L L
1 4 1 4 4[ ]( ), , }R C R RA L K L L , (d) 4 1 4 4 1 4 1 1 4 3 4[ ]{ [ ]( ), [ ]( ), [ ]( ), }R R R R C R RL A L L A L K A L L L ,

(e) 4 1 4 4 1 4 1 1 4 3 1 4 4 8 4[ ]{ [ ]( ), [ ]( ), [ ]( ), [ ]( [ ]( ))}R R R R C R R RL A L L A L K A L L A L Q L L .

the category “objects on the table” are shown in Fig. 5.94. The symbo-
lic names obtained for visual objects shown in Fig. 5.94 as follows:

tive of the visual aspect (the “bird’s eye view”) of the members of 

Figure 5.94 shows the visual aspect (the “bird’s eye view”) of the mem-
bers of the category “objects on the table.” During learning process the 
representative of this category are selected and the symbolic names for 

In order to find the placement on the tabl e, the table is divided into four re-
gions called cell. The placement in each cell is described by introduction a 
specific classes with additional symbols marking the placement of the object 
in the cell. Figure 5.95 shows the configuration of the objects in the cell.  
The symbolic names of the “cell” shown in Fig. 5.95 are given as follows:  
(a) 1 4 4[ ]( [{ },{ }])R RA L L p s , (b) 1 4 4[ ]( [{ },{ }])R RA L L p ld ,  (c) 1 4 4[ ]( [{ },R RA L L p

{ }])rd ,  (d) 1 4 4[ ]( [{ },{ }])R RA L L p ru , (e) 1 4 4[ ]( [{ },{ }])R RA L L p lu , (f) 1 4[ ]RA L
4( [{ },{ }])RL p Sd , (g)  1 4 4[ ]( [{ },{ }])R RA L L n s ,  (h) 1 4 4[ ]( [{ },R RA L L n { }])dP

(i) 1 4 4
R

{ }lu  – denotes  the  left upper part of the  cell, { }ru

denotes the right down part of the cell, { }Sd  – denotes intersection with the 
line,

Fig. 5.94. Example of the objects on the table (the “bird’s eye view”) 

}A [L ](L [{p}{Sd ] (, where symbol {s} – denotes the centre of the cell, 

upper part of the cell, {ld} – denotes the left down part of the cell, {rd} – 

dP  – denotes an object on the line. { }

 –  denotes the right
,



Figure 5.96 shows the configuration of the fourth objects on table repre-
sented by the symbolic description. The symbolic names for objects shown 
in Fig. 5.96 are as follows:

The symbols that are introduced make it possible to describe placement 
of the object on the table.

Interpretation of the real-world object in terms of its visual aspects 
given as the 2D representation requires that all characteristic aspects of the 
real-world object should be learned. In the case of solids the number of 
characteristic views (aspects) is significantly reduced. Each task that needs 
to be solved has its own specific representations that could reduce the 
number of characteristic views. For example, the solid can be visible from 

Fig. 5.96. Example of the objects on the table (the “bird’s eye view”) 
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4 4 4

4 1 4 1 1 1 3{ }{ ( )[{ },{ }], ( )[{ },{ }], ( )[{ },{ }],
R R R

R R CL L L
L A L p s A K p s A L p s

4 8
1 4 4( ( ))

R
RL L

A Q L [{ },{ }]}p s

4 8
1 4 4( ( ))[{ },{ }]}

R
RL LA Q L p Su

Fig. 5.95. Placement on the table: the table is divided into four regions called cells 

a.

b. 4 4 4

4 1 4 1 1 1 3{ }{ ( )[{ },{ }], ( )[{ },{ }], ( )[{ },{ }],
R R R

R R CL L L
L A L p A K s ld A L n dPSdρ

   a b

above when it is resting on one of its sides. The interpretation is given in the 

   a b d e f g h i c



         

Fig. 5.97. The “bird’s eye view” of the selected solids 

form of the aspect-solid relations. Symbolic names of objects (frontal  
view and “bird’s eye view”) shown in Fig. 5.97 are as follows:  
(a) 4 6 4{ }{3 }RL L Lρ− > , (b) 4 4 4 5 3 4{ }{2 } { }{ }R RL L L L Lρ ρ −− > , (c) 3 5 4 3{ }{ }L L L Lρ−> ,
(d) 4 4 6 4 4

R T
− 4 4 4 4 6 4 4

R R T
−

(f) 4 4 6 4 4{ }{ 2 }T TL L L Lρ −− > , (g) 4 4 8 10 8 4{ }{3 } { }{ 3 }R RL L L L Lρ ρ −− > .

In many cases in order to solve the visual problem the realistic visual 

schematic form. For example, the perceptual category of shaded object 
is transformed into the conventional line drawing object as shown in 

gory derived from the category of real-world man-made object. The gear 
as a real object is perceived as the perceptual category of the shaded ob-
ject (photograph of the object) given by the following categorical chain: 

Sh Pt ReO Ear NLiv MMad MMac Mech GearOν π σ ν ν ν ν ν ν ν                  

be approached by transforming the shaded object into category  
of the conventional line drawing object. During naming process  

Fig. 5.98. Different visual representations of the gears 

.
The task of finding of the direction of the moving object can  

Fig. 5.98. The object shown in Fig. 5.98 is a member of the gear cate-
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   a b c d

   e f g

L − > ρ{L }{L 2L } , (e) ρ{L }{4L L } {− > ρ L }{L 2L } ,
,

5.5.2.10. Problem Solving – Categorical Knowledge 

representation of the real-world object needs to be transformed into a 

,

,



(recognition) the object given as the perceptual category of the  
shaded object Sh Gear...O  is transformed into silhouette

Si Gear...O  and next into the schematic form of the gear 

of the conventional line drawing object. The category of the  
physical visual model is represented by structural pattern category 

object the schematic form of the object is also learned. Visual problem 
solving requires representing an object that is given as a photograph of the 
real-world object in the schematic form that shows only essential parts of 
the object.

The visual problem can be also given in the form of the linguistic des-
cription as an aid to the visual representation of the object given in the 
schematic form. Example of the task given in the form of linguistic des-
cription is the task of finding movement of rollers. In this task rollers are 
represented in schematic form as shown in Fig. 5.99, where one roller 
(shown in black) is the driving roller and it makes the other to run. It is 
assumed that the driving roller is moving in the clockwise direction. The 
rollers shown Fig. 5.99 consists of two groups of rollers: one group con-
sists of rollers where movement occurs by placing the rollers in contact, 
the second one consists of rollers, where the drive belt connects the drive 
roller (shown in black) to the others. The task is formulated as follows: 
“which rollers will turn in the same direction as the drive roller, and which 
will turn in the opposite direction?” The category of rollers is derived from 
the category of man-made objects MMad MMac Mech Rol.. .
During learning of the visual concept of roller the schematic form of ob-
jects as well as the realistic form of objects from this category is learned. 
Figure 5.99 shows examples of objects, representatives of the roller cate-
gory that are used to learn the visual concept of this category. 

During solving the task “which rollers will turn in the same direction as 
the drive roller?” that is given in the linguistic form there is a need to un-
derstand concepts such as “turn” or “direction” in the context of the 
schema of rollers. To understand these concepts there is a need to refer to 

visual objects. The solution to this task is obtained during visual inference 
process. At first, examined object is classified into one of the roller  

During learning of the visual concept of a given category of real-world 

Ld Pt Sg VSym PhMo GearO .

Ld Pt Sg VSym PhMo Lev Wed Pul Rol Pen InPl, , , , ,O .
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The schematic form of tools is obtained during learning pro- 
cess and very often it is represented as a perceptual category  

the categorical chains of both the knowledge category and the category of 



category – type I (rollers in contact) or type II (drive belt connects rollers). 
Next, after removing other symbols an examined object is classified to one 

ual symbol is used during the visual inference to find the solution. Finding 
the solution of the task represented by visual objects shown in Fig. 5.99a–d 
requires finding the visual concept of the roller category. Let us assume 
that the visual concept of rollers category (type I) obtained during learning 
process is as follows: 1 1

rol _ {[ ] ( ), [ ] ( )}I O OR C nK R C n K , where 
1
O

n circles (placed along axis) (Fig. 5.99a–d). The rules of the visual infer-
ence that are learned as a part of the knowledge schema of the knowledge 
object are given as: rol _ rol _[ ]I Ia . The task is formulated as 
follows: “which rollers will turn in the same direction as the drive roller” 
and let us assume that the perceived object that is shown in Fig. 5.99b is a 
visual representative of this task. During solving this task at first, the 
visual name 1(3 )OC K  for the object shown in Fig. 5.99b is obtained 
and based on this symbolic name the rule of the visual inference is se-
lected. The rule given in the form: rol _ rol _[ ]I Ia  is selected 
based on the visual concept of the 1 1

rol _ {[ ] ( ), [ ] ( )}I O OR C nK R C n K .
The task rol _ I  is solved based on the knowledge about the movement of 

solved based on the previously known solution. One of the subtask is to 
assign the direction of movement to all rollers based on the knowledge ex-
pressed in the following form: 1

clock anticlt[ ] i
ir d r d , that means if 

i 1i  is moving in the 
opposite direction. 

Fig. 5.99. Example of visual representatives of the task of moving rollers 

The visual problems are often formulated based on a set of visual symp-
toms and solved during the visual diagnosis. Visual medical diagnosis is a 
special type of the diagnosis that is based on visual reasoning about the 
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of the concave or acyclic classes and the visual symbol is obtained. The vis-

[R]C(n K ) denotes archetype of the complex roller class consisting of the 

the rollers. The task is divided into series of subtasks that need to be 

roller r  is moving in the clockwise direction the roller r

5.5.2.11. Visual Diagnosis 

   a b d e f g c



pathological changes of the selected organs of the living organism. The 
term “visual diagnosis” refers to the diagnosis that based on symptoms 
given in the form of the visual objects made inference about the illness that 
cause pathological changes of these objects. Visual diagnosis is performed 
in order to undertake an appropriate action such as a selection of the medi-
cal treatment or a change of the parameters of the process. The visual 
medical diagnosis is based on the medical images from which the phantom 
is to be extracted. The medical diagnoses utilize the medical images in or-
der to extract the image region that represents a given organ. The image 
region is first extracted by applying one of the segmentation methods and 
next the shape analysis and recognition is performed in order to classify it 
to one of the categories of pathological symptoms. In medical diagnosis 
the following types of medical images are used: the X-ray photographs, the 
magnetic resonance (MR) images, the ultrasonography (USG) images or 
the images obtained by application of the microscope. These problems 

The visual categories of pathological symptoms refer to parts of  
the body that are changed by the illness. The visual category of patho-
logical symptoms derived from the category of micro world refers to the 
changes of micro-organs. These visual objects are visible under micro-
scope and can be extracted from image by applying the segmentation 
method. The different parts of the body can be described in terms of the 
category of healthy organs and the category of not healthy organs.  
During learning stage the category of healthy organs and pathological 

knowledge about the pathological changes. The specific categories such 

O  . Categories of part of 
the body are derived from the human category and are represented  
by following categorical chain:

Hed Nek Hnd Leg Trk[ , , , , ]τ τ τ τ τ . Each body part category is divided  

represented by the category Out

head category , or  
are hidden such as the hidden parts of the head category 

. Each category of the part 
of the body is divided into the category of healthy organ and the categories 

ReO Mic Liv Org Vir Bac,

ReO Ear Liv HumO

Hum Hed Out Nos Eye Mth Har.. [ ] [ , , , ]

Hum Hed In Brn Scl Msc.. [ ] [ , , ]
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were discussed in [11]. 

changes are learned in the context of the category of illness. The visual  

the categories of illness. The following categorical chain represents the 
objects that represent the pathological changes are used during learning of 

into the specific categories that indicate if this part is visible  and is
 such as the visible parts of the  

as bacteria or viruses are derived from the category of micro-organisms 



of pathological changes. For example, the mouth category is divided  
into the category of healthy mouth and the category of the pathological 
changes and is represented by the following categorical chain: 

Hum Hed Out Mth Hel Ptl.. [ ] [ ] , .

of parts of the body supply the knowledge where the different factors  
important in diagnostic procedure are defined. During the diagnostic pro-
cess the contextual information (results of selected laboratory tests) can  
be also used to interpret of the visual object. The following categorical 
chains represent the knowledge about the diagnostic process: 

Med Hum Hed Out Mth Ptl NIl ViCl Defl Trtl.. [ ] [ ] { , , , } .
The knowledge schema includes the name of the illness NIl , the visual 
concept of the pathological changes ViCl , the medical definition Defl  and 

Trtl . It is assumed that knowledge of the illness that is linked with the 
characteristic pathological changes exists and that knowledge about this 
illness is represented by the illness category acquired during the learning 
process. During medical diagnosis the image is transformed into visual 
objects by applying perceptual transformations that involves application of 
the segmentation method and the pre-processing techniques. Figure 5.100a 
shows the medical image and the result of the perceptual transformation 
(Fig. 5.100b). Figure 5.100c shows the healthy cells and Fig. 5.100d–f 
shows cells with different pathological changes that indicate that these 
cells are members of the different illness categories. 

a b c d e f

Fig. 5.100. Example of cells with pathological changes (a) an image from which 
visual objects are extracted, (b) visual objects (cells with pathological changes) 
extracted from images, (c) example of healthy cells, (d–f) examples of cells with 
pathological changes 
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During diagnostic process objects with pathological changes that are  
extracted from an image are representatives of one of the perceptual categories.
These objects refer to specific organs or parts of the body that show the
pathological changes. The category of illness derived from the knowledge
category refers to the categories of parts of the body. The categories 

links to the more specific categories of the recommended medical treatment 



Visual objects shown in Fig. 5.100c are convex objects representatives 
of the category of healthy cells. Figure 5.100d show cells with pathological 
changes that are representatives of the category of the illness I (convex 
cyclic objects). Figure 5.100e shows cells with pathological changes repre-
sentatives of the category of the illness II (concave objects). Figure 5.100f 
shows cells pathological changes representatives of the category of the ill-
ness III (convex cyclic objects, concave objects). During learning process 
the visual concept h  for each illness category is obtained. The healthy 
cells and cells with pathological changes are described by the illness cate-
gories. During the visual diagnosis the visual concept h  is used to find the 
illness category iH , by applying the inference rules: h i[ ] h H .
For example, let us assume that during visual diagnosis the symbolic name 

1[ ]( )A K K  (the convex cyclic curvilinear object) was obtained. Let us  
assume that the visual concept of the category of illness I is given as a set 
of symbolic names 1 1 1 1{ [ ]( ), [ ]( ), [ ]( ), [ ]( )}h

I A K K A K M A M K A M M .
Because the symbolic name 1[ ]( )A K K  is a member of the visual concepts 

h
I , the category of illness I is selected as the result of the visual diagnosis. 

The category of illness I is linked with the category of treatment of the ill-
ness I so the result of diagnosis is used to find recommendation of the 
treatment.

The visual diagnosis of technological process (process control) utilizes 
the images that are obtained by application of the imaging techniques 

technological process. The changes of shape during the certain interval 
of time can “produce” the characteristic sequences of shapes that are char-
acteristic for changes of the process. The sequence of shapes can be repre-
sented by a sequence of symbolic names 1 2, ,..., n  obtained during 
reasoning process from sequence of the images. The failure category  
(visual concept) h  that is obtained during the learning process is used  
to define rules of visual inference of the failure (critical points) iP of
the process p . The rules of the visual inference are expressed as: 

1 2[ , ,..., ]n p ip P . Similarly like in medical visual diagnosis 
the category of failure is connected with recommendation of proper 
changes of the parameters of the process in order to avoid failure. The  
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such as X-ray photographs or microscopic images. In the process control 
the visual diagnosis is based on the characteristic changes of the shape of 
a given visual object. It is assumed that a phantom (visual object) that 
is extracted from the image includes information about changes of the  



visual diagnosis can be also used to identify the quality of the material by 
analyzing of the shape of the microscopic structure. Examples of the mi-

characterize the different properties of the final metallurgical process are 
shown in Fig. 5.101. 

The visual concept of the process changes can be learned based on 
mathematical model. In the case when shape of the curve depends on value 
of parameters of the equation that describes this curve, the equation can be 

real-word phenomena or as a model of pathological changes in the visual 
diagnosis. The visual model is represented by the visual concept that con-
sists of symbolic names of characteristic shapes. As it was shown in pre-
vious section in the visual diagnosis the process of the visual inference is 
expressed in the form of rules 1 2[ , ,..., ]n p ip P , where  is 
the symbolic name obtained as the result of the reasoning process, and 

1 2[ , ,..., ]n p  is the sequence of changes of the shape category. 
For example, the process of dividing the drop of oil can be modeled by 
Cassinian ellipse. During learning stage the visual concept of the category 

the Cassinian ellipse equation 2 2 2 2 2 2 4 4( ) 2 ( )x y c x y a c . The 

Fig. 5.101. Microscopic images of the metallurgical process where shape of the 
particles indicates the quality of the process 

2 4 4 2 3 1 2 2 4 2 3 1
CasOv

ˆ{ [ [ ]](2 [ ](2 )) , [ [ ]](2 [ ](2 )) ,RQ M L Q L M Q M L Q L Mϕ = ⋅ ⋅ ⋅
2 2 4 2 3 1 2 2 4 2 3 1 1ˆ ˆ[ [ ]] (2 [ ] (2 )), [ [ ]] (2 [ ] (2 )), }R R SQ M L Q L M Q M L Q L M K⋅ ⋅

Fig. 5.102 shows the archetypes generated from the equation 
2 2 2 2 2 2 4 4( ) 2 ( )x y c x y a c  applying Mathematica function  

ImplicitPlot[(x^2 + y^2)^2 2*CC^2*(x^2  y^2) = A^4  CC^4, {x, 5, 5}]. 
The Mathematica is part of the Generating Expert of the SUS that was  
described in Chap. 1. Archetypes where generated for the parameters  
(a) CC = 1, A = 1, (b) CC = 1, A = 1.02, (c) (CC = 1, A = 1.1),  

visual concept of the phenomenon “dividing the drop of oil” is as follows: 

dividing of the drop of oil is learned based on exemplars generated from 

(d) (CC = 1, A = 1.2), (e) (CC = 1, A = 1.5). During visual diagnosis the 
shape of the visual object is used to find the stages of the process. 
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croscopic images where shapes of structural elements are symptoms that 

applied to model visual changes of shape and used as a model of the 



Similarly the cranioid equation and petalbotanik equation can be used 
for modeling of the visual processes or for learning of the visual concept 
of the visual diagnosis. Examples of the different shapes obtained  

from Cranioid equation 2 2 2 2cos 1 sin 1 sina b m k
(PolarPlot[A*Cos[t] + B*Sqrt[(1  M*M*Sin[t]*Sin[t])] + CC*Sqrt[(1 
K*K*Sin[t]*Sin[t])], {t,0.00001,2*Pi}]) for the parameters (a) A = 1 B = 1 
M = 0.5 K = 0.95 CC = 1, (b) A = 1 B = 1 M = 0.5 K = 0.95 CC = 1.5, (c) 
A = 1 B = 1 M = 0.5 K = 0.95 CC = 2, (d) A = 1, B = 1, M = 0.9, K = 0.95, 
CC = 1.5, (e) A = 1, B = 1, M = 0.5, K = 0.999, CC = 2, (f) A = 1, B = 1, 
M = 0.5, K = 0.999, CC = 2.5, (g) A = 1 B = 1 M = 0.999 K = 0.95 
CC = 1.5 are shown in Fig. 5.103. 

Examples of the different shapes obtained from Petalbotanik  
equation 2 1(1 cos )na , (PolarPlot[A*(1 + Cos[t]^(2*NN + 1)), 
{t,0.00001,2*Pi}]) for parameters (A = 1, (a) NN = 1, (b) NN = 3,
(c) NN = 25, (d) NN = 100, (e) NN = 1000) are shown in Fig. 5.104. 

The problem of assembling of a tool from n parts is an example of the 
complex visual problem solving. Assembling the complex object can 

Fig. 5.102. Archetypes generated from the Cassinian ellipse equation 

      a            b              c                d e                 f              g 
Fig. 5.103. Archetypes generated from the Cranioid curve equation 

       a                  b              c     d                        e 
Fig. 5.104. Archetypes generated from the Petalbotanik curve equation 

            a                      b                      c                    d                  e 
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5.5.2.12. Assembling Tools 



yields many problems (questions) that need to be solved during assembling 

imagery process, on the learned previous cases or on the schematic draw-

the inventive (creative) imagery process the solving problem of assembling 
tools requires to imagine the situation of the assembling tool and next to 
transform the learned visual experience of the real-world situation to solve 

matic drawing, at first the drawing needs to be interpreted and next the 
knowledge obtained from the reading of the schematic drawing is applied 
to perform the assembling task. Interpretation involves matching the draw-
ing parts with the real-world objects, finding the succession of the perform-
ing subtasks and finally assembling tools. The schematic representation 
that shows the way of assembling tools use nearly realistic representation 
of the real-world object. The schematic representation can also use the 
symbolic representation of parts to be assembled (e.g., electrical schema). 

The schematic representation is used to shows how tools work, to show 

a schematic representation that shows only the functional aspect of the 
model. In such a schematic representation real-world objects are repre-
sented by well defined symbols. For example, the electric circuit given in 
Fig. 5.105 shows only the schematic representation of the real-world  
objects such as a resistor, a capacitor, or a battery. The schema of the elec-
tric circuit is used to design and solve the electrical problem or to build the 
electric devices. To understand the functionality of the tools or solve the 
specific electric problem the knowledge from the area of electrical circuits 
is needed. The electrical symbols are interpreted as a “substitute” of the  

Fig. 5.105. Examples of schemas of electrical circuits that are used during assem-
bling of electrical devices 
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process. For example, the following questions can be asked: “in which order 
can an object be assembled or disassembled?”, “how many degrees of 
freedom?”, “what parts should be withdrawn to allow the removal of a spe-
cified subassembly?”. Assembling can be based on the inventive (creative) 

ings that represent description of the assembling process. In the case of 

learned previous cases, the previous experience is used to select parts and 

main stages of the process, to give explanation about the physical or engi-
neering process or to illustrate the problem that needs to be solved. There is 

the theoretical problem. In the case of assembling tools, based on the 

to assemble the tool. In the case of assembling tools, based on the sche-



Fig. 5.106. Example of assembly drawings 

schematic representation called working drawings. Working drawings are 
the complete set of standardized drawings that specify the manufacture and 
assembly of a product based on its design. Generally, a complete set of 
working drawings for an assembly includes: detail drawings of each non-
standard part, an assembly or subassembly drawing showing all the stan-
dard and nonstandard parts in a single drawing, a bill of materials, a title 
blocks. A detail drawing is a dimensioned, multiview drawing of a single 
part, describing the part’s shape, size, material, and finish, in sufficient 
detail for the part to be manufactured based on the drawing alone. A com-
plete set of working drawings must include a detailed parts list or bill of 

learning of the tool category there is a need to learn an information that is 
included in working drawings. 

An assembly drawing shows how each part of a design is put together. 
Figure 5.106 shows examples of working drawings. These drawings can be 
used to learn the visual concept of assembling tools. 

In order to explain how SUS can solve assembling problem examples 
from different areas of the assembling problems are described in this sec-
tion. The simplest assembling task is to form (assemble) of the figure from 
the different parts. 

Modeling the incremental fabrication of a part is a problem that needs to 
be solved by showing the main stages of the process. In this approach the 
problem is decomposed into sequences of sub-problems. These sub-
problems can be solved by applying visual reasoning. The Fig. 5.107 
shows example of the sequence of images that represent each sub-problem 
that need to be solved during incremental fabrication of a part.
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real-world objects such as a resistor or battery. The electrical symbols are 

In order to be able to assemble complex device there is a need to use 

material. The information normally included in parts is as follows: name 
of the part, a detail number of the part in the assembly, and the part. During 

members of the category that is derived from the category of the visual 

of the real-world electrical elements.
symbols and the category of electrical symbol is “linked” with the category 



Fig. 5.107. Modeling the incremental fabrication of a part 

Fig. 5.108. Examples of flat figures 

Fig. 5.109. Preparing parts for assembling 

One of the sub-problems that need to be solved is to fabricate a required 
part. The solution is easier to obtain when assembling task is concerned 
with assembling of the “flat” parts. The process of assembling task of the 
“flat” parts can be given in the form of the 2D representation and can be 
represented by one visual aspect (view) of the figure. Examples of the flat 
figures are shown in Fig. 5.108. 

The object that is “flat” can be represented by one visual aspect.  
Assembling of the flat object can be represented by showing only one vis-
ual aspect of the visual object. Also, solving some tasks such as building 
arc that is 3D real-world object can be reduced into the steps performed on 
the 2D object. Figure 5.109 shows the part that is prepared for assembling 

5.109: the components I (a) the component II (b) and the component III 
(c). Components shown in Fig 5.109 represented by symbolic names  
(a) 4 2 6 3[ ]( [ ](2 ))RQ L Q L L , (b) 1 4 4[ ]( ))R RQ L L , (c) 4

RL  are used to learn the 
visual concept of parts of the object. The visual concept of the object 
that is assembled from the different parts (components) consists of  
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with other parts. For example, assembling the object shown in Fig. 5.113g  
requires preparation of three different components that are shown in Fig. 

example, the first component shown in Fig. 5.109a can be obtained in 

symbolic name of the whole object and its components. These components
need to be obtained by cutting of the two rectangular objects shown in
Fig. 5.109(d–f) (component I) and Fig. 5.109(g–h) (component II). For 



The component shown in Fig. 5.110 is obtained by performing  

can be described by the operational chain: 6 2 6 3[ ](2 )M M RL Q L L→ ⋅ →
2 6 3 1 4 2 2 6 3 1 4 1[ ](2 , [ ]) [ [ ](2 , [ ])](2 )M R R M R R CQ L L M L A Q L L M L K⋅ → ⋅ ⋅ . This opera-

tional chain can be applied during visual thinking process connected  
with solving the assembling task. During thinking process the operational 

1 6 2 6 3:{ } {M M RL Qϕ → ⋅ 1 transform  
 and represented 

by symbolic name  into another object (a set of critical points).  
The imagery transformation 1 6 2 6 3

M M Rϕ
set of critical points given by symbolic name 6

ML  into another set 
2 6 3

M R

thinking process. 
Assembling is often given as a task that includes selection of com-

ponents that can fit into the other component that is called the basic 

components that need to be fitted to the basic component (the cyclic  
convex object) shown in Fig. 5.111a. This problem can be solved by  

Fig. 5.110. Obtaining part by cutting and drilling 
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series of operations such as cutting parts and drilling the holes. This task 

it possible to imagine (by SUS) steps that lead to the solution. For  
chain is represented by a sequence of visual transformations that make   

example, cutting parts is represented by the imagery transformation 
[L ](2 L )]} . The imagery transformation

a visual object that is given in the form of critical points 

:{L } → {Q [L ](2 ⋅ L )]}  transforms a  

Q L[ ](2 L )] . The symbolic name is used to indicate that the imagery 
transformation is a transformation that is performed as a part of the visual 

component. To solve this task there is a need to have a good interpretation
of the visual object in terms of its components. This task can be reduced
into selection of the parts from the given set of components that can fit
into a basic component. Solution to this task can be often represented
by using the 2D representation. Figure 5.111b–f shows the different 

4 1 4 4 1 4[ ]( )] [ ]R R R RL L Q L− >
2 6 3( [ ](2 ))Q L L .

three steps (shown in Fig. 5.109d–f) that are represented by the operational 
L Q− >chain as a sequence of symbolic names 



      a            b         c         d          e         f 
Fig. 5.111. The visual representation of the assembling problem 

comparison shape of the hole with shape of each part that needs to be fitted 
into it. At first the symbolic name of the basic components and symbolic 

Another example of the selection process is shown in Fig. 5.112.  
The solution, similarly like in the previous example, is obtained by  
finding the symbolic names of parts. The whole object is given by  
the symbolic name 4 6 3 4 4[ ]{ [ ](2 ), [ ]( )}R R R RL Q L L Q L Lρ . Parts shown in  

3

1 6 2 3 1

L

(b) 1 6 2 3 1 2 5 3
O

2 6 3
R

(e) 2 6 3[ ](2 )RQ L L  and part to which other components need to be fitted  
is given as 4 4[ ]( )RQ L L  (Fig. 5.12f). To solve this problem the symbolic  
description of the concave class is converted into description of the  
complex class (a) 4 1 4[ , [ ]]R RC L M L , (b) 4 1 1[ , [ ]]RC L M K , (c) 4 3[ , ]RC L L ,
(d) 4 4[ , ]R RC L L , (e) 4 4[ , ]R RC L L . From this representation we can infer that 

to the rectangular part of the object in Fig. 5.112f. The final fitting is  
based on the specific representation of the class or can be based on the 
measurement of components. 
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were obtained one that has the same symbolic name as the hole is selected. 
names for each component are obtained. From symbolic names that 

The basic component (shown in Fig. 5.111a) is an object from the cyclic 
class 1 4 1 5 3[ ]( [ ]( ))RA L Q L L  and the hole is a member of the concave class 

1 5 3[ ]( )Q L L . Symbolic names of components are given as follows: (b) 
1 5 3[ ]( )Q L L , (c) 4 8 3[ ](4 )Q L L , (d) 5L , (e) 1 5 3[ ]( )Q L L , (f) 1 5 3[ ]( )Q L L .

There are three parts that have the same symbolic name so there is a need 
to obtain the symbolic name at the specific level (b) 1 5 3[ ]( )M OQ L L , (e) 

1 5 3[ ]( )S AQ L L , (f) 1 5 3[ ]( )G AQ L L , and (a) 1 5 3[ ]( )M OQ L L . As the result of the 
specification, an object given by the symbolic name (b) 1 5 3[ ]( )M OQ L L  that 

Fig. 5.112 have the symbolic name (a) Q M[ [L ]](2Q [L ](M )) ,
Q M[ [L ]](2Q [L ]( )M ) , (c) Q L[ ](L ) , (d) Q L[ ](2L ) ,

only objects shown in Fig. 5.112d, e have rectangular part that can be fitted 

has the same symbolic name as object in Fig. 5.111a is selected. 



Fig. 5.113. Assembling process: the whole object (g) is assembled from the three 

The assembling task is given by the sequence of steps. In the previous 
section two steps: preparing components and parts selection were  
described. In this section assembling tools from components is described. 

4 4 6 3 6 3

4 4

[ ]{( ) [ ]( [ ](2 )] , [ [ ](2 )]
{( ) [ ]( ) ,

R R R

R R

L a Q L Q L L Q L L
g Q L L

ρ ρ
4 4 4
R R Rρ[ ]L w{( ) L , (o) L }}} .
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ble components, (e) a basic component, (g) the whole object 
compatible components, (a–c) objects that are representatives of the noncompati-

      a            b              c                d e                  f               g  

      a            b              c                d                   e f g

is a need to assemble these components into the whole object shown in 
Fig. 5.113g. The different components can be represented by notation of the 
colored class. For example, the symbolic name for the whole object shown 
in Fig. 5.113g is as follows:

This problem can be transformed into the representation of the convex, 

4 2 6 3
R

(b) 1 4 4[ ]( ))R RQ L L , and (c) 4
RL

process. The imagery transformation that is applied at first stage of prob-
lem solving is transformation that reduces concavities (Fig. 5.114(b–d)). 
The first transformation is the transformation concave-convex 

1 4 4 4 4[ ]( ))R R R RQ L L L L . The second transformation is the transformation 

concave-cyclic 4 2 6 3 4 4 4[ ]( [ ](2 ))R R R RQ L Q L L L

4 4 2 6 3 4[ [ ](2 )]( )R R RL L A Q L L L  and 4 4 4 4 4[ ]( ) [ ]( )R R R R RA L L L A L L . The 
translation transformation is performed on one part of the object and 

the concave, and the cyclic class. There are three components shown

changes the object as a whole (see Fig. 5.114 (e–g)). 

Fig. 5.112. Assembling two parts: (d–e) objects that are representatives of the 

(d–f )

In this task there are three components shown in Fig. 5.113(a–c) and there 

in Fig. 5.114 given by symbolic names (a) Q[L ](Q [L ](2L )) ,

. The solution can be written in the form of the
sequence of the imagery transformations that is the part of the visual thinking 

A[L ](L ) (see Fig. 5.114a, 
d, e). The next transformation is the translation transformation 

components, (a–c) given as a representatives of the colored class, assembling steps 



Assembling objects from components requires planning sequences of 
operation that leads to obtaining an object that is composed from the dif-
ferent parts. Each known object that was produced belongs to the category 
of the man-made object. It is assumed that the object from this category is 
produced by the worker (or group of workers) by applying special tools, 
using an appropriate material and knowledge. The result of the work is the 

The problem of planning actions during building of the arch is often  

Fig. 5.114. Assembling process of the parts given as a representatives of the concave, 
convex, and cyclic class 

Fig. 5.115. The different representatives of the arch category 

Learning starts from learning of the definition of basic concepts. When all 
basic concepts are learned the MARVIN is able to learn the concept of arch. 

In our example the arch is assumed to have the shape shown in  

of arch by representing it in the form of the clauses. This type of descrip-
tion is very complex and very difficult to check if it is correct. In our  

is represented by the visual concept. The visual concept refers to the 3D 
visual representation showing characteristic visual aspect of the object. In 
the case of the category of the arch type R (arch-R) the visual concept  
refers to the most typical aspect of the object and is given by the symbolic 
name of the line drawing orthographic projection of the object, as: 
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the description of an arch are shown. The system Marvin learnt that an 
reported in literature. For example, in [12] steps involved in learning of

arch consists of an object of any shape lying on top of two columns of equal 
height. The columns are adjacent to each other, but they must not touch. 

Fig 5.115. Kowalski in [3] gives an example of the definition of this type  

approach the arch is a member of the category of man-made objects and  

final product. Building an arch is given as an example at the assembling

rent forms some of them are shown in Fig. 5.115. 
of the object from the simple components. The arch can have the diffe-



6 4 3 4 4 4[ [ ]( [ R O TQ L Q Lρ  (see Fig. 5.116a). In the case of  
understanding, designing, planning and assembling arch-R the 2D repre-
sentation given in the form of the frontal view is sufficient to perform the 
required operation. The symbolic name of the 2D representation of the 
arch-R is given as 4 4 4[ [ ]( )]{3 }R RQ L L Lρ (see Fig. 5.116b). This frontal view 
can be obtained by appropriate placing of the camera (in front of arch). 
Assembling of the arch can be understood by imagine production process 

                  
a b c d e f g

Fig. 5.116. Arch (a) its 2D representation (b, c) and not proper cases (d–g)

In contrast to the definition given in terms of clauses the symbolic rep-
resentation can give the very detail description of the blocks configuration  
showing the similarities and the possible incorrect version of the arch 
assembled from blocks. The solution for the arch building is given in the 
form of sequences of actions as follows: 

4 4 4 4 4{( ) ( ) } ( ) [ ]( )R R R R RL L L Q L L↑ − ↑ + ↔ − >
4 4 4 4 4 4 4 4( ) {( ) ( ) } ( ) [ ]( )Q Q R R R R R RL L L L L L Q L L+ ≡ ↑ → ↑ − ↑ + ↔ − >
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](L )])]{3 ⋅ L , 2L , L }

of the arch-R. For example, the arch shown in Fig. 5.116c is produced 
from three blocks and is represented by the symbolic name 4 4[ ]( )R RQ L L .
After moving the top block we obtain two columns. The proper placement 
of columns can have an impact on the final result. Examples of the non 
proper placement of the columns can results in obtaining the para-arch 
shown in Fig. 5.116d–g represented by symbolic name (d) 6 3[ ](2 )RQ L L ,
(e) 6 3 4[ ](2 , )[ ]A R RQ L L L bababa (f) 6 3 4[ ](2 , )[ ]B R RQ L L L bbaaba . The non 
proper placement of the top block can results in the para-arch shown in 
Fig. 5.116g 6 3 4[ ](2 , )[ ]C R RQ L L L bbbaaa . The symbolic description of this non 
proper arch is part of the visual concept of the para-arch category that is 
learned. The visual concept of the para-arch category can be used to design 
action that need to be undertaken to correct the non proper placements of 
the blocks. 



where 4( ) RL↑  denotes that rectangle is placed vertically (on the shortest 
side), 4 4{( ) ( ) }R RL L↑ − ↑  denotes that two rectangles are placed close to each 
other, 4( ) RL↔  denotes that rectangle is placed on the longest side, 

4 4 4{( ) ( ) } ( )R R RL L L↑ − ↑ + ↔  denotes that rectangle 4( ) RL↔  is placed on the 
two rectangles 4 4{( ) ( ) }R RL L↑ − ↑ . Figure 5.117 shows different representa-
tives of arches that are build from the smaller blocks.

During assembling of the non flat object there is a need to take into  
account the different views of the object. Before assembling the object we 

requires undertaking the sequence of actions that leads to obtain the final 
result. These actions can be performed in “mind” as the sequence of im-
agery transformations during visual thinking process. During thinking 
process problems connected with selection of components and finding the 
optimal sequence of actions can be solved. For example, two parts shown 
in Fig. 5.118a, b need to be assembled in order to obtain the object shown 
in Fig. 5.118c. During assembling process the proper view of the object 

the object will be “observed” during assembling process. For example,  
Fig. 5.118a–c shows the visual aspect that makes it possible to see “whole” 

Fig. 5.117. Arch build from the “small” blocks 

Fig. 5.118. Example of the assembling tools – 3D representation 
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2 6 3 1 1 4 1 1 1 4 1[ [ [ ]](2 [ ]( )]{2 [ R E R EQ M L Q L M Q M

(aspect) needs to be selected. The selected aspect refers to the way in which 

a b c d e f g h i

object. The symbolic name of this aspect of the object is given as 
[L ]](M ),Q[K ](M [L ]), K }

need to know the category to which an object belong. Assembling task  



1 1 1 2 1 1 1 2 4 3 1[ ][ ] [ ][2 ] [ ][ [ [ ][ ]](2 [ ](2 )])C C C C C CA K K K A K K A K Q M L Q L Mρ− → → ⋅ ⋅
1 1 1 1{ [ [ ]]( ), }]C CQ M K M K .

Most devices are produced from the different components. The task of 
assembling of the object from n components is preceded by “mental” plan-
ning of the assembling operation. As it was shown in the previous section 

sented by series of mental transformations that can be performed during 
thinking process. In the previous section, the mental transformation were 
represented by an operational chain of possible actions and were per-
formed without referring to the categorical chain. In this section solving 

categorical chain. The first task given as an example of the visual problem 
solving is the task of assembling the spade from a given components. SUS 
understands the concept of spade as a tool that is used by man to do a 
certain kind of work. SUS understands the construction of the tool and can 
interpret the perceived object as a spade. SUS understands that the spade 

object. Based on these categories there is relatively easy to find the con-
ceptual similarities with other categories. For example, a spade, a hammer, 
and a tongs are objects that are similar in this respect that are all members 
of the tools category. This type of similarity will be called the conceptual 
similarity, whereas the visual similarity refers to the visual aspect of ob-
jects and describes objects that look similar. For example, visual aspects of 
the hammer and specific fonts of the letter “T” look similar. The visual 
similarity is responsible for obtaining the different results of interpretation 
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(Fig. 5.118a) 2 4 1 4 1 1 1[ [ ]{ [ [ ]( ), [ ]( )}R E EM L Q M L M A K Kρ  and part II (Fig. 

5.118b) 2 4 1[ [ ]{ }EM L K . This visual aspect does not allow SUS to “see” 
well the movement of parts during assembling process. To “see” well the 
movement of parts during assembling process two visual aspects shown in 
Fig 5.118d–i were selected. Assembling requires placement of the part I 
into the hole. The two views (top and frontal) are used to trace movement 
of the part II. The movement of the part II is translated into the symbolic 
names and represented as a sequence of possible actions (the operational 
chain) given as follows: 

of this book assembling object from a number of parts requires the proper 
selection of parts and planning a sequence of actions. Planning a sequence 
of actions requires a good visual imagination. The visual imagination is repre-

the problem of assembling of the tool requires knowledge supplied by the 

belongs to the category of the man-made objects and that it is a real-world 

(Fig. 5.118c). The symbolic name of parts are given as follows: the part I  



of the visual object. The concept that is obtained during the visual reason-

For the tool such as a spade the visual concept consists of visual con-
cepts of each part and is represented by the structural archetype (Fig. 
5.119c). The structural archetype is the schematic representative of the 
visual concept which consists of the visual concepts of each part of the  
object (tool). The structural archetype shows the main parts of the object rep-
resented by the categorical chain of the part: Bld Hnd TopH[ , , ]τ τ τ . The 
category of parts of spade can be used in the visual problem solving during 
interpretation of parts of a visual schema of the real-world object. The task 
of assembling the spade from n components is preceded by “mental” plan-
ning of the assembling operation. During mental planning there is a need 
to imagine the process of assembling. Mental assembling process is based 

names of parts to perform imagery transformations that lead to obtain the 
required tools. 

The spade category that supplies knowledge about components of the 

parts. The task is formulated as follows: having parts nuu ,...,1  make the 
complex object u .  The object u is given by its visual concept   so the 

of the visual concept . In the case of a spade we have three parts 
(phantoms) and the system needs to find the imagery transformation that 
makes it possible to obtain the object given by the visual concept of a 
spade. The visual concept refers to one of the exemplars that are defined 
by the visual concept of a spade (see Fig. 5.120). During thinking process 

object from given parts (Fig. 5.119d–f) are selected. The solution is given 
as a sequence of imagery transformations that made it possible to “assem-
ble” the spade. These imagery transformations can be translated into  
actions that robot have to perform in order to finalize this task. The whole 
object that is to be assembled is given by the symbolic name 

following categorical chain: Pt ReO Ear NLiv MMad

Tol TFrm Spd Bld Hnd TopH[ , , ] .

Spd
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ing supplies the information about parts of the object (spade). Assembling 
spade from parts requires referring to the spade category given by the

on the structural archetype. Mental assembling process uses the symbolic 

spade is used for solving a problem of assembling the spade from the n

 can be one that is given as a member symbolic name of the complex object u

one of the exemplar is selected (in this example an object in Fig 5.120e) and 

7 5 1 1 4 1ˆ[ ]{ , [ ]( ), 2 [ ]( )}M ML L M Q L Mρ ⋅  (see Fig. 5.119b) and symbolic MA

next the imagery transformations that made it possible to obtain this complex



chain of possible actions 5 2 4 1 1ˆ{( ) ( ) ( )} ( ) [ ]( )ML L A M MΘ↔ + ↔ + ↔ −>
7 5 1 1 4 1ˆ[ ]{ , [ ]( ), 2 [ ]( )}M ML L A M M Q L Mρ ⋅ . The perceptual transformations 

  into the perceptual category of the silhouette 
 shown in Fig (5.119b) make it possible to trace the 

assembling process using camera. 
The structural archetype that shows the main parts of the object repre-

sented by the part of the categorical chain: Bld Hnd TopH[ , , ]τ τ τ  is used 
in the process called the conceptual magnification to check if the part is in-
terpreted correctly. During the conceptual magnification the part that is se-
lected is regarded as the independent object and can be examined as a 
member of a different category of objects. 

  
         a                   b               c                d         e             f 

Fig. 5.119. Assembling spade from three components by utilizing the structural 
archetype of the spade category 

              
a b c d e

Fig. 5.120. Exemplars generated from the “spade” class 

that is next used as an element to build more complex components. To  

lead to design the process of assembling complex device, an example of 
assembling of the electronic device is given. It is assumed that assembling 

that transform the visual object shown in Fig (5.119a) 
Sh SpdO

Si SpdO

Spd
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Assembling of the complex tool is a complex process consisting of many 
stages. Each stage is focused on assembling specific part (component) 

illustrate application of the categorical chain in the process of thinking that 

process begins with reading of the electronic schema. The schema of  

names of parts are as follows: 5
ML  (Fig. 5.119d), 2 4( )L  (Fig. 5.119e), 

and 1 1ˆ[ ]( )A M M  (Fig. 5.119f). The assembling process is represented as a 



electronic circuit is given as a starting point of assembling process.  
Processes connected with designing of electronic circuit that leads to  
obtaining schema of electronic circuit are not included in the description  
of the assembling process. Reading of the schema of electronic circuit  

category. In the first stage of assembling process the specific category  
of the schema of electronic circuit is identified. The specific category of 
electronic circuit schema such as the category ECR (the battery, capaci-
tors, resistors), or complex devices such as the radio or the amplifier that 
are identified in the first stage of assembling process is used during think-
ing process to design further assembling steps. Example of the specific 
category of electronic circuit schema is shown in Fig. 5.121. To interpret 
the electronic schema the knowledge from the category of schema of  
electronic circuits derived from the category of knowledge is used. The 
following categorical chain and knowledge chain (described in Chap. 4) 

Fig. 5.121. Example of the schema of electronic circuit 

on knowledge supplied by the category ERLCTκ
knowledge object the schema shown in Fig. 5.121 is interpreted as  
composed of objects from the category of structural elements that  
are members of the category of electronic symbols. The category of 
electronic engineering symbols derived from the category of visual  
symbols supplies knowledge that makes it possible to interpret a perceived 
object as one of the member of the category of electronic symbols such  

The knowledge schema supplies the knowledge in the form of the

knowledge that is needed during interpretation of the perceived  

are used: Pt Sg VSym EngSh ElESh ERC ERLC ERLCT, , ,

KB KOb EngO ElEng EngSh ElESh ERC ERLC ERLCT, , .  Based

, , , , ,El Sg VSym EngS ElES Rez Ind Trn Cap Dio Trz .

El ReO Ear NLiv MMad AsP ElAsPobjects  

object. The category of electronic symbols is linked with category of  
electronic elements that is derived from the category of real-world
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is based on the categorical chain that is derived from the structural pattern 

 derived from the  

as a resistor or a capacitor represented by the following categorical chain: 

visual concept or a symbol definition that makes it possible to obtain the 



Resistor

ElES

symbols used to represent the resistor. Examples of electronic symbols 
used to represent the resistor category are given in Fig. 5.123a, b. The 
category of resistors derived from the category of visual symbols refers  

Fig. 5.123. Representatives of the resistor as a electronic symbol and a real-world 
object

to the category of resistors derived from the category of real-world  
objects. The categorical chain shows the categorical dependence of the  
resistor category derived from the category of real-world objects 

MMad AsP ElAsP Res . Based on connection between 
those two categorical chains the perceived object that is classified as a 
member of the category of visual symbols (resistor) can be interpreted as 
the member of the real-world objects. This property of the categorical 

bol and the real-world object. Such interpretation enables system to select 
resistor from other objects based on interpretation of the electronic 

given by knowledge categories KB ElES Res . The definition 
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, , , , ,Rez Ind Trn Cap Dio Trz . Figure 5.122 shows examples of category  

Fig. 5.122. The category of electronic symbols refers to the real-world objects 
the resistor, the capacitor, the capacitor electrolytic, the bipolar transistor, the 
field-effect transistor 

of electronic symbols that refers to the real-world objects the resistor,  

transistor.

of the resistor category includes visual representatives of existing electronic 

The specific category of electronic symbols such as the  resistor
is derived from the  category of electronic symbols . The visual concept 

chain makes it possible to “see” a perceived object both as a visual sym-

schema. Selection of the required object such as a resistor is the first step  
in assembling process. The knowledge concerning the resistor category is 

the capacitor, the capacitor electrolytic, the bipolar transistor, the field-effect



and description of the resistor supplied by the knowledge schema is used 
to design further assembling steps. 

gory of product of the worker called electronic technologist. The knowledge 

knowledge needed to produce the electronic element such as a resistor 
( , , , )KB KOb GenC WrK Prf ElT Tol Mat Kno Res .

in assembling process can be produced assuming that all facilities needed 
for production are available. The knowledge schema of the resistor  
category supplies link to the category of market product. Based on  
knowledge supplied by the category of market product the resistor as 

knowledge schema of the resistor as the market product supplies  

( , , , )ElT Tol Mat Kno Res . The category of schema of electronic 
circuit is linked with the category of circuit boards. The category of circuit 
boards supplies knowledge that makes it possible to interpret schema of 
electronic circuit as a set of electronic elements assembled on the circuit 
board ,Pt MMad CoT ElCoT ElCir Bor  (see Fig. 
5.124). The knowledge that is supplied by the knowledge schema of this 
category is used to design the circuit board and supplies knowledge that is 
used during assembling process. The electronic elements (parts of elec-
tronic assembly) are used to build the electronic circuit that is part of 
the electronic devices. Electronic circuits are built by fixing components 
into a plastic board that has cooper tracks on one side to link them  
together. 

Fig. 5.124. Electronic circuits are built by fixing components into a plastic board 
that has cooper tracks on one side to link them 
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The knowledge schema of the resistor category supplies link to the cate-

schema from this category supplies knowledge about the tools, material and 

Based on knowledge supplied by the knowledge schema, the resistors needed 

a member of the market category can be acquired through the market. The 

produces the product, the name of sellers companies or a range of prices 
knowledge about the market availability, the name of the company that  

nents that are not part of the category of the electronic circuit. 
The final product such as a gramophone or a radio required also compo-



Fig. 5.125. Final product of the assembling of the electronic devices 

a           b c d e
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Fig. 5.126. The visual representation of the problem moving outside the closed area 

Moving of the object outside an area in which it is closed is an example of 
another visual task. Let us consider the following problem: moving the  
object outside the window. The window can be thought of as any windows-
like object with holes. The solution to this problem can be expressed in the 
form of the rule [ ]M o M , that means if the examined object 
given by the symbolic name  is a member of the visual concept 
[ ]M , the action M can be undertaken. The action M denotes that  
object can be moved through the window. During the learning stage the 
visual concept of the solution is learned. The visual concept of the solu-
tion is represented by the symbolic names of general classes, such as 

2 1[ ]( [ ]( ), )A A T , where  denotes a convex class and T  denotes 
the thin convex class. 

Let the window be represented as an object from the cyclic convex class 
2 4 4[ ](2 )A L L , and the object that needs to be moved, as an object from 

4L

2 1[ ]( [ ]( ), )A A T . During the thinking process possible solutions are 

2 4 1 4 4 4[ ]( [ ]( ), )R R R RA L A L L L  (object shown in Fig. 5.126e) is the specific 
class of the class 2 1[ ]( [ ]( ), )A A T  and is selected as the solution of 
this problem. 

5.5.2.13. Moving Object Outside 

concept of the solution is represented by the symbolic name 

sible solutions are shown in Fig. 5.126b–e. The symbolic name 

 Fig. 5.126a. The  general  visualthe thin convex rectangular class 

generated by applying the imagery transformation. Examples of the pos-



The motion planning problem is well-known in the field of robotics. It asks 
for computing feasible paths for a given robot A in a workspace containing 
some obstacles. Two versions of the problem can be formulated. In one 
version, a start configuration s and a goal configuration g are given before 
hand, and the objective is to compute a feasible path for A from s to g. In 
the second version, no start and goal configurations are specified, and the 
objective is to compute a data-structure, which can later be used for que-
ries with arbitrary start and goal configurations. We refer to the former 
case as a single shot problem, and to the latter as a learning problem. The 
“classical” approaches to motion planning can roughly be divided in the 
following three classes: roadmap methods, cell decomposition methods, 
and potential field methods. For a thorough discussion of these approaches 
see, e.g., [10] and [7]. 

Obstacle detection problem is connected with interpretation of the category 
of objects in the room. From the category of objects in the room the cate-
gory of the possible paths is derived. The visual concept of the category of 
the possible paths represents the configuration of objects by showing paths 

            

Fig. 5.127. Possible interpretation of the moving area based on the scene consist-
ing of three objects 

where robot can go. In solving motion planning problem the imagery 
transformation transform 3D visual objects into the object from the  
category of the possible paths. The Fig. 5.127 illustrates the imagery  
transformation of scene of three blocks into objects from the category of 
possible paths. To find the solution, SUS made visual representation of the 
“room” based on the sensory information (e.g., a photograph of the 
room) (Fig. 5.127a). Figure 5.127b–d shows some possible 2D repre-
sentation of the configuration of the objects in the room that are based 
on the scene shown in Fig. 5.127a. Each 2D representation is transformed 

3 4 4
R R

2 4 4 2 6 3, [ ](2 )}R R RQ L L
1 4 3 6 3 1 4 3[ ]{ [ ](2 , [ ]( ))}R R RA L Q L L Q L L . These symbolic names are used  
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5.5.2.14. Obstacle Detection and Motion Planning 

The paths through which a robot can move is a free space among 3D objects 
(obstacles, furniture). In the Fig. 5.127a the 3D objects are placed in such a 
way that the robot (SUS) see it as the rectangular space with three obstacles. 

into the symbolic name (b) A [L ]{3L },  (c) A [ ]L L{
(d)

a           b c d



object to obtain the required configuration of objects. For example, if 

tion such as in Fig. 5.127b that has symbolic representation in the form of 
the cyclic class 3A .

The room in Fig. 5.128 has two movable objects. The room is given as 
an exemplar from the convex acyclic class 2 4 4[ ]{2 }R RA L L . The situation in 

to the wall so there is no possibility to move between object and the wall, 
whereas the second one is placed in such a way that there is the possibility 
to move between these two objects. This room is represented by an exem-
plar of the concave cyclic class 1 1 5 3 4[ [ ]( ){ }R RA Q L L L . In Fig. 5.128c two 

Fig. 5.128. Representatives of the room category (room with two objects) 

obstacles are placed close to each other so there is no possibility to move 
among them. This room is represented by the convex cyclic class 

1 4 3[ ]{R RA L Q . In Fig. 5.128d two objects are placed near the wall 
and the room is represented by the concave class 2 6 3[ ](2 )RQ L L . Based on 
these symbolic names the general rules of the reconfiguration of the  
objects in order to obtain the required moving path can be learned. For  
example, if we want to have the configuration in which movement  

be a member of the 2A  class. 
In the case of more than two objects the symbolic representation is more 

is represented by the convex cyclic class 3 4 4[ ]{3 }R RA L L . The configuration 

1 4 3 7 3[ ]{ [ ](3 )}R RA L Q L L .

Fig. 5.128b is given as the two objects in the room: the one is placed close 

given in Fig, 5.129b is represented by the convex cyclic class 

between objects and walls is possible the representative of the room should 
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during learning of the visual concept of the category of the possible paths.

move between objects) the robot needs to move objects to obtain configura-

[ ]L (2L )}2 6

complex, however, generalization makes it possible to group the similar 
configurations to show the similarity among them. In Fig. 5.129a the room 

In the case when these objects are movable the task can be to move the 

a           b c d

the beginning configuration was such as in Fig. 5.127d (the robot cannot 



Fig. 5.129. Representatives of the room category (room with three objects). 

Fig. 5.130. Examples of representatives of the category of room with n objects 
that are placed not close to the wall but close to each other 

The generalization of this problem for n objects that are placed not  

sented by the convex acyclic class with one hole 1A . Examples of repre-
sentatives of the category of room with n objects given by symbolic names 
are shown in Fig. 5.130: (a) 1 4 4[ ]{ }R RA L L , (b) 1 4 2 5 3[ ]{ [ ](2 )}R RA L Q L L ,
(c) 1 4 2 4 4[ ]{ [ ](2 )}R RA L Q L L .

The obstacle detection is another example of the visual problem. To find 
the solution, SUS made visual representation of the “room” based on the 
sensory information (e.g., a photograph of the room) (Fig. 5.131a). The 
movable objects are marked as dark grey colored areas, the not-movable 
objects are marked as black colored areas, while the free space is marked 
as white colored areas. Robot is marked as a light grey colored area. The 
task is to find the optimal way to go out. At the first stage robot does not 
differentiate between movable and not movable objects. The visual repre-
sentation of this configuration is given in Fig. 5.131b and the result of apply-
ing the imagery transformation is given in Fig 5.131c. In Fig. 5.131d the 
representation of the hypothetical situation in which robot is to imagine 
moving the “moving object” (marked as not visible) and as the result  
the representation shown in Fig 5.131e is obtained. Translating this repre-

1
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close to the wall but close to each other, shown in Fig. 5.130, is repre- 

sentation into the class description means that the object has to be a member 
of the cyclic class A . It means that the new road is found when an object is  



 a  b  c 

Fig. 5.131. Visual transformations used in solving the obstacle detection problem 

Fig. 5.132. Visual transformations used in solving the obstacle detection problem 

a representative of the cyclic class 1A  (Fig 5.131e). At the beginning, the 
object is representative of the concave class 1Q  (Fig 5.131c). In the next 
example, at the beginning, the visual representation of the “room” is given 
by representative of the cyclic class 2A  (Fig. 5.132c). Next, robot “imag-
ines” moving the black small object that is performed by applying visual 

object and the new road is found. As the result of applying the imagery 
transformation, the visual representation of the “room” after moving an  

3

Solving visual problem given in the form of the visual intelligence test 
requires finding proper representation. The knowledge concerning solution 
of the visual intelligence tests is represented in the form of the categorical 
chains as the visual test category. The visual test category is divided into 
the category of comparison-selection tests, the category of matrix tests or 
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reasoning and imagery transformations. Robot moves the moving  

5.5.2.15. Visual Intelligence Tests 

object is representative of the cyclic class A (Fig. 5.132c). 

 d  e 

 a  b  c  d   e 



the visual test is derived from the pattern category that is composed from 
elements such as figure, signs, or real-world object. The visual test  

the category of matrix tests or the category of spatial tests: 
, ,Pt Sg VSym VEduT VisT CST MtT SpT . The

, ,KB KOb EduO VisT EduT EdLT . The knowledge 

tion in the form of the verbal description, the definition in the form of the 
formal specification and the proposed solution. The formal specification 
give the description of the test in terms of the stimulus form that is com-
pared with N answer forms. 

In the visual discrimination test the stimulus form is compared with N
answer forms in order to find one that matches each other. In this test the 
stimulus form (the form to which all forms are compared) denoted as v  is 
compared with answer forms denoted as , 1,..io i N , where N is a num-
ber of forms for comparison. The task is formulated as: Find , 1,..io i N
that matches an object io v : [ : , 1,.. ]i i io o v for i N o .
Examples of different members of the category of visual discrimination 
tests are shown in Fig. 5.133. 

Fig. 5.133. Example of the visual discrimination test 

a b c d e

f g

the category of spatial tests. As it was described in Chap. 4 each test is 
given in the form of a set of visual objects. The first step in solving the 
visual intelligence test is to assign a set of objects that constitute the visual 
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knowledge category of the visual test is derived from the category of

the category of educational tests or the category of the educational learn-  
ing theories: 

the educational object and is divided into the category of visual test,

category is divided into the categories of the comparison-selection tests,  

schema supplies knowledge in the form of the name of the test, the defini-

test, to one of the categories of the visual intelligence test. The category of 

5.5.2.15.1. Visual Discrimination Test 



Example of the solution of the task given in the test shown in Fig. 
5.133a:

1. Each object io O  is assigned to the class given by the symbolic 
name: 1 , 1,...,o i i N , the object v  is assigned to the class given 
by the symbolic name : v

2. For all objects v  and io  the interpretation in terms of the ontologi-
cal categories is found to be C , 1,... , i iFor i N o C

3. All names of categories iC  are compared with the name of C  cate-
gory 1,... , [ ] , 1i i kFor i N C C C S k k

4. if 1k  all objects kS  are removed from further comparison and 
remaining objects are assigned to one of the specific categories, For 

1,... , S
i ii k C C , go to 2, else 

5. Object S
iC  is a required solution 

The solution of the test can be given in the form of interpretational 
steps, where in which step the object v  and each object io O  are inter-

in Fig. 5.133b, c are solved by interpretation of each object as a member of 
the letter category. Objects in Fig. 5.133b are interpreted as the following 
letters: ( ) ' 'L v Z , 1( ) ' 'L o Z , 2 90( ) ' 'L o Z , 3( ) ' 'mirrorL o Z . By com-
parison meaning of each object ( )iL o  with meaning of the object ( )L v
the object 1o  meaning of each is the same as the meaning of the object v
is selected as the solution. 

Objects in Fig. 5.133c are interpreted as a string of letters: ( ) ' 'L v bo ,
1( ) ' 'L o do , 2( ) ' 'L o bd , 3( ) ' 'L o bo , 4( ) ' 'L o od . The object  

3o  which has the same meaning as the object v  is selected as the  
solution. Test given in Fig. 5.133d, e is solved by interpreting objects 

SUS solves the tasks of visual discrimination test during visual thinking 
process. In visual thinking process each visual object is transformed into 
the visual concept and next into one of the ontological categories: the 
figure, the letter, the real-world object, or the sign. The task is next solved 
by comparison of the stimulus form (the form to which all forms are 
compared) and all answer forms. 

5.5. Visual Thinking as a Problem Solving 377

preted on one of the specific categorical levels. For example, the tests given 



same meaning as the object v  is selected as the solution. The test in Fig. 
5.133f, g can be solved by interpreting phantoms as members of the cate-
gory of the real-world objects. 

The category of the visual sequential memory test is similar to the category 
of the visual discrimination test and the category of the visual memory test. 

v ,
i

category of visual sequential memory test the stimulus form is given in 
the form of the string , 1,..jv j M , and all answer forms are given in the 
form , 1,.. , 1,...j

io i N j M . Similarly as in the case of the visual dis-

names and next the solution is found by string matching. The solution of the 
task can be reduced to the interpretational steps. Examples of interpreta-
tional steps for the test shown in Fig. 5.134a, b are given as follows. 

Test in Fig. 5.134a: 

1. 3 4' 'v L , 3 4
1 ' 'o L , 1 4

2 ' 'o K , 4 1
3 ' 'o L K , 4 4

4 ' 'o L
2. 1v o

Test in Fig. 5.134b: 

1. 1 3 4' 'v K L L , 1 4 3
1 'o K L L , 1 3 4

2 ' 'o K L L , 3 1 4
3 ' 'o L K L , 4 3 1

4 ' 'o L L K
2. 2v o

as numbers: ( ) '63 'L v , 1( ) '36 'L o , 2( ) '93'L o , 3( ) '63 'L o ,

4( ) ' 'L o . The object 3o  which has the same meaning as the object  
v  is selected as the solution. Phantoms in Fig. 5.133e are interpreted as 
signs: ( ) ' _ 'L v arrowD r , 1( ) ' _ 'L o arrowD l , 2

3( ) ' _ 'L o arrowD r , 4( ) ' _ 'L o arrowS l . The object 3o  which has the  

as a member of the sign category.  Phantoms in Fig. 5.133d are interpreted 

L o( ) 'arrowS _ r ' ,
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5.5.2.15.2. Visual Sequential Memory Test 

In the test, the category of visual discrimination, test the stimulus form 
and the answer forms o , i 1,..N , consist of the one object. In the case of the

crimination test, the sequence of forms is converted into a string of symbolic 



In the visual form constancy test the task is formulated as: find 
, 1,..io i N  that is similar to an object io v :

[ : , 1,.. ]i i io o v for i N o  (Fig. 5.135). The visual similarity as-
sumes that objects can be different only as the result of application of the 

test includes comparison of the objects and selection of the one that is 
similar to a given one. In contrast to previous tests the visual form  

formations (distortion). Similarly like in the previous cases solution of the 
task can be reduced to the interpretational steps. To find the solution  

such as rotation and scaling. The figure can be also part of complex figure. 

1. 3 3[ ]v L , 4 4
1 [ ]o L , 3 3

2 [ ]o L , 3 3
3 [ ]o L , 3 3

4 [ ]o L ,

2. 3 3[ ]Ev L , 3 3
2 [ ]Eo L , 3 3

3 [ ]Oo L , 3 3
4 [ ]Eo L , 3 3

5 [ ]Oo L

3. 3 3[ ]([ , , ])Ev L l m m , 3 3
2 [ ]([ , , ])Eo L s m m , 3 3

4 [ ]([ , , ])Eo L l m m
4. 4v o

In order to find the solution the specific classes which are derived from 
the class 3 3[ ]L

3 3 3 3 3 3 3 3 3 3[ ] { [ ], [ ] { [ ]([ , , ]), [ ]([ , , ])}}O E E EL L L L l m m L s m m .

are used. The derivation process is represented as follows: 

Fig. 5.134. Examples of the visual sequential memory tests 
a b
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3 3[ ]o L ,5

5.5.2.15.3. Visual Form Constancy Test 

affine transformation such as a rotation or a scaling. Visual form constancy 

constancy tests include forms that are subjected to the geometrical trans-

Examples of interpretational steps for the test shown in Fig. 5.135a are 
given as follows:

figures need to be interpreted in the context of the geometrical transformations



Fig. 5.135. Example of the visual form constancy test 

names in the form of strings. At each step the object io for which symbolic 
names are different from the symbolic name of the object v  are removed 

1. 3 3 ( 4 4)( 3 3)( 3 3)( 3 3)( 3 3)T L T L T L T L T L T L
2. 3 3 ()( 3 3 )( 3 3 )( 3 3 )( 3 3 )T L E T L E T L O T L E T L O
3. 3 3 [ ] ()( 3 3 [ ])()( 3 3 [ ])()T L E lmm T L E smm T L E lmm

the letter category. In that case the object that need to be remembered is  
interpreted as the letter “T” that is upside down, and the object that is  
selected as a solution is the rotated version of the letter “T.” 

The progressive matrices test consists of the eight matrix objects and  
five objects from which one was to be selected as the answer. The category 
of matrix test consists of eight objects that are placed in the matrix  
pattern. The task is to find the ninth object in the matrix (selected from  
the given answer objects) based on the relationship discovered among 
the eight objects. The category of matrix tests is divided into the category 

tion (GO) test and the category of finding relationships (FR) test given as: 
.. , ,VisT MtT AO GO FR .
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of arithmetical operations (AO) test, the category of geometrical opera- 

Obtaining the solution can be simplified by representing symbolic 

and remained objects are assigned to the specific classes. The solution given

5.5.2.15.4. Matrix Test 

a

b

The solution can be also obtained by interpreting objects as members of 

in the form of strings for the test shown in Fig. 5.135a is as follows.



During finding the solution at first each visual object is converted into 
the symbolic name and next solution is found by applying the special for-
mula of finding the solution of the category of AO test. Two rows are used 
to find the relationships between numbers of figures type A j

im  and num-
bers of figures type B j

in  and the third row is used to find the solution.  

Fig. 5.136. Examples of the test type of arithmetical operations (AO) 
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The category of AO test consists of eight patterns of the two different 
types of figures that code the arithmetical operations such as a addition or 
a subtraction (see Fig. 5.136). Each of eight patterns consisting of two 

is nor more than two n = 2, – figure type A and figure type B. Reduction of 
a number of types of figures into two does not limit the generalization of 
the obtained results. In fact, in the tests which are used to test the students 
the number of types of figures is limited to two. Let us denote the number 
of figures type A as j

im , and the number of figures type B as j
in . During 

solving the test at first, the pattern of figures is to be assigned to the cate-
gory of the category of AO test, and the number of figures type A j

im , and 
type B j

in  is computed. 

a

b

n-different types of figures. Let us assume that number of types of figures 
types of different figures. The test can be thought of as a matrix consisting of



The solution can be computed by applying the following formula: 

3 3 1 1 2 2( ) ( ) ( )i i i i i im n m n m n , where symbol  denotes one of the 

In order to explain the method of solving of the test that is a member of 
the category of AO test an example shown in Fig. 5.137a is given. The test 
shown in Fig. 5.137a consist of eight cyclic objects ( )nA n . At first 
symbolic names are obtained for each visual object in the test and given in 
matrix form as follows: 

SUS solve this test by converting the symbolic names into string forms. 
During solution the test AO given in the form of the eight figures are trans-
formed into the symbolic names and next into the string forms. In this 
chapter, the string forms of the tests are restricted to the type S given in the 
form Sn|A|1X|…|iX|…|nX|. The test AO is given in the form: 

1. Sn1|A|1X|…|iX|…|n1X 
2. Sk1|A|1X|…|iX|…|k1X 
3. Sm1|A|1X|…|iX|…|k1X 
4. Sn2|A|1X|…|iX|…|n2X 

a b
Fig. 5.137. Examples of the tests type AO 
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arithmetical operators (+ or ).

1 2 4 4 1 4 1

1 3 4 4 2 4 4

2 4 1 4 4

[ ](3 ) [ ](2 ) [ ]( )
]( ) [ ](3 ) [ ](2 )

[ ](2 ) [ ]( ) ?

R C R R R C

R C R R R R

R C R R

A L K A L L A L K
K A L L A L L

A L K A L L
1 4 1

1 4

3 2

2 ?

C R C

C R R

C R

K L K

K L

The solution is expressed in the term of symbolic name of the cyclic class, 
1 4 3

R

3 4

A L[1 4

K L3 2L .1 4 4

as A L[ ](L ) . Similarly the test shown in Fig. 5.137b can be solved. 

or in the shortest form



5. Sk2|A|1X|…|iX|…|k2X 
6. Sm2|A|1X|…|iX|…|k2X 
7. Sn3|A|1X|…|iX|…|n3X 
8. Sk3|A|1X|…|iX|…|k3X 

For the tests shown in Fig. 5.137 that consist of exemplars from the  
cyclic classes ( )nA n  the solution is given as follows: 

1. 3 | 1 | 1 | 1 |A K C K C K C  1. 2 | 1 | 1 |A K C K C
2. 2 | 4 | 4 |A L R L R   2. 2 | 4 | 4 |A L R L R
3. 1| 1 |A K C   3. 4 | 4 | 4 | 1 | 1 |A L R L R K C K C
4. 1| 1 |A K C   4. 1| 1 |A K C
5. 3 | 4 | 4 | 4 |A L R L R L R   5. 1| 4 |A L R
6. 2 | 4 | 4 |A L R L R   6. 2 | 4 | 1 |A L R K C
7. 2 | 1 | 1 |A K C K C   7. 2 | 1 | 1 |A K C K C
8. 1| 4 |A L R   8. 1| 4 |A L R

After assigning symbols 3 3, 2 2, 1 1, 1 , 4A A A K C K L R L
the following matrices are obtained: 

3 2 1
1 3 2

2 1 ?

KKK LL K
K LLL LL
KK L

2 2 4
1 1 2

2 1 ?

KK LL KKLL
K L LL
KK L

type AB T
ij  is computed. The  

test type AB is given as a set of strings 1| | | ... | | ... | |j j j j j
n i nS A X X X ,

where 1 2{ , }iX  denotes the symbolic names of parts of the  
T
ij  is a number of 

1, ... ,...i m in  the  test T
ij

3 3 1 1 2 2( ) ( ) ( )i i i i i im n m n m n , where symbol  denotes one of the 
solution can be computed by applying the following formula: 

. The  finalthe different symbolic names 
figures of the tests. The type of the test symbols ( )
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The first stage of finding the solution is to check if the test is  
 and then the type of the test symbols ( )

arithmetical operators (+ or ), described at the beginning of this section. 

Fig. 5.137bFig. 5.137a



The object in the third column (row) is the result of GO called geometrical 
addition of the objects in the first and the second column (row). For  

4 4 4[ ]{ , }R RG L L  is the result of geometrical summation 4 4
RL  of the sec-

ond and the third column, or in other words, the archetype shown in the 
first column is the result of the geometrical sum of the archetype of the 

4
R

4

F F F

During finding of the solution at first each visual object is converted 
into the symbolic name and next solution is obtained by finding the geo-
metrical operator. The geometrical operator makes it possible to perform 
the GOs on the strings of symbols that represent the visual objects. 

In the test in Fig 5.138a two rows are used to find relationships between 
figures F1 and F6 and figures F7 and F8 in the third row are used to find 
the possible solution. The relationships can be written as F1*F2 = F3, 

The solution is obtained by decomposing the string of the symbolic 
names as shown in the matrix below. The solution 6  is obtained from 
strings comparison: 1 4 1[ ]{ , }RG K K - 4 1

R K , 4 4 4[ ]{ , }R RG L L - 4 4
RL ,

5 6 5[ ]{ , }M MG L L - 6 5
ML
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convex class L  (the second column) and the archetype of the thin star class 
 (the third column). The test is written in matrix form as follows: 

F F F

F4*F5 = F6, F7*F8 = ?, where “*” denotes the geometrical operator. In the 

sum of figures in the second and the third column. The solution is obtained 
by removing the line from the figure in the first column by using the figure 
from the second column. The symbolic name is obtained as 3 1 1i i i ,
where 1 2 3, ,i i i
1 and the column 2 and the column 3. The archetype of the G class are  
obtained by performing the line removing operation on the object given by 
the symbolic name 1i  applying the object given by the symbolic name 

2i .

. Similarly the test given in Fig. 5.138b can be 
solved.

 denotes the symbolic names of figures in the column 

The category of geometrical addition (GA) tests consists of eight objects. 

example, the archetype shown in the first column of the test in Fig. 5.138a 

1 2 3

4 5 6

7 8F F ?

tests shown in Fig. 5.138 the figure in the first column is the geometrical 



1 4 1 1 4

4 4 4 4 4

5 6 5 5

[ ]{ , }
[ ]{ , }
[ ]{ , } ?

R R

R R R

M M M

G K K K
G L L L
G L L L

Fig. 5.138. Example of the test type of geometrical addition GA 

In the test from the category of FR figures are arranged in such a way 
that the six figures are used to find the general rules of prediction and two 
figures are used to find the possible solution. The test needs to have at least 
two features in common for each three figures to be called solvable. The 
test pattern can be represented as follows: 

1 1 1
1 2 3
2 2 2

3 3 3
1 2 3

F F F
F F F
F F F

There are two configurations used in the test. The simple configuration 
1 1 1

1 2 3, ,F F F ,
2 2 2

1 2 3, ,F F F , 3 3
1 2, , (?)F F F . The most common configuration (CMC) is 

given as 1 2 3 , 1 2 3
3 2 1, ,F F F , 1 2

2 1, , (?)F F F

a b
Fig. 5.139. Examples of the test type finding relationships (FR) (CMC configuration) 
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a b

1 2 3

F , ,F F1 3 2

(CS) is given as three sets consisting of three figures 

 (see Fig. 5.139). 



Each test given in the form of the CMC configuration can be trans-
formed into CS configuration. Examples of tests given in the form of the 
CMC are shown in Fig. 5.139. 

As it was described in the Chap. 4 the category of the test type FR con-
sists of eight visual objects and six objects that represent the possible 
answers. The solution to the test can be given in the form of interpreta-
tional steps. The interpretational steps that lead to the solution can be easy 
to follow without knowing meaning of the notation of the symbolic names. 
The visual object represented in the form of symbolic names (e.g., 

1( , ( ( ), ( ), , ( ), ( )))C K c h s l b s l c h ) is transformed into string representa-
tion (e.g., [K,h,l,b,l,h]). Examples of the interpretational steps for the test 
shown in Fig. 5.139a are as follows: 

1( , ( ( ), ( ), , ( ), ( )))C K c h s l b s l c h [K,h,l,b,l,h]
1( , ( , , , , , , ))C K s s b s b s s [K,s,s,b,s,b,s,s]
1( , ( ( ), ( ), , ( ), , ( ), , ( ), ( )))C K c d s k b s k b s k b s k c d [K,d,k,b,k,b,k,b,k,d]
1( , ( , , , , , , , , )C K s s b s b s b s s [K,s,s,b,s,b,s,b,s,s]
1( , ( ( ), ( ), , ( ), ( )))C K c d s k b s k c d [K,d,k,b,k,d]
1( , ( ( ), ( ), , ( ), , ( ), ( )))C K c h s l b s l b s l c h [K,h,l,b,l, b,l,h]
1( , ( ( ), ( ), , ( ), , ( ), ( )))C K c d s k b s k b s k c d [K,d,k,b,k,b,k,d]
1( , ( ( ), ( ), , ( ), , ( ), , ( ), ( )))C K c h s l b s l b s l b s l c h [K,h,l,b,l, b,l,b,l,h]

?
Objects of possible answers represented in the form of symbolic names 

(e.g., 1

string representation (e.g., [K,h,k,b,k,b,k,h]). 

1. 1( , ( ( ), ( ), , ( ), , ( ), ( )))C K c h s k b s k b s k c d [K,h,k,b,k,b,k,h]
2. 1( , ( , ( ), , ( ), ))C K s s l b s l s              [K,s,l,b,l,s] 
3. 1( , ( ( ), , , , , , , , ( )))C K c h s b s b s b s c h [K,h,s,b,s,b,s,b,s,h]
4. 1( , ( ( ), , , , ( )))C K c d s b s c d [K,d,s,b,s,d]
5. 1( , ( , , , , ))C K s s b s s [K,s,s,b,s,s]
6. 1( , ( ( ), ( ), , ( ), , ( ), ( )))C K c h s k b s k b s k c d [K,h,k,b,k,b,k,h]
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C(K , (c(h), s k( ),b s k, ( ),b, s k( ),c(d ))) ) are transformed into 



Test given in the string form: 

[K,h,l,b,l,h] [K,s,s,b,s,b,s,s] [K,d,k,b,k,b,k,b,k,d]
[K,s,s,b,s,b,s,b,s,s] [K,d,k,b,k,d] [K,h,l,b,l, b,l,h]
[K,d,k,b,k,b,k,d] [K,h,l,b,l, b,l,b,l,h]              ? 

Possible answers given in the string form: 

1[K,h,k,b,k,b,k,h]  2[K,s,l,b,l,s]   3[K,h,s,b,s,b,s,b,s,h] 
4[K,d,s,b,s,d]  5[K,s,s,b,s,s]     6[K,h,k,b,k,b,k,h]

After removing letters K and b we obtain the following form:

[h,l,l,h] [s,s,s,s,s] [d,k,k,k,k,d]
[s,s,s,s,s,s] [d,k,k,d] [h,l,l,l,h]
[d,k,k,k,d] [h,l,l,l,l,h]
1[h,k,k,k,h]  2[s,l,l,s]   3[h,s,s,s,s,h]   4[d,s,s,d]  5[s,s,s,s]     6[h,k,k,k,h] 

After removing sequences h,k,..., s,l,..., h,s,…, d,s,…, the following  

SUS should be able to solve any FR test, however, the perceptual abili-
ties to see small details seem to be major obstacle in finding the solution 

using objects that can be easy to interpret by SUS. The solution of the test 
type FR is based on the method that utilizes the string representation of the 

will be used. The objects in the test are denoted using matrix notation 
, , , 1,..3i jv i j . The five objects that are given as an answer are denoted as 
, 1,..5ko k .

Fig. 5.140. Example of tests type FR and answers 
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result is obtained 5[s,s,s,s] (the object that represents the answer number  
5 is selected). 

for some tests. At this stage of research the test that SUS solves is designed 

symbolic names. To explain the method examples of test shown in Fig. 5.140 



During solving the test objects in the matrix are transformed into a  
series of the test figures , 1,..8iv i  and for each figure the symbolic name 

, 1,..8i i  is obtained. The symbolic name i  is transformed into the 
string form S

i . As it was described in Chap. 2 the string form consists of 
the combination of the selected letters, numbers, and the symbol “|.” The 
string has a following form: B1|…|Bi|...|Bn|, where Bi denotes the  
symbolic name of the shape class. The test in the string form is given as 
follows:
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The task is formulated as “find the object , 1,..5ko k  that fills the 
missing entry in the matrix , , , 1,..3i jv i j : ,[ : ,k k i jo o v for
, 1,..3 1,...,5] ki j k o .” The symbol “ ” denotes matching 

between the possible solution ,i jv  and the answer object .ko  The visual 
test is given as a matrix pattern that consists of eight objects and five 
object as a possible answer. 

The symbolic name , 1,..8i i  that is obtained during visual reason-
ing is transformed into the basic form. The basic form includes symbols 

4

2 4 3
R

tion of the symbolic name into a string form requires to include all details 

1. A11|A21|….|An1| 
2. A12|A22|….|An2| 
3. A13|A23|….|An3| 
4. A14|A24|….|An4| 
5. A15|A25|….|An5| 
6. A16|A26|….|An6| 
7. A17|A27|….|An7| 
8. A18|A28|….|An8|. 

The answer string form is given as follows: 

1. B11|B21|….|Bn1| 
2. B12|B22|….|Bn2| 
3. B13|B23|….|Bn3| 
4. B14|B24|….|Bn4| 
5. B15|B25|….|Bn5|. 

that refer to the symbolic names (a general level of description). For  example,
the string Q<L 4>[R]|<L3>[A]<L3>[A]| that refers to the symbolic name 
Q L[ ](2L ) is transformed into the form Q1|L4_R|L3_A|L3_A. Transla-



0 0 0
1 1 1..._ | ... | ..._ | ... | ..._ |H H H

i i njA jA jA jA jA jA .

Example of the test for one and two levels of details is given in Fig. 

given in Fig. 5.141b is represented by the string of symbols shown in the 
right column: 

A_1|L4_R|L5_T|               A_1_*|M_1_L4R|K_1_C| 
A_1|L3_O|L4_R|              A_1_*|K_1_C  |L_3_A|
A_1|L5_Y|L3_O|              A_1_*|L_4_R  |M_1_L3A| 
A_1|L3_A|L3_A|              A_1_*|K_1_E  |M_1_L4R| 

    A_1|L5_M|L5_M|               A_1_*|L_3_A  |K_1_C| 
A_1|L4_R|L4_Y|                               A_1_*|M_1_L3A|L_3_A| 
A_1|L5_O|L4_T|              A_1_*|L_4_T  |L_3_A| 
A_1|L4_T|L3_A               A_1_*|M_2_L4R|M_2_L4R| 

Very often in order to find the solution there is a need performing gen-
eralization. During generalization the symbol is dropped from the left to 
the right. For example, for the test in Fig. 5.141a the first level of generali-
zation (the first row) is A|L4|L5|. For the test in Fig. 5.141b the first level 
of generalization (the first row) is A_1|M_1|K_1| and the second level of 
generalization is A|M|K|. 

a  b

details
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5.141. The test (given in the string form) shown in Fig. 5.141a is repre-
sented by the string of symbols shown in the left column whereas the test 

given by the symbolic name. The level of details is marked by introduc-
ing the symbol “_.” The symbolic name is translated into the form 
L0_L1_...Ln, where the level Ln denotes the level of description of the  
archetype of a given class. The test that is converted into the string form 
needs to preserve the level of details. The nth level of details can be writ-
ten in the string form as follows: 

Fig. 5.141. Example of the test type FR (a) one level of details (b) two levels of 



The test given as objects in the matrix pattern does not always have the 
solution. The test FR to be solvable (test have a solution) should fulfill the 

mon for each three objects in the matrix pattern. The objects are arranged 
in such a way, that six figures are used to find the general rules of predic-
tion and two figures are used to find the possible solution. 

The test pattern can be represented as follows: 
1 1 1

1 2 3
2 2 2

3 3 3
1 2 3

F F F
F F F
F F F

There are two configurations used in the test. The CS is given as  
three sets consisting of three figures 1 1 1

1 2 3, ,F F F , 2 2 2
1 2 3, ,F F F ,

3 3
1 2, , (?)F F F . The CMC is given as 1 2 2

1 2 3, ,F F F , 1 2 3
3 2 1, ,F F F ,

1 2
2 1

Test is solved by selecting features for both configurations figures 
1 1 1

1 2 3, ,F F F , and 2 2 2
1 2 3, ,F F F . The feature is any symbol in the string 

representation …|X1|…|Y1|.... The relationship can be formulated in the 
form of one, two, or more than two features. Figure 5.143 shows a test that 
has relationships expressed in the form of one feature (Fig. 5.143a) and 
two features (Fig. 5.143b). These tests are represented in the string form as 
follows:

A1|M2L4R|M1L4R |       Q1|M1L4R|Q1|L4R|M1 | 
A1|M1L4R|M2L4R |       Q1|L4R  |Q1|L4R|L4R| 
A1|M1L3A|M1L3A |       Q1|L5M  |Q1|L4T|L3A| 
A1|M1L4R|M1L3A |       Q1|L4R  |Q1|L4T|L3A| 
A1|M1L3A|M1L4R |      Q1|L5M  |Q1|L4R|M1 | 
A1|M2L4R|M2L4R |       Q1|M1L4R|Q1|L4R|L4R| 
A1|M1L3A|M2L4R |        Q1|L5M   |Q1|L4R|L4R| 
A1|M2L4R|M1L3A        Q1|M1L4R|Q1|L4T|L3A| 
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following conditions: the test needs to have at least two features in com-

1 2 3

can be transformed into CS configuration. Example of the transformation 
is given in Fig. 5.142. 

F , F , F (?) . Each test, given in the form of the CMC configuration, 



Fig. 5.142. Transformation of the test given in the CMC form into the CS form 

 a    b 
Fig. 5.143. Tests that have relationships expressed in the form of one feature (a)
and two features (b)

The test which has solution can be written as follows:

1. …|X1|…|Y1|...                            1. X1|Y1 
2. …|X2|…|Y2|...                            2. X2|Y2 
3. …|X3|…|Y3|...                            3. X3|Y3 
4. …|X2|…|Y3|...              4. X2|Y3
5. …|X3|…|Y1|...                or in short                   5. X3|Y1 
6. …|X1|…|Y2|...                            6. X1|Y2 
7. …|X3|…|Y2|...                            7. X3|Y2 
8. …|X2|…|Y3|...                            8. X2|Y3 

The test can be given in the compatible form that means each eight rows 

test given in the compatible form can be represented as follows: 

1A1|1A2|…|1Ai|…|1An|
2A1|2A2|…|2Ai|…|2An|
3A1|3A2|…|3Ai|…|3An|
4A1|4A2|…|4Ai|…|4An|
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has the columns that are representative of the same type of classes. The 



5A1|5A2|…|5Ai|…|5An|
6A1|6A2|…|6Ai|…|6An|
7A1|7A2|…|7Ai|…|7An|
8A1|8A2|…|8Ai|…|8An|
As it was mention in previous section, the test is formulated as a pattern 

of the eight strings. For simplicity the type of compatible test can be 
written in the form of the one string. Examples of the different one string 
representations of the different tests are as follows:

Sn|A|1X|…|iX|…|nX|,
S1|A|1_S1|1_A|1_X|, 
Sn|A|1X|2X|…|hX|1_1Q1|1_1G|1_R|…|1_hQ1|1_hG|1_hR|.

The incompatible test can be represented as follows: 
1A1|1A2|…|1Ai|…|1An1|
2A1|2A2|…|2Ai|…|2An2|
3A1|3A2|…|3Ai|…|3An3|
4A1|4A2|…|4Ai|…|4An4|
5A1|5A2|…|5Ai|…|5An5|
6A1|6A2|…|6Ai|…|6An6|
7A1|7A2|…|7Ai|…|7An7|
8A1|8A2|…|8Ai|…|8An8|
In the case of the incompatible test the first step is to bring it into the 

compatible form. The simple form of the incompatible test is given as  
follows:

1. S1|A1|1X1| 
2. S2|A2|1X2|2X2| 
3. S3|A3|1X3|2X3|3X3| 
4. S4|A4|1X3|2X3|3X3| 
5. S5|A5|1X1| 
6. S6|A6|1X2|2X2| 
7. S7|A7|1X2|2X2| 
8. S8|A8|1X1| 

The incompatible test can be reduced into three strings. These strings for 
the test given in this example are given as follows: 

1. S1|A1|1X1| 
2. S2|A2|1X2|2X2| 
3. S3|A3|1X3|2X3|3X3| 

The transformation from the incompatible test into the compatible test 
requires obtaining the same type of test by fulfilling the “incompatible” 

  5. Visual Thinking: Understanding 392



columns with symbol “*.” After transformation the compatible form for 
the test given in this example is as follows: 

1. S1|A1|1X1|*     |*     | 
2. S2|A2|1X2|2X2|*     | 
3. S3|A3|1X3|2X3|3X3| 

The transformation from the incompatible form into the compatible 
form involves both type of the class and the symbolic name. At first the 
type of the class for each row is compared to find if it can be transformed 
into the compatible form. If the incompatible form can be transformed into 
the compatible form at first the types of classes for each row are matched 
with the general type of the class. The general type of class is the type that 
makes it possible to fit the structure of all strings. The general type can be 
generated or stored as a template. For example, the test Sn can contain the 
string type Qn|G|1R|…|iR|…|nR| or An|C|1W|…|iW|…|nW| or both  
types of strings. To convert string from incompatible form into the com-
patible form the algorithm A1 can be used. For the type of class 
Snj|A|1X|…|iX|…|nX| the algorithm is as follows: 

Algorithm A1: 
For j=1 to 8 
begin
if nj<n2 than 
begin
for nj+1 to n2 
begin
jX=’*’

Example of the test type Sn where the algorithm A1 can be applied: 

|Q2|L4R|L3A|L4R|*  | 
|Q1|L3A|L4R|*  |*  | 
|Q2|L5M|L3A|L4T|*  | 
|Q3|L3A|L3A|L4T|L5M|
|Q1|L5M|*  |*  |*  | 
|Q2|L4R|L3A|L4R|*  | 
|Q3|L5M|L3A|L4R|L5M|
|Q2|L4R|L3A|L3A|*  | 

Similarly the procedure can be applied for the test type S11_S given as: 
1 1 1 1 1

1 1 1 1| | 1_ | 1_ | 1_ | ... | 1_ | .... | 1_ | 1_ | 1_ | ... | 1_ |n n n

n m m mn mnS A S A X X S A X X .
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end.
end  
end



When the test is given in the compatible form the algorithm A2 is  

Algorithm A2: 
begin
s1=0, s2=0 
for i=0 to n 
begin

1
0 5S

iif A than
begin

1
SA R
s i , s1=s1+1

end
2

0 5S
iif A than

begin

2
SB R
s i , s2=s2+1

end
for i=0 to m_N 
begin

0ia C , 1ib C
1

1 5S
iif A than

begin
1 1

1
SA R R
s a b , s1=s1+1

end
2

1 5S
iif A than

begin
1 1

2
SB R R
s a b , s2=s2+1

end

The category of spatial test is derived from the category of the visual psy-
chological test and is divided into the folding sheet test category, the cubic 
box test category, the bird view test category or the spatial transformation 
test category: .. , , , , .VisT SpT FST CBT BWT BWT SST
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applied to find the solution and transforms it into the string form. 

These algorithms will be described in detail in the second part of this 
book that will present implementation issues of SUS. 

5.5.2.15.5. Category of Spatial Tests 

end
end.

end



One of the simplest categories of tests is the folding sheet test category. 
The task is to find which of four 3D figures can be produced by folding a 
flat sheet of specified shape. SUS solves this task by interpreting the 2D 
visual object as a member of the category of 3D geometrical figures and 
next comparing visual concepts of the category flat sheet of 3D figures and 
all “unfolded” forms of the 3D geometrical objects. The 3D geometrical 
figures are geometrical solids members of the line drawing perceptual 
category.

In order to solve spatial test that is a member of the folding sheet test 
category there is a need to learn the visual concept of the 3D figure and its 
folding sheet version. The first part of the string [ 6]{3 4}L L  that 

whereas the second part of the string [ [ [ 8](4 3 )]{6 4 }]Q L L R L R  denotes 
its “unfolded” sheet. Examples of learned visual concepts for objects 

A. [ 6]{3 4} [ [ [ 8](4 3 )]{6 4 }]L L Q L L R L R
B. [ 5]{ 3, 4} [ [ [ 6](4 3 )]{4 4 , 2 3 }]L L L Q L L O L R L E
C. [ 6]{2 4 , 4 } [ [ [ 8](4 3 )]{4 4 , 2 4 }]L L O L T Q L L O L R L T
D. [ 6]{2 4 , 5 } [ [ [ 11](5 3)]{5 4 , 2 5 }]L L O L M Q L L L R L M

the “unfolded” sheet is obtained [ [ [ 6](4 3 )]{4 4 , 2 3 }]Q L L O L R L E  and 
next all visual concepts are searched in order to find this symbolic name. 
In our example strings A–D are searched in order to find the symbolic 
name that matches parts of strings that denote the “unfolded” sheet. As the 

boxes and the nets of these boxes (unfolded cut-outs). The task is to 
choose which one of the nets belongs to the box shown. 

In order to solve the space relations test, there is a need to find the inter-
pretation of the tasks in terms of their nets (unfolded cut-outs). The solu-
tion of this task depends on the complexity of the pattern that is given on 
the visible side of the box. 
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represents the object shown in Fig. 5.144A denotes the 3D figure (solid), 

shown in Fig. 5.144A–D are as follows:

During solving task shown in Fig. 5.144 at first the symbolic name for 

result the solid shown in Fig. 5.144B is selected as the final solution. 
For the tests shown in Fig. 5.145 the task is given in the form of cubic 

Fig. 5.144. Example of the spatial test member of the folding sheet test category 



cut-outs)

In the case when there are different patterns on each side of the cube 
there is the need to find the rotating scheme of the net. An example of the 
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Fig. 5.145. Tests in the form of cubic boxes, and the nets of these boxes (unfolded 

cube with the letters L, P, and C on the sides is shown in Fig. 5.146. 

Fig. 5.146. Nets with a pattern that can form the required cube 



The pattern shown on the cube is transformed into the pattern on the 
nets consisting of the three sides. At first the type of the 3D transformation 
is found (orthographic or perspective projection) and next each pattern  
on each side is transformed into the 2D pattern. It is assumed that the side 

1c , the side in the 

2c , and the third 
3c .

The notation 0
ic , 90

ic , 180
ic , and 270

ic  denotes that pattern on the ith side 

called the basic configuration. It is assumed that the basic configuration 
has pattern that is not rotated. The configuration of the nets with the differ-
ent pattern is given as:

270 0 270 0 90 0 90 180 90 270 180 180
2 3 1 2 3 1 2 3 1 3 2 1
0 90 90 90 180 180 180 270 270 0 270 0
1 2 3 1 2 3 1 2 3 2 1 3
180 180 180 270 270 270 0 0 0
3 1 2 3 1 2 3 1 2

{ 00 0}{0 0 0}{00 0}{ 00 0}

{ 00 0}{0 0 0}{00 0}{ 00 0}

{ 00 0}{0 00 0}{00 0 0}

c c c c c c c c c c c c

c c c c c c c c c c c c

c c c c c c c c c 90 90 90
1 3 2

270 0 0 90 0 270 90 180 180 180 270 90
3 2 1 2 3 1 3 2 1 3 2 1

0 180 180 90 270 270 270 90 0 0 180 0
3 1 2 1 3 2 1 3 2 1 3 2

0 90 180 180 90 90 180
2 1 3 1 2 3 2 1

{ 00 0}

{00 0 }{ 00 0 }{ 000 }{0 00 }

{ 00 0 }{00 0 }{ 00 }{0 00 }

{00 0 }{ 00 0 }{

c c c

c c c c c c c c c c c c

c c c c c c c c c c c c

c c c c c c c c270 0 270 0 270
3 2 1 3000 }{0 00 }c c c c

The algorithm for finding the solution is as follows: 

1. Find the type of the 3D transformation of the cube (orthographic or 
perspective projection) 

2. Transform pattern on each side into the 2D pattern 
3. Find basic configurations of patterns 0

1c , 0
2c , 0

3c

L

P C 0
2c

0
1c

0
3c
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4. Find the configuration net by inserting the pattern into the coding 
schema

Fig. 5.147. Patterns on the box sides and their code 

on the top (with letter L in Fig. 5.147) is denoted as 
front of viewer (with letter P in Fig. 5.147) is denoted as 
side (with letter C in Fig. 5.147) is denoted as 

is rotated 0 , 90 , 180 , or 270 . The configuration shown in Fig. 5.147 is 



270 0 270 0 90 0 90 180 90 270 180 180
2 3 1 2 3 1 2 3 1 3 2 1
0 90 90 90 180 180 180 270 270 0 270 0
1 2 3 1 2 3 1 2 3 2 1 3
180 180 180 270 270 270 0 0 0
3 1 2 3 1 2 3 1 2

{ 00 0}{0 0 0}{00 0}{ 00 0}

{ 00 0}{0 0 0}{00 0}{ 00 0}

{ 00 0}{0 00 0}{00 0 0}

c c c c c c c c c c c c

c c c c c c c c c c c c

c c c c c c c c c 90 90 90
1 3 2

270 0 0 90 0 270 90 180 180 180 270 90
3 2 1 2 3 1 3 2 1 3 2 1

0 180 180 90 270 270 270 90 0 0 180 0
3 1 2 1 3 2 1 3 2 1 3 2

0 90 180 180 90 90 180
2 1 3 1 2 3 2 1

{ 00 0}

{00 0 }{ 00 0 }{ 000 }{0 00 }

{ 00 0 }{00 0 }{ 00 }{0 00 }

{00 0 }{ 00 0 }{

c c c

c c c c c c c c c c c c

c c c c c c c c c c c c

c c c c c c c c270 0 270 0 270
3 2 1 3000 }{0 00 }c c c c

5. Find the pattern coding of the net i
a. For each pattern 1 2 3 4 5 6{ }i i i i i i

iN k k k k k k
b. For each net patter , 1...6i

jk j  if 1 2 3{ , , )i
jk P P P  then 0i

jk
else i

j kk P
6. For each pattern 1 2 3 4 5 6{ }i i i i i i

iN k k k k k k  if in  then iN n  STOP 
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