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The Cambridge Handbook of
Computational Psychology

This book is a definitive reference source for the growing, increasingly important, and inter-
disciplinary field of computational cognitive modeling, that is, computational psychology. It
combines breadth of coverage with definitive statements by leading scientists in this field.
Research in computational cognitive modeling (or, simply, computational psychology) ex-
plores the essence of cognition and various cognitive functionalities through developing
detailed, process-based understanding by specifying computational mechanisms, structures,
and processes. Given the complexity of the human mind and its manifestation in behavioral
flexibility, process-based computational models may be necessary to explicate and elucidate
the intricate details of the mind. The key to understanding cognitive processes is often in fine
details. Computational models provide algorithmic specificity: detailed, exactly specified,
and carefully thought-out steps, arranged in precise yet flexible sequences. These models
provide both conceptual clarity and precision at the same time. This book substantiates this
approach through overviews and many examples.

Ron Sun is professor of cognitive science at Rensselaer Polytechnic Institute. A well-known
researcher in the field of cognitive science, Sun explores the fundamental structure of the
human mind and aims for the synthesis of many interesting intellectual ideas into one coher-
ent model of cognition. The goal is to form a generic cognitive architecture that captures a
variety of cognitive processes in a unified way and, thus, to provide unified explanations for
a wide range of cognitive data. To do so, for the last two decades, he has been advocating
the use of hybrid connectionist-symbolic systems in developing cognitive models, and he
has been developing theories of human skill learning and human everyday reasoning as the
centerpieces of the cognitive architecture.
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Preface

The goal of the Cambridge Handbook
of Computational Psychology is to pro-
vide a definitive reference source for the
rapidly growing, increasingly important, and
strongly interdisciplinary field of computa-
tional cognitive modeling – that is, compu-
tational (and theoretical) psychology. It is
part of the Cambridge Handbook in Psychol-
ogy series.

This volume combines the breadth of
coverage of the field with the authoritative
statements by leading scientists in this dis-
cipline. It should thus appeal to researchers
and advanced students working in this re-
search field, as well as to researchers and ad-
vanced students working in cognitive science
(in general), philosophy, experimental psy-
chology, linguistics, anthropology, neuro-
science, and artificial intelligence. For exam-
ple, it could serve as a textbook for a course
in a cognitive science program or, more gen-
erally, in social and behavioral sciences pro-
grams. This book could also be used by social
science researchers, education researchers,
intelligent systems engineers, and psychol-
ogy and education software developers.

Models in cognitive science are often
roughly divided into computational, math-
ematical, or verbal-conceptual models. Al-
though each of these types of models has
its role to play, in this volume, we are
mainly concerned with computational mod-
eling. The reason for this emphasis is that, at
least at present, computational modeling ap-
pears to be the most promising approach in
many ways and offers the flexibility and the
expressive power that no other approaches
can match. (Mathematical models may be
viewed somehow as a subset of computa-
tional models, as they may lead readily to
computational implementations.) A com-
putational model may often be viewed as a
theory of the phenomena it aims to capture
and may be highly intellectually enlighten-
ing in this way.

Each chapter in this volume introduces
and explains basic concepts, techniques, and
findings for a major topic area within the
realm of computational cognitive model-
ing (e.g., computational models and theories
of a particular cognitive domain or func-
tionality); sketches its history; assesses its

vii
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successes and failures; and evaluates the di-
rections of current and future research. This
handbook thus provides quick overviews for
experts in each topic area and also for re-
searchers in allied topic areas. However,
equally important, the book provides an
introduction to the field of computational
cognitive modeling (computational psychol-
ogy). It discusses the methodologies of com-
putational cognitive modeling and justifies
its use in cognitive science. It introduces
influential approaches, describing in detail
these approaches and providing ample ex-
amples. Thus, this volume provides an en-
try point into the field for the next gen-
eration of researchers by supplying a text
for courses for graduate students and upper-
level undergraduate students and for self-
study.

I would like to thank all the contributing
authors. Many of them not only contributed
chapters, but also participated in mutual re-
views of draft chapters, thus helping to en-
sure the quality of this book.

I would like to thank all the review-
ers of the chapters. The external re-
viewers include: Edward Wasserman, Gert
Westermann, Frank Ritter, Robert Wray,

Robert French, Roger Levy, Jeff Schrager,
Michael J. Frank, Sam Gilbert, Kostas
Arkoudas, Brad Love, Emo Todorov, Russ
Burnett, Chris Schunn, Ernest Davis, Robert
West, Paul Bello, Michael Schoelles, Robert
Port, Mike Byrne, John Spencer, David
Peebles, Robert Jacobs, and Maximilian
Riesenhuber. The internal reviewers in-
clude: Thomas Shultz, David Shank, Paul
Thagard, Aaron Sloman, Stellan Ohlsson,
Tim Rogers, Stephen Read, Evan Heit, Nick
Chater, and Ken Norman.

I would also like to thank the members
of the advisory board, who contributed sug-
gestions that made the volume more com-
prehensive and more interesting. The mem-
bers of the advisory board include: Thomas
Shultz, Wayne Gray, and Jay McClelland.

Finally, I would like to thank Phil Laugh-
lin for inviting me to put together this vol-
ume. It has been a pleasure working with
Eric Schwartz, Phil Laughlin, Armi Maca-
ballug, Peggy Rote, and others at Cambridge
University Press in the process of developing
this book.

Ron Sun
Troy, New York
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Part I

INTRODUCTION

�

This part provides a general introduction to the field of computational psychology and
an overview of the book. It discusses the general methodology of computational cognitive
modeling, and justifies its use in cognitive science and beyond.

1
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CHAPTER 1

Introduction to Computational

Cognitive Modeling

Instead going straight into dealing with spe-
cific approaches, issues, and domains of
computational cognitive modeling, it is ap-
propriate to first take some time to ex-
plore a few general questions that lie at the
very core of cognitive science and computa-
tional cognitive modeling. What is computa-
tional cognitive modeling? What exactly can
it contribute to cognitive science? What has
it contributed thus far? Where is it going?
Answering such questions may sound overly
defensive to the insiders of computational
cognitive modeling and may even seem so
to some other cognitive scientists, but they
are very much needed in a volume like this
because they lie at the very foundation of
this field. Many insiders and outsiders alike
would like to take a balanced and rational
look at these questions without indulging in
excessive cheerleading, which, as one would
expect, happens sometimes among compu-
tational modeling enthusiasts.

However, given the large number of is-
sues involved and the complexity of these
issues, only a cursory discussion is possible
in this introductory chapter.One may thus
view this chapter as a set of pointers to the

existing literature rather than a full-scale dis-
cussion.

1. What Is Computational Cognitive
Modeling?

Research in computational cognitive mod-
eling, or simply computational psychol-
ogy, explores the essence of cognition (in-
cluding motivation, emotion, perception,
etc.) and various cognitive functionalities
through developing detailed, process-based
understanding by specifying corresponding
computational models (in a broad sense)
of representations, mechanisms, and pro-
cesses. It embodies descriptions of cognition
in computer algorithms and programs, based
on computer science (Turing, 1950); that
is, it imputes computational processes (in
a broad sense) onto cognitive functions, and
thereby it produces runnable computational
models. Detailed simulations are then con-
ducted based on the computational models
(see, e.g., Newell, 1990; Rumelhart et al.,
1986; Sun, 2002). Right from the begin-
ning of the formal establishment of cognitive

3
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science around the late 1970s, computa-
tional modeling has been a mainstay of cog-
nitive science.1

In general, models in cognitive science
may be roughly categorized into computa-
tional, mathematical, or verbal-conceptual
models (see, e.g., Bechtel & Graham,
1998). Computational models present pro-
cess details using algorithmic descriptions.
Mathematical models present relationships
between variables using mathematical equa-
tions. Verbal-conceptual models describe
entities, relations, and processes in rather
informal natural languages. Each model, re-
gardless of its genre, might as well be viewed
as a theory of whatever phenomena it pur-
ports to capture (as argued before by, e.g.,
Newell, 1990; Sun, 2005).

Although each of these types of models
has its role to play, the discussion in this
volume is mainly concerned with computa-
tional modeling, including models based on
computational cognitive architectures. The
reason for this emphasis is that, at least
at present, computational modeling (in a
broad sense) appears to be the most promis-
ing approach in many respects, and it offers
the flexibility and expressive power that no
other approach can match, as it provides a
variety of modeling techniques and method-
ologies, and supports practical applications
of cognitive theories (Pew & Mavor, 1998).
In this regard, note that mathematical mod-
els may be viewed as a subset of computa-
tional models, as normally they can readily
lead to computational implementations (al-
though some of them may be sketchy and
lack process details).

Computational models are mostly
process-based theories, that is, they are
mostly directed at answering the question of
how human performance comes about; by
what psychological mechanisms, processes,

1 The roots of cognitive science can, of course, be
traced back to much earlier times. For example,
Newell and Simon’s early work in the 1960s and
1970s has been seminal (see, e.g., Newell & Simon,
1976). The work of Miller, Galanter, and Pribram
(1960) has also been highly influential. See Chap-
ter 25 in this volume for a more complete historical
perspective (see also Boden, 2006).

and knowledge structures; and in what
ways exactly. In this regard, note that it
is also possible to formulate theories of
the same phenomena through so-called
product theories, which provide an accurate
functional account of the phenomena but
do not commit to a particular psychological
mechanism or process (Vicente & Wang,
1998). Product theories may also be called
blackbox theories or input-output theories.
Product theories do not make predictions
about processes (even though they may
constrain processes). Thus, product theo-
ries can be evaluated mainly by product
measures. Process theories, in contrast, can
be evaluated by using process measures
when they are available and relevant (which
are, relatively speaking, rare), such as eye
movement and duration of pause in serial
recall, or by using product measures, such
as recall accuracy, recall speed, and so
on. Evaluation of process theories using
the latter type of measures can only be
indirect, because process theories have to
generate an output given an input based
on the processes postulated by the theories
(Vicente & Wang, 1998). Depending on
the amount of process details specified, a
computational model may lie somewhere
along the continuum from pure product
theories to pure process theories.

There can be several different senses of
“modeling” in this regard, as discussed in
Sun and Ling (1998). The match of a model
with human cognition may be, for exam-
ple, qualitative (i.e., nonnumerical and rela-
tive) or quantitative (i.e., numerical and ex-
act). There may even be looser “matches”
based on abstracting general ideas from ob-
servations of human behaviors and then de-
veloping them into computational models.
Although different senses of modeling or
matching human behaviors have been used,
the overall goal remains the same, which
is to understand cognition (human cogni-
tion in particular) in a detailed (process-
oriented) way.

This approach of utilizing computational
cognitive models for understanding human
cognition is relatively new. Although earlier
precursors might be identified, the major
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developments of computational cognitive
modeling have occurred since the 1960s.
Computational cognitive modeling has since
been nurtured by the Annual Conferences of
the Cognitive Science Society (which began
in the late 1970s), by the International Con-
ferences on Cognitive Modeling (which be-
gan in the 1990s), as well as by the journals
Cognitive Science (which began in the late
1970s), Cognitive Systems Research (which
began in the 1990s), and so on.

From Schank and Abelson (1977) to
Minsky (1981), a variety of influential sym-
bolic “cognitive” models were proposed in
artificial intelligence. They were usually
broad and capable of a significant amount of
information processing. However, they were
usually not rigorously matched against hu-
man data. Therefore, it was hard to establish
the cognitive validity of many of these mod-
els. Psychologists have also been proposing
computational cognitive models, which are
usually narrower and more specific. They
were usually more rigorously evaluated in
relation to human data. (An early example is
Anderson’s HAM (Anderson 1983)). Many
such models were inspired by symbolic AI
work at that time (Newell & Simon, 1976).

The resurgence of neural network models
in the 1980s brought another type of model
into prominence in this field (see, e.g.,
Rumelhart et al., 1986; Grossberg, 1982).
Instead of symbolic models that rely on a
variety of complex data structures that store
highly structured pieces of knowledge (such
as Schank’s scripts or Minsky’s frames), sim-
ple, uniform, and often massively parallel
numerical computation was used in these
neural network models (Rumelhart et al.,
1986). Many of these models were meant
to be rigorous models of human cognitive
processes, and they were often evaluated in
relation to human data in a quantitative way
(but see Massaro, 1988).

Hybrid models that combine the
strengths of neural networks and symbolic
models emerged in the early 1990s (see,
e.g., Sun & Bookman, 1994). Such models
could be used to model a wider variety
of cognitive phenomena because of their
more diverse and thus more expressive

representations (but see Regier, 2003,
regarding constraints on models). They
have been used to tackle a broad range of
cognitive data, often (though not always)
in a rigorous and quantitative way (see,
e.g., Sun & Bookman, 1994; Sun, 1994;
Anderson & Lebiere, 1998; Sun, 2002).

For overviews of some currently exist-
ing software, tools, models, and systems for
computational cognitive modeling, see the
following Web sites:

http://www.cogsci.rpi.edu/∼rsun/arch.
html

http://books.nap.edu/openbook.php?
isbn= 0309060966

http://www.isle.org/symposia/cogarch/
archabs.html.

The following Web sites for specific soft-
ware, cognitive models, or cognitive archi-
tectures (e.g., Soar, ACT-R, and CLAR-
ION) may also be useful:

http://psych.colorado.edu/∼oreilly/
PDP++ /PDP++.html

http://www.cogsci.rpi.edu/∼rsun/clarion.
html

http://act-r.psy.cmu.edu/
http://sitemaker.umich.edu/soar/home
http://www.eecs.umich.edu/∼kieras/epic.

html.

2. What Is Computational Cognitive
Modeling Good For?

There are reasons to believe that the goal
of understanding the human mind strictly
from observations of human behavior is ulti-
mately untenable, except for small and lim-
ited task domains. The rise and fall of behav-
iorism is a case in point. This point may also
be argued on the basis of analogy with phys-
ical sciences (see Sun, Coward & Zenzen,
2005). The key point is that the processes
and mechanisms of the mind cannot be
understood purely on the basis of behav-
ioral experiments, with tests that inevitably
amount to probing only relatively superfi-
cial features of human behavior, which are
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further obscured by individual/group differ-
ences and contextual factors. It would be
extremely hard to understand the human
mind in this way, just like it would be ex-
tremely hard to understand a complex com-
puter system purely on the basis of testing its
behavior, if we do not have any a priori ideas
about the nature, inner working, and theo-
retical underpinnings of that system (Sun,
2005). For a simple example, in any exper-
iment involving the human mind, there is a
very large number of parameters that could
influence the results, and these parameters
are either measured or left to chance. Given
the large number of parameters, many have
to be left to chance. The selection of which
parameters to control and which to leave
to chance is a decision made by the experi-
menter. This decision is made on the basis of
which parameters the experimenter thinks
are important. Therefore, clearly, theoreti-
cal development needs to go hand in hand
with experimental tests of human behavior.

Given the complexity of the human mind
and its manifestation in behavioral flexibil-
ity, complex process-based theories, that is,
computational models (in the broad sense
of the term) are necessary to explicate the
intricate details of the human mind. With-
out such complex process-based theories,
experimentation may be blind – leading to
the accumulation of a vast amount of data
without any apparent purpose or any appar-
ent hope of arriving at a succinct, precise,
and meaningful understanding. It is true
that even pure experimentalists may often
be guided by their intuitive theories in de-
signing experiments and in generating their
hypotheses. It is reasonable to say, there-
fore, that they are in practice not completely
blind. However, without detailed theories,
most of the details of an intuitive (or verbal-
conceptual) theory are left out of consider-
ation, and the intuitive theory may thus be
somehow vacuous or internally inconsistent,
or otherwise invalid. These problems of an
intuitive theory may not be discovered until
a detailed model is developed (Sun, Coward,
& Zenzen, 2005; Sun, 2005).

There are many reasons to believe that
the key to understanding cognitive processes

is often in the fine details, which only com-
putational modeling can bring out (Newell,
1990; Sun, 2005). Computational models
provide algorithmic specificity: detailed, ex-
actly specified, and carefully thought-out
steps, arranged in precise and yet flexible se-
quences. Therefore, they provide both con-
ceptual clarity and precision. As related by
Hintzman (1990), “The common strategy
of trying to reason backward from behav-
ior to underlying processes (analysis) has
drawbacks that become painfully apparent
to those who work with simulation mod-
els (synthesis). To have one’s hunches about
how a simple combination of processes will
behave repeatedly dashed by one’s own
computer program is a humbling experience
that no experimental psychologist should
miss” (p. 111).

One viewpoint concerning the theoret-
ical status of computational modeling and
simulation is that they, including those
based on cognitive architectures, should not
be taken as theories. A simulation/model is
a generator of phenomena and data. Thus, it
is a theory-building tool. Hintzman (1990)
gave a positive assessment of the role of sim-
ulation/model in theory building: “a simple
working system that displays some proper-
ties of human memory may suggest other
properties that no one ever thought of test-
ing for, may offer novel explanations for
known phenomena, and may provide insight
into which modifications that next gener-
ation of models should include” (p. 111).
That is, computational models are useful
media for thought experiments and hypoth-
esis generation. In particular, one may use
simulations for exploring various possibili-
ties regarding details of a cognitive process.
Thus, a simulation/model may serve as a
theory-building tool for developing future
theories. A related view is that computa-
tional modeling and simulation are suitable
for facilitating the precise instantiation of a
preexisting verbal-conceptual theory (e.g.,
through exploring various possible details
in instantiating the theory) and conse-
quently the careful evaluation of the the-
ory against data. A radically different posi-
tion (e.g., Newell, 1990; Sun, 2005) is that a
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simulation/model may provide a theory. It
is not the case that a simulation/model is
limited to being built on top of an existing
theory, being applied for the sake of gener-
ating data, being applied for the sake of val-
idating an existing theory, or being applied
for the sake of building a future theory. To
the contrary, according to this view, a sim-
ulation/model may be a theory by itself. In
philosophy of science, constructive empiri-
cism (van Fraasen, 1980) may make a sen-
sible philosophical foundation for compu-
tational cognitive modeling, consistent with
the view of models as theories (Sun, 2005).

Computational models may be necessary
for understanding a system as complex and
as internally diverse as the human mind.
Pure mathematics, developed to describe
the physical universe, may not be sufficient
for understanding a system as different and
as complex as the human mind (cf. Luce,
1995; Coombs et al., 1970). Compared with
scientific theories developed in other disci-
plines (e.g., in physics), computational cog-
nitive modeling may be mathematically less
elegant – but the point is that the human
mind itself is likely to be less mathematically
elegant compared with the physical universe
(see, e.g., Minsky, 1985) and therefore an al-
ternative form of theorizing is called for, a
form that is more complex, more diverse,
and more algorithmic in nature. Compu-
tational cognitive models provide a viable
way of specifying complex and detailed the-
ories of cognition. Consequently, they may
provide detailed interpretations and insights
that no other experimental or theoretical ap-
proach can provide.

In particular, a cognitive architecture
denotes a comprehensive, domain-generic
computational cognitive model, capturing
the essential structures, mechanisms, and
processes of cognition. It is used for broad,
multiple-level, multiple-domain analysis of
cognition (Sun, 2004; Sun, Coward, &
Zenzen, 2005, Sun, 2005, 2007). It deals
with componential processes of cognition
in a structurally and mechanistically well
defined way (Sun, 2004). Its function is
to provide an essential framework to facil-
itate more detailed modeling and under-

standing of various components and pro-
cesses of the mind. A cognitive architecture
is useful because it provides a comprehen-
sive initial framework for further explo-
ration of many different cognitive domains
and functionalities. The initial assumptions
may be based on either available scientific
data (e.g., psychological or biological data),
philosophical thoughts and arguments, or ad
hoc working hypotheses (including compu-
tationally inspired such hypotheses). A cog-
nitive architecture helps to narrow down
possibilities, provides scaffolding structures,
and embodies fundamental theoretical pos-
tulates. The value of cognitive architectures
has been argued many times before; see,
for example, Newell (1990), Anderson and
Lebiere (1998), Sun (2002), Anderson and
Lebiere (2003), Sun (2004), Sun, Coward,
and Zenzen (2005), and Sun (2005, 2007).2

As we all know, science in general often
progresses from understanding to prediction
and then to prescription (or control). Com-
putational cognitive modeling potentially
may contribute to all of these three phases of
science. For instance, through process-based
simulation, computational modeling may
reveal dynamic aspects of cognition, which
may not be revealed otherwise, and al-
lows a detailed look at constituting elements
and their interactions on the fly during
performance. In turn, such understanding
may lead to hypotheses concerning hitherto
undiscovered or unknown aspects of cog-
nition and may lead to predictions regard-
ing cognition. The ability to make reason-
ably accurate predictions about cognition
can further allow prescriptions or control,
for example, by choosing appropriate envi-
ronmental conditions for certain tasks or by
choosing appropriate mental types for cer-
tain tasks or environmental conditions.

In summary, the utility and the
value of computational cognitive modeling
(including cognitive architectures) can be

2 For information about different existing cogni-
tive architectures, see, for example, http://www.
cogsci.rpi.edu/∼rsun/arch.html. See also Sun
(2006) for information on three major cognitive ar-
chitectures.
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Table 1.1: A traditional
hierarchy of levels (Marr, 1982)

Level Object of analysis

1 Computation
2 Algorithms
3 Implementations

argued in many different ways (see Newell,
1990; Sun, 2002; Anderson & Lebiere,
2003). These models in their totality are
clearly more than just simulation tools or
programming languages of some sorts. They
are theoretically pertinent because they rep-
resent theories in a unique and indispensable
way. Cognitive architectures, for example,
are broad theories of cognition in fact.

3. Multiple Levels of Computational
Cognitive Modeling

A strategic decision that one has to make
with respect to cognitive science is the level
of analysis (i.e., level of abstraction) at which
one models cognitive agents. Computational
cognitive modeling can vary in terms of level
of process details and granularity of input
and output, and may be carried out at mul-
tiple levels. Let us look into this issue of mul-
tiple levels of computational cognitive mod-
eling, drawing on the work of Sun, Coward,
and Zenzen (2005).

Traditional theories of multilevel analy-
sis hold that there are various levels each
of which involves a different amount of
computational details (e.g., Marr, 1982). In
Marr’s theory, first, there is the computa-
tional theory level, in which one is supposed
to determine proper computation to be per-
formed, its goals, and the logic of the strate-
gies by which the computation is to be car-
ried out. Second, there is the representation
and algorithm level, in which one is sup-
posed to be concerned with carrying out
the computational theory determined at the
first level and, in particular, the representa-
tion for the input and the output, and the
algorithm for the transformation from the

input to the output. The third level is the
hardware implementation level, in which one
is supposed to physically realize the rep-
resentation and algorithms determined at
the second level. According to Marr, these
three levels are only loosely coupled; that
is, they are relatively independent. Thus,
there are usually a wide array of choices at
each level, independent of the other two.
Some phenomena may be explained at only
one or two levels. Marr (1982) emphasized
the “critical” importance of formulation at
the level of computational theory, that
is, the level at which the goals and pur-
poses of a cognitive process are specified
and internal and external constraints that
make the process possible are worked out
and related to each other and to the goals
of computation. His reason was that the na-
ture of computation depended more on the
computational problems to be solved than
on the way the solutions were to be imple-
mented. In his own words, “an algorithm is
likely to be understood more readily by un-
derstanding the nature of the problem being
solved than by examining the mechanism
(and the hardware) in which it is embod-
ied” (p. 27). Thus, he preferred a top-down
approach – from a more abstract level to a
more detailed level. See Table 1.1 for the
three levels. It often appears that Marr’s
theory centered too much on the relatively
minor differences in computational abstrac-
tions (e.g., algorithms, programs, and im-
plementations; see Sun, Coward, & Zenzen,
2005; Dayan, 2003; Dawson, 2002). It also
appears that his theory represented an over-
simplification of biological reality (e.g., ig-
noring the species-specific or motivation-
relevant representations of the environment
and the close relationship between low-level
implementations and high-level computa-
tion) and as a result represented an over-
rationalization of cognition.

Another variant is Newell and Simon’s
three-level theory. Newell and Simon
(1976) proposed the following three lev-
els: (1) the knowledge level, in which
why cognitive agents do certain things is
explained by appealing to their goals and
their knowledge, and by showing rational
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Table 1.2: Another hierarchy of four levels (Sun, Coward, & Zenzen, 2005)

Level Object of analysis Type of analysis Computational model

1 Inter-agent processes Social/cultural Collections of agents
2 Agents Psychological Individual agents
3 Intra-agent processes Componential Modular construction of agents
4 Substrates Physiological Biological realization of modules

connections between them; (2) the symbol
level, in which the knowledge and goals are
encoded by symbolic structures, and the ma-
nipulation of these structures implements
their connections; and (3) the physical level,
in which the symbol structures and their
manipulations are realized in some physical
form. (Sometimes, this three-level organiza-
tion was referred to as “the classical cognitive
architecture” (Newell, 1990).) The point
being emphasized here was very close to
Marr’s view: What is important is the anal-
ysis at the knowledge level and then at the
symbol level, that is, identifying the task and
designing symbol structures and symbol ma-
nipulation procedures suitable for it. Once
this analysis (at these two levels) is worked
out, the analysis can be implemented in any
available physical means.

In contrast, according to Sun, Cow-
ard, and Zenzen (2005), the differences
(borrowed from computer programming)
among “computation,” algorithms, pro-
grams, and hardware realizations, and their
variations, as have been the focus in Marr’s
(1982) and Newell and Simon’s (1976) level
theories, are relatively insignificant. This is
because, first of all, the differences among
them are usually small and subtle, com-
pared with the differences among the pro-
cesses to be modeled (that is, the differences
among the sociological vs. the psychological
vs. the intra-agent, etc.). Second, these dif-
ferent computational constructs are in real-
ity closely tangled (especially in the biolog-
ical world): One cannot specify algorithms
without at least some considerations of pos-
sible implementations, and what is to be
considered “computation” (i.e., what can be
computed) relies on algorithms, especially

the notion of algorithmic complexity, and
so on. Therefore, one often has to consider
computation, algorithms, and implementa-
tion together somehow (especially in rela-
tion to cognition). Third, according to Sun,
Coward, and Zenzen (2005), the separation
of these computational details failed to pro-
duce any major useful insight in relation to
cognition, but instead produced theoretical
baggage. A reorientation toward a system-
atic examination of phenomena, instead of
tools one uses for modeling them, is thus a
step in the right direction.

The viewpoint of Sun, Coward, and
Zenzen (2005) focused attention on the
very phenomena to be studied and on
their scopes, scales, degrees of abstractness,
and so on. Thus, the differences among
levels of analysis can be roughly cast as
the differences among disciplines, from the
most macroscopic to the most microscopic.
These levels of analysis include the sociolog-
ical level, psychological level, componential
level, and physiological level. See Table 1.2
for these levels. Different levels of modeling
may be established in exact correspondence
with different levels of analysis.

First, there is the sociological level,
which includes collective behavior of agents
(Durkheim, 1895), inter-agent processes
(Vygotsky, 1986), and sociocultural pro-
cesses, as well as interaction between agents
and their (physical and sociocultural) en-
vironments. Only recently, the field of
cognitive science has come to grips with
the fact that cognition is, at least in
part, a social/cultural process (Lave, 1988;
Vygotsky, 1986; Sun, 2006). To ignore the
sociocultural process is to ignore a ma-
jor underlying determinant of individual
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cognition. The lack of understanding of so-
ciological processes may result in the lack of
understanding of some major structures and
constraints in cognition. Thus, any under-
standing of individual cognition can only be
partial and incomplete when sociocultural
processes are ignored or downplayed.3

The second level is the psychological
level, which covers individual behaviors, be-
liefs, knowledge, concepts, and skills (as well
as motivation, emotion, perception, and so
on). In relation to the sociological level, one
can investigate the relationship of individual
beliefs, knowledge, concepts, and skills with
those of the society and the culture, and the
processes of change of these beliefs, knowl-
edge, concepts, and skills, independent of or
in relation to those of the society and the
culture. At this level, one can examine hu-
man behavioral data and compare them with
models and with insights from the sociolog-
ical level and further details from the lower
levels.

The third level is the componential level.
In computational cognitive modeling, the
computational process of an agent is mostly
specified in terms of components of the agent,
that is, in terms of intra-agent processes.
Thus, at this level, one may specify a cog-
nitive architecture and components therein.
In the process of analysis, one specifies
essential computational processes of each
component as well as essential connections
among various components. Thus, analysis
of capacity (functional analysis) and analy-
sis of components (structural analysis) be-
come one and the same at this level. How-
ever, at this level, unlike at the psycholog-
ical level, work is more along the line of
structural analysis than functional analysis
(whereas the psychological level is mostly
concerned with functional analysis). At this
level, one models cognitive agents in terms
of components, with the theoretical lan-
guage of a particular paradigm, for exam-
ple, symbolic computation or connection-
ist networks, or their combinations (Sun

3 See Sun (2001, 2006) for a more detailed argu-
ment of the relevance of sociocultural processes to
cognition and vice versa.

& Bookman, 1994); that is, one imputes
a computational process onto a cognitive
function. Ideas and data from the psycho-
logical level – the psychological constraints
from above, which bear on the division
of components and possible implementa-
tions of components, are among the most
important considerations. This level may
also incorporate biological/physiological ob-
servations regarding plausible divisions and
implementations; that is, it can incorpo-
rate ideas from the next level down – the
physiological level, which offers the biolog-
ical constraints. This level results in cog-
nitive mechanisms, although they are usu-
ally computational and abstract, compared
with physiological-level specifications of
details.

Although this level is essentially in
terms of intra-agent processes, computa-
tional models developed therein may also be
used to model processes at higher levels, in-
cluding the interaction at a sociological level
where multiple individuals are involved.
This can be accomplished, for example, by
examining interactions of multiple copies of
individual agents (Sun, 2006).

The lowest level of analysis is the physio-
logical level, that is, the biological substrate,
or biological implementation, of computa-
tion (Dayan, 2003). This level is the focus of
a range of disciplines, including physiology,
biology, computational neuroscience, cogni-
tive neuroscience, and so on. Although bio-
logical substrates are not among our major
concerns here, they may nevertheless pro-
vide valuable input as to what kind of com-
putation is likely employed and what a plau-
sible architecture (at a higher level) should
be like. The main utility of this level is to
facilitate analysis at higher levels, that is, to
use low-level information to narrow down,
at higher levels, choices in selecting compu-
tational architectures and choices in imple-
menting componential computation.

Although computational cognitive mod-
eling is often limited to within a particu-
lar level at a time (inter-agent, agent, intra-
agent, or substrate), this need not always be
the case: Cross-level analysis and modeling
could be intellectually highly enlightening
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and might be essential to the progress of
computational cognitive modeling in the fu-
ture (Sun, Coward, & Zenzen, 2005; Dayan,
2003). These levels described earlier do in-
teract with each other (e.g., constraining
each other) and may not be easily isolated
and tackled alone. Moreover, their respec-
tive territories are often intermingled, with-
out clear-cut boundaries.

For instance, the cross-level link between
the psychological and the neurophysiologi-
cal level has been emphasized in recent years
(in the form of cognitive neuroscience; see,
e.g., LeDoux, 1992; Damasio, 1994; Milner
& Goodale, 1995). For example, Wilson et
al. (2000) presented a model of human sub-
jects perceiving the orientation of the head
of another person. They accounted for the
empirical findings from psychological exper-
iments with a model based on a popula-
tion code of neurons in the visual cortex,
and thus the underlying neural structures
were used to explain a psychological phe-
nomenon at a higher level. For another in-
stance of cross-level research, the psycholog-
ical and the social level may also be crossed
in many ways to generate new insights into
social phenomena on the basis of cogni-
tive processes (e.g., Boyer & Ramble, 2001;
Sun, 2006) and, conversely, to generate in-
sights into cognitive phenomena on the ba-
sis of sociocultural processes (e.g., Hutchins,
1995; Nisbett et al., 2001). In all of these
cases, shifting appropriately between lev-
els when needed is a critical part of the
work.

Beyond cross-level analysis, there may
be “mixed-level” analysis (Sun, Coward,
Zenzen, 2005). The idea of mixed-level
analysis may be illustrated by the research
at the boundaries of quantum mechanics.
In deriving theories, physicists often start
working in a purely classical language that
ignores quantum probabilities, wave func-
tions, and so forth, and subsequently overlay
quantum concepts on a classical framework
(Greene, 1999; Coward & Sun, 2004). The
very same idea applies to mixing cognitive
modeling and social simulation as well. One
may start with purely social descriptions but
then substitute cognitive principles and cog-

nitive process details for simpler descrip-
tions of agents (e.g., Sun & Naveh, 2004).
Relatedly, there has also been strong inter-
play between psychological models and neu-
rophysiological models – for example, going
from psychological descriptions to neurobi-
ological details.

Note that Rasmussen (1986) proposed
something similar to the view described
above on levels. His hierarchy was a more
general framework but had a number of
constraining properties (see also Vicente &
Wang 1998): (1) all levels deal with the
same system, with each level providing a
different description of the system; (2) each
level has its own terms, concepts, and prin-
ciples; (3) the selection of levels may be de-
pendent on the observer’s purpose, knowl-
edge, and interest; (4) the description at any
level may serve as constraints on the oper-
ation of lower levels, whereas changes at a
higher level may be specified by the effects
of the lower levels; (5) by moving up the
hierarchy, one understands more the signif-
icance of some process details with regard
to the purpose of the system; by mov-
ing down the hierarchy, one understands
more how the system functions in terms of
the process details; and (6) there is also a
means–ends relationship between levels in a
hierarchy.

Note also Ohlsson and Jewett’s (1997)
and Langley’s (1999) idea of abstract cog-
nitive model, which is relevant here as
well. To guard against overinterpretation of
empirical evidence and to avoid the (usu-
ally large) gaps between evidence and full-
blown computational models, Ohlsson and
Jewett (1997) proposed “abstract compu-
tational models,” which were relatively ab-
stract models that were designed to test a
particular (high-level) hypothesis without
taking a stand on all the (lower-level) de-
tails of a cognitive architecture. Similar ideas
were also expressed by Langley (1999), who
argued that the source of explanatory power
of a model often lay at a higher level of ab-
straction.

In summary, there have been various
proposals regarding multiple levels of com-
putational cognitive modeling. Although
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details vary, the notion of multiple levels of
cognitive modeling appears to be useful. It
can be expected to be of importance for the
further development of this field.

4. Success Stories of the Past

There have been quite a few success sto-
ries of computational cognitive modeling, in
a practical or a theoretical sense. They in-
clude, among many others:

• the various models of developmental
psychology, including the connec tionist
models of verb past-tense learning and
the controversies stemming from such
models;

• the tutoring systems based on the ACT-R
cognitive architecture; and

• the model of implicit and explicit learn-
ing based on the CLARION cognitive ar-
chitecture.

For instance, computational models of
child development have been successful
in accounting for, and in explaining, fine-
grained developmental processes. In terms
of widespread impact and associated theo-
retical interests and controversies, compu-
tational models of verb past-tense learning
may be ranked as being at the top of all
computational cognitive models (see, e.g.,
Rumelhart et al., 1986).

Theoretically, successful development
models have clarified a number of major is-
sues. In developmental psychology, there is
the dichotomy contrasting knowledge that
the child acquires through interacting with
the environment (nurture) with knowledge
of phylogenic origin (nature). It was argued
that mechanisms of gene expression and
brain development did not allow for the de-
tailed specification of neural networks in the
brain as required by the nativist (nature) po-
sition. It has been argued that a more plausi-
ble role for innate knowledge is at the level
of architectures and timing of development
(see Chapter 16 in this volume). In this re-
gard, neural network models have provided
new ways of thinking about innateness. That
is, instead of asking whether or not some-

thing is innate, one should ask how evolution
constrains the emergence of a brain function
during individual development. This kind of
theorizing has benefited from the use of neu-
ral networks (as detailed in Chapter 16).

Developmental psychologists have also
been debating the distinction between
learning and development. A static neural
network can only learn what is within its
representational power. Thus, when static
neural networks are used, it is assumed that
the ultimate brain network topology has al-
ready been developed (even if initial weights
are random). However, this assumption im-
plies representational innateness, which has
been argued to be implausible. An alterna-
tive is to use constructive neural network
models that form their network topology as
a result of their experience. Using construc-
tive learning models also resolves the “para-
dox of development”: It was argued that if
learning was done by proposing and testing
hypotheses, it was not possible to learn any-
thing that could not already be represented.
This argument becomes irrelevant in light of
constructive learning models where learn-
ing mechanisms that construct representa-
tions are separate from the representation of
domain-specific knowledge. A constructive
model builds representational power that it
did not previously possess. Thus, computa-
tional modeling suggests that development
is functionally distinct from learning (as ar-
gued in Chapter 16).

Similarly, as another example, an inter-
pretation of a broad range of skill learn-
ing data (including those from the implicit
learning literature) was proposed based on
the CLARION cognitive architecture (see
Sun, Slusarz, & Terry, 2005; and Sun, 2002;
see also Chapter 6 in this volume concern-
ing cognitive architectures). At a theoretical
level, this work explicates the interaction
between implicit and explicit cognitive pro-
cesses in skill learning, in contrast to the ten-
dency of studying each type in isolation. It
highlights the interaction between the two
types of processes and its various effects on
learning (including the so-called synergy ef-
fects; see Sun, 2002). At an empirical level,
a model centered on such an interaction
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constructed based on CLARION was used
to account for data in a variety of task do-
mains: process control tasks, artificial gram-
mar learning tasks, and serial reaction time
tasks, as well as some much more complex
task domains (such as Tower of Hanoi and
Minefield Navigation). The model was able
to explain data in these task domains, shed-
ding light on some apparently contradictory
findings (including some findings once con-
sidered as casting doubt on the theoretical
status of implicit learning). Based on the
data and the match between the CLARION
architecture and the data, this work argues
for an integrated theory/model of skill learn-
ing that takes into account both implicit and
explicit processes, as the match pointed to
the usefulness of incorporating both explicit
and implicit processes in theorizing about
cognition (Sun, Slusarz, & Terry, 2005).
Moreover, it argues for a bottom-up ap-
proach (first learning implicit knowledge
and then explicit knowledge on its basis) in
an integrated theory/model of skill learning,
which was radically different from the then-
existing models (see Sun, 2002; see also
Chapter 13 in this volume). So, in this case,
the application of the computational cog-
nitive architecture CLARION to the skill
learning data helped to achieve a level of
theoretical integration and explanation be-
yond the previous theorizing (Sun, Slusarz,
& Terry, 2005; Sun, 2002). For yet another
example of using cognitive architectures to
provide theoretical interpretation and inte-
gration, see Meyer and Kieras (1997).

As a final example, a number of interest-
ing tutoring systems have been constructed
on the basis of the ACT-R cognitive ar-
chitecture (Koedinger et al., 1997; see also
Chapter 6 in this volume). These tutoring
systems were based on the analysis of the
task units that were necessary to achieve
competence in a number of domains of
mathematics and computer programming.
These units were represented as production
rules. A typical course involved on the order
of 500 production rules. On the assumption
that learning in these domains involved the
acquisition of such production rules, it was
possible to diagnose whether students had

acquired such production rules and provide
instructions to remedy any difficulties they
might have with specific rules. This led to
the design of tutoring systems that ran pro-
duction rule models in parallel with a stu-
dent and attempted to interpret the student
behavior in terms of these rules. Such sys-
tems tried to find some sequence of produc-
tion rules that produced the behavior exhib-
ited by a student. The model-tracing process
allowed the interpretation of student behav-
ior, and in turn the interpretation controlled
the tutorial interactions. Thus, such tutoring
systems were predicated on the validity of
the cognitive model and the validity of the
attributions that the model-tracing process
made about student learning. There have
been a few assessments that established to
some extent the effectiveness of these sys-
tems. The tutoring systems have been used
to deliver instructions to more than 100,000
students thus far. They demonstrated the
practical usefulness of computational cog-
nitive modeling. Other examples of practi-
cal applications of computational cognitive
modeling may be found in Pew and Mavor
(1998), and many in the area of human-
computer interaction.

5. Directions for the Future

Many accounts of the history and the cur-
rent state of the art of computational cog-
nitive modeling in different areas will be
provided by the subsequent chapters in this
volume. At this point, however, it may be
worthwhile to speculate a little about fu-
ture developments of computational cogni-
tive modeling.

First, some have claimed that grand sci-
entific theorizing has become a thing of the
past. What remains to be done is filling in
details and refining some minor points. For-
tunately, many cognitive scientists believe
otherwise. Indeed, many of them are pur-
suing integrative principles that attempt to
explain data in multiple domains and in mul-
tiple functionalities (Anderson & Lebiere,
1998; Sun, 2002). In cognitive science, as
in many other scientific fields, significant
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advances may be made through discovering
(hypothesizing and confirming) deep-level
principles that unify superficial explanations
across multiple domains, in a way somewhat
analogous to Einstein’s theory that unified
electromagnetic and gravitational forces, or
String Theory, which aims to provide even
further unifications (Green, 1999). Such
theories are what cognitive science needs,
currently and in the foreseeable future.

Integrative computational cognitive
modeling may serve in the future as an
antidote to the increasing specialization of
scientific research. In particular, cognitive
architectures are clearly going against the
trend of increasing specialization, and thus
constitute an especially effective tool in this
regard. Cognitive scientists are currently
actively pursuing such approaches and,
hopefully, will be increasingly doing so
in the future. In many ways, the trend
of overspecialization is harmful, and thus
the reversal of this trend by the means
of computational cognitive modeling is a
logical (and necessary) next step toward
advancing cognitive science (Sun et al.,
1999).

Second, although the importance of be-
ing able to reproduce the nuances of em-
pirical data from specific psychological ex-
periments is evident, broad functionality is
also important (Newell, 1990). The hu-
man mind needs to deal with the full cycle
that includes all of the followings: transduc-
ing signals, processing them, storing them,
representing them, manipulating them, and
generating motor actions based on them.
In computational cognitive modeling, there
is clearly a need to develop generic mod-
els of cognition that are capable of a wide
range of cognitive functionalities, to avoid
the myopia often resulting from narrowly
scoped research (e.g., in psychology). In par-
ticular, cognitive architectures may incor-
porate all of the following cognitive func-
tionalities: perception, categorization and
concepts, memory, decision making, reason-
ing, planning, problem solving, motor con-
trol, learning, metacognition, motivation,
emotion, and language and communication,
among others. In the past, this issue often

did not get the attention it deserved in cog-
nitive science (Newell, 1990), and it remains
a major challenge for cognitive science.

However, it should be clearly recognized
that overgenerality, beyond what is mini-
mally necessary, is always a danger in com-
putational cognitive modeling and in devel-
oping cognitive architectures (Sun, 2007). It
is highly desirable to come up with a well-
constrained cognitive model with as few pa-
rameters as possible while accounting for as
large a variety of empirical observations and
phenomena as possible (Regier, 2003). This
may be attempted by adopting a broad per-
spective – philosophical, psychological, and
biological, as well as computational – and
by adopting a multilevel framework going
from sociological to psychological, to com-
ponential, and to physiological levels, as dis-
cussed before (and as argued in more detail
in Sun, Coward, & Zenzen, 2005). Although
some techniques have been developed to ac-
complish this, more work is needed (see,
e.g., Sun & Ling, 1998; Regier, 2003; Sun,
2007).

Third, in integrative computational cog-
nitive modeling, especially in developing
cognitive architectures with a broad range
of functionalities, it is important to keep
in mind a broad set of desiderata. For ex-
ample, in Anderson and Lebiere (2003),
a set of desiderata proposed by Newell
(1990) was used to evaluate a cognitive ar-
chitecture versus conventional connection-
ist models. These desiderata include flexible
behavior, real-time performance, adaptive
behavior, vast knowledge base, dynamic be-
havior, knowledge integration, natural lan-
guage, learning, development, evolution,
and brain realization (see Newell 1990 for
detailed explanations). In Sun (2004), an-
other, broader set of desiderata was pro-
posed and used to evaluate a larger set of
cognitive architectures. These desiderata in-
clude ecological realism, bioevolutionary re-
alism, cognitive realism, and many others
(see Sun, 2004, for details). The advantages
of coming up with and applying these sets of
desiderata in computational cognitive mod-
eling include: (1) avoiding overly narrow
models and (2) avoiding missing important
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functionalities. We can reasonably expect
that this issue will provide impetus for fur-
ther research in the field of computational
cognitive modeling in the future.

Fourth, the validation of process details
of computational cognitive models has been
a difficult, but extremely important, issue
(Pew & Mavor, 1998). This is especially
true for cognitive architectures, which of-
ten involve a great deal of intricate details
that are almost impossible to disentangle.
This issue needs to be better addressed in
the future. There have been too many in-
stances in the past of research communi-
ties rushing into some particular model or
some particular approach toward modeling
cognition and human intelligence without
knowing exactly how much of the approach
or the model was veridical or even useful.
Theoretical (including mathematical) anal-
ysis often lagged behind. Thus, often with-
out sufficient effort at validation and the-
oretical analysis, claims were boldly made
about the promise of a certain model or a
certain approach. Unfortunately, we have
seen quite a few setbacks in the history of
cognitive science as a result of this cava-
lier attitude toward the science of cognition.
As in any other scientific field, painstak-
ingly detailed work needs to be carried
out in cognitive science before sweeping
claims can be made. Not only is empiri-
cal validation necessary, theoretical analysis,
including detailed mathematical and com-
putational analysis, is also necessary to bet-
ter understand models and modeling ap-
proaches before committing a large amount
of resource (cf. Roberts & Pashler, 2000).
In particular, sources of explanatory power
need to be identified and analyzed (as called
for in Sun & Ling, 1998). The issue of vali-
dation should be an important factor in di-
recting future research in the field of com-
putational cognitive modeling.

Related to that, the “design” space of
computational cognitive models needs to be
more fully explored (as pointed out in Sun &
Ling, 1998; and Sloman & Chrisley, 2005).
While we explore the behavioral space, in
the sense of identifying the range and varia-
tions of human behavior, we also need to ex-

plore the design space (that is, all the possi-
bilities for constructing computational mod-
els) that maps onto the behavioral space, so
that we may gain a better understanding of
the possibilities and the limitations of mod-
eling methodologies, and thereby open up
new avenues for better capturing cognitive
processes. This is especially important for
cognitive architectures, which are complex
and in which many design decisions need
to be made, often without the benefit of
a clear understanding of their full implica-
tions in computational or behavioral terms.
More systematic exploration of the design
space of cognitive models is thus necessary.
Future research in this field should increas-
ingly address this issue (Sloman & Chrisley,
2005).

Computational cognitive models may
find both finer and broader applications, that
is, both at lower levels and at higher levels,
in the future. For example, some cognitive
models found applications in large-scale
simulations at a social and organizational
level. For another example, some other
cognitive models found applications in in-
terpreting not only psychological data but
also neuroimaging data (at a biological/
physiological level). A review commissioned
by the National Research Council found
that computational cognitive modeling had
progressed to a degree that had made them
useful in a number of application domains
(Pew & Mavor, 1998). Another review
(Ritter et al., 2003) pointed to similar con-
clusions. Both reviews provided interesting
examples of applications of computational
cognitive modeling. Inevitably, this issue
will provide impetus for future research, not
only in applied areas of computational cog-
nitive modeling, but also in theoretical areas
of computational cognitive modeling.

In particular, cognitive modeling may be
profitably applied to social simulation. An
important recent development in the social
sciences has been agent-based social simu-
lation.4 So far, however, the two fields of

4 This approach consists of instantiating a population
of agents, allowing the agents to run, and observing
the interactions among them.
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social simulation and cognitive modeling
have been developed largely separately from
each other (with some exceptions). Most of
the work in social simulation assumed rudi-
mentary cognition on the part of the agents.
As has been argued before (e.g., Sun &
Naveh, 2004; Sun, 2001, 2006; Zerubavel,
1997), social processes ultimately rest on
the decisions of individuals, and thus under-
standing the mechanisms of individual cog-
nition can lead to better theories of social
processes. At the same time, by integrat-
ing social simulation and cognitive model-
ing, we may arrive at a better understanding
of individual cognition. By modeling cogni-
tive agents in a social context (as in cognitive
social simulation), we may learn more about
how sociocultural processes influence indi-
vidual cognition. (See Chapter 19 in this vol-
ume regarding cognitive social simulation.)

Cross-level and mixed-level work inte-
grating the psychological and the neuro-
physiological level, as discussed before, will
certainly be an important direction for fu-
ture research. Increasingly, researchers are
exploring constraints from both psycholog-
ical and neurobiological data. In so doing,
the hope is that more realistic and better
constrained computational cognitive mod-
els may be developed. (see, e.g., Chapter 7
in this volume for some such models.)

Finally, will this field eventually become a
full-fledged discipline – computational psy-
chology? This is an interesting but difficult
issue. There are a number of open questions
in this regard. For example, how indepen-
dent can this field be from closely allied
fields such as experimental psychology (and
cognitive psychology in particular)? What
will the relationship be between data gen-
eration and modeling? How useful or illu-
minating can this field be in shedding new
light on cognition per se (as opposed to lead-
ing up to building intelligent systems)? And
so on and so forth. These are the questions
that will determine the future status of this
field. So far, the answers to these questions
are by no means clear-cut. They will have
to be worked out in the future through the
collective effort of the researchers of this
field.

6. About This Book

The present volume, the Cambridge Hand-
book of Computational Psychology, is part of
the Cambridge Handbook in Psychology se-
ries. This volume is aimed to be a defini-
tive reference source for the growing field of
computational cognitive modeling. Written
by leading experts in various areas of this
field, it is meant to combine breadth of cov-
erage with depth of critical details.

This volume aims to appeal to researchers
and advanced students in the computational
cognitive modeling community, as well as to
researchers and advanced students in cog-
nitive science (in general), philosophy, ex-
perimental psychology, linguistics, cognitive
anthropology, neuroscience, artificial intelli-
gence, and so on. For example, it could serve
well as a textbook for courses in social, cog-
nitive, and behavioral sciences programs. In
addition, this volume might also be useful
to social sciences researchers, education re-
searchers, intelligent systems engineers, psy-
chology and education software developers,
and so on.

Although this field draws on many hu-
manity and social sciences disciplines and on
computer science, the core of the approach
is based on psychology, and this is a constant
focus in this volume. At the same time, this
volume is also distinguished by its incorpora-
tion of one contemporary theme in scientific
research: how technology (namely comput-
ing technology) affects our understanding of
the subject matter – cognition and its asso-
ciated issues.

This volume contains 26 chapters, orga-
nized into 4 parts. The first part (contain-
ing the present chapter) provides a gen-
eral introduction to the field of computa-
tional cognitive modeling. The second part,
Cognitive Modeling Paradigms, introduces
the reader to broadly influential approaches
in cognitive modeling. These chapters have
been written by some of those influential
scholars who helped to define the field. The
third part, Computational Modeling of Var-
ious Cognitive Functionalities and Domains,
describes a range of computational mod-
eling efforts that researchers in this field
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have undertaken regarding major cognitive
functionalities and domains. The interdisci-
plinary combination of cognitive modeling,
experimental psychology, linguistics, artifi-
cial intelligence, and software engineering in
this field has required researchers to develop
a novel set of research methodologies. This
part surveys and explains computational
modeling research, in terms of detailed com-
putational mechanisms and processes, on
memory, concepts, learning, reasoning, de-
cision making, skills, vision, motor con-
trol, language, development, scientific ex-
planation, social interaction, and so on.
It contains case studies of projects, as well
as details of significant models, in the com-
putational cognitive modeling field. These
chapters have been written by some of the
best experts in these areas. The final part,
Concluding Remarks, explores a range of is-
sues associated with computational cogni-
tive modeling and cognitive architectures,
and provides some perspectives, evalua-
tions, and assessments.

Although the goal has been to be as com-
prehensive as possible, the coverage of this
volume is, by necessity, selective. The selec-
tivity is made necessary by the length lim-
itation, as well as by the amount of activi-
ties in various topic areas – areas with large
amounts of scholarly activities need to be
covered, inevitably at the cost of less active
areas. Given the wide-ranging and often fast-
paced research activities in computational
cognitive modeling, it has never been hard to
find interesting topics to include, but some
less active topics had to be sacrificed.

As research in this field has developed at
an exciting pace in recent years, the field
is ready for an up-to-date reference to the
best and latest work. What has been miss-
ing in this field is a true handbook. Such
a handbook should bring together top re-
searchers to work on chapters each of which
summarizes and explains the basic concepts,
techniques, and findings of a major topic
area, sketching its history, assessing its suc-
cesses and failures, and outlining the direc-
tions in which it is going. A handbook should
also provide quick overviews for experts as
well as provide an entry point into the field

for the next generation of researchers. The
present volume has indeed been conceived
with these broad and ambitious goals in
mind.

7. Conclusions

It is clear that highly significant progress
has been made in recent decades in ad-
vancing research on computational cogni-
tive modeling (i.e., computational psychol-
ogy). However, it appears that there is still
a long way to go before we fully understand
the computational processes of the human
mind.

Many examples of computational cog-
nitive modeling are presented in this vol-
ume. However, it is necessary to explore
and study more fully various possibilities in
computational cognitive modeling to fur-
ther advance the state of the art in un-
derstanding the human mind through com-
putational means. In particular, it would
be necessary to build integrative cognitive
models with a wide variety of functionali-
ties, that is, to build cognitive architectures
so that they can exhibit and explain the full
range of human behaviors (as discussed ear-
lier). Many challenges and issues need to be
addressed, including those stemming from
designing cognitive architectures, from val-
idation of cognitive models, and from the
applications of cognitive models to various
domains.

It should be reasonable to expect that the
field of computational cognitive modeling
will have a profound impact on cognitive sci-
ence, as well as on other related fields, such
as linguistics, philosophy, experimental psy-
chology, and artificial intelligence, both in
terms of better understanding cognition and
in terms of developing better (more intel-
ligent) computational systems. As such, it
should be considered a crucial field of scien-
tific research, lying at the intersection of a
number of other important fields. Through
the collective effort of this research commu-
nity, significant advances can be achieved,
especially in better understanding the hu-
man mind.
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Part II

COGNITIVE MODELING
PARADIGMS

�

The chapters in Part II introduce the reader to broadly influential and foundational ap-
proaches to computational cognitive modeling. Each of these chapters describes in detail one
particular approach and provides examples of its use in computational cognitive modeling.
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CHAPTER 2

Connectionist Models of Cognition

1. Introduction

In this chapter, computer models of cogni-
tion that have focused on the use of neural
networks are reviewed. These architectures
were inspired by research into how com-
putation works in the brain and subsequent
work has produced models of cognition with
a distinctive flavor. Processing is character-
ized by patterns of activation across sim-
ple processing units connected together into
complex networks. Knowledge is stored in
the strength of the connections between
units. It is for this reason that this approach
to understanding cognition has gained the
name of connectionism.

2. Background

Over the last twenty years, connection-
ist modeling has formed an influential ap-
proach to the computational study of cog-
nition. It is distinguished by its appeal to
principles of neural computation to inspire
the primitives that are included in its cog-
nitive level models. Also known as artifi-

cial neural network (ANN) or parallel dis-
tributed processing (PDP) models, connec-
tionism has been applied to a diverse range
of cognitive abilities, including models of
memory, attention, perception, action, lan-
guage, concept formation, and reasoning
(see, e.g., Houghton, 2005). Although many
of these models seek to capture adult func-
tion, connectionism places an emphasis on
learning internal representations. This has
led to an increasing focus on developmental
phenomena and the origins of knowledge.
Although, at its heart, connectionism com-
prises a set of computational formalisms,
it has spurred vigorous theoretical debate
regarding the nature of cognition. Some
theorists have reacted by dismissing connec-
tionism as mere implementation of preex-
isting verbal theories of cognition, whereas
others have viewed it as a candidate to re-
place the Classical Computational Theory
of Mind and as carrying profound impli-
cations for the way human knowledge is
acquired and represented; still others have
viewed connectionism as a subclass of statis-
tical models involved in universal function
approximation and data clustering.

23
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This chapter begins by placing connec-
tionism in its historical context, leading up
to its formalization in Rumelhart and Mc-
Clelland’s two-volume Parallel Distributed
Processing (1986), written in combination
with members of the Parallel Distributed
Processing Research Group. Then, three im-
portant early models that illustrate some
of the key properties of connectionist sys-
tems are discussed, as well as how the novel
theoretical contributions of these models
arose from their key computational prop-
erties. These three models are the Interac-
tive Activation model of letter recognition
(McClelland & Rumelhart, 1981; Rumel-
hart and McClelland, 1982), Rumelhart and
McClelland’s (1986) model of the acquisi-
tion of the English past tense, and Elman’s
(1991) simple recurrent network for finding
structure in time. Finally, the chapter con-
siders how twenty-five years of connection-
ist modeling has influenced wider theories
of cognition.

2.1. Historical Context

Connectionist models draw inspiration from
the notion that the information-processing
properties of neural systems should influ-
ence our theories of cognition. The possible
role of neurons in generating the mind
was first considered not long after the ex-
istence of the nerve cell was accepted
in the latter half of the nineteenth cen-
tury (Aizawa, 2004). Early neural net-
work theorizing can therefore be found in
some of the associationist theories of men-
tal processes prevalent at the time (e.g.,
Freud, 1895; James, 1890; Meynert, 1884;
Spencer, 1872). However, this line of theo-
rizing was quelled when Lashley presented
data appearing to show that the perfor-
mance of the brain degraded gracefully de-
pending only on the quantity of damage.
This argued against the specific involvement
of neurons in particular cognitive processes
(see, e.g., Lashley, 1929).

In the 1930s and 1940s, there was a
resurgence of interest in using mathemati-
cal techniques to characterize the behavior
of networks of nerve cells (e.g., Rashevksy,
1935). This culminated in the work of Mc-

Culloch and Pitts (1943) who characterized
the function of simple networks of binary
threshold neurons in terms of logical op-
erations. In his 1949 book The Organiza-
tion of Behavior, Donald Hebb proposed a
cell assembly theory of cognition, including
the idea that specific synaptic changes might
underlie psychological principles of learn-
ing. A decade later, Rosenblatt (1958, 1962)
formulated a learning rule for two-layered
neural networks, demonstrating mathemat-
ically that the perceptron convergence rule
could adjust the weights connecting an in-
put layer and an output layer of simple
neurons to allow the network to associate
arbitrary binary patterns. With this rule,
learning converged on the set of connection
values necessary to acquire any two-layer-
computable function relating a set of input-
output patterns. Unfortunately, Minsky and
Papert (1969, 1988) demonstrated that the
set of two-layer computable functions was
somewhat limited – that is, these simple
artificial neural networks were not particu-
larly powerful devices. While more compu-
tationally powerful networks could be de-
scribed, there was no algorithm to learn
the connection weights of these systems.
Such networks required the postulation of
additional internal, or “hidden,” processing
units, which could adopt intermediate rep-
resentational states in the mapping between
input and output patterns. An algorithm
(backpropagation) able to learn these states
was discovered independently several times.
A key paper by Rumelhart, Hinton, and
Williams (1986) demonstrated the useful-
ness of networks trained using backpropaga-
tion for addressing key computational and
cognitive challenges facing neural networks.

In the 1970s, serial processing and the
Von Neumann computer metaphor domi-
nated cognitive psychology. Nevertheless, a
number of researchers continued to work
on the computational properties of neural
systems. Some of the key themes identi-
fied by these researchers included the role
of competition in processing and learning
(e.g., Grossberg, 1976; Kohonen, 1984),
the properties of distributed representa-
tions (e.g., Anderson, 1977; Hinton &
Anderson, 1981), and the possibility of
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Hopfield Nets
(binary)

Simple Neural
Networks

(logical operations)

2-Layer Feedforward 
Networks (trained with
delta rule) – Perceptron

3-Layer Feedforward 
Networks (trained with

backpropagation algorithm)

Cascade Rule
(e.g., Stroop model)

Attractor
Networks 

Recurrent Networks

Jordan
Networks

Elman
Networks (SRN)

(Theoretical)
Logogen/ 

Pandemonium
 

(Hand-wired)
Constraint Satisfaction

Networks (e.g., IA, IAC – Jets &
Sharks, Necker Cube, Stereopsis)

Boltzmann 
Machine

(simulated 
annealing
metaphor)

Cascade correlation 
(Fahlman & Lebiere)

Competitive Networks
unsupervised learning

(e.g., Kohonen, Grossberg)

Figure 2.1. A simplified schematic showing the historical evolution of neural network architectures.
Simple binary networks (McCulloch & Pitts, 1943) are followed by two-layer feedforward networks
(perceptrons; Rosenblatt, 1958). Three subtypes then emerge: three-layer feedforward networks
(Rumelhart & McClelland, 1986), competitive or self-organizing networks (e.g., Grossberg, 1976;
Kohonen, 1984), and interactive networks (Hopfield, 1982; Hinton & Sejnowksi, 1986). Adaptive
interactive networks have precursors in detector theories of perception (Logogen: Morton, 1969;
Pandemonium: Selfridge, 1959) and in handwired interactive models (interactive activation:
McClelland & Rumelhart, 1981; interactive activation and competition: McClelland, 1981;
Stereopsis: Marr & Poggio, 1976; Necker cube: Feldman, 1981, Rumelhart et al., 1986). Feedforward
pattern associators have produced multiple subtypes: for capturing temporally extended activation
states, cascade networks in which states monotonically asymptote (e.g., Cohen, Dunbar, &
McClelland, 1990), and attractor networks in which states cycle into stable configurations (e.g., Plaut
& McClelland, 1993); for processing sequential information, recurrent networks (Jordan, 1986;
Elman, 1991); and for systems that alter their structure as part of learning, constructivist networks
(e.g., cascade correlation: Fahlman & Lebiere, 1990; Shultz, 2003). SRN = simple recurrent network.

content addressable memory in networks
with attractor states, formalized using the
mathematics of statistical physics (Hopfield,
1982). A fuller characterization of the many
historical influences in the development

of connectionism can be found in Rumel-
hart and McClelland (1986, Chapter 1),
Bechtel and Abrahamsen (1991), McLeod,
Plunkett, and Rolls (1998), and O’Reilly
and Munakata (2000). Figure 2.1 depicts a
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selective schematic of this history and
demonstrates the multiple types of neural
network systems that have latterly come
to be used in building models of cogni-
tion. Although diverse, they are unified on
the one hand by the proposal that cogni-
tion comprises processes of constraint sat-
isfaction, energy minimization, and pattern
recognition, and on the other hand that
adaptive processes construct the microstruc-
ture of these systems, primarily by adjust-
ing the strengths of connections among the
neuron-like processing units involved in a
computation.

2.2. Key Properties of
Connectionist Models

Connectionism starts with the following in-
spiration from neural systems: Computa-
tions will be carried out by a set of simple
processing units operating in parallel and af-
fecting each others’ activation states via a
network of weighted connections. Rumel-
hart, Hinton, and McClelland (1986) iden-
tified seven key features that would de-
fine a general framework for connectionist
processing.

The first feature is the set of processing
units ui . In a cognitive model, these may
be intended to represent individual concepts
(such as letters or words), or they may sim-
ply be abstract elements over which mean-
ingful patterns can be defined. Processing
units are often distinguished into input, out-
put, and hidden units. In associative net-
works, input and output units have states
that are defined by the task being modeled
(at least during training), whereas hidden
units are free parameters whose states may
be determined as necessary by the learning
algorithm.

The second feature is a state of activation
(a) at a given time (t). The state of a set
of units is usually represented by a vector
of real numbers a(t). These may be binary
or continuous numbers, bounded or un-
bounded. A frequent assumption is that the
activation level of simple processing units
will vary continuously between the values 0
and 1.

The third feature is a pattern of connec-
tivity. The strength of the connection be-
tween any two units will determine the ex-
tent to which the activation state of one unit
can affect the activation state of another unit
at a subsequent time point. The strength of
the connections between unit i and unit j
can be represented by a matrix W of weight
values wi j . Multiple matrices may be speci-
fied for a given network if there are connec-
tions of different types. For example, one
matrix may specify excitatory connections
between units and a second may specify in-
hibitory connections. Potentially, the weight
matrix allows every unit to be connected to
every other unit in the network. Typically,
units are arranged into layers (e.g., input,
hidden, output), and layers of units are fully
connected to each other. For example, in a
three-layer feedforward architecture where
activation passes in a single direction from
input to output, the input layer would be
fully connected to the hidden layer and the
hidden layer would be fully connected to the
output layer.

The fourth feature is a rule for propa-
gating activation states throughout the net-
work. This rule takes the vector a(t) of out-
put values for the processing units sending
activation and combines it with the connec-
tivity matrix W to produce a summed or net
input into each receiving unit. The net input
to a receiving unit is produced by multiply-
ing the vector and matrix together, so that

neti = W× a(t) =
∑

j

wi j aj . (2.1)

The fifth feature is an activation rule to
specify how the net inputs to a given unit
are combined to produce its new activation
state. The function F derives the new acti-
vation state

ai (t + 1) = F (neti (t)). (2.2)

For example, F might be a threshold so that
the unit becomes active only if the net in-
put exceeds a given value. Other possibil-
ities include linear, Gaussian, and sigmoid
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functions, depending on the network type.
Sigmoid is perhaps the most common, oper-
ating as a smoothed threshold function that
is also differentiable. It is often important
that the activation function be differentiable
because learning seeks to improve a perfor-
mance metric that is assessed via the activa-
tion state whereas learning itself can only op-
erate on the connection weights. The effect
of weight changes on the performance met-
ric therefore depends to some extent on the
activation function. The learning algorithm
encodes this fact by including the derivative
of that function (see the following discus-
sion).

The sixth key feature of connectionist
models is the algorithm for modifying the
patterns of connectivity as a function of ex-
perience. Virtually all learning rules for PDP
models can be considered a variant of the
Hebbian learning rule (Hebb, 1949). The
essential idea is that a weight between two
units should be altered in proportion to the
units’ correlated activity. For example, if a
unit ui receives input from another unit uj ,
then if both are highly active, the weight wi j
from uj to ui should be strengthened. In its
simplest version, the rule is

�wi j = η aiaj (2.3)

where η is the constant of proportionality
known as the learning rate. Where an ex-
ternal target activation ti (t) is available for
a unit i at time t, this algorithm is modified
by replacing ai with a term depicting the
disparity of unit ui ’s current activation state
ai (t) from its desired activation state ti (t) at
time t, so forming the delta rule:

�wi j = η (ti (t)− ai (t)) aj . (2.4)

However, when hidden units are included
in networks, no target activation is available
for these internal parameters. The weights
to such units may be modified by variants of
the Hebbian learning algorithm (e.g., Con-
trastive Hebbian; Hinton, 1989; see Xie &
Seung, 2003) or by the backpropagation of
error signals from the output layer.

Backpropagation makes it possible to de-
termine, for each connection weight in the
network, what effect a change in its value
would have on the overall network error.
The policy for changing the strengths of con-
nections is simply to adjust each weight in
the direction (up or down) that would tend
to reduce the error, and change it by an
amount proportional to the size of the effect
the adjustment will have. If there are mul-
tiple layers of hidden units remote from the
output layer, this process can be followed
iteratively: First, error derivatives are com-
puted for the hidden layer nearest the out-
put layer; from these, derivatives are com-
puted for the next deepest layer into the
network, and so forth. On this basis, the
backpropagation algorithm serves to modify
the pattern of weights in powerful multi-
layer networks. It alters the weights to each
deeper layer of units in such a way as to
reduce the error on the output units (see
Rumelhart, Hinton, et al., 1986, for the
derivation). We can formulate the weight
change algorithm by analogy to the delta
rule shown in equation 2.4. For each deeper
layer in the network, we modify the central
term that represents the disparity between
the actual and target activation of the units.
Assuming ui , uh, and uo are input, hidden,
and output units in a three-layer feedfor-
ward network, the algorithm for changing
the weight from hidden to output unit is:

�woh = η (to − ao) F ′(neto) ah (2.5)

where F ′(net) is the derivative of the activa-
tion function of the units (e.g., for the
sigmoid activation function,F ′(neto) =
ao(1− ao)). The term (to − ao) is propor-
tional to the negative of the partial deriva-
tive of the network’s overall error with
respect to the activation of the output unit,
where the error E is given by E =∑

o (to − ao)2. In this and the following
equations, time t has been omitted for
clarity.

The derived error term for a unit at the
hidden layer is a product of three compo-
nents: the derivative of the hidden unit’s
activation function multiplied by the sum
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across all the connections from that hidden
unit to the output later of the error term
on each output unit weighted by the
derivative of the output unit’s activation
function (to − ao) F ′ (neto) multiplied by the
weight connecting the hidden unit to the
output unit:

F ′(neth)
∑

o
(to − ao)F ′(neto)woh. (2.6)

The algorithm for changing the weights
from the input to the hidden layer is there-
fore:

�whi = η F ′(neth)
∑

o

(to − ao)

× F ′(neto)woh ai . (2.7)

It is interesting that the previous computa-
tion can be construed as a backward pass
through the network, similar in spirit to the
forward pass that computes activations. This
is because it involves propagation of signals
across weighted connections, this time from
the output layer back toward the input. The
backward pass, however, involves the prop-
agation of error derivatives rather than acti-
vations.

It should be emphasized that a very wide
range of variants and extensions of Hebbian
and error-correcting algorithms have been
introduced in the connectionist learning lit-
erature. Most importantly, several variants
of backpropagation have been developed
for training recurrent networks (Williams &
Zipser, 1995); and several algorithms (in-
cluding the Contrastive Hebbian Learning
algorithm and O’Reilly’s 1998 LEABRA
algorithm) have addressed some of the con-
cerns that have been raised regarding the bi-
ological plausibility of backpropagation con-
strued in its most literal form (O’Reilly &
Munakata, 2000).

The last general feature of connection-
ist networks is a representation of the en-
vironment with respect to the system. This
is assumed to consist of a set of externally
provided events or a function for generat-
ing such events. An event may be a single
pattern, such as a visual input; an ensem-
ble of related patterns, such as the spelling

of a word and its corresponding sound or
meaning; or a sequence of inputs, such as
the words in a sentence. A number of poli-
cies have been used for specifying the order
of presentation of the patterns. These range
from sweeping through the full set to ran-
dom sampling with replacement. The selec-
tion of patterns to present may vary over
the course of training but is often fixed.
Where a target output is linked to each in-
put, this is usually assumed to be simulta-
neously available. Two points are of note in
the translation between PDP network and
cognitive model. First, a representational
scheme must be defined to map between
the cognitive domain of interest and a set of
vectors depicting the relevant informational
states or mappings for that domain. Second,
in many cases, connectionist models are ad-
dressed to aspects of higher-level cognition,
where it is assumed that the information of
relevance is more abstract than sensory or
motor codes. This has meant that the mod-
els often leave out details of the transduction
of sensory and motor signals, using input
and output representations that are already
somewhat abstract. We hold the view that
the same principles at work in higher-level
cognition are also at work in perceptual
and motor systems, and indeed there is also
considerable connectionist work addressing
issues of perception and action, although
these will not be the focus of the present
chapter.

2.3. Neural Plausibility

It is a historical fact that most connectionist
modelers have drawn their inspiration from
the computational properties of neural sys-
tems. However, it has become a point of
controversy whether these “brain-like” sys-
tems are indeed neurally plausible. If they
are not, should they instead be viewed as
a class of statistical function approximators?
And if so, shouldn’t the ability of these mod-
els to simulate patterns of human behavior
be assessed in the context of the large num-
ber of free parameters they contain (e.g., in
the weight matrix; Green, 1998)?

Neural plausibility should not be the pri-
mary focus for a consideration of connec-
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tionism. The advantage of connectionism,
according to its proponents, is that it pro-
vides better theories of cognition. Neverthe-
less, we will deal briefly with this issue
because it pertains to the origins of con-
nectionist cognitive theory. In this area, two
sorts of criticism have been leveled at con-
nectionist models. The first is to maintain
that many connectionist models either in-
clude properties that are not neurally plau-
sible or omit other properties that neural
systems appear to have. Some connection-
ist researchers have responded to this first
criticism by endeavoring to show how fea-
tures of connectionist systems might in fact
be realized in the neural machinery of the
brain. For example, the backward prop-
agation of error across the same connec-
tions that carry activation signals is gen-
erally viewed as biologically implausible.
However, a number of authors have shown
that the difference between activations com-
puted using standard feedforward connec-
tions and those computed using standard re-
turn connections can be used to derive the
crucial error derivatives required by back-
propagation (Hinton & McClelland, 1988;
O’Reilly, 1996). It is widely held that con-
nections run bidirectionally in the brain, as
required for this scheme to work. Under this
view, backpropagation may be shorthand
for a Hebbian-based algorithm that uses
bidirectional connections to spread error sig-
nals throughout a network (Xie & Seung,
2003).

Other connectionist researchers have re-
sponded to the first criticism by stress-
ing the cognitive nature of current connec-
tionist models. Most of the work in de-
velopmental neuroscience addresses behav-
ior at levels no higher than cellular and
local networks, whereas cognitive models
must make contact with the human behav-
ior studied in psychology. Some simplifi-
cation is therefore warranted, with neural
plausibility compromised under the work-
ing assumption that the simplified models
share the same flavor of computation as ac-
tual neural systems. Connectionist models
have succeeded in stimulating a great deal
of progress in cognitive theory – and have
sometimes generated radically different pro-

posals to the previously prevailing symbolic
theory – just given the set of basic compu-
tational features outlined in the preceding
section.

The second type of criticism leveled at
connectionism questions why, as Davies
(2005) puts it, connectionist models should
be reckoned any more plausible as putative
descriptions of cognitive processes just be-
cause they are “brain-like.” Under this view,
there is independence between levels of de-
scription because a given cognitive level the-
ory might be implemented in multiple ways
in different hardware. Therefore, the de-
tails of the hardware (in this case, the brain)
need not concern the cognitive theory. This
functionalist approach, most clearly stated
in Marr’s three levels of description (compu-
tational, algorithmic, and implementational;
see Marr, 1982) has been repeatedly chal-
lenged (see, e.g., Rumelhart & McClelland,
1985; Mareschal et al., 2007). The challenge
to Marr goes as follows. Although, accord-
ing to computational theory, there may be
a principled independence between a com-
puter program and the particular substrate
on which it is implemented, in practical
terms, different sorts of computation are
easier or harder to implement on a given
substrate. Because computations have to be
delivered in real time as the individual re-
acts with his or her environment, in the first
instance, cognitive level theories should be
constrained by the computational primitives
that are most easily implemented on the
available hardware; human cognition should
be shaped by the processes that work best in
the brain.

The relation of connectionist models to
symbolic models has also proved contro-
versial. A full consideration of this issue
is beyond the scope of the current chap-
ter. Suffice to say that because the con-
nectionist approach now includes a diverse
family of models, there is no single an-
swer to this question. Smolensky (1988)
argued that connectionist models exist at
a lower (but still cognitive) level of de-
scription than symbolic cognitive theories,
a level that he called the subsymbolic. Con-
nectionist models have sometimes been put
forward as a way to implement symbolic
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production systems on neural architectures
(e.g., Touretzky & Hinton, 1988). At other
times, connectionist researchers have argued
that their models represent a qualitatively
different form of computation: Whereas
under certain circumstances, connectionist
models might produce behavior approxi-
mating symbolic processes, it is held that
human behavior, too, only approximates the
characteristics of symbolic systems rather
than directly implementing them. Further-
more, connectionist systems incorporate
additional properties characteristic of hu-
man cognition, such as content-addressable
memory, context-sensitive processing, and
graceful degradation under damage or noise.
Under this view, symbolic theories are ap-
proximate descriptions rather than actual
characterizations of human cognition. Con-
nectionist theories should replace them both
because they capture subtle differences be-
tween human behavior and symbolic char-
acterizations, and because they provide a
specification of the underlying causal mech-
anisms (van Gelder, 1991).

This strong position has prompted crit-
icisms that in their current form, connec-
tionist models are insufficiently powerful to
account for certain aspects of human cog-
nition – in particular, those areas best char-
acterized by symbolic, syntactically driven
computations (Fodor & Pylyshyn, 1988;
Marcus, 2001). Again, however, the charac-
terization of human cognition in such terms
is highly controversial; close scrutiny of rel-
evant aspects of language – the ground on
which the dispute has largely been focused –
lends support to the view that the system-
aticity assumed by proponents of symbolic
approaches is overstated and that the actual
characteristics of language are well matched
to the characteristics of connectionist sys-
tems (Bybee & McClelland, 2005; McClel-
land et al., 2003). In the end, it may be diffi-
cult to make principled distinctions between
symbolic and connectionist models. At a fine
scale, one might argue that two units in a
network represent variables, and the con-
nection between them specifies a symbolic
rule linking these variables. One might also
argue that a production system in which
rules are allowed to fire probabilistically and

in parallel begins to approximate a connec-
tionist system.

2.4. The Relationship between
Connectionist Models and
Bayesian Inference

Since the early 1980s, it has been apparent
that there are strong links between the cal-
culations carried out in connectionist mod-
els and key elements of Bayesian calcula-
tions (see Chapter 3 in this volume on
Bayesian models of cognition). The state of
the early literature on this point was re-
viewed in McClelland (1998). There it was
noted, first of all, that units can be viewed
as playing the role of probabilistic hypothe-
ses; that weights and biases play the role
of conditional probability relations between
hypotheses and prior probabilities, respec-
tively; and that if connection weights and
biases have the correct values, the logistic
activation function sets the activation of a
unit to its posterior probability given the ev-
idence represented on its inputs.

A second and more important observa-
tion is that, in stochastic neural networks
(Boltzmann machines and Continuous Dif-
fusion Networks; Hinton & Sejnowski,
1986; Movellan & McClelland, 1993), a net-
work’s state over all of its units can rep-
resent a constellation of hypotheses about
an input, and (if the weights and the bi-
ases are set correctly) that the probability
of finding the network in a particular state
is monotonically related to the probability
that the state is the correct interpretation
of the input. The exact nature of the re-
lation depends on a parameter called tem-
perature; if set to one, the probability that
the network will be found in a particular
state exactly matches its posterior probabil-
ity. When temperature is gradually reduced
to zero, the network will end up in the most
probable state, thus performing optimal
perceptual inference (Hinton & Sejnowski,
1983). It is also known that backpropagation
can learn weights that allow Bayes-optimal
estimation of outputs given inputs (MacKay,
1992) and that the Boltzmann machine
learning algorithm (Ackley, Hinton, & Se-
jnowski, 1985; Movellan & McClelland,
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1993) can learn to produce correct con-
ditional distributions of outputs given in-
puts. The algorithm is slow but there has
been recent progress producing substantial
speedups that achieve outstanding perfor-
mance on benchmark data sets (Hinton &
Salakhutdinov, 2006).

3. Three Illustrative Models

In this section, we outline three of the land-
mark models in the emergence of connec-
tionist theories of cognition. The models
serve to illustrate the key principles of con-
nectionism and demonstrate how these prin-
ciples are relevant to explaining behavior in
ways that were different from other prior
approaches. The contribution of these mod-
els was twofold: they were better suited than
alternative approaches to capturing the ac-
tual characteristics of human cognition, usu-
ally on the basis of their context sensitive
processing properties; and compared to ex-
isting accounts, they offered a sharper set
of tools to drive theoretical progress and
to stimulate empirical data collection. Each
of these models significantly advanced its
field.

3.1. An Interactive Activation Model
of Context Effects in Letter Perception
(McClelland & Rumelhart, 1981,
Rumelhart & McClelland, 1982)

The interactive activation model of letter
perception illustrates two interrelated ideas.
The first is that connectionist models nat-
urally capture a graded constraint satisfac-
tion process in which the influences of many
different types of information are simulta-
neously integrated in determining, for ex-
ample, the identity of a letter in a word.
The second idea is that the computation of
a perceptual representation of the current
input (in this case, a word) involves the si-
multaneous and mutual influence of repre-
sentations at multiple levels of abstraction –
this is a core idea of parallel distributed
processing.

The interactive activation model ad-
dressed a puzzle in word recognition. By

the late 1970s, it had long been known that
people were better at recognizing letters
presented in words than letters presented
in random letter sequences. Reicher (1969)
demonstrated that this was not the result of
tending to guess letters that would make let-
ter strings into words. He presented target
letters in words, in unpronounceable non-
words, or on their own. The stimuli were
then followed by a pattern mask, after which
participants were presented with a forced
choice between two letters in a given po-
sition. Importantly, both alternatives were
equally plausible. Thus, the participant
might be presented with WOOD and asked
whether the third letter was O or R. As
expected, forced-choice performance was
more accurate for letters in words than for
letters in nonwords or letters presented on
their own. Moreover, the benefit of sur-
rounding context was also conferred by pro-
nounceable pseudowords (e.g., recognizing
the P in SPET) compared with random let-
ter strings, suggesting that subjects were able
to bring to bear rules regarding the ortho-
graphic legality of letter strings during recog-
nition.

Rumelhart and McClelland (Rumelhart
& McClelland, 1981; Rumelhart & McClel-
land, 1982) took the contextual advantage
of words and pseudowords on letter recog-
nition to indicate the operation of top-down
processing. Previous theories had put for-
ward the idea that letter and word recogni-
tion might be construed in terms of detec-
tors that collect evidence consistent with the
presence of their assigned letter or word in
the input (Morton, 1969; Selfridge, 1959).
Influenced by these theories, Rumelhart and
McClelland built a computational simula-
tion in which the perception of letters re-
sulted from excitatory and inhibitory inter-
actions of detectors for visual features. Im-
portantly, the detectors were organized into
different layers for letter features, letters and
words, and detectors could influence each
other both in a bottom-up and a top-down
manner.

Figure 2.2 illustrates the structure of the
Interactive Activation (IA) model, both at
the macro level (left) and for a small sec-
tion of the model at a finer level (right).
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Figure 2.2. Interactive Activation model of context effects in letter
recognition (McClelland & Rumelhart, 1981, 1982). Pointed arrows
are excitatory connections, circular headed arrows are inhibitory
connections. Left: macro view (connections in gray were set to zero in
implemented model). Right: micro view for the connections from the
feature level to the first letter position for the letters S, W, and F (only
excitatory connections shown) and from the first letter position to the
word units SEED, WEED, and FEED (all connections shown).

The explicit motivation for the structure
of the IA was neural: “[We] have adopted
the approach of formulating the model in
terms similar to the way in which such a
process might actually be carried out in a
neural or neural-like system” (McClelland
& Rumelhart, 1981, p. 387). There were
three main assumptions of the IA model:
(1) Perceptual processing takes place in a
system in which there are several levels of
processing, each of which forms a represen-
tation of the input at a different level of
abstraction; (2) visual perception involves
parallel processing, both of the four letters
in each word and of all levels of abstrac-
tion simultaneously; and (3) perception is
an interactive process in which conceptu-
ally driven and data driven processing pro-
vide multiple, simultaneously acting con-
straints that combine to determine what is
perceived.

The activation states of the system were
simulated by a sequence of discrete time
steps. Each unit combined its activation on
the previous time step, its excitatory influ-
ences, its inhibitory influences, and a decay
factor to determine its activation on the next

time step. Connectivity was set at unitary
values and along the following principles. In
each layer, mutually exclusive alternatives
should inhibit each other. Each unit in a
layer excited all units with which it was con-
sistent and inhibited all those with which
it was inconsistent in the layer immediately
above. Thus, in Figure 2.2, the first-position
W letter unit has an excitatory connection to
the WEED word unit but an inhibitory con-
nection to the SEED and FEED word units.
Similarly, a unit excited all units with which
it was consistent and inhibited all those with
which it was inconsistent in the layer im-
mediately below. However, in the final im-
plementation, top-down word-to-letter in-
hibition and within-layer letter-to-letter in-
hibition were set to zero (gray arrows,
Figure 2.2).

The model was constructed to recognize
letters in four-letter strings. The full set of
possible letters was duplicated for each let-
ter position, and a set of 1,179 word units
was created to represent the corpus of four-
letter words. Word units were given base
rate activation states at the beginning of pro-
cessing to reflect their different frequencies.
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A trial began by clamping the feature units
to the appropriate states to represent a
letter string and then observing the dy-
namic change in activation through the net-
work. Conditions were included to allow
the simulation of stimulus masking and de-
graded stimulus quality. Finally, a proba-
bilistic response mechanism was added to
generate responses from the letter level,
based on the relative activation states of the
letter pool in each position.

The model successfully captured the
greater accuracy of letter detection for let-
ters appearing in words and pseudowords
compared with random strings or in isola-
tion. Moreover, it simulated a variety of em-
pirical findings on the effect of masking and
stimulus quality, and of changing the timing
of the availability of context. The results on
the contextual effects of pseudowords are
particularly interesting, because the model
only contains word units and letter units
and has no explicit representation of ortho-
graphic rules. Let us say on a given trial,
the subject is required to recognize the sec-
ond letter in the string SPET. In this case,
the string will produce bottom-up excita-
tion of the word units for SPAT, SPIT, and
SPOT, which each share three letters. In
turn, the word units will propagate top-
down activation, reinforcing activation of
the letter P and so facilitating its recogni-
tion. Were this letter to be presented in
the string XPQJ, no word units could of-
fer similar top-down activation, hence the
relative facilitation of the pseudoword. In-
terestingly, although these top-down “gang”
effects produced facilitation of letters con-
tained in orthographically legal nonword
strings, the model demonstrated that they
also produced facilitation in orthographi-
cally illegal, unpronounceable letter strings,
such as SPCT. Here, the same gang of
SPAT, SPIT, and SPOT produce top-down
support. Rumelhart and McClelland (1982)
reported empirical support for this novel
prediction. Therefore, although the model
behaved as if it contained orthographic rules
influencing recognition, it did not in fact do
so because continued contextual facilitation
could be demonstrated for strings that had

gang support but violated the orthographic
rules.

There are two specific points to note re-
garding the IA model. First, this early con-
nectionist model was not adaptive – connec-
tivity was set by hand. Although the model’s
behavior was shaped by the statistical prop-
erties of the language it processed, these
properties were built into the structure of
the system in terms of the frequency of oc-
currence of letters and letter combinations
in the words. Second, the idea of bottom-up
excitation followed by competition among
mutually exclusive possibilities is a strategy
familiar in Bayesian approaches to cogni-
tion. In that sense, the IA bears similarity
to more recent probability theory based ap-
proaches to perception (see Chapter 3 in this
volume).

3.1.1. what happened next?

Subsequent work saw the principles of the
IA model extended to the recognition of
spoken words (the TRACE model: McClel-
land & Elman, 1986) and more recently
to bilingual speakers, where two languages
must be incorporated in a single representa-
tional system (see Thomas & van Heuven,
2005, for review). The architecture was ap-
plied to other domains where multiple con-
straints were thought to operate during per-
ception, for example, in face recognition
(Burton, Bruce, & Johnston, 1990). Within
language, more complex architectures have
tried to recast the principles of the IA model
in developmental settings, such as Plaut
and Kello’s (1999) model of the emergence
of phonology from the interplay of speech
comprehension and production.

The more general lesson to draw from the
interactive activation model is the demon-
stration of multiple influences (feature, let-
ter, and word-level knowledge) working si-
multaneously and in parallel to shape the
response of the system, as well as the some-
what surprising finding that a massively par-
allel constraint satisfaction process of this
form can appear to behave as if it contains
rules (in this case, orthographic) when no
such rules are included in the processing
structure. At the time, the model brought
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into question whether it was necessary to
postulate rules as processing structures to
explain regularities in human behavior. This
skepticism was brought into sharper focus
by our next example.

3.2. On Learning the Past Tense
of English Verbs (Rumelhart &
McClelland, 1986)

Rumelhart and McClelland’s (1986) model
of English past tense formation marked
the real emergence of the PDP framework.
Where the IA model used localist coding,
the past tense model employed distributed
coding. Where the IA model had handwired
connection weights, the past tense model
learned its weights via repeated exposure
to a problem domain. However, the mod-
els share two common themes. Once more,
the behavior of the past tense model will
be driven by the statistics of the problem
domain, albeit these will be carved into the
model by training rather than sculpted by
the modelers. Perhaps more importantly, we
see a return to the idea that a connectionist
system can exhibit rule-following behavior
without containing rules as causal process-
ing structures; but in this case, the rule-
following behavior will be the product of
learning and will accommodate a propor-
tion of exception patterns that do not follow
the general rule. The key point that the past
tense model illustrates is how (approximate)
conformity to the regularities of language –
and even a tendency to produce new regular
forms (e.g., regularizations like “thinked” or
past tenses for novel verbs like “wugged”) –
can arise in a connectionist network without
an explicit representation of a linguistic rule.

The English past tense is characterized by
a predominant regularity in which the ma-
jority of verbs form their past tenses by the
addition of one of three allomorphs of the
“-ed” suffix to the base stem (walk/ walked,
end/ended, chase/chased). However, there
is a small but significant group of verbs that
form their past tense in different ways, in-
cluding changing internal vowels (swim/
swam), changing word final consonants
(build/built), changing both internal vowels

and final consonants (think/ thought), and
an arbitrary relation of stem to past tense
(go/went), as well as verbs that have a past
tense form identical to the stem (hit/hit).
These so-called irregular verbs often come
in small groups sharing a family resem-
blance (sleep/slept, creep/crept, leap/leapt)
and usually have high token frequencies (see
Pinker, 1999, for further details).

During the acquisition of the English
past tense, children show a characteristic
U-shaped developmental profile at differ-
ent times for individual irregular verbs. Ini-
tially, they use the correct past tense of a
small number of high-frequency regular and
irregular verbs. Later, they sometimes pro-
duce “overregularized” past tense forms for
a small fraction of their irregular verbs (e.g.,
thinked; Marcus et al., 1992), along with
other, less frequent errors (Xu & Pinker,
1995). They are also able to extend the
past tense “rule” to novel verbs (e.g., wug-
wugged). Finally, in older children, perfor-
mance approaches ceiling on both regu-
lar and irregular verbs (Berko, 1958; Ervin,
1964; Kuczaj, 1977).

In the early 1980s, it was held that this
pattern of behavior represented the oper-
ation of two developmental mechanisms
(Pinker, 1984). One of these was symbolic
and served to learn the regular past tense
rule, whereas the other was associative and
served to learn the exceptions to the rule.
The extended phase of overregularization
errors corresponded to difficulties in inte-
grating the two mechanisms, specifically, a
failure of the associative mechanism to block
the function of the symbolic mechanism.
That the child comes to the language acqui-
sition situation armed with these two mech-
anisms (one of them full of blank rules) was
an a priori commitment of the developmen-
tal theory.

By contrast, Rumelhart and McClelland
(1986) proposed that a single network that
does not distinguish between regular and ir-
regular past tenses is sufficient to learn past
tense formation. The architecture of their
model is shown in Figure 2.3. A phoneme-
based representation of the verb root was
recoded into a more distributed, coarser
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Phonological representation of past tense 

Phonological representation of verb root

Recoding 

Decoding 

2-layer network 
trained with the

delta rule

Coarse coded, distributed
Wickelfeature

representation of root

Coarse coded, distributed
Wickelfeature representation

of past tense 

Figure 2.3. Two-layer network for learning the mapping between
the verb roots and past tense forms of English verbs (Rumelhart &
McClelland, 1986). Phonological representations of verbs are
initially encoded into a coarse, distributed “Wickelfeature”
representation. Past tenses are decoded from the Wickelfeature
representation back to the phonological form. Later connectionist
models replaced the dotted area with a three-layer feedforward
backpropagation network (e.g., Plunkett & Marchman, 1991,
1993).

(more blurred) format, which they called
“Wickelfeatures.” The stated aim of this re-
coding was to produce a representation that
(a) permitted differentiation of all of the
root forms of English and their past tenses,
and (b) provided a natural basis for gener-
alizations to emerge about what aspects of
a present tense correspond to what aspects
of a past tense. This format involved repre-
senting verbs over 460 processing units. A
two-layer network was used to associate the
Wickelfeature representations of the verb
root and past tense form. A final decoding
network was then used to derive the closest
phoneme-based rendition of the past tense
form and reveal the model’s response (the
decoding part of the model was somewhat
restricted by computer processing limita-
tions of the machines available at the time).

The connection weights in the two-layer
network were initially randomized. The
model was then trained in three phases,
in each case using the delta rule to up-
date the connection weights after each verb
root/past tense pair was presented (see Sec-

tion 2.2, and Equation 4). In Phase 1, the
network was trained on ten high-frequency
verbs, two regular and eight irregular, in
line with the greater proportion of irreg-
ular verbs among the most frequent verbs
in English. Phase 1 lasted for ten presenta-
tions of the full training set (or “epochs”).
In Phase 2, the network was trained on 410
medium frequency verbs, 334 regular and
76 irregular, for a further 190 epochs. In
Phase 3, no further training took place, but
86 lower-frequency verbs were presented to
the network to test its ability to generalize
its knowledge of the past tense domain to
novel verbs.

There were four key results for this
model. First, it succeeded in learning both
regular and irregular past tense mappings in
a single network that made no reference to
the distinction between regular and irregular
verbs. Second, it captured the overall pat-
tern of faster acquisition for regular verbs
than irregular verbs, a predominant feature
of children’s past tense acquisition. Third,
the model captured the U-shaped profile
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of development: an early phase of accurate
performance on a small set of regular and
irregular verbs, followed by a phase of over-
regularization of the irregular forms, and fi-
nally recovery for the irregular verbs and
performance approaching ceiling on both
verb types. Fourth, when the model was
presented with the low-frequency verbs on
which it had not been trained, it was able
to generalize the past tense rule to a sub-
stantial proportion of them, as if it had in-
deed learned a rule. Additionally, the model
captured more fine-grained developmental
patterns for subsets of regular and irregular
verbs, and generated several novel predic-
tions.

Rumelhart and McClelland explained the
generalization abilities of the network in
terms of the superpositional memory of the
two-layer network. All the associations be-
tween the distributed encodings of verb root
and past tense forms must be stored across
the single matrix of connection weights. As
a result, similar patterns blend into one an-
other and reinforce each other. Generaliza-
tion is contingent on the similarity of verbs
at input. Were the verbs to be presented us-
ing an orthogonal, localist scheme (e.g., 420
units, 1 per verb), then there would be no
similarity between the verbs, no blending
of mappings, no generalization, and there-
fore no regularization of novel verbs. As
the authors state, “It is the statistical rela-
tionships among the base forms themselves
that determine the pattern of responding.
The network merely reflects the statistics
of the featural representations of the verb
forms” (Rumelhart & McClelland, 1986,
p. 267). Based on the model’s successful
simulation of the profile of language devel-
opment in this domain and, compared with
the dual mechanism model, its more parsi-
monious a priori commitments, Rumelhart
and McClelland viewed their work on past
tense morphology as a step toward a revised
understanding of language knowledge, lan-
guage acquisition, and linguistic information
processing in general.

The past tense model stimulated a great
deal of subsequent debate, not least be-
cause of its profound implications for the-

ories of language development (no rules!).
The model was initially subjected to con-
centrated criticism. Some of this was
overstated – for instance, the use of domain-
general learning principles (such as dis-
tributed representation, parallel processing,
and the delta rule) to acquire the past tense
in a single network was interpreted as a claim
that all of language acquisition could be cap-
tured by the operation of a single domain-
general learning mechanism. Such an ab-
surd claim could be summarily dismissed.
As it stood, the model made no such claim:
Its generality was in the processing princi-
ples. The model itself represented a domain-
specific system dedicated to learning a small
part of language. Nevertheless, a number of
the criticisms were more telling: The Wick-
elfeature representational format was not
psycholinguistically realistic; the generaliza-
tion performance of the model was relatively
poor; the U-shaped developmental profile
appeared to be a result of abrupt changes
in the composition of the training set; and
the actual response of the model was hard to
discern because of problems in decoding the
Wickelfeature output into a phoneme string
(Pinker & Prince, 1988).

The criticisms and following rejoinders
were interesting in a number of ways. First,
there was a stark contrast between the pre-
cise, computationally implemented connec-
tionist model of past tense formation and
the verbally specified dual-mechanism the-
ory (e.g., Marcus et al., 1992). The im-
plementation made simplifications but was
readily evaluated against quantitative be-
havioral evidence; it made predictions and
it could be falsified. The verbal theory by
contrast was vague – it was hard to know
how or whether it would work or exactly
what behaviors it predicted (see Thomas,
Forrester, & Richardson, 2006, for discus-
sion). Therefore, it could only be evalu-
ated on loose qualitative grounds. Second,
the model stimulated a great deal of new
multidisciplinary research in the area. To-
day, inflectional morphology (of which past
tense is a part) is one of the most studied as-
pects of language processing in children, in
adults, in second language learners, in adults
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with acquired brain damage, in children and
adults with neurogenetic disorders, and in
children with language impairments, using
psycholinguistic methods, event-related po-
tential measures of brain activity, functional
magnetic resonance imaging, and behavioral
genetics. This rush of science illustrates the
essential role of computational modeling in
driving forward theories of human cogni-
tion. Third, further modifications and im-
provements to the past tense model have
highlighted how researchers go about the
difficult task of understanding which parts
of their model represent the key theoreti-
cal claims and which are implementational
details. Simplification is inherent in model-
ing, but successful modeling relies on mak-
ing the right simplifications to focus on the
process of interest. For example, in subse-
quent models, (1) the Wickelfeature rep-
resentation was replaced by more plausible
phonemic representations based on articu-
latory features; (2) the recoding/two-layer
network/decoding component of the net-
work (the dotted rectangle in Figure 2.3)
that was trained with the delta rule was
replaced by a three-layer feedforward net-
work trained with the backpropagation algo-
rithm; and the (3) U-shaped developmental
profile was demonstrated in connectionist
networks trained with a smoothly growing
training set of verbs or even with a fixed set
of verbs (see, e.g., Plunkett & Marchman,
1991, 1993, 1996).

3.2.1. what happened next?

The English past tense model prompted
further work within inflectional morphol-
ogy in other languages (e.g., pluralization in
German: Goebel & Indefrey, 2000; plural-
ization in Arabic: Plunkett & Nakisa, 1997),
as well as models that explored the possible
causes of deficits in acquired and develop-
mental disorders, such as aphasia, Specific
Language Impairment and Williams syn-
drome (e.g., Hoeffner & McClelland, 1993;
Joanisse & Seidenberg, 1999; Thomas &
Karmiloff-Smith, 2003b; Thomas, 2005).
The idea that rule-following behavior could
emerge in a developing system that also had
to accommodate exceptions to the rules was

also successfully pursued via connectionist
modeling in the domain of reading (e.g.,
Plaut, et al., 1996). This led to work that
also considered various forms of acquired
and developmental dyslexia.

For the past tense itself, there re-
mains much interest in the topic as a
crucible to test theories of language de-
velopment. However, in some senses the
debate between connectionist and dual-
mechanism accounts has ground to a halt.
There is much evidence from child devel-
opment, adult cognitive neuropsychology,
developmental neuropsychology, and func-
tional brain imaging to suggest partial dis-
sociations between performance on regu-
lar and irregular inflection under various
conditions. Both connectionist and dual-
mechanism models have been modified: the
connectionist model to include the influ-
ence of lexical-semantics as well as verb
root phonology in driving the production
of the past tense form (Joanisse & Sei-
denberg, 1999; Thomas & Karmiloff-Smith,
2003b); the dual-mechanism model to sup-
pose that regular verbs might also be stored
in the associative mechanism, thereby in-
troducing partial redundancy of function
(Pinker, 1999). Both approaches now ac-
cept that performance on regular and ir-
regular past tenses partly indexes different
things – in the connectionist account, dif-
ferent underlying knowledge, in the dual-
mechanism account, different underlying
processes. In the connectionist theory, per-
formance on regular verbs indexes reliance
on knowledge about phonological regu-
larities, whereas performance on irregular
verbs indexes reliance on lexical-semantic
knowledge. In the dual-mechanism theory,
performance on regular verbs indexes a
dedicated symbolic processing mechanism
implementing the regular rule, whereas per-
formance on irregular verbs indexes an as-
sociative memory device storing informa-
tion about the past tense forms of specific
verbs. Both approaches claim to account
for the available empirical evidence. How-
ever, to date, the dual-mechanism account
remains unimplemented, so its claim is
weaker.
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How does one distinguish between two
theories that (a) both claim to explain the
data but (b) contain different representa-
tional assumptions? Putting aside the differ-
ent level of detail of the two theories, the an-
swer is that it depends on one’s preference
for consistency with other disciplines. The
dual-mechanism theory declares consistency
with linguistics – if rules are required to
characterize other aspects of language per-
formance (such as syntax), then one might
as well include them in a model of past
tense formation. The connectionist theory
declares consistency with neuroscience – if
the language system is going to be imple-
mented in the brain, then one might as well
employ a computational formulism based on
how neural networks function.

Finally, we return to the more general
connectionist principle illustrated by the
past tense model. So long as there are regu-
larities in the statistical structure of a prob-
lem domain, a massively parallel constraint
satisfaction system can learn these regular-
ities and extend them to novel situations.
Moreover, as with humans, the behavior of
the system is flexible and context sensitive –
it can accommodate regularities and excep-
tions within a single processing structure.

3.3. Finding Structure in Time
(Elman, 1990)

In this section, the notion of the simple re-
current network and its application to lan-
guage are introduced. As with past tense,
the key point of the model will be to show
how conformity to regularities of language
can arise without an explicit representation
of a linguistic rule. Moreover, the following
simulations will demonstrate how learning
can lead to the discovery of useful internal
representations that capture conceptual and
linguistic structure on the basis of the co-
occurrences of words in sentences.

The IA model exemplified connection-
ism’s commitment to parallelism: All of the
letters of the word presented to the net-
work were recognized in parallel, and pro-
cessing occurred simultaneously at different
levels of abstraction. But not all processing
can be carried out in this way. Some hu-

man behaviors intrinsically revolve around
temporal sequences. Language, action plan-
ning, goal-directed behavior, and reasoning
about causality are examples of domains
that rely on events occurring in sequences.
How has connectionism addressed the pro-
cessing of temporally unfolding events? One
solution was offered in the TRACE model
of spoken word recognition (McClelland &
Elman, 1986), where a word was specified
as a sequence of phonemes. In that case,
the architecture of the system was dupli-
cated for each time-slice and the duplicates
wired together. This allowed constraints to
operate over items in the sequence to influ-
ence recognition. In other models, a related
approach was used to convert a temporally
extended representation into a spatially ex-
tended one. For example, in the past tense
model, all the phonemes of a verb were pre-
sented across the input layer. This could be
viewed as a sequence if one assumed that
the representation of the first phoneme rep-
resents time slice t, the representation of the
second phoneme represents time slice t + 1,
and so on. As part of a comprehension sys-
tem, this approach assumes a buffer that can
take sequences and convert them to a spa-
tial vector. However, this solution is fairly
limited, as it necessarily pre-commits to the
size of the sequences that can be processed
at once (i.e., the size of the input layer).

Elman (1990, 1991) offered an al-
ternative and more flexible approach to
processing sequences, proposing an archi-
tecture that has been extremely influential
and much used since. Elman drew on the
work of Jordan (1986) who had proposed a
model that could learn to associate a “plan”
(i.e., a single input vector) with a series of
“actions” (i.e., a sequence of output vectors).
Jordan’s model contained recurrent connec-
tions permitting the hidden units to “see”
the network’s previous output (via a set of
“state” input units that are given a copy of
the previous output). The facility for the
network to shape its next output according
to its previous response constitutes a kind of
memory. Elman’s innovation was to build
a recurrent facility into the internal units of
the network, allowing it to compute statisti-
cal relationships across sequences of inputs
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Figure 2.4. Elman’s simple recurrent network architecture for finding
structure in time (Elman, 1991, 1993). Connections between input
and hidden, context and hidden, and hidden and output layers are
trainable. Sequences are applied to the network element by element
in discrete time steps; the context layer contains a copy of the hidden
unit (HU) activations on the previous time step transmitted by fixed,
1-to-1 connections.

and outputs. To achieve this, first time is
discretized into a number of slices. On time
step t, an input is presented to the network
and causes a pattern of activation on hidden
and output layers. On time step t + 1, the
next input in the sequence of events is pre-
sented to the network. However, crucially, a
copy of the activation of the hidden units on
time step t is transmitted to a set of internal
“context” units. This activation vector is also
fed to the hidden units on time step t + 1.
Figure 2.4 shows the architecture, known
as the simple recurrent network (SRN). It is
usually trained with the backpropagation
algorithm (see Section 2.3) as a multi-
layer feedforward network, ignoring the
origin of the information on the context
layer.

Each input to the SRN is therefore pro-
cessed in the context of what came before,
but in a way subtly more powerful than the
Jordan network. The input at t + 1 is pro-
cessed in the context of the activity pro-
duced on the hidden units by the input at
time t. Now consider the next time step.
The input at time t + 2 will be processed
along with activity from the context layer
that is shaped by two influences:

(the input at t + 1 (shaped by the
input at t)).

The input at time t + 3 will be processed
along with activity from the context layer
that is shaped by three influences:

(the input at t + 2 (shaped by the input
at t + 1 (shaped by the input at t))).

The recursive flavor of the information con-
tained in the context layer means that each
new input is processed in the context of
the full history of previous inputs. This per-
mits the network to learn statistical relation-
ships across sequences of inputs or, in other
words, to find structure in time.

In his original 1990 article, Elman
demonstrated the powerful properties of the
SRN with two examples. In the first, the
network was presented with a sequence of
letters made up of concatenated words, for
example:

MANYYEARSAGOABOYANDGIRLLIV-
EDBYTHESEATHEYPLAYEDHAPPILY

Each letter was represented by a distributed
binary code over five input units. The net-
work was trained to predict the next letter in
the sentence for 200 sentences constructed
from a lexicon of fifteen words. There were
1,270 words and 4,963 letters. Because
each word appeared in many sentences,



P1: JZP

CUFX212-02 CUFX212-Sun 978 0 521 85741 3 April 1, 2008 15:30

40 thomas and mcclelland

the network was not particularly successful
at predicting the next letter when it got to
the end of each word, but within a word
it was able to predict the sequences of let-
ters. Using the accuracy of prediction as a
measure, one could therefore identify which
sequences in the letter string were words:
They were the sequences of good prediction
bounded by high prediction errors. The abil-
ity to extract words was of course subject
to the ambiguities inherent in the training
set (e.g., for the and they, there is ambigu-
ity after the third letter). Elman suggested
that if the letter strings are taken to be
analogous to the speech sounds available to
the infant, the SRN demonstrates a possi-
ble mechanism to extract words from the
continuous stream of sound that is present
in infant-directed speech. Elman’s work has
contributed to the increasing interest in the
statistical learning abilities of young chil-
dren in language and cognitive develop-
ment (see, e.g., Saffran, Newport, & Aslin,
1996).

In the second example, Elman (1990)
created a set of 10,000 sentences by com-
bining a lexicon of 29 words and a set of
short sentence frames (noun + [transitive]
verb + noun; noun + [intransitive] verb).
There was a separate input and output unit
for each word, and the SRN was trained
to predict the next word in the sentence.
During training, the network’s output came
to approximate the transitional probabilities
between the words in the sentences, that is,
it could predict the next word in the sen-
tences as much as this was possible. Follow-
ing the first noun, the verb units would be
more active as the possible next word, and
verbs that tended to be associated with this
particular noun would be more active than
those that did not. At this point, Elman ex-
amined the similarity structure of the in-
ternal representations to discover how the
network was achieving its prediction abil-
ity. He found that the internal representa-
tions were sensitive to the difference be-
tween nouns and verbs, and within verbs, to
the difference between transitive and intran-
sitive verbs. Moreover, the network was also
sensitive to a range of semantic distinctions:

Not only were the internal states induced by
nouns split into animate and inanimate, but
the pattern for “woman” was most similar to
“girl,” and that for “man” was most similar
to “boy.” The network had learned to struc-
ture its internal representations according to
a mix of syntactic and semantic information
because these information states were the
best way to predict how sentences would
unfold. Elman concluded that the represen-
tations induced by connectionist networks
need not be flat but could include hierarchi-
cal encodings of category structure.

Based on his finding, Elman also argued
that the SRN was able to induce representa-
tions of entities that varied according to their
context of use. This contrasts with classi-
cal symbolic representations that retain their
identity regardless of the combinations into
which they are put, a property called “com-
positionality.” This claim is perhaps better
illustrated by a second article Elman (1993)
published two years later, called “Learning
and Development in Neural Networks: The
importance of Starting Small.” In this later
article, Elman explored whether rule-based
mechanisms are required to explain certain
aspects of language performance, such as
syntax. He focused on “long-range depen-
dencies,” which are links between words
that depend only on their syntactic relation-
ship in the sentence and, importantly, not on
their separation in a sequence of words. For
example, in English, the subject and main
verb of a sentence must agree in number. If
the noun is singular, so must be the verb;
if the noun is plural, so must be the verb.
Thus, in the sentence “The boy chases the
cat,” boy and chases must both be singular.
But this is also true in the sentence “The boy
whom the boys chase chases the cat.” In the
second sentence, the subject and verb are
further apart in the sequence of words but
their relationship is the same; moreover, the
words are now separated by plural tokens of
the same lexical items. Rule-based represen-
tations of syntax were thought to be neces-
sary to encode these long-distance relation-
ships because, through the recursive nature
of syntax, the words that have to agree in a
sentence can be arbitrarily far apart.
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Figure 2.5. Trajectory of internal activation states as the simple recurrent network (SRN)
processes sentences (Elman, 1993). The data show positions according to the dimensions of a
principal components analysis (PCA) carried out on hidden unit activations for the whole
training set. Words are indexed by their position in the sequence but represent activation of
the same input unit for each word. (a) PCA values for the second principal component as the
SRN processes two sentences, “Boy who boys chase chases boy” or “Boys who boys chase chase
boy;” (b) PCA values for the first and eleventh principal components as the SRN processes
“Boy chases boy who chases boy who chases boy.”

Using an SRN trained on the same pre-
diction task as that previously outlined but
now with more complex sentences, Elman
(1993) demonstrated that the network was
able to learn these long-range dependen-
cies even across the separation of multiple
phrases. If boy was the subject of the sen-
tence, when the network came to predict
the main verb chase as the next word, it
predicted that it should be in the singular.
The method by which the network achieved
this ability is of particular interest. Once
more, Elman explored the similarity struc-
ture in the hidden unit representations, us-
ing principal component analyses to identify
the salient dimensions of similarity across
which activation states were varying. This
enabled him to reduce the high dimension-
ality of the internal states (150 hidden units
were used) to a manageable number to visu-
alize processing. Elman was then able to plot
the trajectories of activation as the network
altered its internal state in response to each
subsequent input. Figure 2.5 depicts these
trajectories as the network processes differ-

ent multi-phrase sentences, plotted with ref-
erence to particular dimensions of princi-
pal component space. This figure demon-
strates that the network adopted similar
states in response to particular lexical items
(e.g., tokens of boy, who, chases), but that
it modified the pattern slightly according to
the grammatical status of the word. In Fig-
ure 2.5a, the second principal component
appears to encode singularity/plurality. Fig-
ure 2.5b traces the network’s state as it pro-
cesses two embedded relative clauses con-
taining iterations of the same words. Each
clause exhibits a related but slightly shifted
triangular trajectory to encode its role in the
syntactic structure.

The importance of this model is that
it prompts a different way to understand
the processing of sentences. Previously, one
would view symbols as possessing fixed iden-
tities and as being bound into particular
grammatical roles via a syntactic construc-
tion. In the connectionist system, sentences
are represented by trajectories through
activation space in which the activation
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pattern for each word is subtly shifted ac-
cording to the context of its usage. The im-
plication is that the property of composi-
tionality at the heart of the classical sym-
bolic computational approach may not be
necessary to process language.

Elman (1993) also used this model to
investigate a possible advantage to learning
that could be gained by initially restricting
the complexity of the training set. At the
start of training, the network had its mem-
ory reset (its context layer wiped) after ev-
ery third or fourth word. This window was
then increased in stages up to six to seven
words across training. The manipulation was
intended to capture maturational changes in
working memory in children. Elman (1993)
reported that starting small enhanced learn-
ing by allowing the network to build simpler
internal representations that were later use-
ful for unpacking the structure of more com-
plex sentences (see Rohde & Plaut, 1999,
for discussion and further simulations). This
idea resonated with developmental psychol-
ogists in its demonstration of the way in
which learning and maturation might inter-
act in constructing cognition. It is an idea
that could turn out to be a key principle in
the organization of cognitive development
(Elman et al., 1996).

3.3.1. what happened next?

Elman’s simulations with the SRN and the
prediction task produced striking results.
The ability of the network to induce struc-
tured representations containing grammati-
cal and semantic information from word se-
quences prompted the view that associative
statistical learning mechanisms might play a
much more central role in language acqui-
sition. This innovation was especially wel-
come given that symbolic theories of sen-
tence processing do not offer a ready account
of language development. Indeed, they are
largely identified with the nativist view that
little in syntax develops. However, one lim-
itation of the prior simulations is that the
prediction task does not learn any catego-
rizations over the input set. Although the
simulations demonstrate that information
important for language comprehension and

production can be induced from word se-
quences, neither task is actually performed.
The learned distinction between nouns and
verbs apparent in the hidden unit represen-
tations is tied up with carrying out the pre-
diction task. But to perform comprehension,
for example, the SRN would need to learn
categorizations from the word sequences,
such as deciding which noun was the agent
and which noun was the patient in a sen-
tence, regardless of whether the sentence
was presented in the active (“the dog chases
the cat”) or passive voice (“the cat is chased
by the dog”). These types of computations
are more complex and the network’s solu-
tions typically more impenetrable. Although
SRNs have borne the promise of an inher-
ently developmental connectionist theory of
parsing, progress on a full model has been
slow (see Christiansen & Chater, 2001; and
chapter 17 of this volume). Parsing is a com-
plex problem – it is not even clear what the
output should be for a model of sentence
comprehension. Should it be some inter-
mediate depiction of agent–patient role as-
signments, some compound representation
of roles and semantics, or a constantly up-
dating mental model that processes each
sentence in the context of the emerging
discourse? Connectionist models of pars-
ing await greater constraints from psycholin-
guistic evidence.

Nevertheless, some interesting prelimi-
nary findings have emerged. For example,
some of the grammatical sentences that the
SRN finds the hardest to predict are also
the sentences that humans find the hard-
est to understand (e.g., center embedded
structures like “the mouse the cat the dog
bit chased ate the cheese”) (Weckerly &
Elman, 1992). These are sequences that
place maximal load on encoding information
in the network’s internal recurrent loop, sug-
gesting that recurrence may be a key com-
putational primitive in language processing.
Moreover, when the prediction task is re-
placed by a comprehension task (such as
predicting the agent/patient status of the
nouns in the sentence), the results are again
suggestive. Rather than building a syntac-
tic structure for the whole sentence as a



P1: JZP

CUFX212-02 CUFX212-Sun 978 0 521 85741 3 April 1, 2008 15:30

connectionist models of cognition 43

symbolic parser might, the network focuses
on the predictability of lexical cues for iden-
tifying various syntactic structures (consis-
tent with Bates and MacWhinney’s [1989]
Competition model of language develop-
ment. The salience of lexical cues that each
syntactic structure exploits and the pro-
cessing load that each structure places on
the recurrent loop makes them differentially
vulnerable under damage. Here, neuropsy-
chological findings from language break-
down and developmental language disor-
ders have tended to follow the predictions
of the connectionist account in the relative
impairments that each syntactic construc-
tion should show (Dick et al., 2001; 2004;
Thomas & Redington, 2004).

For more recent work and discussion of
the use of SRNs in syntax processing, see
Mayberry, Crocker, and Knoeferle (2005),
Miikkulainen and Mayberry (1999), Morris,
Cottrell, and Elman (2000), Rohde (2002),
and Sharkey, Sharkey, and Jackson (2000).
Lastly, the impact of SRNs has not been
restricted to language. These models have
been usefully applied to other areas of cog-
nition where sequential information is im-
portant. For example, Botvinick and Plaut
(2004) have shown how this architecture
can capture the control of routine sequences
of actions without the need for schema hier-
archies, and Cleeremans and Dienes (chap-
ter 14 in this volume) show how SRNs have
been applied to implicit learning.

In sum, then, Elman’s work demonstrates
how simple connectionist architectures can
learn statistical regularities over temporal
sequences. These systems may indeed be
sufficient to produce many of the behav-
iors that linguists have described with gram-
matical rules. However, in the connection-
ist system, the underlying primitives are
context-sensitive representations of words
and trajectories of activation through recur-
rent circuits.

4. Related Models

Before considering the wider impact of con-
nectionism on theories of cognition, we

should note a number of other related ap-
proaches.

4.1. Cascade-Correlation and
Incremental Neural Network Algorithms

Backpropagation networks specify input and
output representations, whereas in self-
organizing networks, only the inputs are
specified. These networks therefore include
some number of internal processing units
whose activation states are determined by
the learning algorithm. The number of in-
ternal units and their organization (e.g., into
layers) plays an important role in determin-
ing the complexity of the problems or cate-
gories that the network can learn. In pattern
associator networks, too few units and the
network will fail to learn; in self-organizing
networks, too few output units and the net-
work will fail to provide good discrimina-
tion between the categories in the training
set. How does the modeler select in advance
the appropriate number of internal units?
Indeed, for a cognitive model, should this
be a decision that the modeler gets to make?

For pattern associator networks, the cas-
cade correlation algorithm (Fahlman &
Lebiere, 1990) addresses this problem by
starting with a network that has no hidden
units and then adding in these resources dur-
ing learning as it becomes necessary to carry
on improving on the task. New hidden units
are added with weights from the input layer
tailored so that the unit’s activation corre-
lates with network error, that is, the new
unit responds to parts of the problem on
which the network is currently doing poorly.
New hidden units can also take input from
existing hidden units, thereby creating de-
tectors for higher order features in the prob-
lem space.

The cascade correlation algorithm has
been widely used for studying cognitive
development (Mareschal & Shultz, 1996;
Shultz, 2003; Westermann, 1998), for
example, in simulating children’s perfor-
mance in Piagetian reasoning tasks (see Sec-
tion 5.2). The algorithm makes links with
the constructivist approach to development
(Quartz, 1993; Quartz & Sejnowski, 1997),
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which argues that increases in the complex-
ity of children’s cognitive abilities are best
explained by the recruitment of additional
neurocomputational resources with age and
experience. Related models that also use this
“incremental” approach to building network
architectures can be found in the work of
Carpenter and Grossberg (Adaptive Reso-
nance Theory; e.g., Carpenter & Grossberg,
1987a, 1987b) and in the work of Love and
colleagues (e.g., Love, Medin, & Gureckis,
2004).

4.2. Mixture-of-Experts-Models

The preceding sections assume that only a
single architecture is available to learn each
problem. However, it may be that multiple
architectures are available to learn a given
problem, each with different computational
properties. Which architecture will end up
learning the problem? Moreover, what if a
cognitive domain can be broken down into
different parts, for example, in the way that
the English past tense problem comprises
regular and irregular verbs – could different
computational components end up learn-
ing the different parts of the problem? The
mixture-of-experts approach considers ways
in which learning could take place in just
such a system with multiple components
available (Jacobs et al., 1991). In these mod-
els, functionally specialized structures can
emerge as a result of learning, in the circum-
stance where the computational properties
of the different components happen to line
up with the demands presented by differ-
ent parts of the problem domain (so-called
structure-function correspondences).

During learning, mixture-of-experts algo-
rithms typically permit the multiple com-
ponents to compete with each other to de-
liver the correct output for each input pat-
tern. The best performer is then assigned
the pattern and allowed to learn it. The in-
volvement of each component during func-
tioning is controlled by a gating mechanism.
Mixture-of-experts models are one of sev-
eral approaches that seek to explain the
origin of functionally specialized process-
ing components in the cognitive system (see
Elman et al., 1996; Jacobs, 1999; Thomas &

Richardson, 2006, for discussion). An exam-
ple of the application of mixture of experts
can be found in a developmental model of
face and object recognition, where differ-
ent “expert” mechanisms come to special-
ize in processing visual inputs that corre-
spond to faces and those that correspond
to objects (Dailey & Cottrell, 1999). The
emergence of this functional specialization
can be demonstrated by damaging each ex-
pert in turn and showing a double dissocia-
tion between face and object recognition in
the two components of the model (see Sec-
tion 5.3). Similarly, Thomas and Karmiloff-
Smith 2002a showed how a mixture-of-
experts model of English past tense could
produce emergent specialization of separate
mechanisms to regular and irregular verbs,
respectively (see also Westermann, 1998,
for related work with a constructivist net-
work).

4.3. Hybrid Models

The success of mixture-of-experts models
suggests that when two or more compo-
nents are combined within a model, it can be
advantageous for the computational proper-
ties of the components to differ. Where the
properties of the components are radically
different, for example, involving the combi-
nation of symbolic (rule-based) and connec-
tionist (associative, similarity-based) archi-
tectures, the models are sometimes referred
to as “hybrid.” The use of hybrid models is
inspired by the observation that some as-
pects of human cognition seem better de-
scribed by rules (e.g., syntax, reasoning),
whereas some seem better described by sim-
ilarity (e.g., perception, memory). We have
previously encountered the debate between
symbolic and connectionist approaches (see
Section 2.3) and the proposal that connec-
tionist architectures may serve to imple-
ment symbolic processes (e.g., Touretzky
& Hinton, 1988). The hybrid systems ap-
proach takes the alternative view that con-
nectionist and symbolic processing princi-
ples should be combined within the same
model, taking advantage of the strengths
of each computational formalism. A dis-
cussion of this approach can be found in
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Sun (2002a, 2002b). Example models in-
clude CONSYDERR (Sun, 1995), CLAR-
ION (Sun & Peterson, 1998), and ACT-R
(Anderson & Lebiere, 1998).

An alternative to a truly hybrid approach
is to develop a multi-part connectionist ar-
chitecture that has components that employ
different representational formats. Such a
system may be described as having “hetero-
geneous” computational components. For
example, in a purely connectionist system,
one component might employ distributed
representations that permit different de-
grees of similarity between activation pat-
terns, whereas a second component employs
localist representations in which there is
no similarity between different representa-
tions. Behavior is then driven by the inter-
play between two associative components
that employ different similarity structures.
One example of a heterogeneous, multiple-
component architecture is the complemen-
tary learning systems model of McClel-
land, McNaughton, and O’Reilly (1995),
which employs localist representations to
encode individual episodic memories but
distributed representations to encode gen-
eral semantic memories. Heterogeneous de-
velopmental models may offer new ways
to conceive of the acquisition of concepts.
For example, the cognitive domain of num-
ber may be viewed as heterogeneous in the
sense that it combines three systems: the
similarity-based representations of quantity,
the localist representations of number facts
(such as the order of number labels in count-
ing), and a system for object individuation.
Carey and Sarnecka (2006) argue that a het-
erogeneous multiple component system of
this nature could acquire the concept of pos-
itive integers even though such a concept
could not be acquired by any single compo-
nent of the system on its own.

4.4. Bayesian Graphical Models

The use of Bayesian methods of inference
in graphical models, including causal graph-
ical models, has recently been embraced by
a number of cognitive scientists (Chater,
Tenenbaum, & Yuille, 2006; Gopnik et al.,
2004; see Chapter 3 in this volume). This

approach stresses how it may be possible to
combine prior knowledge in the form of a set
of explicit alternative graph structures and
constraints on the complexity of such struc-
tures with Bayesian methods of inference to
select the best type of representation of a
particular data set (e.g., lists of facts about
many different animals); and within that,
to select the best specific instantiation of
a representation of that type (Tenenbaum,
Griffiths, & Kemp, 2006). These models are
useful contributions to our understanding,
particularly because they allow explicit ex-
ploration of the role of prior knowledge in
the selection of a representation of the struc-
ture present in each data set. It should be
recognized, however, that such models are
offered as characterizations of learning at
Marr’s (1982) “Computational Level” and as
such they do not specify the representations
and processes that are actually employed
when people learn. However, these mod-
els do present a challenge for the connec-
tionist research focused on answering such
questions. Specifically, the work provides
a benchmark against which connectionist
approaches might be tested for their suc-
cess in learning to represent the structure
from a data set and in using such a struc-
ture to make inferences consistent with op-
timal performance according to a Bayesian
approach within a graphical model frame-
work. More substantively, the work raises
questions about whether or not optimiza-
tion depends on the explicit representation
of alternative structured representations or
whether an approximation to such struc-
tured representations can arise without their
prespecification. For an initial examination
of these issues as they arise in the con-
text of causal inference, see McClelland and
Thompson (2007).

5. Connectionist Influences
on Cognitive Theory

Connectionism offers an explanation of hu-
man cognition because instances of behavior
in particular cognitive domains can be ex-
plained with respect to set of general prin-
ciples (parallel distributed processing) and
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the conditions of the specific domains. How-
ever, from the accumulation of successful
models, it is also possible to discern a wider
influence of connectionism on the nature of
theorizing about cognition, and this is per-
haps a truer reflection of its impact. How
has connectionism made us think differently
about cognition?

5.1. Knowledge Versus Processing

One area where connectionism has changed
the basic nature of theorizing is mem-
ory. According to the old model of mem-
ory based on the classical computational
metaphor, the information in long-term
memory (e.g., on the hard disk) has to be
moved into working memory (the central
processing unit, or CPU) for it to be oper-
ated on, and the long-term memories are
laid down via a domain-general buffer of
short-term memory (random access mem-
ory, or RAM). In this type of system, it is
relatively easy to shift informational con-
tent between different systems, back and
forth between central processing and short
and long-term stores. Computation is pred-
icated on variables: the same binary string
can readily be instantiated in different mem-
ory registers or encoded onto a permanent
medium.

By contrast, knowledge is hard to move
about in connectionist networks because it
is encoded in the weights. For example, in
the past-tense model, knowledge of the past
tense rule “add -ed” is distributed across
the weight matrix of the connections be-
tween input and output layers. The diffi-
culty in portability of knowledge is inher-
ent in the principles of connectionism –
Hebbian learning alters connection strengths
to reinforce desirable activation states in
connected units, tying knowledge to struc-
ture. If we start from the premise that
knowledge will be very difficult to move
about in our information processing system,
what kind of cognitive architecture do we
end up with? There are four main themes.

First, we need to distinguish between
two different ways in which knowledge can
be encoded: active and latent representa-

tions (Munakata & McClelland, 2003). La-
tent knowledge corresponds to the infor-
mation stored in the connection weights
from accumulated experience. By contrast,
active knowledge is information contained
in the current activation states of the sys-
tem. Clearly, the two are related because
the activation states are constrained by the
connection weights. But, particularly in re-
current networks, there can be subtle dif-
ferences. Active states contain a trace of re-
cent events (how things are at the moment),
whereas latent knowledge represents a his-
tory of experience (how things tend to be).
Differences in the ability to maintain the
active states (e.g., in the strength of recur-
rent circuits) can produce errors in behavior
where the system lapses into more typical
ways of behaving (Munakata, 1998; Morton
& Munakata, 2002).

Second, if information does need to be
moved around the system, for example,
from a more instance-based (episodic) sys-
tem to a more general (semantic) sys-
tem, this will require special structures and
special (potentially time-consuming) pro-
cesses. Thus McClelland, McNaughton, and
O’Reilly (1995) proposed a dialogue be-
tween separate stores in the hippocampus
and neocortex to gradually transfer knowl-
edge from episodic to semantic memory.
French, Ans, and Rousset (2001) proposed
a special method to transfer knowledge
between two memory systems: internally
generated noise produces “pseudopatterns”
from one system that contain the central
tendencies of its knowledge; the second
memory system is then trained with this
extracted knowledge to effect the transfer.
Chapters 7 and 8 in the current volume offer
a wider consideration of models of episodic
and semantic memory, respectively.

Third, information will be processed in
the same substrate where it is stored. There-
fore, long-term memories will be active
structures and will perform computations
on content. An external strategic control sys-
tem plays the role of differentially activat-
ing the knowledge in this long-term system
that is relevant to the current context. In
anatomical terms, this distinction broadly
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corresponds to frontal/anterior (strategic
control) and posterior (long-term) cortex.
The design means, somewhat counterintu-
itively, that the control system has no con-
tent. Rather, the control system contains
placeholders that serve to activate different
regions of the long-term system. The con-
trol system may contain plans (sequences of
placeholders). It may be involved in learn-
ing abstract concepts (using a placeholder
to temporarily coactivate previously unre-
lated portions of long-term knowledge while
Hebbian learning builds a new association
between them), but it does not contain con-
tent in the sense of a domain-general work-
ing memory. The study of frontal systems
then becomes an exploration of the acti-
vation dynamics of these placeholders and
their involvement in learning (see, e.g., work
by Davelaar & Usher, 2002; Haarmann &
Usher, 2001; O’Reilly, Braver, & Cohen,
1999; Usher & McClelland, 2001).

Similarly, connectionist research has ex-
plored how activity in the control system can
be used to modulate the efficiency of pro-
cessing elsewhere in the system, for instance,
to implemented selective attention. For ex-
ample, Cohen et al., (1990) demonstrated
how task units could be used to differ-
entially modulate word-naming and color-
naming processing channels in a model of
the color-word Stroop task. In this model,
latent knowledge interacted with the oper-
ation of task control, so that it was harder
to selectively attend to color-naming and
ignore information from the more practiced
word-naming channel than vice versa. This
work was later extended to demonstrate
how deficits in the strategic control system
(prefrontal cortex) could lead to problems
in selective attention in disorders such as
schizophrenia (Cohen & Servan-Schreiber,
1992). Chapter 15 in this volume contains a
wider consideration of computational mod-
els of attention and cognitive control.

Lastly, the connectionist perspective on
memory alters how we conceive of domain
generality in processing systems. It is un-
likely that there are any domain-general
processing systems that serve as a “Jack-of-
all-trades,” that is, that can move between

representing the content of multiple do-
mains. However, there may be domain-
general systems that are involved in mod-
ulating many disparate processes without
taking on the content of those systems, what
we might call a system with “a finger in ev-
ery pie.” Meanwhile, short-term or work-
ing memory (as exemplified by the active
representations contained in the recurrent
loop of a network) is likely to exist as a
devolved panoply of discrete systems, each
with its own content-specific loop. For ex-
ample, research in the neuropsychology of
language now tends to support the existence
of separate working memories for phono-
logical, semantic, and syntactic information
(see MacDonald & Christiansen, 2002, for a
discussion of these arguments).

5.2. Cognitive Development

A key feature of PDP models is the use of
a learning algorithm for modifying the pat-
terns of connectivity as a function of experi-
ence. Compared with symbolic, rule-based
computational models, this has made them
a more sympathetic formalism for study-
ing cognitive development (Elman et al.,
1996). The combination of domain-general
processing principles, domain-specific archi-
tectural constraints, and structured train-
ing environments has enabled connectionist
models to give accounts of a range of devel-
opmental phenomena. These include infant
category development, language acquisition
and reasoning in children (see Mareschal &
Thomas, 2007, for a recent review and chap-
ter 16 in this volume).

Connectionism has become aligned with
a resurgence of interest in statistical learn-
ing and a more careful consideration of the
information available in the child’s environ-
ment that may feed his or her cognitive
development. One central debate revolves
around how children can become “cleverer”
as they get older, appearing to progress
through qualitatively different stages of rea-
soning. Connectionist modeling of the de-
velopment of children’s reasoning was able
to demonstrate that continuous incremen-
tal changes in the weight matrix driven by
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algorithms such as backpropagation can re-
sult in nonlinear changes in surface behav-
ior, suggesting that the stages apparent in
behavior may not necessarily be reflected
in changes in the underlying mechanism
(e.g., McClelland, 1989). Other connection-
ists have argued that algorithms able to sup-
plement the computational resources of the
network as part of learning may also provide
an explanation for the emergence of more
complex forms of behavior with age (e.g.,
cascade correlation; see Shultz, 2003).

The key contribution of connectionist
models in the area of developmental psy-
chology has been to specify detailed, im-
plemented models of transition mechanisms
that demonstrate how the child can move
between producing different patterns of be-
havior. This was a crucial addition to a
field that has accumulated vast amounts of
empirical data cataloging what children are
able to do at different ages. The specifi-
cation of mechanism is also important to
counter some strongly empiricist views that
simply identifying statistical information in
the environment suffices as an explanation
of development; instead, it is necessary to
show how a mechanism could use this sta-
tistical information to acquire some cogni-
tive capacity. Moreover, when connection-
ist models are applied to development, it
often becomes apparent that passive statis-
tical structure is not the key factor; rather,
the relevant statistics are in the transforma-
tion of the statistical structure of the envi-
ronment to the output or the behavior that
is relevant to the child, thereby appealing to
notions like the regularity, consistency, and
frequency of input-output mappings.

Recent connectionist approaches to de-
velopment have begun to explore how the
computational formalisms may change our
understanding of the nature of the knowl-
edge that children acquire. For example,
Mareschal et al. (2007) argue that many
mental representations of knowledge are
partial (i.e., capture only some task-relevant
dimensions); the existence of explicit lan-
guage may blind us to the fact that there
could be a limited role for truly abstract
knowledge in the normal operation of the

cognitive system (see Westermann et al.,
2007). Current work also explores the com-
putational basis of critical or sensitive peri-
ods in development, uncovering the mecha-
nisms by which the ability to learn appears
to reduce with age (e.g., McClelland et al.,
1999; Thomas & Johnson, 2006).

5.3. The Study of Acquired Disorders
in Cognitive Neuropsychology

Traditional cognitive neuropsychology of
the 1980s was predicated on the assumption
of underlying modular structure, that is, that
the cognitive system comprises a set of in-
dependently functioning components. Pat-
terns of selective cognitive impairment after
acquired brain damage could then be used to
construct models of normal cognitive func-
tion. The traditional models comprised box-
and-arrow diagrams that sketched out rough
versions of cognitive architecture, informed
both by the patterns of possible selective
deficit (which bits can fail independently)
and by a task analysis of what the cognitive
system probably has to do.

In the initial formulation of cognitive
neuropsychology, caution was advised in
attempting to infer cognitive architecture
from behavioral deficits, since a given
pattern of deficits might be consistent
with a number of underlying architectures
(Shallice, 1988). It is in this capacity that
connectionist models have been extremely
useful. They have both forced more detailed
specification of proposed cognitive models
via implementation and also permitted as-
sessment of the range of deficits that can be
generated by damaging these models in var-
ious ways. For example, models of reading
have demonstrated that the ability to de-
code written words into spoken words and
recover their meanings can be learned in a
connectionist network; and when this net-
work is damaged by, say, lesioning connec-
tion weights or removing hidden units, var-
ious patterns of acquired dyslexia can be
simulated (e.g., Plaut et al., 1996; Plaut &
Shallice, 1993). Connectionist models of ac-
quired deficits have grown to be an influen-
tial aspect of cognitive neuropsychology and
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have been applied to domains such as lan-
guage, memory, semantics, and vision (see
Cohen, Johnstone, & Plunkett, 2000, for
examples).

Several ideas have gained their first or
clearest grounding via connectionist mod-
eling. One of these ideas is that patterns
of breakdown can arise from the statis-
tics of the problem space (i.e., the map-
ping between input and output) rather than
from structural distinctions in the process-
ing system. In particular, connectionist mod-
els have shed light on a principal inferential
tool of cognitive neuropsychology, the dou-
ble dissociation. The line of reasoning argues
that if in one patient, ability A can be lost
while ability B is intact, and in a second pa-
tient, ability B can be lost while ability A is
intact, then the two abilities might be gen-
erated by independent underlying mecha-
nisms. In a connectionist model of category-
specific impairments of semantic memory,
Devlin et al. (1997) demonstrated that a
single undifferentiated network trained to
produce two behaviors could show a dou-
ble dissociation between them simply as a
consequence of different levels of damage.
This can arise because the mappings associ-
ated with the two behaviors lead them to
have different sensitivity to damage. For a
small level of damage, performance on A
may fall off quickly, whereas performance
on B declines more slowly; for a high level
of damage, A may be more robust than B.
The reverse pattern of relative deficits im-
plies nothing about structure.

Connectionist researchers have often set
out to demonstrate that, more generally,
double dissociation methodology is a flawed
form of inference, on the grounds that such
dissociations arise relatively easily from par-
allel distributed architectures where func-
tion is spread across the whole mechanism
(e.g., Plunkett & Bandelow, 2006; Juola &
Plunkett, 2000). However, on the whole,
when connectionist models show robust
double dissociations between two behaviors
(for equivalent levels of damage applied to
various parts of the network and over many
replications), it does tend to be because dif-
ferent internal processing structures (units

or layers or weights) or different parts of the
input layer or different parts of the output
layer are differentially important for driv-
ing the two behaviors – that is, there is spe-
cialization of function. Connectionism mod-
els of breakdown have, therefore, tended
to support the traditional inferences. Cru-
cially, however, connectionist models have
greatly improved our understanding of what
modularity might look like in a neurocom-
putational system: a partial rather than an
absolute property; a property that is the
consequence of a developmental process
where emergent specialization is driven by
structure-function correspondences (the ability
of certain parts of a computational structure
to learn certain kinds of computation bet-
ter than other kinds; see Section 4.2); and a
property that must now be complemented
by concepts such as division of labor, de-
generacy, interactivity, and redundancy (see
Thomas & Karmiloff-Smith, 2002a; Thomas
et al., 2006, for discussion).

5.4. The Origins of Individual Variability
and Developmental Disorders

In addition to their role in studying acquired
disorders, the fact that many connectio-
nist models learn their cognitive abilities
makes them an ideal framework within
which to study developmental disorders, such
as autism, dyslexia, and specific language
impairment (Joanisse & Seidenberg, 2003;
Mareschal et al., 2007; Thomas & Karmiloff-
Smith, 2002b, 2003a, 2005). Where mod-
els of normal cognitive development seek
to study the “average” child, models of
atypical development explore how devel-
opmental profiles may be disrupted. Con-
nectionist models contain a number of con-
straints (architecture, activation dynamics,
input and output representations, learn-
ing algorithm, training regimen) that de-
termine the efficiency and outcome of
learning. Manipulations to these constraints
produce candidate explanations for impair-
ments found in developmental disorders or
for the impairments caused by exposure to
atypical environments, such as in cases of
deprivation.
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In the 1980s and 1990s, many theories of
developmental deficits employed the same
explanatory framework as adult cognitive
neuropsychology. There was a search for
specific developmental deficits or dissocia-
tions, which were then explained in terms of
the failure of individual modules to develop-
ment. However, as Karmiloff-Smith (1998)
and Bishop (1997) pointed out, most of
the developmental deficits were actually be-
ing explained with reference to nondevelop-
mental, static, and sometimes adult models
of normal cognitive structure. Karmiloff-
Smith (1998) argued that the causes of de-
velopmental deficits of a genetic origin will
lie in changes to low-level neurocomputa-
tional properties that only exert their in-
fluence on cognition via an extended atyp-
ical developmental process (see also Elman
et al., 1996). Connectionist models provide
the ideal forum to explore the thesis that
an understanding of the constraints on the
developmental process is essential for gen-
erating accounts of developmental deficits.

The study of atypical variability also
prompts a consideration of what causes vari-
ability within the normal range, otherwise
known as individual differences or intelli-
gence. Are differences in intelligence caused
by variation in the same computational pa-
rameters that can cause disorders? Are some
developmental disorders just the extreme
lower end of the normal distribution or
are they qualitatively different conditions?
What computational parameter settings are
able to produce above-average performance
or giftedness? Connectionism has begun to
take advantage of the accumulated body
of models of normal development to con-
sider the wider question of cognitive varia-
tion in parameterized computational models
(Thomas & Karmiloff-Smith, 2003a).

5.5. Future Directions

The preceding sections indicate the range
and depth of influence of connectionism on
contemporary theories of cognition. Where
will connectionism go next? Necessarily,
connectionism began with simple models of
individual cognitive processes, focusing on
those domains of particular theoretical in-

terest. This piecemeal approach generated
explanations of individual cognitive abilities
using bespoke networks, each containing its
own predetermined representations and ar-
chitecture. In the future, one avenue to pur-
sue is how these models fit together in the
larger cognitive system – for example, to ex-
plain how the past tense network described
in Section 3.2 might link up with the sen-
tence processing model described in Section
3.3 to process past tenses as they arise in sen-
tences. A further issue is to address the de-
velopmental origin of the architectures that
are postulated. What processes specify the
parts of the cognitive system to perform the
various functions and how do these subsys-
tems talk to each other, both across devel-
opment and in the adult state? Improve-
ments in computational power will aid more
complex modeling endeavors. Nevertheless,
it is worth bearing in mind that increas-
ing complexity creates a tension with the
primary goals of modeling – simplification
and understanding. It is essential that we
understand why more complicated models
function as they do or they will merely be-
come interesting artifacts (see Elman, 2005;
Thomas, 2004, for further discussion).

In terms of its relation with other dis-
ciplines, a number of future influences on
connectionism are discernible. Connection-
ism will be affected by the increasing ap-
peal to Bayesian probability theory in hu-
man reasoning. In Bayesian theory, new data
are used to update existing estimates of the
most likely model of the world. Work has
already begun to relate connectionist and
Bayesian accounts, for example, in the do-
main of causal reasoning in children (Mc-
Clelland & Thompson, 2007). In some cases,
connectionism may offer alternative expla-
nations of the same behavior; in others it
may be viewed as an implementation of a
Bayesian account (see Section 3.1). Connec-
tionism will continue to have a close rela-
tion to neuroscience, perhaps seeking to build
more neural constraints into its computa-
tional assumptions (O’Reilly & Munakata,
2000). Many of the new findings in cog-
nitive neuroscience are influenced by func-
tional brain imaging techniques. It will be
important, therefore, for connectionism to
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make contact with these data, either via
systems-level modeling of the interaction
between subnetworks in task performance
or in exploring the implications of the sub-
traction methodology as a tool for assess-
ing the behavior of distributed interactive
systems. The increasing influence of brain
imaging foregrounds the relation of cogni-
tion to the neural substrate; it depends on
how seriously one takes the neural plausi-
bility of connectionist models as to whether
an increased focus on the substrate will
have particular implications for connection-
ism over and above any other theory of cog-
nition.

Connectionist approaches to individual
differences and developmental disorders
suggest that this modeling approach has
more to offer in considering the computa-
tional causes of variability. Research in be-
havioral genetics argues that a significant pro-
portion of behavioral variability is genetic
in origin (Bishop, 2006; Plomin, Owen &
McGuffin, 1994). However, the neurode-
velopmental mechanisms by which genes
produce such variation are largely unknown.
Although connectionist cognitive models
are not neural, the fact that they incorporate
neurally inspired properties may allow them
to build links between behavior (where vari-
ability is measured) and the substrate on
which genetic effects act. In the future, con-
nectionism may therefore help to rectify a
major shortcoming in our attempts to un-
derstand the relation of the human genome
to human behavior – the omission of cogni-
tion from current explanations.

6. Conclusions

In this chapter, we have considered the
contribution of connectionist modeling to
our understanding of cognition. Connec-
tionism was placed in the historical context
of nineteenth-century associative theories of
mental processes and twentieth-century at-
tempts to understand the computations car-
ried out by networks of neurons. The key
properties of connectionist networks were
then reviewed, and particular emphasis was
placed on the use of learning to build the

microstructure of these models. The core
connectionist themes include the following:
(1) that processing is simultaneously influ-
enced by multiple sources of information at
different levels of abstraction, operating via
soft constraint satisfaction; (2) that repre-
sentations are spread across multiple sim-
ple processing units operating in parallel;
(3) that representations are graded, context-
sensitive, and the emergent product of adap-
tive processes; and (4) that computation
is similarity-based and driven by the sta-
tistical structure of problem domains, but
it can nevertheless produce rule-following
behavior. We illustrated the connectionist
approach via three landmarks models, the
Interactive Activation model of letter per-
ception (McClelland & Rumelhart, 1981),
the past tense model (Rumelhart & McClel-
land, 1986), and simple recurrent networks
for finding structure in time (Elman, 1990).
Apart from its body of successful individ-
ual models, connectionist theory has had
a widespread influence on cognitive the-
orizing, and this influence was illustrated
by considering connectionist contributions
to our understanding of memory, cogni-
tive development, acquired cognitive im-
pairments, and developmental deficits. Fi-
nally, we peeked into the future of con-
nectionism, arguing that its relationships
with other fields in the cognitive sciences
are likely to guide its future contribution
to understanding the mechanistic basis of
thought.
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CHAPTER 3

Bayesian Models of Cognition

1. Introduction

For over 200 years, philosophers and mathe-
maticians have been using probability theory
to describe human cognition. Although the
theory of probabilities was first developed
as a means of analyzing games of chance,
it quickly took on a larger and deeper sig-
nificance as a formal account of how ratio-
nal agents should reason in situations of un-
certainty (Gigerenzer et al., 1989; Hacking,
1975). The goal of this chapter is to illustrate
the kinds of computational models of cogni-
tion that we can build if we assume that hu-
man learning and inference approximately
follow the principles of Bayesian probabilis-
tic inference and to explain some of the
mathematical ideas and techniques under-
lying those models.

Bayesian models are becoming increas-
ingly prominent across a broad spectrum
of the cognitive sciences. Just in the last
few years, Bayesian models have ad-
dressed animal learning (Courville, Daw, &
Touretzky, 2006), human inductive learn-
ing and generalization (Tenenbaum, Grif-
fiths, & Kemp, 2006), visual scene percep-

tion (Yuille & Kersten, 2006), motor con-
trol (Kording & Wolpert, 2006), seman-
tic memory (Steyvers, Griffiths, & Dennis,
2006), language processing and acquisition
(Chater & Manning, 2006; Xu & Tenen-
baum, 2007), symbolic reasoning (Oaksford
& Chater, 2001), causal learning and in-
ference (Steyvers et al., 2003; Griffiths &
Tenenbaum, 2005, 2007a), and social cog-
nition (Baker, Tenenbaum, & Saxe, 2007),
among other topics. Behind these differ-
ent research programs is a shared sense of
which are the most compelling computa-
tional questions that we can ask about the
human mind. To us, the big question is this:
How does the human mind go beyond the
data of experience? In other words, how
does the mind build rich, abstract, veridical
models of the world given only the sparse
and noisy data that we observe through our
senses? This is by no means the only compu-
tationally interesting aspect of cognition that
we can study, but it is surely one of the most
central and also one of the most challenging.
It is a version of the classic problem of in-
duction, which is as old as recorded West-
ern thought and is the source of many deep

59
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problems and debates in modern philosophy
of knowledge and philosophy of science. It is
also at the heart of the difficulty in building
machines with anything resembling human-
like intelligence.

The Bayesian framework for probabilis-
tic inference provides a general approach
to understanding how problems of induc-
tion can be solved in principle and per-
haps how they might be solved in the hu-
man mind. Let us give a few examples.
Vision researchers are interested in how the
mind infers the intrinsic properties of a ob-
ject (e.g., its color or shape) as well as its
role in a visual scene (e.g., its spatial re-
lation to other objects or its trajectory of
motion). These features are severely under-
determined by the available image data. For
instance, the spectrum of light wavelengths
reflected from an object’s surface into the
observer’s eye is a product of two unknown
spectra: the surface’s color spectrum and the
spectrum of the light illuminating the scene.
Solving the problem of “color constancy” –
inferring the object’s color given only the
light reflected from it, under any conditions
of illumination – is akin to solving the equa-
tion y = a× b for a given y, without know-
ing b. No deductive or certain inference is
possible. At best, we can make a reasonable
guess, based on some expectations about
which values of a and b are more likely
a priori. This inference can be formalized
in a Bayesian framework (Brainard & Free-
man, 1997), and it can be solved reasonably
well given prior probability distributions for
natural surface reflectances and illumination
spectra.

The problems of core interest in other ar-
eas of cognitive science may seem very dif-
ferent from the problem of color constancy
in vision, and they are different in impor-
tant ways, but they are also deeply similar.
For instance, language researchers want to
understand how people recognize words so
quickly and so accurately from noisy speech,
how we parse a sequence of words into a hi-
erarchical representation of the utterance’s
syntactic phrase structure, or how a child
infers the rules of grammar – an infinite gen-
erative system – from observing only a finite

and rather limited set of grammatical sen-
tences, mixed with more than a few incom-
plete or ungrammatical utterances. In each
of these cases, the available data severely
underconstrain the inferences that people
make, and the best the mind can do is to
make a good guess, guided – from a Bayesian
standpoint – by prior probabilities about
which world structures are most likely a pri-
ori. Knowledge of a language – its lexicon,
its syntax, and its pragmatic tendencies of
use – provides probabilistic constraints and
preferences on which words are most likely
to be heard in a given context or which syn-
tactic parse trees a listener should consider
in processing a sequence of spoken words.
More abstract knowledge, in a sense, what
linguists have referred to as “universal gram-
mar” (Chomsky, 1988), can generate priors
on possible rules of grammar that guide a
child in solving the problem of induction in
language acquisition. Chater and Manning
(2006) survey Bayesian models of language
from this perspective.

The focus of this chapter will be on
problems in higher-level cognition: inferring
causal structure from patterns of statistical
correlation, learning about categories and
hidden properties of objects, and learning
the meanings of words. This focus is partly a
pragmatic choice, as these topics are the sub-
ject of our own research and hence we know
them best. But there are also deeper rea-
sons for this choice. Learning about causal
relations, category structures, or the proper-
ties or names of objects are problems that
are very close to the classic problems of
induction that have been much discussed
and puzzled over in the Western philo-
sophical tradition. Showing how Bayesian
methods can apply to these problems thus
illustrates clearly their importance in un-
derstanding phenomena of induction more
generally. These are also cases where the im-
portant mathematical principles and tech-
niques of Bayesian statistics can be applied in
a relatively straightforward way. They thus
provide an ideal training ground for readers
new to Bayesian modeling.

Beyond their value as a general frame-
work for solving problems of induction,
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Bayesian approaches can make several con-
tributions to the enterprise of modeling hu-
man cognition. First, they provide a link be-
tween human cognition and the normative
prescriptions of a theory of rational induc-
tive inference. This connection eliminates
many of the degrees of freedom from a
cognitive model: Bayesian principles dictate
how rational agents should update their be-
liefs in light of new data, based on a set of as-
sumptions about the nature of the problem
at hand and the prior knowledge possessed
by the agents. Bayesian models are typically
formulated at Marr’s (1982) level of “com-
putational theory,” rather than the algorith-
mic or process level that characterizes more
traditional cognitive modeling paradigms, as
described in other chapters of this volume:
connectionist networks (see Chapter 2),
exemplar-based models (see Chapter 9),
production systems and other cognitive ar-
chitectures (see Chapter 6), or dynamical
systems (see Chapter 4). Algorithmic or
process accounts may be more satisfying in
mechanistic terms, but they may also re-
quire assumptions about human process-
ing mechanisms that are no longer needed
when we assume that cognition is an ap-
proximately optimal response to the uncer-
tainty and structure present in natural tasks
and environments (Anderson, 1990). Find-
ing effective computational models of hu-
man cognition then becomes a process of
considering how best to characterize the
computational problems that people face
and the logic by which those computations
can be carried out (Marr, 1982).

This focus implies certain limits on the
phenomena that are valuable to study within
a Bayesian paradigm. Some phenomena will
surely be more satisfying to address at an al-
gorithmic or neurocomputational level. For
example, that a certain behavior takes peo-
ple an average of 450 milliseconds to pro-
duce, measured from the onset of a visual
stimulus, or that this reaction time increases
when the stimulus is moved to a different
part of the visual field or decreases when the
same information content is presented audi-
torily, are not facts that a rational computa-
tional theory is likely to predict. Moreover,

not all computational-level models of cog-
nition may have a place for Bayesian anal-
ysis. Only problems of inductive inference,
or problems that contain an inductive com-
ponent, are naturally expressed in Bayesian
terms. Deductive reasoning, planning, or
problem solving, for instance, are not tra-
ditionally thought of in this way. However,
Bayesian principles are increasingly coming
to be seen as relevant to many cognitive ca-
pacities, even those not traditionally seen in
statistical terms (Anderson, 1990; Oaksford
& Chater, 2001), because of the need for
people to make inherently underconstrained
inferences from impoverished data in an un-
certain world.

A second key contribution of probabilis-
tic models of cognition is the opportunity
for greater communication with other fields
studying computational principles of learn-
ing and inference. These connections make
it a uniquely exciting time to be exploring
probabilistic models of the mind. The fields
of statistics, machine learning, and artificial
intelligence have recently developed pow-
erful tools for defining and working with
complex probabilistic models that go far be-
yond the simple scenarios studied in clas-
sical probability theory; we present a taste
of both the simplest models and more com-
plex frameworks here. The more complex
methods can support multiple hierarchi-
cally organized layers of inference, struc-
tured representations of abstract knowledge,
and approximate methods of evaluation that
can be applied efficiently to data sets with
many thousands of entities. For the first
time, we now have practical methods for
developing computational models of human
cognition that are based on sound proba-
bilistic principles and that can also capture
something of the richness and complexity of
everyday thinking, reasoning, and learning.

We can also exploit fertile analogies be-
tween specific learning and inference prob-
lems in the study of human cognition and
in these other disciplines to develop new
cognitive models or new tools for work-
ing with existing models. We discuss some
of these relationships in this chapter, but
there are many other cases. For example,
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prototype and exemplar models of catego-
rization (Reed, 1972; Medin & Schaffer,
1978; Nosofsky, 1986) can both be seen
as rational solutions to a standard classi-
fication task in statistical pattern recogni-
tion: An object is generated from one of
several probability distributions (or “cate-
gories”) over the space of possible objects,
and the goal is to infer which distribution
is most likely to have generated that ob-
ject (Duda, Hart, & Stork, 2000). In ra-
tional probabilistic terms, these methods
differ only in how these category-specific
probability distributions are represented and
estimated (Ashby & Alfonso-Reese, 1995;
Nosofsky, 1998).

Finally, probabilistic models can be used
to advance and perhaps resolve some of the
great theoretical debates that divide tradi-
tional approaches to cognitive science. The
history of computational models of cogni-
tion exhibits an enduring tension between
models that emphasize symbolic represen-
tations and deductive inference, such as
first-order logic or phrase structure gram-
mars, and models that emphasize continu-
ous representations and statistical learning,
such as connectionist networks or other as-
sociative systems. Probabilistic models can
be defined with either symbolic or continu-
ous representations, or hybrids of both, and
help to illustrate how statistical learning can
be combined with symbolic structure. More
generally, we think that the most promis-
ing routes to understanding human intelli-
gence in computational terms will involve
deep interactions between these two tradi-
tionally opposing approaches, with sophis-
ticated statistical inference machinery oper-
ating over structured symbolic knowledge
representations. Contemporary probabilis-
tic methods give us the first general-purpose
set of tools for building such structured sta-
tistical models, and we will see several sim-
ple examples of these models in this chapter.

The tension between symbols and statis-
tics is perhaps only exceeded by the tension
between accounts that focus on the im-
portance of innate, domain-specific knowl-
edge in explaining human cognition and ac-
counts that focus on domain-general learn-
ing mechanisms. Again, probabilistic models

provide a middle ground where both ap-
proaches can productively meet, and they
suggest various routes to resolving the ten-
sions between these approaches by combin-
ing the important insights of both. Proba-
bilistic models highlight the role of prior
knowledge in accounting for how people
learn as much as they do from limited ob-
served data and provide a framework for ex-
plaining precisely how prior knowledge in-
teracts with data in guiding generalization
and action. They also provide a tool for ex-
ploring the kinds of knowledge that people
bring to learning and reasoning tasks, allow-
ing us to work forwards from rational analy-
ses of tasks and environments to predictions
about behavior and to work backwards from
subjects’ observed behavior to viable as-
sumptions about the knowledge they could
bring to the task. Crucially, these models
do not require that the prior knowledge
be innate. Bayesian inference in hierarchi-
cal probabilistic models can explain how ab-
stract prior knowledge may itself be learned
from data and then put to use to guide learn-
ing in subsequent tasks and new environ-
ments.

This chapter discusses both the basic
principles that underlie Bayesian models of
cognition and several advanced techniques
for probabilistic modeling and inference that
have come out of recent work in computer
science and statistics. The first step is to
summarize the logic of Bayesian inference,
which is at the heart of many probabilis-
tic models. A discussion is then provided of
three recent innovations that make it eas-
ier to define and use probabilistic models of
complex domains: graphical models, hierar-
chical Bayesian models, and Markov chain
Monte Carlo. The central ideas behind each
of these techniques is illustrated by consid-
ering a detailed cognitive modeling applica-
tion, drawn from causal learning, property
induction, and language modeling, respec-
tively.

2. The Basics of Bayesian Inference

Many aspects of cognition can be formulated
as solutions to problems of induction. Given
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some observed data about the world, the
mind draws conclusions about the under-
lying process or structure that gave rise to
these data and then uses that knowledge to
make predictive judgments about new cases.
Bayesian inference is a rational engine for
solving such problems within a probabilistic
framework and consequently is the heart of
most probabilistic models of cognition.

2.1. Bayes’ Rule

Bayesian inference grows out of a sim-
ple formula known as Bayes’ rule (Bayes,
1763/1958). When stated in terms of ab-
stract random variables, Bayes’ rule is no
more than an elementary result of proba-
bility theory. Assume we have two random
variables, A and B.1 One of the principles
of probability theory (sometimes called the
chain rule) allows us to write the joint proba-
bility of these two variables taking on partic-
ular values a and b, P (a, b), as the product
of the conditional probability that Awill take
on value a given B takes on value b, P (a | b),
and the marginal probability that B takes on
value b, P (b). Thus, we have

P (a, b) = P (a | b)P (b). (3.1)

There was nothing special about the choice
of A rather than B in factorizing the joint
probability in this way, so we can also write

P (a, b) = P (b | a)P (a). (3.2)

It follows from Equations 3.1 and 3.2 that
P (a | b)P (b) = P (b | a)P (a), which can be
rearranged to give

P (b | a) = P (a | b)P (b)
P (a)

. (3.3)

1 We will use uppercase letters to indicate random
variables and matching lowercase variables to indi-
cate the values those variables take on. When defin-
ing probability distributions, the random variables
will remain implicit. For example, P (a) refers to the
probability that the variable A takes on the value
a, which could also be written P (A= a). We will
write joint probabilities in the form P (a, b). Other
notations for joint probabilities include P (a&b) and
P (a ∩ b).

This expression is Bayes’ rule, which indi-
cates how we can compute the conditional
probability of b given a from the conditional
probability of a given b.

Although Equation 3.3 seems relatively
innocuous, Bayes’ rule gets its strength, and
its notoriety, when we make some assump-
tions about the variables we are consider-
ing and the meaning of probability. Assume
that we have an agent who is attempting
to infer the process that was responsible for
generating some data, d. Let h be a hypoth-
esis about this process. We will assume that
the agent uses probabilities to represent de-
grees of belief in h and various alternative
hypotheses h′. Let P (h) indicate the proba-
bility that the agent ascribes to h being the
true generating process, prior to (or inde-
pendent of) seeing the data d. This quantity
is known as the prior probability. How should
that agent change his or her beliefs in light
of the evidence provided by d? To answer
this question, we need a procedure for com-
puting the posterior probability, P (h | d), or
the degree of belief in h conditioned on the
observation of d.

Bayes’ rule provides just such a proce-
dure, if we treat both the hypotheses that
agents entertain and the data that they ob-
serve as random variables, so that the rules
of probabilistic inference can be applied to
relate them. Replacing a with d and b with
h in Equation 3.3 gives

P (h | d) = P (d | h)P (h)
P (d)

, (3.4)

the form in which Bayes’ rule is most com-
monly presented in analyses of learning or
induction. The posterior probability is pro-
portional to the product of the prior proba-
bility and another term P (d | h), the prob-
ability of the data given the hypothesis,
commonly known as the likelihood. Likeli-
hoods are the critical bridge from priors to
posteriors, reweighting each hypothesis by
how well it predicts the observed data.

In addition to telling us how to compute
with conditional probabilities, probability
theory allows us to compute the probabil-
ity distribution associated with a single vari-
able (known as the marginal probability) by
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summing over other variables in a joint dis-
tribution: for example, P (b) = ∑

a P (a, b).
This is known as marginalization. Using this
principle, we can rewrite Equation 3.4 as

P (h | d) = P (d | h)P (h)∑
h′∈H P (d | h′)P (h′)

, (3.5)

where H is the set of all hypotheses con-
sidered by the agent, sometimes referred to
as the hypothesis space. This formulation of
Bayes’ rule makes it clear that the posterior
probability of h is directly proportional to
the product of its prior probability and like-
lihood, relative to the sum of these same
scores – products of priors and likelihoods –
for all alternative hypotheses under con-
sideration. The sum in the denominator of
Equation 3.5 ensures that the resulting pos-
terior probabilities are normalized to sum to
one.

A simple example may help to illustrate
the interaction between priors and likeli-
hoods in determining posterior probabili-
ties. Consider three possible medical con-
ditions that could be posited to explain why
a friend is coughing (the observed data d):
h1 = “cold,” h2 = “lung cancer,” h3 = “stom-
ach flu.” The first hypothesis seems intu-
itively to be the best of the three, for reasons
that Bayes’ rule makes clear. The probability
of coughing given that one has lung cancer,
P (d | h2), is high, but the prior probability
of having lung cancer, P (h2), is low. Hence,
the posterior probability of lung cancer,
P (h2 | d), is low, because it is proportional
to the product of these two terms. Con-
versely, the prior probability of having stom-
ach flu, P (h3), is relatively high (as medical
conditions go), but its likelihood, P (d | h3),
the probability of coughing given that one
has stomach flu, is relatively low. So again,
the posterior probability of stomach flu,
P (h3 | d), will be relatively low. Only for hy-
pothesis h1 are both the prior P (h1) and the
likelihood P (d | h1) relatively high: Colds
are fairly common medical conditions, and
coughing is a symptom frequently found in
people who have colds. Hence, the poste-
rior probability P (h1 | d) of having a cold
given that one is coughing is substantially

higher than the posteriors for the compet-
ing alternative hypotheses – each of which
is less likely for a different sort of reason.

2.2. Comparing Hypotheses

The mathematics of Bayesian inference is
most easily introduced in the context of
comparing two simple hypotheses. For ex-
ample, imagine that you are told that a
box contains two coins: one that produces
heads 50% of the time and one that pro-
duces heads 90% of the time. You choose a
coin, and then flip it ten times, producing
the sequence HHHHHHHHHH. Which coin did
you pick? How would your beliefs change if
you had obtained HHTHTHTTHT instead?

To formalize this problem in Bayesian
terms, we need to identify the hypothesis
space, H, the prior probability of each hy-
pothesis, P (h), and the probability of the
data under each hypothesis, P (d | h). We
have two coins, and thus two hypotheses.
If we use θ to denote the probability that
a coin produces heads, then h0 is the hy-
pothesis that θ = 0.5, and h1 is the hypoth-
esis that θ = 0.9. Because we have no rea-
son to believe that one coin is more likely
to be picked than the other, it is reason-
able to assume equal prior probabilities:
P (h0) = P (h1) = 0.5. The probability of a
particular sequence of coin flips containing
NH heads and NT tails being generated by
a coin that produces heads with probability
θ is

P (d | θ) = θ NH (1− θ)NT . (3.6)

Formally, this expression follows from as-
suming that each flip is drawn indepen-
dently from a Bernoulli distribution with pa-
rameter θ ; less formally, that heads occurs
with probability θ and tails with probability
1− θ on each flip. The likelihoods associ-
ated with h0 and h1 can thus be obtained by
substituting the appropriate value of θ into
Equation 3.6.

We can take the priors and likelihoods
defined in the previous paragraph and plug
them directly into Equation 3.5 to com-
pute the posterior probabilities for both
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hypotheses, P (h0 | d) and P (h1 | d). How-
ever, when we have just two hypotheses, it is
often easier to work with the posterior odds,
or the ratio of these two posterior proba-
bilities. The posterior odds in favor of h1 is

P (h1 | d)
P (h0 | d)

= P (d | h1)
P (d | h0)

P (h1)
P (h0)

, (3.7)

where we have used the fact that the denom-
inator of Equation 3.4 or 3.5 is constant over
all hypotheses. The first and second terms on
the right-hand side are called the likelihood
ratio and the prior odds, respectively. We can
use Equation 3.7 (and the priors and likeli-
hoods defined previously) to compute the
posterior odds of our two hypotheses for
any observed sequence of heads and tails:
For the sequence HHHHHHHHHH, the odds are
approximately 357:1 in favor of h1; for the
sequence HHTHTHTTHT, approximately 165:1
in favor of h0.

The form of Equation 3.7 helps to clarify
how prior knowledge and new data are com-
bined in Bayesian inference. The two terms
on the right-hand side each express the influ-
ence of one of these factors: The prior odds
are determined entirely by the prior beliefs
of the agent, whereas the likelihood ratio ex-
presses how these odds should be modified
in light of the data d. This relationship is
made even more transparent if we examine
the expression for the log posterior odds,

log
P (h1 | d)
P (h0 | d)

= log
P (d | h1)
P (d | h0)

+ log
P (h1)
P (h0)

(3.8)

in which the extent to which one should fa-
vor h1 over h0 reduces to an additive combi-
nation of a term reflecting prior beliefs (the
log prior odds) and a term reflecting the con-
tribution of the data (the log likelihood ra-
tio). Based on this decomposition, the log
likelihood ratio in favor of h1 is often used
as a measure of the evidence that d provides
for h1.

2.3. Parameter Estimation

The analysis outlined earlier for two sim-
ple hypotheses generalizes naturally to any

finite set, although posterior odds may be
less useful when there are multiple alterna-
tives to be considered. Bayesian inference
can also be applied in contexts where there
are (uncountably) infinitely many hypothe-
ses to evaluate – a situation that arises often.
For example, instead of choosing between
just two possible values for the probability
θ that a coin produces heads, we could con-
sider any real value of θ between 0 and 1.
What, then, should we infer about the value
of θ from a sequence such as HHHHHHHHHH?

Under one classical approach, inferring
θ is treated as a problem of estimating a
fixed parameter of a probabilistic model, to
which the standard solution is maximum-
likelihood estimation (see, e.g., Rice, 1995).
Maximum-likelihood estimation is simple
and often sensible, but can also be prob-
lematic, particularly as a way to think about
human inference. Our coin-flipping exam-
ple illustrates some of these problems. The
maximum-likelihood estimate of θ is the
value θ̂ that maximizes the probability of
the data as given in Equation 3.6. It is
straightforward to show that θ̂ = NH

NH+NT
,

which gives θ̂ = 1.0 for the sequence
HHHHHHHHHH.

It should be immediately clear that the
single value of θ , which maximizes the prob-
ability of the data, might not provide the
best basis for making predictions about fu-
ture data. Inferring that θ is exactly 1 af-
ter seeing the sequence HHHHHHHHHH implies
that we should predict that the coin will
never produce tails. This might seem rea-
sonable after observing a long sequence con-
sisting solely of heads, but the same conclu-
sion follows for an all-heads sequence of any
length (because NT is always 0, so NH

NH+NT
is

always 1). Would you really predict that a
coin would produce only heads after seeing
it produce a head on just one or two flips?

A second problem with maximum-
likelihood estimation is that it does not take
into account other knowledge that we might
have about θ . This is largely by design:
maximum-likelihood estimation and other
classical statistical techniques have histori-
cally been promoted as “objective” proce-
dures that do not require prior probabilities,
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which were seen as inherently and irremedi-
ably subjective. Although such a goal of ob-
jectivity might be desirable in certain scien-
tific contexts, cognitive agents typically do
have access to relevant and powerful prior
knowledge, and they use that knowledge to
make stronger inferences from sparse and
ambiguous data than could be rationally
supported by the data alone. For example,
given the sequence HHH produced by flip-
ping an apparently normal, randomly chosen
coin, many people would say that the coin’s
probability of producing heads is nonethe-
less around 0.5, perhaps because we have
strong prior expectations that most coins are
nearly fair.

Both of these problems are addressed by
a Bayesian approach to inferring θ . If we
assume that θ is a random variable, then we
can apply Bayes’ rule to obtain

p(θ | d) = P (d | θ)p(θ)
P (d)

, (3.9)

where

P (d) =
∫ 1

0
P (d | θ)p(θ) dθ. (3.10)

The key difference from Bayesian inference
with finitely many hypotheses is that our be-
liefs about the hypotheses (both priors and
posteriors) are now characterized by proba-
bility densities (notated by a lowercase “p”)
rather than probabilities strictly speaking,
and the sum over hypotheses becomes an
integral.

The posterior distribution over θ con-
tains more information than a single point
estimate: It indicates not just which values
of θ are probable, but also how much un-
certainty there is about those values. Col-
lapsing this distribution down to a single
number discards information, so Bayesians
prefer to maintain distributions wherever
possible (this attitude is similar to Marr’s
[1982, p. 106] “principle of least com-
mitment”). However, there are two meth-
ods that are commonly used to obtain a
point estimate from a posterior distribution.
The first method is maximum a posteriori

(MAP) estimation: choosing the value of θ

that maximizes the posterior probability, as
given by Equation 3.9. The second method
is computing the posterior mean of the quan-
tity in question: a weighted average of all
possible values of the quantity, where the
weights are given by the posterior distribu-
tion. For example, the posterior mean value
of the coin weight θ is computed as follows:

θ̄ =
∫ 1

0
θ p(θ | d) dθ. (3.11)

In the case of coin flipping, the posterior
mean also corresponds to the posterior predic-
tive distribution: the probability that the next
toss of the coin will produce heads, given the
observed sequence of previous flips.

Different choices of the prior, p(θ), will
lead to different inferences about the value
of θ . A first step might be to assume a uni-
form prior over θ , with p(θ) being equal
for all values of θ between 0 and 1 (more
formally, p(θ) = 1 for θ ∈ [0, 1]). With this
choice of p(θ) and the Bernoulli likelihood
from Equation 3.6, Equation 3.9 becomes

p(θ). =
θ NH (1− θ)NT∫ 1

0 θ NH (1− θ)NT dθ
(3.12)

where the denominator is just the integral
from Equation 3.10. Using a little calculus
to compute this integral, the posterior dis-
tribution over θ produced by a sequence d
with NH heads and NT tails is

p(θ | d) = (NH + NT + 1)!
NH! NT !

θ NH (1− θ)NT .

(3.13)

This is actually a distribution of a well-
known form: a beta distribution with
parameters NH + 1 and NT + 1, denoted
Beta(NH + 1, NT + 1) (e.g., Pitman, 1993).
Using this prior, the MAP estimate for θ

is the same as the maximum-likelihood es-
timate, NH

NH+NT
, but the posterior mean is

slightly different, NH+1
NH+NT+2 . Thus, the pos-

terior mean is sensitive to the consideration
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that we might not want to put as much evi-
dential weight on seeing a single head as on a
sequence of ten heads in a row: On seeing a
single head, the posterior mean predicts that
the next toss will produce a head with prob-
ability 2

3 , whereas a sequence of ten heads
leads to the prediction that the next toss will
produce a head with probability 11

12 .
We can also use priors that encode

stronger beliefs about the value of θ . For ex-
ample, we can take a Beta(VH + 1, VT + 1)
distribution for p(θ), where VH and VT are
positive integers. This distribution gives

p(θ) = (VH + VT + 1)!
VH!VT !

θVH (1− θ)VT

(3.14)

having a mean at VH+1
VH+VT+2 , and gradually

becoming more concentrated around that
mean as VH + VT becomes large. For in-
stance, taking VH = VT = 1,000 would give
a distribution that strongly favors values of
θ close to 0.5. Using such a prior with the
Bernoulli likelihood from Equation 3.6 and
applying the same kind of calculations as
described earlier, we obtain the posterior
distribution

p(θ | d) = (NH + NT + VH + VT + 1)!
(NH + VH)! (NT + VT )!

× θ NH+VH (1− θ)NT+VT , (3.15)

which is Beta(NH + VH + 1, NT + VT + 1).
Under this posterior distribution, the MAP
estimate of θ is NH+VH

NH+NT+VH+VT
, and the poste-

rior mean is NH+VH+1
NH+NT+VH+VT+2 . Thus, if VH =

VT = 1,000, seeing a sequence of ten heads
in a row would induce a posterior distribu-
tion over θ with a mean of 1,011

2,012 ≈ 0.5025. In
this case, the observed data matter hardly at
all. A prior that is much weaker but still bi-
ased towards approximately fair coins might
take VH = VT = 5. Then an observation of
ten heads in a row would lead to a poste-
rior mean of 16

22 ≈ .727, significantly tilted
toward heads but still closer to a fair coin
than the observed data would suggest on
their own. We can say that such a prior

acts to “smooth” or “regularize” the observed
data, damping out what might be mislead-
ing fluctuations when the data are far from
the learner’s initial expectations. On a larger
scale, these principles of Bayesian param-
eter estimation with informative “smooth-
ing” priors have been applied to a number
of cognitively interesting machine-learning
problems, such as Bayesian learning in neu-
ral networks (Mackay, 2003).

Our analysis of coin flipping with infor-
mative priors has two features of more gen-
eral interest. First, the prior and posterior
are specified using distributions of the same
form (both being beta distributions). Sec-
ond, the parameters of the prior, VH and
VT , act as “virtual examples” of heads and
tails, which are simply pooled with the real
examples tallied in NH and NT to produce
the posterior, as if both the real and virtual
examples had been observed in the same
data set. These two properties are not ac-
cidental: They are characteristic of a class of
priors called conjugate priors (e.g., Bernardo
& Smith, 1994). The likelihood determines
whether a conjugate prior exists for a given
problem and the form that the prior will
take. The results we have given in this sec-
tion exploit the fact that the beta distribu-
tion is the conjugate prior for the Bernoulli
or binomial likelihood (Equation 3.6) –
the uniform distribution on [0, 1] is also a
beta distribution, being Beta(1, 1). Conju-
gate priors exist for many of the distributions
commonly used in probabilistic models,
such as Gaussian, Poisson, and multinomial
distributions, and greatly simplify many
Bayesian calculations. Using conjugate pri-
ors, posterior distributions can be computed
analytically, and the interpretation of the
prior as contributing virtual examples is in-
tuitive.

Although conjugate priors are elegant and
practical to work with, there are also im-
portant forms of prior knowledge that they
cannot express. For example, they can cap-
ture the notion of smoothness in simple lin-
ear predictive systems but not in more com-
plex nonlinear predictors, such as multilayer
neural networks. Crucially, for modelers in-
terested in higher-level cognition, conjugate
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priors cannot capture knowledge that the
causal process generating the observed data
could take on one of several qualitatively dif-
ferent forms. Still, they can sometimes be
used to address questions of selecting mod-
els of different complexity, as we do in the
next section, when the different models un-
der consideration have the same qualitative
form. A major area of current research in
Bayesian statistics and machine learning fo-
cuses on building more complex models that
maintain the benefits of working with con-
jugate priors, building on the techniques for
model selection that we discuss next (e.g.,
Neal, 1992, 1998; Blei et al., 2004; Griffiths
& Ghahramani, 2005).

2.4. Model Selection

Whether there were a finite number or not,
the hypotheses that we have considered so
far were relatively homogeneous, each offer-
ing a single value for the parameter θ charac-
terizing our coin. However, many problems
require comparing hypotheses that differ in
their complexity. For example, the problem
of inferring whether a coin is fair or biased
based on an observed sequence of heads and
tails requires comparing a hypothesis that
gives a single value for θ – if the coin is fair,
then θ = 0.5 – with a hypothesis that allows
θ to take on any value between 0 and 1.

Using observed data to choose between
two probabilistic models that differ in their
complexity is often called the problem of
model selection (Myung & Pitt, 1997; Myung,
Forster, & Browne, 2000). One familiar sta-
tistical approach to this problem is via hy-
pothesis testing, but this approach is often
complex and counterintuitive. In contrast,
the Bayesian approach to model selection is
a seamless application of the methods dis-
cussed so far. Hypotheses that differ in their
complexity can be compared directly using
Bayes’ rule, once they are reduced to proba-
bility distributions over the observable data
(see Kass & Raftery, 1995).

To illustrate this principle, assume that
we have two hypotheses: h0 is the hypoth-
esis that θ = 0.5, and h1 is the hypothe-
sis that θ takes a value drawn from a uni-

form distribution on [0, 1]. If we have no a
priori reason to favor one hypothesis over
the other, we can take P (h0) = P (h1) =
0.5. The probability of the data under h0

is straightforward to compute, using Equa-
tion 3.6, giving P (d | h0) = 0.5NH+NT . But
how should we compute the likelihood of
the data under h1, which does not make a
commitment to a single value of θ?

The solution to this problem is to com-
pute the marginal probability of the data
under h1. As discussed earlier given a joint
distribution over a set of variables, we can
always sum out variables until we obtain a
distribution over just the variables that in-
terest us. In this case, we define the joint
distribution over d and θ given h1, and then
integrate over θ to obtain

P (d | h1) =
∫ 1

0
P (d | θ , h1)p(θ | h1) dθ

(3.16)

where p(θ | h1) is the distribution over θ as-
sumed under h1 – in this case, a uniform
distribution over [0, 1]. This does not re-
quire any new concepts – it is exactly the
same kind of computation as we needed to
perform to compute the denominator for
the posterior distribution over θ (Equation
3.10). Performing this computation, we ob-
tain P (d | h1) = NH! NT !

(NH+NT+1)! , where again the
fact that we have a conjugate prior provides
us with a neat analytic result. Having com-
puted this likelihood, we can apply Bayes’
rule just as we did for two simple hypothe-
ses. Figure 3.1a shows how the log posterior
odds in favor of h1 change as NH and NT
vary for sequences of length 10.

The ease with which hypotheses differ-
ing in complexity can be compared using
Bayes’ rule conceals the fact that this is ac-
tually a very challenging problem. Complex
hypotheses have more degrees of freedom
that can be adapted to the data and can
thus always be made to fit the data bet-
ter than simple hypotheses. For example,
for any sequence of heads and tails, we can
always find a value of θ that would give
higher probability to that sequence than
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Figure 3.1. Comparing hypotheses about the weight of a coin. (a) The vertical axis shows log
posterior odds in favor of h1, the hypothesis that the probability of heads (θ) is drawn from a uniform
distribution on [0, 1], over h0, the hypothesis that the probability of heads is 0.5. The horizontal axis
shows the number of heads, NH, in a sequence of 10 flips. As NH deviates from 5, the posterior odds
in favor of h1 increase. (b) The posterior odds shown in (a) are computed by averaging over the values
of θ with respect to the prior, p(θ), which in this case is the uniform distribution on [0, 1]. This
averaging takes into account the fact that hypotheses with greater flexibility – such as the free-ranging
θ parameter in h1 – can produce both better and worse predictions, implementing an automatic
“Bayesian Occam’s razor.” The solid line shows the probability of the sequence HHTHTTHHHT for
different values of θ , whereas the dotted line is the probability of any sequence of length 10 under h0

(equivalent to θ = 0.5). Although there are some values of θ that result in a higher probability for the
sequence, on average, the greater flexibility of h1 results in lower probabilities. Consequently, h0 is
favored over h1 (this sequence has NH = 6). In contrast, a wide range of values of θ result in higher
probability for for the sequence HHTHHHTHHH, as shown by the dashed line. Consequently, h1 is
favored over h0 (this sequence has NH = 8). Reproduced with permission from Griffiths and Yuille
(2006).

does the hypothesis that θ = 0.5. It seems
like a complex hypothesis would thus have
an inherent unfair advantage over a sim-
ple hypothesis. The Bayesian solution to the
problem of comparing hypotheses that dif-
fer in their complexity takes this into ac-
count. More degrees of freedom provide the
opportunity to find a better fit to the data,
but this greater flexibility also makes a worse

fit possible. For example, for d consisting
of the sequence HHTHTTHHHT, P (d | θ , h1) is
greater than P (d | h0) for θ ∈ (0.5, 0.694],
but is less than P (d | h0) outside that range.
Marginalizing over θ averages these gains
and losses: A more complex hypothesis will
be favored only if its greater complexity con-
sistently provides a better account of the
data. To phrase this principle another way,
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a Bayesian learner judges the fit of a param-
eterized model not by how well it fits us-
ing the best parameter values, but by how
well it fits using randomly selected parame-
ters, where the parameters are drawn from
a prior specified by the model (p(θ | h1) in
Equation 3.16) (Ghahramani, 2004). This
penalization of more complex models is
known as the “Bayesian Occam’s razor”
(Jeffreys & Berger, 1992; Mackay, 2003),
and is illustrated in Figure 3.1b.

2.5. Summary

Bayesian inference stipulates how rational
learners should update their beliefs in the
light of evidence. The principles behind
Bayesian inference can be applied when-
ever we are making inferences from data,
whether the hypotheses involved are dis-
crete or continuous, or have one or more un-
specified free parameters. However, devel-
oping probabilistic models that can capture
the richness and complexity of human cog-
nition requires going beyond these basic
ideas. The remainder of the chapter sum-
marizes several recent tools that have been
developed in computer science and statistics
for defining and using complex probabilistic
models, and provides examples of how they
can be used in modeling human cognition.

3. Graphical Models

The previous discussion of Bayesian in-
ference was formulated in the language
of “hypotheses” and “data.” However, the
principles of Bayesian inference, and the
idea of using probabilistic models, extend
to much richer settings. In its most general
form, a probabilistic model simply defines
the joint distribution for a system of random
variables. Representing and computing with
these joint distributions becomes challeng-
ing as the number of variables grows, and
their properties can be difficult to under-
stand. Graphical models provide an efficient
and intuitive framework for working with
high-dimensional probability distributions,
which is applicable when these distributions

can be viewed as the product of smaller
components defined over local subsets of
variables.

A graphical model associates a probability
distribution with a graph. The nodes of the
graph represent the variables on which the
distribution is defined, the edges between
the nodes reflect their probabilistic depen-
dencies, and a set of functions relating nodes
and their neighbors in the graph are used to
define a joint distribution over all of the vari-
ables based on those dependencies. There
are two kinds of graphical models, differing
in the nature of the edges that connect the
nodes. If the edges simply indicate a depen-
dency between variables, without specifying
a direction, then the result is an undirected
graphical model. Undirected graphical mod-
els have long been used in statistical physics,
and many probabilistic neural network mod-
els, such as Boltzmann machines (Ackley,
Hinton, & Sejnowski, 1985), can be inter-
preted as models of this kind. If the edges
indicate the direction of a dependency, the
result is a directed graphical model. Our fo-
cus here will be on directed graphical mod-
els, which are also known as Bayesian net-
works or Bayes nets (Pearl, 1988). Bayesian
networks can often be given a causal in-
terpretation, where an edge between two
nodes indicates that one node is a direct
cause of the other, which makes them par-
ticularly appealing for modeling higher-level
cognition.

3.1. Bayesian Networks

A Bayesian network represents the proba-
bilistic dependencies relating a set of vari-
ables. If an edge exists from node A to node
B, then A is referred to as a “parent” of
B, and B is a “child” of A. This genealog-
ical relation is often extended to identify
the “ancestors” and “descendants” of a node.
The directed graph used in a Bayesian net-
work has one node for each random vari-
able in the associated probability distribu-
tion and is constrained to be acyclic: One
can never return to the same node by fol-
lowing a sequence of directed edges. The
edges express the probabilistic dependencies
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between the variables in a fashion consis-
tent with the Markov condition: Conditioned
on its parents, each variable is independent
of all other variables except its descendants
(Pearl, 1988; Spirtes, Glymour, & Schienes,
1993). As a consequence of the Markov
condition, any Bayesian network specifies a
canonical factorization of a full joint prob-
ability distribution into the product of lo-
cal conditional distributions, one for each
variable conditioned on its parents. That is,
for a set of variables X1, X2, . . . , XN, we can
write P (x1, x2, . . . , xN) = ∏

i P (xi | Pa(Xi ))
where Pa(Xi ) is the set of parents of Xi .

Bayesian networks provide an intuitive
representation for the structure of many
probabilistic models. For example, in the
previous section, we discussed the problem
of estimating the weight of a coin, θ . One
detail that we left implicit in that discus-
sion was the assumption that successive coin
flips are independent, given a value for θ .
This conditional independence assumption
is expressed in the graphical model shown
in Figure 3.2a, where x1, x2, . . . , xN are the
outcomes (heads or tails) of N successive
tosses. Applying the Markov condition, this
structure represents the probability distri-
bution

P (x1, x2, . . . , xN, θ) = p(θ)
N∏

i=1

P (xi | θ)

(3.17)

in which the xi are independent given the
value of θ . Other dependency structures
are possible. For example, the flips could
be generated in a Markov chain, a se-
quence of random variables in which each
variable is independent of all of its pre-
decessors given the variable that immedi-
ately precedes it (e.g., Norris, 1997). Us-
ing a Markov chain structure, we could
represent a hypothesis space of coins that
are particularly biased toward alternating
or maintaining their last outcomes, letting
the parameter θ be the probability that the
outcome xi takes the same value as xi−1

(and assuming that x1 is heads with prob-
ability 0.5). This distribution would corre-
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Figure 3.2. Graphical models showing different
kinds of processes that could generate a
sequence of coin flips. (a) Independent flips,
with parameters θ determining the probability
of heads. (b) A Markov chain, where the
probability of heads depends on the result of the
previous flip. Here, the parameters θ define the
probability of heads after a head and after a tail.
(c) A hidden Markov model, in which the
probability of heads depends on a latent state
variable zi . Transitions between values of the
latent state are set by parameters θ , whereas
other parameters φ determine the probability of
heads for each value of the latent state. This kind
of model is commonly used in computational
linguistics, where the xi might be the sequence
of words in a document and the zi the syntactic
classes from which they are generated.

spond to the graphical model shown in Fig-
ure 3.2b. Applying the Markov condition,
this structure represents the probability
distribution

P (x1, x2, . . . , xN, θ)

= p(θ)P (x1)
N∏

i=2

P (xi | xi−1θ), (3.18)

in which each xi depends only on xi−1,
given θ . More elaborate structures are also
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possible: any directed acyclic graph on
x1, x2, . . . , xN and θ corresponds to a valid
set of assumptions about the dependencies
among these variables.

When introducing the basic ideas be-
hind Bayesian inference, we emphasized
the fact that hypotheses correspond to dif-
ferent assumptions about the process that
could have generated some observed data.
Bayesian networks help to make this idea
transparent. Every Bayesian network indi-
cates a sequence of steps that one could fol-
low to generate samples from the joint dis-
tribution over the random variables in the
network. First, one samples the values of
all variables with no parents in the graph.
Then, one samples the variables with par-
ents taking known values, one after another.
For example, in the structure shown in Fig-
ure 3.2b, we would sample θ from the distri-
bution p(θ), then sample x1 from the distri-
bution P (x1 | θ), then successively sample xi
from P (xi | xi−1, θ) for i = 2, . . . , N. A set
of probabilistic steps that can be followed to
generate the values of a set of random vari-
ables is known as a generative model, and the
directed graph associated with a probability
distribution provides an intuitive represen-
tation for the steps that are involved in such
a model.

For the generative models represented by
Figure 3.2a or 3.2b, we have assumed that
all variables except θ are observed in each
sample from the model, or each data point.
More generally, generative models can in-
clude a number of steps that make reference
to unobserved or latent variables. Introduc-
ing latent variables can lead to apparently
complicated dependency structures among
the observable variables. For example, in
the graphical model shown in Figure 3.2c,
a sequence of latent variables z1, z2, . . . , zN
influences the probability that each respec-
tive coin flip in a sequence x1, x2, . . . , xN
comes up heads (in conjunction with a set
of parameters φ). The latent variables form a
Markov chain, with the value of zi depend-
ing only on the value of zi−1 (in conjunc-
tion with the parameters θ). This model,
called a hidden Markov model, is widely
used in computational linguistics, where zi

might be the syntactic class (such as noun
or verb) of a word, θ encodes the probabil-
ity that a word of one class will appear af-
ter another (capturing simple syntactic con-
straints on the structure of sentences), and
φ encodes the probability that each word
will be generated from a particular syntac-
tic class (e.g., Charniak, 1993; Jurafsky &
Martin, 2000; Manning & Schütze, 1999).
The dependencies among the latent vari-
ables induce dependencies among the ob-
served variables – in the case of language,
the constraints on transitions between syn-
tactic classes impose constraints on which
words can follow one another.

3.2. Representing Probability
Distributions over Propositions

The treatment of graphical models in the
previous section – as representations of the
dependency structure among variables in
generative models for data – follows their
standard uses in the fields of statistics and
machine learning. Graphical models can
take on a different interpretation in artifi-
cial intelligence, when the variables of in-
terest represent the truth value of certain
propositions (Russell & Norvig, 2002). For
example, imagine that a friend of yours
claims to possess psychic powers, in particu-
lar, the power of psychokinesis. He proposes
to demonstrate these powers by flipping a
coin and influencing the outcome to pro-
duce heads. You suggest that a better test
might be to see if he can levitate a pen-
cil because the coin producing heads could
also be explained by some kind of sleight
of hand, such as substituting a two-headed
coin. We can express all possible outcomes
of the proposed tests, as well as their causes,
using the binary random variables X1, X2,
X3, and X4 to represent (respectively) the
truth of the coin being flipped and produc-
ing heads, the pencil levitating, your friend
having psychic powers, and the use of a two-
headed coin. Any set of beliefs about these
outcomes can be encoded in a joint proba-
bility distribution, P (x1, x2, x3, x4). For ex-
ample, the probability that the coin comes
up heads (x1 = 1) should be higher if your
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Figure 3.3. Directed graphical model (Bayesian
network) showing the dependencies among
variables in the “psychic friend” example
discussed in the text. Reproduced with
permission from Griffiths and Yuille (2006).

friend actually does have psychic powers
(x3 = 1). Figure 3.3 shows a Bayesian net-
work expressing a possible pattern of depen-
dencies among these variables. For example,
X1 and X2 are assumed to be indepen-
dent given X3, indicating that once it was
known whether or not your friend was psy-
chic, the outcomes of the coin flip and
the levitation experiments would be com-
pletely unrelated. By the Markov condition,
we can write P (x1, x2, x3, x4) = P (x1 | x3,
x4) P (x2 | x3)P (x3)P (x4).

In addition to clarifying the dependency
structure of a set of random variables,
Bayesian networks provide an efficient way
to represent and compute with probability
distributions. In general, a joint probability
distribution on N binary variables requires
2N − 1 numbers to specify (one for each set
of joint values taken by the variables, minus
one because of the constraint that proba-
bility distributions sum to 1). In the case
of the psychic friend example, where there
are four variables, this would be 24 − 1 = 15
numbers. However, the factorization of the
joint distribution over these variables allows
us to use fewer numbers in specifying the
distribution over these four variables. We
only need one number for each variable con-
ditioned on each possible set of values its
parents can take, or 2|Pa(Xi )| numbers for
each variable Xi (where | Pa(Xi ) | is the size
of the parent set of Xi ). For our “psychic
friend” network, this adds up to 8 num-
bers rather than 15, because X3 and X4 have
no parents (contributing one number each),

X2 has one parent (contributing two num-
bers), and X1 has two parents (contribut-
ing four numbers). Recognizing the struc-
ture in this probability distribution can also
greatly simplify the computations we want
to perform. When variables are independent
or conditionally independent of others, it
reduces the number of terms that appear
in sums over subsets of variables necessary
to compute marginal beliefs about a vari-
able or conditional beliefs about a variable
given the values of one or more other vari-
ables. A variety of algorithms have been de-
veloped to perform these probabilistic in-
ferences efficiently on complex models, by
recognizing and exploiting conditional inde-
pendence structures in Bayesian networks
(Pearl, 1988; Mackay, 2003). These algo-
rithms form the heart of many modern ar-
tificial intelligence systems, making it pos-
sible to reason efficiently under uncertainty
(Korb & Nicholson, 2003; Russell & Norvig,
2002).

3.3. Causal Graphical Models

In a standard Bayesian network, edges be-
tween variables indicate only statistical de-
pendencies between them. However, recent
work has explored the consequences of aug-
menting directed graphical models with a
stronger assumption about the relationships
indicated by edges: that they indicate direct
causal relationships (Pearl, 2000; Spirtes et
al., 1993). This assumption allows causal
graphical models to represent not just the
probabilities of events that one might ob-
serve, but also the probabilities of events
that one can produce through intervening
on a system. The inferential implications of
an event can differ strongly, depending on
whether it was observed passively or un-
der conditions of intervention. For example,
observing that nothing happens when your
friend attempts to levitate a pencil would
provide evidence against his claim of hav-
ing psychic powers; but secretly intervening
to hold the pencil down while your friend
attempts to levitate it would make the pen-
cil’s nonlevitation unsurprising and uninfor-
mative about his powers.
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In causal graphical models, the conse-
quences of intervening on a particular vari-
able can be assessed by removing all incom-
ing edges to that variable and performing
probabilistic inference in the resulting “mu-
tilated” model (Pearl, 2000). This procedure
produces results that align with our intu-
itions in the psychic powers example: In-
tervening on X2 breaks its connection with
X3, rendering the two variables indepen-
dent. As a consequence, X2 cannot pro-
vide evidence about the value of X3. Sev-
eral recent papers have investigated whether
people are sensitive to the consequences of
intervention, generally finding that people
differentiate between observational and in-
terventional evidence appropriately (Hag-
mayer et al., in press; Lagnado & Sloman,
2004; Steyvers et al., 2003). Introductions
to causal graphical models that consider ap-
plications to human cognition are provided
by Glymour (2001) and Sloman (2005).

The prospect of using graphical models
to express the probabilistic consequences of
causal relationships has led researchers in
several fields to ask whether these models
could serve as the basis for learning causal
relationships from data. Every introductory
class in statistics teaches that “correlation
does not imply causation,” but the oppo-
site is true: Patterns of causation do imply
patterns of correlation. A Bayesian learner
should thus be able to work backward from
observed patterns of correlation (or statis-
tical dependency) to make probabilistic in-
ferences about the underlying causal struc-
tures likely to have generated those observed
data. We can use the same basic principles of
Bayesian inference developed in the previ-
ous section, where now the data are samples
from an unknown causal graphical model
and the hypotheses to be evaluated are dif-
ferent candidate graphical models. For tech-
nical introductions to the methods and chal-
lenges of learning causal graphical models,
see Heckerman (1998) and Glymour and
Cooper (1999).

As in the previous section, it is valuable
to distinguish between the problems of pa-
rameter estimation and model selection. In
the context of causal learning, model selec-

Table 3.1: Contingency table
representation used in elemental causal
induction

Effect Effect
present (e+) absent (e−)

Cause present (c+) N(e+, c+) N(e−, c+)
Cause absent (c−) N(e+, c−) N(e−, c−)

tion becomes the problem of determining
the graph structure of the causal model –
which causal relationships exist – and pa-
rameter estimation becomes the problem of
determining the strength and polarity of the
causal relations specified by a given graph
structure. We will illustrate the differences
between these two aspects of causal learning
and how graphical models can be brought
into contact with empirical data on human
causal learning, with a task that has been
extensively studied in the cognitive psychol-
ogy literature: judging the status of a single
causal relationship between two variables
based on contingency data.

3.4. Example: Causal Induction from
Contingency Data

Much psychological research on causal in-
duction has focused on this simple causal
learning problem: given a candidate cause,
C, and a candidate effect, E , people are
asked to give a numerical rating assessing the
degree to which C causes E .2 We refer to
tasks of this sort as “elemental causal induc-
tion” tasks. The exact wording of the judg-
ment question varies and until recently was
not the subject of much attention, although
as we will see later, it is potentially quite
important. Most studies present informa-
tion corresponding to the entries in a 2× 2
contingency table, as in Table 3.1. People
are given information about the frequency

2 As elsewhere in this chapter, we will represent vari-
ables such as C, E with capital letters and their
instantiations with lowercase letters, with c+, e+
indicating that the cause or effect is present and
c−, e− indicating that the cause or effect is absent.



P1: JZP

CUFX212-03 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 15:20

bayesian models of cognition 75

with which the effect occurs in the presence
and absence of the cause, represented by the
numbers N(e+, c+), N(e−, c−), and so forth.
In a standard example, C might be injecting
a chemical into a mouse and E the expres-
sion of a particular gene. N(e+, c+) would
be the number of injected mice expressing
the gene, whereas N(e−, c−) would be the
number of uninjected mice not expressing
the gene.

The leading psychological models of el-
emental causal induction are measures of
association that can be computed from
simple combinations of the frequencies in
Table 3.1. A classic model first suggested
by Jenkins and Ward (1965) asserts that the
degree of causation is best measured by the
quantity

�P = N(e+, c+)
N(e+, c+)+ N(e−, c+)

− N(e+, c−)
N(e+, c−)+ N(e−, c−)

= P (e+ | c+)− P (e+ | c−), (3.19)

where P (e+ | c+) is the empirical condi-
tional probability of the effect given the
presence of the cause, estimated from the
contingency table counts N(·). �P thus re-
flects the change in the probability of the
effect occurring as a consequence of the oc-
currence of the cause. More recently, Cheng
(1997) has suggested that people’s judg-
ments are better captured by a measure
called “causal power,”

power = �P
1− P (e+ | c−)

, (3.20)

which takes �P as a component, but pre-
dicts that �P will have a greater effect when
P (e+ | c−) is large.

Several experiments have been conduc-
ted with the aim of evaluating �P and causal
power as models of human jugments. In one
such study, Buehner and Cheng (1997, Ex-
periment 1B; this experiment also appears
in Buehner, Cheng, & Clifford, 2003) asked
people to evaluate causal relationships for

15 sets of contingencies expressing all pos-
sible combinations of P (e+ | c−) and �P in
increments of 0.25. The results of this exper-
iment are shown in Figure 3.4, together with
the predictions of �P and causal power. As
can be seen from the figure, both �P and
causal power capture some of the trends in
the data, producing correlations of r = 0.89
and r = 0.88, respectively. However, be-
cause the trends predicted by the two mod-
els are essentially orthogonal, neither model
provides a complete account of the data.3

�P and causal power seem to capture
some important elements of human causal
induction, but miss others. We can gain
some insight into the assumptions behind
these models, and identify some possible al-
ternative models, by considering the com-
putational problem behind causal induction
using the tools of causal graphical models
and Bayesian inference. The task of elemen-
tal causal induction can be seen as trying
to infer which causal graphical model best
characterizes the relationship between the
variables C and E . Figure 3.5 shows two
possible causal structures relating C, E , and
another variable B, which summarizes the
influence of all of the other “background”
causes of E (which are assumed to be con-
stantly present). The problem of learning
which causal graphical model is correct has
two aspects: inferring the right causal struc-
ture, a problem of model selection, and de-
termining the right parameters assuming a
particular structure, a problem of parame-
ter estimation.

To formulate the problems of model se-
lection and parameter estimation more pre-
cisely, we need to make some further as-
sumptions about the nature of the causal
graphical models shown in Figure 3.5. In
particular, we need to define the form
of the conditional probability distribution
P (E | B, C) for the different structures,
often called the parameterization of the
graphs. Sometimes, the parameterization is

3 See Griffiths and Tenenbaum (2005) for the details
of how these correlations were evaluated, using a
power-law transformation to allow for nonlineari-
ties in participants’ judgment scales.
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Figure 3.4. Predictions of models compared with the performance of human
participants from Buehner and Cheng (1997, Experiment 1B). Numbers along the top
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trivial – for example, C and E are inde-
pendent in Graph 0, so we just need to
specify P0(E | B), where the subscript in-
dicates that this probability is associated
with Graph 0. This can be done using a
single numerical parameter w0, which pro-
vides the probability that the effect will
be present in the presence of the back-
ground cause, P0(e+ | b+; w0) = w0. How-
ever, when a node has multiple parents,
there are many different ways in which the
functional relationship between causes and

effects could be defined. For example, in
Graph 1, we need to account for how the
causes B and C interact in producing the
effect E .

A simple and widely used parameteriza-
tion for Bayesian networks of binary vari-
ables is the noisy-OR distribution (Pearl,
1988). The noisy-OR can be given a nat-
ural interpretation in terms of causal rela-
tions between multiple causes and a single
joint effect. For Graph 1, these assumptions
are that B and C are both generative causes,
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Graph 1Graph 0

E

C C

E

B B

Figure 3.5. Directed graphs involving three
variables, B, C, E , relevant to elemental causal
induction. B represents background variables, C
a potential causal variable, and E the effect of
interest. Graph 1 is assumed in computing �P
and causal power. Computing causal support
involves comparing the structure of Graph 1 to
that of Graph 0 in which C and E are
independent. Reproduced with permission from
Griffiths and Tenenbaum (2005).

increasing the probability of the effect; that
the probability of E in the presence of just B
is w0, and in the presence of just C is w1; and
that, when both B and C are present, they
have independent opportunities to produce
the effect. This parameterization can be rep-
resented in a compact mathematical form as

P1(e+ | b, c; w0, w1)

= 1− (1− w0)b(1− w1)c , (3.21)

where w0, w1 are parameters associated with
the strength of B, C respectively. The vari-
able c is 1 if the cause is present (c+) or 0 if
the cause if is absent (c−), and likewise for
the variable b with the background cause.
This expression gives w0 for the probabil-
ity of E in the presence of B alone, and
w0 + w1 − w0w1 for the probability of E in
the presence of both B and C. This parame-
terization is called a noisy-OR because if w0

and w1 are both 1, Equation 3.21 reduces
to the logical OR function: The effect oc-
curs if and only if B or C are present, or
both. With w0 and w1 in the range [0, 1],
the noisy-OR softens this function but pre-
serves its essentially disjunctive interaction:
The effect occurs if and only if B causes it
(which happens with probability w0) or C
causes it (which happens with probability
w1), or both.

An alternative to the noisy-OR might be
a linear parameterization of Graph 1, assert-
ing that the probability of E occurring is a
linear function of B and C. This corresponds
to assuming that the presence of a cause sim-
ply increases the probability of an effect by
a constant amount, regardless of any other
causes that might be present. There is no dis-
tinction between generative and preventive
causes. The result is

P1(e+ | b, c; w0, w1) = w0 · b + w1 · c.
(3.22)

This parameterization requires that we con-
strain w0 + w1 to lie between 0 and 1 to
ensure that Equation 3.22 results in a le-
gal probability distribution. Because of this
dependence between parameters that seem
intuitively like they should be independent,
such a linear parameterization is not nor-
mally used in Bayesian networks. However,
it is relevant for understanding models of
human causal induction.

Given a particular causal graph struc-
ture and a particular parameterization – for
example, Graph 1 parameterized with a
noisy-OR function – inferring the strength
parameters that best characterize the causal
relationships in that model is straightfor-
ward. We can use any of the parameter-
estimation methods discussed in the pre-
vious section (such as maximum-likelihood
or MAP estimation) to find the values of
the parameters (w0 and w1 in Graph 1)
that best fit a set of observed contingencies.
Tenenbaum and Griffiths (2001; Griffiths
& Tenenbaum, 2005) showed that the two
psychological models of causal induction in-
troduced above – �P and causal power –
both correspond to maximum-likelihood es-
timates of the causal strength parameter
w1, but under different assumptions about
the parameterization of Graph 1. �P results
from assuming the linear parameterization,
whereas causal power results from assuming
the noisy-OR.

This view of �P and causal power
helps to reveal their underlying similari-
ties and differences: They are similar in
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being maximum-likelihood estimates of the
strength parameter describing a causal rela-
tionship, but differ in the assumptions that
they make about the form of that rela-
tionship. This analysis also suggests another
class of models of causal induction that has
not until recently been explored: models
of learning causal graph structure or causal
model selection rather than parameter esti-
mation. Recalling our discussion of model
selection, we can express the evidence that
a set of contingencies d provide in favor of
the existence of a causal relationship (i.e.,
Graph 1 over Graph 0) as the log-likelihood
ratio in favor of Graph 1. Terming this quan-
tity “causal support,” we have

support = log
P (d | Graph 1)
P (d | Graph 0)

(3.23)

where P (d | Graph 1) and P (d | Graph 0)
are computed by integrating over the param-
eters associated with the different structures

P (d | Graph 1)

=
∫ 1

0

∫ 1

0
P1(d | w0, w1, Graph 1)

× P (w0, w1 | Graph 1) dw0 dw1

(3.24)

P (d | Graph 0) =
∫ 1

0
P0(d | w0, Graph 0)

× P (w0 | Graph 0) dw0. (3.25)

Tenenbaum and Griffiths (2001; Griffiths
& Tenenbaum, 2005) proposed this model
and specifically assumed a noisy-OR param-
eterization for Graph 1 and uniform priors
on w0 and w1. Equation 3.25 is identical to
Equation 3.16 and has an analytic solution.
Evaluating Equation 3.24 is more of a chal-
lenge, but one that we will return to later in
this chapter when we discuss Monte Carlo
methods for approximate probabilistic in-
ference.

The results of computing causal support
for the stimuli used by Buehner and Cheng
(1997) are shown in Figure 3.4. Causal
support provides an excellent fit to these

data, with r = 0.97. The model captures
the trends predicted by both �P and causal
power, as well as trends that are predicted
by neither model. These results suggest that
when people evaluate contingency, they
may be taking into account the evidence that
those data provide for a causal relationship
as well as the strength of the relationship
they suggest. The figure also shows the pre-
dictions obtained by applying the χ2 mea-
sure to these data, a standard hypothesis-
testing method of assessing the evidence for
a relationship (and a common ingredient in
non-Bayesian approaches to structure learn-
ing, e.g. Spirtes et al., 1993). These pre-
dictions miss several important trends in
the human data, suggesting that the abil-
ity to assert expectations about the nature
of a causal relationship that go beyond mere
dependency (such as the assumption of a
noisy-OR parameterization) is contributing
to the success of this model. Causal support
predicts human judgments on several other
datasets that are problematic for �P and
causal power, and also accommodates causal
learning based on the rate at which events
occur (see Griffiths & Tenenbaum, 2005, for
more details).

The Bayesian approach to causal induc-
tion can be extended to cover a variety
of more complex cases, including learning
in larger causal networks (Steyvers et al.,
2003), learning about dynamic causal rela-
tionships in physical systems (Tenenbaum
& Griffiths, 2003), choosing which inter-
ventions to perform in the aid of causal
learning (Steyvers et al., 2003), learning
about hidden causes (Griffiths, Baraff, &
Tenenbaum, 2004), distinguishing hidden
common causes from mere coincidences
(Griffiths & Tenenbaum, 2007a), and online
learning from sequentially presented data
(Danks, Griffiths, & Tenenbaum, 2003).

Modeling learning in these more com-
plex cases often requires us to work with
stronger and more structured prior distribu-
tions than were needed earlier to explain el-
emental causal induction. This prior knowl-
edge can be usefully described in terms
of intuitive domain theories (Carey, 1985;
Wellman & Gelman, 1992; Gopnik & Melt-
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zoff, 1997), systems of abstract concepts and
principles that specify the kinds of entities
that can exist in a domain, their properties
and possible states, and the kinds of causal
relations that can exist between them. We
have begun to explore how these abstract
causal theories can be formalized as proba-
bilistic generators for hypothesis spaces of
causal graphical models, using probabilis-
tic forms of generative grammars, predi-
cate logic, or other structured representa-
tions (Griffiths, 2005; Griffiths & Tenen-
baum, 2007b; Mansinghka et al., 2006;
Tenenbaum et al., 2006; Tenenbaum, Grif-
fiths, & Niyogi, 2007; Tenenbaum & Niyogi,
2003). Given observations of causal events
relating a set of objects, these probabilis-
tic theories generate the relevant variables
for representing those events, a constrained
space of possible causal graphs over those
variables, and the allowable parameteriza-
tions for those graphs. They also generate a
prior distribution over this hypothesis space
of candidate causal models, which provides
the basis for Bayesian causal learning in the
spirit of the methods described previously.

We see it as an advantage of the Bayesian
approach that it forces modelers to make
clear their assumptions about the form and
content of learners’ prior knowledge. The
framework lets us test these assumptions
empirically and study how they vary across
different settings by specifying a rational
mapping from prior knowledge to learners’
behavior in any given task. It may also seem
unsatisfying, though, by passing on the hard-
est questions of learning to whatever mech-
anism is responsible for establishing learn-
ers’ prior knowledge. This is the problem
we address in the next section, using the
techniques of hierarchical Bayesian models.

4. Hierarchical Bayesian Models

The predictions of a Bayesian model can
often depend critically on the prior distri-
bution that it uses. The early coin flipping
examples provided a simple and clear case
of the effects of priors. If a coin is tossed
once and comes up heads, then a learner

who began with a uniform prior on the bias
of the coin should predict that the next toss
will produce heads with probability 2

3 . If the
learner began instead with the belief that the
coin is likely to be fair, she should predict
that the next toss will produce heads with
probability close to 1

2 .
Within statistics, Bayesian approaches

have at times been criticized for necessar-
ily requiring some form of prior knowl-
edge. It is often said that good statisti-
cal analyses should “let the data speak for
themselves,” hence the motivation for maxi-
mum-likelihood estimation and other classi-
cal statistical methods that do not require
a prior to be specified. Cognitive models,
however, will usually aim for the opposite
goal. Most human inferences are guided by
background knowledge, and cognitive mod-
els should formalize this knowledge and
show how it can be used for induction. From
this perspective, the prior distribution used
by a Bayesian model is critical because an ap-
propriate prior can capture the background
knowledge that humans bring to a given in-
ductive problem. As mentioned in the pre-
vious section, prior distributions can cap-
ture many kinds of knowledge: priors for
causal reasoning, for example, may incor-
porate theories of folk physics or knowledge
about the powers and liabilities of different
ontological kinds.

Because background knowledge plays a
central role in many human inferences, it is
important to ask how this knowledge might
be acquired. In a Bayesian framework, the
acquisition of background knowledge can be
modeled as the acquisition of a prior dis-
tribution. We have already seen one piece
of evidence that prior distributions can be
learned: Given two competing models, each
of which uses a different prior distribution,
Bayesian model selection can be used to
choose between them. Here, we provide a
more comprehensive treatment of the prob-
lem of learning prior distribution and show
how this problem can be addressed using
hierarchical Bayesian models (Good, 1980;
Gelman et al., 1995). Although we will fo-
cus on just two applications, the hierarchi-
cal Bayesian approach has been applied to
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Figure 3.6. The beta distribution serves as a
prior on the bias θ of a coin. The mean of the
distribution is α

α+β
, and the shape of the

distribution depends on α + β. Reproduced
with permission from Kemp, Perfors, and
Tenenbaum (2007).

several other cognitive problems (Lee, 2006;
Tenenbaum et al., 2006; Mansinghka et al.,
2006), and many additional examples of hi-
erarchical models can be found in the statis-
tical literature (Gelman et al., 1995; Gold-
stein, 2003).

Consider first the case where the prior
distribution to be learned has known form
but unknown parameters. For example, sup-
pose that the prior distribution on the bias
of a coin is Beta(α, β), where the parame-
ters α and β are unknown. We previously
considered cases where the parameters α

and β were positive integers, but in gen-
eral these parameters can be positive real
numbers.4 As with integer-valued parame-
ters, the mean of the beta distribution is α

α+β
,

and α + β determines the shape of the dis-
tribution. The distribution is tightly peaked
around its mean when α + β is large, flat

4 The general form of the beta distribution is

p(θ) = �(α + β)
�(α)�(β)

θα−1(1− θ)β−1 (3.26)

where �(α) = ∫∞
0 xα−1e−x dx is the generalized fac-

torial function (also known as the gamma function),
with �(n) = (n− 1)! for any integer argument n and
smoothly interpolating between the factorials for
real-valued arguments (e.g., Boas, 1983).

when α = β = 1, and U-shaped when α + β

is small (Figure 3.6). Observing the coin be-
ing tossed provides some information about
the values of α and β, and a learner who be-
gins with prior distributions on the values of
these parameters can update these distribu-
tions as each new coin toss is observed. The
prior distributions on α and β may be de-
fined in terms of one or more hyperparam-
eters. The hierarchical model in Figure 3.7a
uses three levels, where the hyperparame-
ter at the top level (λ) is fixed. In principle,
however, we can develop hierarchical mod-
els with any number of levels – we can can
continue adding hyperparameters and priors
on these hyperparameters until we reach a
level where we are willing to assume that
the hyperparameters are fixed in advance.

At first, the upper levels in hierarchi-
cal models like Figure 3.7a might seem too
abstract to be of much practical use. Yet

(c)(b)(a)

dnew dnew dnew

θnew enew enew

λ λ F

λ

α,β S S

Figure 3.7. Three hierarchical Bayesian models.
(a) A model for inferring θnew, the bias of a coin.
dnew specifies the number of heads and tails
observed when the coin is tossed. θnew is drawn
from a beta distribution with parameters α and
β. The prior distribution on these parameters
has a single hyperparameter, λ. (b) A model for
inferring enew, the extension of a novel property.
dnew is a sparsely observed version of enew, and
enew is assumed to be drawn from a prior
distribution induced by structured
representation S. The hyperparameter λ

specifies a prior distribution over a hypothesis
space of structured representations. (c) A model
that can discover the form F of the structure S.
The hyperparameter λ now specifies a prior
distribution over a hypothesis space of structural
forms.
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Figure 3.8. Inferences about the distribution of features within tribes. (a) Prior distributions on θ ,
log(α + β) and α

α+β
. (b) Posterior distributions after observing 10 all-white tribes and 10 all-brown

tribes. (c) Posterior distributions after observing 20 tribes. Black circles indicate obese indiviuals and
the rate of obesity varies among tribes. Reproduced with permission from Kemp, Perfors, and
Tenenbaum (2007).

these upper levels play a critical role – they
allow knowledge to be shared across con-
texts that are related but distinct. In our-
coin-tossing example, these contexts cor-
respond to observations of many different
coins, each of which has a bias sampled from
the same prior distribution Beta(α, β). It is
possible to learn something about α and β

by tossing a single coin, but the best way
to learn about α and β is probably to ex-
periment with many different coins. If most
coins tend to come up heads about half the
time, we might infer that α and β are both
large and are close to each other in size.
Suppose, however, that we are working in
a factory that produces trick coins for magi-
cians. If 80% of coins come up heads almost
always, and the remainder come up tails al-
most always, we might infer that α and β are
both very small and that α

α+β
≈ 0.8.

More formally, suppose that we have ob-
served many coins being tossed and that di
is the tally of heads and tails produced by
the ith coin. The ith coin has bias θi , and
each bias θi is sampled from a beta distribu-

tion with parameters α and β. The hierar-
chical model in Figure 3.8 captures these
assumptions and is known by statisticians
as a beta-binomial model (Gelman et al.,
1995). To learn about the prior distribution
Beta(α, β) we must formalize our expecta-
tions about the values of α and β. We will
assume that the mean of the beta distribu-
tion α

α+β
is uniformly drawn from the inter-

val [0, 1] and that the sum of the param-
eters α + β is drawn from an exponential
distribution with hyperparameter λ. Given
the hierarchical model in Figure 3.8, infer-
ences about any of the θi can be made by
integrating out α and β:

p(θi | d1, d2, . . . , dn)

=
∫

p(θi | α, β, di )

× p(α, β | d1, d2, . . . , dn)dαdβ (3.27)

and this integral can be approximated us-
ing the Markov chain Monte Carlo methods
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described in the next section (see also Kemp,
Perfors, & Tenenbaum, 2007).

4.1. Example: Learning about Feature
Variability

Humans acquire many kinds of knowledge
about categories and their features. Some
kinds of knowledge are relatively concrete.
For instance, children learn that balls tend
to be round and that televisions tend to
be box-shaped. Other kinds of knowledge
are more abstract and represent discover-
ies about categories in general. For instance,
30-month-old children display a shape bias:
They appear to know that the objects in any
given category tend to have the same shape,
even if they differ along other dimensions,
such as color and texture (Heibeck & Mark-
man, 1987; Smith et al., 2002). The shape
bias is one example of abstract knowledge
about feature variability, and Kemp et al.
(2007) have argued that knowledge of this
sort can be acquired by hierarchical Bayesian
models.

A task carried out by Nisbett et al.,
(1983) shows how knowledge about fea-
ture variability can support inductive in-
ferences from very sparse data. These re-
searchers asked participants to imagine that
they were exploring an island in the South-
eastern Pacific, that they had encountered
a single member of the Barratos tribe, and
that this individual was brown and obese.
Based on this single example, participants
concluded that most Barratos were brown,
but gave a much lower estimate of the pro-
portion of obese Barratos. These inferences
can be explained by the beliefs that skin
color is a feature that is consistent within
tribes and that obesity tends to vary within
tribes and the model in Figure 3.8 can ex-
plain how these beliefs might be acquired.

Kemp et al. (2007) describe a model that
can reason simultaneously about multiple
features, but for simplicity we will consider
skin color and obesity separately. Consider
first the case where θi represents the pro-
portion of brown-skinned individuals within
tribe i , and suppose that we have observed
20 members from each of 20 tribes. Half

the tribes are brown and the other half are
white, but all of the individuals in a given
tribe have the same skin color. Given these
observations, the posterior distribution on
α + β indicates that α + β is likely to be
small (Figure 3.8b). Recall that small val-
ues of α + β imply that most of the θi will
be close to 0 or close to 1 (Figure 3.6):
in other words, that skin color tends to be
homogeneous within tribes. Learning that
α + β is small allows the model to make
strong predictions about a sparsely observed
new tribe: Having observed a single brown-
skinned member of a new tribe, the poste-
rior distribution on θnew indicates that most
members of the tribe are likely to be brown
(Figure 3.8b). Note that the posterior distri-
bution on θnew is almost as sharply peaked as
the posterior distribution on θ11: The model
has realized that observing one member of a
new tribe is almost as informative as observ-
ing twenty members of that tribe.

Consider now the case where θi repre-
sents the proportion of obese individuals
within tribe i . Suppose that obesity is a fea-
ture that varies within tribes: a quarter of
the twenty tribes observed have an obesity
rate of 10% and the remaining three quar-
ters have rates of 20%, 30%, and 40% re-
spectively (Figure 3.8c). Given these obser-
vations, the posterior distributions on α + β

and α
α+β

(Figure 3.8c) indicate that obesity
varies within tribes (α + β is high) and that
the base rate of obesity is around 25% ( α

α+β
is

around 0.25). Again, we can use these poste-
rior distributions to make predictions about
a new tribe, but now the model requires
many observations before it concludes that
most members of the new tribe are obese.
Unlike the case in Figure 3.8b, the model
has learned that a single observation of a new
tribe is not very informative, and the distri-
bution on θnew is now similar to the average
of the θ values for all previously observed
tribes.

In Figures 3.8b and 3.8c, a hierarchical
model is used to simultaneously learn about
high-level knowledge (α and β) and low-
level knowledge (the values of θi ). Any hi-
erarchical model, however, can be used for
several different purposes. If α and β are
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fixed in advance, the model supports top-
down learning: Knowledge about α and β

can guide inferences about the θi . If the θi
are fixed in advance, the model supports
bottom-up learning, and the θi can guide in-
ferences about α and β. The ability to sup-
port top-down and bottom-up inferences
is a strength of the hierarchical approach,
but simultaneous learning at multiple levels
of abstraction is often required to account
for human inferences. Note, for example,
that judgments about the Barratos depend
critically on learning at two levels: Learn-
ing at the level of θ is needed to incorpo-
rate the observation that the new tribe has
at least one obese, brown-skinned member,
and learning at the level of α and β is needed
to discover that skin-color is homogeneous
within tribes but that obesity is not.

4.2. Example: Property Induction

We have just seen that hierarchical Bayesian
models can explain how the parameters of
a prior distribution might be learned. Prior
knowledge in human cognition, however, is
often better characterized using more struc-
tured representations. Here, we present a
simple case study that shows how a hier-
archical Bayesian model can acquire struc-
tured prior knowledge.

Structured prior knowledge plays a role
in many inductive inferences, but we will
consider the problem of property induction.
In a typical task of this sort, learners find out
that one or more members of a domain have
a novel property and decide how to extend
the property to the remaining members of
the domain. For instance, given that goril-
las carry enzyme X132, how likely is it that
chimps also carry this enzyme? (Rips, 1975;
Osherson et al., 1990). For our purposes,
inductive problems like these are interest-
ing because they rely on relatively rich prior
knowledge and because this prior knowl-
edge often appears to be learned. For exam-
ple, humans learn at some stage that gorillas
are more closely related to chimps than to
squirrels, and taxonomic knowledge of this
sort guides inferences about novel anatomi-
cal and physiological properties.

The problem of property induction can
be formalized as an inference about the ex-
tension of a novel property (Kemp & Tenen-
baum, 2003). Suppose that we are working
with a finite set of animal species. Let enew

be a binary vector that represents the true
extension of the novel property (Figures 3.7
and 3.9). For example, the element in enew

that corresponds to gorillas will be 1 (repre-
sented as a black circle in Figure 3.9) if goril-
las have the novel property and 0 otherwise.
Let dnew be a partially observed version of
extension enew (Figure 3.9). We are inter-
ested in the posterior distribution on enew

given the sparse observations in dnew. Using
Bayes’ rule, this distribution can be written
as

P (enew|dnew, S) = P (dnew|enew)P (enew|S)
P (dnew|S)

(3.28)

where S captures the structured prior
knowledge that is relevant to the novel
property. The first term in the numerator,
P (dnew | enew), depends on the process by
which the observations in dnew were sam-
pled from the true extension enew. We will
assume for simplicity that the entries in dnew

are sampled at random from the vector enew.
The denominator can be computed by sum-
ming over all possible values of enew:

P (dnew | S) =
∑
enew

P (dnew | enew)P (enew | S).

(3.29)

For reasoning about anatomy, physiology,
and other sorts of generic biological prop-
erties (e.g., “has enzyme X132”), the prior
P (enew | S) will typically capture knowledge
about taxonomic relationships between bi-
ological species. For instance, it seems plau-
sible a priori that gorillas and chimps are
the only familiar animals that carry a certain
enzyme, but less probable that this enzyme
will only be found in gorillas and squirrels.

Prior knowledge about taxonomic rela-
tionships between living kinds can be cap-
tured using a tree-structured representation
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Figure 3.9. Learning a tree-structured prior for property induction.
Given a collection of sparsely observed properties di (a black circle
indicates that a species has a given property), we can compute a
posterior distribution on structure S and posterior distributions on
each extension ei . Because the distribution over S is difficult to
display, we show a single tree with high posterior probability.
Because each distribution on ei is difficult to display, we show
instead the posterior probability that each species has each property
(dark circles indicate probabilities close to 1).

like the taxonomy shown in Figure 3.9. We
will therefore assume that the structured
prior knowledge S takes the form of a tree
and define a prior distribution P (enew | S)
using a stochastic process over this tree. The
stochastic process assigns some prior prob-
ability to all possible extensions, but the
most likely extensions are those that are
smooth with respect to tree S. An extension

is smooth if nearby species in the tree tend
to have the same status – either both have
the novel property or neither does. One ex-
ample of a stochastic process that tends to
generate properties smoothly over the tree
is a mutation process, inspired by biological
evolution: The property is randomly chosen
to be on or off at the root of the tree, and
then has some small probability of switching
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state at each point of each branch of the
tree (Huelsenbeck & Ronquist, 2001; Kemp,
Perfors, & Tenenbaum, 2004).

For inferences about generic biological
properties, the problem of acquiring prior
knowledge has now been reduced to the
problem of finding an appropriate tree S.
Human learners acquire taxonomic repre-
sentations in part by observing properties
of entities: noticing, for example, that go-
rillas and chimps have many properties in
common and should probably appear nearby
in a taxonomic structure. This learning pro-
cess can be formalized using the hierarchical
Bayesian model in Figure 3.9. We assume
that a learner has partially observed the ex-
tensions of n properties and that these ob-
servations are collected in vectors labeled d1

through dn. The true extensions ei of these
properties are generated from the same tree-
based prior that is assumed to generate enew,
the extension of the novel property. Learn-
ing the taxonomy now amounts to making
inferences about the treeS that is most likely
to have generated all of these partially ob-
served properties. Again, we see that a hier-
archical formulation allows information to
be shared across related contexts. Here, in-
formation about n partially observed proper-
ties is used to influence the prior distribution
for inferences about enew. To complete the
hierarchical model in Figure 3.9 it is neces-
sary to specify a prior distribution on trees
S. For simplicity, we can use a uniform dis-
tribution over tree topologies and an expo-
nential distribution with parameter λ over
the branch lengths.

Inferences about enew can now be made
by integrating out the underlying tree S:

P (enew | d1, . . . , dn, dnew)

=
∫

P (enew | dnew, S)

× p(S | d1, . . . , dn, dnew) dS (3.30)

where P (enew | dnew, S) is defined in Equa-
tion 3.28. This integral can be approximated
by using Markov chain Monte Carlo meth-
ods of the kind discussed in the next section
to draw a sample of trees from the distribu-

tion p(S | d1, . . . , dn, dnew) (Huelsenbeck &
Ronquist, 2001). If preferred, a single tree
with high posterior probability can be iden-
tified, and this tree can be used to make
predictions about the extension of the novel
property. Kemp et al. (2004) follow this sec-
ond strategy and show that a single tree is
sufficient to accurately predict human infer-
ences about the extensions of novel biologi-
cal properties.

The model in Figures 3.7b and 3.9 as-
sumes that the extensions ei are gener-
ated over some true but unknown tree S.
Tree structures may be useful for captur-
ing taxonomic relationships between bio-
logical species, but different kinds of struc-
tured representations, such as chains, rings,
or sets of clusters, are useful in other set-
tings. Understanding which kind of repre-
sentation is best for a given context is some-
times thought to rely on innate knowledge.
Atran (1998), for example, argues that the
tendency to organize living kinds into tree
structures reflects an innately determined
cognitive module. The hierarchical Bayesian
approach challenges the inevitability of this
conclusion by showing how a model might
discover which kind of representation is best
for a given data set. We can create such a
model by adding an additional level to the
model in Figure 3.7b. Suppose that variable
F indicates whether S is a tree, a chain, a
ring, or an instance of some other structural
form. Given a prior distribution over a hy-
pothesis space of possible forms, the model
in Figure 3.7c can simultaneously discover
the form F and the instance of that form S
that best account for a set of observed prop-
erties. Kemp et al. (2004) formally define a
model of this sort, and show that it chooses
appropriate representations for several do-
mains. For example, the model chooses a
tree-structured representation given infor-
mation about animals and their properties,
but chooses a linear representation (the
liberal–conservative spectrum) when sup-
plied with information about the voting pat-
terns of Supreme Court judges.

The models in Figure 3.7b and 3.7c
demonstrate that the hierarchical Bayesian
approach can account for the acquisition of
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structured prior knowledge. Many domains
of human knowledge, however, are orga-
nized into representations that are richer and
more sophisticated than the examples we
have considered. The hierarchical Bayesian
approach provides a framework that can
help to explore the use and acquisition of
richer prior knowledge, such as the intuitive
causal theories we described at the end of
Section 3. For instance, Mansinghka et al.
(2006) describe a two-level hierarchical
model in which the lower level represents
a space of causal graphical models, whereas
the higher level specifies a simple abstract
theory: it assumes that the variables in the
graph come in one or more classes, with the
prior probability of causal relations between
them depending on these classes. The model
can then be used to infer the number of
classes, which variables are in which classes,
and the probability of causal links existing
between classes directly from data, at the
same time as it learns the specific causal re-
lations that hold between individual pairs
of variables. Given data from a causal net-
work that embodies some such regularity,
the model of Mansinghka et al. (2006) infers
the correct network structure from many
fewer examples than would be required un-
der a generic uniform prior because it can
exploit the constraint of a learned theory of
the network’s abstract structure. Although
the theories that can be learned using our
best hierarchical Bayesian models are still
quite simple, these frameworks provide a
promising foundation for future work and an
illustration of how structured knowledge
representations and sophisticated statistical
inference can interact productively in cogni-
tive modeling.

5. Markov Chain Monte Carlo

The probability distributions one has to
evaluate in applying Bayesian inference can
quickly become very complicated, particu-
larly when using hierarchical Bayesian mod-
els. Graphical models provide some tools
for speeding up probabilistic inference, but
these tools tend to work best when most

variables are directly dependent on a rel-
atively small number of other variables.
Other methods are needed to work with
large probability distributions that exhibit
complex interdependencies among vari-
ables. In general, ideal Bayesian computa-
tions can only be approximated for these
complex models, and many methods for
approximate Bayesian inference and learn-
ing have been developed (Bishop, 2006;
Mackay, 2003). This section introduces the
Markov chain Monte Carlo approach, a
general-purpose toolkit for inferring the val-
ues of latent variables, estimating parame-
ters, and learning model structure, which
can work with a very wide range of prob-
abilistic models. The main drawback of this
approach is that it can be slow, but given
sufficient time, it can yield accurate infer-
ences for models that cannot be handled by
other means.

The basic idea behind Monte Carlo meth-
ods is to represent a probability distribu-
tion by a set of samples from that distri-
bution. Those samples provide an idea of
which values have high probability (because
high-probability values are more likely to
be produced as samples) and can be used
in place of the distribution itself when per-
forming various computations. When work-
ing with Bayesian models of cognition, we
are typically interested in understanding the
posterior distribution over a parameterized
model, such as a causal network with its
causal strength parameters, or over a class
of models, such as the space of all causal
network structures on a set of variables or all
taxonomic tree structures on a set of objects.
Samples from the posterior distribution can
be useful in discovering the best parameter
values for a model or the best models in a
model class and for estimating how concen-
trated the posterior is on those best hypothe-
ses (i.e., how confident a learner should be
in those hypotheses).

Sampling can also be used to approxi-
mate averages over the posterior distribu-
tion. For example, in computing the pos-
terior probability of a parameterized model
given data, it is necessary to compute the
model’s marginal likelihood or the average
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probability of the data over all parameter
settings of the model (as in Equation 3.16
for determining whether we have a fair
or weighted coin). Averaging over all pa-
rameter settings is also necessary for ideal
Bayesian prediction about future data points
(as in computing the posterior predictive
distribution for a weighted coin, Equation
3.11). Finally, we could be interested in av-
eraging over a space of model structures,
making predictions about model features
that are likely to hold regardless of which
structure is correct. For example, we could
estimate how likely it is that one variable A
causes variable B in a complex causal net-
work of unknown structure by computing
the probability that a link A→ B exists in a
high-probability sample from the posterior
over network structures (Friedman & Koller,
2000).

Monte Carlo methods were originally de-
veloped primarily for approximating these
sophisticated averages, that is, approximat-
ing a sum over all of the values taken on by
a random variable with a sum over a ran-
dom sample of those values. Assume that
we want to evaluate the average (also called
the expected value) of a function f (x) over
a probability distribution p(x) defined on a
set of k random variables taking on values
x = (x1, x2, . . . , xk). This can be done by tak-
ing the integral of f (x) over all value of x,
weighted by their probability p(x). Monte
Carlo provides an alternative, relying on the
law of large numbers to justify the approxi-
mation

∫
f (x)p(x) dx ≈ 1

m

m∑
i=1

f (x(i)) (3.31)

where the x(i) are a set of m samples from
the distribution p(x). The accuracy of this
approximation increases as m increases.

To show how the Monte Carlo approach
to approximate numerical integration is use-
ful for evaluating Bayesian models, recall our
model of causal structure-learning known
as causal support. To compute the evi-
dence that a set of contingencies d pro-
vides in favor of a causal relationship, we

needed to evaluate the integral

P (d | Graph 1)

=
∫ 1

0

∫ 1

0
P1(d | w0, w1, Graph 1)

× P (w0, w1 | Graph 1) dw0 dw1

(3.32)

where P1(d | w0, w1, Graph 1) is derived
from the noisy-OR parameterization and
P (w0, w1 | Graph 1) is assumed to be uni-
form over all values of w0 and w1 between
0 and 1. If we view P1(d | w0, w1, Graph 1)
simply as a function of w0 and w1, it is clear
that we can approximate this integral us-
ing Monte Carlo. The analogue of Equa-
tion 3.31 is

P (d | Graph 1)

≈ 1
m

m∑
i=1

P1

(
d | w(i)

0 , w
(i)
1 , Graph 1

)
(3.33)

where the w
(i)
0 and w

(i)
1 are a set of m samples

from the distribution P (w0, w1 | Graph 1).
A version of this simple approximation was
used to compute the values of causal support
shown in Figure 3.4 (for details, see Griffiths
& Tenenbaum, 2005).

One limitation of classical Monte Carlo
methods is that it is not easy to automati-
cally generate samples from most probabil-
ity distributions. There are a number of ways
to address this problem, including meth-
ods such as rejection sampling and impor-
tance sampling (see, e.g., Neal, 1993). One
of the most flexible methods for generat-
ing samples from a probability distribution
is Markov chain Monte Carlo (MCMC),
which can be used to construct samplers
for arbitrary probability distributions, even
if the normalizing constants of those distri-
butions are unknown. MCMC algorithms
were originally developed to solve prob-
lems in statistical physics (Metropolis et al.,
1953), and are now widely used across
physics, statistics, machine learning, and re-
lated fields (e.g., Newman & Barkema, 1999;
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Gilks, Richardson, & Spiegelhalter, 1996;
Mackay, 2003; Neal, 1993).

As the name suggests, MCMC is based
on the theory of Markov chains – sequences
of random variables in which each variable
is conditionally independent of all previous
variables given its immediate predecessor (as
in Figure 3.2b). The probability that a vari-
able in a Markov chain takes on a particular
value conditioned on the value of the pre-
ceding variable is determined by the transi-
tion kernel for that Markov chain. One well-
known property of Markov chains is their
tendency to converge to a stationary distri-
bution: As the length of a Markov chain in-
creases, the probability that a variable in that
chain takes on a particular value converges
to a fixed quantity determined by the choice
of transition kernel. If we sample from the
Markov chain by picking some initial value
and then repeatedly sampling from the dis-
tribution specified by the transition kernel,
we will ultimately generate samples from
the stationary distribution.

In MCMC, a Markov chain is constructed
such that its stationary distribution is the
distribution from which we want to gener-
ate samples. If the target distribution is p(x),
then the Markov chain would be defined on
sequences of values of x. The transition ker-
nel K(x(i+1) | x(i)) gives the probability of
moving from state x(i) to state x(i+1). For the
stationary distribution of the Markov chain
to be the target distribution p(x), the tran-
sition kernel must be chosen so that p(x) is
invariant to the kernel. Mathematically, this
is expressed by the condition

p(x(i+1)) =
∑
x(i)

p(x(i))K(x(i+1) | x(i)).

(3.34)

If this is the case, once the probability that
the chain is in a particular state is equal to
p(x), it will continue to be equal to p(x),
hence the term “stationary distribution.”
Once the chain converges to its stationary
distribution, averaging a function f (x) over
the values of x(i) will approximate the av-
erage of that function over the probability
distribution p(x).

Fortunately, there is a simple proce-
dure that can be used to construct a
transition kernel that will satisfy Equation
3.34 for any choice of p(x), known as
the Metropolis-Hastings algorithm (Hastings,
1970; Metropolis et al., 1953). The basic
idea is to define K(x(i+1) | x(i)) as the result
of two probabilistic steps. The first step uses
an arbitrary proposal distribution, q(x∗ | x(i)),
to generate a proposed value x∗ for x(i+1).
The second step is to decide whether to ac-
cept this proposal. This is done by comput-
ing the acceptance probability, A(x∗ | x(i)),
defined to be

A(x∗ | x(i)) = min
[

p(x∗)q(x(i) | x∗)
p(x(i))q(x∗ | x(i))

, 1
]

.

(3.35)

If a random number generated from a uni-
form distribution over [0, 1] is less than
A(x∗ | x(i)), the proposed value x∗ is ac-
cepted as the value of x(i+1). Otherwise, the
Markov chain remains at its previous value,
and x(i+1) = x(i). An illustration of the use of
the Metropolis-Hastings algorithm to gen-
erate samples from a Gaussian distribution
(which is generally easy to sample from, but
convenient to work with in this case) ap-
pears in Figure 3.10.

One advantage of the Metropolis-
Hastings algorithm is that it requires only
limited knowledge of the probability distri-
bution p(x). Inspection of Equation 3.35 re-
veals that, in fact, the Metropolis-Hastings
algorithm can be applied even if we only
know some quantity proportional to p(x)
because only the ratio of these quantities af-
fects the algorithm. If we can sample from
distributions related to p(x), we can use
other MCMC methods. In particular, if we
are able to sample from the conditional
probability distribution for each variable in
a set given the remaining variables, p(xj |
x1, . . . , xj−1, xj+1, . . . , xn), we can use an-
other popular algorithm, Gibbs sampling
(Geman & Geman, 1984; Gilks et al., 1996),
which is known in statistical physics as the
heatbath algorithm (Newman & Barkema,
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Figure 3.10. The Metropolis-Hastings algorithm. The solid lines shown in the bottom part of the
figure are three sequences of values sampled from a Markov chain. Each chain began at a different
location in the space, but used the same transition kernel. The transition kernel was constructed using
the procedure described in the text for the Metropolis-Hastings algorithm: The proposal distribution,
q(x∗ | x), was a Gaussian distribution with mean x and standard deviation 0.2 (shown centered on the
starting value for each chain at the bottom of the figure), and the acceptance probabilities were
computed by taking p(x) to be Gaussian with mean 0 and standard deviation 1 (plotted with a solid
line in the top part of the figure). This guarantees that the stationary distribution associated with the
transition kernel is p(x). Thus, regardless of the initial value of each chain, the probability that the
chain takes on a particular value will converge to p(x) as the number of iterations increases. In this
case, all three chains move to explore a similar part of the space after around 100 iterations. The
histogram in the top part of the figure shows the proportion of time the three chains spend visiting
each part in the space after 250 iterations (marked with the dotted line), which closely approximates
p(x). Samples from the Markov chains can thus be used similarly to samples from p(x).

1999). The Gibbs sampler for a target dis-
tribution p(x) is the Markov chain defined
by drawing each xj from the conditional dis-
tribution p(xj | x1, . . . , xj−1, xj+1, . . . , xk).

Markov chain Monte Carlo can be a good
way to obtain samples from probability dis-
tributions that would otherwise be difficult
to compute with, including the posterior
distributions associated with complex prob-
abilistic models. To illustrate how MCMC
can be applied in the context of a Bayesian
model of cognition, we will show how Gibbs

sampling can be used to extract a statisti-
cal representation of the meanings of words
from a collection of text documents.

5.1. Example: Inferring Topics from Text

Several computational models have been
proposed to account for the large-scale
structure of semantic memory, including
semantic networks (e.g., Collins & Loftus,
1975; Collins & Quillian, 1969) and seman-
tic spaces (e.g., Landauer & Dumais, 1997;
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Lund & Burgess, 1996). These approaches
embody different assumptions about the
way that words are represented. In seman-
tic networks, words are nodes in a graph
where edges indicate semantic relationships,
as shown in Figure 3.11a. In semantic space
models, words are represented as points
in high-dimensional space, where the dis-
tance between two words reflects the ex-
tent to which they are semantically related,
as shown in Figure 3.11b.

Probabilistic models provide an opportu-
nity to explore alternative representations
for the meaning of words. One such rep-
resentation is exploited in topic models, in
which words are represented in terms of the
set of topics to which they belong (Blei, Ng,
& Jordan, 2003; Hofmann, 1999; Griffiths &
Steyvers, 2004). Each topic is a probability
distribution over words, and the content of
the topic is reflected in the words to which it
assigns high probability. For example, high
probabilities for woods and stream would
suggest a topic refers to the countryside,
whereas high probabilities for federal and
reserve would suggest a topic refers to fi-
nance. Each word will have a probability un-
der each of these different topics, as shown
in Figure 3.11c. For example, meadow has a
relatively high probability under the coun-
tryside topic, but a low probability under
the finance topic, similar to woods and
stream.

Representing word meanings using prob-
abilistic topics makes it possible to use
Bayesian inference to answer some of the
critical problems that arise in processing lan-
guage. In particular, we can make inferences
about which semantically related concepts
are likely to arise in the context of an ob-
served set of words or sentences to facil-
itate subsequent processing. Let z denote
the dominant topic in a particular context
and w1 and w2 be two words that arise in
that context. The semantic content of these
words is encoded through a set of probability
distributions that identify their probability
under different topics: If there are T top-
ics, then these are the distributions P (w | z)
for z = {1, . . . , T}. Given w1, we can infer

which topic z was likely to have produced it
by using Bayes’ rule,

P (z | w1) = P (w1 | z)P (z)∑T
z′=1 P (w1 | z′)P (z′)

(3.36)

where P (z) is a prior distribution over top-
ics. Having computed this distribution over
topics, we can make a prediction about fu-
ture words by summing over the possible
topics,

P (w2 | w1) =
T∑

z=1

P (w2 | z)P (z | w1).

(3.37)

A topic-based representation can also be
used to disambiguate words: If bank occurs
in the context of stream, it is more likely
that it was generated from the bucolic topic
than the topic associated with finance.

Probabilistic topic models are an interest-
ing alternative to traditional approaches to
semantic representation, and in many cases,
actually provide better predictions of human
behavior (Griffiths & Steyvers, 2003; Grif-
fiths, Steyvers, & Tenenbaum, 2007). How-
ever, one critical question in using this kind
of representation is which topics should be
used. Fortunately, work in machine learning
and information retrieval has provided an
answer to this question. As with popular se-
mantic space models (Landauer & Dumais,
1997; Lund & Burgess, 1996), the represen-
tation of a set of words in terms of topics can
be inferred automatically from the text con-
tained in large document collections. The
key to this process is viewing topic models
as generative models for documents, mak-
ing it possible to use standard methods of
Bayesian statistics to identify a set of top-
ics that are likely to have generated an ob-
served collection of documents. Figure 3.12
shows a sample of topics inferred from
the TASA corpus (Landauer & Dumais,
1997), a collection of passages excerpted
from educational texts used in curricula
from the first year of school to the first year
of college.
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Figure 3.12. A sample of topics from a 1,700 topic solution derived from the Touchstore Applied
Science Associates corpus. Each column contains the twenty highest probability words in a single
topic, as indicated by P (w | z). Words in boldface occur in different senses in neighboring topics,
illustrating how the model deals with polysemy and homonymy. These topics were discovered in
a completely unsupervised fashion, using just word-document co-occurrence frequencies.
Reproduced with permission from Griffiths, Steyvers, and Tenenbaum (2007).

We can specify a generative model for
documents by assuming that each document
is a mixture of topics, with each word in
that document being drawn from a particu-
lar topic and the topics varying in probability
across documents. For any particular docu-
ment, we write the probability of a word w

in that document as

P (w) =
T∑

z=1

P (w | z)P (z), (3.38)

where P (w | z) is the probability of word w

under topic z, which remains constant across
all documents, and P (z) is the probability of
topic j in this document. We can summarize
these probabilities with two sets of parame-
ters, taking φ

(z)
w to indicate P (w | z) and θ

(d)
z

to indicate P (z) in a particular document
d. The procedure for generating a collection
of documents is then straightforward. First,
we generate a set of topics, sampling φ(z)

from some prior distribution p(φ). Then, for
each document d, we generate the weights
of those topics, sampling θ (d) from a distri-
bution p(θ). Assuming that we know in ad-
vance how many words will appear in the
document, we then generate those words
in turn. A topic z is chosen for each word
that will be in the document by sampling
from the distribution over topics implied
by θ (d). Finally, the identity of the word w

is determined by sampling from the distri-

bution over words φ(z) associated with that
topic.

To complete the specification of our gen-
erative model, we need to specify distribu-
tions for φ and θ so that we can make infer-
ences about these parameters from a corpus
of documents. As in the case of coin flipping,
calculations can be simplified by using a con-
jugate prior. Both φ and θ are arbitrary distri-
butions over a finite set of outcomes, or
multinomial distributions, and the conjugate
prior for the multinomial distribution is the
Dirichlet distribution. Just as the multino-
mial distribution is a multivariate generaliza-
tion of the Bernoulli distribution we used
in the coin flipping example, the Dirichlet
distribution is a multivariate generalization
of the beta distribution. We assume that the
number of “virtual examples” of instances of
each topic appearing in each document is set
by a parameter α and likewise use a parame-
ter β to represent the number of instances of
each word in each topic. Figure 3.13 shows a
graphical model depicting the dependencies
among these variables. This model, known
as Latent Dirichlet Allocation, was intro-
duced in machine learning by Blei, Ng, and
Jordan (2003).

We extract a set of topics from a collec-
tion of documents in a completely unsuper-
vised fashion, using Bayesian inference. Be-
cause the Dirichlet priors are conjugate to
the multinomial distributions φ and θ , we
can compute the joint distribution P (w, z)
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Figure 3.13. Graphical model for Latent
Dirichlet Allocation (Blei, Ng, & Jordan, 2003).
The distribution over words given topics, φ, and
the distribution over topics in a document, θ ,
are generated from Dirichlet distributions with
parameters β and α, respectively. Each word in
the document is generated by first choosing a
topic zi from θ , and then choosing a word
according to φ(zi ).

where (w) = (w1, . . . , wn) are the words in
the documents and z = (z1, . . . , zn) are their
topic assignments, by integrating out φ and
θ , just as we did in the model selection ex-
ample earlier (Equation 3.16). We can then
ask questions about the posterior distribu-
tion over z given w, given by Bayes’ rule:

P (z | w) = P (w, z)∑
z P (w, z)

. (3.39)

Because the sum in the denominator is in-
tractable, having Tn terms, we are forced to
evaluate this posterior using MCMC. In this
case, we use Gibbs sampling to investigate
the posterior distribution over assignments
of words to topics, z.

The Gibbs sampling algorithm consists of
choosing an initial assignment of words to
topics (e.g., choosing a topic uniformly at
random for each word) and then sampling
the assignment of each word zi from the
conditional distribution P (zi | z−i , w). Each
iteration of the algorithm is thus a proba-
bilistic shuffling of the assignments of words
to topics. This procedure is illustrated in Fig-
ure 3.14. The figure shows the results of ap-

plying the algorithm (using just three topics)
to a small portion of the TASA corpus. This
portion features thirty documents that use
the word money, thirty documents that
use the word oil, and thirty documents
that use the word river. The vocabulary is
restricted to eighteen words, and the entries
indicate the frequency with which the 731
tokens of those words appeared in the ninety
documents. Each word token in the corpus,
wi , has a topic assignment, zi , at each iter-
ation of the sampling procedure. In the fig-
ure, we focus on the tokens of three words:
money, bank, and stream. Each word token
is initially assigned a topic at random, and
each iteration of MCMC results in a new
set of assignments of tokens to topics. Af-
ter a few iterations, the topic assignments
begin to reflect the different usage patterns
of money and stream, with tokens of these
words ending up in different topics, and the
multiple senses of bank.

The details behind this particular Gibbs
sampling algorithm are given in Griffiths and
Steyvers (2004), where the algorithm is used
to analyze the topics that appear in a large
database of scientific documents. The con-
ditional distribution for zi that is used in
the algorithm can be derived using an argu-
ment similar to our derivation of the poste-
rior predictive distribution in coin flipping,
giving

P (zi | z−i , w) ∝ n(wi )
−i,zi

+ β

n(·)
−i,zi

+ Wβ

n(di )
−i,zi

+ α

n(di )
−i,· + Tα

,(3.40)

where z−i is the assignment of all zk such
that k �= i , and n(wi )

−i,zi
is the number of words

assigned to topic zi that are the same as wi ,
n(·)
−i,zi

is the total number of words assigned
to topic zi , n(di )

−i,zi
is the number of words

from document di assigned to topic zi , and
n(di )
−i,· is the total number of words in docu-

ment di , all not counting the assignment of
the current word wi . The two terms in this
expression have intuitive interpretations,
being the posterior predictive distributions
on words within a topic and topics within
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Figure 3.14. Illustration of the Gibbs sampling algorithm for learning topics. Each word token wi

appearing in the corpus has a topic assignment, zi . The figure shows the assignments of all tokens of
three types – money, bank, and stream – before and after running the algorithm. Each marker
corresponds to a single token appearing in a particular document, and shape and color indicates
assignment: Topic 1 is a black circle, topic 2 is a gray square, and topic 3 is a white triangle. Before
running the algorithm, assignments are relatively random, as shown in the left panel. After running
the algorithm, tokens of money are almost exclusively assigned to topic 3, tokens of stream are almost
exclusively assigned to topic 1, and tokens of bank are assigned to whichever of topic 1 and topic 3
seems to dominate a given document. The algorithm consists of iteratively choosing an assignment for
each token, using a probability distribution over tokens that guarantees convergence to the posterior
distribution over assignments. Reproduced with permission from Griffiths, Steyvers, and Tenenbaum
(2007).

a document given the current assignments
z−i , respectively. The result of the MCMC
algorithm is a set of samples from P (z |
w), reflecting the posterior distribution over
topic assignments given a collection of docu-
ments. A single sample can be used to eval-
uate the topics that appear in a corpus, as
shown in Figure 3.12, or the assignments of
words to topics, as shown in Figure 3.14.
We can also compute quantities such as
the strength of association between words
(given by Equation 3.37) by averaging over
many samples.5

5 When computing quantities such as P (w2 | w1), as
given by Equation 3.37, we need a way of finding
the parameters φ that characterize the distribution

Although other inference algorithms ex-
ist that can be used with this generative
model (e.g., Blei et al., 2003; Minka & Laf-
ferty, 2002), the Gibbs sampler is an ex-
tremely simple (and reasonably efficient)
way to investigate the consequences of using

over words associated with each topic. This can be
done using ideas similar to those applied in our coin
flipping example: for each sample of z we can esti-
mate φ as

φ̂
(w)
z = n(w)

z + β

n(·)
z + Wβ

(3.41)

which is the posterior predictive distribution over
new words w for topic z conditioned on w and z.
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topics to represent semantic relationships
between words. Griffiths and Steyvers
(2002, 2003) suggested that topic models
might provide an alternative to traditional
approaches to semantic representation and
showed that they can provide better predic-
tions of human word association data than
Latent Semantic Analysis (LSA) (Landauer
& Dumais, 1997). Topic models can also be
applied to a range of other tasks that draw
on semantic association, such as seman-
tic priming and sentence comprehension
(Griffiths et al., 2007).

The key advantage that topic models have
over semantic space models is postulating
a more structured representation – differ-
ent topics can capture different senses of
words, allowing the model to deal with pol-
ysemy and homonymy in a way that is au-
tomatic and transparent. For instance, sim-
ilarity in semantic space models must obey
a version of the triangle inequality for dis-
tances: If there is high similarity between
words w1 and w2, and between words w2

and w3, then w1 and w3 must be at least
fairly similar. But word associations often
violate this rule. For instance, asteroid is
highly associated with belt, and belt is
highly associated with buckle, but aster-

oid and buckle have little association. LSA
thus has trouble representing these associa-
tions. Out of approximately 4,500 words in
a large-scale set of word association norms
(Nelson, McEvoy, & Schreiber, 1998), LSA
judges that belt is the thirteenth most sim-
ilar word to asteroid, that buckle is the
second most similar word to belt, and con-
sequently buckle is the forty-first most sim-
ilar word to asteroid – more similar than
tail, impact, or shower. In contrast, using
topics makes it possible to represent these
associations faithfully, because belt belongs
to multiple topics, one highly associated
with asteroid but not buckle and another
highly associated with buckle but not aster-

oid.
The relative success of topic models in

modeling semantic similarity is thus an in-
stance of the capacity for probabilistic mod-
els to combine structured representations
with statistical learning – a theme that has
run through all of the examples we have

considered in this chapter. The same ca-
pacity makes it easy to extend these mod-
els to capture other aspects of language.
As generative models, topic models can
be modified to incorporate richer seman-
tic representations such as hierarchies (Blei
et al., 2004), as well as rudimentary syn-
tax (Griffiths et al., 2005), and extensions
of the MCMC algorithm described in this
section make it possible to sample from
the posterior distributions induced by these
models.

6. Conclusion

The aim of this chapter has been to survey
the conceptual and mathematical founda-
tions of Bayesian models of cognition and to
introduce several advanced techniques that
are driving state-of-the-art research. There
has been space to discuss only a few specific
and rather simple cognitive models based on
these ideas, but much more can be found in
the current literature referenced in the intro-
duction. These Bayesian models of cog-
nition represent just one side of a larger
movement that seeks to understand intel-
ligence in terms of rational probabilistic
inference. Related ideas are providing new
paradigms for the study of neural coding
and computation (Doya et al., 2007),
children’s cognitive development (Gopnik
& Tenenbaum, 2007), machine learning
(Bishop, 2006), and artificial intelligence
(Russell & Norvig, 2002).

We hope that this chapter conveys some
sense of what all this excitement is about.
Bayesian models give us ways to approach
deep questions of human cognition that
have not been previously amenable to rig-
orous formal study. How can human minds
make predictions and generalizations from
such limited data and so often be cor-
rect? How can structured representations of
abstract knowledge constrain and guide
sophisticated statistical inferences from
sparse data? What specific forms of knowl-
edge support human inductive inference
across different domains and tasks? How
can these structured knowledge repre-
sentations themselves be acquired from
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experience? And how can the necessary
computations be carried out or approxi-
mated tractably for complex models that
might approach the scale of interesting
chunks of human cognition? We are still
far from having good answers to these ques-
tions, but as this chapter shows, we are be-
ginning to see what answers might look like
and to have the tools needed to start build-
ing them.
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CHAPTER 4

Dynamical Systems Approaches to Cognition

1. Introduction

Think of a little boy playing in the play-
ground, climbing up on ladders, balancing
on beams, jumping, running, catching other
kids. Or think of a girl who prepares to draw
a picture, finding and setting up her painting
utensils, dipping the brush in water, care-
fully wiping it off, whipping up the water
paint of the selected color with small cir-
cular movements, the brush just touching
the pad of paint. When she actually paints,
she makes a sequence of brush strokes to
sketch a house. Clearly, both scenes in-
volve lots of cognition. The ongoing, com-
plex behaviors of the two children are cer-
tainly not simple reflexes, nor fixed action
patterns elicited by key stimuli, nor strictly
dictated by stimulus–response relationships.
Hallmarks of cognition are visible: selec-
tion, sequence generation, working mem-
ory. And yet, what makes these daily life
activities most intriguing is how seamlessly
the fine and gross motor control is tuned to
the environment; how sensory information
is actively sought by looking around, search-
ing, establishing reference; and how seam-

lessly the flow of activities moves forward.
No artificial system has ever achieved even
remotely comparable behavior. Although
computer programs may play chess at grand
master level, their ability to generate smooth
flows of motor actions in natural environ-
ments remains extremely limited.

Clearly, cognition takes place when or-
ganisms with bodies and sensory systems
are situated in structured environments, to
which they bring their individual behavioral
history and to which they quickly adjust.
There is a strong theoretical tension in cog-
nitive science about the extent to which cog-
nition can be studied while abstracting from
embodiment, situatedness and the structure
of the nervous systems that control cogni-
tive processes in organisms. This chapter ar-
gues that in making such abstractions, im-
portant concepts are missed, including most
importantly the concepts of stability and
instability.

The embodied view of cognition em-
phasizes the close link of cognition to the
sensory and motor surfaces and the struc-
tured environments in which these are im-
mersed. The dynamical systems approach
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to cognition is the theoretical framework
within which this embodied view of cogni-
tion can be formalized. This chapter reviews
the core concepts of the dynamical systems
approach and illustrates them through a set
of experimentally accessible examples. Par-
ticular attention will be given to how cog-
nition can be understood in terms that are
compatible with principles of neural func-
tion, most prominently, with the space–time
continuity of neural processes.

2. Embodiment, Situatedness,
and Dynamical Systems

Cognition is embodied in the obvious sense
that natural cognitive systems are housed in
a physical and physiological body, and that
cognitive processes take place within the or-
ganism’s nervous system. Cognition is situ-
ated in the similarly obvious sense that this
body acts in a specific, structured environ-
ment from which it receives sensory infor-
mation and on which it may have an effect.
Body and nervous system are adapted to
natural environments on many time scales,
from evolution to development and learn-
ing. Any individual organism brings its par-
ticular history of behavior and stimulation
to any situation in which cognition is acted
out.

In another sense, embodiment is a sci-
entific stance, in which researchers aim to
understand cognition in ways that do not
neglect the linkage between cognitive pro-
cesses and the sensory and motor surfaces,
do not neglect the structured environments
in which cognition takes place, are mind-
ful of the potential role of individual ex-
perience in cognition, and are careful when
abstracting from the concrete neuronal pro-
cesses that are the basis for the behavior of
organisms.

Taking that stance does not prevent re-
searchers from building artificial cognitive
systems or from constructing abstract math-
ematical models of cognitive processes. But
in each case, the potential link to a body, to
an environment, and to a stream of behav-
ior must be considered. Whether the theo-

retical constructs employed are compatible
with organizational principles of the nervous
system must be examined. Models of cogni-
tion that take the embodied stance must be
process models that can capture, at least as
a matter of principle, the unfolding in time
of cognition and the associated sensory and
motor processes.

Often, building a robotic demonstration
of a process model is a useful test of the ex-
tent to which the principles of embodiment
have been respected. Many classical produc-
tion system modelers of cognition for in-
stance, face serious, sometimes insurmount-
able problems when they try to feed their
systems from real sensors in the real world
and let their systems control real bodies. The
limited success of the artificial intelligence
approach to autonomous robotics reflects
these difficulties (Brooks, 1991).

Dynamical systems theory provides the
language in which the embodied and situ-
ated stance can be developed into a scien-
tific theory of cognition. To examine this
claim, we need to clarify what dynamical
systems theory refers to. There is, of course,
the field of mathematics that concerns itself
with dynamical systems (Perko, 1991). The
mathematical concepts capture the property
of many natural systems in which a suffi-
ciently rich characterization of the present
state of the system enables prediction of
future states. Scientific theories based on
this mathematical framework have been ex-
traordinarily successful in physics and many
branches of science connected to physics.
In each case, this required forming scien-
tific concepts based on the mathematical
framework, concepts that had to prove their
power by capturing laws of nature, proper-
ties, and constraints of systems. The mathe-
matics alone did not do that job. By anal-
ogy, developing an understanding of cog-
nition within the mathematical framework
of dynamical systems requires that concepts
are defined that bring the mathematics to
bear on the subject matter.

One level at which this has been
done with considerable success is that of
metaphor. Dynamical systems as a meta-
phor promote thinking about underlying
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“forces” (vector-fields), from which the ob-
served pattern or behavior emerges. The so-
lutions of nonlinear dynamical systems may
change qualitatively, even as the underlying
vector-fields change only in a graded way.
This fact may serve as a metaphor for how
qualitatively distinct states or events may
emerge from continuous processes, for how
there may be multiple possible causes for the
emergence of such qualities, and for how
all contributions to a system may matter,
not only the ones most specifically linked
to the new quality. This image dates back,
perhaps, to the notion of the Gestalt field
in Gestalt psychology (Köhler, 1920/1939)
and has been a source of fresh thinking in de-
velopmental psychology (Thelen & Smith,
1994). The strongest impact of dynamical
systems as a metaphor may be in heuristics,
that is, as a source of new questions and new
view points.

This chapter, however, reviews efforts to
form concepts based on the mathematical
theory of dynamical systems into a rigorous
scientific approach toward cognition that
embraces the embodied and situated stance.
The argument will be laid out that the con-
cepts of attractor states with their stability
properties, the loss of stability when such
states go through bifurcations, and the emer-
gence of new attractor states from instabili-
ties are necessary ingredients of an account
of embodied and situated cognition. No
physical realization of cognition is possible
without addressing the problems to which
these concepts provide solutions. Not cov-
ered in this review is recent discussion about
dynamical systems and embodiment within
philosophy (see, for instance, Van Gelder,
1998; Juarrero, 1999; Keijzer, 2001).

3. Dynamical Systems Thinking:
Uniquely Instantiated Dynamics

Control systems provide an interesting
metaphor for the notion that meaningful
function may emerge from simple, embod-
ied mechanisms. A highly illustrative exam-
ple comes from the orientation behaviors of
the common house fly (Reichardt & Poggio,

1976; Poggio & Reichardt, 1976). Flies ori-
ent toward moving objects, which they
chase as part of their mating behavior. De-
tailed analysis revealed that the circuitry un-
derlying this behavior forms a simple con-
troller: A motion detection system fed by
luminance changes on the fly’s facet eye
drives the flight motor, generating an
amount of torque that is a function of where
on the sensory surface motion was detected.
If the speck of motion is detected on the
right, a torque to the right is generated. If the
speck is detected on the left, a torque to the
left is generated. The level of torque passes
through zero when the speck is right ahead.
The torque changes the flight direction of
the fly, which in turn changes the location
on the facet eye at which the moving stim-
ulus is detected. Given the aerodynamics of
flies, the torque and its on-line updating gen-
erate an orientation behavior, in which the
insect orients its flight into the direction in
which a moving stimulus is detected.

That meaningful behavior emerges as a
stable state, an attractor, from the neu-
ral circuitry linking the sensory surface to
the flight motor, which together with the
physics of flight establish a dynamical sys-
tem (Figure 4.1). In the lab, the behavior
can be elicited by imposing a motion signal
on the fly’s facet eye. In the fly’s natural envi-
ronment, the sensory signal typically comes
from other flies. In fact, the system is tuned
such that pursuit of another fly works amaz-
ingly well, probably the outcome of evolu-
tionary optimization.

There is an irony in the scientific his-
tory of this analysis. Reichardt and col-
leagues (Reichardt & Poggio, 1976; Poggio &
Reichardt, 1976) had opened the loop by
fixing the fly to a torque meter, so that the
amount of torque generated by the flight
motor could measured. This was done as a
function of the location in the visual array,
at which a moving stimulus was presented.
From the measured torque, these authors
predicted the closed loop behavior. Measur-
ing closed loop behavior still required fix-
ing the fly to the torque meter, but now
the visual surround was moved as a function
of the measured torque to imitate natural
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Figure 4.1. Schematic illustration of how the
dynamics of heading direction accounts for how
flies select and orient to visual targets. (a) The
torque exerted by the fly’s flight motor
generates a turning rate, which is a function of
the fly’s heading direction relative to a visual
target, an object that makes small oscillatory
movements around the indicated position. This
dependence effectively defines a dynamics of
heading direction, which has an attractor
(zero-crossing with negative slope) at the
direction in which the target lies. (b) When two
objects are metrically close (see the two vertical
lines) they generate a fused attractor. Over time,
the fly’s average heading lies between the two
targets. (c) When two objects are metrically far
(vertical lines), a bistable dynamics results. The
fly switches randomly between the two heading
directions, generating a bimodal histogram
(bottom) of flying directions over time.

flight. When imperfections of this early form
of virtual reality were removed, researchers
found that the prediction did not hold up
(Heisenberg & Wolf, 1988). Apparently, the
fly’s simple nervous system computes an ex-
pected visual motion from its own motor
commands (reafference) and treats detected
visual motion matching that prediction dif-
ferently than extraneous motion signals re-
lated to movement of an object relative to
the fly. So even this very simple control
system provides hints that uncovering the
dynamics from which behavior emerges re-

quires more than an input-output analysis in
open loop.

Even so, there is no explicit representa-
tion of the speck in motion, nor reasoning
about goals and plans to reach those goals.
The behavior emerges when a neural sys-
tem linked to the sensory and motor surfaces
is immersed in an environment to which it
is adapted. The complete system, including
neural network and coupling through the
body and environment, can be understood
as a dynamical system. Its attractor solution
is the emergent behavior. Although in some
abstract sense one could say that the neurons
controlling the flight motor “estimate” the
direction in which the target lies, their firing
does not “re-present” this value because the
estimate is implicit in the control circuitry
driving the flight system and cannot be for-
warded to be used in any other context.

Some have argued that such emergence
of a behavior from a closed control could
form the core of a potential dynamical sys-
tems refoundation of cognition (van Gelder
& Port, 1995). But is control already a form
of cognition? Would that not imply that ev-
ery heater with a thermostat is already a cog-
nitive system? One dimension along which
systems maybe be distinguished is flexibil-
ity. One could argue that the threshold of
cognition has not been reached as long as an
emergent behavior is uniquely determined
by sensory inputs. By contrast, when a con-
trol system makes decisions, selects among
a range of inputs, and generates behavior
based on its own inner state, then this might
represent the most elementary form of cog-
nition. That implies a form of flexibility, in
which the emergent outcome is no longer
dictated by the sensed outer world but is in-
stead, at least to some minimal extent, based
on choices generated from within the sys-
tem.

The flight control system of house flies is
capable of such flexibility. When confronted
with several patches of visual motion on its
facet eye, the fly selects one of the patches
and directs its flight in pursuit of that visual
object (Poggio & Reichardt, 1976). This ca-
pacity to select emerges from the control
dynamics. Superposing the torque patterns
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generated by each motion patch, two at-
tractors emerge (Fig. 4.1c). One of these
is selected depending on the initial orienta-
tion and on chance. When the two patches
are close to each other, the two attractors
merge, and the fly flies in an averaged direc-
tion (as shown in Fig. 4.1b).

This example illustrates ideas that gener-
alize well beyond the framework of control
theory. A summary of the principles of a dy-
namic approach to behavioral patterns can
be formulated as follows (Schöner & Kelso,
1988a). (1) Patterns of behavior are charac-
terized by inner states, which determine the
persistence of the patterns over time and
under changing conditions. A state can be
characterized by variables with specific val-
ues corresponding to specific states. States
and associated variables are not limited to
those of sensorimotor loops. State variables
may originate, for instance, from within the
neural networks that control behavior. (2)
The evolution in time of these state vari-
ables is generated by neural networks linked
to sensory and motor surfaces that can be
modeled as dynamical systems. Many factors
may contribute to the effective dynamics
of such systems, including the physical dy-
namics and material properties of the body
and of the environment. Sensory inputs, in-
cluding internal sensory feedback, also act as
forces on this dynamics. (3) Asymptotically
stable states structure the solutions of this
dynamical system. Over the long run, only
attractor solutions are robust and likely to
be observed. The nervous system is exten-
sively interconnected, so that for any par-
ticular circuit and any particular pattern,
other connections act effectively as pertur-
bations, as do variable sensory inputs and
the complex and temporally variable natural
environment. (4) As a corollary, only when
states are released from stability does behav-
ioral flexibility arise. Release from stability
takes the form of instabilities (bifurcations)
in which the restoring forces around an at-
tractor become too weak to resist change.
New solutions may be reached or even cre-
ated from instabilities. The full complex-
ity of behavior may ultimately be generated
from the complex structure of stable dynam-

ical states and their instabilities in a nonlin-
ear, strongly interlinked dynamical system.

As an illustration of these principles, con-
sider the coordination of rhythmic move-
ment, a domain in which dynamical systems
ideas have been developed and evaluated
in detail (Schöner & Kelso, 1988a; Kelso,
1995). Patterns of coordination underly-
ing such behaviors as the gaits of lo-
comotion, speech articulatory movements,
or the playing of a musical instrument
can be characterized through measures of
the relative timing of components, such
as the relative phase, φ. Their evolution
reflects the coupling between the neu-
ral networks that control the components
(Grossberg, Pribe, & Cohen, 1997) as well
as, in some instances, mechanical coupling
(Turvey, 1990). The temporal evolution and
stability of the coordination patterns can be
described by an effective dynamical system
governing the measures of relative timing,
which can be modeled as a relative phase
dynamics (Schöner, Haken, & Kelso, 1986).
Stable states (attractors) of the dynamics
correspond to stable patterns of coordina-
tion. The coordination of homologous limbs,
for instance, occurs generally in two sym-
metric patterns, the limbs either moving in-
phase or in phase alternation (“anti-phase”).
These patterns stay invariant under a variety
of conditions, including changes in the fre-
quency of the rhythmic movement. Their
stability does not stay invariant, however.
The anti-phase pattern of coordination typ-
ically becomes less stable at higher move-
ment frequencies. This manifests itself in as-
sociated changes of stability measures, such
as an increase in the amount of fluctuation of
relative phase and an increase in the amount
of time needed to recover from a perturba-
tion of the coordination pattern (Schöner
et al., 1986). Stability is thus an essential
property of coordination patterns. Without
stability, patterns do not persist. In fact,
at sufficiently high movement frequencies,
an involuntary switch out of the anti-phase
into an in-phase pattern of coordination
occurs. An understanding of coordination
thus requires more than an account of the
information processing needed to compute
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the pattern. It also requires an account for
how the pattern is reached from all kinds
of perturbed states. In dynamical systems
thinking, both the specification of the state
and the mechanisms for its stabilization
emerge from the same underlying dynamical
system.

Are stability properties perhaps gener-
ated at a lower level of control, whereas
relative timing per se is planned at a more
abstract, disembodied level? Information
processing models of timing have invoked
“clocks” that generate time signals represent-
ing more or less complex patterns of coor-
dination, which are then handed down to
a “motor” system that handles the control
(Vorberg & Wing, 1996). A first response
is that the clocks themselves must have sta-
bility properties if they are to account for
coordination, and this makes them dynam-
ical systems as well (Schöner, 2002). Ab-
stracting from the dynamic, embodied prop-
erties of timing means, however, missing out
on important constraints for higher cogni-
tive function. How people switch intention-
ally from one pattern of coordination to an-
other, for instance, is constrained by stability
(Scholz, Kelso, & Schöner, 1988). First,
switching from a more stable to a less stable
pattern takes longer than vice versa. Second,
the intention to switch to a pattern increases
that pattern’s stability so that it is possible
to switch to a pattern that is unstable un-
der less specific intentional constraints. The
experimental results were quantitatively ac-
counted for by a model in which the inten-
tion to switch to a coordination pattern is a
force in the coordination dynamics that in-
creases the stability of the intended pattern
(Schöner & Kelso, 1988b). Another study
had participants learn a new pattern of coor-
dination that initially was not in the behav-
ioral repertoire (Schöner, Zanone, & Kelso,
1992). The process of learning amounted to
increasing the stability of the target pattern.
That the underlying coordination dynamics
was changed could be shown when partici-
pants were asked at different points during
their training to produce patterns of coordi-
nation near the target pattern. Before learn-
ing performance was biased toward the in-

trinsic patterns of in-phase and anti-phase.
After learning a new bias toward the learned
pattern was observable. The bias could be at-
tributed to the underlying dynamics of rela-
tive timing, which changed during learning,
with new forces stabilizing the learned pat-
tern (Schöner et al., 1992). Related work es-
tablished that perceived or memorized con-
straints for relative timing could likewise
be understood as contributions to the dy-
namics of coordination (Schöner & Kelso,
1988c).

The picture that emerges from this exem-
plary system is that movement coordination
emerges as stable states from a nonlinear, po-
tentially multistable dynamics, realized by
neural networks coupled to the body in a
structured environment. Cognitive aspects
of motor control, such as intentional move-
ment goals, motor memory, or skill learning,
are all mediated through this dynamics of
coordination. Its graded change may lead to
both graded and categorical change of move-
ment behavior.

Beyond motor control, nonlinear dynam-
ics has been invoked as a general frame-
work for cognition, in which the concept
of representation is unneeded (van Gelder
& Port, 1995). This has been viewed as a
strength by some, as a weakness by others
(Markman & Dietrich, 2000). Extending dy-
namical systems ideas beyond motor con-
trol, we run into a conceptual limitation,
however. Take the coordination of rhythmic
movement we just discussed, for example.
What value does relative phase have when
the movement is stopped? When movement
is restarted, does the coordination system
start up at the last value that relative phase
had? Describing the state of a motor sys-
tem by a variable such as relative phase re-
quires that variable to have a unique value
at all times. That value must evolve continu-
ously in time, cannot jump, cannot split into
two values, or disappear and have no value.
The dynamical system description of coor-
dination by relative phase is thus “uniquely
instantiated.”

For another example, consider the
biomechanics of the human arm, which has
a well-defined physical state at all times,
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characterized by the spatial positions of its
segments or the ensemble of its joint angles.
That physical state changes only continu-
ously, that is, the arm obviously does not
disappear in one position and reappear at
another. The biomechanics of the arm are
characterized by the equations of motion,
a set of differential equations for the joint
angles that generate continuous joint angle
trajectories. The variables in this dynamical
description are uniquely instantiated. Every
joint angle has exactly one value at each
time, and that value changes continuously
in time.

Now think about planning a movement.
A movement plan may exist before a move-
ment is initiated. This is revealed by the
movement starting out in the direction of
the target, by the latency between a move-
ment command and the initiation of the
movement being shorter when the move-
ment goal is known ahead of time, or by
observing specific neuronal activity prior to
movement initiative. A movement plan may
be described in the same terms as the state
of the arm, for example, as a desired con-
figuration of the joint angles. But are those
variables uniquely instantiated? After having
made a movement, is the movement plan
still around? When a new movement is pre-
pared, do the joint angle variables containing
the planned arm configuration evolve con-
tinuously from the values of the previous
movement plan to the required new val-
ues? Clearly, that does not make sense. In
a first approximation, the preparation of a
new movement does not depend on the pre-
vious motor act. Also, early during move-
ment planning, movement parameters may
have multiple values (Ghez et al., 1997;
Wilimzig, Schneider, & Schöner, 2006).

Is it possible that the planning of move-
ments does not fall into the domain of dy-
namical systems thinking? The answer is no,
because there are clear indications of dy-
namics at the level of movement preparation
(Erlhagen & Schöner, 2002). Movement
plans evolve continuously in time (Ghez
et al., 1997) and are updated at any time
during movement preparation when sensory
information changes (Goodale, Pélisson, &

Prablanc, 1986). The neural substrate re-
flects both neuronal properties (Georgopou-
los et al., 1989; Scott, 2004).

Similarly, perception has signatures both
of dynamics and of a lack of unique instanti-
ation. That percepts cannot be described by
uniquely instantiated variables is intuitive.
When we watch a slide show, each slide in-
duces a new percept. It does not seem to
make sense to say that the new percept in-
duced by the next slide emerges from the
percept of what was on the previous slide
by continuous transformation. Evidence for
a new percept, depending on what has just
previously been perceived, comes, however,
from multistable stimuli. The motion quar-
tet (Hock, Kelso, & Schöner, 1993) is a par-
ticularly clear example, illustrated in Fig-
ure 4.2. Spots at the four corners of an
imaginary rectangle have luminance levels
above background. Two spots lying on one
diagonal are much brighter, the two spots
on the other diagonal are only a little bit
brighter than background. If the two diago-
nals switch from frame to frame, then one of
two motion patterns is clearly seen: Either
the bright spots move horizontally (panel c)
or vertically (panel d), but never both at the
same time. Different stimulus geometries fa-
vor either perceptual outcome: Flat rectan-
gles (panel e) generate predominantly verti-
cal motion percepts, tall rectangles (panel f)
generate predominantly horizontal motion
percepts. When the stimulus geometry is
changed continuously in time, the percep-
tual state tends to persist, leading to percep-
tual hysteresis (panel g). This is a very robust
finding, immune to intentional or semantic
influences and to eye movements, and not
caused by response bias Hock et al., 2005).
Hysteresis is evidence for continuity of the
underlying perceptual state and supports a
dynamical systems account for perception
(Hock, Schöner, & Giese, 2003).

When, on the other hand, the percep-
tion of motion is briefly interrupted while
the stimulus series is presented, hysteresis is
abolished (Hock & Ploeger, 2006; Nichols,
Hock, & Schöner, 2006). A sophisticated
way of demonstrating that fact employs
the background relative luminance contrast



P1: JZP

CUFX212-04 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 15:44

108 schöner
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Figure 4.2. The two frames (a and b) of the
motion quartet stimulus and its two possible
percepts, horizontal (c) and vertical (d) motion,
indicated by white arrows. Motion is seen from
locations at which luminance decreases to
locations at which luminance increases. If the
stimulus is periodically repeated, the direction
of motion is inverted on subsequent frame
changes, but the pattern of horizontal versus
vertical tends to persist. Low aspect ratios (e)
favor vertical, high aspect ratios (f) favor
horizontal motion. When the aspect ratio is
continuously varied from frame to frame (g),
the initially established motion direction tends
to persist, leading to hysteresis, the dependence
of perceptual outcome on the direction of
stimulus change (arrows).

(BRLC; see Figure 4.3). This is the amount
of change in luminance from frame to frame
in relation to how much the spots’ average
luminance is above background. A BRLC
of 2 (panel a) provides the strongest motion
signal. This is when the change of luminance
goes all the way down to background lumi-
nance. BRLCs below two have considerable
contrast in both frames, but more contrast
in one frame than in the other. Near a BRLC
of zero (panel b), there is hardly any lumi-

nance change between frames. When BRLC
is varied, the probability of motion being
perceived varies between these limit cases
(panel c); Hock, Gilroy, & Harnett, 2002).
(This transition from nonmotion to motion
perception is likewise hysteretic, a fact we
shall return to later.) At intermediate lev-
els of BRLC, motion perception is bistable:
Sometimes, motion will be perceived, some-
times not. Thus, if during a stimulus se-
ries that changes the geometry from, say,
flat to tall, the BRLC level is abruptly low-
ered for just a single frame, then on a cer-
tain percentage of trials, the perception of
motion will stop altogether, whereas on the
other trials, motion will continue to be per-
ceived through the perturbation. Hock and
Ploeger (2006) found that hysteresis was
abolished on those trials, on which motion
had stopped, but not on those on which mo-
tion had continued. Thus, whether or not
the direction of motion is preserved over

(a) (b)

BRLC

% motion(c)

12

Figure 4.3. The background relative luminance
contrast (BRLC) is the amount luminance
changes from frame to frame divided by the
distance between average luminance and
background. (a) A BRLC of two means
luminance changes between a high level and
background. (b) A small BRLC means
luminance changes little from frame to frame, so
that all locations in the motion quartet have
similar contrast relative to background in both
frames (c). The probability of perceiving motion
increases with increasing BRLC. The transition
between motion and nonmotion shows
hysteresis, that is, depends on the direction of
BRLC change (arrows).
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dimension, x

activation, u(x)

metric contents

information

Figure 4.4. Activation fields are defined over
the metric space, x, relative to which
information is being represented, for example,
space, feature, or movement parameters.
Activation, u, itself encodes the amount of
information about specific values, for example,
the readiness to activate a specified action or the
certainty of a sensory estimate.

time depends on whether or not motion re-
mained active.

The continuity captured by the dynam-
ical variables of uniquely instantiated de-
scriptions is thus not sufficient to move from
motor control toward movement planning
or to perception. What is missing is a dy-
namic representation of the presence or ab-
sence of plans or percepts. The classical con-
cept of activation can play that role (Spencer
& Schöner, 2003).

4. Dynamical Field Theory

4.1. Activation Fields

To represent metric information in terms of
dynamical state variables, we need two di-
mensions (Figure 4.4). One is the metric di-
mension along which information is speci-
fied. Each location in the field corresponds
to a particular value along the metric di-
mension. For each such value, the activation
level of the field spans the second dimension
that encodes a measure of the amount of in-
formation about that value.

For a sensory representation, the first
dimension may entail parameters whose
values must be estimated from sensory
information. Such parameters may be, for
instance, the location in visual space of a
stimulus, perceptual features such as orien-
tation, spatial frequency, and pitch, or even
relatively high-level parameters, such as the

estimation of the pose of a visual object.
The body scheme is another example,
which may involve estimating joint angles
from proprioceptive information. For such
sensory representations, low levels of acti-
vation at a particular field location indicate
that the value of the represented dimension
associated with that location is not a likely
estimate. High levels of activation mark field
locations that contribute substantially to
the current estimate of sensory information.

For motor representations, metric dimen-
sions may be spanned by movement param-
eters like movement direction or movement
extent, level of force, or movement time.
Low levels of activation at a field location in-
dicate that the associated movement is not a
likely movement plan. High levels of activa-
tion indicate that the movement represen-
ted at that location is close to being initiated,
and activation from that field site will be
handed down to the motor control system.

In this picture, localized peaks of activa-
tion are units of representation. The loca-
tion of the peaks in the field encodes metric
information about the underlying dimen-
sion. The activation level of the peaks is
the strength of representation, which may
variably encode the certainty of an estimate,
the closeness to execution of a plan, or the
physical intensity of a stimulus. A flat distri-
bution of activation, by contrast, represents
the absence of specific information.

The limit case of uniquely instantiated
dynamics is modeled whenever a single posi-
tive peak moves continuously along the met-
ric dimension. Its motion may be described
by an instantiated dynamics in which the
peak location is the dynamical state variable,
whose time course is generated through an
ordinary dynamical system. By contrast, in
the more general conception of a dynamic
field, it is the activation level at each field
location that acts as state variable. Thus,
dynamic fields are infinite dimensional dy-
namical systems, and activation levels rather
than peak locations evolve continuously in
time. Peaks may be suppressed and created.
For instance, harking back to the problem
of coordination, a peak over the dimension
“relative phase” would indicate that relative



P1: JZP

CUFX212-04 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 15:44

110 schöner

phase has a well-defined value. If the move-
ment is stopped, that peak decays. When
movement resumes, a peak could be gen-
erated at a new location, so that relative
phase could start up at a new value. Sim-
ilarly, peaks of activation in a dynamic field
defined over the direction and location of
perceived motion signify the perception of
a particular movement pattern. When the
peaks decay (e.g., because BRLC was low-
ered), the motion percept is lost. When the
stimulus is restored in strength, peaks may
come up at new locations, restoring the per-
cept of motion but potentially in a new
direction.

4.2. Field Dynamics

The dynamical system from which the tem-
poral evolution of activation fields is gen-
erated is constrained by the postulate that
localized peaks of activation are stable ob-
jects, or, in mathematical terms, fixed point
attractors. Such a field dynamics has the
generic form

τ u̇(x, t) = −u(x, t)+ resting level

+ input+ interaction (4.1)

where u(x, t) is the activation field defined
over the metric dimension, x, and time, t.
The first three terms define an input-driven
regime, in which attractor solutions have
the form u(x, t) = resting level+ input. The
rate of relaxation is determined by the time
scale parameter, τ . The interaction stabilizes
localized peaks of activation against decay
by local excitatory interaction and against
diffusion by global inhibitory interaction
(Figure 4.5). In Amari’s formulation (Amari,
1977) the mathematical form is specified as

τ u̇(x, t) = −u(x, t)+ h + S(x, t)

+
∫

dx′w(x − x′)σ (u(x′, t)).

(4.2)

Here, h < 0 is a constant resting level,
S(x, t) is spatially and temporally variable
input function, w(�x) is an interaction ker-

dimension

local excitation: stabilizes
peaks against decay

global inhibition: stabilizes
peaks against diffusion

input

activation field

Figure 4.5. Local excitatory interaction helps
sustain localized peaks of activation, whereas
long-range inhibitory interaction prevents
diffusion of peaks and stabilizes against
competing inputs.

nel, and σ (u) is a sigmoidal nonlinear thresh-
old function (Figure 4.6). The interaction
term collects input from all those field sites,
x′, at which activation is sufficiently large.
The interaction kernel determines if inputs
from those sites are positive, driving up
activation (excitatory), or negative, driv-
ing down activation (inhibitory). Excitatory
input from nearby location and inhibitory

1/2

1

�

x-x'

� (u)

u

w(x-x')

wexcite

winhib

width

Figure 4.6. The interaction kernel, w(�x), in
Amari’s neural field dynamics depends only on
the distance, �x, between the field locations as
illustrated on top. The kernel depicted here is
excitatory only over small distances, whereas
over larger distances, inhibitory interaction
dominates. Only sufficiently activated field sites
contribute to interaction. This is modeled by
sigmoidal threshold functions, such as the one
illustrated on bottom, σ (u)=1/(1+ exp(−βu)).
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dimension

input input

activation
field

activation
field

(a) (b)

dimension

Figure 4.7. The dynamic activation field (solid
line) in response to input distributions (dashed
line). (a) Localized input is applied to the
activation field that is initially at the negative
resting level. This induces a subthreshold peak,
which does not yet engage interaction. (b)
When input is slightly increased, excitatory
interaction pulls the activation peak up, which
in turn inhibits the field elsewhere.

input from all field locations generically sta-
bilize localized peaks of activation. For this
class of dynamics, detailed analytical results
provide a framework for the inverse dynam-
ics task facing the modeler, determining a
dynamical system that has the appropriate
attractor solutions.

A literature on neuronally more realistic
or detailed models includes multilayer field
dynamics (in which excitation and inhibi-
tion are separated, as in real neuronal sys-
tems; Wilson & Cowan, 1972) and models of
spiking neurons (Gerstner & Kistler, 2002).
The qualitative dynamics of the generic
Amari formulation are shared features of
this entire class of neuronal dynamics, how-
ever. In particular, two functionally rele-
vant kinds of attractor solutions arise. The
input-driven attractor is a largely subthresh-
old pattern of activation in which the con-
tribution of the neuronal interaction is neg-
ligible (Figure 4.7a). Self-excited attractors,
by contrast, are localized patterns of acti-
vation with levels sufficient to engage neu-
ronal interaction (Figure 4.7b). In this state,
local excitatory interaction lifts activation
within the peak beyond levels induced by
input, whereas global inhibitory interaction
suppresses levels elsewhere below the levels
justified by the resting level or inputs.

That these two kinds of attractors are
qualitatively different states can be seen
from the fact that there is a dynamical insta-
bility separating them, the detection insta-

bility (see Bicho, Mallet, & Schöner, 2000,
for discussion). This instability can be ob-
served, for instance, if the amplitude of a
single localized input is increased. Below a
critical point, this leads to a subthreshold
input-driven solution (Figure 4.7a). When
input strength reaches a threshold, this solu-
tion becomes unstable and disappears. The
system relaxes to a peaked solution, which
coexists bistably with the (input-driven so-
lution. As a result, the detection decision
is stabilized against small changes of input:
When the input level drops again, the peak is
sustained within a range of input strengths.
This leads to hysteresis, that is, dependence
of the observed state on the direction of
change.

Next to detection decisions, selection
among multiple inputs is another ele-
mentary form of cognition. This function
emerges from a second instability, illustrated
in Figure 4.8. When inputs are sufficiently
strong and metrically close, the detection
instability leads to a peak positioned over
an averaged location. For broad input distri-
butions, averaging may occur in the input
stream, although the excitatory interaction
may bring about averaging even when in-
put is bimodal (as in Figure 4.8a). When
the metric distance between inputs is larger,
however, the dynamic field is bistable, in-
stead. A single peak emerges from the de-
tection decision, localized either at one or at

Figure 4.8. (a) The dynamic activation field
(solid line) may generate a peak at an averaged
position in response to bimodal input (dashed
line) when the input peaks are within the range
of excitatory interaction. (b) At larger distance,
inhibitory interaction dominates, and the field
dynamics becomes bistable: Either a peak
positioned over one input mode may be
generated (black solid line) or a peak positioned
over the other (gray solid line), but not both at
the same time.
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dimensioninput input

(a) (b)

resting
level

activation

dimension

dimension

(c) (d)

activation

resting
level

activation

dimension

activation

Figure 4.9. In the left column, a self-stabilized
activation peak generated in response to a
localized input is only stable while that input is
present (a). When the input is removed (c), the
peak decays to a subthreshold distribution. In
the right column, the input-induced peak (b) is
sustained when input is removed (d). The
difference between the two columns is the
slightly larger resting level (dashed horizontal
lines) on the right.

the other location of input. Asymmetries in
input, fluctuations, or prior activation his-
tory may favor one over the other state, but
competition prevents simultaneous activa-
tion at both locations.

When activation levels are sufficiently
high in the field, many locations have acti-
vation levels above threshold and contribute
to interaction. This may enable the dynamic
field to sustain a peak of activation, even
when the localized input that first generated
the peak (through a detection instability) is
removed (Figure 4.9). Sustained activation
of localized peaks of activation provides a
neural mechanism for metric working mem-
ory (Schutte, Spencer, & Schöner, 2003).
Metric information about past stimulation is
thus preserved over much longer time scales
than the dynamic time scale of individual
neurons or field sites (Amit, 1994).

This is true, of course, only to the ex-
tent to which there are not other localized
inputs that would attract sustained peaks.
Such inputs may be small enough to not be
able to push the dynamic field through the

detection instability. Even so, they may in-
duce drift of sustained peaks (Schutte et al.,
2003; Spencer et al., 2007). Relatedly, small
inputs may be sufficient to trap peaks that
are induced by broad or even homogenous
inputs to the field, which push the field
broadly through a detection instability. This
may lead to categorical representations of
metrically graded inputs (Spencer, Simmer-
ing, & Schutte, 2006).

Instabilities may amplify small differ-
ences. A peak of activation can be induced,
for instance, by providing a homogeneous
boost to the field. Where the peak comes
up then depends on small subthreshold pat-
terns of localized input or any other inhomo-
geneities in the field. Such inhomogeneities
may arise because input connections have
slightly different strengths as a result of Heb-
bian strengthening of those inputs that have
successfully induced peaks. Another simple
form of learning is the laying down of a
memory trace at those field sites at which
peaks have been generated. In either case,
the history of activation may influence on-
going decision making. This is illustrated in
the following section by showing how habits
may be formed and how the behavioral his-
tory biases decisions.

4.3. Behavioral Signatures
of Dynamic Fields

How may dynamic fields, their instabilities,
and their functional modes help understand
the emergence of elementary forms of cog-
nition? We will answer this question in the
context of a few exemplary case studies and
show, at the same time, how behavioral sig-
natures of the neural field dynamics may
provide evidence for the Dynamical Field
Theory (DFT) account of cognition.

Most psychophysics makes use of detec-
tion decisions in one form or another. Are
these decisions related to the detection in-
stability of DFT (Figure 4.7)? Hock, Ko-
gan, and Espinoza (1997) observed that a
psychophysical detection decision was self-
stabilizing when the perceptual alternative
to a detection was perceptually clear. They
asked participants to indicate whether they
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saw apparent motion or flicker between two
spots of changing luminance. The param-
eter they varied was the BRLC discussed
earlier (Figure 4.3). Changing BRLC con-
tinuously in time led to perceptual hystere-
sis, the initially established percept persist-
ing into the regime, in which both motion
and nonmotion percepts were possible (il-
lustrated schematically in Figure 4.3c). The
authors argued that perception is always
based on the activation of ensembles of
neurons. Within such ensembles, interac-
tion supports self-stabilization of patterns of
activation, and this could account for the
observed stabilization of the detection de-
cision in the manner of the detection in-
stability (Figure 4.7). In a follow-up study,
Hock et al. (2004) exposed participants to
motion stimuli of constant BRLC within the
bistable region for a variable amount of time.
They asked participants to report when per-
cepts switched from motion to nonmotion
and vice versa. The resultant switching rates
revealed that the switching probability in-
creased over time both for switches to mo-
tion as well as for switches to nonmotion
perception. This would typically be inter-
preted in terms of selective adaptation, indi-
cating that both the motion and the nonmo-
tion percepts are embodied by neural pop-
ulations that build up inhibition while they
are activated. (See Hock et al., 2003, for
how adaptation relates to dynamical systems
ideas in perception.)

Thus, even though the mean behavior
may be perfectly well described in the clas-
sical threshold manner, psychophysical de-
tection decisions may involve the stabiliza-
tion of decisions through a bistable regime
around threshold. The decisions underlying
selection are less commonly studied, in part,
because tasks in which the stimulus does
not uniquely specify the required choice
tend to be fragile experimentally (e.g., by
being subject to cognitive penetration, re-
sponse strategies, and response bias). The
gaze control system frequently performs se-
lection decisions and is relatively immune
to these problems. Our gaze is reoriented
to new visual targets at a high rate of ap-
proximately three times a second. Selecting

the next visual target is thus one of the most
basic sensorimotor decision problems solved
by the human central nervous systems. Em-
pirically, a transition is observed from aver-
aging for visual targets that can be fovealized
simultaneously to selection when targets
are metrically too far from each other for
that to be possible (van Ottes, Gisbergen,
& Eggermont, 1984). DFT has provided an
account for this transition that captures a
range of experimental details (Kopecz &
Schöner, 1995; Trappenberg et al., 2001).
The most recent addition to that range is
an account for the time course of selec-
tion, with fast saccades tending more to-
ward averaging than slow saccades, because
the competitive inhibition required for se-
lection needs more time to become effective
(Wilimzig et al., 2006).

Development offers another, wonderful
window into the study of selection. Infants
are not at risk of adopting dodgy cognitive
schemes when confronted with a range of
choices and no stimulus that disambiguates
the selection. Instead, they select move-
ment targets reliably, such as in the classical
paradigm of Jean Piaget (Piaget, 1954) in
which two locations, A and B, are perceptu-
ally marked on a box. In the classical version,
a toy is hidden at the A location, covered by
a lid, and after a delay, the box is pushed
toward the infant, who reaches for the A lid
and may also retrieve the toy. After four to
six such A trials, the toy is hidden at the B
location. If a delay continues to be imposed,
young infants below about 12 months of age
are likely to make the A-not-B error, that
is, they persevere and reach to the A loca-
tion rather than the cued B location. Older
infants do not make the perseverative error,
nor do young infants when the delay is short.
Smith et al. (1999) have demonstrated that
a toyless version works just as well: The cue
consists of waving the A or the B lid and
attracting the infant’s attention to the corre-
sponding location. Thus, sensorimotor deci-
sion making is a critical component of this
paradigm.

In the dynamic field account of persevera-
tive reaching (Thelen et al., 2001; Schoner &
Dineva, 2006; Dineva & Schöner, 2007), an
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Figure 4.10. A Dynamical Field Theory model of perseverative
reaching in Piaget’s A not B paradigm represents the planned
movement by an activation field defined over a movement
parameter. A peak over the A location (here at the left-most lid)
represents a reach to A. The dynamic activation field evolves under
the influence of specific input (attracting attention to the A location
by waving the lid), task input (the two visibly distinct lids), boost
(the box with lids is pushed toward the infant), and the memory
trace left by earlier reaches to A.

activation field represents the range of pos-
sible reaching movements, described para-
metrically, for instance, by the direction
of end-effector movement in space (Fig-
ure 4.10). A suprathreshold activation peak
centered over the direction in which either
of the two lids are located represents an in-
tention to move the hand in the correspond-
ing direction. Various forms of input drive
the generation of such a peak. The two lo-
cations are perceptually marked by the lids,
so both associated directions receive perma-
nent “task” input representing the layout of
the reaching space. The cuing action that at-
tracts the infant’s attention to one of the two
locations generates transient “specific” input
to the cued location only. Finally, when the
box is pushed into the reaching space of
the infant, all reaching locations on the box
receive a homogeneous “boost” input. On
later trials, an accumulated “memory trace”
of previous activation patterns also acts as
input, preactivating the locations to which
earlier reaches were directed.

The mathematical model that formalizes
this account is reviewed in the Appendix.
Figure 4.11 illustrates the temporal evolu-

tion of the field and the memory trace over
the course of an “A not B” experiment. On
the initial A trials, the specific input gen-
erates some activation at the cued A loca-
tion, which decays again during the delay.
When the boost is applied after the delay,
this pushes the field through the detection
instability, generating a peak at the A loca-
tion. The small remnant activation advan-
tage of A over B left over from the specific
input is sufficient to bias the decision in fa-
vor of A. The peak at A signifies a reach to A
and a memory trace is laid down at that lo-
cation. This memory trace preactivates the
field near A on subsequent trials, further bi-
asing the selection toward the A location.
The memory trace thus represents the mo-
tor habit formed during A trials.

The memory trace is sufficiently strong
to tip the balance on the first B trial in fa-
vor of the A location. In that trial, the spe-
cific cue provided input to the B location,
but the remnant activation after the delay
is not strong enough to overcome the bias
to A induced by the memory trace. Gener-
ally, when the delay is sufficiently long and
when sufficiently many reaches to A have
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Figure 4.11. Temporal evolution of activation in the
reaching field (top) and the associated memory trace
(bottom) during the time course of an A not B experiment
performed on the Dynamical Field Theory model. Six A
trials are followed by two B trials. In each trial, a specific cue
is presented at A or B, inducing activation at the associated
locations (small bumps in the middle of each trial in the top
graph). During the ensuing delay, these activations decay.
When the boost arrives (ridges along the φ-axis in top graph,
a peak is induced at the location with most remaining
activation. This peak generates a memory trace (bottom),
which biases peak generation on B trials. In these
simulations, the model perseverates by generating peaks at
the A location on B trials.

built enough of a memory trace at A, the
bias to A generates a perseverative reach.

Figure 4.12 shows how the behavioral
history in an individual run of the experi-
ment matters. In this instance, a fluctuation
leads to the generation of a peak at the B
location during an A trial. Such a reach to B
on an A trial is called a spontaneous error.
It leaves a memory trace at B and weakens
the trace at A, predicting increased proba-
bility of a spontaneous error being observed
again and, in particular, a reduced prob-
ability of perseverative reaching. Both are
true in the experiment (Dineva & Schöner,
2007).

Why do older infants reach correctly? In
the DFT account, this is due to a subtle shift
in dynamic regime. Older infants are closer
to the cooperative regime, that is, the regime

in which activation peaks are sustained in
the absence of localized input (right column
in Figure 4.9). This may arise because their
overall level of activation is higher or be-
cause of characteristic changes in neuronal
interaction (Schutte et al., 2003). They are
thus capable of generating a sustained peak
of activation when the specific cue is given
and thus stabilize the reaching decision to-
ward B during the delay against competing
input from the memory trace at A.

In fact, whether or not people are ca-
pable of stabilizing decisions against com-
peting influences depends on a variety of
contextual factors. Toddlers and even 4-
year-olds display perseverative errors, for in-
stance, when toys are hidden in a sandbox
(Spencer, Smith, & Thelen, 2001). After the
toy is hidden, the sand is smoothed over
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Figure 4.12. Another simulation run for the Dynamical
Field Theory model of perseverative reaching. In this
simulation, a fluctuation in activation leads to a spontaneous
error on the fifth A trial: The field generates a peak at the B
location rather than at the A location. This leads to a a
memory trace being laid down at B and the memory trace at
A being weakened. As a result, a second spontaneous error
occurs, and the model responds correctly on the B trials.

and no perceptual marker of the reaching
location is left. On B trials after the delay,
these children search for the toy in the sand
at a location that is metrically attracted to
the A location by as much as half the dis-
tance between A and B. In DFT, this met-
ric bias comes from sustained peaks drifting
during the delay, attracted by the memory
trace input laid down during the A trials .

John Spencer and colleagues have ex-
tended this picture into the domain of spa-
tial working memory (Spencer & Hund,
2002; Hund & Spencer, 2003; Spencer &
Hund, 2003). They had children of var-
ious ages and adults point to a location
on a featureless surface, at which variable
amounts of time earlier a marker had been
displayed. By varying the delay between pre-
sentation of the location and its probe, these
researchers have been able to directly ob-
serve the drift of metric spatial memory.
Drift occurs in the direction of locations pre-
viously held in spatial working memory and

away from any visual landmarks. Older chil-
dren and adults drift less and more slowly.
Here is a set of behavioral data that uncovers
direct behavior signatures of the underlying
neural picture of self-stabilized neural acti-
vation patterns storing metric information
(Schutte et al., 2003)!

5. Discussion

5.1. Is the Dynamical Systems Approach
Embodied and Situated?

Given the abstract mathematics behind the
dynamical systems approach, it is legitimate
to ask whether the approach does, in fact,
embrace the theoretical stance of embodi-
ment and situatedness as announced. Does
the dynamical systems approach take seri-
ously the link of cognitive processes to sen-
sory and motor processes? Does it take into
account the embedding of cognition within
structured environments as well as within
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the behavioral history of an organism? The
more general issue is autonomy, that is, the
continuous flow of experience under both
the action of the individual and the time-
varying sensory information about a chang-
ing environment. Cognition in naturalistic
settings is based on such autonomy. We hu-
mans move seamlessly from decision to de-
cision, generating action on our own time
frame, only exceptionally reacting to stim-
uli, more typically actively controlling sen-
sory flow. We update action plans as new
sensory information arises. When we are in-
terrupted, the last state of our cognitive pro-
cesses continues to be available when we re-
sume an action. Thus, cognitive processing
is never really off-line.

Dynamical systems thinking is all about
autonomy. The theoretical concept of stabil-
ity, at the core of dynamical systems think-
ing, is key to understanding autonomy. Only
if stability is warranted may cognitive pro-
cesses be linked to on-line sensory input.
Linking cognitive processes to motor sys-
tems that act in the real world requires
control-theoretic stability. This includes the
need to stabilize decisions against fluctuat-
ing sensory input and internal neuronal in-
teraction long enough to physically act out
what was decided. Conversely, in a system
that is open to sensory input and that stabi-
lizes decisions, the release from stability is
required to bring about behavioral change.
In fact, instabilities are crucial for under-
standing how the discrete behavioral events
may emerge that structure the continuous
flow of experience.

By applying dynamical systems concepts
at multiple time scales, it is possible to
understand how behavioral history as well
as the history of stimulation matter. The
accumulation of behavioral history is the
basis of learning and adaptation. Indi-
vidual differences may be preserved over
time as differences in experience condition
further differences in behavior.

Even so, one may ask whether the link of
cognitive processes to the sensory and motor
surfaces is really always required. Are clas-
sical information-processing accounts and

many connectionist models not legitimately
simplifying analysis by neglecting those
links? Such simplification may, however,
hide serious problems in the interface be-
tween the abstract information processing
model and the sensory and motor processes
through which cognition is realized. When,
for instance, input units in a neural network
are assumed to encode objects or symbols,
this hides nontrivial processing, including
segmentation, classification, and estimation
of object parameters. Similarly, if a neuron
encodes a motor output, this may hide the
nontrivial processes, of control in realtime,
including reactions to unforeseen perturba-
tions of the effector system.

One qualitative form of demonstration
and exploration of such issues hidden in the
interfaces of cognitive models with the real
world is to implement the models on phys-
ical robotic platforms. A robotic implemen-
tation requires complete specification of the
entire path from the sensory surface to the
cognitive model as well as on to the mo-
tor control system. Robotic function may
require particular environmental conditions
(e.g., uncluttered perceptual scenes), which
expose hidden assumptions about simplifi-
cations and abstractions that may or may not
limit the explanatory power of the cognitive
model.

Dynamical systems thinking has been
tested extensively with robotic implementa-
tions. In fact, an entire approach to robotic
behavior has been developed based on dy-
namical systems thinking (Schöner, Dose, &
Engels, 1995). Implementations have some-
times used very simple sensory systems and
simple motor control strategies that did not
include a detailed model of the plant (Bicho
& Schöner, 1997). On the other hand, more
complex systems with more highly devel-
oped cognitive processes have also been
demonstrated (Bergener et al., 1999). The
conceptual framework includes DFT em-
ployed to endow robots with representa-
tions (Engels & Schöner, 1995; Bicho et al.,
2000; Erlhagen & Bicho, 2006; Faubel &
Schöner, 2006). By generating complex be-
havioral sequences from attractor dynamics
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that undergo instabilities, these implemen-
tations have demonstrated how autonomy
emerges in dynamical systems architectures
(Steinhage & Schöner, 1998; Althaus &
Christensen, 2003).

Is dynamical systems thinking primarily
limited to the sensorimotor domain? His-
torically, dynamical system thinking arose
from work on movement coordination, and
this review reflected that history. This his-
tory sets dynamical systems thinking apart
from both the classical information process-
ing approaches and connectionism and is
reflected in the relationship between dy-
namical systems thinking and the embod-
ied and situated conception of cognition.
Much of the recent development of the dy-
namical systems approach, however, moves
well beyond the sensorimotor domain. This
newer work was only briefly touched, refer-
ring to accounts for working memory, cate-
gory formation, and object recognition, for
instance. DFT has been critical to the exten-
sion of dynamical systems thinking beyond
the sensorimotor domain. In fact, through
DFT, the concept of representation could
be integrated into dynamical systems think-
ing (Spencer & Schöner, 2003). The DFT
framework gives the concept of representa-
tion a very concrete, embodied sense. For
instance, self-stabilized peaks induced by
sensory information “re-present” that sen-
sory information even when it is no longer
available at the sensory surface. Similarly,
self-stabilized peaks are “re-presentations” of
motor decisions when they stabilize these
decisions while they are not (yet) acted
out. The strongly interacting neuronal dy-
namics of DFT are thus capable of achiev-
ing the two qualities that define representa-
tions: First, they enable the coupling to the
sensory and motor surfaces through which
representations establish and maintain links
to the outside world. Second, they stabi-
lize these representations, which thus con-
tinue to be effective even when no longer
linked to sensory or motor systems. This is
a sense of representation close to that in-
voked by the neuroscientist Joaquı́n Fuster
(2005) as a universal feature of the cerebral
cortex.

5.2. Is the Dynamical Systems Approach
Neurally Based?

The second component of the embodied
stance requires accounts to be consistent
with principles of neural function. Do the
abstract mathematical concepts of the dy-
namical systems approach live up to this re-
quirement?

Biophysically, neurons really are, of
course, little dynamical systems (Wilson,
1999). The historical origin of the concept of
dynamic neural fields comes from biophys-
ical models of cortical activation dynam-
ics (Wilson & Cowan, 1972, 1973; Amari,
1977). The insight that cognitive function is
best described in terms of neural dynamics
is probably due to Grossberg (1980).

On this basis, the two branches of dynam-
ics systems thinking reviewed in this chap-
ter may be roughly mapped onto two forms
of neuronal coding. In rate coding, differ-
ent levels of firing rate are assumed to rep-
resent different states of a sensor or effec-
tor system. This form of coding is typical at
the periphery of the nervous system. Mo-
tor neurons, for instance, bring about dif-
ferent levels of force production in muscles
when active at different rates. Interestingly,
even in these simplest cases, the actual phys-
ical state of the associated muscle–joint sys-
tem depends on the resistance encountered
and on local reflex loops requiring a proper
dynamical understanding of the embodied
and situated system (Latash, 1993). The
uniquely instantiated dynamical systems ap-
proach generalizes the rate code principle to
include forms of instability from which qual-
itatively new neural functions may emerge
as the neuronal dynamics change gradu-
ally. Even invertebrate nervous systems, in
which rate coding is the prevalent form of
neural representation (Bullock, Orkand, &
Grinnell, 1977), provide examples of such
instabilities. In these systems, neurons may
switch allegiance among different patterns
of neuronal activity that are responsible for
different elementary behaviors. When suffi-
ciently large populations of neurons switch,
a macroscopic change of behavior may re-
sult, for instance, a switch to another pattern
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of coordinated activity in Central Pat-
tern Generators (Nusbaum & Beenhakker,
2002).

The other form of neuronal representa-
tion is based on the space code principle,
which states that what a neuron represents
is determined by its position within the neu-
ronal network. The firing rate then merely
expresses how strongly the information rep-
resented by each neuron contributes. The
space code principle is typically assumed to
be prevalent in the central nervous system
of vertebrates. In vertebrate nervous sys-
tems, space coding is postulated for cortex
but also such subcortical structures as the
thalamus, colliculus, or the hippocampus.
Dynamic neuronal fields are direct abstrac-
tions of neuronal representations based on
the space coding principle.

The concept of a dynamic neuronal field
adds two assumptions to the space code
principle. First, dynamic fields postulate a
topology, in which neurons representing
metrically similar contents interact exci-
tatorily, whereas inhibitory interaction re-
lates neurons across the represented met-
ric dimension. This principle is consistent
with the existence of topographic maps, in
which neighborhood relationships on the
sensory or motor surface are preserved in
neuronal representation. Within such maps,
local excitatory interaction is typically ob-
served (Douglas & Martin, 2004). The over-
lapping patterns of input activation together
with local excitatory interaction justify the
continuous description of neuronal patterns
of activation on which DFT is based.

A topographical layout of functional
maps is not the only way in which this
basic assumption of DFT can be realized.
Population coding is a more general way
for dynamical fields to be realized (Jancke
et al., 1999; Erlhagen et al., 1999). The con-
ception of population coding is based on
the observation that cortical and subcorti-
cal neurons typically have broadly overlap-
ping tuning functions, so that for any given
perceptual or motor state, many neurons
are active (Georgopoulos, Schwartz, & Ket-
tner, 1986). This is true of most cortical
maps, but also of brain structures without

apparent topographical order such as the
motor and premotor cortices with respect
to movement parameters such as the direc-
tion of end-effector motion or the spatial di-
rection of end-effector force (Georgopoulos
et al., 1992). In some instances, researchers
were able to show that interaction is ex-
citatory among neurons coding for metri-
cally similar values of movement parameters
(Georgopoulos, Taira, & Lukashin, 1993).
A systematic mapping of neuronal popula-
tion coding onto dynamic fields can be based
on the concept of Distributions of Popula-
tion Activation, in which not only the most
active neurons and their preferred stimulus
or motor state are taken into account, but
the entire distribution of activation is inter-
preted (Erlhagen, Bastian, Jancke, Riehle, &
Schöner, 1999; Bastian, Schöner, & Riehle,
2003).

Dynamic field theory makes the second
major assumption that under some circum-
stances neuronal interaction can be domi-
nant in the sense that activation patterns
are not necessarily dictated by afferent input
but may be stabilized by interaction from
“within” a neuronal representation. Neu-
roanatomically, the vast majority of neu-
ronal connections are not part of a unidirec-
tional feed-forward path from the sensory
to the motor surfaces (Braitenberg & Schüz,
1991). This fact speaks in favor of the as-
sumption that interaction may be dominant.
There is still not much general understand-
ing of the strength and effectiveness of neu-
ronal interaction compared with neuronal
input from the sensory surfaces. This may in
large part be a consequence of the method-
ological bias toward input-output character-
izations, for which we have a large ensemble
of powerful techniques available. By con-
trast, the identification of strong forms of
neuronal interaction is comparatively more
difficult and methodologically not system-
atized.

Does any structure in the brain “read”
population codes or cortical maps? In other
words, could one ignore the structure of
neuronal representations built on the space
code principle and instead study cognition
at a “higher” level, at which symbols and
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their manipulation might be directly rep-
resented? Although there have been the-
oretical analyses of how population codes
may be “read” (Seung & Sompolinsky, 1993;
Denève, Latham, & Pouget, 1999), it is
difficult logically to answer this question.
What one can say is that a transformation
into a different coding regime for higher
brain function is unnecessary and not jus-
tified by any data. Furthermore, it is easy to
conceive of dynamical principles that gov-
ern neuronal function all the way through
to the effector systems. In this view, sta-
ble patterns of neuronal activation ulti-
mately steer the periphery into dynamical
states, from which behavior emerges, with-
out any need to ever abstract from the space-
time contiguous processes that embody
cognition.

All this having been said, the dynami-
cal systems approaches sketched here do re-
main at a certain level of abstraction. More
detailed neuronal realism may entail taking
into account the spiking nature of neuronal
interaction, cellular processes both at the
level of activation dynamics and their mod-
ification by processes of learning and adap-
tation. What is the right level of abstraction
for an understanding of neuronal function?
This question may be difficult to answer in
general. It is useful to keep in mind, how-
ever, that all answers to this question are
subject to critical assessment. If one assumes
primacy of the micro level, then the flight
toward the microscopic would find no end.
Why wouldn’t molecular or even atomic
levels of description be privileged over cel-
lular descriptions, for instance?

So what are the arguments in favor of
the particular neural level of description at
which our dynamical systems approach is so
effective? The answer lies within the em-
bodied stance: It is mass action in the ner-
vous system that is correlated with those
motor and sensory parameters to which cog-
nition is sensitive. Neural activity of pop-
ulations of neurons in various parts of the
central nervous system modulate their tem-
poral evolution with the demands of cog-
nitive tasks. The time courses of popula-
tion activation are predictive of behavioral

events (Shadlen & Newsome, 2001; Schall,
2001; Bastian et al., 2003), and the met-
rics of distributions of population activation
are predictive of the metrics of behavioral
responses (Cisek & Kalaska, 2005). Simi-
lar arguments can be made for the instanti-
ated dynamical systems approach (Schöner
& Kelso, 1988a).

The level of description of DFT makes
explicitly the assumption that the tempo-
ral discreteness of neuronal spiking is un-
related to cognitive and behavioral events.
Such events must therefore be understood
as emerging from an underlying temporally
continuous process. Analogously, the as-
sumption is made that the discrete nature of
neurons is unrelated to any cognitive or be-
havioral discreteness. In particular, the for-
mation of discrete cognitive categories is un-
derstood as emerging from an underlying
continuum of neuronal representation.

5.3. What Kind of Account Does
Dynamical Systems Thinking Generate?

If all practical difficulties were removed,
what would an ultimate dynamical systems
account of cognition look like? It is easier to
say what it would not look like. It would
not look like the ultimate information-
processing model of cognition, with all cog-
nitive processing units listed and their path-
ways of information exchange identified.
Nor would it be like the ultimate connec-
tionist network model, the layers of which
would encode all existing neural represen-
tations and the network topology of which
would reflect the neuronal architecture.

In fact, in dynamical systems thinking,
the conceptual interaction with experiment,
proposing new questions and new measures,
has been more important than the mod-
els that resulted. In that sense, dynamical
systems thinking is primarily aimed at de-
veloping a generative theoretical language
that facilitates the uncovery of regularities
in nervous systems. Models are tools to test
concepts both for internal consistency and,
through quantitative theory-experiment re-
lationships, for consistency with nature.
Models are not by themselves the main goal
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of a dynamical systems approach to cogni-
tion.

This emphasis on concepts over models is
fostered by a central property of dynamical
systems, sometimes designated as emergence.
Attractors in a dynamical system emerge
when the conditions are right (when param-
eters have particular values). The dynamical
system relaxes to a new attractor when the
history is right, so that the initial condition
puts the system in a position from which
the attractor is reached. Both may occur in
response to changes that are not specific to
the newly realized attractor. For instance,
a change of resting level in a dynamic field
may lead to the attractor state, in which a
localized peak is sustained in the absence of
localized input. The resting level does not
specify any particular location for a peak,
nor that a peak must be generated. But ev-
erything else being equal, a peak may per-
sist stably only when the resting level is suf-
ficiently large. That attractor is the basis of
such cognitive functions as working memory
or sensorimotor decision making. These ca-
pacities may thus emerge from a neural field
dynamics in the here and now, in response
to inputs or global changes. These capacities
are not enclosed in a particular module that
sits somewhere in the brain, waiting to be
invoked. Instead, the same neuronal dynam-
ics may under some circumstances have the
cognitive functions of working memory and
decision making and, under other circum-
stances, lose these functions. Any individ-
ual contribution to the neuronal dynamics
is thus multifunctional.

Conversely, there are multiple ways a
new stable state may emerge as well as dis-
appear again (multicausality). There is quite
possibly no single parameter that is strictly
necessary or is always sufficient for a given
cognitive function to emerge. Even a com-
plete understanding of the dynamics of the
neural cognitive system is not by itself suf-
ficient to predict all possible ways cognition
may unfold when an organism is immersed
in a new and rich environment. When pro-
cesses of adaptation and learning incorpo-
rate parts of the environment and of expe-
rience into the system, the resultant com-

plexity may become inextricable (Rosen,
2005).

Dynamical systems thinking is in that
sense open ended. It is not aimed, even
in principle, at an ultimate model, which
would include process models of all cogni-
tive, sensory, and motor capacities of the hu-
man. Instead, it is aimed at understanding
constraints for learning and development,
for how individual differences may manifest
themselves in different contexts, how indi-
vidual learning and developmental histories
may lead to the same function. So although
we may never be able to predict how a child
moves about in the playground, which swing
or slide she will select, we may very well
understand how progress in her motor skills
may improve her spatial orientation or how
perceptual experience with a set of objects
will impact on what she pays attention to
when naming a new object.

Appendix: Dynamical Field Theory
of Perseverative Reaching

The dynamic field theory of perseverative
reaching has its roots in a metaphorical dy-
namical systems account of Piaget’s A not B
error (Thelen & Smith, 1994). A first for-
malization into a mathematical model was
reported in (Thelen et al., 2001). Concep-
tual errors in that earlier account were cor-
rected by Evelina Dineva, and it is her model
that I review here (Schöner & Dineva, 2006;
Dineva & Schöner, 2007).

A dynamical activation field is defined
over the space of movement directions, φ,
of the infant’s hand. This is the “reaching”
field, u(φ, t). Its dynamics has the form of
an interactive neuronal field (Amari, 1977)
receiving a set of inputs:

τ u̇(φ, t) = −u(φ, t)+ h

+
∫

dφ′w(φ − φ′)σ (u(φ′, t))

+ Stask(φ)+ Sspec(φ, t)

+ Sboost(t)+ uhabit(φ, t).

(4.3)
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Here, τ u̇(φ, t) = −u(φ, t)+ h sets the acti-
vation field up as a dynamical system with
resting state u(φ) = h < 0, a homogenous
stationary stable state in the absence of input
and interaction, to which the field relaxes on
the time scale, τ . Interaction consists of in-
put from other field locations, φ′, which is
excitatory or inhibitory, depending on the
interaction kernel

w(φ − φ′) = wexcitatory

exp
[
−(φ − φ′)2/2�

]
− winhibitory.

(4.4)

For sufficiently close field locations (|φ −
φ′| < �), the intra-field connectivity
is predominantly excitatory (wexcitatory >

winhibitory), for larger distances it is in-
hibitory. Only sites, φ′, with sufficiently pos-
itive levels of activation contribute to inter-
action, as controlled by the nonlinear sig-
moidal function

σ (u) = 1
1+ exp(−β u)

(4.5)

whose parameter, β, controls how nonlinear
the interaction term is.

The input functions, Stask(φ), Sspec(φ, t),
and Sboost(t) model the experimental sce-
nario. The task input, Stask, captures the vi-
sual layout of the workspace and is modeled
as a sum of two gaussians centered over the
two movement directions, in which the two
locations, A and B, lie. The specific input,
Sspec(φ, t), captures the experimenter’s ef-
fort to attract attention to the A location
on A trials and to the B location on B tri-
als. It is modeled as a gaussian centered on
the corresponding location that is nonzero
only during the time interval during which
the experimenter performs this stimulation.
The boost, Sboost(t), captures the effect of
pushing the box with the two lids into the
reaching space of the infant. It is modeled as
a positive constant present only during the
time interval when the box is in reaching
space.

Finally, the formation of a habit of reach-
ing is modeled by a second dynamical acti-
vation field, uhabit(φ, t), which evolves over
a longer time scale, τhabit, and forms a mem-
ory trace of locations in the reaching field,
u(φ, t), at which sufficient levels of activa-
tion have been generated. The dynamics of
this memory trace is modeled as follows:

τhabit uhabit(φ, t)

= [−uhabit(φ, t)+ chabitσ (u(φ, t))]

× �

(∫
dφ′�(u(φ′, t))

)
. (4.6)

The last term turns the memory trace mech-
anism off if there is no positive activity any-
where in the reaching field. This makes use
of the step function, �(u) = 1 if u > 0 and
�(u) = 0 while u ≤ 0. Thus, during epochs
in which there is no activation in the reach-
ing field, the memory trace remains un-
changed. This captures the observation that
inter-trial intervals do not seem to matter
much in the A not B paradigm. In fact, per-
severative tendencies persist through con-
siderable delays.

When an activation peak has been in-
duced in the reaching field, then the mem-
ory trace mechanism leads to increase of the
memory trace in locations on which the peak
is centered, whereas activation elsewhere in
the memory trace decays toward zero. Thus,
a dynamical balance emerges between dif-
ferent locations at which peaks are induced
in different trials. The constant, chabit, deter-
mines the amplitude of the memory trace.
In Dineva’s implementation of this dynam-
ics, a memory trace is laid down only during
the interval when the box is in the reach-
ing space (that is, while the boosting input
is present). At the end of a trial, the peak
in the reaching field is deleted, and the field
starts the next trial from its resting state (Fig-
ures 4.11 and 4.12).

Neuronal activity in the nervous system
has a stochastic component. To account for
fluctuations in activation, which make the
outcome of reaching decisions nondetermin-
istic, the model contains stochastic forces.
The generic model for such forces is additive
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gaussian white noise. This noise may be spa-
tially uncorrelated at different field sites or
also be correlated, modeling stochastic input
distributed by input kernels.

To simulate DFT models, the equations
must be numerically solved on a com-
puter using standard numerical procedures
(Kloeden & Platen, 1999). Simulating the
experimental paradigm typically requires
programming the time courses of sensory
inputs that describe the experience in such
paradigms. Under some circumstances, this
may include the need for sensor and mo-
tor models, in which the sensory conse-
quences of a motor act driven from the DFT
model is also taken into account (Steinhage
& Schöner, 1998).
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(1988). Dynamics governs switching among
patterns of coordinations in biological move-
ment. Physics Letters, A134, 8–12.
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CHAPTER 5

Declarative/Logic-Based Cognitive Modeling

1. Introduction

1.1. What Is Logic-Based Computational
Cognitive Modeling?

This chapter is a systematization of a partic-
ular approach to modeling the mind: declar-
ative computational cognitive modeling. (In
light of the fact that if an agent knows
p, p must be a proposition or declarative
statement, sometimes the term “knowledge-
based” is used in place of “declarative.” Some
writers use the term “symbolic.”) The basic
units of such modeling are declarative, or
propositional: They are formal objects asso-
ciated with those particular sentences or ex-
pressions in natural languages (like English,
German, Chinese) that are declarative state-
ments (as opposed to expressions in the im-
perative or inquisitive mode) taking values
such as true, false, unknown, and proba-

ble (sometimes to particular numerical de-
grees). The basic process over such units is
inference, which may be deductive, induc-
tive, probabilistic, abductive, or analogical.
Because the basic units of declarative com-
putational cognitive modeling are declar-

ative, a hallmark of declarative computa-
tional cognitive modeling is a top-down,
rather than bottom-up, approach. As Brach-
man and Levesque (2004) put it, when
speaking of declarative computational cog-
nitive modeling within the field of artificial
intelligence (AI):

It is at the very core of a radical idea about
how to understand intelligence: instead of
trying to understand or build brains from
the bottom up, we try to understand or
build intelligent behavior from the top
down. In particular, we ask what an agent
would need to know in order to behave in-
telligently, and what computational mech-
anisms could allow this knowledge to be
made available to the agent as required.
(p. iv)

The top-down approach is unavoidable, be-
cause, as reflected in relevant formalisms
commonly associated with bottom-up ap-
proaches (e.g., artificial neural networks),
the basic units in bottom-up processing are
numerical, not declarative. The systematiza-
tion of declarative computational cognitive

127
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modeling, the overarching purpose of the
present chapter, is achieved by using for-
mal logic; hence, declarative computational
cognitive modeling, from the formal per-
spective, becomes logic-based computational
cognitive modeling (LCCM).

Logic-based computational cognitive
modeling is an interdisciplinary field that
cuts across cognitive modeling based on cer-
tain cognitive architectures (such as ACT-R,
Soar, CLARION, Polyscheme, etc.), logic
itself, and computational psychology of
reasoning. In addition, LCCM has a sister
field in logic-based human-level artificial in-
telligence (AI), and, being computational, it
inevitably draws heavily from computer sci-
ence, which is itself, as has been explained
(e.g., in Halpern et al., 2001), based on for-
mal logic. Specifically, and unsurprisingly,
the declarative programming paradigm is
naturally associated with declarative com-
putational cognitive modeling.

1.2. Level of Description of LCCM

This chapter is pitched at a level of de-
scription having nothing to do with sup-
porting one group of practitioners in com-
putational cognitive modeling over another
or one paradigm for computational cogni-
tive modeling over another, or one particular
cognitive architecture or model over others.
Logic-based computational cognitive mod-
eling as set out herein, is not a description
of the day-to-day practice of all cognitive
modelers operating under the umbrella of
declarative computational cognitive model-
ing. Such practice is heterogeneous. Logic-
based computational cognitive modeling is a
formal framework, one directly analogous to
what enabled the systematization of mathe-
matics provided by many decades of formal
exposition in books authored by Bourbaki1 –

1 A group allonym for the mathematicians who au-
thored a collection of eight painstakingly rigorous,
detailed books showing that all the publishable re-
sults of classical mathematics can in fact be ex-
pressed as derivations from axiomatic set theory
using the logical system known as first-order logic,
which is LI in the family F of systems introduced
and explained in the present chapter. The starting
place in the Bourbaki oeuvre is Bourbaki (2004).

exposition that shows that discovery and
confirmation in mathematics consists, fun-
damentally, in the derivation and use of the-
orems all extractable from a small set of
axioms (e.g., the Zermelo-Fraenkel axioms
for set theory). The parallel in the present
chapter is that all declarative computational
cognitive modeling is fundamentally the
use of logical systems and logic-based com-
puter programs to model the human mind.
In contemporary declarative computational
cognitive modeling, one researcher may in
daily practice use production rules, another
first-order logic, another graphs to record
probability distributions across declarative
statements, another semantic models, and
yet another semantic networks, but they
are all united by the fact that the struc-
tures and processes they produce are all
and only parameterized instantiations of
the formal structures explicated in this
chapter.

Furthermore, the purpose of this chap-
ter is not to introduce a new competitor
to extant, mature computational cognitive
architectures, such as Soar (Rosenbloom,
Laird & Newell, 1993), ACT-R (Anderson
1993; Anderson & Lebiere, 1998; Ander-
son, & Lebiere, 2003), CLARION (Sun,
2002), ICARUS (Langley et al., 1991),
SNePS (Shapiro & Rapaport, 1987), and
Polyscheme Cassimatis, 2002; Cassimatis
et al., 2004), nor to declarative computa-
tional simulations of parts of human cog-
nition, such as PSYCOP (Rips, 1994), and
programs written by Johnson-Laird and oth-
ers to simulate various aspects of so-called
mental models-based reasoning (a review
is provided in Bucciarelli & Johnson-Laird,
1999). These systems are all pitched at
a level well above LCCM; they can all
be derived from LCCM. The formal um-
brella used for the systematization herein
is to offer a way to understand and ra-
tionalize all computational cognitive archi-
tectures that are declarative, that is, that
are, at least in part, rule-based, explicitly
logic-based, predicate-and-argument-based,
propositional, and production-rule-based.
The ancient roots of this kind of work date
back to Aristotle.
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The formal foundations of declarative
computational cognitive modeling are strai-
ght-forward: They rest only on a general-
ization of (a) the concept of logical system,
used in mathematical logic; and (b) the no-
tions of reasoning and computing in such
systems, by way of logic-based computer
programs. A computational simulation of
some human cognition amounts to the exe-
cution of such a program in the context of
certain selected parameters, where these pa-
rameters determine which logical system is
operative. All of this will be explained in due
course.

1.3. The Ancient Roots of LCCM

Declarative computational cognitive model-
ing is the oldest paradigm for modeling the
mind. As shown in the standard timelines
on such matters, over 300 years b.c., and
hence many centuries before the arrival of
probability theory and artificial neural net-
works, logic and logic alone was being used
to model and predict human cognition. For
example, consider the following argument:

(1) All professors are pusillanimous
people.

(2) All pusillanimous people are proud.
∴ (3) All professors are proud.

The symbol ∴ , often read as “therefore,” says
that statement (3) can be logically inferred
from statements (1) and (2); or in other
words that if statements (1) and (2) are true,
then (3) must be true as well. Is that so?
The odds are exceedingly good that you will
see the answer is “Yes.” The cognition that
consists in your assimilating this argument,
declaring it valid, and – were you requested
to do so – providing a proof to justify your re-
sponse, was modeled and predicted by Aris-
totle.2 To use today’s well-understood con-
cept, which will soon turn out to be central
to the present chapter, Aristotle’s modeling

2 Aristotle’s work on logic, including the theory of the
syllogism, can be found in his Organon, the collec-
tion of his logical treatises. This collection, and Aris-
totle’s other main writings, are available in McKeon
(1941).

was expressed in a primitive logical system.
This system was the theory of the syllogism,
according to which the schema

(1∗) All As are Bs.
(2∗) All Bs are Cs.

∴ (3∗) All As are Cs.

is deductively valid, no matter what classes
are denoted by A, B, and C. According to
Aristotle, if you were now to be presented
with an instantiation of this schema different
from the one given about professors (e.g., if
A= pigeons, B = pongid, C = smart) you
would respond that it, too, is a valid infer-
ence (and you would of course be correct
again). The noteworthy thing about your re-
sponse in the second case is that you will
grasp the logical validity of the inference
in question, despite the fact that, necessar-
ily, no pigeons are pongid. In other words,
Aristotle discovered that certain context-
independent structures describe and pre-
dict human thinking: You do not assent to
the second argument because you know the
meaning of “pigeon” and “pongid,” but rather
because you grasp that the abstract struc-
ture of the argument is what makes it a
valid inference. Because computation was
in its infancy 300 b.c., and the concept of
a general-purpose programmable computer
would have to wait until logic made enough
progress to give birth to it, it was far from
clear to Aristotle how the schemas in his
logical system were computational, but in
essence, he had indeed presented a series of
parameterized functions for computing the
composite function from triples of formu-
las in the formal language he invented to
the set {valid, invalid}. If the function is s,
then because the formulas are of four types,
namely,

English Abbreviation
All As are Bs. All AB
No As are Bs. No AB
Some As are Bs. I AB
Some As are non-Bs. O AB̄

one can say that s returns valid on the triple
(All AB, All BC, All AC), with substitutions
for A−C. For another example, notice that
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s returns valid on the triple (I AB, All BC,
I AC). Later, an invalid triple will turn out
to be relevant to modern-day research in
psychology of reasoning (Section 3.1.4).

Today, using modern experimental de-
sign and statistical analysis for the behav-
ioral sciences, a large amount of data has
been accumulated in support of large parts
of Aristotle’s model (e.g., see Newstead &
Evans, 1995). However, there are two se-
rious problems with the theory of the syl-
logism. These two problems are in fact the
main drivers that have brought LCCM to
the level of maturity it enjoys today, and
explaining the solution to them forms the
heart of the present chapter. They are:

Problem 1: Some humans do not reason
in normatively correct fashion. Tied
to the ancient theory at hand, some
human subjects fail to reason in con-
formity to valid syllogisms (i.e., to s),
and in fact sometimes reason in con-
formity to provably invalid syllogisms.
Aristotle, and his successors in the
LCCM paradigm all the way up to
and including Piaget (who held that in
the course of normal development hu-
mans would acquire a capacity to think
not only in accordance with the theory
of the syllogism, but with the more
expressive, powerful modern logical
system known as first-order logic [In-
helder & Piaget, 1958]), failed to re-
alize this. The realization came when,
in the twentieth century a.d., Wason
and Johnson-Laird showed that nor-
matively correct thinking is in sur-
prisingly short supply among humans
(see, e.g., Wason, 1966), as can be
seen when clever stimuli are devised
and presented. (Such stimuli are vis-
ited later, in Section 3.1.4. They are
syllogisms that, by s, are classified as
invalid, and yet many humans report
that they are valid.)

Problem 2: The theory of the syllogism
was agreed by the relevant thinkers,
even at the time of Aristotle, to be
at best a model of only a smidgeon of
the parts of human cognition that are

obvious targets for declarative model-
ing (e.g., the specification of proofs,
as routinely carried out by mathemati-
cians). The specific evidence that gave
rise to this agreement consisted of the
brute fact that only a tiny part of Eu-
clid’s seminal logical and mathematical
reasoning, published in his Elements,
could be modeled as syllogistic reason-
ing (Glymour, 1992). Today, courtesy
of modern logic, LCCM can model all
that Euclid did – and more, as shall be
seen.

1.4. LCCM’s Sister Discipline:
Logic-Based Human-Level AI

Artificial intelligence is the field devoted to
building intelligent agents that map percepts
(perceived information about the agent’s en-
vironment) to actions that cause changes in
the agent’s environment, in the service of
goals desired by the agent (Russell & Norvig,
2002). This definition is consistent with at-
tempts to build agents having no more intel-
ligence than, say, an insect. (Some famous
AI engineers have in fact strived to build
robotic insects. Brooks, 1991, is an exam-
ple.) Human-level AI is AI focused not on
insects, but on intelligent agents capable of
human-level behavior. Recently, a recrude-
scence of this form of AI has begun, as a
number of writings confirm (e.g., see Cassi-
matis, 2006; Nilsson, 1995; Nilsson, 2005;
Brooks et al., 1999). Of the authors just
cited, Nilsson avowedly pursues logic-based
human-level AI, whereas Brooks avowedly
does not; Cassimatis straddles both camps.

How are LCCM and human-level logic-
based AI related? The encapsulated answer
is straightforward: The two fields are largely
based on the same formalisms, both ex-
ploit the power of general-purpose pro-
grammable computing machines to process
symbolic data, but LCCM targets compu-
tational simulations of human cognition,
whereas human-level logic-based AI, strives
to build beings that, at least behaviorally
speaking, can pass for humans. Although it
is conceivable that both fields might well
be on the same exact path (one that leads
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to building a computational system indis-
tinguishable from a human), LCCM insists
that the engineered system, at some suit-
ably selected level of description, operates
as a human does. Human-level AI would
be content with artifacts that seem human,
but “under the hood” really are not. As to
shared formalisms, interested readers are di-
rected to treatments of logic-based AI that
introduce the relevant technical material
(summarized, e.g., in Bringsjord & Ferrucci,
1998a; Bringsjord & Ferrucci, 1998b; Nils-
son, 1991). The present chapter provides
more modern, systematic, and comprehen-
sive treatment of the underlying formal con-
tent than provided in these publications.

1.5. Different Levels of Description

This chapter is based on an ecumenical con-
ception of what it is to computationally
model human thinking, particularly human
reasoning over declarative content. (Because
of space constraints, the exposition herein
leaves aside psychology of decision mak-
ing, despite the fact this discipline is highly
declarative, as revealed by the fact that sem-
inal experiments in the field present subjects
with declarative statements to be reasoned
over in order for decisions to be expressed.
For exemplars, see the experiments carried
out by Kahneman and Tversky (2000) to es-
tablish the so-called framing effect.) To ex-
plain, consider the structure of the kind of
experiments traditionally used in psychol-
ogy of reasoning.3 Let S be some stimulus in
some experiment involving a person (sub-
ject) P , and specifically assume that S is
constituted by a list L of declarative state-
ments, a query (or “stem,” to use the argot
of psychometrics) Q, and possibly a single
declarative statement D to which Q refers.
(If there is no D in S, then Q is simply:
“What logically follows from L?”) The last
ingredient is simply a request for a justifica-

3 For prominent use of this structure in psychology
of reasoning, one can read nearly any experiment-
based work in that field. For an example of the
structure in action, on a topic that bears directly
on the present chapter, see for example, Johnson-
Laird et al. (2000).

tion. For example, one might present to P a
stimulus such as the following:

Consider L. Q = Does the following
proposition logically follow from L? D.
Please provide a justification for your
answer.

Now suppose that P gives a verdict (“Yes”
or “No”) and provides justification J . To
achieve a computational simulation of P
in this context, given the inclusive orien-
tation of this chapter, it suffices to pro-
duce a computer program that takes in S,
produces the relevant verdict (e.g., the ver-
dict given by the vast majority of subjects,
the normatively correct verdict, etc.), and
gives a proof or argument that matches the
justification given. (This is not easy to do,
because humans often give justifications, es-
pecially when erroneous, that depart con-
siderably from established machine reason-
ing patterns.) The proof or argument itself,
in the logic-based paradigm, constitutes the
algorithm for transforming the stimulus in
question into the output. Put in a way con-
nected to traditional accounts of levels of
description found in cognitive science, logic-
based computational cognitive models are
intended to be successful at Marr’s (1982)
algorithmic level, or Pylyshyn’s (1984) sym-
bolic level. In addition, please note that it
is perfectly acceptable that justification be
articulated by subjects on the basis of in-
trospection, as long as established empirical
techniques are used, such as verbal proto-
col analysis (Ericsson & Simon, 1984). In
the sequel, when a series of specific puz-
zles are considered as stimuli (in Section
3.1), in the interests of space, and consistent
with the formal orientation of the present
chapter, details concerning the normatively
correct and incorrect justifications typically
provided by subjects are suppressed.

1.6. Brief Overview of the
Three Challenges

In general, scientific fields and subfields are
devoted to addressing various challenges
and problems. Whereas, say, physics can be
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explained in terms of its meeting certain
challenges to model physical phenomena,
logic-based computational cognitive model-
ing can be explained in terms of its meeting
challenges to model certain cognitive phe-
nomena. Three challenges in the cognitive
realm are discussed in this chapter, with em-
phasis falling on the first. They are:

• (C1): Human reasoning, although in its prim-
itive forms, uncovered and charted through
decades of research in psychology of reason-
ing and psychology of decision making, and,
in its more mature forms, through advances
in the closely connected fields of logic, for-
mal philosophy, mathematics, (parts of) eco-
nomics, and computer science (the so-called
formal sciences), has for the most part not
been modeled and computationally simulated
in declarative computational cognitive mod-
eling, as evidenced, for example, by what has
been modeled in the declarative computa-
tional cognitive architectures associated with
LCCM.

• (C2): Although a number of computational
cognitive architectures have been developed
in the striving for Newell’s (Newell, 1973;
Newell, 1990) original dream of providing
a unified computational account of human
cognition, the core underlying mechanisms
that they each individually offer (e.g., produc-
tion rules, representation and reasoning in the
propositional or predicate calculus, Bayesian
networks, artificial neural networks) seem to
be insufficiently powerful for the task, for ei-
ther of two reasons: Either the core mech-
anism, although logic-based, is insufficiently
expressive to model the kind of sophisticated
human reasoning referred to in C1 (as hap-
pens, e.g., if the core mechanism for rep-
resentation and reasoning is at the level of
the propositional calculus or first-order logic,
both of which are quite elementary rela-
tive to the full space of logical systems); or
the core mechanism, by its very nature, can-
not directly model the high-level human rea-
soning referred to in (C1) (as happens in
the case of neural networks and other non-
declarative mechanisms). What is needed is
a core mechanism that is transparently able
to range from high-level reasoning and meta-
reasoning down to perception of, and action
on, the external environment. This mech-

anism would constitute the comprehensive
“logico-mathematical language” Sun (2002)
has said is missing in computational cognitive
modeling.

• (C3): The languages that most computational
cognitive architectures (whether declarative
or not) use for writing simulations do not have
a clear and precise syntax and semantics, and
the field of computational cognitive modeling
is (with a few exceptions) bereft of theorems
that could guide and inform the field. (Of
course, some computational cognitive mod-
elers may not want to be guided by theorems,
as those in computer science and physics are.
This issue is addressed later.) This adds an-
other degree of vagueness to a field that is
already quite nebulous by the standards of
established, rigorous, theorem-based sciences
(such as physics, [parts of] economics, com-
puter science, mathematics, and logic itself ).
By contrast, models in LCCM are not only
fully declarative, but their meaning is mathe-
matically precise by virtue of the formal syn-
tax and semantics that is part and parcel of the
logical systems on which they are based.

1.7. Structure of the Chapter

In Section 2, the context for logic-based
computational cognitive modeling is set
by taking note of the overarching goal
of this field: the computational modeling
of human personhood. In Section 3, the
three challenges (C1) to (C3) are described
in more detail. In Section 4, the logico-
mathematical foundation for LCCM is pre-
sented: a straightforward generalization of
the concept of a logical system, as used in
mathematical logic. As is explained (Sec-
tion 4.1), depending on what aspect of hu-
man cognition is to be modeled and sim-
ulated, the appropriate logical system is
selected. As to computation, that is han-
dled by logic-based computer programs.
Once the cognitive modeler has selected
the appropriate logical system, a logic-based
program relative to that selection is writ-
ten and, of course, executed. The execu-
tion produces a computational simulation
of the cognition under scrutiny. Using the
logico-mathematical foundation for logic-
based computational cognitive modeling,



P1: JZP

CUFX212-05 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 15:51

declarative/logic-based cognitive modeling 133

Section 5 explains how LCCM addresses
the three aforementioned challenges. In Sec-
tion 6, the future and limitations of compu-
tational cognitive modeling are briefly dis-
cussed in the context of what has been
presented in this chapter. The chapter ends
with a brief conclusion.

2. The Goal of Computational
Cognitive Modeling/LCCM

The goal of computational cognitive model-
ing (and by immediate implication, the goal
of declarative computational cognitive mod-
eling and systematization thereof in LCCM)
is to understand the kind of cognition dis-
tinctive of human persons by modeling this
cognition in information processing systems.

Clearly, given this goal, no computational
cognitive model is provided by merely not-
ing the particular DNA structure of humans.
When it is said that x is human just in case
x has a particular genetic code, the perspec-
tive is not that of computational cognitive
modeling. Likewise, our minds are not mod-
eled by charting the physiology of our brains.
(After all, computational cognitive model-
ing is committed to the dogma that sim-
ulations can be produced in silicon-based
substrates, not carbon-based ones.) Rather,
computational cognitive modelers are ask-
ing what it means to be a human being, from
the psychological, and indeed specifically the
cognitive, perspective. That is, the question
is: What does it mean to be a human per-
son? For ambitious AI, LCCM’s sister field,
the centrality of personhood is plain in the
relevant literature. For example, here is the
more than two-decade-old objective for AI
announced by Charniak and McDermott
(1985): “The ultimate goal of AI, which we
are very far from achieving, is to build a per-
son, or, more humbly, an animal” (p. 7).

One generic account of human person-
hood has been proposed, defended, and em-
ployed by Bringsjord (1997, 2000) This ac-
count is a fairly standard one; for example, it
generally coincides with one given by Den-
nett (1978) and by others as well, for ex-
ample, Chisholm (1978). In addition, this

account is in line with the capacities cov-
ered, chapter by chapter and topic by topic,
in surveys of cognitive psychology (e.g., see
Goldstein, 2005; Ashcraft, 1994). The ac-
count in question holds that x is a person
provided that x has the capacity

1. to “will,” to make choices and decisions,
set plans and projects – autonomously;

2. for subjective consciousness: for experi-
encing pain and sorrow and happiness,
and a thousand other emotions – love,
passion, gratitude, and so on;

3. for self-consciousness for being aware of
his/her states of mind, inclinations, and
preferences, and for grasping the con-
cept of himself/herself;

4. to communicate through a language;
5. to know things and believe things, to be-

lieve things about what others believe
(second-order beliefs), and to believe
things about what others believe about
one’s beliefs (third-order beliefs), and so
on;

6. to desire not only particular objects and
events, but also changes in his or her
character;

7. to reason (for example, in the fash-
ion exhibited in the writing and read-
ing/studying of this very chapter).

Given this list, which is indeed psychologi-
cally, not physiologically, oriented, compu-
tational cognitive modeling and LCCM are
fields devoted to capturing these seven ca-
pacities in computation. This position on
the ultimate objective of LCCM and com-
putational cognitive modeling meshes seam-
lessly with a recent account of what com-
putational cognitive modeling is shooting
for given by Anderson and Lebiere (2003),
who, instead of defining personhood, give
an operational equivalent of this definition
by describing “Newell’s Program,” an at-
tempt to build computational simulations
of human-level intelligence, where that in-
telligence is cashed out in the form of a list
of abilities that correspond to those on the
list just given. For example, part of Newell’s
Program is to build a computational simula-
tion of natural-language communication at
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the normal, adult level. This is attribute 4 on
the previous list. As Anderson and Lebiere
(2003) concede, computational cognitive
modeling (whether or not logic-based) is
finding it rather difficult to mechanically
simulate this attribute.

Attribute 4 is not the only sticking
point. An even more challenging prob-
lem is attribute 2, subjective consciousness,
the representation of which in third-person
machine terms remains elusive (Yang &
Bringsjord, 2003; Bringsjord, 1998; Bring-
sjord, 2001; Bringsjord, 1995; Bringsjord,
1999).

In this chapter, the emphasis is on at-
tribute 7. Some of the other attributes
are ones LCCM can apparently handle, as
shown elsewhere. For example, the simula-
tion of attribute 5 in accordance with the
LCCM paradigm would seem attainable in
light of the fact that this attribute, from the
standpoint of AI, has been partially attained
via the formalization and implementation
given in Arkoudas and Bringsjord (2005).

3. Three Challenges Facing
Computational Cognitive Modeling

In this section, a more detailed account of
the three aforementioned challenges is pro-
vided.

3.1. Challenge 1: Computational
Cognitive Modeling Data from
Psychology of Reasoning

At least for the most part, computational
cognitive architectures have not been de-
signed in the light of what psychology of rea-
soning has taught us over many decades of
empirical research, stretching back to Piaget.
In addition, whereas computer science and
AI have been driven by the powerful use of
logic (Halpern et al., 2001), which is the sci-
ence of reasoning, computational cognitive
modeling, whether or not of the declarative
type, has largely ignored powerful human
reasoning. (Notice that it is said: powerful
human reasoning. Such reasoning is norma-
tively correct, and sometimes produces sig-

nificant, publication-worthy results. When
the reasoning in question is everyday rea-
soning, it should be noted that Sun’s (2002)
CLARION cognitive architecture, discussed
later, has been used to model significant
parts of human reasoning.) For example,
there is no denying that although computer
science has produced software capable of
discovering nontrivial proofs, no such thing
can be accomplished by any computational
cognitive architecture.

The first challenge (C1) is now expressed
as a series of desiderata that any acceptable
computational cognitive architecture would
need to satisfy. Some of these desiderata
come in the form of specific puzzles (se-
lected across a range of human reasoning)
expressed in accordance with the experi-
mental structure set out in Section 1, where
the challenge is to model the cognition (both
normatively correct and incorrect) catalyzed
by the attempt to solve these puzzles. The
section ends with answers to two ques-
tions that will occur to a number of read-
ers having some familiarity with psychology
of reasoning and computational cognitive
modeling.

3.1.1. desideratum #1: modeling

system 1 versus system 2 cognition

In a wide-ranging article in Behavioral and
Brain Sciences that draws on empirical data
accumulated over more than half a cen-
tury, Stanovich and West (2000) explain
that there are two dichotomous systems for
thinking at play in the human mind: what
they call System 1 and System 2. Reasoning
performed on the basis of System 1 think-
ing is bound to concrete contexts and is
prone to error; reasoning on the basis of
System 2 cognition “abstracts complex sit-
uations into canonical representations that
are stripped of context” (Stanovich & West,
2000, p. 662), and when such reasoning is
mastered, the human is armed with power-
ful techniques that can be used to handle the
increasingly abstract challenges of the mod-
ern, symbol-driven marketplace. But before
considering these challenges, it is wise to get
a better handle on System 1 versus System 2
reasoning.
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Psychologists have devised many tasks
to illuminate the distinction between Sys-
tem 1 and System 2 (without always re-
alizing, it must be granted, that that was
what they were doing). One such problem is
the Wason Selection Task (Wason, 1966),
which runs as follows. Suppose that you are
dealt four cards out of a larger deck, where
each card in the deck has a digit from 1 to 9
on one side and a capital Roman letter on the
other. Here is what appears to you when the
four cards are dealt out on a table in front of
you:

E K 4 7

Now, your task is to pick just the card or
cards you would turn over to try your best
at determining whether the following rule is
true:

(R1) If a card has a vowel on one side, then
it has an even number on the other
side.

Less than 5% of the educated adult pop-
ulation can solve this problem (but, pre-
dictably, trained mathematicians and lo-
gicians are rarely fooled). This result has
been repeatedly replicated over the past 15
years, with subjects ranging from seventh-
grade students to illustrious members of
the Academy (see Bringsjord, Bringsjord &
Noel, 1998). About 30% of subjects do turn
over the E card, but that isn’t enough: The
7 card must be turned over as well. The rea-
son is as follows. The rule in question is a
so-called conditional, that is, a proposition
having an if-then form, which is often sym-
bolized as φ → ψ , where the Greek let-
ters are variables ranging over formulas from
some logical system in the family F , intro-
duced later. As the truth-tables routinely
taught to young pre-twelfth-grade math stu-
dents make clear (e.g., see Chapter 1 of
Bumby et al., 1995), a conditional is false
if and only if its antecedent, φ, is true,
whereas its consequent, ψ , is false; it is true
in the remaining three permutations. So,
if the E card has an odd number on the
other side, (R1) is overthrown. However, if

the 7 card has a vowel on the other side,
this, too, would be a case sufficient to re-
fute (R1). The other cards are entirely irrel-
evant, and flipping them serves no purpose
whatsoever.

This is the abstract, context-independent
version of the task. But now let’s see what
happens when some System 1 context-
dependent reasoning is triggered in you, for
there is incontrovertible evidence that if
the task in question is concretized, System 1
reasoning can get the job done (Ashcraft,
1994). For example, suppose one changes
rule (R1) to this rule:

(R2) If an envelope is sealed for mailing,
it must carry a 20-cent stamp on it.

And now suppose one presents four en-
velopes to you (keeping in mind that these
envelopes, like our cards, have a front and
back, only one side of which will be visible
if the envelopes are “dealt” out onto a table
in front of you), namely,

sealed envelope

unsealed envelope

env. w/ 20 cent stamp

env. w/ 15 cent stamp

Suppose as well that you are told something
analogous to what subjects were told in the
abstract version of the task, namely, that
they should turn over just those envelopes
needed to check whether (R2) is being fol-
lowed. Suddenly, the results are quite differ-
ent: Most subjects choose the sealed enve-
lope (to see if it has a 20-cent stamp on the
other side), and this time they choose the
envelope with the 15-cent stamp (to see if it
is sealed for mailing!). Such is the power of
domain dependent reasoning flowing from
System 1.

The challenge to logic-based computa-
tional cognitive modeling will be to model
both types of human reasoning. This chal-
lenge will be met if both normatively cor-
rect and incorrect responses to the stimuli
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(puzzles) used in psychology of reasoning
are modeled. Prior research that can be plau-
sibly viewed as setting out and tackling as-
pects of both System 1 and System 2 cog-
nition is hard to find. One exception, to
some degree, is Sun’s (2002) exploration of
implicit versus explicit cognition, discussed
later (Section 4.2.3).

3.1.2. desideratum #2: modeling

mental logic-based, mental

models-based, and mental

metalogic-based reasoning

There is another idea the data in psychology
of reasoning implies: Although sometimes
(logically untrained and trained) humans
reason by explicitly manipulating linguis-
tic entities (e.g., formulas, as when humans
construct line-by-line linguistic proofs in
proof construction environments, like Bar-
wise and Etchemendy’s (1999) Fitch; natu-
ral deduction of this linguistic variety is ex-
plained in Section 4.1), they also sometimes
reason by imagining and manipulating “men-
tal models,” nonlinguistic entities capturing
possible situations, and they sometimes rea-
son in a fashion that involves both mental
logic, mental models, and meta-reasoning
over the structures posited in these two
theories. This meta-reasoning uses rules of
inference that at once range over formu-
las and mental models, and are rules that
cannot be independently modeled in sim-
ulations based either exclusively on mental
logic theory or exclusively on mental models
theory.

The first kind of reasoning is ex-
plained, explored, and defended by propo-
nents of the theory known as mental logic
(Rips, 1994; Braine, 1990; Yang, Braine,
& O’Brien, 1998; Braine, 1998b; Braine,
1998a). Mental logic has its roots in Piaget,
who held (at least at one point) that humans
naturally acquire the ability to reason at the
level of the proof theory of first-order logic
(Inhelder & Piaget, 1958; Bringsjord et al.,
1998). Quintessential cases of this kind of
reasoning include giving a proof that from,
say, “If Gooker is a sequaat, then Peeves is
a rooloy” and “Gooker is a sequaat” one can
infer “Peeves is a rooloy” by the rule (modus

ponens, or, to use the term introduced later,
conditional elimination):

If φ then ψ , φ

ψ
.

Note that with respect to arguments such
as these, it would seem rather odd to say
that those who produce them have a mental
model of anything. They seem to be work-
ing just from the surface-level pattern of the
linguistic expressions in question. In fact,
that is the justification they customarily give
when confronted by stimuli of this sort.

The second type of reasoning has been
discovered, explained, and defended by
Johnson-Laird (1983), who characterizes
mental models in their contribution to the
present volume like this:

The theory of mental models postulates that
when individuals understand discourse,
they construct models of the possibilities
consistent with the discourse. Each mental
model represents a possibility. A frequent
misunderstanding is that mental models
are images. In fact, they are more akin
to three-dimensional models of the world
of the sort that underlie the phenomena
of mental rotation [as introduced, e.g., by
Metzler & Shepard, 1982] (see Chap-
ter 12).

The third sort of reasoning is explained
and explored in a theory known as men-
tal meta-logic (Yang & Bringsjord, in press;
Rinella, Bringsjord, & Yang, 2001; Yang &
Bringsjord, 2001; Yang & Bringsjord, 2006).
According to mental meta-logic, human rea-
soners, both trained and untrained, often
reason in ways that, at once, invoke repre-
sentations and inference of the sort posited
in mental logic and mental models, and also
meta-inferential rules that manipulate these
rules and these models.

Desideratum #2 is that both LCCM and
computational cognitive modeling should
provide the machinery for mechanizing hu-
man reasoning in all three of these modes.
The remaining desiderata each consist in the
need to model human reasoning stimulated
by a particular puzzle. Each of these puz-
zles, note, conforms exactly to the structure
of experiments set out in Section 1. Each of
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the variables (L, Q, D, etc.) in this structure
can be directly instantiated by the specifics
in each of the puzzles. Note, as well, that
the puzzles are selected so as to ensure that
the modeling of human reasoning in ques-
tion will entail that the first two desiderata
are satisfied.

3.1.3. desideratum #3: puzzle 1:

the king-ace puzzle

The third desideratum is to model human
reasoning triggered by the following puzzle,
a slight variant4 of a puzzle introduced by
Johnson-Laird (1997):

Assume that the following is true:

“If there is a king in the hand, then there
is an ace in the hand,” or “If there is not
a king in the hand, then there is an ace
in the hand,” – but not both of these if–
thens are true.

What can you infer from this assump-
tion? Please provide a careful justifica-
tion for your answer.

Subjects (logically untrained) almost invari-
ably respond with: “That there is an ace
in the hand.” This response is incorrect. In
point of fact, what one can infer is that there
is not an ace in the hand. Later, all readers
will see exactly why this is the correct an-
swer. The challenge to computational cog-
nitive modeling and LCCM in the case of
this second desideratum is to provide a me-
chanical simulation of both the normatively
correct and normatively incorrect responses
to this puzzle and the justification for those
responses.

3.1.4. desideratum #4: puzzle 2:

the wine-drinker puzzle

Now let us consider an interesting puzzle
devised by Johnson-Laird and Savary (1995)
that relates directly to Aristotle’s theory of
the syllogism:

Suppose:

• All the Frenchmen in the restaurant
are gourmets.

4 The variation arises from disambiguating Johnson-
Laird’s “s or else s ′” as “either s or s ′, but not both.”

• Some of the gourmets are wine-
drinkers.

Does it follow that some of the French-
men are wine-drinkers? Please provide a
careful justification for your answer.

The vast majority of (logically untrained)
subjects respond in the affirmative. Yet, the
correct answer is “No.” Some subjects (some
of whom are logically untrained, but the vast
majority of which have had significant for-
mal training) respond in the negative and
offer a disproof, that is, a proof that “French-
men are wine-drinkers” does not follow from
the two suppositions. The disproof includes
an example (following standard terminology
in mathematical logic, a countermodel ) in
which the premises are true but the con-
clusion false and the point that such an ex-
ample establishes a negative answer to the
wine-drinker query. The requirement to be
met by both computational cognitive mod-
eling and LCCM is that computational sim-
ulations of both types of responses be pro-
vided.

3.1.5. desideratum #5 puzzle 3:

the wise man puzzle

Now to the next puzzle:

Suppose there are three wise men who
are told by their king that at least one of
them has a white spot on his forehead;
actually, all three have white spots on
their foreheads. You are to assume that
each wise man can see the others’ fore-
heads but not his own, and thus each
knows whether the others have white
spots. Suppose you are told that the first
wise man says, “I do not know whether I
have a white spot,” and that the second
wise man then says, “I also do not know
whether I have a white spot.” Now con-
sider the following questions:
(1) Does the third wise man now know

whether or not he has a white spot?
(2) If so, what does he know, that he has

one or doesn’t have one?
(3) And, if so, that is, if the third wise

man does know one way or the
other, provide a detailed account
(showing all work, all notes, etc.; use
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scrap paper as necessary) of the rea-
soning that produces his knowledge.

In the case of this puzzle, only the challenge
of modeling the (or at least a) normatively
correct response will be explicitly consid-
ered.

3.1.6. desideratum #6 puzzle 4:

infinitary demorgan

Here is the next puzzle:

Consider a disjunction as big as the nat-
ural numbers, that is,

φ1 ∨ φ2 ∨ φ3 ∨ . . . ∨ φn, φn+1 ∨ . . . . (5.1)

Suppose that (5.1) is true. Now suppose
you also know that

φ4,599,223,811 (5.2)

is false. What can you now conclude
must be the case from (5.1) and (5.2)?
Why?

As in the puzzle that immediately precedes
this one, only concern for modeling the
normatively correct answer will be present
herein, which of course is that from (5.1)
and (5.2), it can be immediately deduced
that

φ1 ∨ φ2 ∨ . . . ∨ φ4,599,223,810 ∨ φ4,599,223,812

∨ φ4,599,223,813 ∨ . . . .

3.2. Challenge 2: Unify Cognition via a
Comprehensive Theoretical Language

The original dream of the founders of the
field of computational cognitive modeling
(a dream shared by the founders of modern-
day AI) was to provide a core unifying repre-
sentation scheme, and mechanical processes
over this scheme, so as to cover all of human
cognition. In the case of Soar and ACT-R,
the core representation and process are in-
tended to be essentially the same: chain-
ing in a production system. Other com-
putational cognitive architectures include
different core processes. For example, in
CLARION, core processing includes a sub-
declarative dimension, carried out in artifi-
cial neural networks.

The second problem LCCM addresses
is that the core processes at the heart of
these and other in-progress cognitive archi-
tectures certainly don’t seem well-suited to
range across the entire gamut of human cog-
nition. For example, although one can cer-
tainly imagine rapid-fire processing of pro-
duction rules to cover simple rule-based
thinking, it is difficult to imagine formal-
izing, for example, Gödel’s declarative cog-
nition in discovering and specifying his fa-
mous incompleteness results in the form of
production rules. As the attempt to meet
the first challenge will reveal later (see Sec-
tion 4.2.1), much of cognition that seems
to call for declarative modeling, specifically
calls for logical systems much more expres-
sive than those at the level of production
rules. As will be seen, logical systems at the
level of merely the propositional and predi-
cate calculi (i.e., the logical systems LPC and
LI , respectively) suffice to formalize pro-
duction rules and systems.

To sum up, one can view C2 as the search
for the “unified theoretical language” Sun
correctly says is rather hard to come by:

[I]t is admittedly highly desirable to de-
velop a single, completely unified theoreti-
cal language, as a means of expressing fun-
damental theories of the mind and its var-
ious manifestations, components, and phe-
nomena. In place of the classical formal-
ism – symbolic computation, we would cer-
tainly like to see a new logico-mathematical
formalism that is (1) more analyzable
(e.g., in the form of mathematical entities,
as opposed to computer programs, which
are notoriously difficult to analyze), (2)
more inclusive (for example, being able to
include both symbols and numeric values,
and both serial and parallel processing),
and (3) properly constrained (that is, be-
ing able to express exactly what needs to
be expressed). However, thus far, there is
no such a single unified formalism in sight.
(Sun, 2002, p. 248)

LCCM, as defined herein, would seem to
be the formalism Sun is looking for. On
Sun’s three points: (1) LCCM is in fact fully
analyzable, and its programs are transpar-
ently so because they are in the declara-
tive mode and are themselves well-defined
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logico-mathematical objects (more about
this when the third challenge (C3) is shown
to be met by LCCM). (2) LCCM, in virtue
of logics infused with strength factors (e.g.,
see Section 4.2.3) and probabilities, and of
the fact that logic is ideally suited to par-
allelism (e.g., see Shapiro, 1987), is fully
inclusive. (3) The expressibility of LCCM
is unparalleled: There is no competitor able
to directly and easily express the declarative
knowledge in the puzzles in the desiderata
composing (C1).

3.3. Challenge 3: Computational
Cognitive Meodeling Suffers from a Lack
of Mathematical Maturity

In computational cognitive modeling, a cog-
nitive model is a computational simulation
produced by executing code written in some
cognitive architecture. Computational cog-
nitive modeling is thus clearly intimately re-
lated to computer science, which centrally
involves algorithms, programs that are to-
kens of those algorithms, and the execution
of these programs to produce computation.
But given this clear connection between
computational cognitive modeling and com-
puter science, it is at least somewhat surpris-
ing that although the latter is today so rig-
orous as to be considered by many to be in
large part a subfield of formal logic (Halpern
et al., 2001), which is theorem-based, com-
putational cognitive modeling apparently
counts nary a theorem among that which
it has produced over the course of decades.
Part of the root cause of this state of af-
fairs is that the meaning of code written in
computational cognitive modeling is often
somewhat mysterious. Of course, one might
retort that because code written in some
computational cognitive architecture can
be, and indeed sometimes is, written in some
established programming language (LP L)
having a formal semantics, the meaning of
a model can simply be identified with the
meaning of the program P written in this
LP L (e.g., LP L could be Common Lisp).
Unfortunately, the meaning of a computa-
tional model obviously must be cognitive. It
is crucial that the meaning of a model re-
lates to the goal of computational cognitive

modeling, which is to model human cogni-
tion at the symbolic level (as, again, Marr
[1982] and Pylyshyn [1984] would put it),
and thereby advance the science of cogni-
tion.

This challenge is met by LCCM, as will be
seen. Programs written in declarative form
have an exact meaning, and that meaning
accords with the categories that are consti-
tutive of human cognition for the simple
reason that the declarative level is preserved
in the relevant programs. Furthermore, the
machinery that yields this precision in turn
yields the result that logic-based computa-
tional cognitive modeling can be guided by
theorems. This result, and the desirability
thereof, are discussed later.

4. Logic-Based Computational
Cognitive Modeling

4.1. Logical Systems

Logic-based computational cognitive mod-
eling is based on a generalized form of the
concept of logical system as defined rather
narrowly in mathematical logic, where this
concept stands at the heart of Lindström’s
Theorems (for details, see Ebbinghaus,
Flum, & Thomas, 1994).5 For LCCM, the
generalized form of a logical system L is
composed of the following six parameter-
ized elements:

1. An object-level alphabet A, partitioned
into those symbols that are invariant
across the use of L for particular ap-
plications and those that are included
by the human for particular uses. The
former are called fixed symbols and the
latter application symbols.

2. A grammar G that yields well-formed
expressions (usually called formulas) LA

from A.
3. An argument theory �M

X (called a proof
theory when the reasoning in question
is deductive in nature) that specifies

5 In a word, these theorems express the fact that log-
ics more expressive than first-order logic necessar-
ily lose certain attributes that first-order logic pos-
sesses. It should be pointed out that there are a
number of different narrow accounts of logical sys-
tem; e.g., see Gabbay (1994).
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correct (relative to the system L) in-
ference from one or more expressions
to one or more expressions. The super-
script is a placeholder for the mode of
inference: deductive, abductive, induc-
tive, probabilistic, and analogical. The
subscript is a placeholder for particular
inferential mechanisms. For example, in
Aristotle’s theory of the syllogism, vis-
ited at the beginning of the chapter, the
first two declarative statements in a valid
syllogism deductively imply the third.
Where D is used to indicate the deduc-
tive mode of inference, and Syll the par-
ticular deductive scheme introduced by
Aristotle, we can write

{All AB, All BC} �D
Syll All AC

to indicate that any declarative state-
ment of the form All AC can be
deductively inferred (in this context)
in Aristotle’s syllogistic system. The
space of deductive (D) mechanisms in-
clude various forms of deduction well
beyond what Aristotle long ago de-
vised (e.g., resolution, sequent calculus,
Fitch-style natural deduction; they are
explained later). Other modes of infer-
ence include: probabilistic inference in
Bayesian frameworks, inductive infer-
ence, and nonmonotonic or defeasible
inference.

4. An argument semantics that specifies the
meaning of inferences allowed by �M

x ,
which makes possible a mechanical veri-
fication of the correctness of arguments.

5. A formula semantics that assigns a mean-
ing to members of LA given announce-
ments about what the application sym-
bols are. The values traditionally include
such things as true, false, indetermi-

nate, probable, and numbers in some
continuum (e.g., 0 to 1, as in the case of
probability theory).

6. A meta-theory that defines meta-
mathematical attributes over the previ-
ous five components and includes proofs
that the attributes are or are not pos-
sessed. Examples of such attributes in-
clude soundness (inference in the argu-
ment theory from some subset � of LA

to φ, where φ ∈ LA, implies that if all of
� are true, φ must be as well) and com-
pleteness (if φ is true whenever � is,
then there is a way to infer φ from �).

The family F of logical systems populated
by the setting of parameters in the sextet
just given is infinite, and includes zero-,
first-, and higher-order extensional logics
(in Hilbert style, or sequent style, or nat-
ural deduction Fitch style, etc.); modal log-
ics (including temporal, epistemic, deontic
logics, etc.); propositional dynamic logics;
Hoare-Floyd logics for reasoning about im-
perative programs; inductive logics that sub-
sume probability theory; abductive logics;
strength-factor-based and probabilistic log-
ics; nonmonotonic logics, and many, many
others. Because all of classical mathemat-
ics, outside formal logic, is derivable from
merely a small proper subset of these sys-
tems (with some specific axioms), the ma-
chinery of LCCM is enormous. Of neces-
sity, this scope must be strategically limited
in the present chapter.

Accordingly, it is now explained how four
logical systems (the first two of which are el-
ementary) are based on particular instantia-
tions of five of the six elements. In addition,
two additional clusters of logical systems,
nonmonotonic logical systems and proba-
bilistic logical systems, are briefly discussed
after the quartet of logical systems is pre-
sented.

The first logical system is LPC, known
as the propositional calculus. The second,
more powerful logical system is LI , known
as the “predicate calculus,” or “first-order
logic,” or sometimes just “FOL.” Every com-
prehensive introductory cognitive science
or AI textbook provides an introduction to
these two simple, limited systems and makes
it clear how they are used to engineer intel-
ligent systems (e.g., see Russell & Norvig,
2002). In addition, coverage of FOL is often
included in surveys of cognitive science (e.g.,
see Stillings et al., 1995). Surveys of cogni-
tive psychology, although rarely presenting
FOL, often give encapsulated presentations
of LPC (e.g., see Ashcraft, 1994). Unfortu-
nately, it is usually the case that when these
two logical systems are described, the reader
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is not told that this pair is but an infinitesi-
mally small speck in the family F .

In both both LPC and LI , reasoning is
deductive in nature. The third logical sys-
tem introduced is a particular propositional
modal logic, LKT , designed to allow mod-
eling of possibility, necessity, belief, and
knowledge. The fourth logical system is
based on the simplest infinitary logic: Lω1ω.

4.1.1. the alphabet and grammar

of LPC
The alphabet for propositional logic is sim-
ply an infinite list p1, p2, . . . , pn, pn+1, . . . of
propositional variables (according to tradi-
tion p1 is p, p2 is q, and p3 is r ), and
the five familiar truth-functional connec-
tives ¬,→,↔, ∧, ∨. The connectives can at
least provisionally be read, respectively, as
“not,” “implies” (or “if-then”), “if and only
if,” “and,” and “or.” In cognitive science and
AI, it is often convenient to use proposi-
tional variables as mnemonics that help one
remember what they are intended to rep-
resent. For an example, recall Puzzle 1. In-
stead of representing “There is an ace in the
hand” as pi , for some i ∈ N = {0, 1, 2, . . .},
it would no doubt be useful to represent
this proposition as A, and this representa-
tion is employed later. Now, the grammar
for propositional logic is composed of the
following three rules.

1. Every propositional variable pi is a well-
formed formula (wff ).

2. If φ is a wff, then so is ¬φ.
3. If φ and ψ are wffs, then so is (φ � ψ),

where � is one of∧, ∨,→,↔. (We allow
outermost parentheses to be dropped.)

This implies, for example, that p → (q ∧ r )
is a wff, whereas → q is not. To represent
the declarative sentence “If there is an ace in
the hand, then there is a king in the hand,”
we can use A→ K.

4.1.2. an argument (proof) theory

for LPC
A number of proof theories are possible, in-
cluding ones that are descriptive and nor-
matively incorrect (as in the proof theory
provided in Rips, 1994) and ones that are
normatively correct. The former are based

on the latter, and hence the presentation
now proceeds to a normatively correct sys-
tem, specifically an elegant Fitch-style sys-
tem of natural deduction, F , fully explained
by Barwise and Etchemendy (1999). (Such
systems are commonly referred to simply as
“natural” systems.) In F , each of the truth-
functional connective has a pair of corre-
sponding inference rules, one for introduc-
ing the connective and one for eliminating
the connective. Proofs in F proceed in se-
quence line by line, each line number in-
cremented by 1. Each line not only includes
a line number, but also a formula (the one
deduced at this line) and, in the rightmost
column, a rule cited in justification for the
deduction. The vertical ellipsis

...

is used to indicate the possible presence of
0 or more lines in the proof.

Here is the rule for eliminating a conjunc-
tion:

...
...

...
k φ ∧ ψ
...

...
...

m φ k ∧ Elim
...

...
...

Intuitively, this rule says that if at line k
in some derivation you have somehow ob-
tained a conjunction φ ∧ ψ , then at a subse-
quent line m, one can infer to either of the
conjuncts alone. Now here is the rule that
allows a conjunction to be introduced; in-
tuitively, it formalizes the fact that if two
propositions are independently the case, it
follows that the conjunction of these two
propositions is also true.

...
...

...
k φ
...

...
...

l ψ
...

...
...

m φ ∧ ψ k, l ∧ Intro
...

...
...
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A key rule in F is supposition, according to
which you are allowed to assume any wff
at any point in a derivation. The catch is
that you must signal your use of supposition
by setting it off typographically. Here is the
template for supposition:

...
...

...
k φ supposition
...

...
...

Often, a derivation will be used to establish
that from some set � of propositional for-
mulas a particular formula φ can be derived.
In such a case, � will be given as supposi-
tions (or, as it is sometimes said, givens), and
the challenge will be to derive φ from these
suppositions. To say that φ can be derived
from a set of formulas � in F we follow the
notation introduced above and write

� �D
F φ.

When it is clear from context which sys-
tem the deduction is to take place in, the
subscript on � can be omitted. Here is a
proof that puts to use the rules presented
previously and establishes that {(p ∧ q) ∧ r }
�D

F q:

1 (p ∧ q) ∧ r given

2 (p ∧ q) 1 ∧ Elim
3 q 2 ∧ Elim

Now here is a slightly more complicated
rule, one for introducing a conditional. It
basically says that if you can carry out a
subderivation in which you suppose φ and
derive ψ you are entitled to close this sub-
derivation and infer to the conditional φ →
ψ .

...
...

k φ supposition
...

...
m ψ
...

...
n φ → ψ k−m → Intro

As stated previously, in a Fitch-style system
of natural deduction, the rules come in pairs.
Here is the rule in F for eliminating condi-
tionals:

k φ → ψ
...

...
...

l φ
...

...
...

m ψ k, l → Elim

Here is the rule for introducing ∨:

...
...

...
k φ
...

...
...

m φ ∨ φ k ∨ Intro
...

...
...

And here is the rather more elaborate rule
for eliminating a disjunction:

...
...

k φ ∨ ψ

...
...

l φ supposition
...

...
m χ

...
...

n ψ supposition
...

...
o χ

...
...

p χ k, l −m, n− o ∨ Elim

The rule ∨ Elim is also known as constructive
dilemma. The core intuition behind this rule
is that if one knows that either φ or ψ is true,
and if one can show that χ can be proved
from φ alone and ψ alone, then χ follows
from the disjunction.

Next is a very powerful rule correspond-
ing to proof by contradiction (sometimes
called indirect proof or reductio ad absurdum).
Notice that in F this rule is ¬Intro.
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Figure 5.1. A proof of modus tollens in F , constructed in
hyperproof.

...
...

k φ supposition
...

...
m ψ ∧ ¬ψ
...

...
n ¬φ k−m¬ Intro

Sometimes, a natural deduction system can
be a little obnoxious because by insisting
that inference rules come exclusively in
the form of pairs for each truth-functional
connective, it leaves out certain rules that
are exceedingly useful. Two examples are
modus tollens and DeMorgan’s Laws. The
former rule allows one to infer ¬φ from
φ → ψ and ¬ψ . This rule can be established
through a proof in F , as is shown in Fig-
ure 5.1. This figure shows a screenshot of the
completed proof as constructed in the hy-

perproof proof construction environment,
which accompanies the book by the same
name authored by Barwise & Etchemendy
(1994).6 The core of this proof is reduc-
tio ad absurdum, or ¬ Intro. DeMorgan’s
Laws for propositional logic sanction mov-
ing from a formula of the form ¬(φ ∧ ψ) to
one of the form ¬φ ∨ ¬ψ , and vice versa.
The laws also allow an inference from a for-
mula of the form ¬(φ ∨ ψ) to one of the
form ¬φ ∧ ¬ψ , and vice versa. When, in
constructing a proof in F , one wants to use
modus tollens or DeMorgan’s Laws, or any
number of other timesaving rules, one can
make the inference in question, using the

6 For data on the power of hyperproof to help teach
logic, see Rinella et al. (2001) and Bringsjord et al.
(1998).

rule of tautological consequence as a justifi-
cation. This rule, abbreviated as taut con

in hyperproof, is designed to allow the hu-
man proof constructor a way to declare that
a given inference is obvious, and could with
more work be fully specified using only the
rules of F . Hyperproof responds with a
check to indicate that an attempted infer-
ence is in fact correct. As can be seen in
Figure 5.2, hyperproof approves of our use
of taut con, which, again, corresponds in
this case not just to DeMorgan’s Law in the
first two occurrences of this rule, but to the
useful inference of φ ∧ ¬ψ from ¬(φ → ψ).

This section ends with two more key con-
cepts. A formula provable from the null set
is said to be a theorem, and where φ is such
a formula, customary notation is

�D
X φ

to express such a fact, where of course the
variable X would be instantiated to the par-
ticular deductive calculus in question. Here
are two examples that the reader should
pause to verify in his or her own mind:
�D

F (p ∧ q) → q;�D
F (p ∧ ¬p) → r . It is said

that a set � of formulas is syntactically
consistent if and only if it is not the case
that a contradiction φ ∧ ¬φ can be derived
from �.

4.1.3. formal semantics for LPC
The precise meaning of the five truth-
functional connectives of the propositional
calculus is given via truth-tables, which tell
us what the value of a statement is, given
the truth-values of its components. The
simplest truth-table is that for negation,
which informs us, unsurprisingly, that if φ is
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Figure 5.2. A proof that there is no ace in the Hand in F .

T (= true) then ¬φ is F (= false; see first
row below double lines), and if φ is F then
¬φ is T (second row).

φ ¬φ

T F
F T

Here are the remaining truth-tables.

φ ψ φ ∧ ψ

T T T
T F F
F T F
F F F

φ ψ φ ∨ ψ

T T T
T F T
F T T
F F F

φ ψ φ → ψ

T T T
T F F
F T T
F F T

φ ψ φ ↔ ψ

T T T
T F F
F T F
F F T

Notice that the truth-table for disjunction
says that when both disjuncts are true, the
entire disjunction is true. This is called in-
clusive disjunction. In exclusive disjunction,
it is one disjunct or another, but not both.
This distinction becomes particularly impor-
tant if one is attempting to symbolize parts
of English (or any other natural language).
It would not do to represent the sentence
“George will either win or lose” as:

W∨ L,

because under the English meaning there
is no way both possibilities can be true,

whereas by the meaning of ∨ it would be
possible that W and L are both true. (As
we shall soon see, inclusive versus exclusive
disjunction is a key distinction in cracking
the King-Ace Puzzle.) One could use ∨x to
denote exclusive disjunction, which can be
defined through the following truth-table.

φ ψ φ ∨x ψ

T T F
T F T
F T T
F F F

Before concluding this section, it is worth
mentioning another issue involving the
meaning of English sentences and their cor-
responding symbolizations in propositional
logic: the issue of the “oddity” of material
conditionals (formulas of the form φ → ψ).
Consider the following English sentence: If
the moon is made of green cheese, then
Dan Quayle will be the next President of
the United States. Is this sentence true? If
you were to ask “the man on the street,” the
answer would likely be “Of course not!” or
perhaps you would hear: “This isn’t even a
meaningful sentence; you’re speaking non-
sense.” These responses are quite at odds
with the undeniable fact that when repre-
sented in the propositional calculus, the sen-
tence turns out true. Why? The sentence is
naturally represented as

G→ Q.
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Because G is false, the truth-table for →
classifies the conditional as true. Results
such as these have encouraged some to de-
vise better (but much more complicated)
accounts of the “if-then’s” seen in natural
languages (e.g., see Goble, 2001a). In fact,
a substantial subspace within the space F
of logical systems includes those devoted to
just formalizing conditionals (Nute, 1984).
These accounts will be beyond the purview
of this chapter, however. No such search
will be embarked upon, so readers must for
now be content with the conditional as de-
fined by the customary truth-table for →
presented earlier.

Given a truth-value assignment v (i.e., an
assignment of T or F to each propositional
variable pi ), one can say that v “makes true”
or “models” or “satisfies” a given formula φ;
this is standardly written

v |= φ.

A formula such that there is some model
that satisfies it is said to be satisfiable. A for-
mula that cannot be true on any model (e.g.,
p ∧ ¬p) is said to be unsatisfiable. Some for-
mulas are true on all models. For example,
the formula ((p ∨ q) ∧ ¬q) → p is in this
category. Such formulas are said to be valid
and are sometimes referred to as validities.
To indicate that a formula φ is valid we
write

|= φ.

Another important semantic notion is con-
sequence. An individual formula φ is said
to be a consequence of a set � of formu-
las provided that all the truth-value assign-
ments on which all of � are true is also one
on which φ is true; this is customarily writ-
ten

� |= φ.

The final concept in the semantic compo-
nent of the propositional calculus is the con-
cept of consistency once again: We say that a
set � of formulas is semantically consistent if
and only if there is a truth-value assignment

on which all of � are true. As a check of un-
derstanding, the readers may want to satisfy
themselves that the conjunction of formu-
las taken from a semantically consistent set
must be satisfiable.

4.1.4. some meta-theoretical

results for LPC
This section describes some key meta-
theory for the propositional calculus. In
general, meta-theory would deploy logi-
cal and mathematical techniques to answer
such questions as whether or not provabil-
ity implies consequence and whether or
not the reverse holds. When the first di-
rection holds, a logical system is said to
be sound, and this fact can be expressed in
the notation that has now been introduced
as

If � � φ then � |= φ.

Roughly put, a logical system is sound if it is
guaranteed that true formulas can only yield
(through proofs) true formulas; one cannot
pass from the true to the false. When the
“other direction” is true of a system, it is said
to be complete; in the notation now available,
this is expressed by

If � |= φ then � � φ.

The propositional calculus is both provably
sound and complete. One consequence of
this is that all theorems in the propositional
calculus are valid, and all validities are the-
orems. This last fact is expressed more for-
mally as:

|= φ if and only if � φ.

4.1.5. the alphabet and grammar

of LI
For LI , our alphabet will now be augmented
to include

• =
◦ the identity or equality symbol

• variables x, y, . . .

◦ like variables in elementary algebra,
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except they can range of anything, not
just numbers

• constants c1, c2, . . .

◦ you can think of these as proper names
for objects

• relation symbols R, G, . . .

◦ used to denote properties, e.g., W for
being a wine-drinker

• functors f1, f2, . . .

◦ used to refer to functions
• quantifiers ∃, ∀

◦ the first (existential) quantifier says
that “there exists at least one . . .,”
the second (universal) quantifier that
“for all . . .”

• truth-functional connectives (¬, ∨, ∧,→,↔)
◦ now familiar to you, same as in the

propositional calculus

Predictable formation rules are introduced
to allow one to represent propositions like
those seen earlier in Puzzle 2. In the in-
terests of space, the grammar in question
is omitted, and the reader is simply shown
“in action” the kind of formulas that can be
produced by this grammar. You will recall
that these three propositions are relevant to
Puzzle 2:

1. All the Frenchmen in the restaurant are
gourmets.

2. Some of the gourmets are wine-
drinkers.

3. Some of the Frenchmen in the restau-
rant are wine-drinkers.

With these rules, we can now represent the
first of these propositions as

∀x(F x → Gx),

which says that for every thing x, if it has
property F (is a Frenchman), then it has
property G (is a gourmet). The second of
the two propositions becomes

∃x(Gx ∧ Wx),

and the third is represented as

∃x(F x ∧ Wx).

4.1.6. argument (proof) theory of LI
As in propositional logic, sets of formulas
(say �), given certain rules of inference, can
be used to prove individual formulas (say
φ); such a situation is expressed by meta-
expressions having exactly the same form
as those introduced previously, for example,
� �D

X φ, where of course X will be instanti
ated to a particular deductive calculus. The
rules of inference for FOL in such systems as
F include those we saw for the propositional
level and new ones: two corresponding to
the existential quantifier ∃ and two corre-
sponding to the universal quantifier ∀. For
example, one of the rules associated with ∀
says, intuitively, that if you know that every-
thing has a certain property, then any par-
ticular thing a has that property. This rule,
known as universal elimination or just ∀Elim
(or, sometimes, universal instantiation, ∀I)
allows one to move from some formula ∀xφ

to a formula with ∀x dropped, and the vari-
able x in φ replaced with the constant of
choice. For example, from “All Frenchman
in the room are wine-drinkers,” that is, again,

∀x(F x → Wx),

one can infer by ∀ Elim that, where a names
some particular object,

F a → Wa,

and if one happens to know that in fact F a,
one could then infer by familiar proposi-
tional reasoning that Ra. The rule ∀ Elim
in F , when set out more carefully, is

k ∀xφ
...

...
...

l φ( a
x ) k ∀ Elim

where φ( a
x ) denotes the result of replacing

occurrences of x in φ with a.

4.1.7. semantics of LI
First-order logic includes a semantic side
that systematically provides meaning (i.e.,
truth or falsity) for formulas. Unfortu-
nately, the formal semantics of FOL is more
tricky than the truth-table-based scheme
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sufficient for the propositional level. The
central concept is that FOL formulas are said
to be true (or false) on interpretations; that
some formula φ is true on an interpretation
is often written as I |= φ. (This is often read,
“I satisfies, or models, φ.”) For example, the
formula ∀x∃yGyx might mean, on the stan-
dard interpretation for arithmetic, that for
every natural number n, there is a natural
number m such that m > n. In this case, the
domain is the set of natural numbers, that is,
N, and G symbolizes “greater than.” Much
more could of course be said about the for-
mal semantics (or model theory) for FOL, but
this is an advanced topic beyond the scope of
the present, brief treatment. For a fuller but
still-succinct discussion using the traditional
notation of model theory, see Ebbinghaus
et al. (1994). The scope of the present dis-
cussion does allow the reader to appreciate
that FOL, like the propositional calculus,
is both sound and complete; proofs can be
found in Ebbinghaus et al. (1994). This fact
entails a proposition that will prove useful
momentarily: that if φ is not a consequence
of �, then φ cannot be proved from �. In the
notation introduced earlier, this is expressed
as:

� �|= φ then � �� φ.

4.1.8. alphabet and grammar for LKT
This logical system LKT adds the modal op-
erators and ♦ to the grammatical machin-
ery of LPC, with subscripts on these opera-
tors to refer to agents. Because the concern
here is with what agents believe and know
(i.e., with what is called epistemic or doxas-
tic logic; an overview is provided in (Goble,
2001), the focus is on the box, and there-
fore, α is rewritten as Kα. So, to represent
that “Wise man A knows he doesn’t have a
white spot on his forehead,” one can write
KA(¬ White(A)). Here is the grammar for
LKT .

1. All ordinary wffs are wffs.
2. If φ is a closed wff and α is a constant,

then αφ is a wff. Because the concern
in the wise man puzzle is with doxastic

matters, that is, matters involving be-
lieving and knowing, one says that Bαφ

is a wff, or, if one is concerned with
“knows” rather than “believes,” that Kαφ

is a wff.
3. If φ and ψ are wffs, then so are any

strings that can be constructed from φ

and ψ by the usual propositional con-
nectives (e.g., →, ∧, . . .).

4.1.9. semantics for LKT
The formal semantics for LKT can be
achieved via three steps. The cornerstone
of these steps is the concept of a possi-
ble world. Intuitively, the idea, which goes
back to Hintikka (1962) and can arguably
be traced back as far as Aristotle’s treatment
of the logic of knowledge and belief in his
De Sophisiticis Elenchis and in his Prior and
Posterior Analytics (McKeon, 1941), is that
some agent α knows some declarative state-
ment (= some proposition) φ provided that,
in all possible worlds compatible with what
α knows, it is the case that φ. The compat-
ibility between worlds can be regimented
by way of an accessibility relation between
them. Here are the three steps:

1. Associate with each interpretation
(which now includes a set, A, of agents)
a possible world.

2. Establish a relation – the accessibility
relation – k ⊆ A× W× W where W de-
notes the set of all possible worlds.

3. Now it is said that Kαφ is true in some
possible world wi if φ is true in every
world w j such that < α, wi , w j >∈ k.

We write this as |=wi Kαφ.

For a full, modern treatment of epistemic
logic in connection with computationally
modeling the mind (from the standpoint of
AI), see Fagin et al. (2004).

4.1.10. the simplest infinitary

logical system: Lω1ω
Because LI is so limited (most interest-
ing mathematical statements cannot be ex-
pressed in FOL; e.g., the concept of finitude,
central to mathematics, probably cannot be
expressed in FOL), logicians have studied
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infinitary logics, including simple, complete
ones likeLω1ω, the definition of which is now
provided.

The basic idea behind Lω1ω is straightfor-
ward. This logical system allows for infinite
disjunctions and conjunctions, where these
disjunctions and conjunctions are no longer
than the size of the set of natural numbers
(let’s use ω to denote the size of the set of
natural numbers).7 This fundamental idea
is effortlessly regimented: First, one simply
adds to the customary alphabet for FOL the
symbols

∨
and

∧
. To the ordinary forma-

tion rules for building grammatically correct
first-order formulas, one then adds

• If � is a set of well-formed formulas
{φ1, φ2, . . .} no larger than ω, then

∨
� (

∧
�)

is also a well-formed formula, viz., the dis-
junction (conjunction) of the formulas in �.

The conditions under which an infinite for-
mula is true is fixed by extending the notion
of truth in ordinary FOL:

• A possibly infinite disjunction,
∨

�, is true on
an interpretation I (written I |= ∨

�) if and
only if there is a formula φ in � which is true
on I.

• A possibly infinite conjunction,
∧

�, is true
on an interpretation I (written I |= ∧

�) if
and only if every formula φ in � is true
on I.

Proofs (= derivations) in Lω1ω can, as the
relevant literature states, be “infinitely long”
(Ebbinghaus, Flum, & Thomas, 1984). This
is because in addition to classical corner-
stones like modus ponens covered previ-
ously,

from φ → ψ and φ infer to ψ,

Lω1ω allows rules of inference like

7 This chapter, as stated at the outset, is aimed at
an audience assumed to have familiarity with ele-
mentary logic. So this is not the place to intorduce
readers into the world of cardinal numbers. Hence,
the size implications of the subscripts in Lω1ω and
other related niceties, such as the precise meaning of
ω, are left to the side. For a comprehensive array of
the possibilities arising from varying the subscripts,
see Dickmann (1975).

from φ → ψ for all ψ ∈ �,

infer to φ →
∧

�.

This rule says that if in a derivation you have
an infinite list of if–thens (i.e., formulas of
the form φ → ψ) where each consequent
(ψ) in each if–then is an element of some in-
finite set �, then you can infer to an if–then
whose consequent is the infinite conjunc-
tion obtained by conjoining all the elements
of �. It may be worth pausing to create a
picture of the sort of derivation that is here
permitted. Suppose that � is an infinite set
of the same size as N, the natural numbers.
So � is {γ1, γ2, . . . , γn, γn+1, γn+2, . . .}. Then
here is one possible picture of an infinite
derivation:

φ → γ1

φ → γ2

φ → γ3
...
φ → γn

φ → γn+1
...
φ → γ1 ∧ γ2 ∧ . . . ∧ γn ∧ γn+1 ∧ γn+2 . . .

It should be clear from this that derivations
in Lω1ω can indeed be infinitely long.

4.1.11. nonmonotonic logical

systems

Deductive reasoning is monotonic. That is,
if φ can be deduced from some knowledge
base � of formulas (written, recall, � �D

x φ),
then for any formula ψ �∈ �, it remains true
that � ∪ {ψ} �D

x φ. In other words, when
the reasoning in question is deductive, new
knowledge never invalidates prior reasoning.
More formally, where � is some set of for-
mulas, the closure of this set under standard
deduction (i.e., the set of all formulas that
can be deduced from �), denoted by ��, is
guaranteed to be a subset of (� ∪�)� for all
sets of formulas �. This is not how real life
works, at least when it comes to humans;
this is easy to see. Suppose that at present,
Jones knows that his house is still standing
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as he sits in it, typing. If, later in the day,
while away from his home and working at
his office, he learns that a vicious tornado
passed over the town in which his house is
located, he has new information that prob-
ably leads him to at least suspend judgment
as to whether or not his house still stands.
Or to take the much-used example from AI,
if Smith knows that Tweety is a bird, he will
probably deduce that Tweety can fly on the
strength of a general principle saying that
birds can fly. But if he learns that Tweety is a
penguin, the situation must be revised: That
Tweety can fly should now not be in Smith’s
knowledge base. Nonmonotonic reasoning
is the form of reasoning designed to model,
formally, this kind of defeasible inference.

There are many different logic-based ap-
proaches that have been designed to model
defeasible reasoning, and each one is associ-
ated with a group of logical systems, as such
systems have been defined previously. Such
systems include: default logic, circumscrip-
tion, argument-based defeasible reasoning,
and so on. (The locus classicus of a survey can
be found in Genesereth and Nilsson (1987).
An excellent survey is also provided in the
Stanford Encyclopedia of Philosophy.8) In the
limited space available in the present chap-
ter, the wisest course is to briefly explain one
of these approaches. Argument-based defea-
sible reasoning is selected because it seems
to accord best with what humans actually
do as they adjust their knowledge through
time.9

Let us return to the tornado example.
What is the argument that Jones might give
to support his belief that his house still
stands, while he sits within it, typing? There
are many possibilities, one respectable one
is what can be labeled “Argument 1,” where

8 At http://plato.stanford.edu/entries/logic-ai.
9 From a purely formal perspective, the simplest

way to achieve nonmonotonicity is to use the so-
called closed world assumption (CWA), according to
which, given a set � of initially believed declarative
statements, what an agent believes after applying
the CWA to the set is not only what can be deduced
from �, but also the negation of every formula that
cannot be deduced. It is easy to verify that it does
not always hold that CWA(�) ⊂ CWA(� ∪�), for
all sets �, i.e., monotonicity does not hold.

the indirect indexical refers of course to
Jones:

(1) I perceive that my house is still
standing.

(2) If I perceive φ, φ holds.
∴ (3) My house is still standing.

The second premise is a principle that seems
a bit risky, perhaps. No doubt there should
be some caveats included within it: that
when the perception in question occurs,
Jones is not under the influence of drugs, not
insane, and so on. But to ease exposition,
let us leave aside such clauses. So, on the
strength of this argument, we assume that
Jones’ knowledge base includes (3), at
time t1.

Later on, as we have said, he finds him-
self working in his office, away from home.
A tornado passes over his building. Jones
quickly queries his Web browser once the
roar and rumble die down, and learns from
the National Weather Service this very same
tornado has touched down somewhere in
the town T in which Jones’ house is lo-
cated. At this point (t2, assume), if Jones
were pressed to articulate his current posi-
tion on (3) and his reasoning for that posi-
tion, and he had sufficient time and patience
to comply, he might offer something like
this (Argument 2):

(4) A tornado has just (i.e., at some time
between t1 and t2) touched down in
T , and destroyed some houses there.

(5) My house is located in T .
(6) I have no evidence that my house

was not struck to smithereens by a
tornado that recently passed through
the town in which my house is lo-
cated.

(7) If a tornado has just destroyed some
houses in (arbitrary) town T ′, and
house h is located in T , and one
has no evidence that h is not among
the houses destroyed by the tornado,
then one ought not to believe that h
was not destroyed.

∴ (8) I ought not to believe that my house
is still standing. [I ought not to be-
lieve (3).]
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Assuming that Jones meets all of his “epis-
temic obligations” (in other words, assuming
that he is rational), he will not believe (3)
at t2. Therefore, at this time, (3) will not be
in his knowledge base. (If a cognitive system
s does not believe φ, it follows immediately
that s doesn’t know φ.) The nonmonotonic-
ity should be clear.

The challenge is to devise formalisms and
mechanisms that model this kind of mental
activity through time. The argument-based
approach to nonmonotonic reasoning does
this. Although the details of the approach
must be left to outside reading (see Pollock
1992, 2001), it should be easy enough to
see that the main point is to allow one argu-
ment to shoot down another (and one ar-
gument to shoot down an argument that
shoots down an argument, which revives
the original, etc.), and to keep a running
tab on which propositions should be be-
lieved at any particular time. Argument 2
previously discussed rather obviously shoots
down Argument 1; this is the situation at
t2. Should Jones then learn that only two
houses in town T were leveled, and that they
are both located on a street other than his
own, Argument 2 would be defeated by a
third argument, because this third argument
would overthrow (6). With Argument 2 de-
feated, (3) would be reinstated, and be back
in Jones’ knowledge base. Clearly, this ebb
and flow in argument-versus-argument ac-
tivity is far more than just straight deductive
reasoning.

4.1.12. probabilistic logical systems

Although, as we have seen, declarative/
logic-based computational cognitive mod-
eling was being pursued in earnest more
than 2,300 years ago, probability theory is
only about 200 years old; it emerged from
technical philosophy and logic (Glymour,
1992; Skyrms, 1999). Kolmogorov’s ax-
ioms, namely,

1. All probabilities fall between 0 and 1,
that is, ∀p(0 ≤ P (p) ≤ 1),

2. Valid (in the traditional logic-based
sense explained earlier in the present

chapter) propositions have a probabil-
ity of 1; unsatisfiable (in the tradi-
tional logic-based sense explained ear-
lier) propositions have a probability of
0, and

3. P (p ∨ q) = P (p)+ P (q)− P (p ∧ q)

are simple formulas from a simple logical
system, but modern probability theory can
be derived from them in straightforward
fashion.

The reader may wonder where proba-
bilistic inference enters the picture, because
traditional deduction is not used for in-
ference in probability theory. Probabilis-
tic inference consists in computing, from
observed evidence expressed in terms of
probability theory, posterior probabilities
of propositions of interest. In the relevant
class of logical systems, the symbol to be
used is �Prob

X , where X would be the partic-
ular way of computing over prior distribu-
tions to support relevant posterior formulas.
Recently, the assignment to X has received
much interest, because some strikingly
efficient ways of representing and comput-
ing over distributions have arrived because
of the use of graph-theoretic structures,
but the expressiveness of probability the-
ory is ultimately bounded by the logical
system with which it is associated, and
the two systems in question (the propo-
sitional calculus and FOL, both of course
introduced earlier as LPC and LI , respec-
tively) are rather inexpressive, from the
mathematical point of view afforded by F .
In fact, extending probability theory to the
first-order case is a very recent achievement,
and things are not settled (Russell & Norvig,
2002).

Because another chapter in the present
handbook covers probabilistic computa-
tional cognitive modeling (see Chapter 3 in
this volume), no more is said about such log-
ical systems here. The interested reader is
also directed to Skyrms (1999), Russell and
Norvig (2002), Bringsjord (in-press) for ad-
ditional coverage of probabilisitc formalisms
and modeling.
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4.2. Sample Declarative Modeling in
Conformity to LCCM

Though the purpose of this chapter is to
present logic-based computational cognitive
modeling itself and to show it at work di-
rectly, it is appropriate to present a few ex-
amples of declarative computational cogni-
tive modeling and to see how this kind of
modeling is formalized by LCCM. Three
such examples will be provided.

4.2.1. production rule-based

modeling

Much computational cognitive modeling is
based on production rules. For example,
Soar, ACT-R, and EPAM are based on such
rules, and, accordingly, are often called pro-
duction systems. But what is a production
rule? In a seminal article dealing with the
relationship between logic and production
rule-based modeling, Eisenstadt & Simon
(1997) tell said that

A production [rule] can be represented in
the form C → A, where the C represents a
set of conditions, which are knowledge ele-
ments, either stored in memory or derived
from current stimuli; and the A represents a
set of actions, that either alter internal sym-
bol structures or initiate more responses, or
both. (p. 368)

Given the technical content shared with the
reader earlier, what should come to mind
when seeing “C → A” is a conditional in
LI (or even, in some simple cases, in LPC),
and in point of fact, this logical system does
provide a precise formalization of activity
in collections of interconnected production
rules. In any case, where A is performed,
the declarative content C is satisfied, and
there exists a mechanical sequence of de-
ductive inference (a proof) that produces C
as a conclusion, and indeed a proof that pro-
duces a declarative representation of A as a
conclusion.10

10 More generally, the production rules used to spec-
ify the operation of a Turing machine (in some for-
malizations of these machines, such rules are used),
and executions of these rules, can be entirely al-

Let us consider an example to make this
clearer; the example parallels one given, for
different purposes, by Eisenstadt and Simon
(1997). Three consequences result from a
dog chasing a cat, where this event con-
sists in the instantiation of Chasing(x,y),
Dog(x), and Cat(y). The consequences are
certain actions, denoted, respectively, by
Consequence1(x), Consequence2(y), and
a general consequence Consequence3; the
third consequence, Eisenstadt and Simon
tell us, consists in the cat knocking over a
bowl. The idea is that if instantiations of the
three conditions appear in memory, that is,
that if Chasing(a,b), Dog(a), Cat(b) are in
memory, the production is executed and the
consequences ensue.

Where

Happens(Consequence1(x))
∧ Happens(Consequence2(y))
∧ Happens(Consequence3))

expresses in LI that the three consequences
do in fact transpire, this proposition com-
bined with the following four formulae al-
lows any standard automated prover (ATP)
to instantly prove exactly what is desired.

1. ∀x∀y((Chasing (x, y) ∧ Dog (x) ∧
Cat(y)) →
(Happens(Consequence1(x)
∧ Happens(Consequence2(y))
∧ Happens(Consequence3))))

2. Chasing (a, b)
3. Dog (a)
4. Cat(b)

As we shall see, ATPs stand to logic-
based computer programming as, say, built-
in functions like addition stand to an

gorithmically replaced with deduction over these
rules expressed exclusively in LI . A readable proof
of this is found in Boolos and Jeffrey (1989). Go-
ing from the abstract and mathematical to the con-
crete, any production rule-based activity in an im-
plemented system (such as Soar), can be directly
matched by the corresponding execution of a pro-
gram in the general space PLPC of such program
(see the following coverage of logic-based computer
programs).
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established programming language like
Common Lisp (Steele, 1984; which hap-
pens to be long associated with compu-
tational cognitive modeling and AI).11 In
Lisp, (+ 4 5), when executed, returns 9.
Likewise, a standard ATP, on given the
five previous formulas, and a request to
prove whether the second consequence ob-
tains, brings the correct answer back im-
medidately. For example, here is a proof
instantly returned by the well-known and
long-established ATP known as Otter (Wos
et al., 1992), once the five formulas are as-
serted, and the query is issued.

---------------- PROOF ----------------

2 [] -Chasing(x,y)| -Dog(x)|

-Cat(y)|Happens(consequence2(y)).

4 [] -Happens(consequence2(b)).

5 [] Dog(a).

6 [] Cat(b).

7 [] Chasing(a,b).

9 [hyper,7,2,5,6] Happens

(consequence2(b)).

10 [binary,9.1,4.1] F.

------------ end of proof -------------

This particular proof uses a mode of deduc-
tive inference called resolution, a mode that,
using the notation introduced earlier, can be
labeled �D

res . The core rule of inference in
resolution is simply that from φ ∨ ψ and ¬φ

it can be inferred that ψ . In this inference,
it can be accurately said that φ and ¬φ “can-
cel each other out,” leaving φ. The careful
reader can see this “cancellation” at work in
the inference at the line containing hyper
and in the inference at the line containing
binary.

It is important to know that although all
that is represented in a production system,
and all processes over those representations,
corresponds, formally speaking, to represen-
tation and reasoning in simple logical sys-
tems, the converse does not hold. The reason
for this is simply that some declarative infor-
mation exceeds the particular structure for

11 For cognoscenti to see that the analogy between
these built-in functions and ATPs holds firmly, it
must be stipulated that calls like � �M φ? include
an interval of time n beyond which the machine’s
deliberation will not be allowed to pass.

expressing declarative information available
in the production paradigm. Whereas every
production rule maps directly to a particu-
lar formula in some logical system and ev-
ery firing of production rules maps directly
to a machine-generated proof, many formu-
las in many logical systems exceed the ex-
pressive power of production rules and sys-
tems. This is without question true for an
entire subclass; infinitary logical systems are
in this category. Even the smallest infinitary
logical system (Lω1ω, visited earlier) allows
for declarative statements that exceed pro-
duction rules. Even more mundane declar-
ative statements, although easily expressed
by particular formulas in particular logical
systems, at the very least, pose an extreme
challenge to production systems. For exam-
ple, although φ = “Everyone loves anyone
who loves at least three distinct people” is
trivially mapped to a formula in LI ,12 it is
impossible to devise one production rule to
correspond directly to this declarative state-
ment. Things get even harder when expres-
sivity must increase. For example, opera-
tors can range over φ as when, in quanti-
fied epistemic logic (LQKT ), we say such
things as that Jones believes that Smith
believes φ.

4.2.2. rips’ psycop and

johnson-laird-written models

Rips (1994) describes a system (PSYCOP)
designed to model normatively incorrect hu-
man reasoning at the level of the proposi-
tional calculus (i.e., at the level of LPC), and
to some degree (if for no other reason than
that PSYCOP includes normatively correct
deductive rules of inference), normatively
correct reasoning at this level as well. This
means that PSYCOP is couched in terms of
the logical system LPC, discussed previously
(from which it follows that whatever declar-
ative statement(s) LPC cannot express, PSY-
COP cannot express).

PSYCOP reflects the driving dogma of
the aforementioned theory of human rea-
soning known as mental logic – the dogma

12 In LI it is simply ∀x∀y((∃z1∃z2∃z3(z1 �= z2 ∧ z2 �=
∧z1 �= z3 ∧ Lyz1 ∧ Lyz2 ∧ Lyz3)) → Lxy).



P1: JZP

CUFX212-05 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 15:51

declarative/logic-based cognitive modeling 153

being that (logically untrained) human rea-
soners reason by following rules of inference
similar to those used in the argument theory
of LPC. For example, although the inference
rule mentioned in a moment is absent from
the system, modus ponens is in it, as are a
number of other rules. (PSYCOP and its
underpinnings are critiqued in Chapter 12
in this volume.) It is important to note that
PSYCOP is not an architecture designed to
computationally model all of human cog-
nition. In fact, PSYCOP cannot be used to
model the human reasoning triggered by the
puzzle-based desiderata listed earlier. This
is so because PSYCOP is insufficiently ex-
pressive (e.g., it has no modal operators like
those in LKT , and they are needed for WMP,
as we shall soon see; nor does PSYCOP even
have first-order models of LI ), and it does
not allow trivial normatively correct infer-
ences that good deductive reasoners make
all the time. For example, in PSYCOP, you
cannot infer from the falsity of (where φ and
ψ are wffs of LPC) “If φ, then ψ” to the fal-
sity of ψ , but that is an inference that even
logically untrained reasoners do sometimes
make. For example, they sometimes say,
when faced with such declarative sentences
as:

It is false that: If the cat is not on the mat,
then Jones is away.

that if the if–then is false, the “if part” (=
the antecedent) must be true whereas the
“then part” (= the consequent) is not, which
immediately implies here that Jones is not
away.

Interestingly enough, Rips explicitly con-
siders the possibility of a “deduction-based”
cognitive architecture (in Chapter 8, “The
Role of Deduction in Thought,” in Rips,
1994). This possibility corresponds to a
proper subset of what is realized by LCCM.
Rips has in mind only a particular simple
extensional logic as the core of this possibil-
ity (namely, LPC), whereas LCCM is based
on the literally infinitely broader concept of
the family F of logical systems; on not just
deduction, but other forms of reasoning as
well (e.g., induction, abduction, nonmono-

tonic reasoning, etc.); and on a dedicated
programing paradigm tailor-made for imple-
menting such systems.

Now, what about Johnson-Laird’s (1983)
mental models theory and specifically some
computer programs that implement it?
Does this work also fall under LCCM? Be-
cause Johnson-Laird’s work is declarative, it
does fall under LCCM.

Mental models theory has been, at least
in part, implemented in the form of various
computer programs (see Chapter 12 in this
volume), but none of these programs consti-
tute across-the-board computational cogni-
tive models of the human cognizer. Instead,
the reasons offered as to why such programs
have been written include the standard (but
very compelling) ones, such as that the
computer implementation of a psychologi-
cal theory can reveal ambiguities and incon-
sistencies in that theory. However, the pro-
grams in question fall under LCCM. After
all, these are programs that produce mod-
els in the logic-based sense and then reason
over these models in accordance with rules
naturally expressed in logic. At the level of
LPC, mental models in mental models the-
ory correspond to rows in truth-tables that
yield true for the formula and where only
the true literals in those rows are included
(a literal is either some pi , or ¬pi ). For ex-
ample, the mental models corresponding to
“The Yankees will win and the Red Sox will
lose,” assuming a symbolization of Y ∧ R
for this English sentence, yields one mental
model:

Y R.

In the case of disjunction, such as “Either the
Yankees will win the World Series, or the
Red Sox will,” the models would be three in
number, namely,

Y
R
Y R.

Because in mental models theory a con-
clusion is necessary if it holds in all the
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models of the premises, some deductively
valid inferences, such as “The Yankees will
win” follows from “The Yankees will win
and the Red Sox will lose,” should be made
by logically untrained subjects. This is a
normatively correct inference. (However,
standard normatively correct justifications
are not available on Johnson-Laird’s the-
ory. This is so because standard justifications
are proofs of the sort seen in formal logic
and mathematics.) What about normatively
incorrect reasoning? Clearly, such reasoning
will frequently occur, according to the the-
ory. Think back to the formal structure of
experiments as set out at the beginning of
this chapter (Section 1.5). Suppose the hu-
man reasoner assimilates premises in the list
L yielding the mental models in a set S. The
reasoner will declare a purported conclusion
D to follow if D ∈ S, and such membership
can obviously hold independent of formally
valid inference.

4.2.3. rule-based, similarity-based,

and commonsense reasoning

in lccm

The CLARION cognitive architecture mod-
els human declarative reasoning in some
very interesting nonlogic-based ways. For
example, CLARION models two apparently
distinct forms of (simple) reasoning detected
in the logically untrained. Although the dis-
tinction between these two forms cannot be
modeled through naive use of FOL (= LI )
because both forms of reasoning are declar-
ative, it is easy to model the distinction
using the full arsenal of LCCM, that is,
using logical systems in the space F that
are more expressive than LI . This is now
shown.

The two forms of reasoning in ques-
tion are what Sun and Zhang (2006) call
“rule-based reasoning” (RBR) and “simi-
larity-based reasoning” (SBR). To look more
closely at the situation, one can turn to the
specific stimuli on which Sun and Zhang fo-
cus, which are taken from Sloman (1998).
Stimuli consisted of pairs of arguments.
Some pairs are said to be in the form of “pre-
mise specificity,” as for instance in this
pair:

All flowers are susceptible to thrips
⇒ All roses are susceptible to thrips.

All plants are susceptible to thrips
⇒ All roses are susceptible to thrips.

Other pairs are in the form of what is called
“inclusion similarity.” Examples include:

All plants contain bryophytes.
⇒ All flowers contain bryophytes.

All plants contain bryophytes.
⇒ All mosses contain bryophytes.

Subjects were directed to pick the stronger
argument from each pair. In response, the
vast majority of subjects, for both types of
pairs, selected as stronger the “more similar
argument,” as Sun and Zhang (2006) put it.
By this they mean that the vast majority of
subjects chose, from each pair, the argument
whose subjects are intuitively regarded to be
more similar. For example, the assumption
is that roses are more similar to flowers than
they are to plants.

It should be apparent that if only RBR
(e.g., based on logics) was used, then sim-
ilarity should not have made a difference,
because the conclusion category was con-
tained in the premise category, and thus
both arguments in each pair should have
been equally, perfectly strong. Therefore,
the data suggested that SBR (as distinct
from RBR or logics capturing category in-
clusion relations) was involved to a signifi-
cant extent. (Sun & Zhang, 2006, p. 172)

Of course, by RBR, Sun and Zhang here
mean “barebone” RBR, which involves only
category inclusion relations.

Sun and Zhang proceed to show that
CLARION can be used to model the dis-
tinction between RBR and SBR. Although
that modeling is impressive, the point rele-
vant to the present chapter is that the RBR-
is-distinct-from-SBR phenomenon, because
it is declarative, can also be modeled in the
LCCM approach because this approach is
based on F , the infinite family of logical
systems, not on a particular logic. Sun and
Zhang, in the parenthetical in the previous
quote, indicate that RBR is “based on log-
ics.” The use of the plural here is wise, for it
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would be exceedingly peculiar for any pro-
ponent of LCCM to maintain that human
reasoning, let alone human cognition, can be
modeled by a particular logic. This would be
even more peculiar than maintaining that in
modeling various phenomena, mathemati-
cians and physicists can restrict themselves
to only one specific branch of mathemat-
ics for the purposes of modeling. (The ten-
sor calculus is a thing of beauty when it
comes to relativity, but of what good is it
in, say, doing axiomatic set theory?) Follow-
ing logical systems introduced by Chisholm
(1966, 1977, 1987), and Pollock (1974),
one can assign strength factors (note: not
probabilities; strength factors) to nondeduc-
tive inferential links, as in fact has been done
in the LCCM-based Slate interactive rea-
soning system (Bringsjord et al., 2007).13

In Slate, these factors include, in descend-
ing strength, certain (4), evident (3), be-
yond reasonable doubt (2), probable (1),
and counterbalanced (0), and then the neg-
ative counterparts to the first four of these
(yielding, in the numerical shorthand, −1,
−2,−3, and−4). These strength factors can
be associated with knowledge about the sim-
ilarity of the subjects involved in such argu-
ments as those studied by Sloman, Sun, and
Zhang. Given, then, a pair such as

All flowers are susceptible to thrips
⇒2 All roses are susceptible to thrips.

All plants are susceptible to thrips
⇒1 All roses are susceptible to thrips.

and a straightforward selection algorithm for
strength of argument that works by sim-
ply selecting the argument whose inferen-
tial link is associated with a higher num-
ber, LCCM has no trouble modeling the
phenomenon in question (i.e., the distinc-
tion between barebone RBR and SBR is
formally captured). Moreover, because the
cognitive plausibility of such strength fac-
tors inheres in the fact that the average sub-
ject assigns a higher strength factor to the

13 Information about Slate and a for-teaching version
of the system itself can be obtained at http://www.
cogsci.rpi.edu/research/rair.

hidden premise (so that, e.g., “All roses are
flowers” is epistemically stronger than “All
roses are plants”), LCCM would allow us to
model human reasoning that leads subjects
to prefer the more similar pairs in the nonen-
thymematic versions of Sloman’s arguments.

The reach of LCCM can be shown to for-
malize not just RBR and SBR, but the over-
all phenomenon of commonsense reasoning,
as this phenomenon is characterized by Sun
(1995). Sun points out that commonsense
reasoning, although not strictly speaking de-
finable, can be taken to include

informal kinds of reasoning in everyday
life regarding mundane issues, where speed
is oftentimes more critical than accuracy.
The study of commonsense reasoning as
envisaged here is neither about the study
of a particular domain, nor about id-
iosyncratic reasoning in any particular do-
main. It deals with commonsense reason-
ing patterns; that is, the recurrent, domain-
independent basic forms of reasoning that
are applicable across a wide range of do-
mains. (Sun, 1995, p. 242)

Sun then goes on to show that such rea-
soning, insofar as a particular set of eleven
examples can be taken as exemplars of this
reasoning, can be modeled in the CON-
SYDERR architecture. Although obviously
there is insufficient space to show here how
LCCM can also model commonsense rea-
soning characterized in this ostensive way, it
can be indicated how such modeling would
run.

The first of the eleven examples, all of
which are taken from Collins and Michalski
(1989) and Collins (1978), is as follows:

Q: Do you think they might grow rice in
Florida?
A: Yeah. I guess they could, if there were
an adequate fresh water supply, certainly
a nice, big, warm, flat area.

About this example, Sun writes:

There is a rule in this example: if a place
is big, warm, flat, and has an adequate
fresh water supply, then it is a rice-growing
area. The person answering the question
deduced an uncertain conclusion based
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(1) ∀x((Place(x) ∧ Big (x) ∧ Warm(x) ∧ F lat(x) ∧ Water (x)) → GrowRice(x)) premise
(2) Place( f l) ∧ Big ( f l) ∧ Warm( f l) ∧ F lat( f l) premise
(3) Water (x) probable
(4) Place( f l) ∧ Big ( f l) ∧ Warm( f l) ∧ F lat( f l) ∧ Water ( f l) from (2), (3) BY ∧I
(5) Place( f l) ∧ Big ( f l) ∧ Warm( f l) ∧ F lat( f l) ∧ Water ( f l)) → GrowRice( f l) from (1) BY ∀E

∴ (6) GrowRice( f l) from (5), (6) by →Elim

on partial knowledge, although a piece of
crucial information (i.e., the presence
of fresh water) is absent. Sun, 1995,
p. 244)

One interesting aspect of this example is
that the subject not only answers the ques-
tion in the affirmative, but also sketches a
justification. (Recall that the structure of ex-
periments designed to uncover the nature of
reasoning and decision making are assumed
herein to request justifications. See Section
1.5.) The response is an enthymematic de-
ductive argument easily expressed in LI ,
under the parameter �D

F defined earlier in
the chapter (with obvious meanings for
the predicate letters), as shown in the box
above.

Of course, although (4) follows deduc-
tively from {(1), (2), (3)} using the rules
of natural deduction introduced earlier (as
shown in the proof immediately preceding),
(3) is only probable, which means that, over-
all, the strength of the argument for (6) is
itself probable.

There are other formal niceties that
would be included in a full exposition, but
the point should be clear: Commonsense
reasoning, as a declarative phenomenon,
that is, as reasoning over declarative state-
ments, can, from the formal point of view,
be modeled in an illuminating way by
LCCM. The subject in this case has given
an answer, and a justification, whose formal
essence can be expressed with the machin-
ery of LCCM. All of the remaining ten ex-
amples in Sun (1995) can be modeled in
LCCM as well. Moreover, although it is not
shown herein, using the concrete computa-
tional techniques covered in the next sec-
tion, logic-based computer programs can be

written and executed to produce rapid, real-
time simulations of the commonsense rea-
soning in question. Finally, whatever empir-
ical data might be associated with human
commonsense reasoning (e.g., response time
for answer to be produced and justification
to be articulated) can be formally expressed
in the framework of LCCM.

4.3. Logic-Based Computer
Programming

None of the foregoing has much value unless
a program can be written which, when exe-
cuted, produces a computational simulation
of some cognition. After all, the subject be-
ing rationalized in this chapter is a particular
paradigm for computational cognitive mod-
eling, and computation is by definition the
movement through time of a computer; now
and in the foreseeable future, such move-
ment is invariably caused and regulated by
the creation (manual or automatic, or a hy-
brid of the two) and execution of computer
programs. Given this, an obvious question is:
With what programing paradigm, and lan-
guages within it, is LCCM naturally associ-
ated? Just as a generalization of the concept
of logical system from mathematical logic
was used to arrive at the family F of logical
systems for LCCM, programs in logic-based
computational cognitive modeling are writ-
ten in declarative programming languages
from a family P composed of languages that
are generalizations of the long-established
concept of a logic program in computer sci-
ence. For each system S in F , there is a
corresponding programming language PS in
P. In the interests of space, the focus here
will be on PLPC and PLI , in which programs
are written based on the computation of the
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two central relations in LPC and LI , namely,
�D

X and |=, both defined earlier. Fortunately,
there are many well-established program-
ming environments for writing programs
based on the computing of these relations.
For example, �D

Res is computed by Vampire
(Voronkov 1995) and Otter (Wos 1996,
Wos, Overbeek, e. Lusk & Boyle 1992),
�D

F by Oscar (Pollock 1989, Pollock
1995), Athena and NDL (Arkoudas 2000,
Bringsjord, Arkoudas & Bello 2006), among
other such systems. As to |=, a number
of mature, readily available systems now
compute this relation as well, for exam-
ple, Hyperproof (Barwise & Etchemendy
1994), and Paradox and Mace (Claessen &
Sorensson 2003) at the level of LI , and at
the level of LPC, many SAT solvers (e.g.,
see Kautz & Selman 1999).

5. Meeting the Challenges

It is time now to turn to showing how the
problems composing (C1) can be solved
in LCCM in a manner that matches the
human normatively incorrect and norma-
tively correct responses returned after the
relevant stimuli are presented. Recall, yet
again, the ecumenical experimental struc-
ture to which declarative/LCCM must con-
form (Section 1.5).

5.1. Meeting the Challenge of
Mechanizing Human Reasoning

Let us begin by reviewing the desiderata un-
der (C1): Desideratum 1 is modeling both
System 1 and System 2. Desideratum 2 is
modeling reasoning that is emphasized by
the three theories. Desiderata 3 through
6 consist of the sequence of four puzzles:
King-Ace, Wine-Drinker, Wise Man, and
Infinitary DeMorgan. Now, how can it be
shown that LCCM can meet the six re-
quirements? By providing the following six
demonstrations:

D1 a normatively correct solution to
King-Ace can be modeled by
LCCM;

D2 a normatively incorrect, mental
logic-based response to King-Ace
can be modeled by LCCM;

D3 a normatively correct mental meta-
logic-based solution to Wine-
Drinker can be modeled by LCCM;

D4 a normatively incorrect mental
models-based response to Wine-
Drinker can be modeled by LCCM;

D5 a normatively correct solution to
Wise Man can be modeled by
LCCM.

D6 a normatively correct solution to In-
finitary DeMorgan can be modeled
by LCCM.

Once these things are demonstrated by
elementary deduction, all desiderata are sat-
isfied. These demonstrations, recall, are to
be carried out at the “algorithmic” level in
Marr’s (1982) tripartite scheme, or, equiv-
alently, the “symbolic” in Pylyshyn’s (1984)
corresponding three-level view of the com-
putational modeling of cognition. Using
Marr’s language, that means that what is
sought is a representation for the input and
output, and the algorithm for the trans-
formation from the former to the latter.
The algorithm for transformation corre-
sponds directly to the argument or proof
provided. (Recall that what the algorithms
in question are was provided in Section 4.3,
when logic-based computer programming
was defined. The programming is based di-
rectly on arguments or proofs returned by
subjects.)

5.1.1. desideratum #1

A normatively correct solution to Puzzle 1
that follows what human cognizers do when
succeeding on the puzzle is easy to con-
struct in LCCM, with the logical system in
question set to LPC. In a recent experiment
(to test hypotheses outside the scope of the
present chapter), forty subjects were given
Puzzle 1. The subjects were divided into
two groups, one that was given a paper-and-
pencil version of Puzzle 1 and one that was
given an electronic version encoded in our
Slate system. In both cases, a justification for
the given answer was requested. A number
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of subjects did, in fact, answer correctly and
give a normatively correct justification, that
is, a proof in a particular deductive calculus,
namely, the calculus F defined earlier. Fig-
ure 5.2 shows a proof in F , constructed
in hyperproof, that follows the reasoning
given by some students in proving that in
Puzzle 1 one can correctly conclude ¬A. It
is important to note that there are an unlim-
ited number of deductive calculi that could
be used to a proof establishing the correct
answer “There is not an ace in the hand.” The
normative correct solution provided here is
a direct match to the justification given by
human subjects. For many examples of such
normatively correct solutions produced by
human subjects, see Rinella et al. (2001).

5.1.2. desideratum #2

The same experiment as mentioned in the
previous section, combined with a num-
ber of predecessors relevantly like it, have
enabled us to acquire an archive of “jus-
tifications” in support of A. The vast ma-
jority of these express reasoning that is in
fact formally valid reasoning in conformity
with mental logic theory – but in this rea-
soning, the declarative information is incor-
rectly represented. How does the reasoning
run, specifically? It is perfectly straightfor-
ward; here is a sample:

We know that if there’s a king in the hand,
then there’s an ace in the hand. And we
know that if there isn’t a king in the hand,
then there is an ace in the hand. But there
are only two possibilities here. Either there
is a king in the hand, or there isn’t. But
both of these possibilities let us conclude
that there is an ace in the hand.

Obviously, such reasoning accords well with
mental logic, and a simulation of this reason-
ing in the LCCM approach is trivial. One
need only write a program PLPC such that,
when evaluated, the reasoning quoted ear-
lier is produced. Here’s a simple NDL de-
duction that does the trick:

// The signature for this simple example
// (normatively incorrect
// deductive reasoning given in response to
// the king-ace puzzle)
// contains two propositional variables,

// A and K:
Relations A:0, K:0.

// One asserts the conjunction consisting of
// the claim that if there’s
// a king in the hand, then there’s an ace in
// the hand, and the claim
// that if there isn’t a king in the hand then
// there’s an ace in the hand.
assert ((K ==> A) & (~K ==> A))

// Either there’s a king in the hand, or there
// isn’t:
assert K \/ ~K

// And now for the argument, which mechanizes
// the idea that no
// matter which if-then one goes with, in
// either case one can
// show that there is an ace in the hand.
left-and ((K ==> A) & (~K ==> A));
right-and ((K ==> A) & (~K ==> A));
cases K \/ ~K, K ==> A, ~K ==> A

When evaluated, this returns a theorem ex-
actly in line with what the normatively in-
correct reasoning is supposed to produce,
namely,

Theorem: A

Once again, note that it is not just that the
desired answer is produced. The structure
of the justification directly models what is
given by human subjects who fall prey to
the puzzle.

5.1.3. desideratum #3

How does LI allow us to solve Puzzle 2? Re-
call yet again the three relevant statements,
in English:

1. All the Frenchmen in the restaurant are
gourmets.

2. Some of the gourmets are wine-
drinkers.

3. Some of the Frenchmen in the restau-
rant are wine, drinkers.

The simplest solution to the puzzle is to
note that one can find an interpretation I (in
the logical system LI ) in which the first two
statements are true, but the third is not. This
will show that the third is not a deductive
consequence of the first two, from which it
will immediately follow that the third can-
not be proved from the first two. Here is
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Object-1 Object-2

IN-THE-RESTAURANT WINE-DRINKERGOURMETFRENCHMANNON-WINE-DRINKER

Figure 5.3. Visual countermodel in wine-drinker puzzle (provided by Andrew Shilliday and Joshua
Taylor).

an interpretation that fits the bill: First, as-
sume that everyone we are talking about is
in the restaurant. Now, suppose that Alvin
is a wine-drinker and a gourmet, and not
a Frenchman. Bertrand is a Frenchman and
a gourmet, but not a wine-drinker. No one
else, in this imaginary scenario, exists. In this
situation, all Frenchmen are gourmets, and
there exists someone who is a wine-drinker
and a gourmet. This ensures that both the
first two statements are true. But it is not
true that there exists someone who is both a
Frenchman and a wine-drinker. This means
that the third proposition is false; more gen-
erally, it means that the third is not a con-
sequence of the first two, which in turn
means that (using the list of the three just
given)

{(1), (2)} � (3),

and the full solution is accomplished. Please
note that logic-based programming at the
level of LI allows for countermodels to be
produced, and they can be rendered in visual
form to be more quickly grasped. Figure 5.3
shows such a countermodel relevant to the
present case, produced by the aforemen-
tioned Paradox system (Claessen & Sorens-
son, 2003), and translated and visually dis-
played by the Slate system (Bringsjord et al.,
2007). For studies in which subjects respond
to stimuli like the Wine Drinker in norma-
tively correct fashion, see (Bringsjord et al.,
1998; Rinella et al., 2001).

5.1.4. desideratum #4

This is easy to model in LCCM, as follows.
First, most subjects who succumb to this

problem see not the list of English sentences
as written, but rather

1. All the Frenchmen in the restaurant are
gourmets.

2. All of the gourmets are wine-drinkers.
3. There are some Frenchman.
4. Some of the Frenchmen in the restau-

rant are wine-drinkers.

The deduction of the last of these from the
first three in a natural calculus is straightfor-
ward. Here is an NDL deduction that, once
evaluated, produces exactly the human-
produced output (i.e., exactly (exists x
(Frenchmen(x) & Winedrinker(x))), by
exactly the human-produced reasoning:

// There are three obvious relations to declare:
Relations Frenchman:1, Gourmet:1, Winedrinker:1.

assert (forall x (Frenchman(x) ==> Gourmet(x)))
// The first proposition is asserted.

assert (forall x (Gourmet(x) ==> Winedrinker(x)))
// The second proposition is asserted.

assert (exists x Frenchman(x))
// There are some Frenchmen.

// Now for the reasoning corresponding to the
// normatively incorrect response.
// The reasoning itself, note, is formally valid.
pick-witness z for (exists x Frenchman(x))
// An arbitrary individual z is picked
// to facilitate the reasoning.

begin specialize (forall x (Frenchman(x) ==>
// Gourmet(x))) with z;

specialize (forall x (Gourmet(x) ==>
// Winedrinker(x))) with z;

assume Frenchman(z)
begin

modus-ponens Frenchman(z) ==> Gourmet(z),
// Frenchman(z);
modus-ponens Gourmet(z) ==> Winedrinker(z),
// Gourmet(z)

end;
modus-ponens Frenchman(z) ==> Winedrinker(z),
// Frenchman(z);
both Frenchman(z), Winedrinker(z);
ex-generalize (exists x Frenchman(x) &
// Winedrinker(x)) from z

end
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5.1.5. desideratum #5

To ease exposition, the solution is restricted
to the two-wise-men version. In this version,
the key information consists in these three
facts:

1. A knows that if A doesn’t have a white
spot, B will know that A doesn’t have a
white spot.

2. A knows that B knows that either A or
B has a white spot.

3. A knows that B doesn’t know whether
or not B has a white spot.

Next, here are some key axioms and rules of
inference:

K (φ ⇒ ψ) ⇒ ( φ ⇒ ψ)
T φ ⇒ φ

LO (“logical omniscience”) From φ �∗
ψ and Kαφ infer Kαψ

We are now positioned to appreciate a
traditional-style proof in LKT that solves this
problem and which is the direct correlate
given by (the few) subjects who, when
WMP is given, provide a normatively cor-
rect justification:

1. KA(¬White(A) ⇒ KB(¬White(A)))
2. KA(KB(¬White(A) ⇒ White(B)))
3. KA(¬KB(White(B)))
4. ¬White(A) ⇒ KB(¬White(A)) 1, T
5. KB(¬White(A) ⇒ White(B)) 2, T
6. KB¬(White(A)) ⇒ KB(White(B)) 5,

K
7. ¬White(A) ⇒ KB(White(B)) 4, 6
8. ¬KB(White(B)) ⇒ White(A) 7
9. KA(¬KB(White(B)) ⇒ White(A)) 4–8,

1, LO
10. KA(¬KB(White(B))) ⇒ KA(White(A))

9, K
11. KA(White(A)) 3, 10

To see how this can be rendered in compu-
tational form, implemented, and efficiently
run in a logic-based computer program, see
Arkoudas and Bringsjord (2005).

5.1.6. desideratum #6

Given the reach of LCCM through Lω1ω,
this puzzle is easy to solve. The disjunction

in question can be denoted by
∨

�. We then
simply invoke the infinitary analogue to the
inference rule known as disjunctive syllo-
gism, which sanctions deducing ψ from the
two formulas φ ∨ ψ and¬φ. The analogue is

from
∨

�, where φ ∈ �, and ¬φ,

infer to
∨

�− {φ}.

5.2. Meeting the Perception/Action
Challenge

(C2) can be solved if LCCM can transpar-
ently model, on the strength of the core me-
chanical processes given by the families F
and P, the range of high-level cognition all
the way down to nondeliberative interac-
tion with the environment, or what, fol-
lowing contemporary terminology, can be
called external perception and action.14 In
Sun’s (2002) words, discussed earlier, one
can meet challenge (C2) if F and P consti-
tute the unifying logico-mathematical lan-
guage he says is sorely missing.

It has been shown above that LCCM
can model high-level reasoning. If it can be
shown that LCCM can meet the perception-
and-action challenge, large steps will have
been taken toward showing that (C2) can
be met by LCCM.15

Of course, there is a general feeling
afloat that logic is unacceptably slow. Can
LCCM handle rapid, nondeliberative per-
ception and action in an exchange with

14 The term “external” is used because human persons
do routinely engage in introspection (perceive in-
ternal things) and do carry out all sorts of mental
(= internal) actions.

15 Astute readers may wonder about learning. Note
that the notion that logic is inappropriate for mod-
eling learning, which because of limited space is
not discussed in earnest herein, has certainly evap-
orated. This is so for two reasons. The first is that
logic-based machine learning techniques are now
well established (for a nice survey, see Russell &
Norvig, 2002). The second reason is that machine
learning by reading, which has never been pursued
in AI or cognitive science, is now a funded enter-
prise – and is logic-based. For example, see the
start of Project Halo (Friedland et al., 2004), and
logic-based machine reading research sponsored by
the U.S. government (e.g., see Bringsjord et al.,
2007).
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the physical environment? For example, can
logic be used to model a human making his
or her way through a rapid-fire first-person
shooter computer game? In this section, it
is explained why this challenge (a) may be
beside the point of modeling human per-
sonhood, (b) needs to be distinguished from
so-called transduction, and (c) can be met
in at least two logic-based ways, one of
which has already been successfully pursued
to some degree and one of which would be
based on visual logic, an area of growing and
great future importance to LCCM.

5.2.1. is perception and action

beside the point?

Note that nondeliberative, external percep-
tion and action are not part of the defini-
tion of human personhood given earlier in
the chapter (Section 2). The reason for that
is well known: In general, it seems entirely
possible for us to be persons over a stretch
of time during which no external perception
and action occurs.16 There is no reason why
Smith cannot spend three hours in a sen-
sory deprivation tank, during which time he
cracks a math problem or writes a story in
his head, or does any number of intellectual
tasks. Moreover, it certainly seems mathe-
matically possible that human persons could
be brains in vats, having no exchange with
the environment of the type that is supposed
to be a challenge to LCCM (Bringsjord &
Zenzen, 1991). Nonetheless, it is charitably
assumed that LCCM is challenged with hav-
ing to model external perception and action.
An explanation that this challenge can ap-
parently be met is now provided.

5.2.2. separating out transduction

It is important to distinguish between per-
ception and action, and transduction. Trans-
duction is the process by which data hit-
ting sensors is transformed into informa-
tion that can processed by an agent and by
which information processed by an agent

16 Internal perception and action is another story: In a
sensory deprivation tank, one can perceive all sorts
of mathematical objects (e.g.), and can take all kinds
of mental actions.

is transformed into data emitted by effec-
tors. Transduction is a purely physics- and
engineering-relevant process having nothing
to do with cognition. In other words, trans-
duction is a process peripheral to human
cognition. The quickest way to see this is to
note that the transducers we currently have
can be replaced with others, whereas the
prereplacement and postreplacement per-
sons remain numerically identical despite
this replacement. If you go blind, and doc-
tors replace your eyes with artificial cameras,
it is still you who thanks the surgeons after
the procedure has brought your sight back.
It’s your sight they have brought back, af-
ter all. (The overall picture just described
is articulated in the context of human-level
logic-based AI in Nilsson (1991). The pic-
ture transfers directly to the specific case of
human persons.)

The assumption is made that for LCCM,
information from the environment is cast as
expressions in some logical system from F ,
and the challenge is to process those expres-
sions with sufficient speed and accuracy to
match human performance. This can be ac-
complished in one of two ways. The first
way is briefly described in the next section.
The second way is still experimental and on
the very frontier of LCCM and human-level
logic-based AI, and will not be discussed
here.17

5.2.3. an event calculus with atps

Although logic has been criticized as too
slow for real-time perception-and-action-
heavy computation, as one might see in
the computational modeling of a human
playing first-person shooter game (as op-
posed to a strategy game, which for obvi-
ous reasons, fits nicely with the paradigm of
LCCM), it has been shown that computa-
tion produced by the execution of programs
in PLI is now so fast that it can enable
the real-time behavior of a mobile robot

17 In the second way, information from the environ-
ment is not transduced into traditional linguistic log-
ics, but is rather left in visual form and represented
in visual logics. For a discussion of visual logic, in
the context of the study of the mind from a com-
putational perspective, see Bringsjord (in press).
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Figure 5.4. The wumpus world game. In the
wumpus world, a robot must navigate a work in
matrix form, where cells in the grid may contain
pits or a monster (the Wumpus). The robot
must shoot and kill the Wumpus, and retrieve
the gold.

simulating human behavior in a robust en-
vironment. This has been shown by hav-
ing a logic-based mobile robot successfully
navigate the wumpus world game, a staple
in AI (Brijgsjord et al., 2005), and a game
that humans have long played (see Figures
5.4 and 5.5). This work parallels work done
in John McCarthy’s (logic-based) AI lab that

Figure 5.5. Performance of a RASCALS-
powered robot in the wumpus world. This
graph shows the time (in seconds) it takes the
logic-powered robot to succeed in the wumpus
world, as a function of the size of the world
(i.e., the size of the grid). The speed is really
quite remarkable. Engineering was carried out
by Matt Daigle.

has shown it to be possible to control a
real robot, operating in a realistic office en-
vironment in real time (Amir & Maynard-
Reid, 2001; Amir & Maynard-Reid, 2000;
Amir & Maynard-Reid, 1999).18 In this ap-
proach, a calculus is used to represent time
and change. Usually the calculus is the sit-
uation calculus, but the event calculus can
also be used; both are summarized in Rus-
sell and Norvig (2002). It is important to
know that such work is far from peripheral
and tentative: Logic-based AI is starting to
reveal that even in the area of perception
and action, the speed demands can be met
via well-established techniques that are part
of the standard toolkit for the field, as seen
by such textbooks as Knowledge in Action
(Reiter, 2001).

5.3. Meeting the Rigor Challenge

This section briefly explains why every com-
putational model produced in accordance
with LCCM has a precise meaning, which
allows LCCM to be theorem-guided. Space
does not permit a sampling of relevant theo-
rems to be canvassed in any detail, but a few
are cited at the end of this section. For ex-
ample, how to determine whether two dif-
ferent logic-based programs P and P ′ have
the same meaning is explained.

Let PL be a logic-based computer pro-
gram from the space P. It follows imme-
diately by definitions given earlier that this
program conforms to what has been called
the argument semantics for the logical sys-
tem L in F . That is, every inference made
when PL is executed has a precise mechani-
cal meaning in terms of the effect this in-
ference has on the knowledge base asso-
ciated with this program. (This has been
seen firsthand by the reader earlier, in the
sample logic-based computer programs that
have been provided.) This meaning per-
fectly coincides with corresponding infer-
ences made when reasoning is carried out
in the logical system L using a particular
mode of inference and a particular calcu-
lus. To make this clear, consider the precise

18 This research can be found online at: http://www.
formal.stanford.edu/eyal/lsa.
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meaning (albeit in English) of one of the
key inferences used in logic-based computer
programs; that inference is cases, as used,
for example, in

cases K \/ ~K, K ==> A, ~K ==> A.

The meaning of this inference is that, as-
suming that the knowledge base contains the
three formulas in question (the disjunction
K \/ K and the two conditionals K ==> A
and K ==> A), its application will add the
formula A to the knowledge base. This is the
kind of meaning that is regimented through
the argument semantics element in the six
elements that are needed for each logical
system; recall Section 4.1. For every infer-
ence form, there is likewise a definition of
this sort that fixes the meaning of that infer-
ence. As a result, any sequence of inferences
has an absolutely clear meaning. Because ev-
ery logic-based computer program is noth-
ing more than the specification of a sequence
of inferences, the meaning of the operation
of a logic-based program is likewise entirely
clear.

But what about the meaning of the for-
mulas that are involved in the inferences?
Here, too, precision is guaranteed. This is
so because each and every formula appear-
ing in a logic-based program is given a pre-
cise meaning via the formal semantics of the
logical system that the formula is expressed
in. As to why this is so, you have only to
look back at the formula semantics for LI ,
given previously. One can determine, for ev-
ery formula in every logic-based computer
program, what the meaning of this formula
is because one has on hand an interpretation
specifying the formal meaning of all the el-
ements in the signature of every program.
Look back to any of the sample logic-based
programs given earlier and note the declara-
tions of relations (and sometimes constants)
at the begining of the file. One has on hand
an interpretation I telling us what these
relations and constants mean. This pattern
holds not just for programs written under LI
(i.e., programs from PLI ), but for any logical
system in the family F . In short, although in
declarative computational cognitive model-
ing it may happen that a declarative state-

ment φ is employed, in the formalization
of such modeling in LCCM, the machinery
must be in place for mechanically determin-
ing the meaning of φ.

Given the logico-mathematical precision
of LCCM, declarative computational cog-
nitive modeling can, thankfully, be guided
by theorems. Of course, theorem guidance
is not something that can be counted on
to be met with universal acclaim. There
may well be those of the heterodox view
that guidance by the light of mathemat-
ics is unwanted. However, there can be
no denying the effectiveness of mathemat-
ics in not only describing, but predicting,
the natural world, whether that descrip-
tion and prediction is pitched at the level
of the “algorithmic” (like formal economics,
computer science, and computational cog-
nitive modeling), or at the lower levels at
which physics and chemistry operate (as has
been famously pointed out in the twentieth
century; e.g., see Wigner, 1960; Hamming,
1980). To the extent that computational
cognitive modeling takes the cognition dis-
tinctive of human persons to be natural phe-
nomena that ought not only be carefully
described, but predicted as well, theorem
guidance would certainly be a welcome de-
velopment; and in the case of at least declar-
ative computational cognitive modeling,
this development is achieved by virtue of
LCCM.

There is not sufficient space to give
some interesting theorems, but it should be
pointed out that many such theorems can
now be proved in connection with the ear-
lier discussion. For example, one can prove
without much effort that simulations (i.e.,
computational cognitive models) in LCCM
produced by programs at the level of LKT
will never go into infinite loops (assuming
no syntactic bugs). On the other hand, be-
cause LI is only semi-decidable (the theo-
rems are in any decent textbook on inter-
mediate mathematical logic, e.g., see Boolos
& Jeffrey, 1989), simulations in LCCM pro-
duced by programs at the level of this log-
ical system can enter infinite loops, and
explicit timeout catches must be included
for all but very simple programs. For a
more general example, note that given the
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foregoing, it is now known exactly when
two logic-based computer programs PL and
P ′
L have the same meaning under some

interpretation I: This equivalence holds
provided that (1) both programs, given
declarative input � (declarative sentences
expressed as formulas in logical system L),
once executed, produce the very same the-
orems as output; and (2), the formulas in
�, as well as those used in the execution of
the two programs, have the same meaning
under I.

6. Limitations and the Future

What can be said about the future of compu-
tational cognitive modeling and in particular
declarative/LCCM? The future of any field
is notoriously difficult to predict. Nonethe-
less, present-day deficiencies in computa-
tional cognitive modeling, and specifically
in LCCM, clearly point the way toward
what cognitive modelers will in the future
attempt to do. So, in a limited sense, the
future can be predicted, as follows.

What are the deficiencies? First, although
Turing (1950) predicted over half a century
ago that by now we would be able to en-
gineer machines linguistically indistinguish-
able from us (i.e., machines able to pass
his so-called Turing Test), the fact of the
matter is that, today, a bright toddler’s con-
versational reach still exceeds that of any
and all computers on our planet. This sit-
uation parallels the sad state of computa-
tional cognitive modeling when it comes to
language: No robust computational cogni-
tive models of human-level communication
(attribute 4 in the list of capacities constitu-
tive of personhood, given in Section 2) ex-
ist. Even Anderson (2003) concedes that the
linguistic side of computational cognitive
modeling has stalled and that in this regard,
“Newell’s Program” has not yet succeeded.
There are those (e.g., Moravec, 1999) who
hold that, relatively soon, person-level com-
munication will be mechanized. Unfortu-
nately, such writers are confident because of
the continuous increase in processing speed
produced by Moore’s Law, but raw process-

ing speed is not the problem (as explained
in Bringsjord, 2000): The challenge, from
the standpoint of computational cognitive
modeling, is to discover the information-
processing procedures that enable human
persons to communicate in natural lan-
guages. However fast the hardware, it does
little good unless there are procedures to run
on it. It can therefore be said with confi-
dence that computational cognitive model-
ing will in the future see sustained work in
the area of language-based communication.
Breakthroughs are waiting to be made in this
area.

What are the implications of this specif-
ically for declarative/LCCM? At the dawn
of AI in the United States, when AI was
what is today called human-level AI, and for
at least three decades thereafter, the dream
was to capture natural languages like En-
glish, German, and Norwegian completely
in first-order logic (= in LI ; e.g., see the
FOL-based Charniak & McDermott, 1985).
Unfortunately, this specific logic-based ap-
proach has not succeeded. In fact, some orig-
inally logic-based experts in computational
language processing have turned their backs
on logic, in favor of purely statistical ap-
proaches. Charniak is an example. In 1985,
his Introduction to Artificial Intelligence gave
a unified presentation of AI, including natu-
ral language processing. This unification was
achieved via first-order logic (= LI ), which
runs throughout the book and binds things
together. But Charniak abandoned logic in
favor of purely statistical approaches (Char-
niak, 1993).

To this point, despite the richness of
the families F and P, natural language has
resisted attempts to model it in logico-
computational terms. However, it seems
clear that some traction has taken hold in the
attempt to model fragments of natural lan-
guage in formal logic (e.g., see Fuchs, Schw-
ertel, & Schwitter, 1999), and this direction
is certain to see more investment and at least
some progress. Only time will tell if this re-
search and development will be able to scale
up to all of natural language.

A second present-day deficiency in com-
putational cognitive modeling is subjective
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consciousness. Although some forms of con-
sciousness have been modeled (e.g., see Sun,
1999), there are today no simulations of sub-
jective consciousness (attribute 2 in the list
of capacities constitutive of personhood). As
was pointed out in Section 2, no one has a
third-person account of what it is to (say)
experience the taste of deep, dark chocolate
or what it is to be you (Bringsjord, 1998).
Absent such an account, mechanization –
indeed, taking just initial steps toward some
mechanization – is rather difficult. Given
the importance of consciousness in human
cognition (after all, the reason humans seek
to continue to live is to continue to have
conscious experiences), there is little doubt
that in the future, computational cognitive
modeling will be marked by a persistent at-
tempt to express consciousness in computa-
tion. Again, breakthroughs are waiting to be
made.

The present chapter has emphasized hu-
man reasoning, as the reader well knows
by now. But only reasoning in connec-
tion with specific puzzles has been consid-
ered. What about the future of attempts
to computationally simulate robust human
reasoning within the declarative/logic-based
paradigm? Here, it would seem that two
prudent predictions can be made, given the
current state of the art and severe limitations
seen within it.

As to trends, there is a growing desire to
engineer simulations not only of the sort of
relatively simple reasoning required to solve
the puzzles analyzed earlier, but of the sort
of real-life reasoning seen in the proofs of
historic theorems. Gödel’s incompleteness
theorems are in this category, and recently,
some attempts have been made to build
computational simulations of the reasoning
involved (Sieg & Field, 2005; Quaife, 1988;
Shankar, 1994). In the future, researchers
will increasingly attempt to construct com-
putational simulations of the production of
such theorems, where the starting point in-
volves only some basic knowledge. In other
words, the attempt will be made to simulate
the human ability to invent or create from
scratch, rather than to simply process prede-
fined representations. Declarative/LCCM,

as the present chapter shows, can provide
impressive simulations when the declarative
content is provided ahead of time. But what
about the process of generating such content
in the first place? This, currently, is a seri-
ous limitation, and it points toward a future
in which much effort will be expended to
surmount it.

7. Conclusion

This chapter has explained LCCM as a for-
mal rationalization of declarative computa-
tional cognitive modeling. It has also pre-
sented the attempt to build computational
simulations of all, or at least large portions
of, human cognition, on the basis, funda-
mentally, of logic and logic alone, where
logic here denotes the sense of logical system
explained previously and the infinite family
F of such systems. The absence of unified
theory of cognition has been famously be-
moaned rather long ago by Newell (1973).
Although such complaints are generally re-
garded to be compelling, even to this day,
it must be admitted that they are not sen-
sitive to the fact that, in other fields more
mature and (at least hitherto) more rigorous
(e.g., physics) than computational cognitive
modeling, unification is regarded to be of
little or no value by many, if not most, re-
searchers in these fields. There may be no
grand synthesis between quantum mechan-
ics and special relativity, but that does not
stop physics from advancing year by year,
and the benefits of that advance, from medi-
cal imaging to space exploration, are myriad.
To put the point another way, if one ought
to pursue declarative computational models
of all of human cognition in a unified fash-
ion, LCCM provides a rigorous route for the
pursuit. But the antecedent of this condi-
tional has not been established in the present
chapter.
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CHAPTER 6

Constraints in Cognitive Architectures

1. Introduction

When Turing wrote his famous paper in
which he asked whether machines can think
and how that could be tested (Turing,
1950), he set out the goal of creating an
intelligent machine whose intelligence was
indistinguishable from human intelligence.
Turing’s earlier work (Turing, 1936) proved
that the basic digital computer’s potential
is as great as any conceivable computational
device, suggesting that it was only a mat-
ter of time before a computer could be
developed that was as intelligent as a hu-
man. The exponential growth in power did
not, however, turn out to make computers
more intelligent, leading to a divergence into
modern artificial intelligence and the smaller
field of cognitive modeling. In modern arti-
ficial intelligence, the main goal is to create
intelligent programs, with the human intel-
ligence aspect only as a source of inspira-
tion, whereas cognitive modeling has taken
the opposite route of focusing on faithfully
modeling human intelligence, but not be-
ing really interested in creating intelligent
programs.

Cognitive architectures are on the one
hand echoes of the original goal of creat-
ing an intelligent machine faithful to human
intelligence and on the other hand attempts
at theoretical unification in the field of cog-
nitive psychology.1 These two aspects imply
a duality between functionality and theory.
Cognitive architectures should offer func-
tionality, that is, representations and cogni-
tive mechanisms to produce intelligent be-
havior. More choices in representation and
mechanisms offer a larger toolbox to create
a model for a certain phenomenon. But cog-
nitive architectures should also be theories.
A theory offers only a single and not multi-
ple explanations for a phenomenon. From
the theory perspective, having many rep-
resentations and mechanisms is not a good
idea because it increases the probability that
many models can fit the same data. Func-
tionality and theory are therefore generally
conflicting goals, and different architectures
strike a different balance between them.

1 Note that we will restrict our discussion to cognitive
architectures that have the goal to model psycho-
logical phenomena.

170



P1: JZP

CUFX212-06 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 15:54

constraints in cognitive architectures 171

There are even cognitive architectures that
primarily focus on the functionality aspect
and have no or few theoretical claims (e.g.,
COGENT; Cooper & Fox, 1998).

The term cognitive architecture is an
analogy of the term computer architec-
ture (Newell, 1990; see also the discus-
sion in Chapter 1 in this volume). A com-
puter architecture serves as a flexible basis
for a programmer to create any program.
Similarly, a cognitive architecture allows
modelers to create simulation models of
human cognition. A model specifies the ini-
tial set of knowledge for the architecture to
work with. For example, a model of multi-
column addition might consist of a set of
simple addition facts and a set of produc-
tion rules that specify that you have to
start in the right column, how to handle
carries, and so forth. The classical method
of finding this set of knowledge is through
task analysis: a careful study of the neces-
sary knowledge and the control structure
associated with it. The knowledge speci-
fied in the task analysis is then fed into
the architecture, which can subsequently
make predictions about various aspects
of human performance, including reaction
times, errors, choices made, eye movements,
and functional magnetic resonance imaging
(fMRI).

A problem of cognitive models is that
it is not easy to assess their validity. One
might assume that a model that produces
the same behavior as people do is a valid
model. However, several different models
might produce the same behavior, in which
case a different criterion is needed to deter-
mine which model is best. Unfortunately,
there is no quantitative measure for model
validity, but most cognitive modelers agree
that the following qualitative factors con-
tribute to the validity of a model:

• A good model should have as few free pa-
rameters as possible. Many cognitive ar-
chitectures have free parameters that can
be given arbitrary values by the modeler.
Because free parameters enable the mod-
eler to manipulate the outcome of the
model, increasing the number of free pa-

rameters diminishes the model’s predic-
tive power (Roberts & Pashler, 2000)

• A model should not only describe behavior,
but should also predict it. Cognitive mod-
els are often made after the experimental
data have been gathered and analyzed. A
model with high validity should be able
to predict performance.

• A model should learn its own task-specific
knowledge. Building knowledge into a
model increases its specificity and may
decrease its validity.

As discussed earlier, many current models
use task analysis to specify the knowledge
that an expert would need to do the task.
This violates the validity criterion that a
model should acquire task-specific knowl-
edge on its own. Moreover, basing a model
on a task analysis of expert performance
means that the model is of an expert user
whereas the typical user may not have mas-
tered the task being modeled. Useful predic-
tions and a complete understanding of the
task requires that models are built starting
at the level of a novice and gradually pro-
ceeding to become experts in the same way
people do. In other words, many applica-
tions require building models that not only
perform as humans do, but that also learn as
human do.

2. Overview of Cognitive
Architectures

To discuss the current state of cognitive ar-
chitectures, we will briefly characterize four
prime examples in this section, then exam-
ine areas of cognitive modeling, and discuss
what constraints the various architectures
offer in that area.

2.1. Soar

The Soar (States, Operators, And Rea-
soning) architecture, developed by Laird,
Newell, and Rosenbloom (1987; Newell,
1990), is a descendant of the General Prob-
lem Solver (GPS), developed by Newell
and Simon (1963). Human intelligence,
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according to the Soar theory, is an approx-
imation of a knowledge system. Newell de-
fines a knowledge system as follows (Newell,
1990):

A knowledge system is embedded in an
external environment, with which it inter-
acts by a set of possible actions. The be-
havior of the system is the sequence of ac-
tions taken in the environment over time.
The system has goals about how the envi-
ronment should be. Internally, the system
processes a medium, called knowledge. Its
body of knowledge is about its environment,
its goals, its actions, and the relations be-
tween them. It has a single law of behavior:
the system takes actions to attain its goals,
using all the knowledge that it has. (p. 50)

According to this definition, the single im-
portant aspect of intelligence is the fact that
a system uses all available knowledge. Errors
due to lack of knowledge are not failures of
intelligence, but errors due to a failure in
using available knowledge. Both human cog-
nition and the Soar architecture are approx-
imations of an ideal intelligent knowledge
system. As a consequence, properties of hu-
man cognition that are not directly related
to the knowledge system are not central to
Soar.

The Soar theory views all intelligent be-
havior as a form of problem solving. The
basis for a knowledge system is the problem-
space computational model, a framework
for problem solving in which a search pro-
cess tries to accomplish a goal state through a
series of operators. In Soar, all tasks are rep-
resented by problem spaces. Performing a
certain task corresponds to reaching the goal
in a certain problem space. To be able to find
the goal in a problem space, knowledge is
needed about possible operators, about con-
sequences of operators, and about how to
choose between operators if there is more
than one available. If a problem (an impasse
in Soar terms) arises due to the fact that cer-
tain knowledge is lacking, resolving this im-
passe automatically becomes the new goal.
This new goal becomes a subgoal of the orig-
inal goal, which means that once the subgoal
is achieved, control is returned to the main
goal. The subgoal has its own problem space,

state, and possible set of operators. When-
ever the subgoal has been achieved, it passes
its results to the main goal, thereby resolv-
ing the impasse. Learning is keyed to the
subgoaling process: Whenever a subgoal has
been achieved, new knowledge is added to
the knowledge base to prevent the impasse
that produced the subgoal from occurring
again. If an impasse occurs because the con-
sequences of an operator are unknown, and
in the subgoal these consequences are subse-
quently found, knowledge is added to Soar’s
memory about the consequences of that op-
erator. Because Soar can also use external in-
put as part of its impasse resolution process,
new knowledge can be incorporated into the
learned rules.

Characteristic for Soar is that it is a purely
symbolic architecture in which all knowl-
edge is made explicit. Instead of attaching
utility or activation to knowledge, it has ex-
plicit knowledge about its knowledge. This
makes Soar a very constrained architecture
in the sense that the only means to model
a phenomenon are a single long-term mem-
ory, a single learning mechanism, and only
symbolic representations. Despite the the-
oretical advantages of such a constrained
theory, current developments in Soar seek
to extend the architecture to achieve new
functional goals, with more long-term mem-
ory systems, subsymbolic mechanisms, and
a module to model the effects of emotion on
the cognitive system (Nason & Laird, 2004;
Marinier & Laird, 2004).

2.2. ACT-R

The ACT-R (Adaptive Control of Thought,
Rational) theory (Anderson et al., 2004)
rests on three important components: ra-
tional analysis (Anderson, 1990), the dis-
tinction between procedural and declarative
memory (Anderson, 1976), and a modular
structure in which components communi-
cate through buffers. According to rational
analysis, each component of the cognitive
architecture is optimized with respect to de-
mands from the environment, given its com-
putational limitations. If we want to know
how a particular aspect of the architecture
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should function, we first have to look at
how this aspect can function as optimally
as possible in the environment. Anderson
(1990) relates this optimality claim to evolu-
tion. An example of this principle is the way
choice is implemented in ACT-R. When-
ever there is a choice between what strat-
egy to use or what memory element to re-
trieve, ACT-R will take the one that has
the highest utility, which is the choice that
has the lowest expected cost while having
the highest expected probability of succeed-
ing. This is different from Soar’s approach,
which would involve finding knowledge to
decide between strategies.

The principle of rational analysis can also
be applied to task knowledge. Although
evolution shapes the architecture, learning
shapes knowledge and possibly part of the
knowledge acquisition process. Instead of
only being focused on acquiring knowledge
per se, learning processes should also aim at
finding the right representation. This may
imply that learning processes have to at-
tempt several different ways to represent
knowledge, so that the optimal one can be
selected. For example, in a model of the
past tense (Taatgen & Anderson, 2002), the
model had to choose between an irregular
and a regular solution to inflect a word. It
chose the more efficient irregular solution
for the high-frequency words, because stor-
ing the exception is worth the efficiency
gain. For low-frequency words, having an
efficient exception does not pay off, so the
model selected the more economic regular
solution.

The second ACT-R foundation is the dis-
tinction between declarative and procedu-
ral knowledge. ACT-R has a separate pro-
cedural and declarative memory, each of
which has their own representation and
learning mechanisms. Procedural memory
stores productions that can directly act on
the current situation. Each of these produc-
tions maintains a utility value to keep track
of its past success. Declarative memory is
more passive: Knowledge in it has to be re-
quested explicitly to be accessed. Elements
in declarative memory have an activation
value to track their past use that can model,

among other things, forgetting. Declarative
memory also incorporates the function of
working memory, making it unnecessary to
have a separate working memory. Because
ACT-R uses activation and utility values in
addition to purely symbolic representations,
it is called a hybrid architecture.

The third, and also most recent, founda-
tion of ACT-R is its modular structure. The
production system, which forms the core
of the architecture, cannot arbitrarily access
any information it wants, but has to commu-
nicate with other systems through a buffer
interface. For example, if the visual module
attends new information, it places the en-
coded information in the visual buffer, after
which this information can be accessed by
production rules. Although this restricts the
power of a single production rule, it does al-
low each module to do its own processing in
parallel with other modules.

Both Soar and ACT-R claim to be based
on the principles of rationality, although
they define rationality differently. In Soar,
rationality means making optimal use of
the available knowledge to attain the goal,
whereas in ACT-R rationality means opti-
mal adaptation to the environment. Not us-
ing all the knowledge available is irrational in
Soar, although it may be rational in ACT-R
if the costs of using all knowledge are too
high. On the other hand, ACT-R takes into
account the fact that its knowledge may be
inaccurate, so additional exploration is ra-
tional. Soar will explore only when there is
a lack of knowledge, but has, contrary to
ACT-R, some built-in strategies to do so.

2.3. EPIC

Although most cognitive architectures start
from the perspective of central cogni-
tion, the EPIC (Executive-Process Interac-
tive Control) architecture (Meyer & Kieras,
1997) stresses the importance of periph-
eral cognition as a factor that determines
task performance. In addition to a cognitive
processor with its associated memory sys-
tems, EPIC provides a set of detailed percep-
tual and motor processors. The perceptual
modules are capable of processing stimuli
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from simulated sensory organs, sending their
outputs to working memory. They operate
asynchronously, and the time required to
process an input depends on the modality,
intensity, and discriminability of the stimu-
lus. The time requirements of the perceptual
modules, as well as other modules, are based
on fixed equations, like Fitts’ law, and serve
as a main source of constraints.

EPIC’s cognitive processor is a parallel
matcher: In each cycle, which takes 50 ms,
production rules are matched to the con-
tents of working memory. Each rule that
matches is allowed to fire, so there is no
conflict resolution. It is up to the modeler
to prevent this parallel firing scheme from
doing the wrong thing. Whereas both Soar
and ACT-R have a production firing system
that involves both parallel and serial aspects,
EPIC has a pure parallel system of central
cognition. As a consequence, EPIC predicts
that serial aspects of behavior are mainly due
to communication between central and pe-
ripheral processors and structural limitations
of sense organs and muscles. An important
aspect of EPIC’s modular structure is the
fact that all processors can work in parallel.
Once the cognitive processor has issued a
command to the ocular motor processor to
direct attention to a spot, it does not have to
wait until the visual processor has processed
a new image. Instead, it can do something
else. In a dual-task setting the cognitive pro-
cessor may use this extra time to do process-
ing on the secondary task. EPIC can rep-
resent multiple goals in a non-hierarchical
fashion, and these goals can be worked on
in parallel, provided they do not need the
same peripheral resources. If they do, as is
the case in experiments where participants
have to perform multiple tasks simultane-
ously, executive processes are needed to co-
ordinate which of the goals belonging to
the tasks may access which peripheral pro-
cessors. Because EPIC’s executive processes
are implemented by production rules, they
do not form a separate part of the system.
This makes EPIC very flexible, but it also
means that EPIC’s theory of central cogni-
tion is rather weak, in the sense of having
few constraints as a theory, as opposed to a
very strong theory of peripheral cognition.

EPIC is mainly focused on expert behavior
and presently has no theory of how knowl-
edge is learned. As we will see all the other
architectures have picked up EPIC’s periph-
eral modules, but try to have a constrained
central cognitive system as well.

2.4. CLARION

The CLARION architecture (Connection-
ist Learning with Adaptive Rule Induc-
tion Online; Sun, 2003; Sun, Slusarz, &
Terry, 2005; Sun, Merrill, & Peterson,
2001) has as its main architectural assump-
tion that there is a structural division be-
tween explicit cognition and implicit cog-
nition. As a consequence, the architecture
has two subsystems, the top and the bot-
tom level, each with their own represen-
tations and processes. Furthermore, each
of the two levels is subdivided into two
systems: action-centered and non-action-
centered. This latter distinction roughly cor-
responds to procedural and declarative, re-
spectively: The action-centered system can
directly influence action, whereas the non-
action-centered system can only do so indi-
rectly. Learning can be bottom-up, in which
case knowledge is first acquired implicitly
and serves as a basis for later explicit learn-
ing, or top-down, in which case knowledge
is acquired explicitly, and implicit learn-
ing follows later. A final central assumption
of CLARION is that when there is no ex-
plicit knowledge available a priori, learning
will be bottom-up. Many, but not all, of
CLARION’s representations use neural net-
works. In that sense, it is more a true hybrid
architecture than ACT-R in having truly
connectionist and symbolist characteristics.

The central theory of CLARION is that
behavior is a product of interacting implicit
(bottom-up) and explicit (top-down) pro-
cesses, further modulated by a motivational
subsystem (which holds, among others, the
system’s goals) and a meta-cognitive sub-
system. The explicit action-centered sys-
tem has a rule system in which rules map
the perceived state onto actions. The im-
plicit action-centered system assigns quality
measures to state/action pairs. The final
choice of an action is a combination of the
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values assigned to each action by the explicit
and the implicit system. Each of the two sys-
tems has its own learning mechanisms: The
implicit system uses a combination of rein-
forcement learning and backpropagation to
improve its assessment of state/action pairs
based on rewards, whereas the explicit sys-
tem uses a rule-extraction mechanism that
uses extraction, generalization, and special-
ization to generate new rules. Apart from
these two subsystems, each of the other sub-
systems of CLARION uses their own mech-
anisms and representations.

3. Constraints on Modeling

As pointed out earlier, in each architecture,
there is a tension between functional and
theory goals. From the functional perspec-
tive, there is a pressure to add features,
mechanisms, and systems to the architecture
to capture more phenomena. From the the-
ory perspective, there is a pressure to sim-
plify representations and mechanisms, and
to remove features that are not strictly nec-
essary from the architecture. The goal of
this pressure on simplicity is to keep the
possible space of models for a particular
phenomenon as small as possible. If an ar-
chitecture allows many different models of
the same phenomenon, there is no a pri-
ori method to select the right one. In this
section we review how architectures can
help constrain the space of possible mod-
els. We examine a number of topics that
can serve as constraints on modeling and
discuss how four architectures offer solu-
tions to help modeling in that topic area.
A summary can be found in Table 6.1. Note
that not all architectures address all topic ar-
eas, so for example, EPIC does not constrain
learning because it presently has no theory of
learning.

3.1. Working Memory Capacity

One of the findings that established cogni-
tive psychology as a field was Miller’s experi-
ment in which he found that people can only
retain a limited number of unrelated new
items in memory (Miller, 1956). This phe-

nomenon quickly became associated with
short-term memory and later working mem-
ory. More generally, the function of working
memory is to maintain a representation of
the current task environment. What Miller’s
and subsequent experiments showed was
that the capacity to maintain this represen-
tation is limited.

A naive model of working memory is to
have a system with a limited number of slots
(e.g. the seven suggested by Miller, 1956)
that can be used to temporarily store items.
Once you run out of slots, items have to
be tossed out. Although such a model is an
almost direct implementation of the phe-
nomenon on which it is based, it does not
work very well as a component in an ar-
chitecture. Miller’s task is about completely
unrelated items, but as soon as knowledge
is related, which is the case in almost any
natural situation, the slot-model no longer
holds.

A good theory of working-memory ca-
pacity can be a powerful source of con-
straint in a cognitive architecture because
it rules out models that can interrelate un-
realistically large sets of active knowledge.
Although working memory is traditionally
viewed from the perspective of capacity, a
resource that can run out, another perspec-
tive is to consider working memory as a cog-
nitive function. In the functional approach,
limited working memory is not a hindrance,
but the ability to separate relevant from ir-
relevant information. It allows the rest of the
cognitive system to act on information that
is relevant instead of irrelevant.

3.1.1. capacity limitations in soar

An example of a functional approach of
working memory is Soar (Young & Lewis,
1999). Young and Lewis explain working
memory limitations in terms of what the
current set of skills can do in limited time.
For example, consider the following three
sentences:

1. The defendant examined the courtroom.
2. The defendant examined by the jury was

upset.
3. The evidence examined by the jury was

suspicious.
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Table 6.1: Overview on how architectures constrain aspects of information processing

Process Architecture Constraint Reference

Working memory
Soar Limitations of working memory arise on

functional grounds, usually due to lack of
reasoning procedures to properly process
information.

Young & Lewis (1999).

ACT-R Limitations of working memory arise from
decay and interference in declarative memory.
Individual differences are explained by
differences in spreading activation.

Lovett, Reder, & Lebiere
(1999).

CLARION Limitations of working memory are enforced by
a separate working memory with decay (as well
as by functional limitations).

Sun & Zhang (2004).

Cognitive performance
Soar A decision cycle in Soar takes 50 ms, although

many production rules may fire in parallel
leading to the decision.

Newell (1990).

ACT-R A production rule takes 50 ms to fire, no parallel
firing is allowed. A rule is limited to inspecting
the current contents of the perceptual and
memory-retrieval systems and initiating motor
action and memory-retrieval requests.

Anderson et al. (2004).

EPIC Production rules take 50 ms to fire, but parallel
firing of rules is allowed.

Meyer & Kieras (1997).

CLARION Performance is produced by an implicit
(parallel) and explicit (serial) reasoning system
that both have an action-centered and a
non-action-centered subsystem.

Sun (2003).

Perceptual and motor systems
EPIC Perceptual and motor modules are based on

timing from the Model Human Processor (Card,
Moran, & Newell, 1983). Modules operate
asynchronously alongside central cognition.

Kieras & Meyer (1997).

ACT-R; Soar;
CLARION

Use modules adapted from EPIC. Byrne & Anderson (2001),
Chong (1999), Sun (2003).

Learning
Soar Learning is keyed to so-called impasses, where a

subgoal is needed to resolve a choice problem in
the main goal.

Newell (1990).

ACT-R Learning is based on rational analysis in which
knowledge is added and maintained in memory
on the basis of expected use and utility.

Anderson et al. (2004).

CLARION Learning is a combination of explicit rule
extraction/refinement and implicit
reinforcement learning.

Sun, Slusarz, & Terry
(2005).

Neuroscience
ACT-R Components in ACT-R are mapped onto areas

in the brain, producing predictions of fMRI
activity.

Anderson (2005).

CLARION Uses brain-inspired neural networks as
components in the architecture

Sun (2003).
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Assuming people read these sentences one
word at a time from left to right, the word
examined is ambiguous in sentences 1 and
2 because they can either be the main verb
or the starting verb of a relative clause, but
not in sentence 3 because the word evidence
is inanimate. Just and Carpenter (1992)
found that people differ in how they han-
dle sentence 3 and attribute this to working
memory capacity: High capacity individu-
als are able to keep the information that
evidence is inanimate in working memory,
disambiguating the sentences, whereas low-
capacity individuals do not hold that infor-
mation in memory, forcing them to disam-
biguate the sentence later, as in sentence
2. Lewis (1996), however, presented a dif-
ferent account of the individual differences
based on a Soar model of natural language
comprehension. In sentence 3 after reading
examined, Soar will propose two operators
to update the current comprehension of the
sentence, one corresponding to each inter-
pretation of the sentence. This will create
an impasse, which Soar will try to resolve
in a new problem space. Although the Soar
model has the knowledge to solve this prob-
lem, it takes time, and given the time pres-
sure, the model can revert to selecting the
normally preferred disambiguation of inter-
preting a verb as the main verb, which means
it will run into trouble later in the sentence.
In this model, the individual differences are
not explained by a limit in capacity of work-
ing memory as such, because the fact that
evidence is animate is perfectly available in
working memory, but by a limitation of the
available knowledge to actually do some-
thing with that fact in the given problem
context.

3.1.2. capacity limitations in act-r

Similarly to Soar, ACT-R has no system that
directly corresponds to the notion of work-
ing memory capacity. Indeed, ACT-R does
not even have a working memory as such.
Instead, the function of working memory is
tied to several of ACT-R’s systems. ACT-R’s
current task context is maintained in the set
of buffers. A buffer is a means for the central
production system to correspond to the var-

ious modules in the system. For example,
there is a visual buffer to hold the repre-
sentation of the currently attended item in
the visual field, there is a retrieval buffer to
hold the last item retrieved from declara-
tive memory, and there is a goal item that
holds the current goal context. Each of these
buffers has a capacity of a single item and is
constrained by its function (i.e., vision, man-
ual, retrieval, etc.).

Although the buffers together are the
main means of holding the current context,
the system that is mainly associated with
the notion of working memory capacity is
declarative memory. Any new item that en-
ters the system is eventually stored in declar-
ative memory. If the task is to memorize a
string of numbers, each of the numbers is
stored in memory as separate item that is
linked to the other numbers (Anderson &
Matessa, 1997). To recall the string of num-
bers, each of the items must be retrieved
successfully. However, as the string of num-
bers becomes longer, interference and decay
in declarative memory decrease the proba-
bility that recall is successful, producing the
phenomenon of a limited working memory
capacity.

Although ACT-R’s explanation seems to
be closer to a capacity explanation, in the
root of the theory the explanation is func-
tional. The purpose of activation in declara-
tive memory is not to model forgetting, but
to rank knowledge in order of potential rele-
vance. Knowledge receives a high activation
due to frequent past use or a high correla-
tion with the current context because that
makes it more available and distinguishable
from irrelevant knowledge. From that per-
spective, working memory capacity is the
ability to increase the signal-to-noise ratio
in declarative memory, and individuals who
are good at increasing this ratio have a high
working memory capacity (Lovett, Reder, &
Lebiere, 1999).

3.2. Cognitive Performance

How powerful is the human reasoning sys-
tem? According to, for example, Penrose
(1989), the human reasoning is more
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powerful than a Turing Machine, making it
possible for humans to solve problems that
are computationally intractable. The chal-
lenge for cognitive architectures is, how-
ever, not to make the computing machin-
ery more powerful, but to put constraints
on the power that is already there, without
constraining it so much that it cannot per-
form certain tasks that humans can perform.

3.2.1. the serial bottleneck

A recurrent topic of debate in the psychol-
ogy of human perception and performance is
whether there is a central bottleneck in hu-
man cognition (Pashler, 1994; Schumacher
et al., 2001). In terms of cognitive archi-
tectures, the debate is centered between
ACT-R and EPIC. In ACT-R, the central
production system can only fire one rule at a
time. Although each rule firing only takes
50 ms, it limits the number of cognitive
steps that can be taken. In EPIC, the cen-
tral rule system can fire any number of rules
in parallel. EPIC can therefore naturally
explain dual-tasking experiments in which
participants achieve perfect time-sharing.
An example of such an experiment is by
Schumacher et al. (2001). In that experi-
ment, participants were given a visual stim-
ulus and a tone at the same time. They had
to respond to the visual stimulus by press-
ing a key and to the tone by saying a word.
Given sufficient training, participants were
eventually able to do the two tasks perfectly
in parallel, meaning that their reaction times
on each task were the same in the dual-task
and in the single-task situation.

For ACT-R, dual-tasking experiments are
a challenge. Nevertheless, Byrne and Ander-
son (2001) constructed a model that was
able to perfectly share time between the
models, and Taatgen, Anderson, and Byrne
made models that can learn the perfect time-
sharing that captured not only the eventual
performance but also the learning trajec-
tory toward this final performance (Taatgen,
2005; Anderson, Taatgen, & Byrne, 2005).
In the ACT-R models, the key to perfect
dual-tasking is the fact that most of time
consumed in these tasks is needed for ei-
ther perception or motor actions, especially

when the task is highly trained. The occa-
sional central action is needed to shift atten-
tion or to select a response. In the highly
trained cases, each of these actions only take
a single production rule of 50 ms. Unless the
response selection for both tasks has to hap-
pen at exactly the same moment (which is
unlikely given noise in the perceptual pro-
cesses), the costs of dual-tasking are very low
or absent.

An interesting aspect of the central bot-
tleneck is the way the discussion plays out.
With a serial bottleneck, ACT-R has the
more constrained theory, because it is al-
ways possible to do things serially in EPIC,
but one cannot do them in parallel in
ACT-R. ACT-R principally has the ability
to predict circumstances in which the serial
bottleneck constrains performance, whereas
EPIC poses no constraints at all. For EPIC
to prove its point, it needs to identify a phe-
nomenon or task where ACT-R’s serial rule
system just does not have the time to do ev-
erything that needs to be done. Even when
such a phenomenon would be found, it
would only prove that ACT-R is wrong and
not necessarily that EPIC is right. This ex-
ample shows that a more constrained archi-
tecture almost automatically gains the sci-
entific upper ground, despite (or, as Popper,
1962, would say, because of) the fact that it
makes itself vulnerable to refutation.

3.2.2. hidden computational power

The simplicity of production rules can be de-
ceptive. If production rules can match arbi-
trary patterns, it is possible to write produc-
tion rules in which matching a condition is
an NP-complete problem (Tambe, Newell,
& Rosenbloom, 1990). Production rules in
Soar have that nature, and this is why Soar
needs a powerful rule-matching algorithm
(Rete; see Forgy, 1982). Although power-
ful rules offer a great deal of flexibility, they
underconstrain what can be done in a sin-
gle production-matching cycle. To counter
this, Soar modelers try to refrain from writ-
ing rules that use the full Rete power. In
CLARION (Sun, 2003), on the other
hand, the rule system (the explicit, action-
centered system) may be implemented in a



P1: JZP

CUFX212-06 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 15:54

constraints in cognitive architectures 179

neural network. Given the localist nature of
neural networks, there is no hidden com-
putational power, producing a more cons-
trained system. ACT-R also has a constrain-
ed production system: It can only match
items in its buffers. This implies that it can-
not match arbitrary patterns in declarative
memory, but can only retrieve items one
at a time. A complex match of information
might therefore takes up multiple retrieval
steps, and is in no way a fail-safe process.
ACT-R’s performance system may eventu-
ally prove to be too restrictive, preventing it
from fulfilling all functional goals.

3.3. Perceptual and Motor Systems

Perceptual and motor systems are poten-
tially a strong source of constraint, because
the perceptual and motor actions can be
registered more precisely in experiments
than cognitive actions, and because the psy-
chophysical literature offers precise predic-
tions about the timing of these actions. The
EPIC architecture (Meyer & Kieras, 1997)
is based on this premise.

The perceptual-motor modules in EPIC
can handle only a single action at a time,
and each of these actions takes a certain
amount of time. Although a module can do
only one thing at a time, expert behavior on
a task is exemplified by skillful interleaving
of perceptual, cognitive, and motor actions.
EPIC’s modules incorporate mathematical
models of the time it takes to complete op-
erations that are based on empirical data.
The knowledge of the model is represented
using production rules.

An example of how perceptual and mo-
tor constraints can inform a model is menu
search (Hornof & Kieras, 1997). The task
was to find a label in a pull-down menu
as quickly as possible. Perhaps the simplest
model of such a task is the serial-search
model in which the user first attends to
the top item on the list and compares it
to the label being searched for. If the item
does not match the target, the next item on
the list is checked; otherwise, the search is
terminated. An EPIC model based on this
naive serial-search strategy grossly overes-

timates actual search time (obtained with
human subjects), except when the target
is in the first position to be searched. For
example, if the menu item is in position
10, the serial-search model predicts that
finding the item takes 4 seconds, where-
as participants only need approximately
1.6 seconds.

Hornof and Kieras (1997) propose an
alternative model, the overlapping search
model that exploits the parallelism of the
cognitive system. Instead of waiting for the
cognitive system to finish deciding whether
or not the requested label is found; the eye
moves on to the next item in the list while
the first item is still being evaluated. Such a
strategy results in the situation that the eye
has to move back to a previous item in the
list once it has been decided that the item
has been found; but this is a small price to
pay for the speed-up this parallelism pro-
duces. Parallelism is allowed in EPIC as long
as perceptual-motor modules do one thing
at a time. In practice, the most influential
constraint is posed by the duration of
actions. For example, in the serial-search
model, the parameter that influences the
search time could, in theory, be changed to
make this (incorrect) model match the data.
EPIC precludes this from occurring because
an eye-movement takes a certain amount of
time, as does a decision as to whether the
label is correct or not, such that the data
can only be explained if these actions occur
in parallel.

The menu-search example shows that al-
though the perceptual and motor systems in
EPIC provide strong constraints, central cog-
nition is underconstrained in the sense that
it allows both correct and incorrect models
of menu search. EPIC’s perceptual and mo-
tor modules, however, have proved to be so
powerful as constraints that all the other ar-
chitectures (ACT-R, Soar, and CLARION)
have copied them.

3.4. Learning

As we mentioned in the introduction, a de-
sirable feature of a model is that it learns its
own knowledge. In the classical modeling
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paradigm, the only constraints placed on
the knowledge come from the architecture
and task analysis, and this usually leaves
the knowledge specification partly up to the
whim of the modeler. A more constrained
approach is to have a model that learns its
own knowledge. A weak variant of this type
of modeling is to supply the model with
some initial method that becomes faster
through learning. For example, in an ACT-R
model of alphabet-arithmetic (Anderson &
Lebiere, 1998), the task is to verify additions
using letters and numbers, like G+ 3 = J.
The model’s initial strategy is to find the
answer through a counting process. But be-
cause it stores its answers, the model grad-
ually accumulates addition facts in declar-
ative memory, allowing it to give a direct
answer instead of having to count. Although
the model learns the new addition facts, it
already starts out with the production rules
that can count and with the production rules
that attempt retrieval of initially nonexisting
addition facts.

3.4.1. learning from direct

instruction

A more ambitious approach is to have a
model that learns all of its own task-specific
knowledge through either instruction or
feedback. An example in Soar of such a
system is Instructo-Soar (Huffman & Laird,
1995). Instructo-Soar can learn to carry out
commands in natural language. If it does not
know how to perform a certain command,
it will ask for an instruction. A sample di-
alog from Huffman and Laird (1995) is as
follows (Soar’s questions are in italics):

Push the green button.
That’s a new one. How do I do that?
Move to the grey table.
Ok. What next?
Move above the green button.

How do I do that?
Move the arm up.
Oh, I see! What next?

Move down.
Ok, What next?
The operator is finished. (p. 273)

In this example, Soar receives instruc-
tions on how to push a green button. The
indentation represents the structure of the
problem solving, with each level of inden-
tation an impasse that has to be resolved.
Soar’s learning mechanism will learn new
rules to resolve similar cases in the future.
For example, after this exchange, Soar will
know how to move above things and how
to push buttons. One of the challenges is
to make the right generalization: Instead of
learning how to push buttons, another gen-
eralization might have been a procedure to
push green things. To make the right gener-
alization, Soar used background knowledge
to reason out that green is not a relevant
attribute for pushing things. An alterna-
tive to knowledge-based generalization is
CLARION’s bottom-up generalization, in
which associations between state, action,
and success are first gathered by the im-
plicit learning process. These bottom-up as-
sociations then gradually inform the rule-
extraction mechanism to make the right
generalization. So instead of making infer-
ences about colors and buttons CLARION
would rather induce out of experiences that
colors do not matter but buttons do.

3.4.2. interpreting instructions

stored in memory

Instead of direct instruction, a model can
also be taught what to do by memoriz-
ing an initial set of instructions. Several
ACT-R models are based on this paradigm
(Taatgen & Lee, 2003; Anderson et al.,
2004; Taatgen, 2005). The idea is that the
system first reads instructions that it then
stores in declarative memory. When the task
is performed, these instructions are retrieved
from memory and carried out by produc-
tion rules. These production rules are not
specific for the task, but rather represent
general skills, like pushing buttons, finding
things on the screen, comparing items, and
so forth. The declarative instructions string
the general skills together to produce task-
specific behavior. The cycle of retrieving
and interpreting instructions from memory
can explain many aspects of novice behav-
ior. Performance is slow because the process
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of retrieving an instruction from memory
is a time-consuming process during which
the system cannot do much else. It is se-
rial because only one instruction is active at
the same time, making it impossible to do
two steps in parallel. It is prone to errors,
because instructions may have been for-
gotten, requiring the model to reconstruct
them through a time-consuming problem-
solving process. It also puts heavy demands
on working memory capacity: Both instruc-
tions and temporary information have to be
stored and retrieved from declarative mem-
ory, making it the main bottleneck of novice
processing. Because declarative memory is
the bottleneck, it is almost impossible to
do other tasks in parallel that also make de-
mands on declarative memory.

Novice behavior is gradually transformed
into expert behavior through a knowledge
compilation process (production compilation,
Taatgen & Anderson, 2002). Production
compilation combines two existing rules
into one new rule, while substituting any
memory retrieval in between those rules
into the new rule. If the memory retrieval
in between the two rules is an instruc-
tion, this instruction is effectively encoded
into the newly learned rule, creating a pro-
duction rule that is specific to the task.
Production learning in ACT-R therefore
gradually transforms task-specific declara-
tive knowledge and general production rules
into task-specific production rules. These
newly learned rules exhibit many character-
istics of expert behavior. They are no longer
tied to a linear sequence of instructions, so
they can be used out of sequence whenever
they apply, allowing parallel performance
and increased flexibility for carrying out a
task (Taatgen, 2005).

Although models that learn from in-
structions cannot yet directly parse natural
language, they do offer more constrained
models than models that are given expert
knowledge right away. Not all the expert
models that can be encoded using produc-
tion rules are learnable, and those that are
not can therefore be ruled out. In addition
to that, the fact that the model learns its
knowledge offers the opportunity to match

predictions about the learning trajectory to
human data. This means that some expert
models that are learnable in the sense that
the knowledge could be produced by the
mechanisms in the architecture can still be
ruled out because their learning trajectory
does not match the human data.

3.4.3. from implicit to explicit

learning

One other way for a model to obtain its
knowledge is by discovering regularities in
the environment. Although many classical
models of discovery focus on explicit dis-
covery processes, many modern models start
from the assumption that knowledge is often
learned implicitly. In, for example, the sugar
factory experiment by Berry and Broadbent
(1984), participants have to decide how
many workers they should send into the fac-
tory each day to achieve some target out-
put. The output depends not only on the
number of workers, but also on the produc-
tion of the previous day. Although partic-
ipants in the experiment generally do not
explicitly discover the relationship, they do
get better at adjusting the number of work-
ers in the course of the experiment. This
and similar experiments suggest that there
is some unconscious component to learning,
implicit learning, that improves our perfor-
mance without awareness. Several models
have been proposed to capture this effect.
An ACT-R model by Wallach (Taatgen &
Wallach, 2002) stores examples of input-
output relations in declarative memory and
retrieves the example that has the highest
activation and similarity to the current situa-
tion. This model never gains explicit knowl-
edge of the relationships in the task, but
achieves better performance by learning a
representative set of examples.

Sun et al. (2005) have modeled an ex-
tension to the original experiment, in which
participants were explicitly taught particu-
lar input-output pairs in some conditions,
or were given simple heuristic rules. In the
control, no-explicit-training version of the
model, the implicit level of CLARION was
solely responsible for picking up the regu-
larities in the task. In the instructed version
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of the model, the explicitly given instruc-
tions were represented in CLARION’s ex-
plicit memory, driving the implicit learning
processes together with experience. The ex-
plicit instructions provided a performance
boost in the data, which was successfully
captured by the model.

3.5. Constraints from Neuroscience

Human cognition is implemented in the
brain. This fact can offer additional sources
of constraint in a cognitive architecture. The
architecture of the brain offers two levels of
constraints: at the level of individual neu-
rons and their interconnections, and at the
level of global brain structures.

3.5.1. constraints at the level

of individual brain cells

The actual substrate of cognition is an inter-
connected network of neurons. Whether or
not this is a significant source of constraint
is open to debate. One view is that brain
cells implement some virtual architecture
and that the characteristics of brain cells are
irrelevant for an understanding of cognition
(e.g., Newell, 1990). A more moderate ver-
sion of this point of view is adapted by the
ACT-R architecture (Anderson & Lebiere,
2003). In that view, the main level of ab-
straction to study cognition is higher than
the level of brain cells. However, Lebiere
has implemented a neural network version
of ACT-R that is functionally identical to the
regular implementation. Nevertheless, this
model proved to supply some additional re-
strictions on the architectures, for example,
the restriction that declarative memory can
only retrieve one item at a time.

CLARION (Sun, 2003) takes the point
of view that elements and mechanisms that
resemble neurons are an important source
of constraint on the architecture. Many of
CLARION’s subsystems are composed from
neural networks. This offers additional con-
straints, because neural networks are less
easy to “program” than symbolic models.
CLARION is still a hybrid architecture,
with both symbolic and subsymbolic as-
pects. One can go even further and design

an architecture completely built out of neu-
ral network components. Leabra (O’Reilly
& Munakata, 2000) is an example of such
an architecture. The challenge with an archi-
tecture built out of simulated neurons is that
it has to deal with a number computational
problems that are trivial to partly symbolic
architectures. A first problem is the binding
problem, the problem of how the cognitive
systems group features together, like asso-
ciating a filler with a role or a value with
a variable or attribute (Fodor & Pylyshyn,
1988). Given the large number of possi-
ble combinations of attributes and values,
it is not feasible that each combination al-
ready has a prewired connection that can
be activated, so some other means must be
found to temporarily connect concepts to-
gether. A second problem is called catas-
trophic interference (McCloskey & Cohen,
1989), which refers to the fact that many
networks unlearn previously learned knowl-
edge when new knowledge is presented. A
third problem is serial behavior. Although
networks perform particularly well with re-
spect to massively parallel performance, it
is much harder to let them do steps that
have to be performed in a certain serial or-
der. The three problems might seem to be
an argument against neural network archi-
tectures, but they may turn out to be the
opposite, because overcoming these prob-
lems will offer new constraints on the archi-
tecture. In fact, for each of the three prob-
lems, solutions have been proposed. One
of the solutions of the binding problem is
Smolensky’s (1990) tensor product system.
There are several solutions to the catas-
trophic interference problem, for example
McClelland, McNaughton, and O’Reilly’s
(1995) solution to have a slow (cortical)
and fast (hippocampal) learning system,
now implemented in the Leabra (O’Reilly
& Munakata, 2000) system. Serial behav-
ior can be achieved partially by recurrent
networks (e.g., Elman, 1990), although not
with the full flexibility that symbolic sys-
tems offer. A neural network cognitive ar-
chitecture that would offer solutions to each
of these problems could make a very strong
theory (Sun, 2003).
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3.5.2. constraints at the global

brain architecture level

Recent advances in brain imaging have al-
lowed neuroscientists to build increasingly
finer-grained theories of what the functions
of various regions in the brain are and how
these regions are interconnected. The result
is a map of interconnected, functionally la-
beled regions. What brain imaging does not
provide is the actual processing in these re-
gions. Cognitive architectures can provide
processing theories constrained by the pro-
cessing map of the brain. ACT-R (Anderson,
2005; Anderson et al., 2004) has mapped its
buffers and production system onto brain re-
gions and is capable of making predictions
of brain activity on the basis of a cognitive
model. For example, in a study in which
children had to learn to solve algebra equa-
tions, the ACT-R model predicted how ac-
tivity in several brain areas would differ with
problem difficulty and the effects of learning
(Anderson, 2005).

4. Conclusions

The viewpoint of cognitive constraint is dif-
ferent from the perspective of how much
functionality an architecture can provide,
as expressed by, for example, Anderson
and Lebiere (2003). Anderson and Lebiere
have elaborated Newell’s (1990) list of con-
straints that are mainly (but not all) func-
tional goals (e.g., use natural language). Al-
though both functionality and strength as a
theory are important for a cognitive archi-
tecture, modelers tend to focus on function-
ality, and the critics tend to focus on theory
strength. One symptom of the fact that cog-
nitive architectures are still relatively weak
theories is that few predictions are made,
as opposed to fitting a model onto data
after the experiment has been done (but
see Salvucci & Macuga, 2002, and Taat-
gen, van Rijn, & Anderson, 2007, for ex-
amples of successful predictive research). A
research culture in which modelers would
routinely model their experiment before they
would conduct the experiment would create
a much better research environment, one in

which confirmed predictions would be evi-
dence for theory strength and in which failed
predictions would be great opportunities
to strengthen the theory. For this research
strategy to work, it is necessary that archi-
tectures limit the number of possible models
for a particular phenomenon. Alternatively,
attempts could be made to rank the possible
space of models with the goal of identifying
the most plausible one based on nonarchi-
tectural criteria. Chater and Vitányi (2003)
argue, following a long tradition in science
in general, that the most simple explana-
tion should be preferred. More specific in
the architecture context, Taatgen (2007) ar-
gues that if there is a choice between multi-
ple models, the model with the most simple
control structure should be preferred.

This is also the great promise for the field:
As architectures become stronger theories,
they can go beyond modeling small experi-
mental tasks and provide a synergy that can
lead to the more ambitious functional goals
to make cognitive architectures truly intelli-
gent systems.
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Part III

COMPUTATIONAL
MODELING OF VARIOUS

COGNITIVE
FUNCTIONALITIES

AND DOMAINS

�
Computational cognitive modeling has been applied to a wide range of task domains and
cognitive functionalities. This part of the book addresses computational modeling of many
such domains and functionalities.

The chapters in this part describe various computational modeling efforts that researchers
in this field have undertaken concerning major cognitive functionalities and domains.

They survey and explain modeling research on memory, concepts, learning, reasoning,
decision making, vision, motor control, language, development, scientific ecplanation, social
interaction, and so on, in terms of detailed computational mechanisms and processes. The
computational models covered here shed new light on corresponding cognitive phenomena
and data.
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CHAPTER 7

Computational Models of Episodic Memory

1. Introduction

The term episodic memory refers to the abil-
ity to recall previously experienced events
and to recognize things as having been en-
countered previously. Over the past sev-
eral decades, research on the neural basis of
episodic memory has increasingly come to
focus on three structures:

• The hippocampus supports recall of spe-
cific details from previously experienced
events (for neuroimaging evidence, see,
e.g., Davachi, Mitchell, & Wagner, 2003;
Dobbins et al., 2003; Eldridge et al.,
2000; Ranganath et al., 2003; for a re-
view of relevant lesion data, see Aggleton
& Brown, 1999).

• Perirhinal cortex computes a scalar famil-
iarity signal that discriminates between
studied and nonstudied items (for neu-
roimaging evidence, see, e.g., Brozinsky
et al., 2005; Gonsalves et al., 2005;
Henson et al., 2003; for neurophysio-
logical evidence, see, e.g., Li, Miller, &
Desimone, 1993; Xiang & Brown, 1998;
for evidence that perirhinal cortex can

support near-normal levels of familiarity-
based recognition on its own, after fo-
cal hippocampal damage, see, e.g., Fortin
Wright, & Eichenbaum, 2004; Yonelinas
et al., 2002; but see, e.g., Manns et al.,
2003, for an opposing viewpoint).

• Prefrontal cortex plays a critical role in
memory targeting: In situations where the
bottom-up retrieval cue is not sufficiently
specific to trigger activation of memory
traces in the medial temporal lobe, pre-
frontal cortex acts to flesh out the re-
trieval cue by actively maintaining ad-
ditional information that specifies the
to-be-retrieved episode (for reviews of
how prefrontal cortex contributes to epi-
sodic memory, see Fletcher & Henson,
2001; Schacter, 1987; Shimamura, 1994;
Simons & Spiers, 2003).

Although there is general agreement
about the roles of these three structures,
there is less agreement about how (mech-
anistically) these structures enact the roles
specified previously. This chapter reviews
two kinds of models: biologically based
models that are meant to address how the
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neural structures mentioned previously con-
tribute to recognition and recall, and ab-
stract models that try to describe the mental
algorithms that support recognition and re-
call judgments, without specifically address-
ing how these algorithms might be imple-
mented in the brain.

1.1. Weight-Based Versus
Activation-Based Memory Mechanisms

Within the realm of biologically based
episodic memory models, one can make a
distinction between weight-based and acti-
vation-based memory mechanisms (O’Reilly
& Munakata, 2000). Weight-based mem-
ory mechanisms support recognition and re-
call by making lasting changes to synaptic
weights at study. Activation-based memory
mechanisms support recognition and recall
of an item by actively maintaining the pat-
tern of neural activity elicited by the item
during the study phase. Activation-based
memory mechanisms can support recogni-
tion and recall after short delays. However,
the ability to recognize and recall stim-
uli after longer delays depends on changes
to synaptic weights. This chapter primarily
focuses on weight-based memory mecha-
nisms, although Section 4 discusses interac-
tions between weight-based and activation-
based memory mechanisms.

1.2. Outline

Section 2 of this chapter provides an
overview of biological models of episodic
memory, with a special focus on the
Complementary Learning Systems model
(McClelland, McNaughton, & O’Reilly,
1995; Norman & O’Reilly, 2003). Section 3
reviews abstract models of episodic mem-
ory. Section 4 discusses how both abstract
and biological models have been extended
to address temporal context memory: our abil-
ity to focus retrieval on a particular time
period, to the exclusion of others. This sec-
tion starts by describing the abstract Tem-
poral Context Model (TCM) developed by
Howard and Kahana (2002). The remainder

of Section 4 discusses how temporal con-
text memory can be instantiated in neural
systems.

2. Biologically Based Models of
Episodic Memory

The first part of this section reviews the
Complementary Learning Systems (CLS)
model (McClelland et al., 1995) and how
it has been applied to understanding hip-
pocampal and neocortical contributions to
episodic memory (Norman & O’Reilly,
2003). Section 2.2 discusses some alterna-
tive views of how neocortex contributes to
episodic memory.

2.1. The CLS Model

The CLS model incorporates several widely
held ideas about the division of labor be-
tween hippocampus and neocortex that
have been developed over many years by
many different researchers (e.g., Aggleton
& Brown, 1999; Becker, 2005; Burgess
& O’Keefe, 1996; Eichenbaum, Otto, &
Cohen, 1994; Grossberg, 1976; Hasselmo
& Wyble, 1997; Marr, 1971; McNaughton
& Morris, 1987; Moll & Miikkulainen, 1997;
O’Keefe & Nadel, 1978; Rolls, 1989; Scov-
ille & Milner, 1957; Sherry & Schacter,
1987; Squire, 1992; Sutherland & Rudy,
1989; Teyler & Discenna, 1986; Treves &
Rolls, 1994; Wu, Baxter, & Levy, 1996;
Yonelinas, 2002). According to the CLS
model, neocortex forms the substrate of
our internal model of the structure of the
environment. In contrast, hippocampus is
specialized for rapidly and automatically
memorizing patterns of cortical activity, so
they can be recalled later (based on par-
tial cues). The model posits that neocortex
learns incrementally; each training trial re-
sults in relatively small adaptive changes in
synaptic weights. These small changes al-
low cortex to gradually adjust its internal
model of the environment in response to
new information. The other key property of
neocortex (according to the model) is that
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it assigns similar (overlapping) representa-
tions to similar stimuli. Use of overlapping
representations allows cortex to represent
the shared structure of events and there-
fore makes it possible for cortex to gener-
alize to novel stimuli based on their simi-
larity to previously experienced stimuli. In
contrast, the model posits that hippocam-
pus assigns distinct, pattern-separated rep-
resentations to stimuli, regardless of their
similarity. This property allows hippocam-
pus to rapidly memorize arbitrary pat-
terns of cortical activity without suffering
unacceptably high (catastrophic) levels of
interference.

2.1.1. applying cls to episodic

memory

CLS was originally formulated as a set
of high-level principles for understand-
ing hippocampal and cortical contributions
to memory. More recently, Norman and
O’Reilly (2003) implemented hippocampal
and cortical networks that adhere to CLS
principles and used the models to simu-
late episodic memory data. Learning was
implemented in these simulations using a
simple Hebbian rule, called instar learning
by Grossberg (1976) and Conditional Prin-
cipal Components Analysis (CPCA) Hebbian
learning by O’Reilly and Munakata (2000):

�wi j = εyj (xi − wi j ). (7.1)

In this equation, xi is the activation of send-
ing unit i , yj is the activation of receiving
unit j , wi j is the strength of the connection
between i and j , and ε is the learning rate pa-
rameter. This rule has the effect of strength-
ening connections between active sending
and receiving neurons, and weakening con-
nections between active receiving neurons
and inactive sending neurons.

In both the hippocampal and cortical
networks, to-be-memorized items are rep-
resented by patterns of excitatory activity
that are distributed across multiple units
(simulated neurons) in the network. Exci-
tatory activity spreads from unit to unit via
positive-valued synaptic weights. The over-
all level of excitatory activity in the net-

work is controlled by a feedback inhibition
mechanism that samples the amount of ex-
citatory activity in a particular subregion of
the model and sends back a proportional
amount of inhibition (O’Reilly & Munakata,
2000).

The CLS model instantiates the idea
(mentioned in the Introduction) that hip-
pocampus contributes to recognition mem-
ory by recalling specific studied details and
that cortex contributes to recognition by
computing a scalar familiarity signal. In this
respect, the CLS model belongs to a long
tradition of dual-process theories of recog-
nition memory that posit conjoint contri-
butions of recall and familiarity to recog-
nition performance (see Yonelinas, 2002,
for a review of dual-process theories). The
next two sections provide an overview of
the CLS hippocampal and cortical net-
works, and how they have been applied to
episodic memory data. For additional de-
tails regarding the CLS model (equations
and key model parameters), see the Ap-
pendix; also, a working, documented version
of the CLS model can be downloaded from
http://compmem.princeton.edu/.

2.1.2. cls model of hippocampal

recall

The job of the CLS hippocampal model is
to memorize patterns of activity in entorhi-
nal cortex (EC), the neocortical region that
serves as an interface between hippocam-
pus and the rest of neocortex, so these pat-
terns can be retrieved later in response to
partial cues. The architecture of the model
(shown in Figure 7.1) reflects a broad con-
sensus regarding key anatomical and phys-
iological characteristics of different hippo-
campal subregions (Squire, Shimamura, &
Amaral, 1989) and how these subregions
contribute to the overall goal of memorizing
cortical patterns. Although the fine-grained
details of other hippocampal models may
differ slightly from the CLS model, the “big
picture” story (reviewed later) is remark-
ably consistent across models (Becker, 2005;
Meeter, Murre, & Talamini, 2004; Hasselmo
& Wyble, 1997; Rolls, 1989).
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Input

EC_in

DG

CA3 CA1

EC_out

Figure 7.1. Diagram of the Complementary Learning Systems
hippocampal network. The hippocampal network links input
patterns in entorhinal cortex (EC) to relatively nonoverlapping
(pattern-separated) sets of units in region CA3. The dentate
gyrus (DG) serves to facilitate pattern separation in region
CA3. Recurrent connections in CA3 bind together all of the
units involved in representing a particular EC pattern; the CA3
representation is linked back to EC via region CA1. Learning in
the CA3 recurrent connections, and in projections linking EC
to CA3 and CA3 to CA1, makes it possible to recall entire
stored EC patterns based on partial cues.

In the brain, EC is split into two lay-
ers, a superficial layer that primarily sends
input into the hippocampus and a deep
layer that primarily receives output from
the hippocampus (Witter et al., 2000);
in the model, these layers are referred to
as EC in and EC out. The part of the
model corresponding to the hippocampus
proper is subdivided into different layers,
corresponding to different anatomical sub-
regions of the hippocampus. At encoding,
the hippocampal model binds together sets
of co-occurring neocortical features (corre-
sponding to a particular episode) by linking
co-active units in EC in to a cluster of units
in region CA3. These CA3 units serve as the
hippocampal representation of the episode.

In addition to strengthening feedforward
connections between EC in and CA3, recur-
rent connections between active CA3 units
are also strengthened. To allow for recall, ac-
tive CA3 units are linked back to the original
pattern of cortical activity via region CA1.
Like CA3, region CA1 also contains a rep-
resentation of the input pattern. However,
unlike the CA3 representation, the CA1
representation is invertible – if an item’s
representation is activated in CA1, well-
established connections between CA1 and
EC out allow activity to spread back to the
item’s representation in EC out. Thus, CA1
serves to translate between sparse repre-
sentations in CA3 and more overlapping
representations in EC (for more discussion
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of this issue, see McClelland & Goddard,
1996, and O’Reilly, Norman, & McClelland,
1998).

The projections described earlier are up-
dated using the CPCA Hebbian learning rule
during the study phase of the experiment
(except for connections between EC and
CA1, which are pretrained to form an in-
vertible mapping). At test, when a partial
version of a stored EC pattern is presented
to the hippocampal model, the model is ca-
pable of reactivating the entire CA3 pat-
tern corresponding to that item because of
learning (in feedforward and recurrent con-
nections) that occurred at study. Activation
then spreads from the item’s CA3 represen-
tation back to the item’s EC representation
(via CA1). In this manner, the hippocam-
pal model manages to retrieve a complete
version of the EC pattern in response to a
partial cue. This process is typically referred
to as pattern completion.

To minimize interference between epi-
sodes, the hippocampal model has a built-
in bias to assign relatively nonoverlapping
(pattern-separated) CA3 representations to
different episodes. Pattern separation oc-
curs because of strong feedback inhibition in
CA3, which leads to sparse representations:
In the hippocampal model, only the top 4%
of units in CA3 (ranked in terms of exci-
tatory input) are active for any given input
pattern. The fact that CA3 units are hard to
activate reduces the odds that a given unit
will be active for any two input patterns,
thereby leading to pattern separation.

Pattern separation in CA3 is greatly fa-
cilitated by the dentate gyrus (DG). Like
CA3, the DG also receives a projection from
EC in. The DG has even sparser represen-
tations than CA3 and has a very strong pro-
jection to CA3 (the mossy fiber pathway).
In effect, the DG can be viewed as select-
ing a (nearly) unique representation for each
stimulus and then forcing that representa-
tion onto CA3 via the mossy fiber path-
ways (see O’Reilly & McClelland, 1994, for
a much more detailed treatment of pattern
separation in the hippocampus and the role
of the DG in facilitating pattern separa-
tion). Recently, Becker (2005) has argued

that neurogenesis in DG plays a key role in
fostering pattern separation: Inserting new
neurons and connections into DG ensures
that, if two similar patterns are fed into DG
on different occasions, they will elicit dis-
tinct patterns of DG activity (because the
DG connectivity matrix is different on the
first vs. second occasion).

To apply the hippocampal model to
recognition, Norman and O’Reilly (2003)
compared the test cue (presented on the
EC in layer) to the pattern of retrieved in-
formation (activated over the EC out layer).
When recalled information matches the test
cue, this constitutes evidence that the item
was studied; conversely, mismatch between
recalled information and the test cue con-
stitutes evidence that the test cue was not
studied (e.g., study “rats”; test “rat”; if the
hippocampal model recalls that “rats”-plural
was studied, not “rat”-singular, this can serve
as grounds for rejection of “rat”).

2.1.2.1. Optimizing the Dynamics of the
Hippocampal Model. As discussed by
O’Reilly and McClelland (1994), the
greatest computational challenge faced by
the hippocampal model is dealing with the
inherent trade-off between pattern sep-
aration and pattern completion. Pattern
separation reduces the extent to which
storing a new memory trace damages other,
previously stored memory traces. However,
this tendency to assign distinct hippocampal
representations to similar EC inputs can in-
terfere with pattern completion at retrieval:
It is very uncommon for retrieval cues to
exactly match stored patterns; if there is a
mismatch between the retrieval cue and
the to-be-recalled trace, pattern-separation
mechanisms might cause the cue to activate
a different set of CA3 units than the original
memory trace (so retrieval will not occur).
Hasselmo and colleagues (e.g., Hasselmo,
1995; Hasselmo & Wyble, 1997; Hasselmo,
Wyble, & Wallenstein, 1996) have also
pointed out that pattern completion can
interfere with pattern separation: If, during
storage of a new memory, the hippocampus
recalls related memories such that both
old and new memories are simultaneously
active at encoding, these memories will
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become even more tightly associated (due
to Hebbian learning between co-active
neurons) and thus run the risk of blending
together.

To counteract these problems, Hasselmo
and others have argued that the hippocam-
pus has an encoding mode, where the func-
tional connectivity of the hippocampus is
optimized for storage of new memories, and
a retrieval mode, where the functional con-
nectivity of the hippocampus is optimized
for retrieval of stored memory traces that
match the current input.

Two of the most prominent optimiza-
tions discussed by Hasselmo are:

• The strength of CA3 recurrents should
be larger during retrieval mode than en-
coding mode. Increasing the strength of
recurrent connections facilitates pattern
completion.

• During encoding mode, the primary in-
fluence on CA1 activity should be the
current input pattern in EC. During re-
trieval mode, the primary influence on
CA1 activity should be the retrieved
(“completed”) pattern in CA3.

For discussion of these optimizations as well
as others (relating to adjustments in hip-
pocampal learning rates) see Hasselmo et al.
(1996).1

Hasselmo originally proposed that mode-
setting was accomplished by varying the
concentration of the neuromodulatory
chemical acetylcholine (ACh). Hasselmo
and Wyble (1997) present a computational
model of this process. According to this
model, presenting a novel pattern to the
hippocampus activates the basal forebrain,
which (in turn) releases ACh into the hip-
pocampus, triggering encoding mode (see
Meeter et al., 2004, for a similar model).

1 Yet another optimization, not discussed by Has-
selmo, would be to reduce the influence of the
DG on CA3 at retrieval. As mentioned earlier, the
DG’s primary function in the CLS model is to fos-
ter pattern separation. Thus, reducing the influence
of the DG at retrieval should reduce pattern sepa-
ration and, through this, boost pattern completion
(see Becker, 2005, for additional discussion of this
point).

For physiological evidence that ACh trig-
gers the key properties of encoding mode (as
listed previously), see Hasselmo and Schnell
(1994) and Hasselmo, Schnell, and Barkai
(1995).

More recently, Hasselmo and Fehlau
(2001) have argued that ACh cannot be
the only mechanism of mode-setting in the
hippocampus, because the temporal dy-
namics of ACh release are too slow (on
the order of seconds) – by the time that
ACh is released, the to-be-encoded stimulus
may already be gone. Hasselmo and Fehlau
(2001) argue that, in order to support more
responsive mode-setting, the ACh-based
mechanism discussed previously is supple-
mented by another mechanism that lever-
ages hippocampal theta oscillations (rhyth-
mic changes in the local field potential, at
approximately 4–8 Hz in humans). Specifi-
cally, they argue that oscillatory changes in
the concentration of the neurotransmitter
gamma-aminotrityric acid (GABA) cause
the hippocampus to flip back and forth be-
tween encoding and retrieval modes several
times per second – as such, each stimulus is
processed (several times) both as a new stim-
ulus to be encoded and as a “reminder” to
retrieve other stimuli. Hasselmo, Bodelon,
and Wyble (2002) present a detailed com-
putational model of this theta-based mode
setting; for physiological evidence in support
of this model, see Wyble, Linster, and Has-
selmo (2000).

In its current form, the CLS hippocam-
pal model only incorporates a very crude
version of mode-setting (such that EC is
the primary influence on CA1 during study
of new items, and CA3 is the primary in-
fluence on CA1 during retrieval). Incorpo-
rating the other mode-related optimizations
mentioned earlier (e.g., varying the strength
of CA3 recurrents to facilitate encoding vs.
retrieval) should greatly improve the effi-
cacy of the CLS hippocampal model.

2.1.3. cls model of cortical

familiarity

The CLS cortical model consists of an in-
put layer (corresponding to lower regions of
the cortical hierarchy), which projects in a
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(a) (b)
Hidden Layer
(Perirhinal Cortex)

Input Layer 
(Lower-Level Cortex)

Figure 7.2. Illustration of the sharpening of
hidden (perirhinal) layer activity patterns in a
miniature version of the Complementary
Learning Systems cortical model: (a) shows the
network prior to sharpening; perirhinal activity
(more active = lighter color) is relatively
undifferentiated; (b) shows the network after
Conditional Principal Components Analysis
Hebbian learning and inhibitory competition
produce sharpening; a subset of the perirhinal
units are strongly active, whereas the remainder
are inhibited.

feedforward fashion to a hidden layer (cor-
responding to perirhinal cortex). As men-
tioned earlier, the main function of cortex
is to extract statistical regularities in the en-
vironment; the two-layer CLS cortical net-
work (where “perirhinal” hidden units com-
pete to encode regularities that are present
in the input layer) is meant to capture this
idea in the simplest possible fashion.

Because the cortical model uses a small
learning rate, it is not capable of pattern
completion following limited exposure to a
stimulus. However, it is possible to extract
a scalar signal from the cortical model that
reflects stimulus familiarity: In the cortical
model, as items are presented repeatedly,
their representations in the upper (perirhi-
nal) layer become sharper: Novel stimuli
weakly activate a large number of perirhinal
units, whereas previously presented stimuli
strongly activate a relatively small number
of units. Sharpening occurs in the model
because Hebbian learning specifically tunes
some perirhinal units to represent the stim-
ulus. When a stimulus is first presented,
some perirhinal units, by chance, will re-
spond more strongly to the stimulus than
other units. These “winning” units get tuned
by CPCA Hebbian learning to respond even
more strongly to the item the next time it
is presented; this increased response trig-
gers an increase in feedback inhibition to

units in the layer, resulting in decreased
activation of the “losing” units. This latter
property (whereby some initially responsive
units drop out of the stimulus represen-
tation as it is repeated) is broadly consis-
tent with the neurophysiological finding that
some perirhinal neurons show decreased re-
sponding as a function of stimulus familiar-
ity (e.g., Xiang & Brown, 1998; Li et al.,
1993); see Section 2.2 (Alternative Mod-
els of Perirhinal Familiarity), for additional
discussion of single-cell-recording data from
perirhinal cortex. Figure 7.2 illustrates this
sharpening dynamic.2 In the Norman and
O’Reilly (2003) article, cortical familiarity
was operationalized by reading out the acti-
vation of the k winning units in the perirhi-
nal layer (where k is a model parameter that
defines the maximum number of units that
are allowed to be strongly active at once),
although other methods of operationalizing
familiarity are possible.

Because there is more overlap between
representations in the cortical model ver-
sus the hippocampal model, the familiar-
ity signal generated by the cortical model
has very different operating characteristics
than the recall signal generated by the hip-
pocampal model: In contrast to hippocam-
pal recall, which only occurs when the test
cue is very similar to a specific studied item,
the cortical familiarity signal tracks – in a
graded fashion – the amount of overlap be-
tween the test cue and the full set of studied
items. This sensitivity to “global match” is
one of the most critical psychological prop-
erties of the familiarity signal (for behav-
ioral evidence that familiarity tracks global
match, see, e.g., Brainerd & Reyna, 1998;
Criss & Shiffrin, 2004; Koutstaal, Schac-
ter, & Jackson, 1999; Shiffrin, Huber, &
Marinelli, 1995; see also Section 3 for dis-
cussion of how abstract models implement
a “global match” familiarity process).

Importantly, although the Norman and
O’Reilly (2003) model focuses on the

2 For additional discussion of how competitive learn-
ing can lead to sharpening, see, e.g., Grossberg,
1986, Section 23, and Grossberg & Stone, 1986,
Section 16.
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contribution of perirhinal cortex to famil-
iarity discrimination, the CLS framework is
entirely compatible with other theories that
have emphasized the role of perirhinal cor-
tex in representing high-level conjunctions
of object features (e.g., Barense et al., 2005;
Bussey & Saksida, 2002; Bussey, Saksida,
& Murray, 2002). The CLS cortical net-
work performs competitive learning of ob-
ject features in exactly the manner specified
by these other models; the “sharpening” dy-
namic described earlier (which permits fa-
miliarity discrimination) is a byproduct of
this feature extraction process. Another im-
portant point is that, according to the CLS
model, perirhinal cortex works just like the
rest of cortex. Its special role in familiar-
ity discrimination (and learning of high-level
object conjunctions) is attributable to its po-
sition at the top of the cortical hierarchy,
which allows it to associate a wider range of
features and also allows it to respond differ-
entially to novel combinations of these fea-
tures (when discriminating between old and
new items on a recognition test). For addi-
tional discussion of this point, see Norman
and O’Reilly (2003).

2.1.4. representative prediction

from the cls model

Norman and O’Reilly (2003) showed how,
taken together, the hippocampal network
and cortical network can explain a wide
range of behavioral findings from recog-
nition and recall list-learning experiments.
Furthermore, because the CLS model maps
clearly onto the brain, it is possible to use
the model to address neuroscientific data in
addition to (purely) behavioral data. Here,
we discuss a representative model predic-
tion, relating to how target-lure similarity
and recognition test format should interact
with hippocampal damage.

The CLS model predicts that cortex
and hippocampus can both support good
recognition performance when lures are
not closely related to studied items. How-
ever, when lures are closely related to stud-
ied items, hippocampally-based recognition
performance should be higher than cor-
tically based recognition performance, be-

cause of the hippocampus’ ability to assign
distinct representations to similar stimuli
and its ability to reject lures when they trig-
ger recall that mismatches the test cue. The
model also predicts that effects of target-lure
similarity should interact with test format.
Most recognition tests use a yes-no (YN) for-
mat, where test items are presented one at
a time, and subjects are asked to label them
as old or new. The model predicts that cor-
tex should perform very poorly on YN tests
with related lures (because the distributions
of familiarity scores associated with studied
items and related lures overlap strongly).
However, the model predicts that cortex
should perform much better when given a
forced choice between studied items and cor-
responding related lures (e.g., “rat” and “rats”
are presented simultaneously, and subjects
have to choose which item was studied).
In this situation, the model predicts that
the mean difference in familiarity between
the studied item and the related lure will
be small, but the studied item should reli-
ably be slightly more familiar than the corre-
sponding related lure (thereby allowing for
correct responding; see Hintzman, 1988 for
additional discussion of this idea). Taken to-
gether, these predictions imply that patients
with hippocampal damage should perform
very poorly on YN tests with related lures.
However, the same patients should show
relatively spared performance on tests with
unrelated lures or when they are given a
forced choice between targets and corre-
sponding related lures (because cortex can
pick up the slack in both cases). Holdstock
et al. (2002) and Mayes et al. (2001) tested
these predictions in a patient with focal
hippocampal damage and obtained the pre-
dicted pattern of results; for additional ev-
idence in support of these predictions, see
also Westerberg et al. (2006).

2.1.5. memory decision making:

a challenge for recognition

memory models

There is one major way in which the CLS
model is presently underspecified, namely,
in how to combine the contributions of
hippocampal recall and cortical familiar-
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ity when making recognition decisions.
This problem is shared by all dual-process
recognition memory models, not just CLS.
Norman and O’Reilly (2003) treat recog-
nition decision making as a “black box”
that is external to the network model it-
self (i.e., the decision process is not itself
simulated by a neural network). This raises
two issues. First, at an abstract level, what
algorithm should be implemented by the
black box? Second, how could this algo-
rithm be implemented in network form? In
their combined cortico-hippocampal simu-
lations, Norman and O’Reilly (2003) used a
simple rule in which test items were called
“old” if hippocampal recall exceeded a cer-
tain value, otherwise, the decision was made
based on familiarity (Jacoby, Yonelinas, &
Jennings, 1997). This reflects the common
assumption that recall is more diagnostic
than familiarity. However, the diagnostic-
ity of both recall and familiarity varies from
situation to situation. For example, Norman
and O’Reilly (2003) discuss how recall of
unusual features is more diagnostic than re-
call of common features. Also, familiarity is
less diagnostic when lures are highly simi-
lar to studied items versus when lures are
less similar to studied items. Ideally, the
decision-making algorithm would be able to
dynamically weight the evidence provided
by recall of a particular feature (relative to
familiarity) based on its diagnosticity.

However, even if subjects manage to suc-
cessfully compute the diagnosticity of each
process, there are many reasons why (in
a particular situation) subjects might de-
viate from this diagnosticity-based weight-
ing. For example, several studies have found
that dual-task demands hurt recall-based
responding more than familiarity-based
responding (e.g., Gruppuso, Lindsay, &
Kelley, 1997), suggesting that recall-based
responding places stronger demands on
cognitive resources than familiarity-based
responding. If recall-based responding is
generally more demanding than familiarity-
based responding, this could cause subjects
to underattend to recall (even when it is use-
ful). Furthermore, the reward structure of
the task will interact with decision weights

(e.g., if the task places a high premium on
avoiding false alarms, subjects might attend
relatively more to recall; see Malmberg &
Xu, 2007, for additional discussion of how
subjects weight recall vs. familiarity).

Finally, in constructing a model of mem-
ory decision making, it is important to fac-
tor in more dynamical aspects of the deci-
sion making process. In recent years, models
of memory decision making have started to
shift away from simple signal-detection ac-
counts (where a cutoff is applied to a static
memory strength value), toward models
that accumulate evidence across time (see
Chapter 10 in this volume). Although these
dynamical “evidence-accumulation” models
are more complex than models based on
signal-detection theory (in the sense that
they have more parameters), several re-
searchers have demonstrated that evidence-
accumulation models can be implemented
using relatively simple neural network archi-
tectures (e.g., Usher & McClelland, 2001).
As such, the shift to dynamical decision-
making models may actually make it eas-
ier to construct a neural network model of
memory decision-making processes. Over-
all, incorporating a more accurate model
of the decision-making process (in terms of
how recall and familiarity are weighted, in
terms of temporal dynamics, and in terms
of how this process is instantiated in the
brain) should greatly increase the predic-
tive utility of extant recognition memory
models.

2.2. Alternative Models of Perirhinal
Familiarity

Although (as mentioned earlier) the basic
tenets of the CLS hippocampal model are
relatively uncontroversial, there is much less
agreement about whether the CLS corti-
cal model adequately accounts for perirhi-
nal contributions to recognition memory.
Recently, the CLS cortical model was crit-
icized by Bogacz and Brown (2003) on the
grounds that it has inadequate storage capac-
ity. Bogacz and Brown showed that, when
input patterns are correlated with one an-
other, the model’s capacity for familiarity
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discrimination (operationalized as the num-
ber of studied stimuli that the network can
distinguish from nonstudied stimuli with
99% accuracy) barely increases as a function
of network size; because of this, the model’s
capacity (even in a “brain-sized” network)
falls far short of the documented capacity of
human recognition memory (e.g., Standing,
1973).

These capacity problems can be traced
back to the CPCA Hebbian learning algo-
rithm used by Norman and O’Reilly (2003).
As discussed by Norman, Newman, and
Perotte (2005), CPCA Hebbian learning
is insufficiently judicious in how it adjusts
synaptic strengths: It strengthens synapses
between co-active units, even if the target
memory is already strong enough to support
recall, and it weakens synapses between ac-
tive receiving units and all sending units that
are inactive at the end of the trial, even if
these units did not actively compete with
recall of the target memory. As a result of
this problem, CPCA Hebbian learning ends
up overrepresenting features that are com-
mon to all items in the stimulus set and un-
derrepresenting features that are specific to
individual items. Insofar as recognition de-
pends on memory for item-specific features
(common features are, by definition, use-
less for recognition because they are shared
by both studied items and lures), this ten-
dency for CPCA Hebbian leaning to un-
derrepresent item-specific features results in
poor recognition discrimination. In their ar-
ticle, Bogacz and Brown (2003) also discuss
a Hebbian familiarity discrimination model
developed by Sohal and Hasselmo (2000).
This model operates according to slightly
different principles than the CLS cortical
model, but it shares the same basic prob-
lem (overfocusing on common features) and
thus performs poorly with correlated input
patterns.

Given these capacity concerns, it is worth
exploring how well other, recently devel-
oped models of perirhinal familiarity dis-
crimination can address these capacity is-
sues, as well as extant neurophysiological
and psychological data on perirhinal con-
tributions to recognition memory. Three

alternative models are discussed here: a
model developed by Bogacz and Brown
(2003) that uses anti-Hebbian learning to
simulate decreased responding to famil-
iar stimuli; a model developed by Meeter,
Myers, and Gluck (2005) that shows de-
creased responding to familiar stimuli be-
cause of context-driven adaptation effects;
and a model developed by Norman, New-
man, Detre, and Polyn (2006) that probes
the strength of memories by oscillating the
amount of feedback inhibition.

2.2.1. the anti-hebbian model

In contrast to the CLS familiarity model,
in which familiarity discrimination was a
byproduct of Hebbian feature extraction,
the anti-Hebbian model proposed by Bogacz
and Brown (2003) posits that separate neu-
ral populations in perirhinal cortex are in-
volved in representing stimulus features (on
the one hand) versus familiarity discrimi-
nation (on the other). Bogacz and Brown
argue that neurons involved in familiarity
discrimination use an anti-Hebbian learning
rule, which weakens the weights from active
presynaptic neurons to active postsynaptic
neurons and increases the weights from inac-
tive presynaptic neurons. This anti-Hebbian
rule causes neurons that initially respond to
a stimulus to respond less on subsequent
presentations of that stimulus.

The primary advantage of the anti-
Hebbian model over the CLS model is im-
proved capacity. Whereas Hebbian learning
ends up overrepresenting common fea-
tures and underrepresenting unique features
(resulting in poor overall capacity), anti-
Hebbian learning biases the network to ig-
nore common features and to represent
what is distinctive or unusual about indi-
vidual patterns. Bogacz and Brown (2003)
present a mathematical analysis showing
that the anti-Hebbian model’s capacity for
familiarity discrimination (given correlated
input patterns) is orders of magnitude higher
than the capacity of a model trained with
Hebbian learning.

With regard to neurophysiological data:
There are several salient differences in
the predictions made by the anti-Hebbian
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model versus the CLS cortical model. A
foundational assumption of the Bogacz and
Brown (2003) model is that neurons show-
ing steady, above-baseline firing versus de-
creased firing (as a function of stimulus repe-
tition) belong to distinct neural populations:
The former group (showing steady respond-
ing) is involved in representing stimulus fea-
tures, whereas the latter group is involved
in familiarity discrimination. This view im-
plies that it should be impossible to find
a neuron that shows steady responding to
some stimuli and decreased responding to
other stimuli. In contrast, the CLS cortical
model posits that neurons that show steady
(above-baseline) or increased firing to a
given stimulus are the neurons that won the
competition to represent this stimulus, and
neurons that show decreased firing are the
neurons that lost the competition to rep-
resent this stimulus. Furthermore, different
neurons will win (vs. lose) the competition
for different stimuli. Thus, contrary to the
predictions of the Bogacz and Brown (2003)
model, it should be possible to find a neuron
that shows steady (or increased) respond-
ing to one stimulus (because it won the
competition to represent that stimulus) and
decreased responding to another stimulus
(because it lost the competition to repre-
sent that stimulus). More data need to be
collected to test these predictions.

2.2.2. the meeter, myers, & gluck

model

The Meeter et al. (2005) model uses the
same basic Hebbian learning architecture
as Norman and O’Reilly (2003), with two
critical changes. First, they added a neural
adaptation mechanism (such that units be-
come harder to activate after a period of
sustained activation). Second, they are more
explicit in considering how context is repre-
sented in the input patterns. According to
the Meeter et al. (2005) model, if an item
is presented in a particular context (e.g.,
in a particular room, on a particular com-
puter screen, in a particular font), then the
units activated by the item become linked
to the units activated by contextual fea-
tures. As a result of this item-context link-

age, whenever the subject is in that context
(and, consequently, context-sensitive neu-
rons are firing), the linked item units will
receive a small amount of activation. Over
time, this low-level input from contextual
features will lead to adaptation in the linked
item units, thereby making them less likely
to fire to subsequent repetitions of that item.
In the Meeter et al. (2005) model, “con-
text” is operationalized as a set of input units
that receive constant (above-zero) excita-
tion throughout the experiment; apart from
this fact, context features function identi-
cally to units that represent the features of
individual items.

This model has several attractive proper-
ties with regard to explaining data on single-
unit activity in perirhinal cortex. It can ac-
count for the basic decrease in the neural
response triggered by familiar versus novel
stimuli. Moreover, it provides an elegant ex-
planation of why some perirhinal neurons do
not show decreased responding with stimu-
lus repetition. Contrary to the Bogacz and
Brown (2003) idea that neurons showing de-
creased versus steady responding come from
separate populations (with distinct learning
rules), the Meeter et al. (2005) model ex-
plains this difference in terms of a simple dif-
ference in context-sensitivity. Specifically,
according to the Meeter et al. (2005) model,
neurons that receive input from a large num-
ber of contextual features will show de-
creased responding to repeated stimuli (in-
sofar as these contextual inputs will cause
the neuron to be tonically active, leading to
adaptation), whereas neurons that are rela-
tively insensitive to contextual features will
not show decreased responding.

The most salient prediction of the Meeter
model is that familiarity should be highly
context-sensitive: Insofar as the strength-
ened context-item association formed at
study is what causes adaptation, chang-
ing context between study and test should
eliminate adaptation and thus eliminate the
decrement in responding to previously stud-
ied stimuli. This prediction has not yet been
tested. With regard to capacity, the Meeter
et al. (2005) model uses the same Hebbian
learning mechanism as the CLS model, so
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the same capacity issues that were raised by
Bogacz and Brown (2003) (with regard to
the CLS model) also apply here.

2.2.3. the oscillating learning

algorithm

In response to the aforementioned prob-
lems with CPCA Hebbian learning, Nor-
man et al. (2006; see also Norman et al.,
2005) developed a new learning algorithm
that (like CPCA Hebbian learning) does
feature extraction, but (unlike CPCA Heb-
bian learning) is more judicious in how it
adjusts synapses: It selectively strengthens
weak parts of target memories (vs. parts that
are already strong) and selectively punishes
strong competitors. The algorithm memo-
rizes patterns in the following manner:

• First, the to-be-learned (target) pattern
is imposed on the network (via external
inputs).

• Second, the algorithm identifies weak
parts of the target memory by raising
feedback inhibition above baseline. This
increase can be viewed as a “stress test” on
the target memory. If a target unit is re-
ceiving relatively little collateral support
from other target units, such that its net
input is just above threshold, raising inhi-
bition will trigger a decrease in the activa-
tion of that unit. The algorithm then acts
to strengthen units that drop out when
inhibition is raised, by increasing connec-
tions coming into these units units from
active senders.

• Third, the algorithm identifies competing
memories (non-target memories receiv-
ing strong input) by lowering feedback
inhibition below baseline. Effectively,
lowering inhibition lowers the threshold
amount of excitation needed for a unit
to become active. If a non-target unit is
just below threshold (i.e., it is receiving
strong input, but not quite enough to
become active) lowering inhibition will
cause that unit to become active. The al-
gorithm then acts to weaken units that
pop up when inhibition is lowered, by
weakening connections coming into these
units from active senders.

Weight change in the model is accom-
plished via the well-established Contrastive
Hebbian Learning (CHL) equation (Ackley,
Hinton, & Sejnowski, 1985; Hinton, 1989;
Hinton & Sejnowski, 1986; Movellan,
1990). CHL learning involves contrasting
a more desirable state of network activity
(called the plus state) with a less desirable
state of network activity (called the minus
state). The CHL equation adjusts network
weights to strengthen the more desirable
state of network activity (so it is more likely
to occur in the future) and weaken the less
desirable state of network activity (so it is
less likely to occur in the future).

�wi j = ε
(
(X+

i Y+
j )− (X−

i Y−
j )

)
(7.2)

In this Equation, Xi is the activation of
the presynaptic (sending) unit, Yj is the ac-
tivation of the postsynaptic (receiving) unit.
The + and − superscripts refer to plus-state
and minus-state activity, respectively. �wi j
is the change in weight between the sending
and receiving units, and ε is the learning rate
parameter.

Changes in the strength of feedback inhi-
bition have the effect of creating two kinds
of “minus” states: Raising inhibition creates
patterns that have too little activation (be-
cause target units drop out), and lower-
ing inhibition creates patterns that have too
much activation (because strong competitor
units pop up). As inhibition is oscillated, the
CHL equation is applied to states of network
activation, with the normal-inhibition pat-
tern serving as the plus state and the high-
inhibition and low-inhibition patterns serv-
ing as minus states (Norman et al., 2006).

Because strengthening is limited to weak
target features, the oscillating algorithm
avoids the problem of “overstrengthening
of common features” that plagues Hebbian
learning. Also, the oscillating algorithm’s
ability to selectively punish competitors
helps to prevent similar memories from col-
lapsing into one another: Whenever mem-
ories start to blend together, they also start
to compete with one another at retrieval,
and the competitor-punishment mechanism
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pushes them apart.3 Norman, Newman,
Detre, and Polyn (2006) discuss how the os-
cillating algorithm may be implemented in
the brain by neural theta oscillations (insofar
as these oscillations involve regular changes
in the strength of neural inhibition and are
present in both cortex and the hippocam-
pus).

Recently, Norman et al. (2005) explored
the oscillating algorithm’s ability to do fa-
miliarity discrimination. These simulations
used a simple two-layer network: Patterns
were presented to the lower part of the
network (the input-output layer). The upper
part of the network (the hidden layer) was al-
lowed to self-organize according to the dic-
tates of the learning algorithm. Every unit in
the input-output layer was connected to ev-
ery input-output unit (including itself) and
to every hidden unit via modifiable, sym-
metric weights. A familiarity signal can be
extracted from this network by looking at
how activation changes when inhibition is
raised above its baseline value: Weak (un-
familiar) memories show a larger decrease
in activation than strong (familiar) memo-
ries. Norman et al. (2005) tested the net-
work’s ability to discriminate between 100
studied and 100 nonstudied patterns, where
the average pairwise overlap between any
two patterns (studied or nonstudied) was
41%. After 10 study presentations, discrim-
ination accuracy was effectively at ceiling
(99%). In this same situation, the perfor-
mance of the Norman and O’Reilly (2003)
CLS familiarity model (trained with CPCA
Hebbian learning) was close to chance. This
finding shows that the oscillating algorithm
can show good familiarity discrimination in
exactly the kind of situation (i.e., high corre-
lation between patterns) where the CLS fa-
miliarity model performs poorly. Although

3 Importantly, unlike the CLS hippocampal model
described earlier (which automatically enacts pat-
tern separation, regardless of similarity), the os-
cillating algorithm is only concerned that memo-
ries observe a minimum separation from one an-
other. So long as this constraint is met, memo-
ries in the cortical network simulated here are free
to overlap according to their similarity (thereby
allowing the network to enact similarity-based
generalization).

Norman et al. (2005) have not yet carried
out the requisite mathematical analyses, it
is quite possible that the oscillating algo-
rithm’s capacity for supporting familiarity-
based discrimination, in a brain-sized net-
work, will be large enough to account for
the vast capacity of human familiarity dis-
crimination.

3. Abstract Models of Recognition
and Recall

In addition to the biologically based models
discussed previously, there is a rich tradi-
tion of researchers building more abstract
computational models of episodic mem-
ory. Although there is considerable diver-
sity within the realm of abstract memory
models, most of the abstract models that are
currently being developed share a common
set of properties: At study, memory traces
are placed separately in a long-term store;
because of this “separate storage” postulate,
acquiring new memory traces does not af-
fect the integrity of previously stored mem-
ory traces. At test, the model computes the
match between the test cue and all of the
items stored in memory. This item-by-item
match information can be summed across all
items to compute a “global match” familiar-
ity signal. Some abstract models that con-
form to this overall structure are Search of
Associative Memory model (SAM; Gillund
& Shiffrin, 1984; Mensink & Raaijmakers,
1988; Raaijmakers & Shiffrin, 1981), the
Retrieving Efficiently from Memory model
(REM; Malmberg, Holden, & Shiffrin, 2004;
Shiffrin & Steyvers, 1997), MINERVA 2
model (Hintzman, 1988), and the Noisy Ex-
emplar model (NEMO; Kahana & Sekuler,
2002). Some notable exceptions to this
general rule include the Theory of Dis-
tributed Associated Memory model (TO-
DAM; Murdock, 1993) and the Matrix
model (Humphreys, Bain, & Pike, 1989),
which store memory traces in a com-
posite fashion (instead of storing them
separately).

One of the most important properties of
global matching models is that the match
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computation weights multiple matches to a
single trace more highly than the same to-
tal number of matches, spread out across
multiple memory traces (e.g., a test cue that
matches two features of one item yields a
higher familiarity signal than a test cue that
matches one feature of each of two items);
see Clark and Gronlund (1996) for addi-
tional discussion of this point. Among other
things, this property gives global match-
ing models the ability to perform associa-
tive recognition (i.e., to discriminate pairs of
stimuli that were studied together vs. stim-
uli that were studied separately).

Different models achieve this sensitivity
to conjunctions in different ways. For ex-
ample, in MINERVA 2, memory traces are
vectors where each element is 1 (indicat-
ing that a feature is present), −1 (indicating
that the feature is absent), and 0 (indicating
that the feature is unknown). To compute
global match, MINERVA 2 first computes
the match between the test cue and each
trace i stored in memory. Match is opera-
tionalized as the cue-trace dot product, di-
vided by the number of features contribut-
ing to the dot product:

Si =
∑N

j=1 Pj Ti, j

Ni
. (7.3)

Si is the match value, Pj is the value of fea-
ture j in the cue, Ti, j is the value of feature
j in trace i , N is the number of features, and
Ni is the number of features where either
the cue or trace is nonzero.

Next, MINERVA 2 cubes each of these
individual match scores to compute an “ac-
tivation” value Ai for each trace.

Ai = S3
i . (7.4)

Finally, these activation values are summed
together across the M traces in memory
to yield an “echo intensity” (global match)
score I :

I =
M∑

i=1

Ai . (7.5)

MINERVA 2 shows sensitivity to conjunc-
tions because matches spread across multi-
ple stored traces are combined in an additive
fashion, but (because of the cube rule) mul-
tiple matches to a single trace are combined
in a positively accelerated fashion. For ex-
ample, consider the difference between two
traces with match values Si of .5, versus one
trace with a match value Si of 1.0. Because
of the cube rule, the total match value I in
the former case is .53 + .53 = .25 whereas in
the latter case, I = 1.03 = 1.0.

The NEMO model (Kahana & Sekuler,
2002) achieves sensitivity to conjunctions in
a similar fashion: First, NEMO computes a
vector distance d(i, j) between the cue and
the memory trace (note: small distance =
high similarity). Next, the distance value
is passed through an exponential function,
which – like the cube function – has the
effect of emphasizing close matches (i.e.,
small distances) relative to weaker matches
(i.e., large distances):

η(i, j) = e−τd(i, j). (7.6)

In this equation, η(i, j) is the adjusted sim-
ilarity score, and τ is a model parameter
that determines the steepness of the gener-
alization curve (i.e., how close a match has
to be to contribute strongly to the overall
“summed similarity” score).

In abstract models, the same “match” rule
that is used to compute the global-match
familiarity signal is also used when simu-
lating recall, although the specific way in
which the match rule is used during recall
differs from model to model. For example,
MINERVA 2 simulates recall by computing
a weighted sum C of all of the items i stored
in memory, where each item is weighted by
its match to the test cue. The jth element
of C is given by:

Cj =
M∑

i=1

Ai Ti, j . (7.7)

In contrast, models like SAM and REM use
the individual match scores to determine
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which (single) memory trace will be “sam-
pled” for recall (see Section 3.1).

Collectively, abstract models have been
very successful in explaining behavioral re-
call and recognition data from normal sub-
jects (see Clark & Gronlund, 1996, and
Raaijmakers, 2005; Raaijmakers & Shiffrin,
2002, for reviews).4 The remaining part
of this section is structured as follows:
Section 3.1 presents a detailed description
of the Shiffrin and Steyvers (1997) REM
model. REM is highlighted because, of all of
the models mentioned earlier, it is the model
that is being developed and applied most ac-
tively and because it has the most principled
mathematical foundation. Section 3.2 de-
scribes important differences between “sep-
arate storage” abstract models (e.g., REM)
and biological models with regard to their
predictions about the mechanisms of in-
terference (i.e., does studying new items
degrade previously stored memory traces).
Finally, whereas most abstract models try
to explain recognition memory data solely
in terms of the “global match” familiarity
mechanism (and not recall), Section 3.3 re-
views two recently developed dual-process
abstract models that address contributions
of both recall and familiarity to recognition
performance.

3.1. The REM Model of Recognition
and Recall

The Shiffrin and Steyvers (1997) REM
model is the most recent iteration of a line
of models that date back to the Raaijmakers
and Shiffrin (1981) SAM model. One of
the main differences between REM and
previous models like SAM and MINERVA
2 is that REM implements a principled
Bayesian calculation of the likelihood that
the cue “matches” (i.e., corresponds to the

4 In principle, abstract models can be used to ac-
count for data from memory-impaired populations
as well as normal populations (by finding a set of pa-
rameter changes that lead to the desired pattern of
memory deficits) but, in practice, few studies have
taken this approach. Some notable exceptions in-
clude Malmberg, Zeelenberg, and Shiffrin (2004)
and Howard, Kahana, and Wingfield (2006).

same item as) a particular stored mem-
ory trace, whereas the match calculation
was not defined in Bayesian terms in pre-
vious models (Raaijmakers & Shiffrin, 2002;
for another example of a model that takes
this Bayesian approach, see McClelland &
Chappell, 1998; for additional discussion of
Bayesian modeling, see Chapter 3 in this vol-
ume). The following REM equations were
adapted from Shiffrin and Steyvers (1997),
Xu and Malmberg (2007), and Malmberg
and Shiffrin (2005).

In REM, items are vectors of features
whose values, V, are geometrically dis-
tributed integers. Specifically, the probabil-
ity of a particular feature being assigned a
particular value is given by

P[V = j] = (1− g ) j−1g (7.8)

where g is the geometric distribution param-
eter (with a value between 0 and 1). The
primary consequence of feature values be-
ing distributed geometrically (according to
Equation 7.8) is that high feature values are
less common than low feature values.

When an item is studied, the features of
that item are copied into an episodic trace
for that item. The probability of storing a
particular feature in an episodic trace is de-
noted by u∗. The probability of encoding
that feature correctly (given that it has been
stored) is denoted by c. If the feature is en-
coded incorrectly, a new value for that fea-
ture is randomly drawn from the geomet-
ric distribution. A zero value means that no
value is stored for the feature.

At test, the retrieval cue is compared with
each trace, and (for each trace j) the model
calculates the likelihood λ j that the cue and
the trace match (i.e., they correspond to the
same item):

λ j = (1− c)n jq

×
∞∏

i=1

[
c + (1− c)g (1− g )i−1

g (1− g )i−1

]ni jm

(7.9)
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where n jq is the number of nonzero features
in the jth memory trace that mismatch the
cue (regardless of value) and ni jm is the num-
ber of nonzero features in the jth memory
trace that match the cue and have value i .
Equation 7.9 was derived by computing two
different probabilities:

• The probability of obtaining the observed
pattern of matching and mismatching
features, assuming that the cue and trace
correspond to the same item, and

• The probability of obtaining the observed
pattern of matching and mismatching
features, assuming that the cue and trace
correspond to different items.

The likelihood value λ j is computed
by dividing the former probability by the
latter. Shiffrin and Steyvers (1997), Ap-
pendix A, contains a detailed derivation of
Equation 7.9.

The same core “match” calculation is used
for both recognition and recall in REM. The
model is applied to recognition by comput-
ing

� = 1
n

n∑
j=1

λ j . (7.10)

Mathematically, � corresponds to the over-
all odds that the item is old (vs. new). If
the � exceeds a preset criterion (typically
the criterion is set to � > 1.0, indicating
that the item is more likely to be old than
new) then the item is called “old.” The
fact that the effects of individual matches
(and mismatches) are combined multiplica-
tively within individual traces (Equation 7.9)
and additively across traces (Equation 7.10)
serves the same function as the “cube rule” in
MINERVA 2 and the exponential function
in NEMO, that is, it ensures that multiple
matches to a single trace have a larger ef-
fect on � than the same number of feature
matches, spread across multiple traces.

Recall in REM (like recall in SAM;
Raaijmakers & Shiffrin, 1981) has both a
sampling component (which picks a sin-
gle trace out from the memory store) and
a recovery component (which determines

whether the sampled memory trace is re-
trieved successfully). Sampling is done with
replacement. The probability of sampling
memory trace I j , given the retrieval cue Q
is as follows:

P (I j |Q) = λ
γ

j∑
λ

γ

k
(7.11)

λ j is the match value (described earlier) for
trace I j , and γ is a scaling parameter. The
denominator is the sum of the scaled like-
lihood ratios across the activated memory
traces. Once an item is sampled, the prob-
ability that the trace will be recovered and
output, P (R), is given by

P (R) = ρτ
r (7.12)

where ρr is the proportion of correctly
stored item features in that trace and τ is
a scaling parameter. Thus, in REM, well-
encoded items are more likely to be recov-
ered than poorly encoded items.

3.1.1. representative rem results

Researchers have demonstrated that REM
can explain a wide range of episodic mem-
ory findings. For example, Shiffrin and
Steyvers (1997) demonstrated that the
“global match” familiarity mechanism de-
scribed previously can account for the word
frequency mirror effect: the finding that
subjects make more false alarms to high-
frequency (HF) lures versus low-frequency
(LF) lures and that subjects make more cor-
rect “old” responses to low-frequency targets
versus high-frequency targets (e.g., Glanzer
et al., 1993). REM’s account of word fre-
quency effects is based on the idea that LF
words have more unusual features than HF
words; specifically, REM can fit the observed
pattern of word frequency effects by us-
ing a slightly lower value of the geometric
distribution parameter g when generating
LF items, which results in these items hav-
ing slightly higher (and thus more unusual)
feature values (see Equation 7.8). The fact
that LF items have unusual features has two
implications. First, it means that LF lures
are not likely to spuriously match stored
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memory traces – this explains why there are
fewer LF false alarms than HF false alarms.
Second, it means that, when LF cues do
match stored traces, this is strong evidence
that the item was studied (because matches
to unusual features are unlikely to occur due
to chance); as such, LF targets tend to trigger
high likelihood (λ) values, which explains
why the hit rate is higher for LF targets than
HF targets.

One implication of this account is that,
if one could engineer a situation where the
(unusual) features of LF lures match stored
memory traces as often as the (more com-
mon) features of HF lures, subjects will
show a higher false alarm rate for LF lures
than HF lures (the reverse of the normal pat-
tern). This prediction was tested and con-
firmed by Malmberg, Holden et al. (2004),
who induced a high rate of “spurious match”
for LF lures by using lures that were highly
similar to studied items (e.g., study “yachts,”
test with “yacht”).

3.2. Differences in How Models Explain
Interference

One important difference between “sep-
arate storage” abstract models like REM
and biological models like CLS relates to
sources of interference. In REM, memory
traces are stored in a noninterfering fash-
ion, and interference arises at test (whenever
the test cue matches memory traces other
than the target memory trace).5 For exam-
ple, SAM and REM predict that strength-
ening some list items (by presenting them
repeatedly) will impair recall of nonstreng-
thened items by increasing the odds that
the strengthened items will be sampled in-
stead of nonstrengthened items (Malmberg
& Shiffrin, 2005). Effectively, the model’s
ability to sample these nonstrengthened

5 Within the realm of abstract models positing
interference-at-test, there is some controversy
about whether interference arises from spurious
matches to other items on the study list, as op-
posed to spurious matches to memory traces from
outside the experimental context; see Dennis and
Humphreys (2001) and Criss and Shiffrin (2004)
for contrasting perspectives on this issue.

items is blocked by sampling of the strength-
ened items.

Biological models, like abstract models,
posit that interference can occur at test (due
to competition between the target mem-
ory and non-target memories). However,
in contrast to models like REM, biological
models also posit that interference can oc-
cur at study: Insofar as learning in biologi-
cal models involves both strengthening and
weakening of synapses, adjusting synapses
to store one memory could end up weaken-
ing other memories that also rely on those
synapses. This trace weakening process is
sometimes referred to as structural interfer-
ence (Murnane & Shiffrin, 1991) or unlearn-
ing (e.g., Melton & Irwin, 1940).

Models like SAM and REM have focused
on interference at test, as opposed to struc-
tural interference at study, for two reasons:

• The first reason is parsimony: Models that
rely entirely on interference at test can
account for a very wide range of for-
getting data. In particular, Mensink and
Raaijmakers (1988) showed that a vari-
ant of the SAM model can account for
several phenomena that were previously
attributed to unlearning (e.g., retroac-
tive interference in AB-AC interference
paradigms; Barnes & Underwood, 1959).

• The second reason is that it is unclear
how to instantiate structural interference
properly within a separate-storage frame-
work. For example, in REM, structural
interference would presumably involve
deletion of features from episodic traces,
but it is unclear which features to delete.
Biologically based neural network mod-
els fare better in this regard, insofar as
these models incorporate synaptic learn-
ing rules that explicitly specify how to ad-
just synaptic strengths (upward or down-
ward) as a function of presynaptic and
postsynaptic activity.

The most important open issue with regard
to modeling interference and forgetting is
whether there are any results in the liter-
ature that can only be explained by posit-
ing trace-weakening mechanisms. Michael
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Anderson has argued that certain findings in
the retrieval-induced forgetting literature may
meet this criterion (see M. C. Anderson,
2003, for a review). In retrieval-induced for-
getting experiments, subjects study a list of
items, and then a subset of the studied items
are strengthened during a second “practice”
phase. Anderson and others have found
that manipulations that affect the degree
of retrieval competition during the prac-
tice phase (e.g., whether subjects are given
a well-specified cue or a poorly specified
cue; M. C. Anderson, Bjork, & Bjork, 2000)
can affect the extent to which nonprac-
ticed items are forgotten, without affect-
ing the extent to which practiced items are
strengthened. M. C. Anderson (2003) ex-
plains these results in terms of the idea that
(1) competitors are weakened during memory
retrieval, and (2) the degree of weakening is
proportional to the degree of competition.6

Anderson also points out that simple “block-
ing” accounts of forgetting may have diffi-
culty explaining the observed pattern of re-
sults (increased forgetting without increased
strengthening): According to these block-
ing accounts, forgetting of nonstrengthened
items is a direct consequence of strength-
ened items being recalled in place of non-
strengthened items; as such, practice ma-
nipulations that lead to the same amount
of strengthening should lead to the same
amount of forgetting. At this point, it is un-
clear whether separate-storage models like
REM (which are considerably more sophis-
ticated than the simple blocking theories
described by Anderson, 2003) can account
for the retrieval-induced forgetting results
described here.

3.3. Abstract Models and Dual-Process
Theories

Abstract models have traditionally taken
a single-process approach to recognition,

6 See Norman, Newman, and Detre (2007), for a
neural network model of retrieval-induced forget-
ting that instantiates these ideas about competitor-
weakening; the model uses the oscillating learning
algorithm described earlier to strengthen the prac-
ticed item and weaken competitors.

whereby they try to explain recognition per-
formance exclusively in terms of the global
match familiarity process (without posit-
ing that recall of specific details contributes
to recognition). As with the structural-
interference issue previously described, the
main reason that abstract models have taken
this approach is parsimony: The single-
process approach has been extremely suc-
cessful in accounting for recognition data;
hence, there is no need to complicate the
model by positing that recall contributes
routinely to recognition judgments. How-
ever, more recently, Malmberg, Holden
et al. (2004) and Xu and Malmberg (2007)
have identified some data patterns (from
paradigms that use lures that are closely
related to studied items) that can not be
fully explained using the REM familiarity
process. Specifically, studies using related
lures (e.g., switched-plurality lures: study
“rats,” test “rat”) have found that increas-
ing the number of study presentations of
“rats” increases hits, but does not reliably in-
crease false recognition of similar lures like
“rat.” Dual-process models can explain this
result in terms of the idea that increased
study of “rats” increases the familiarity of
“rat” (which tends to boost false recogni-
tion), but it also increases the odds that sub-
jects will recall that they studied “rats,” not
“rat” (Hintzman, Curran, & Oppy, 1992).
Malmberg, Holden et al. (2004) showed
that the REM global match process can-
not simultaneously generate an increase in
hit rates, coupled with no change (or a de-
crease) in false alarm rates to similar lures
(see Xu & Malmberg, 2007, for a simi-
lar finding, using an associative recognition
paradigm).

In response to this issue, Malmberg,
Holden et al. (2004) developed a dual-
process REM model of recognition, which
incorporates both the REM “global match”
familiarity judgment and the REM recall
process described earlier. This model op-
erates in the following manner. First, stim-
ulus familiarity is computed (using Equa-
tion 7.9). If familiarity is below a threshold
value, the item is called “new.” If familiar-
ity is above the threshold value, the recall
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process is engaged. The model samples a sin-
gle memory trace and attempts to recover
the contents of that trace. If recovery suc-
ceeds and the recovered item matches the
test cue, the item is called “old.” If recov-
ery succeeds and the recovered item mis-
matches the test cue (e.g., the model recalls
“rats” but the test cue is “rat”), the item is
called “new.” If the recovery process fails,
the model guesses “old” with probability γ .7

The addition of this extra recall process al-
lows the model to accommodate the combi-
nation of increasing hits and no increase in
false alarms to similar lures.

3.3.1. the source of activation

confusion model

Reder’s Source of Activation Confusion
(SAC) model (e.g., Reder et al., 2000) takes
a different approach to simulating contri-
butions of recall and familiarity to recogni-
tion memory. In the SAC model, items are
represented as nodes in a network; episodic
memory traces are represented as special
nodes that are linked both to the item and to
a node representing the experimental con-
text. Activation is allowed to spread at test;
the degree of spreading activation coming
out of a node is a function of the node’s
activation and also the number of connec-
tions coming out of the node (the more
connections, the less activation that spreads
per connection; for discussion of empirical
evidence that supports this “fan effect” as-
sumption, see Anderson & Reder, 1999; see
also Anderson & Lebiere, 1998, for discus-
sion of another model that incorporates this
assumption). In SAC, familiarity is a func-
tion of the activation of the item node itself,
whereas recall is a function of the activation
of the episodic node that was created when
the item was studied.

Reder et al. (2000) demonstrated that
the SAC model can account for word fre-

7 To accommodate the idea that subjects rely
more on recall in some situations than others
(see Section 2.1.5), the dual-process version of
REM includes an extra model parameter (a) that
scales the probability of using recall on a given
trial.

quency mirror effects. According to SAC,
the false alarm portion of the mirror effect
(false alarms to HF lures > false alarms to LF
lures) is due to familiarity, and the hit-rate
portion of the mirror effect (hit rate for LF
targets > hit rate for HF targets) is due to
recall (for similar views, see Hirshman et al.,
2002; Joordens & Hockley, 2000). In SAC,
the fact that HF lures have been presented
more often than LF lures (prior to the exper-
iment) gives them a higher baseline level of
activation, and – through this – a higher level
of familiarity. The fact that LF targets are
linked to fewer pre-experimental contexts
than HF targets, and thus have a smaller “fan
factor,” means that activity can spread more
efficiently to the “episodic node” associated
with the study event (leading to a higher hit
rate for LF items).

Reder et al. (2000) argue that this dual-
process account of mirror effects is prefer-
able to the REM account insofar as it models
frequency differences in terms of actual dif-
ferences in the number of preexperimental
presentations, instead of the idea (used by
REM) that LF words have more unusual fea-
tures than HF words. However, it remains
to be seen whether the Reder et al. (2000)
model provides a better overall account of
word frequency effects than REM (in terms
of model fit and in terms of novel, validated
predictions).

4. Context, Free Recall, and Active
Maintenance

Up to this point, this chapter has discussed
accounts of how the memory system re-
sponds to a particular cue, but it has not
yet touched on how the memory system be-
haves when external cues are less well speci-
fied, and subjects have to generate their own
cues to target a particular memory (or set of
memories). Take the scenario of trying to
remember where you left your keys. The
most common advice in this situation is to
reinstate your mental context as a means
of prompting recall – if you succeed in re-
membering what you were doing and what
you were thinking earlier in the day, this
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will boost the probability of recalling where
you left the keys. This idea of reinstating
mental context plays a key role in theories
of strategic memory search. Multiple lab-
oratory paradigms have been developed to
examine this process of strategic memory
search. The most commonly used paradigm
is free recall, where subjects are given a word
list and are then asked to retrieve the stud-
ied word list in any order. Section 4.1 de-
scribes an abstract modeling framework, the
Temporal Context Model (TCM; Howard
& Kahana, 2002) that has proved to be very
useful in understanding how we selectively
retrieve memories from a particular tempo-
ral context in free recall experiments. Sec-
tion 4.2 discusses methods for implementing
TCM dynamics in biologically based neural
network models.

4.1. The Temporal Context Model

TCM is the most recent in a long succes-
sion of models that use a drifting mental con-
text to explain memory targeting (e.g., Estes,
1955; Mensink & Raaijmakers, 1988). The
basic idea behind these models is that the
subject’s inner mental context (comprised
of the constellation of thoughts that are ac-
tive at a particular moment) changes grad-
ually over time. Mensink and Raaijmakers
(1988) instantiate this idea in terms of a bi-
nary context vector, where each element of
this context vector is updated (with some
probability) on each time step; the higher
the probability of updating, the faster the
context vector drifts over time. During the
study phase of a memory experiment, items
are associated with the state of the con-
text vector (at the time of presentation). At
test, the recall process is initiated by cuing
with the current state of the context vector,
which (in turn) triggers retrieval of items
that were associated with these contextual
elements at study.

The main difference between TCM
and previous contextual-drift models like
Mensink and Raaijmakers (1988) is that,
in TCM, context does not drift randomly.
Rather, contextual updating is driven by the

features of the items being studied. More
precisely, the state of the context vector at
time i , ti , is given by:

ti = ρi ti−1 + βtI N
i (7.13)

where β is a free parameter that determines
the rate of contextual drift, ρi is chosen at
each time step such that ti is always of unit
length, and tI N

i corresponds to “preexper-
imental context” associated with the item
being studied at time i (i.e., an amalgama-
tion of all of the contexts in which that item
has previously appeared). The key thing to
note is that preexperimental context is dif-
ferent for each item; thus, adding tI N

i to the
context vector has the effect of injecting spe-
cific information about the just-studied item
into the context vector.

The most current version of TCM
(Howard, Kahana, & Wingfield, 2006)
posits that, on a given time step, the current
item is associated with active contextual fea-
tures, and then the context vector is updated
according to Equation 7.13. Thus, the item
studied at time i ends up being associated
with the state of the context vector that was
computed on time step i − 1. At test, the
free recall process is initiated by cuing with
the current state of the context vector. As in
SAM, items are sampled according to how
well the context cue matches the context as-
sociated with the stored item (see Howard
& Kahana, 2002, for a more detailed de-
scription of how item-context associations
are formed at study and how items are sam-
pled at test). If the item studied at time i is
sampled at time step r , the context is up-
dated according to the following equations:

tr = ρi tr−1 + βtI N
r (7.14)

where tI N
r (the information injected into the

context vector) is given by:

tI N
r = αOtI N

i + αNti−1 + ηnr . (7.15)

In Equation 7.15, tI N
i is the preexperimen-

tal context associated with item i , ti−1 is the
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contextual information that was associated
with item i at study, and nr is a noise term.
αO, αN, and η are scaling parameters. Thus,
the context-updating operation associated
with recalling item i has much in common
with the context-updating operation asso-
ciated with studying item i . In both cases,
context is updated by injecting tI N

i (item-
specific information relating to item i). The
main difference, apart from the noise term,
is that context is also updated with ti−1,
the state of the context vector at the time
the (just-retrieved) item was studied. This
latter updating operation can be construed
as “mentally jumping back in time” to the
moment when the (just-retrieved) item was
studied. As discussed later, the two kinds of
updating mentioned here (tI N

i vs. ti−1) have
distinct effects on recall transition probabil-
ities. Once the context vector is updated, it
is used to cue for additional items, which
leads to additional updating of the context
vector, and so on.

4.1.1. how tcm accounts for

recall data

Contextual drift models (in general) and
TCM (in particular) can account for a wide
range of free recall findings; some represen-
tative findings are discussed in this section.
As one example, contextual drift models
provide an elegant account of the long-term
recency effect in free recall. Circa 1970, it was
believed that recency effects (better recall
of items from the end of the list) were at-
tributable to the fact that recently presented
items were still being held in a short-term
memory buffer. As such, manipulations that
disrupt this buffer (e.g., a distraction-filled
retention interval) should sharply reduce re-
cency effects. However, Bjork and Whitten
(1974) and other studies have since demon-
strated that recency effects can still be ob-
served after a distraction-filled delay. Bjork
and Whitten showed that the key deter-
minant of recency is the ratio of the time
elapsed since study of item A to the time
elapsed since study of item B; the smaller
this ratio is (indicating that A was presented
relatively more recently than B), the better

A will be recalled relative to B (Glenberg
et al., 1980). This can be explained by
contextual drift models in the following
manner:

• Because of contextual drift, the current
test context (being used as a cue) matches
the context associated with recently pre-
sented items more than the context asso-
ciated with less recently presented items.

• Because recall is a competitive process,
recall of a particular trace is a function
of the match between the cue and that
trace, relative to other cue-trace match
values. Increasing the recency of item A
(relative to item B) increases the extent to
which the test cue matches the A-context
versus the B-context, thereby boosting
recall of A relative to B.

Critically, to explain recency effects, the rate
of drift cannot be too fast. If, for example, all
of the contextual elements changed on every
trial, then recently presented items would
not have any more “contextual match” than
less recently presented items. Put another
way, at least some contextual elements need
to persist long enough to span the gap be-
tween recently presented studied items and
the time of test.

In their 2002 article, Howard & Kahana
also showed that TCM can account for de-
tailed patterns of transition data in free re-
call: Given that the Nth item from the study
list was just recalled, what are the odds that
the next item recalled will be the N+1st
item, N-1st item, N+2nd item, and so on?
Kahana (1996) plotted this conditional re-
sponse probability (CRP) curve (see also
Howard & Kahana, 1999). A representative
CRP curve is shown in Figure 7.3.

There are two major findings to highlight.
First, items that are studied in nearby serial
positions in the study list tend to be recalled
close together at test (Kahana, 1996, calls
this regularity the lag-recency effect). This
holds true even if filled distractor intervals
are inserted between items at study, making
it unlikely that these contiguity effects are
due to subjects rehearsing contiguous items
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Figure 7.3. Conditional response probability
(CRP) curve, showing the probability of
recalling an item studied at serial position
i + lag immediately after recall of an item
studied at serial position. This particular CRP
curve was created by averaging together the
CRP curves from multiple studies; see the
caption of Figure 1A in Howard et al.
(2007) for more details. (Figure courtesy
of Marc Howard.)

together in short-term memory. This basic
regularity can be explained in terms of the
idea that, when subjects retrieve an item,
they retrieve contextual features associated
with that item, and then they use these re-
trieved contextual features to cue for more
items. Insofar as items studied close in time
to one another have similar context vectors,
cuing with contextual information from
time t will facilitate recall of other items
studied in (temporal) proximity to time t.

Howard and Kahana (2002) point out re-
trieved context from the study phase (ti−1

from Equation 7.15) is a temporally sym-
metric cue: Assuming a steady rate of “con-
textual drift,” the context active at one point
in time should match the context from the
preceding time step just as well as it matches
the context from the following time step.
However, as clearly shown in Figure 7.3,
the CRP curve is asymmetric: Subjects are
more likely to recall in the forward direc-
tion than the backward direction. This can
be explained in terms of the idea that tI N

i
(the item-specific information that is in-
jected into the context vector when item i is

studied and when it is retrieved at test) is an
asymmetric cue: This information is present
in the context vector for items that were
studied after the retrieved item, but not for
items that were studied before the retrieved
item. Thus, cuing with this item-specific in-
formation at test biases recall in the forward
direction.

4.2. TCM in the Brain

Importantly, TCM is not meant to stand on
its own as a full-fledged model. Rather, it
provides an abstract blueprint for how mod-
els can account for serial-position and transi-
tion data in free recall. Given this blueprint,
a key challenge for computational models of
episodic memory is to determine how these
dynamics could be implemented in a neural
network.

The next part of this section shows how
neural network architectures that are ca-
pable of active maintenance can serve as
the “context vector” in models of long-term
memory. Traditionally, active maintenance
networks have been used to model per-
formance in short-term (working) memory
tasks (e.g., Botvinick & Plaut, 2006; Usher
& Cohen, 1999). A synthesis is proposed
whereby active maintenance systems serve
a dual role: They directly support perfor-
mance on short-term memory tasks, and
they also serve to contextualize episodic
memory (via associations that are formed
at study between the representation of the
item being studied and other representations
that are currently being maintained in active
memory). Finally, the roles of different brain
systems in implementing TCM dynamics are
discussed, with a particular focus on pre-
frontal cortex and entorhinal cortex.

4.2.1. architectures for active

maintenance

The previous discussion of TCM, indicates
that the context vector should have the fol-
lowing properties:

• When an item is studied, the context vec-
tor should be updated with information
relating to that item.
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• Information in the context vector needs
to persist across multiple items and pos-
sibly longer (but not indefinitely). This
persistent activity creates the “drift” dy-
namic whereby recently presented items
match the current context more than
less-recently presented items.

In the following paragraphs, two network ar-
chitectures are described that meet these cri-
teria. Both models were originally developed
to account for working memory data (e.g.,
recall of items from a short-term buffer).
The same active maintenance mechanisms
that allow these models to support working
memory performance also imbue the mod-
els with the requisite context-vector prop-
erties (i.e., item-specific updating and slow
drift over time).

4.2.1.1. The Usher and Cohen (1999) Lo-
calist Attractor Network. In this network,
when an item is presented, it triggers ac-
tivation in the corresponding unit of the at-
tractor network, which is then sustained (via
a self-connection in that unit) over an ex-
tended period of time. Multiple units can
be active at once, so the state of the net-
work at any one time reflects contributions
from multiple recently presented items. The
total amount of network activity is limited
by inhibitory connections between the units.
Because of these inhibitory interactions, ac-
tivating a new unit in the buffer reduces the
activation of other units in the buffer, even-
tually causing them to drop out entirely.
This dynamic causes the overall state of the
buffer to drift over time.

4.2.1.2. The O’Reilly and Frank (2006)
Prefrontal Network. Recently, O’Reilly and
Frank (2006; see also Frank, Loughry, and
O’Reilly 2001) developed a network archi-
tecture for active maintenance that is based
explicitly on the neural architecture of pre-
frontal cortex (PFC). The network con-
sists of multiple stripes (separate subregions
of PFC; Levitt et al., 1993; Pucak et al.,
1996), each of which is capable of actively
maintaining (via bistable neuronal activ-
ity; Durstewitz, Kelc, & Gunturkun, 1999;
Durstewitz, Seamans, & Sejnowski, 2000;
Fellous, Wang, & Lisman, 1998) informa-

tion about recently presented stimuli. Each
PFC stripe has a corresponding region of the
basal ganglia that controls when information
should be gated into or out of that stripe.
When a given stimulus is presented, infor-
mation about that stimulus will be gated into
some number of stripes and then actively
maintained (possibly overwriting informa-
tion about other stimuli that was previously
being maintained in those stripes). At any
given moment, the state of the PFC network
will reflect a combination of influences from
multiple recently presented items.

The previous list is not meant to be
exhaustive. On the contrary, almost any
network that is capable of maintaining in-
formation pertaining to multiple, recently
presented items has the requisite properties
to serve as the context vector.8

4.2.2. integrating active

maintenance and long-term memory

To date, only one model has been devel-
oped that uses an active maintenance net-
work to contextualize long-term memory.
This model (constructed by Polyn, Norman,
& Cohen, 2003) is discussed in the next sec-
tion, along with another free recall model
presented by Davelaar et al. (2005). The
Davelaar et al. (2005) model does not meet
the TCM criteria in its current form, but it
can easily be modified to meet these criteria.

4.2.2.1. The Polyn, Norman, and Cohen
(2003) Model. This model merges the CLS
cortical network and hippocampal network
with a simplified variant of the O’Reilly
and Frank (2006) PFC model. The “poste-
rior cortex” part of the network (which has
an architecture similar to the CLS cortical
model described earlier) represents the item
currently being presented; the PFC network
actively maintains features from multiple,

8 One other architecture worth mentioning in this re-
gard is the simple recurrent network (SRN; Elman,
1991). See Botvinick and Plaut (2006) for a discus-
sion of how SRNs can be used to model short-term
recall data, and see Howard and Kahana (2002) for
discussion of how SRNs can instantiate the TCM
contextual drift dynamic. For additional discussion
of models of active maintenance, see Chapter 15 in
this volume.
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recently presented items; and the hippocam-
pal model binds information in posterior
cortex to the actively maintained PFC pat-
tern. In this manner, the pattern of activity
in PFC (at the moment that an item is stud-
ied) serves to contextualize that item repre-
sentation. When an episodic memory (con-
sisting of an item representation in posterior
cortex and the associated PFC “context” rep-
resentation) is retrieved at test, the current
PFC representation is updated in two ways:
The retrieved PFC pattern from the study
phase is loaded directly into PFC, and the
retrieved item representation is used to up-
date PFC (in the exact same way that item
information is used to update PFC at study).
These two types of updating correspond di-
rectly to the two types of context-updating
used by TCM (as described earlier). Polyn
et al. (2003) showed that the model can
account for data on recall transitions and
other findings (see also Polyn, 2005), but
the model is still in an early phase of devel-
opment.

4.2.2.2. The Davelaar et al. (2005) Free
Recall Model. The goal of the Davelaar et
al. (2005) article was to address data show-
ing that recall from a short-term buffer and
recall from long-term memory both con-
tribute to free recall (e.g., the finding from
Carlesimo et al., 1996, that amnesics show
intact recall of the last few list items on an
immediate recall test, but not on a delayed
recall test; presumably, this occurs because
amnesics can rely on their intact short-term
buffer given immediate testing but not de-
layed testing; see Davelaar et al., 2005, for a
list of other relevant phenomena). To model
the contributions of short-term memory, the
Davelaar et al. (2005) model includes a vari-
ant of the Usher and Cohen (1999) localist
attractor network described earlier. How-
ever, instead of using states of this localist at-
tractor network to contextualize long-term
recall, the Davelaar et al. (2005) model con-
textualizes recall using a separate, special-
ized context layer that operationalizes con-
textual drift as a one-dimensional random
walk. States of the randomly drifting con-
text vector are episodically associated with
simultaneously active states of the localist

attractor network. At retrieval, items are
directly read out from the localist attrac-
tor network (to model short-term recall),
then the context vector is allowed to ran-
domly drift (as it did at study), cuing – as it
drifts – episodic recall of items that were as-
sociated with the currently active context
state. The context-updating mechanism
used by Davelaar et al. (2005) constitutes a
step backward from TCM: Because context-
updating is random, as opposed to being
driven by item-specific information (as in
TCM), the Davelaar et al. (2005) model
fails to provide a principled account of some
findings (e.g., the forward asymmetry in the
conditional response probability curve) that
are explained very naturally by TCM.9

According to the “dual role” hypothe-
sis outlined in this section, it seems possi-
ble that one could improve the fit of the
Davelaar et al. (2005) model to the data and
simultaneously simplify the model, by elim-
inating the (randomly drifting) context vec-
tor, and using the information maintained
in the short-term memory buffer to contex-
tualize long-term item memory. However,
additional simulation work is required to as-
sess whether this simplified model can ac-
count for all of the findings described in the
Davelaar et al. (2005) article as well as the
lag-recency findings described by Howard
and Kahana (2002).10 One major challenge
will be accounting for effects of distract-
ing mental activity on recall. Several stud-
ies have obtained recency and lag-recency
effects in continuous distractor paradigms,
where an involving secondary task (e.g.,
mental arithmetic) is interposed between
study trials (e.g., Howard & Kahana, 1999).
These findings suggest that the temporal
continuity of the context vector is pre-
served in the face of distraction. However,
there have been numerous demonstrations

9 To account for the forward asymmetry in the CRP
curve, Davelaar et al. (2005) add an extra parameter
to their model that directly imposes a forward bias
on the contextual random walk.

10 These ideas about integrating models of short-term
and long-term memory were spurred by discussions
at the 3rd Annual Context and Memory Symposium
in March 2005, in Philadelphia, PA.
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that distracting activity can reduce recall
of items from short-term (active) memory
to near-floor levels (e.g., Peterson & Peter-
son, 1959). To simultaneously explain these
findings, models of the sort being discussed
here (i.e., positing that the context vector
and short-term memory buffer are coex-
tensive) would have to posit that distrac-
tion degrades actively maintained represen-
tations, so they no longer support explicit
recovery of items from short-term memory.
However, so long as distraction does not
completely eradicate the contents of active
memory (i.e., so long as there is still some
carry-over of activity from previously stud-
ied items) the pattern of activity in active
memory should still be able to serve as a
drifting context vector that supports long-
term recency and lag-recency effects.11

4.2.3. relevant brain structures

As of now, there is still extensive debate in
the literature regarding which brain regions
contribute most strongly to the context vec-
tor. Given the well-accepted role of PFC
in active maintenance/working memory
(based on neurophysiological findings in ani-
mals, human imaging studies, and human le-
sion studies showing that patients with PFC
damage are selectively impaired in tests that
tap memory for context, e.g., free recall and
recency judgments; see Shimamura, 1994),
it stands to reason that PFC would play
an especially important role in establish-
ing the kinds of contextual drift required
by the TCM model. Furthermore, anatom-
ical studies have established that there are
several pathways connecting PFC and the
hippocampus (see, e.g., Ferino, Thierry,
& Glowinski, 1987; Goldman-Rakic, Sele-
mon, & Schwartz, 1984; Jay & Witter, 1991;
Morris, Pandya, & Petrides, 1999; Russchen,
Amaral, & Price, 1987). Many of these path-
ways feed into the EC before projecting into
the hippocampus proper. These pathways
would allow the hippocampus to bind ac-
tively maintained information in PFC (serv-

11 For additional discussion of the role of context in
short-term and long-term recall, see Burgess and
Hitch (2005).

ing as a context vector) with bottom-up ac-
tivity in posterior cortex (corresponding to
the currently presented stimulus).

For these reasons, the Polyn et al. (2003)
model makes an explicit commitment to
the idea that PFC is driving contextual
drift. However, not all recently developed
models have committed to this idea. The
most prominent contrary view comes from
Howard et al. (2005), who have argued that
EC has intrinsic maintenance properties that
allow it to serve as the TCM context vec-
tor (regardless of the input that it receives
from PFC). Howard et al. (2005) cite evi-
dence from Egorov et al. (2002), showing
that layer V of EC shows persistent neural
activity in the absence of bottom-up stim-
ulation and thus can serve as a “neural in-
tegrator” that combines information from
several recently presented stimuli. In sum-
mary, both the Polyn et al. (2003) model
and the Howard et al. (2005) model posit
that EC is involved in representing tempo-
ral context, but for different reasons: Ac-
cording to Polyn et al. (2003), EC is im-
portant because it serves as a conduit be-
tween PFC and the hippocampus, whereas
Howard et al. (2005) posit that EC is im-
portant because of its intrinsic capability
for active maintenance. At this point, the
most plausible view is that both accounts are
correct.12

5. Conclusions

Looking back on the past several decades,
modelers have made tremendous strides to-
ward understanding the mechanisms un-
derlying episodic memory. As discussed in
Section 3, abstract modelers have derived
mathematically principled accounts of some
of the most puzzling phenomena in epi-
sodic memory (e.g., how stimulus repetition

12 The previous discussion has focused on how PFC
and EC contribute to temporal targeting (i.e., selec-
tive retrieval of items from a particular temporal
context). For a model of how PFC contributes to
semantic targeting (i.e., organizing recall such that
semantically similar items are recalled together), see
Becker and Lim (2003).
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affects false recognition of similar lures).
There is an emerging consensus between bi-
ological and abstract models that both re-
call and familiarity can contribute to recog-
nition memory (although the factors that
determine how much recall contributes in
a given situation need to be described in
more detail). Another point of agreement
between abstract and biological models is
that interference between memory traces at
retrieval can cause forgetting. One remain-
ing issue is whether structural interference oc-
curs between memory traces during learning
(i.e., does acquiring new memories cause
weakening of existing traces), and – if it
occurs – how it affects behavioral memory
performance. Biological models typically are
subject to structural interference, but ab-
stract models that store memory traces sep-
arately (e.g., REM) do not suffer from struc-
tural interference.

Although abstract models of episodic
memory have been around for quite a while,
modelers have only recently started to apply
biologically based models to detailed pat-
terns of episodic memory data. The com-
bined influence of behavioral and neural
constraints has led to rapid evolution of
these biologically based models:

• As discussed in Section 2.1, there is now
widespread agreement among modelers
regarding how the hippocampus sup-
ports completion of missing pieces of
previously stored cortical patterns and
how pattern-separation mechanisms in
the hippocampus allow it to rapidly
memorize patterns without suffering
catastrophic interference. One of the
largest remaining challenges is under-
standing how the hippocampus man-
ages to flip between “modes” where
pattern separation predominates (to facil-
itate encoding) and modes where pattern
completion predominates (to facilitate
retrieval).

• With regard to modeling perirhinal con-
tributions to familiarity-based recogni-
tion, as discussed in Section 2.2, some
models of perirhinal familiarity (e.g., the

CLS cortical model) can be ruled out
based on capacity concerns. However,
there are several other models with no
obvious capacity problems that can fit
basic aspects of extant neurophysiolog-
ical data (e.g., decreased firing of some
perirhinal neurons with stimulus repe-
tition). More simulation work needs to
be done, and additional neurophysiologi-
cal and behavioral experiments need to
be run (e.g., looking at the context-
dependence of familiarity) to assess the
detailed fit of these remaining models
to experimental data on familiarity-based
recognition.

• Finally, as discussed in Section 4, model-
ers have started to explore the idea that
the pattern of actively maintained infor-
mation in prefrontal cortex can serve as
a drifting context vector. This actively
maintained information is fed into en-
torhinal cortex (which may have intrin-
sic maintenance properties of its own),
where it is bound together (by the hip-
pocampus) with information pertaining
to the currently presented item. This dy-
namic allows neural models to mimic the
functioning of abstract contextual-drift
models like TCM (Howard & Kahana,
2002), which (in turn) should allow the
models to explain detailed patterns of re-
cency and lag-recency data from free re-
call experiments.

The next challenge for biologically based
models is to assemble these pieces into a
unified theory. Even though there is gen-
eral agreement about how this “unified the-
ory” should be structured, there are an enor-
mous number of critical details that need
to be filled in. Some of these missing de-
tails were mentioned in the chapter (e.g.,
decision-making mechanisms for recogni-
tion memory) but there are innumerable
other details that were not explicitly men-
tioned (e.g., what rules govern when infor-
mation is gated into and out of active mem-
ory; see O’Reilly & Frank, 2006). In the pro-
cess of working out these details, it will al-
most certainly become necessary to consider
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the contributions of other brain structures
(e.g., the basal ganglia) that were not dis-
cussed at length in this chapter. Also, the
models discussed in this chapter contain ma-
jor simplifications. In particular, most of
the models discussed here use rate-coded
neurons (instead of spiking neurons) and
static input patterns (instead of temporal
sequences). Achieving a complete under-
standing of episodic memory will almost cer-
tainly require consideration of spiking neu-
rons, spike-time-dependent learning rules,
and sequence memory (for contrasting per-
spectives on how these factors interact, see
Mehta, Lee, & Wilson, 2002, and Jensen &
Lisman, 2005).

Any model that combines hippocampal,
perirhinal, and prefrontal networks is go-
ing to be complex. The main factor that
makes this complexity manageable is the
sheer number of constraints that can be ap-
plied to biologically based models: In addi-
tion to constraints arising from behavioral
data, we have discussed neuroanatomical
constraints (e.g., regarding the connectiv-
ity of hippocampal subregions), neurophys-
iological constraints (e.g., how individual
peririhinal neurons are affected by stimulus
familiarity), neuropsychological constraints
(e.g., how hippocampal lesions affect dis-
crimination of studied items and similar
lures), and functional constraints (e.g., en-
suring that models of familiarity discrimina-
tion have adequate capacity when they are
given a “brain-sized” number of neurons).
In the future, neuroimaging data will also
serve as an important source of model con-
straints (see, e.g., Deco, Rolls, & Horwitz,
2004, and Sohn et al., 2005, for examples
of how models can be used to address neu-
roimaging data).

Another important factor with biologi-
cal models is the models’ ability to create
crosstalk between different types of con-
straints. For example, adjusting the model
to better fit neurophysiological data may al-
ter the behavioral predictions generated by
the model, and adjusting the model to fit
both the neurophysiological data and the be-
havioral data may alter the overall capacity

of the network for storing patterns. Even
though there may be multiple, qualitatively
different ways to explain these different
types of findings in isolation, it seems un-
likely that there will also be multiple dif-
ferent ways to explain all of these different
types of findings taken together.

Finally, insofar as the brain systems in-
volved in episodic memory also contribute
to other forms of learning, it should be pos-
sible to use data from these other domains
to constrain the episodic memory models
discussed in this chapter. In particular, as
mentioned in Section 2, the cortical net-
work involved in familiarity discrimination
also plays a key role in extracting the sta-
tistical structure of the environment and
thus should contribute strongly to seman-
tic memory (see Chapter 8 in this volume),
categorization (see Chapter 9 in this vol-
ume), and forms of implicit learning (see
Chapter 14 in this volume). Raaijmakers and
Shiffrin (2002) discuss how it is possible to
apply REM to implicit memory and seman-
tic memory data. Also, several researchers
have argued that the hippocampus plays a
key role in training up semantic memory
by playing back new information to cortex
in an “off-line” fashion (e.g., during sleep);
for models of this consolidation process, see
Alvarez and Squire (1994) and Meeter and
Murre (in press).

Medial temporal lobe structures involved
in episodic memory have also been impli-
cated in simple incremental learning tasks
that have been used in animals and humans
(e.g., discrimination learning and condition-
ing). For a discussion of ways in which the
CLS model can be applied to discrimina-
tion learning and conditioning, see O’Reilly
and Rudy (2001); see also Gluck, Meeter,
and Myers (2003) and Meeter et al. (2005)
for additional discussion of convergences
between episodic memory, discrimination
learning, and conditioning. Lastly, the hip-
pocampus and surrounding cortical struc-
tures play a key role in spatial learning; for a
discussion of models that relate spatial learn-
ing and episodic memory, see Burgess et al.
(2001).
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In summary, episodic memory model-
ing has a long tradition of trying to build
comprehensive models that can simultane-
ously account for multiple recall and recog-
nition findings. So long as future model-
ing work carries on with this tradition,
and modelers continue to apply all avail-
able constraints to theory development, we
should continue to see steady progress to-
ward a complete, mechanistic account of
how the brain stores and retrieves episodic
memories.

Appendix: CLS Model Details

This appendix (adapted from Appendix A
and Appendix B of Norman & O’Reilly,
2003) describes the computational details
of the Norman and O’Reilly CLS model
simulations. See Norman and O’Reilly
(2003) for additional details and refere-
nces.

Pseudocode

The pseudocode for the algorithm is given
here, showing exactly how the pieces of the
algorithm described in more detail in the
subsequent sections fit together. The algo-
rithm is identical to the Leabra algorithm
described in O’Reilly and Munakata (2000;
O’Reilly, 1998), except the error driven-
learning component of the Leabra algorithm
was not used here.

Outer loop: Iterate over events (trials)
within an epoch. For each event, let the pat-
tern of network activity settle across multi-
ple cycles (time steps) of updating:

1. At start of settling, for all units:
(a) Initialize all state variables (activa-

tion, Vm etc).
(b) Apply external patterns.

2. During each cycle of settling, for all non-
clamped units:
(a) Compute excitatory net input

(ge(t) or η j , Equation 7.18).
(b) Compute k-Winners-Take-All inhi-

bition for each layer, based on g �
i

(Equation 7.21):

i. Sort units into two groups based
on g �

i : top k and remaining k+ 1
to n.

ii. Set inhib conductance gi between
g �

k and g �
k+1 (Equation 7.20).

(c) Compute point-neuron activation
combining excitatory input and in-
hibition (Equation 7.16).

3. Update the weights (based on linear cur-
rent weight values), for all connections:
(a) Compute Hebbian weight changes

(Equation 7.22).
(b) Increment the weights and ap-

ply contrast-enhancement (Equa-
tion 7.24).

Point Neuron Activation Function

Leabra uses a point neuron activation func-
tion that models the electrophysiological
properties of real neurons, while simplify-
ing their geometry to a single point.

The membrane potential Vm is updated
as a function of ionic conductances g with
reversal (driving) potentials E as follows:

dVm(t)
dt

= τ
∑

c

gc(t)gc(Ec − Vm(t))

(7.16)

with 3 channels (c) corresponding to: e, ex-
citatory input; l , leak current; and i , in-
hibitory input. Following electrophysiolog-
ical convention, the overall conductance is
decomposed into a time-varying compo-
nent, gc(t), computed as a function of the
dynamic state of the network and a constant,
gc , that controls the relative influence of the
different conductances. The equilibrium po-
tential can be written in a simplified form by
setting the excitatory driving potential (Ee)
to 1 and the leak and inhibitory driving po-
tentials (El and Ei ) of 0:

V∞
m = gege

ge ge + gl gl + gi g i
, (7.17)

which shows that the neuron is computing a
balance between excitation and the oppos-
ing forces of leak and inhibition.
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The excitatory net input/conductance
ge(t) or η j is computed as the propor-
tion of open excitatory channels as a func-
tion of sending activations times the weight
values:

η j = ge(t) = 1
α
〈xiwi j 〉 = 1

α

(
1
n

∑
i

xiwi j

)
,

(7.18)

where α is a normalizing term based on
the expected average activity of the sending
units, and n is the total number of sending
units.

The inhibitory conductance is computed
via the k-Winners-Take-All (kWTA) func-
tion described in the next section, and leak
is a constant.

Activation communicated to other cells
(yj ) is a thresholded (�) sigmoidal function
of the membrane potential with gain param-
eter γ :

yj (t) = γ [Vm(t)−�]+
(γ [Vm(t)−�]+ + 1)

(7.19)

where [x]+ is a threshold function that re-
turns 0 if x < 0 and x if x > 0. This sharply
thresholded function is convolved with a
Gaussian noise kernel (σ = .005), which re-
flects the intrinsic processing noise of bio-
logical neurons.

k-Winners-Take-All Inhibition

The CLS model uses a kWTA function to
achieve sparse distributed representations
(c.f., Minai & Levy, 1994). A uniform level
of inhibitory current for all units in the layer
is computed as follows:

gi = g �
k+1 + q(g �

k − g �
k+1) (7.20)

where 0 < q < 1 is a parameter for setting
the inhibition between the upper bound
of g �

k and the lower bound of g �
k+1. These

boundary inhibition values are computed as
a function of the level of inhibition necessary
to keep a unit right at threshold:

g �
i = g ∗e ḡ e(Ee −�)+ gl ḡ l(El −�)

�− Ei
(7.21)

where g ∗e is the excitatory net input.
In the basic version of the kWTA function

used here, g �
k and g �

k+1 are set to the thresh-
old inhibition values for the k th and k+ 1st

most excited units, respectively. Thus, in-
hibition is placed exactly to allow k units
to be above threshold and the remainder
below threshold. For this version, the q
parameter is set to .25, allowing the k th

unit to be sufficiently above the inhibitory
threshold.

Hebbian Learning

The simplest form of Hebbian learning ad-
justs the weights in proportion to the prod-
uct of the sending (xi ) and receiving (yj )
unit activations: �wi j = xi yj . The weight
vector is dominated by the principal eigen-
vector of the pairwise correlation matrix
of the input, but it also grows without
bound. Leabra uses essentially the same
learning rule used in competitive learning
or mixtures-of-Gaussians (Grossberg, 1976;
Nowlan, 1990; Rumelhart & Zipser, 1986),
which can be seen as a variant of the Oja
normalization (Oja, 1982):

�hebbwi j = xi yj − yjwi j = yj (xi − wi j )

(7.22)

Rumelhart and Zipser (1986) and O’Reilly
and Munakata (2000) showed that, when
activations are interpreted as probabilities,
this equation converges on the conditional
probability that the sender is active given
that the receiver is active.

To renormalize Hebbian learning for
sparse input activations, Equation 7.22 can
be rewritten as follows:

�wi j = ε[yj xi (m− wi j )

+ yj (1− xi )(0− wi j )] (7.23)

where an m value of 1 gives Equation 7.22,
whereas a larger value can ensure that
the weight value between uncorrelated but
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Table A7.1: Sizes of different subregions
and their activity levels in the model

Area Units Activity (pct)a

EC 240 10.0
DG 1600 1.0
CA3 480 4.0
CA1 640 10.0

a pct = percent.

sparsely active units is around .5. In these
simulations, m = .5

αm
and αm = .5− qm(.5−

α), where α is the sending layer’s expected
activation level, and qm (called savg cor in
the simulator) is the extent to which this
sending layer’s average activation is fully cor-
rected for (qm = 1 gives full correction, and
qm = 0 yields no correction).

Weight Contrast Enhancement

One limitation of the Hebbian learning al-
gorithm is that the weights linearly reflect
the strength of the conditional probability.
This linearity can limit the network’s abil-
ity to focus on only the strongest correla-
tions, while ignoring weaker ones. To rem-
edy this limitation, a contrast enhancement
function is used that magnifies the stronger
weights and shrinks the smaller ones in a
parametric, continuous fashion. This con-
trast enhancement is achieved by passing the
linear weight values computed by the learn-
ing rule through a sigmoidal nonlinearity of
the following form:

ŵi j = 1

1+
(

wi j

θ(1−wi j )

)−γ
(7.24)

where ŵi j is the contrast-enhanced weight
value, and the sigmoidal function is parame-
terized by an offset θ and a gain γ (standard
default values of 1.25 and 6, respectively,
are used here).

Note that contrast-enhanced weight val-
ues ŵi j are used for activation propagation,

but weight adjustments are applied to the
linear weight values wi j .

Cortical and Hippocampal
Model Details

The cortical model is comprised of a 240-
unit input layer (with 10% activity) that
projects (in a feedforward fashion) to a
“perirhinal” layer with 10% activity. Each
perirhinal unit receives connections from
25% of the input units. The number of units
in the perirhinal layer was set to 1,920 in
some simulations and 240 in other simula-
tions.

Regarding the hippocampal model, Ta-
ble A7.1 shows the sizes of different hip-
pocampal subregions and their activity levels
in the model. These activity levels are en-
forced by setting appropriate k parameters
in the Leabra kWTA inhibition function. As
discussed in the main text, activity is much
more sparse in DG and CA3 than in EC.

Table A7.2 shows the properties of the
four modifiable projections in the hip-
pocampal model. For each simulated par-
ticipant, connection weights in these pro-
jections are set to values randomly sampled
from a uniform distribution with mean and
variance (range) as specified in the table.
The “scale” factor listed in the table shows

Table A7.2: Properties of modifiable
projections in the hippocampal model:
Mean initial weight strength, variance
(Var) of the Initial weight distribution,
Scaling of this projection relative to other
projections, and percent connectivity
(Con)

Projection Mean Var Scale % Con

EC to DG, CA3 .5 .25 1 25
(perforant path)

DG to CA3 .9 .01 25 4
(mossy fiber)

CA3 recurrent .5 .25 1 100
CA3 to CA1 .5 .25 1 100

(Schaffer)
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how influential this projection is, relative
to other projections coming into the layer,
and “percent connectivity” specifies the per-
centage of units in the sending layer that
are connected to each unit in the receiv-
ing layer. Relative to the perforant path, the
mossy fiber pathway is sparse (i.e., each CA3
neuron receives a much smaller number of
mossy fiber synapses than perforant path
synapses) and strong (i.e., a given mossy
fiber synapse has a much larger impact on
CA3 unit activation than a given perforant
path synapse). The CA3 recurrents and the
Schaffer collaterals projecting from CA3 to
CA1 are relatively diffuse, so that each CA3
neuron and each CA1 neuron receive a large
number of inputs sampled from the entire
CA3 population.

The connections linking EC in to CA1
and from CA1 to EC out are not modi-
fied in the course of the simulated memory
experiment. Rather, these connections are
pretrained to form an invertible mapping,
whereby the CA1 representation resulting
from a given EC in pattern is capable of re-
creating that same pattern on EC out. CA1
is arranged into eight columns (consisting of
80 units apiece); each column receives input
from three slots in EC in and projects back
to the corresponding three slots in EC out.
See O’Reilly and Rudy (2001) for a discus-
sion of why CA1 is structured in columns.

Lastly, the model incorporates the claim,
set forth by Michael Hasselmo and col-
leagues, that the hippocampus has two func-
tional “modes”: an encoding mode, where
CA1 activity is primarily driven by EC in,
and a retrieval mode, where CA1 activity is
primarily driven by stored memory traces in
CA3 (e.g., Hasselmo & Wyble, 1997). To
instantiate this hypothesis, the scaling fac-
tor for the EC in to CA1 projection was set
to a large value (6) at study, and the scaling
factor was set to zero at test.
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CHAPTER 8

Computational Models of Semantic Memory

1. Introduction

Consider the predicament of a young infant
recently arrived in the world and trying to
make sense of it. She has some resources at
her disposal: sensory information about her
environment, the ability to act on it, and
in most cases, a surrounding linguistic envi-
ronment, family, and culture that can help
to teach her what she needs to know. Never-
theless, the task is daunting. Suppose on one
occasion that daddy gestures out the win-
dow and says, “Look, a bunny!” To what is he
referring? The field of green? The tall struc-
tures dotting the horizon? The brownish
object streaking rapidly along the ground?
Later in the evening, mommy repeats the
word, this time gesturing toward a white
contour in a picture book – it is not mov-
ing, it is not brown, it is two-dimensional.
At bedtime big brother says, “Here’s your
bunny,” this time handing her a soft pink
fuzzy object. What on earth could they all
be talking about!

And yet, before she turns 10, she will
know that the word “bunny” refers to a par-
ticular animal with long ears and a fluffy

little tail, and what’s more, she will know
that bunnies have blood and bones inside;
that they can reproduce, grow, and die; that
they can feel pain and get hungry; that they
are warm to the touch; that they live in holes
in the ground; and that some people believe
it brings good luck to wear a bunny-foot on
a chain. When she gets a new bunny rab-
bit as a pet, she will be able to infer that
all of these things are true, even though she
has never before encountered this particu-
lar bunny; and when she brings her new
pet to show-and-tell, she will be able to
communicate all of these facts to her class-
mates simply by talking. And this knowledge
about bunny rabbits constitutes a tiny frac-
tion of the general factual world-knowledge
she will have accumulated. Understanding
the basis of these human abilities – to rec-
ognize, comprehend, and make inferences
about objects and events in the world, and to
comprehend and produce statements about
them – is the goal of research in semantic
memory.

Semantic memory is memory for mean-
ings. In some disciplines (e.g., linguistics),
the word semantics refers exclusively to
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the meanings of words and sentences. In
cognitive science, however, the term typi-
cally encompasses knowledge of any kind of
meaning, linguistic or nonlinguistic, includ-
ing knowledge about the meanings of words,
sentences, objects, and events, as well as
general facts (Tulving, 1972). Accordingly,
the terms “semantic memory” and “con-
ceptual knowledge” are often used inter-
changeably in the literature. Semantic mem-
ory is usually differentiated from episodic
memory (long-term declarative memory for
particular episodes that are firmly rooted
in a particular time and place; see Chap-
ter 7 in this volume), procedural memory
(long-term nondeclarative memory for well-
learned action sequences; see Chapters 13
and 14 in this volume), and working mem-
ory (short-term memory for retention and
manipulation of task-relevant information;
see Chapter 15 in this volume).

Semantic abilities are central to a broad
swath of cognitive science, including lan-
guage comprehension and production, ob-
ject recognition, categorization, induction
and inference, and reasoning. Each of these
topics constitutes a domain of study in its
own right, and many are covered in other
chapters in this Handbook (see Chapter 9 on
concepts and categorization, Chapter 11
on induction and inference, and Chapter 3
on Bayesian models). This chapter focuses
on three principal questions motivating re-
search in semantic memory: How do we
come to know which items and events in
the environment should be treated as “the
same kind of thing” for purposes of commu-
nication, action, and induction; how do we
learn to map language onto these kinds; and
how are these cognitive abilities subserved
by neural processes?

These questions have, of course, been
the subject of philosophical inquiry for cen-
turies, but the application of computational
methods has considerably advanced our un-
derstanding of the cognitive and neural bases
of semantic abilities. Indeed, semantic mem-
ory was the target of some of the earliest
computer simulation work in cognitive sci-
ence, and much contemporary research in
the domain can be fruitfully viewed as a re-

action to these early ideas. The next section
of the chapter thus provides a brief overview
of two theoretical frameworks that first
came to prominence in the 1970s: spread-
ing activation theories based on Collins
and Quillian’s (1969) influential computer
model, and prototype theories deriving from
the work of Eleanor Rosch (Rosch, 1978;
Rosch & Mervis, 1975) and others. A con-
sideration of the strengths and limitations
of these basic ideas will highlight the most
pressing questions guiding current research
in semantic memory. The remaining sec-
tions then follow three parallel strands of
modeling research that are beginning to of-
fer leverage on this issues. Section 3 traces
developments spurred by Hinton’s (1981)
Parallel Distributed Processing (PDP) model
of semantics, culminating in the general ap-
proach to semantic cognition recently laid
out by Rogers and McClelland (2004). Sec-
tion 4 addresses how sensitivity to tempo-
ral structure in language and experience can
shape conceptual representations, following
a thread of research that begins with Elman’s
(1990) seminal work and culminates in La-
tent Semantic Analysis (LSA) and related
approaches (Burgess & Lund, 1997; Lan-
dauer & Dumais, 1997; Steyvers, Griffiths,
& Dennis, 2006). Section 5 considers models
targeted at understanding the neural basis of
semantic abilities.

2. Hierarchies and Prototypes

One of the earliest implemented computer
models in cognitive science was the hierar-
chical spreading-activation model of seman-
tic memory described by Collins and Quil-
lian (1969). The model was predicated on
the notion that semantic memory consists
of a vast set of stored simple propositions
(e.g., “cats have fur,” “canaries can sing,”
and so on). Under the rules of logical in-
ference, such a system of propositions can
support new deductive inferences via the
syllogism; for instance, given the proposi-
tions “Socrates is a man” and “all men are
mortal,” it is possible to infer that Socrates
is mortal without requiring storage of a third
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proposition. Collins and Quillian’s model
effectively used the syllogism as a basis
for organizing propositional knowledge in
memory. In their model, concepts (mental
representations of categories) are stored as
nodes in a network, and predicates (spec-
ifying relationships between concepts) are
stored as labeled links between nodes. Sim-
ple propositional beliefs are represented by
linking two nodes with a particular predi-
cate. For example, the belief that a robin is
a kind of bird is represented by connecting
the nodes robin and bird with a predicate
that specifies class-inclusion (an ISA link, as
in “a robin is a bird”); whereas the belief
that birds can fly is represented by connect-
ing the nodes bird and fly with a link labeled
can, and so on.

The authors observed that, if concepts
at different levels of specificity were linked
with ISA predicates, the system could pro-
vide an economical means of knowledge
storage and generalization. For instance, the
knowledge that a canary is a kind of bird
is represented by connecting the node for
canary to the node for bird with an ISA link;
knowledge that birds are animals is stored by
connecting the bird node to the animal node,
and so on. To make inferences about the
properties of a given concept such as canary,
the model first retrieves all of the predi-
cates stored directly with the correspond-
ing node (e.g., can sing); but the search pro-
cess then moves upward along the ISA links
and searches properties at the next node, so
that the predicates attached to more inclu-
sive concepts also get attributed to the probe
concept. For canary, activation first searches
the bird node, supporting the inference that
the canary can fly, and then the animal node,
supporting the inference that the canary can
move.

In addition to economy of storage, this
system provided a simple mechanism of
knowledge generalization; for example, to
store the fact that all birds have a spleen,
it is sufficient to create a node for spleen
and connect it to the bird node with a
link labeled has. The retrieval process will
then ensure that has a spleen generalizes to
all of the individual bird concepts residing

beneath the bird node in the hierarchy. Sim-
ilarly, if the system is “told” that there is
something called a “Xxyzzyx” that is a kind
of bird, it can store this information by cre-
ating a new node for Xxyzzyx and attaching
it to the bird node. The retrieval mechanism
will then ensure that all properties true of
birds are attributed to the Xxyzzyx.

Early empirical assessments of the model
appeared to lend some support to the notion
that concepts were organized hierarchically
in memory. Specifically, Collins and Quil-
lian (1969) showed that the time taken to
verify the truth of written propositions var-
ied linearly with the number of nodes tra-
versed in the hierarchy. Participants were
fastest to verify propositions like “a canary
can sing,” which required searching a sin-
gle node (i.e., canary), and slower to ver-
ify propositions like “a canary has skin,”
which required searching three nodes in se-
ries (first canary, then bird, then animal).
Later studies, however, seriously challenged
the model as originally formulated, show-
ing for instance that property- and category-
verification times vary systematically with
the prototypicality of the item probed, so
that participants are faster to decide that
a robin (a typical bird) has feathers than
that a penguin (an atypical bird) has feath-
ers. Because the nodes in the network were
cast as noncompositional primitives, there
was no way to represent “typicality” in
the original model, and no process that
would permit typicality to influence judg-
ment speed. Moreover, the influence of typ-
icality on property decision times was suf-
ficiently strong as to produce results that
directly contradicted the Collins and Quil-
lian model. For example, participants were
faster to decide that a chicken is an animal
than that it is a bird, even though chicken and
bird must be closer together in the hierarchy
(Rips, Shoben, & Smith, 1973).

These and other challenges led Collins
and Loftus (1975) to elaborate the frame-
work. Instead of a search process that begins
at the bottom of the hierarchy and moves
upward through class-inclusion links, the
authors proposed a search mechanism by
which the “activation” of a probe concept
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such as canary would “spread out” along
all outgoing links, activating other nodes re-
lated to the probe, which in turn could pass
activation via their own links. In this spread-
ing activation framework, the strict hierar-
chical organization of the original model was
abandoned, so that direct links could be es-
tablished between any pair of concepts; and
the authors further suggested that links be-
tween concept nodes could vary in their
“strength,” that is, the speed with which
the spreading activation process could move
from one node to the next. On this account,
people are faster to retrieve the proper-
ties of typical items because these are more
strongly connected to more general concepts
than are less typical items; and the system
can rapidly determine that a chicken is an
animal by storing a direct link between the
corresponding nodes, rather than having to
“deduce” that this is true by allowing acti-
vation to spread to animal via bird. These
elaborations were, however, purchased at
the cost of computational simplicity. One
appeal of the original model was its spec-
ification of a search process in sufficient
detail that it could be programmed on a
computer. This precision and simplicity de-
pended on the strict hierarchical organiza-
tion of concepts proposed by Collins and
Quillian (1969). When all nodes can po-
tentially be connected via links of varying
strengths, it is not clear how to limit the
search process – the spread of activation
through the network – so as to retrieve only
those properties true of the probe concept.
For instance, if the proposition “all bikes
have wheels” is stored by linking the nodes
for bike and wheel, and the proposition “all
wheels are round” is stored by linking wheel
and round, how does the network avoid ac-
tivating the predicate is round when probed
with the concept bike?

A second limitation of the spreading-
activation theory is that it was not clear
how the propositional information encoded
in the network should be “linked” to per-
ceptual and motor systems. Spreading-
activation theories seem intuitive when they
are applied to purely propositional knowl-
edge, that is, when the nodes in the network

are understood as corresponding to individ-
ual words, and the links to individual predi-
cates, so that the entire system of knowledge
may be accurately characterized as a system
of propositions. Under such a scheme, there
are few questions about which concepts –
which nodes and links – should inhabit the
network. Very simply, each node and link
corresponds to a word in the language, so
that the contents of the network are de-
termined by the lexicon, and the structure
of the network represents beliefs that can
be explicitly stated by propositions (e.g.,
“all birds have feathers”). And such a rep-
resentational scheme seems most plausible
when considering experiments of the kind
conducted by Collins and Quillian (1969),
where participants must make judgments
about the truth of written propositions.
When the stimuli to be comprehended are
perceptual representations of objects, things
get more complicated, because it is less clear
which nodes in the network should be “acti-
vated” by a given stimulus. A particular dog
might belong equally to the classes collie,
dog, pet, animal, and living thing, so which
of these nodes should a visual depiction of
the dog activate? More generally, it is un-
clear in propositional spreading-activation
models how the nodes and links of the net-
work relate to or communicate with the sen-
sory and motor systems that provide input to
and code output from the semantic system.

2.1. Prototype and Similarity-Based
Approaches

Around the same time, there was intensive
research focusing directly on the question
of how objects are categorized for purposes
of naming and induction (see Chapter 9
on concepts and categorization and Chap-
ter 11 on induction and inference in this
volume). Throughout the 1950s and 1960s,
researchers appear to have assumed that
membership in everyday categories could
be determined with reference to necessary
and sufficient criteria (Bruner, Goodnow, &
Austin, 1956). Studies of category learning
thus focused on understanding how people
come to know which of an item’s properties
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are necessary and sufficient for membership
in some category, and such studies typically
employed simple stimuli with well-defined
properties organized into artificial categories
according to some rule. For instance, partic-
ipants might be shown a series of stimuli
varying in shape, color, and size, arbitrarily
grouped by the experimenter into categories
on the basis of one or more of these dimen-
sions. The participant’s goal was to deter-
mine the rule governing which items would
fall into which categories, and the aim of
the research was to determine which strate-
gies participants employed to determine the
rule, which kinds of rules were easy or dif-
ficult to learn, how easily participants could
switch from one rule to another, and so on.

In the early 1970s, Rosch (Rosch &
Mervis, 1975; Rosch, Simpson, & Miller,
1976), citing Wittgenstein (1953), observed
that most everyday categories are not, in
fact, defined by necessary and sufficient cri-
teria and that, instead, members of cate-
gories were best understood as sharing a set
of family resemblances. For instance, most
dogs tend to be hairy, four-legged friendly
domesticated animals, even though none of
these properties constitutes necessary or suf-
ficient grounds for concluding that some-
thing is a dog. Rosch further showed that
the cognitive processes by which we catego-
rize and make inferences about names and
properties of objects appear to be influenced
by family resemblance relationships (Mervis
& Rosch, 1981; Rosch, 1978; Rosch et al.,
1976). For instance:

1. Members of a given category can vary
considerably in their typicality or repre-
sentativeness, and members of a given
language community show remarkable
consistency in their judgments of typ-
icality. For instance, people reliably
judge robins to be good examples of the
category bird, but judge penguins to be
relatively poor examples.

2. Judgments of typicality appear to reflect
the attribute structure of the environ-
ment. Items judged to be good or typical
members have many properties in com-
mon with other category members and

few distinguishing properties, whereas
the reverse is true for items judged to
be atypical.

3. Category typicality influences the speed
and accuracy with which objects can
be named and categorized: As previ-
ously mentioned, people are generally
faster and more accurate to name and
to categorize typical items than atypical
items.

From these and other observations, Rosch
proposed that semantic/conceptual knowl-
edge about properties of common objects is
stored in a set of category prototypes, that is,
summary representations of categories that
specify the properties most likely to be ob-
served in category members. To retrieve in-
formation about a visually presented stimu-
lus, the item is categorized by comparing its
observed properties to those of stored cat-
egory prototypes. The item is assigned to
the prototype with the best match, and any
properties stored with the matching proto-
type (including, for instance, its name, as
well as other characteristics that may not
be directly apparent in the stimulus itself)
are then attributed to the object. On this
view, category membership depends on sim-
ilarity to a stored prototype and is therefore
graded rather than all-or-nothing. People are
faster to recognize typical category mem-
bers because, by definition, they share more
properties with their category prototype, so
that the matching process completes more
rapidly.

Rosch herself never proposed a computa-
tional implementation of prototype theory
(Rosch, 1978). Her ideas did, however, spur
a considerable volume of research into the
computational mechanisms of categoriza-
tion, which are the topic of another chap-
ter (see Chapter 9 in this volume). For cur-
rent purposes, it is sufficient to note that
the similarity-based models deriving from
Rosch’s approach offer a quite different ex-
planation of human semantic cognition than
do spreading-activation theories. Specifi-
cally, generalization and induction occur as
a consequence of similarity-based activation
of stored representations in memory and
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not through a process of implicit deduction
over stored propositions; representations in
memory are not linked together in a proposi-
tional processing hierarchy or network; and
items are treated as “the same kind of thing”
when they activate the same prototype or
similar sets of instance traces and not be-
cause they connect to the same node in a
processing hierarchy.

The two approaches have complemen-
tary strengths and weaknesses. Spreading
activation models, because they propose
that category representations are organized
within a processing hierarchy, are econom-
ical and provide an explicit mechanism for
induction across categories at different lev-
els of specificity. They do not, however, of-
fer much insight into the basis of graded
category membership, typicality effects, and
so on. Similarity-based theories provide in-
tuitive accounts of such phenomena, but
raise questions about the representation of
concepts at different levels of specificity.
Consider, for instance, the knowledge that
both dogs and cats have eyes, DNA, the
ability to move, and so on. In spreading-
activation theories, such information can be
stored just once with the animal represen-
tation and then retrieved for particular indi-
vidual animals through the spreading activa-
tion process. In similarity-based theories, it
is not clear where such information resides.
If it is stored separately with each category
or instance representation, this raises ques-
tions of economy and capacity. On the other
hand, if separate prototypes are stored for
categories at different levels of specificity –
one each for animal, bird and penguin, say –
it is not clear whether or how these different
levels of representation constrain each other.
If, for example, the bird prototype contains
the attribute can fly but the penguin repre-
sentation contains the attribute cannot fly,
how does the system “know” which attribu-
tion to make?

2.2. Challenges for Current Theories

It may seem that such issues are best
resolved through some combination of
spreading-activation and similarity-based

approaches, and indeed Rosch (Rosch et al.,
1976) and others (Jolicoeur, Gluck, & Koss-
lyn, 1984) do not seem to view the two
frameworks as incompatible. Theoretical
developments in semantic cognition have
not, however, tended to move in this direc-
tion, partly because of serious critical reac-
tions to similarity-based approaches raised
in the 1980s that continue to shape re-
search today. Five core issues arising from
this criticism are summarized in the fol-
lowing section; the remainder of this chap-
ter will consider how computational mod-
els offer insight as to how to resolve these
issues.

2.2.1. category coherence

Some sets of items seem to form “good”
or natural groupings, whereas others do not
(Murphy & Medin, 1985). For instance, the
category dog encompasses a variety of items
that seem intuitively to “go together” or to
cohere, whereas a category such as grue –
things that are currently blue but will turn
green after the year 2010 – does not. More-
over, the category dog supports induction; if
you learn that a particular dog, say Lassie,
has a certain kind of protein in her blood,
you are likely to conclude that all or most
other dogs have the same protein in their
blood. Categories like grue do not support
induction. What makes some categories, like
dog, coherent and useful for induction, and
other perfectly well-defined sets of items in-
coherent and useless? Put differently, how
does the semantic system “know” for which
groupings of items it should form a category
representation – a prototype or a node in the
network – and which not? One possibility is
that the system stores a category represen-
tation for each word (or at least each noun)
in the lexicon; but this solution just pushes
the question a step back: Why should the
language include a word for the concept dog
but not for the concept grue? Any theory
suggesting that semantic abilities depend on
a mediating categorization process without
specifying how the system “knows” which
category representations should be created
has, in some sense, assumed what it is trying
to explain.
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2.2.2. feature selection

Similarity-based models propose that re-
trieval of semantic information depends on
the degree of similarity between a probe
stimulus and a set of stored representations.
Any such assessment must specify which
probe features or characteristics “count” to-
ward the measure of similarity and how dif-
ferent features are weighted in the determi-
nation. As Murphy and Medin (1985) have
noted, a zebra and a barber pole might be
categorized as “the same kind of thing” if
the property has stripes were given sufficient
weight.

It is an empirical fact that people do se-
lectively weight different properties in se-
mantic tasks. In the first of many such ex-
periments, Landau, Smith, and Jones (1988)
showed children a variety of blocks vary-
ing in shape, size, and texture. After la-
beling one of the blocks by pointing at it
and saying, “See this, this is a dax,” the au-
thors asked children if they could find an-
other “dax.” Children could have used any
of the salient features to generalize the new
word; but the majority of children selected
another object of a similar shape, largely ig-
noring its size and texture. Thus, the au-
thors proposed that children are subject to
a “shape bias” when learning new words,
that is, they assume that the word encom-
passes items with similar shapes or, equiv-
alently, they weight shape heavily when
constructing a representation of the word’s
meaning.

Moreover, although some properties are
undoubtedly inherently more salient than
others, this cannot be the sole explanation
of such biases because people will selec-
tively weight the very same properties dif-
ferently for items in different conceptual
domains. For instance, Jones, Smith, and
Landau (1991) have shown that the shape-
bias can be attenuated simply by sticking a
pair of eyes on the various blocks. Specifi-
cally, children were much more likely to use
common texture as a basis for generalizing
a new name when the blocks had eyes than
when they did not, suggesting that they be-
lieve texture to be more “important” for cat-
egorizing animals (most of which have eyes)

than nonanimals. Such domain-specific at-
tribute weighting poses an interesting puz-
zle for similarity-based models: One cannot
compute similarity to stored representations
and thus cannot categorize without knowing
how different attributes should be weighted;
but one cannot know which weightings to
use until the item has been categorized, be-
cause different weightings are used for dif-
ferent kinds of things (Gelman & Williams,
1998).

2.2.3. context sensitivity

Of the many things one knows about a com-
mon object such as a piano, only a small
subset is ever important or relevant in any
given situation. For instance, if you have ar-
rived at a friend’s house to help her move,
the most important fact about the piano is
that it is heavy; if, however, you have come
to audition for a band, the most important
fact is that it makes music. That is, the se-
mantic information that “comes to mind”
in any given situation depends on the con-
text. Meanings of words are also sensitive
to both linguistic context and to real-world
context; for instance, the referent of the
phrase “Check out my hog” may be com-
pletely different depending on whether one
is speaking to a farmer or a biker. Con-
textual influences on semantic task perfor-
mance have been robustly documented in
a very wide variety of tasks (Yeh & Barsa-
lou, 2006), yet the implications of such
context-sensitivity seem not to have pene-
trated many models of semantics (though
see Medin & Shaffer, 1978). Both spreading-
activation models and prototype theories
specify how individual concepts may be
represented and activated, but an implicit
assumption of such models is that contex-
tual information is effectively discarded –
neither approach specifies, for instance,
what would differ in the retrieval process
when one moves a piano as opposed to play-
ing it. The default assumption seems to be
that the very same representation (node or
prototype) would be activated in both cases,
and it is not clear how different informa-
tion would come to the fore in the two
situations.
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2.2.4. abstract concepts

What are the “properties” of concepts like
justice, or alive, or beautiful that would al-
low one to construct prototypes of these
categories or to connect them together with
simple predicates in a spreading-activation
network? Such questions may seem beyond
the grasp of contemporary theories of se-
mantic memory, which predominantly fo-
cus on knowledge about concrete objects
with directly observable characteristics; but
in fact the same questions are pressing
even for such theories. The reason is that
the properties often invoked as being crit-
ical for representing concrete concepts are
frequently quite abstract in and of them-
selves. Consider, for instance, the proper-
ties important for the concept animal, which
might include self-initiated movement and
action-at-a-distance (Mandler, 2000), con-
tingent movement (Johnson, 2000), goal-
directedness (Csibra et al., 1999), and
“biological” patterns of motion (Bertenthal,
1993), among other things. It is difficult
to see how these might be directly avail-
able through perceptual mechanisms. For
instance, different instances of self-initiated
movement may be perceptually quite differ-
ent – birds flap and glide, rabbits hop, snakes
slither, people walk, and so on. To recog-
nize that these different patterns of motion
all have something important in common –
“self-initiatedness,” say – is to synthesize
from them what is effectively an abstract
feature. Even relatively concrete properties,
such as having legs or a face, seem less
and less concrete the more one considers
the range of variability in the actual ap-
pearance of the legs or faces on, say, birds,
dogs, fish, and insects. So a relatively con-
crete concept such as animal depends on
the specification of properties that can be
relatively abstract. Similarly, the most im-
portant properties for many manmade ob-
jects are often functions, which are also dif-
ficult or impossible to define with reference
to purely perceptual characteristics. A ham-
mer and a screwdriver, for example, have
similar functions – they are used to fas-
ten things together – and for this reason
may be considered similar kinds of things,

despite having quite different shapes and
demanding quite different kinds of praxis.
In general, theories of semantic memory
must explain how people become sensitive
to such abstract regularities and are able
to use them to constrain property general-
ization. The suggestion that such regular-
ities are directly apparent in the environ-
ment is not transparently true for many such
properties.

2.2.5. representing multiple objects,

relationships, and events

Finally, it should be clear that both
spreading-activation and similarity-based
theories are targeted predominantly at
explaining knowledge about individual
concepts, corresponding roughly to the
meanings of single words. But semantic abil-
ities extend considerably beyond knowledge
about the meanings of individual words and
objects: They encompass knowledge about
events and situations (e.g., how to order in a
restaurant) as well as knowledge about var-
ious relationships between and within in-
dividual objects, including associative rela-
tionships (e.g., hammers are used with nails)
and causal relationships among object prop-
erties (e.g., having hollow bones causes a
bird to be light), and between objects (e.g.,
having a certain scent causes the flower to at-
tract bees). In many cases, the single object’s
meaning seems to rely on its relationships to
these other objects; for instance, it makes
no sense to conceive of the hammer as a
“decontextualized pounder” (Wilson & Keil,
2000); rather, the hammer’s meaning de-
pends partly on the fact that it is used specif-
ically to pound nails, usually with the intent
of attaching two separate objects. Without
some account of how multiple objects and
their relationships to one another combine
to form representations of events and scenes,
it is difficult to understand how such knowl-
edge arises even for the meanings of single
words and objects.

2.3. Summary

Two different computational frameworks
informed research in semantic memory
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throughout the 1970s and 1980s: spreading
activation models and prototype (and other
similarity-based) theories. These two frame-
works still form the theoretical background
to much empirical research in cognitive psy-
chology and are the most likely to be cov-
ered in cognitive psychology textbooks. And
both approaches continue to foster ongoing
research, especially in the domains of cate-
gorization (Smith, 2002; Zaki & Nosofsky,
2004) and in artificial intelligence (Crestani,
1997), and aspects of lexical processing and
speech production (Bodner & Masson, 2003;
Dell, 1986). These frameworks raise chal-
lenging questions, however, about the com-
putational basis of human semantic abilities,
specifically:

1. Why do some sets of items form more
“coherent” categories than others, and
how does the semantic system “know”
which category representations to
form?

2. Why are some properties more “im-
portant” for governing semantic gen-
eralization and induction than others,
and how does the system “know” which
properties are important for which
concepts?

3. How is context represented, and how
does it work to constrain which infor-
mation “comes to mind” in a given situ-
ation?

4. How are abstract concepts and proper-
ties acquired?

5. How can the system combine multiple
concepts together to represent events,
scenes, and relationships among ob-
jects?

Some of these questions have been ad-
dressed, with varying degrees of success,
by computational modeling efforts that fall
outside the scope of this chapter because
they mostly pertain to domains addressed
by other chapters in this volume. Much of
this work is specifically focused on under-
standing categorization phenomena. Ander-
son’s Rational model of categorization (An-
derson, 1991) provides an explanation of
how a categorization-based semantic system

can “decide” which category representations
should be created in memory. Models pro-
posed by Kruschke (1992) and Nosofsky
(1986) provide hypotheses about how
certain feature dimensions are selectively
weighted when making categorization judg-
ments; and the “context” models of catego-
rization (Medin & Shaffer, 1978; Nosofsky,
1984) provide some suggestions as to how
different kinds of information about a given
concept may be retrieved in different sit-
uations or contexts. As previously noted,
computational models focused on these
questions are discussed at length in other
chapters in this volume, specifically, Chap-
ter 9 on categorization and concepts, Chap-
ter 11 on induction and inference, and
Chapter 3 on Bayesian approaches to cog-
nition. The work discussed in the follow-
ing Sections 3 through 5 will follow three
threads of research in semantic cognition
that derive from the Parallel Distributed
Processing (PDP) approach to cognition.

3. Distributed Semantic Models

3.1. Hinton’s (1981) Distributed Model

The first important thread begins with
Hinton’s (1981) proposal for storing propo-
sitional knowledge (of the kind described in
a Quillian-like semantic network) in a PDP
network. As in most information-processing
frameworks, PDP models typically have “in-
puts” that respond to direct stimulation from
the environment, and “outputs” that corre-
spond to potential actions or behaviors. In
such models, information is represented as a
pattern of activation across a pool of sim-
ple, neuron-like processing units, and in-
formation processing involves the flow of
activation within and between such pools
by means of weighted, synapse-like con-
nections. The activation of any given unit
depends on the sum of the activations of
the sending units from which it receives in-
puts, multiplied by the value of the inter-
mediating weights. This net input is then
transformed to an activation value according
to some transfer function (often a logistic
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Figure 8.1. The architecture of Hinton’s (1981) seminal model of semantic
memory.

function bounded at 0 and 1). A network’s
ability to complete some input-output map-
ping depends on the values of the interme-
diating weights; in this sense, a network’s
“knowledge” is often said to be “stored” in
the weights. To store new information in
a network, it is not necessary to add new
architectural elements; instead, the weights
in the existing network must be adjusted
to accommodate the new information.
So learning in a connectionist framework
does not involve the addition of new data
structures, prototypes, or propositions, but
instead involves the adjustment of connec-
tion weights to promote some new map-
ping between input and output (see Chap-
ter 2 on connectionist approaches in this
volume).

Hinton (1981) was interested in show-
ing how a body of propositional information
might be stored in such a network, without
any explicit proposition-like data structures
in the system. The architecture of his model,
shown in Figure 8.1, reflects the structure
of a simple proposition of the form Item-
Relation-Attribute; there is a single bank of
neuron-like processing units for each part

of the proposition. Different fillers for each
slot are represented as different patterns of
activation across the corresponding pool of
units. For example, the representation of the
proposition Clyde is gray would correspond
to one pattern of activity across each of the
three groups of units: one for Clyde, one for
is, and one for gray.

All three banks send and receive weighted
connections to a fourth layer (labeled Prop
in the illustration). When a pattern of ac-
tivation is applied across the three input
layers, Prop units compute their inputs as
the sum of the activations across input units
weighted by the magnitude of the intercon-
necting weights. Each input thus produces
a pattern of activity across the Prop units,
which in turn send new signals back to the
Item, Relation and Attribute units. These then
update their states accordingly in reaction
to the new inputs. The process iterates un-
til the unit states stop changing, at which
point the network is said to have settled into
a steady state. Hinton demonstrated that in-
dividual propositions could be stored in the
network by adjusting the interconnecting
weights to make the patterns representing
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the proposition stable. To achieve this,
Hinton trained the model with a variant
of the delta-rule learning algorithm, which
is explained in detail in Chapter 2 of this
volume. After training, each stored propo-
sition would be represented in the net-
work by a unique pattern of activity across
the Prop units, which simultaneously acti-
vated and received support from the input
patterns.

This early model had several interest-
ing properties and implications. First, it was
capable of completing stored propositions
when given two of its terms as inputs. For
example, when provided with the inputs
Clyde and is, the network settled into a
steady state in which the pattern represent-
ing the correct completion of the proposi-
tion (gray) was observed across the Attribute
units. Second, several such propositions
could be stored in the network, in the
same finite set of weights. Thus, in contrast
to spreading-activation and similarity-based
models, new information could be stored
in memory without adding representational
elements to the system. Third, when ap-
propriate representations were chosen, the
network provided a natural mechanism for
generalization. If related objects (such as
various individual elephants) were repre-
sented by overlapping patterns of activity
across the Item units, they would contribute
similar inputs to the Prop units. Thus, the
entire network would tend to settle into an
appropriate steady state (corresponding to
the most similar stored proposition) when
given a novel input that overlapped with fa-
miliar, stored patterns. For example, if the
network had stored the proposition Clyde is
gray and was then given the inputs Elmer is in
the Item and Relation units, it would settle
to a state in which the pattern corresponding
to gray was observed across Attribute units,
provided that the representations of Clyde
and Elmer were sufficiently similar. Thus,
the model exhibited the two characteris-
tics most fundamental to both spreading-
activation and prototype theories: an eco-
nomical means of storing information and a
mechanism for generalizing stored informa-
tion to new stimuli.

The model also offered some leverage on
two of the questions posed earlier from our
consideration of prototype and spreading-
activation theories. Specifically, the first
question – how does the system “know”
for which categories it should create rep-
resentations – becomes moot in this frame-
work. There are no discrete category rep-
resentations in Hinton’s model. Individual
items – which in spreading activation the-
ories would correspond to individual nodes
and in prototype theories to individual cat-
egory prototypes – are represented as dis-
tributed patterns of activity across the same
set of processing units. The same is true
of different predicates, different attributes,
and full propositions: All are represented as
distributed patterns across processing ele-
ments. Generalization is governed, not by
a categorization process nor by the search of
an explicit processing hierarchy, but by the
similarities captured by these various dis-
tributed representations. This scheme does
not address the important question of cat-
egory coherence – why some sets of items
form good categories that support induc-
tion, whereas others do not – but it no longer
requires an answer to the question of which
categories are stored in memory and which
not.

Second, Hinton pointed out that, when
many propositions are stored in the net-
work, neither the Item nor the Relation in-
puts alone are sufficient to uniquely deter-
mine a correct pattern of activation in the
Attribute units. For instance, suppose the
model has stored the following propositions
about Clyde the Elephant and Frank the
Flamingo:

1. Clyde is gray
2. Frank is pink
3. Clyde has a trunk
4. Frank has a beak.

Here, the output generated by a given
item (Clyde or Frank) depends on the par-
ticular relation, is or has, with which it oc-
curs. Similarly, the response generated for
a given relation depends on which item is
being probed. Both the Item and Relation
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representations provide constraints on the
ultimate interpretation of the inputs into
which the network settles (the Prop repre-
sentation), and jointly these determine the
completion of the proposition. Put differ-
ently, the model generates different internal
representations and hence different outputs
for the very same item depending on the
context in which the item is encountered.
This early model thus provides some tools
for understanding influences of context on
semantic representation and processing.

Hinton’s model also raised many ques-
tions, of course. Most obviously, the model’s
capacity to learn without interference and
to generalize appropriately depends entirely
on the particular patterns of activity chosen
to represent various items, relations, and at-
tributes. Hinton simply hand-selected cer-
tain patterns to illustrate the appeal of the
basic framework. How are appropriate in-
ternal representations acquired under this
framework?

3.2. The Rumelhart Model

This question was explicitly addressed by
Rumelhart (Rumelhart, 1990; Rumelhart &
Todd, 1993), who showed how the same
propositional content stored in the Collins
and Quillian (1969) hierarchical model can
be learned by a simple connectionist net-
work trained with backpropagation (see
Chapter 2 on connectionist models in this
volume for a detailed explanation of the
backpropagation learning algorithm). An
adaptation of Rumelhart’s model is shown
in Figure 8.2; it can be viewed as a feed-
forward instantiation of a model similar to
Hinton’s, in which the network is provided
with the Item and Relation terms of a sim-
ple proposition as input and must generate
all appropriate completions of the proposi-
tion as output.

The model consists of a series of nonlin-
ear processing units, organized into layers,
and connected in a feedforward manner, as
shown in Figure 8.2. Patterns are presented
by activating one unit in each of the Item and
Relation layers, and allowing activation to
spread forward through the network, mod-

ulated by the connection weights. To update
a unit, its net input is first calculated by sum-
ming the activation of each unit from which
it receives a connection multiplied by the
value of the connection weight, that is:

net j =
∑

i

aiwi j

where net j is the net input of the receiving
unit j , i indexes units sending connections to
j , a indicates activation of each sending unit,
and wi j indicates the value of the weight
projecting from sending unit i to receiving
unit j . The net input is then transformed to
an activation a according to the logistic func-
tion, which bounds activation at 0 and 1:

a = 1
1+ e−net

To find an appropriate set of weights, the
model is trained with the backpropagation
learning algorithm (Rumelhart, Hinton, &
Williams, 1986). First, an Item and Relation
are presented to the network by setting the
activations of the corresponding input units
to 1 and all other inputs to 0, and activation
is propagated forward to the output units,
with each unit computing its net input and
activation according to the previous equa-
tions. The observed output states are then
compared to the desired or target values, and
the difference is converted to a measure of
error. In this case, the error is the sum over
output units of the squared difference be-
tween the actual output activations and the
target values:

errp =
∑

i

(api − tpi )2

where errp indicates the total error for a
given pattern p, i indexes each output unit,
a indicates the activation of each output unit
given the input pattern for p, and t indi-
cates the target value for each output unit
for pattern p. The partial derivative of this
error with respect to each weight in the net-
work is computed in a backward pass, and
each weight is adjusted by a small amount
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Figure 8.2. Rumelhart’s (1990; Rumelhart and Todd, 1993) model, subsequently used as the
basis for Rogers and McClelland’s (2004) theory of semantic memory. Reprinted with
permission from Rogers and McClelland (2004), Semantic cognition: A parallel distributed
processing approach, Figure 2.2, p. 56, Cambridge, MA: MIT Press.

to reduce the error (see Chapter 2 in this
volume on connectionist models for further
information on the backpropagation learn-
ing rule).

Although the model’s inputs are local-
ist, each individual Item unit projects to
all of the units in the layer labeled Repre-
sentation. The activation of a single item

in the model’s input, then, generates a
distributed pattern of activity across these
units. The weights connecting item and rep-
resentation units evolve during learning, so
the pattern of activity generated across the
Representations units for a given item is a
learned internal representation of the item.
Although the model’s input and target states
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are constrained to locally represent particu-
lar items, attributes, and relations, the learn-
ing process allows it to derive distributed in-
ternal representations that do not have this
localist character.

In the case of the Rumelhart network, for
reasons elaborated later, the learned repre-
sentations turn out to capture the seman-
tic similarity relations that exist among the
items in the network’s training environment.
These learned similarity relations provided a
basis for generalization and property inher-
itance, just as did the assigned similarities
in Hinton’s (1981) model. For instance, af-
ter the model had learned about the eight
items shown in Figure 8.2, the authors could
teach the model a single fact about a new
item – say, that a sparrow is a kind of bird –
and then could query the model about other
properties of the sparrow.1 To learn that the
new item (the sparrow) is a kind of bird, the
model must represent it with a pattern of
activation similar to the previously learned
robin and canary, because these are the only
items to which the label “bird” applies. Con-
sequently, the model tends to attribute to
the sparrow other properties common to
both the robin and the canary: It “infers” that
the sparrow can move and fly but cannot
swim; has feathers, wings, and skin but not
roots or gills; and so on. That is, the key func-
tion of semantic memory that, in Hinton’s
(1981) model, was achieved by hand-crafted

1 In a more realistic model, the representation of a
novel item would be achieved by recurrent con-
nections projecting back from the attribute units
toward the representation units; such a model is
discussed in the final section of this chapter. To
simulate this recurrent process in the feed-forward
model shown in Figure 8.2, Rumelhart used a tech-
nique called backpropagation-to-activation: Begin-
ning with a neutral pattern of activation across
Representation units, activation was propagated
forward to the outputs. Error was computed on just
the “bird” output unit, and the derivative of this er-
ror was calculated, without changing any weights, in
a backward pass. The activations of the Representa-
tion units were then adjusted to reduce the error on
the “bird” unit. That is, the model adapted its inter-
nal representations by changing activations on the
Representation units until it found a pattern that
strongly activated the “bird” output unit. This pat-
tern thus constitutes a representation of the novel
item given just the information that it is a bird.

representations – generalization of previ-
ously learned information to new items –
was accomplished in Rumelhart’s model by
internal representations that were “discov-
ered” by the backpropagation learning rule.

3.3. Feature Weighting and Category
Coherence

Rogers and McClelland (2004) have sug-
gested that Rumelhart’s model provides a
simple theoretical framework for explaining
many of the important phenomena moti-
vating current research in semantic cogni-
tion. On this construal, the two input layers
of the model represent a perceived object
and a context provided by other informa-
tion available together with the perceived
object. For instance, the situation may be
one in which a young child is looking at a
robin on a branch of a tree and, as a cat
approaches, sees it suddenly fly away. The
object and the situation together provide a
context in which it would be possible for
an experienced observer to anticipate that
the robin will fly away, and the observation
that it does would provide input allowing a
less experienced observer to develop such an
anticipation. That is, an object and a situa-
tion afford the basis for implicit predictions
(which may initially be null or weak), and
observed events then provide the basis for
adjusting the connection weights underly-
ing these predictions, thereby allowing the
experience to drive change in both under-
lying representations and predictions of ob-
servable outcomes. The range of contexts
in which the child might encounter an ob-
ject may vary widely: the child may observe
the object and what others are doing with it
(picking it up, eating it, using it to sweep the
floor, etc.). Some encounters may involve
watching what an object does in different
situations; others may involve naming and
other kinds of linguistic interactions. Seman-
tic/conceptual abilities arise from the learn-
ing that occurs across many such situations,
as the system comes to make increasingly ac-
curate predictions about the consequences
of observing different kinds of items in dif-
ferent situations and contexts.
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Figure 8.3. Multidimensional scaling of internal representations for 8 items at 10 equally spaced
intervals during training of the Rumelhart model. The labeled end points indicate the similarities
among the representations at the end of learning, whereas the lines trace the trajectory of these
representations throughout learning. Reprinted with permission from Rogers and McClelland (2004),
Semantic cognition: A parallel distributed processing approach, Figure 3.3, p. 89, Cambridge, MA:
MIT Press.

The Rumelhart model provides a simpli-
fied implementation of this view of seman-
tic abilities: The presentation of an “object”
corresponds to the activation of the ap-
propriate pattern of activity over the input
units; the context can be represented via the
activation of an appropriate pattern over the
context units; the child’s expectations about
the outcome of the event may be equated
with the model’s outputs; and the presenta-
tion of the actual observed outcome is anal-
ogous to the presentation of the target for
the output units in the network.

The authors suggested that this frame-
work is appealing partly because it provides
answers to some of the puzzling questions
about the acquisition of semantic knowledge
discussed previously. To show this, Rogers
and McClelland (2004) trained a variant of

the model shown in Figure 8.2 and investi-
gated its behavior at several different points
during the learning process.

The first important observation was that
model’s internal representations underwent
a “coarse-to-fine” process of differentia-
tion, such that items from broadly differ-
ent semantic domains (the plants and ani-
mals) were differentiated earliest in learning;
whereas closely related items (e.g., the rose
and daisy) were differentiated latest. Fig-
ure 8.3 shows a multidimensional scaling
of the internal representations generated by
the model across the Representation layer
for all eight items at ten different points
during training. The lines trace the trajec-
tory of each item throughout learning in the
two-dimensional compression of the repre-
sentation state space. The labeled end points
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represent the final learned internal represen-
tations after 1,500 epochs of training. These
end points recapitulate the semantic simi-
larity relations among the eight items: The
robin and canary are quite similar, for in-
stance, and both are more similar to the
two fish than they are to the four plants.
The lines tracing the developmental trajec-
tory leading to these end points show that
the eight items, initially bunched together in
the middle of the space, soon divide into two
clusters (plant or animal) based on animacy.
Within these clusters, there is little differen-
tiation of items. Next, the global categories
split into smaller intermediate clusters (e.g.,
birds and fish) with little differentiation of
the individual items within each cluster, and
finally, the individual items are pulled apart.
In short, the network’s representations ap-
pear to differentiate in relatively discrete
stages, first completing differentiation at the
most general level before progressing to suc-
cessively more fine-grained levels of differ-
entiation.

The basis for this nonlinear, stage-like
process of coarse-to-fine differentiation in
the model proved key to explaining several
critical phenomena in the study of human
semantic abilities. To see why the model
behaves in this fashion, first consider how
the network learns about the following four
objects: oak, pine, daisy, and salmon. Early
in learning, when the weights are small and
random, all of these inputs produce a similar
meaningless pattern of activity throughout
the network. Because oaks and pines share
many output properties, this pattern results
in a similar error signal for the two items,
and the weights leaving the oak and pine
units move in similar directions. Because the
salmon shares few properties with the oak
and pine, the same initial pattern of output
activations produces a different error signal,
and the weights leaving the salmon input
unit move in a different direction. What
about the daisy? It shares more properties
with the oak and the pine than it does with
the salmon or any of the other animals, and
so it tends to move in a similar direction as
the other plants. Similarly, the rose tends
to be pushed in the same direction as all of

the other plants, and the other animals tend
to be pushed in the same direction as the
salmon. As a consequence, on the next pass,
the pattern of activity across the represen-
tation units will remain similar for all the
plants, but will tend to differ between the
plants and the animals.

This explanation captures part of what is
going on in the early stages of learning in
the model, but does not fully explain why
there is such a strong tendency to learn the
superordinate structure first. Why is it that
so little intermediate-level information is ac-
quired until after the superordinate-level in-
formation? Put another way, why don’t the
points in similarity space for different items
move in straight lines toward their final lo-
cations?

To understand the stage-like pattern of
differentiation, consider the fact that the an-
imals all share some properties (e.g., they all
can move, they all have skin, they are all
called animals). Early in training, all the an-
imals have the same representation. When
this is so, if the weights going forward from
the representation layer “work” to capture
these shared properties for one of the ani-
mals, they must simultaneously work to cap-
ture them for all of the others. Similarly, any
weight change that is made to capture the
shared properties for one of the items will
produce the same benefit in capturing these
properties for all of the other items: If the
representations of all of the items are the
same, then changes applied to the forward-
projecting weights for one of the items will
affect all of the other items equally, and so
the changes made when processing each in-
dividual item will tend to accumulate with
those made in processing the others. On the
other hand, weight changes made to cap-
ture a property of an item that is not shared
by others with the same representation will
tend to be detrimental for the other items,
and when these other items are processed,
the changes will actually be reversed. For ex-
ample, two of the animals (canary and robin)
can fly but not swim, and the other two
(salmon and sunfish) can swim but not fly. If
the four animals all have the same represen-
tation, what is right for half of the animals
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is wrong for the other half, and the weight
changes across different patterns will tend to
cancel each other out. The consequence is
that properties shared by items with similar
representations will be learned faster than
the properties that differentiate such items.

The preceding paragraph considers how
representational similarity structure at a
given point in time influences the speed with
which various kinds of attributes are learned
in the model in the weights projecting for-
ward from the Representation layer. But
what about the weights from the input units
to the Representation layer? These deter-
mine the representational similarity struc-
ture between items in the first place. As
previously stated, items with similar outputs
will have their representations pushed in the
same direction, whereas items with dissim-
ilar outputs will have their representations
pushed in different directions. The question
remaining is why the dissimilarity between,
say, the fish and the birds does not push the
representations apart very much from the
very beginning.

The answer to this question lies in under-
standing that the magnitude of the changes
made to the representation weights depends
on the extent to which such changes will
reduce error at the output. This in turn
depends on the particular configuration of
weight projecting forward from the Repre-
sentation layer. For instance, if the network
activated “has wings” and “has scales” to an
equal degree for all animals (because half the
animals have wings and the other half have
scales), then there is no way of adjusting the
representation of, say, the canary that will si-
multaneously reduce error on both the “has
wings” and “has scales” units. Consequently,
these properties will not exert much influ-
ence on the weights projecting into the Rep-
resentation layer and will not affect how the
representation of canary changes. In other
words, error propagates much more strongly
from properties that the network has begun
to master.

Rogers and McClelland (2004) illustrated
this phenomenon by observing the deriva-
tive of the error signal propagated back
to the Representation units for the canary

item. Specifically, this derivative was cal-
culated across three different kinds of out-
put units: those that reliably discriminate
plants from animals (such as can move and
has roots), those that reliably discriminate
birds from fish (such as can fly and has
gills), and those that differentiate the canary
from the robin (such as is red and can sing).
Because weights projecting into the Repre-
sentation units are adjusted in proportion to
these error derivatives, the calculation indi-
cates to what extent these three different
kinds of features are influencing represen-
tational change at different points in time.
Figure 8.4 shows how the error derivatives
from these three kinds of properties change
throughout training when the model is given
the canary (middle plot). This is graphed
alongside measures of the distance between
the two bird representations, between the
birds and the fish, and between the animals
and the plants (bottom plot); and also along-
side of measures of activation of the out-
put units for sing, fly and move (top plot).
The figure shows that there comes a point
at which the network is beginning to dif-
ferentiate the plants and the animals, and
is beginning to activate move correctly for
all of the animals. At this time, proper-
ties like can move (reliably differentiating
plants from animals) are producing a much
stronger error derivative at the Representa-
tion units than are properties like can fly
or can sing. As a consequence, these prop-
erties are contributing much more strongly
to changing the representation weights than
are the properties that reliably differentiate
birds from fish or the canary from the robin.
Put differently, the knowledge that the ca-
nary can move is more “important” for de-
termining how it should be represented than
the information that it can fly and sing at
this stage of learning. (The error signal for
move eventually dies out as the correct ac-
tivation reaches asymptote, because there is
no longer any error signal to propagate once
the model has learned to produce the correct
activation.)

The overall situation can be summarized
as follows. Initially, the network assigns vir-
tually the same representation to all items,
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Reprinted with permission from Rogers and McClelland (2004), Semantic cognition: A parallel
distributed processing approach, Figure 3.4, p. 94, Cambridge, MA: MIT Press.

and the only properties that vary systemat-
ically with these representations are those
that are shared by all items (e.g., can grow,
is living). All other properties have their in-
fluence on the weights almost completely
cancelled out, because changes that favor
one item will hinder another. Because there
are many properties common to the ani-
mals and not shared by plants (and vice
versa), however, weak error signals from
these properties begin to move the vari-
ous animal representations away from the
plant representations. When this happens,
the shared animal representation can begin
to drive learning (in the forward weights)
for properties that the animals have in com-

mon; and the shared plant representation
can begin to drive learning for properties
common to plants. These properties thus be-
gin to exert a much stronger influence on the
network’s internal representations than do,
for instance, the properties that differentiate
birds from fish. The result is that the individ-
ual animal representations remain similar to
one another, but are rapidly propelled away
from the individual plant representations.
Gradually, the weak error signals propa-
gated from the properties that discriminate
more fine-grained categories begin to accu-
mulate, causing these subgroups to differen-
tiate slightly and providing the basis for an-
other “wave” of differentiation. This process
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eventually propagates down to the subordi-
nate level, where individual items are differ-
entiated from one another.

The network’s tendency to differentiate
its internal representations in this way does
not arise from some general bias toward dis-
covering superordinate category structure
per se. Instead, it comes from patterns of
higher-order covariation exhibited among
the output properties themselves. The first
wave of differentiation in the model will
distinguish those subgroups whose shared
properties show the strongest tendency to
consistently covary together across the cor-
pus (corresponding to those with the high-
est eigenvalues in the property covariance
matrix; see Rogers and McClelland, 2004,
Chapter 3, for further detail) that is, prop-
erties that show the strongest tendency
to covary coherently. In the model corpus,
and perhaps in real experience, such sub-
groups will correspond to very general se-
mantic domains. For instance, animals share
many properties – self-initiated and biologi-
cal movement, biological contours and tex-
tures, facial features, and so on – that are
not observed in plants or manmade objects.
The system will not be pressured, how-
ever, to differentiate superordinate groups
that do not have cohesive structure (e.g.,
toys vs. tools). Further waves of differenti-
ation will then distinguish groupings whose
shared properties show the next strongest
patterns of coherent covariation.

It is worth noting that these interesting
phenomena depend on three aspects of the
network architecture. First, semantic repre-
sentations for all different kinds of objects
must be processed through the same weights
and units at some point in the network, so
that learning about one item influences rep-
resentations for all items. This convergence in
the architecture forces the network to find
weights that work for all items in its experi-
ence, which in turn promotes sensitivity to
high-order covariation among item proper-
ties. Second, the network must begin with
very similar representations for all items, so
that learning generalizes across all items un-
til they are differentiated from one another.
Third, learning must be slow and inter-

leaved, so that new learning does not destroy
traces of previous learning. These architec-
tural elements are critical to the theory and
are taken as important design constraints on
the actual cortical semantic system (see the
last section of this chapter and Chapter 7
on episodic memory in this volume). It is
also worth noting that the effects do not de-
pend upon the use of the backpropagation
learning algorithm per se. Any learning al-
gorithm that serves the function of reducing
error at the output (e.g. contrastive Hebbian
learning, GeneRec, Leabra, etc.) could po-
tentially yield similar results as long as they
permit new learning to generalize relatively
broadly. For instance, learning algorithms
that promote representational sparsity (e.g.,
some parameterizations of Leabra) will di-
minish the degree to which learning gener-
alizes across different items and so may not
show the same sensitivity to higher-order co-
variation.

Rogers and McClelland’s (2004) analysis
of learning in the Rumelhart model provides
a basis for understanding two of the pressing
questions summarized earlier:

1. Category coherence. Why do some
groupings of items seem to form “good”
categories that support induction whereas
others do not? The model suggests that
“good” categories consist of items that share
sets of properties that vary coherently to-
gether across many situations and contexts.
Because these properties strongly influence
representational change early in learning,
they strongly constrain the degree to which
different items are represented as simi-
lar/dissimilar to one another, which in turn
constrains how newly learned information
will generalize from one item to another.
Rogers and McClelland (2004) showed how
this property of the model can address phe-
nomena as diverse as the progressive dif-
ferentiation of semantic representations in
infancy (Mandler, 2000), basic-level advan-
tages in word-learning in later childhood
(Mervis, 1987), “illusory correlations” in in-
duction tasks (Gelman, 1990), and sensitiv-
ity to higher-order covariation in category-
learning experiments (Billman & Knutson,
1996).
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2. Selective feature weighting. Why are cer-
tain properties “important” for represent-
ing some categories and not others? The
PDP account suggests that a given property
becomes “important” for a given category
when it covaries coherently with many other
properties. This “importance” is reflected
in two aspects of the system’s behavior.
First, coherently covarying properties are
the main force organizing the system’s in-
ternal representations so that items with a
few such properties in common are repre-
sented as similar, even if they have many
incoherent properties that differ. Second,
coherent properties are learned much more
rapidly: Because items that share such prop-
erties are represented as similar, learning for
one item tends to generalize well to all other
items that share the property. In simula-
tion experiments, Rogers and McClelland
showed that this emergent “feature weight-
ing” provided a natural account of several
phenomena sometimes thought to require
innate knowledge structures. These include
sensitivity to “conceptual” over percep-
tual similarity structure in infancy (Pauen,
2002), domain-specific patterns of feature-
weighting (Keil, 1989; Macario, 1991), and
the strong weighting of “causal” properties in
determining conceptual similarity relations
(Ahn, 1998; Gopnik & Sobel, 2000).

3.4. Context-Sensitivity

It is worth touching on one further aspect
of the Rumelhart model because it relates
to issues central to the next two sections.
The analyses summarized previously pertain
to the item representations that arise across
the Representation units in the Rumelhart
model. These units receive input from the
localist input units corresponding to individ-
ual items, but they do not receive input from
the Context input units. Instead, the dis-
tributed item representations feed forward
to the Hidden units, which also receive in-
puts from the Context inputs and then pass
activation forward to the output units. The
pattern of activation arising across Hidden
units may thus be viewed as a learned in-
ternal representation of an item occurring

in a particular context. That is, in addition
to learning context-independent representa-
tions (across the Representation units), the
Rumelhart network also learns how these
representations should be adapted to suit
the particular context in which the item is
encountered. These context-sensitive repre-
sentations allow the network to produce dif-
ferent outputs in response to the same item –
a key aspect of semantic cognition discussed
in the introduction.

It turns out that this context-sensitivity
also explains a puzzling aspect of human
cognition – the tendency to generalize dif-
ferent kinds of newly learned information in
different ways. For instance, Carey (1985)
showed that older children inductively gen-
eralize biological facts (such as “eats” or
“breathes”) to a much broader range of liv-
ing things than they do psychological facts
(“thinks,” “feels”). Because the Rumelhart
model suggests that the same items get rep-
resented differently in different contexts, it
provides a way of understanding why differ-
ent “kinds” of properties might generalize in
different ways.

Rogers and McClelland (2004) trained a
variant of the Rumelhart model with a cor-
pus of sixteen items from the same four
categories as the original (birds, fish, trees,
and flowers) and examined the patterns of
activation that arose across the Represen-
tation and Hidden units for these sixteen
items in different contexts. Figure 8.5 shows
a multidimensional scaling of these pat-
terns. The middle plot shows the learned
similarities between item representations in
the context-independent layer; the top plot
shows the similarities across Hidden units
for the same items in the is context; and
the bottom plot shows these similarities in
the can context. In the can context, all the
plants receive very similar representations,
because they all have exactly the same set of
behaviors in the training environment – the
only thing a plant can do, as far as the model
knows, is grow. By contrast, in the is con-
text, there are few properties shared among
objects of the same kind, so that the net-
work is pressured to strongly differentiate
items in this context. The context-weighted
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Figure 8.5. Multidimensional scaling showing the similarities represented by
the Rumelhart model for objects in different relation contexts. The middle
plot shows the similarities among object representations in the Representation
layer. The top graph shows the similarities among the same objects in the
Hidden layer, when the is relation unit is activated. The bottom graph shows
the similarities across these same units when the can relation unit is activated.
The is relation context exaggerates differences among related objects; for
example, relative to the similarities in the Representation layer, the trees are
fairly well spread out in the is context. Moreover, similarities in object
appearances are preserved in these representations; for example, the canary is
as close to the flowers as to the other birds in the is context, by virtue of being
pretty. By contrast, the can context collapses differences among the plants,
because in the network’s world, all plants can do only one thing: grow.
Reprinted with permission from Rogers and McClelland (2004), Semantic
Cognition: A Parallel Distributed Processing Approach, MIT Press: Cambridge,
MA.
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similarities illustrated in the figure deter-
mine how newly learned properties will gen-
eralize in different contexts. If the network
is taught, for instance, that the maple tree
“can queem” (where “queem” is some novel
property), this fact will tend to generalize
strongly to all of the plants because these
are represented as very similar in the “can”
context. If it is taught that the maple tree
“is queem,” the new fact will not generalize
strongly to all plants, but will weakly gen-
eralize to other items that, in the “is” con-
text, are somewhat similar to the maple. In
short, because the model’s internal repre-
sentations are sensitive to contextual con-
straints, the “base” representations learned
in the context-independent Representation
can be reconfigured to capture similarity
relationships better suited to a given con-
text. This reshaping can then influence how
newly learned information will generalize.

3.5. Summary

This thread of research offers a promising
theoretical framework for semantic cogni-
tion that addresses some of the core issues
discussed in the introduction. The frame-
work suggests that the semantic system al-
lows us, when presented with a perceptual
or linguistic stimulus in some particular sit-
uation, to make context-appropriate infer-
ences about properties of the item denoted
by the stimulus. It suggests that these in-
ferences are supported by distributed in-
ternal representations that capture semantic
similarity relations and that these relations
can be adapted to suit particular contexts.
It further suggests that the internal repre-
sentations are learned through experience
and shows how the learning dynamics that
arise within the framework provide an ex-
planation of category coherence, feature se-
lection, and context-sensitivity in semantics.
The framework does not explicitly address
other key challenges for a theory of seman-
tics specifically – the representation of ab-
stract concepts, events, and multiple objects
and relationships. These are the main focus
of the next section.

4. Temporal Structure, Events, and
Abstract Concepts

4.1. Simple Recurrent Networks

The second important thread of research de-
rives in part from the seminal work of Elman
(1990). Elman was interested not only in se-
mantics, but in several different aspects of
language, including the ability to segment
the auditory stream into words, to organize
words into different syntactic classes, and to
use information about word order to con-
strain the interpretation of sentences. The
key insight of this work was that all of these
different abilities may derive from a similar
underlying learning and processing mech-
anism – one that is sensitive to statistical
structure existing in events that unfold over
time. The catalyst for this insight was the in-
vention of neural network architecture that
permitted sensitivity to temporal structure –
the simple recurrent network (SRN), or
“Elman net,” shown in Figure 8.6.

The three leftmost layers of the SRN
shown in the figure constitute a feed-
forward connectionist network similar to
that used by Rumelhart: units in the input
layer are set directly by the environment;
activation feeds forward through weighted
connections to the Hidden layer and from
there to the output layer. What makes
the model “recurrent” is the Context layer
shown on the right of the figure. Activa-
tion of these units feeds forward through
weighted connections to influence the
Hidden units, just as do the input units. The
activations of the Context units are not set
by inputs from the environment however.
Instead, they contain a direct copy of the
activation of the Hidden units from the pre-
vious time-step. It is this “memory” of the
previous Hidden-unit state that allows the
network to detect and respond to temporal
structure.

As a simple example, suppose that the
network’s inputs code the perception of a
spoken phoneme and that the network’s task
is to predict in its outputs what the next
phoneme will be. Each individual input and
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Figure 8.6. The architecture of a simple recurrent network (Elman, 1990).

output unit might, for instance, be stipu-
lated to represent a different syllable in En-
glish. To process a statement such as “pretty
baby,” the network would first be presented
with the initial syllable (/pre/). Activation
would spread forward to the Hidden units
and then to the output units through the in-
terconnecting weights. On the next step of
the sequence, the Hidden unit pattern rep-
resenting /pre/ would be copied to the Con-
text layer, and the network would be given
the next syllable in the phrase (/ti/). On this
step, the Hidden unit activations will be in-
fluenced both by this new input and by the
activations of the Context units, which con-
tain the trace of the preceding Hidden rep-
resentation. In other words, the new Hidden
representation will code a representation of
/ti/ in the context of having previously seen
/pre/. Activation again feeds forward to the
outputs, which code the network’s “best
guess” as to the likely next phoneme. On
the third step, the Hidden unit representa-
tion is again copied to the Context layer, and
the next syllable (/ba/) is presented as input.
Again, the Hidden representations are influ-
enced both by the input and by the Context
unit activations; but this time, the Context
representation has been influenced by two

previous steps (/pre/ followed by /ti/). In
other words, the new Hidden representation
now codes /ba/ in the context of previously
encountering /pre/ followed by /ti/. In this
manner, new inputs are successively “folded
in” to the Context representation, so that
this representation constitutes a distributed
internal representation of the sequence up
to the present point in time. As a conse-
quence of this “holding on” to previously
presented information, the model can pro-
duce different outputs for exactly the same
input, depending on previously occurring in-
puts. That is, it is sensitive to the temporal
context in which a given input is encoun-
tered.

SRNs can be trained with backprop-
agation just like a standard feed-forward
network. In the syllable-prediction exam-
ple, the presentation of each input sylla-
ble would provoke a pattern of activation
across output units (via hidden units) that
can be compared to a target pattern to gen-
erate a measure of error. Because the task
is prediction in this example, the target is
simply the next-occurring syllable in the
speech stream. Weights throughout the net-
work can then be adjusted to reduce the er-
ror. These weight adjustments are typically
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applied to all forward-going weights, includ-
ing those projecting from the Context to
Hidden layers. Learning on the weights pro-
jecting from Context to Hidden layers al-
lows the network to adjust exactly how the
sequence history coded in the Context in-
fluences the Hidden representation on the
current time-step; and this in turn influ-
ences which steps of the sequence are ro-
bustly preserved in the Context representa-
tion itself. If there is no temporal structure,
so that the sequence history has no impli-
cation for how a current input is processed,
the weights from Context → Hidden will
never grow large, and the Hidden represen-
tation will be driven almost exclusively by
the Input and not by the Context. As a con-
sequence, the Context representation itself
will only reflect the representation of the
preceding item and will not “build up” a rep-
resentation of the sequence preceding that
item. On the other hand, if there is tem-
poral structure, so that predictions derived
from a given input can be improved by “tak-
ing into account” the preceding items in the
sequence, then the weights projecting from
Context to Hidden units will be structured
by the learning algorithm to captialize on
these relationships, so that the Hidden states
come to be more strongly influenced by the
Context, and preceding states get “folded in”
to the new context representation.

The SRN turned out to be a valuable
tool for understanding a variety of linguis-
tic phenomena precisely because language
has temporal structure at many different
time-scales. At a relatively small time-scale,
for instance, it is the case that syllable-to-
syllable transitions that occur within words
tend to be much more predictable than
the transitions that occur between words.
From the earlier example, the transition
from /pre/→/ti/ is much more frequent in
English than the transition /ti/→/ba/ (Saf-
fran, Aslin, & Newport, 1996). Because this
is true, a syllable-prediction network like
the one sketched out previously can provide
a strategy for detecting word-boundaries in
a continuous speech stream: Simply place
the boundaries wherever prediction error is
high. At broader time-scales, SRNs provide

a way of thinking about processing of syn-
tactic information in languages like English
where such information is often carried by
word order. And, it turns out, SRNs and
related approaches offer important insights
into the acquisition and representation of se-
mantic information.

Here again, the critical insight was offered
by Elman (1990), who trained an SRN in
which the input and output units, of corre-
sponding to individual syllables, represented
individual words. The network’s task, just as
before, was prediction, in this case, predic-
tion of the next word in a sentence, given
the current word as input. Elman trained
the model with a sequence of simple two-
and three-word sentences (e.g., “Woman
smashes plate,” “Cat moves,” and so on) pre-
sented to the network in a long series. He
then examined the internal representations
arising across Hidden units in response to
the activation of each individual word. The
interesting observation was that words with
similar meanings tended to be represented
with similar patterns of activation across
these units, even though inputs and outputs
in the model were all localist, so that there
was no pattern overlap between different
words in either the input or output. Some-
how, the network had acquired information
about semantic relatedness solely by trying
to predict what word would come next in a
sentence!

Why should this be? The answer is that
words with similar meanings, precisely be-
cause they have similar meanings, tend to
occur in similar linguistic contexts. For in-
stance, because dogs and cats are both kinds
of pet, we tend to use similar words when
referring to them in speech. We say things
like, “I have to feed the dog/cat,” “Don’t
worry, the dog/cat doesn’t bite,” “Please let
the dog/cat outside,” and so on. Elman’s sim-
ulations suggested that the more similar two
words are in meaning, the more similar are
the range of linguistic contexts in which they
are encountered. Because the representation
of a given item is, in the SRN, influenced by
the temporal contexts in which it is encoun-
tered, then items that occur in similar con-
texts tend to receive similar representations.
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Just as the Rumelhart network learns to rep-
resent items as similar when they overlap in
their output properties, so the SRN learns to
represent items as similar when they over-
lap in the distribution of items that precede
and follow them. Because items with similar
meanings tend to be preceded and followed
by similar distributions of words in speech,
this suggests that the acquisition of semantic
similarity relations may be at least partially
supported by a learning mechanism that is
sensitive to the context in which the words
occur.

There are three aspects of this research
that offer leverage on the theoretical is-
sues listed previously. First, the internal
representations acquired by an SRN are,
like the representations that arise across
the Hidden layer of the Rumelhart net-
work, context-sensitive. In both cases, the
distributed patterns that promote the cor-
rect output capture both the current input
and the context in which it is encountered.
As a consequence, both kinds of network
can produce different responses to the same
item, depending on the context. In an SRN,
the context need not be represented as a sep-
arate input from the environment (as it is
in the Rumelhart network), but can consist
solely of a learned internal representation of
the sequence of previously encountered in-
puts.

Second, Elman’s approach suggests one
way of thinking about representation of
meanings for abstract concepts. Because se-
mantic similarity relations are apparent (at
least to some degree) from overlap in the
linguistic contexts in which words tend to
appear in meaningful speech, then such re-
lations might be derived even for words
with abstract meanings. Words like “fair”
and “just” may not be associated with obvi-
ous perceptual-motor attributes in the envi-
ronment, but they likely occur within sim-
ilar linguistic contexts (“The decision was
just,” “The decision was fair”). The insight
that word-meanings may partially inhere in
the set of contexts in which the word is en-
countered may therefore provide some ex-
planation as to how learning of such mean-
ings is possible.

Third, the representations arising in the
Context layer of an SRN capture infor-
mation, not just about a single input, but
also about a series of inputs encountered
over time. That is, these representations are
inherently representations of whole events
rather than individual items. The SRN thus
offers a tool for understanding how the se-
mantic system might construct internal rep-
resentations that capture the meaning of a
whole event, instead of just the meaning of
a single object or word.

The remainder of this section discusses
some of the implications of these ideas for
theories of semantic memory as they have
been cashed out in two influential model-
ing approaches: LSA (Landauer & Dumais,
1997) and related approaches (Burgess &
Lund, 1997; Steyvers et al., 2006), and the
“Sentence Gestalt” models described by St.
John and McClelland (McClelland et al.,
1989; St. John & McClelland, 1990; St.
John, 1992).

4.2. Latent Semantic Analysis

LSA is an approach to understanding the se-
mantic representation of words (and larger
samples of text) that capitalizes on the pre-
viously mentioned observation that words
with similar meanings tend to occur in sim-
ilar linguistic contexts (Landauer, Foltz, &
Laham, 1998). Elman (1990) had illustrated
the face validity of the idea by training an
SRN with a small corpus of sentences con-
structed from a limited set of words. The pi-
oneers of LSA and related approaches estab-
lished the power of the idea by investigating
precisely how much information about se-
mantic relatedness among words can be ex-
tracted from linguistic context in large cor-
pora of written text.

The basic computations behind LSA are
fairly straightforward. The process begins
with a large set of samples of text, such as an
encyclopedia in which each article is consid-
ered a separate sample in the set. From this
set, a matrix is constructed. Each row of the
matrix corresponds to a single word appear-
ing at least once in the set, and each column
corresponds to one of the text samples in
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the set. The elements of the matrix indicate
the frequency with which a word was en-
countered within the sample. For instance,
the word “date” might occur ten times in
an encyclopedia article on calendars, once
in an article on Egypt; three times in an ar-
ticle on dried fruit, zero times in an article
on lasers, and so on. So each word is as-
sociated with a row vector of frequencies
across text samples, and each text sample is
associated with a column vector of frequen-
cies across words. If it is true that words
with similar meanings occur in similar con-
texts, then the vectors for words with similar
meanings should point in similar directions.
The similarity structure of the word-to-text
co-occurrence matrix thus captures infor-
mation about the semantic relatedness of the
individual words. To get at this structure,
the elements of the matrix are usually trans-
formed to minimize variation due to over-
all word frequencies (for instance, by tak-
ing the log of the frequencies in each cell);
the co-occurrence matrix is converted to a
similarity matrix by computing the pairwise
correlation between all rows; and the sim-
ilarity matrix is then subject to a singular
value decomposition (a computationally ef-
ficient means of estimating eigenvectors in
a very large similarity matrix). The singular-
value decomposition returns a large set of
orthogonal vectors that re-describe the sim-
ilarity matrix (one for each word in the cor-
pus); typically all but the first 300 or so of
these vectors are then discarded. The result-
ing representation contains a description of
each word in the corpus as a vector in ap-
proximately a 300-dimensional space.

What is remarkable about this process
is that the similarity structure of the re-
sulting vectors appears to parallel, some-
times with surprising accuracy, the seman-
tic similarities discerned by human subjects
among the words in the corpus. Semantic
distances yielded by LSA and similar mea-
sures correlate with the magnitude of con-
textual semantic priming effects in lexical
decision tasks (Landauer & Dumais, 1997),
with normative estimates of the seman-
tic relatedness between pairs of words and
with word-sorting (Landauer et al., 1998),

with the likelihood of confusing two items
in free-recall list-learning tasks (Howard &
Kahana, 2002), and so on. Such correspon-
dences would seem to suggest some nonar-
bitrary relationship between the representa-
tions computed by LSA-like methods and
the word-meaning representations existing
in our minds. But what, specifically, is the
nature of this relationship?

At the very least, LSA demonstrates that
overlap in linguistic context can convey con-
siderable information about the degree to
which different words have similar mean-
ings. In short, Elman’s (1990) speculation –
that words with similar meanings appear in
similar contexts – appears to be true in ac-
tual language. So a learning mechanism that
is sensitive to the temporal context in which
words occur may help to promote the learn-
ing of semantic similarity relationships. Nev-
ertheless, the skeptic might justly question
the conclusion that semantic representations
can be derived solely from a “dumb” word-
or phrase-prediction algorithm (Glenberg &
Robertson, 2000). Surely, there is more to
meaning than simply being able to anticipate
which words are likely to follow one another
in speech – you cannot learn a language just
by listening to the radio. And indeed, as a
theory of semantic processing, LSA raises
many questions. How are the semantic rep-
resentations it computes – abstract vectors in
a high-dimensional space – accessed by per-
ceptual and linguistic input? How do they
support naming, action, and other behav-
iors? How are they influenced by these non-
linguistic aspects of experience? What con-
tent do they have?

One response to these criticisms is as fol-
lows. LSA shows that sensitivity to high-
order temporal structure in language can
yield important information about semantic
similarity structure. Empirical studies show
that the human semantic system is sensi-
tive to the similarity structure computed
by LSA-like measures; so it is possible that
the human semantic system is also sensi-
tive in some degree to high-order temporal
structure in language. But this is not to say
that the semantic system is not also sensitive
to structure in other aspects of experience.
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The same learning mechanisms that ex-
tract information from statistical structure
in speech may also operate on nonlinguis-
tic perceptual information to support pre-
dictions about future events or appropri-
ate actions; and such a mechanism might
even assimilate high-order patterns of co-
variation between linguistic and nonlinguis-
tic sources of information, so that the result-
ing representations support predictions, not
just about what words are likely to follow
a given statement, but also about upcoming
perceptual experiences as well. That is, LSA
demonstrates that the human mind is sensi-
tive to temporal structure in one aspect of
experience (linguistic experience), and the
same mechanism that gives rise this sensitiv-
ity may also mediate learning in other per-
ceptual and motor domains.

4.3. The Sentence Gestalt Model

The notion that the semantic system might
capitalize on statistical structure both within
language and between language and other
aspects of experience is apparent in many
current theories of conceptual knowledge.
This idea has not been very directly im-
plemented in any computational model, for
obvious reasons – it requires fairly explicit
theories about perception, action, speech
production, and comprehension, all of
which constitute broad and controversial
domains of study in their own right! Impor-
tant progress in this vein was made, how-
ever, by St. John and McClelland (McClel-
land et al., 1989; St. John & McClelland,
1990; St. John, 1992).

St. John and McClelland were interested
in investigating verbal comprehension, not
just for individual words, but for full sen-
tences describing mini-events. Each sen-
tence described an agent performing some
action on some recipient, often with a par-
ticular instrument, thus, understanding of
each event required knowledge of who the
actor was, which action was taken, what
item was acted on, and what instrument
was used. When one comprehends a sen-
tence such as “The lawyer ate the spaghetti
with the fork,” for instance, one knows that

the lawyer is the thing doing the eating;
the spaghetti, and not the fork, is what is
eaten; the fork is being used by the lawyer
to eat the spaghetti; and so on. Comprehen-
sion of such utterances requires combining
the meanings of the individual constituent
words, as they come into the semantic sys-
tem, into some whole or Gestalt representa-
tion of the event.

Exactly how such combination is accom-
plished is the subject of considerable re-
search in psycholinguistics, extending well
beyond the scope of this chapter. To illus-
trate just one of the complexities attending
the question, consider the sentence, “The
lawyer ate the spaghetti with the sauce.”
Structurally, it is identical to the example
sentence in the preceding paragraph; but the
interpretation of the final noun (“fork” vs.
“sauce”) is strikingly different. In the former
sentence, the noun is interpreted as the in-
strument of the action “ate”; in the latter, the
noun is interpreted as a modifier of the re-
cipient “spaghetti.” Understanding how the
final noun “attaches” to the other concepts in
the sentence seems to require knowledge of
certain constraints deriving from the mean-
ing of the full event, for instance, that it
is impossible to use sauce to pick up and
eat spaghetti noodles or that it is unlikely
that the spaghetti was served with a top-
ping made of forks. That is, the attachment
of the noun derives neither from the struc-
tural/syntactic properties of words (which
should be identical in the two sentences),
nor from the meanings of individual words
taken in isolation (e.g., “not used as a top-
ping for spaghetti” is not likely to be a salient
property of the concept “fork”).

St. John and McClelland were inter-
ested both in providing a general frame-
work for thinking about comprehension of
the “whole meaning” of sentences and in
addressing attachment phenomena like that
just summarized. The model they used to
exemplify the framework is illustrated in
Figure 8.7. The first bank of input units con-
sists of localist representations of the indi-
vidual words that occur in sentences. These
feed forward to a bank of hidden units which
in turn feed forward to a simple recurrent



P1: IBE

CUFX212-08 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 16:1

computational models of semantic memory 253

copy previous

Current word

Word in
context

Previous Sentence Gestalt

Sentence Gestalt
Query

Response

Sentence in context
of query

Figure 8.7. The architecture of the Sentence Gestalt Model (McClelland, St. John, &
Taraban, 1989).

layer labeled “Sentence Gestalt.” The “copy-
ing over” of patterns from the Sentence
Gestalt to a Context layer (labeled “Previ-
ous Sentence Gestalt”) allows the network
to retain an internal representation of the
full sequence of words preceding a current
input. This context representation, rather
than feeding back directly to the Sentence
Gestalt, instead feeds forward into the first
Hidden layer, thus influencing the pattern
of activation that arises there in response
to a particular word input. That is, the first
Hidden layer forms a representation of a par-
ticular word encountered in a given sentence
context; this context-sensitive word repre-
sentation then feeds forward to influence the
current Sentence Gestalt.

Finally, the Sentence Gestalt units feed
forward to another bank of Hidden units,
but these also receive inputs from the layer
labeled “Query.” The Query units them-
selves are set directly by the environment
and contain localist representations of basic
questions one can pose to the network about
the meaning of the sentence – questions

such as “Who is the actor?”; “Who is the
recipient?”; “What was the action?”; “What
was the instrument?”; and so on. The out-
put layer, then, contains localist representa-
tions of the words that constitute answers
to these questions: single units coding the
various potential agents, recipients, actions,
instruments, and so on. So the full model
can be viewed as containing two parts: a
“comprehension” or input system that re-
tains representations of sequences of words
in the sentence to be comprehended, and
a “query” or output system that “interro-
gates” the model’s internal representations
to answer questions about the meaning of
the sentence. The Sentence Gestalt layer
codes the representations that intermediate
between these two networks.

The model’s task is to take in a series of
words corresponding to a meaningful sen-
tence and to correctly respond to queries
about the sentence’s meaning (i.e., answer
questions about “who did what to whom
with what”). To find a set of weights that
accomplish this task, the model is trained
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with backpropagation. The unit correspond-
ing to the first word of the sentence is acti-
vated in the input, and activation flows for-
ward through the network to the output.
The network is then “queried” by activat-
ing each of the possible question-inputs in
turn. With each query, the network’s ac-
tual response is compared with the correct
response, and the error is computed and
backpropagated through all the weights in
the network. Next, the activation of the
Sentence Gestalt layer is copied over to the
Context layer; the next word in the sentence
is activated in the input; input flows forward
through the network to the outputs; and
the model is queried again with all the var-
ious question-inputs. Effectively, the model
is “asked” about the full meaning of the sen-
tence as each word comes into the input and
is trained with backpropagation to make its
“best guess” as to the answers to those ques-
tions at each step in processing.

Setting aside for a moment questions
about the naturalness of this training regime,
let us consider the model’s behavior after it
has been learned. The trained network could
be presented with a full sentence (each word
coming in, one at a time, in order), leading it
to build up a distributed pattern of activity
in the Sentence Gestalt layer. The informa-
tion coded in this representation could then
be probed by activating different “Query”
units, effectively asking the network to an-
swer questions about the meaning of the
sentence. The first remarkable thing was
that the network could indeed successfully
answer the questions. That is, although the
model’s internal representation of the sen-
tence – the pattern of activity across the
Sentence Gestalt layer – was not directly in-
terpretable in and of itself, it produced the
correct answers to all of the probe questions,
indicating that it somehow “contained” the
full meaning of the test sentences.

The second remarkable thing was that
this ability generalized fairly well to test-
sentences the network had never before
seen. For instance, when given a sentence
like “The policeman ate the spaghetti with
the fork,” the network could correctly state
that the policeman was the actor and the
fork was the instrument, despite never hav-

ing seen a sentence in which the police-
man used a fork. The third remarkable thing
was that the network’s generalization behav-
ior was sensitive to just the kinds of con-
ceptual constraints exemplified previously.
When given a sentence like “The policeman
ate the spaghetti with the sauce,” for in-
stance, it correctly concluded that “sauce”
must be a modifier of “spaghetti,” and not
an instrument of “policeman” (again, despite
never having been trained on sentences in-
volving policemen and spaghetti). In gen-
eral, instruments associated with human be-
ings (e.g., “fork”) would tend to attach to
nouns describing human beings, even when
the pairings had never before been encoun-
tered, and nouns that tended not to be used
as instruments did not attach to agents, even
in novel sentences. The basis for this gener-
alization should be apparent from the pre-
vious discussion of Elman’s (1990) work.
Human agents tend to engage in many of
the same kinds of activities, using some of
the same kinds of instruments; this overlap
leads the Sentence Gestalt model to repre-
sent the various human nouns as somewhat
similar to one another in the first Hidden
layer (and different from nonhuman agents),
and this similarity promotes generalization
to new sentence contexts.

There are other appealing aspects of the
Sentence Gestalt model that will not be re-
viewed here. Instead, it is worth focusing
briefly on a seemingly artificial nature of the
training regime: the fact that the model is
“queried” with all possible questions with
each new word presentation and gets faith-
ful answers to every question during train-
ing. To what could such training possibly
correspond in the real world? One answer
to this question is that the training regime
in St. John and McClelland’s (1990) work
provides a coarse proxy to the covariation
of language with other aspects of experi-
ence. The verbal statements that children
are trying to understand as they learn a
language do not occur in isolation, but to-
gether with other sensory-motor informa-
tion. When daddy says, “Look, mommy’s
eating her dinner with a fork!” the infant
may look up to see mommy holding a fork,
jamming it into the spaghetti noodles, and
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raising it to her mouth. The agent, action,
recipient, and instrument information is all
contained in this event. Although children
may not be explicitly querying themselves
about these relationships as the Sentence
Gestalt model does, they may be doing
something related – trying to anticipate who
will pick up the fork, or what mommy is
holding on to, or what will go into the
mouth, and so on, when they hear daddy’s
statement and look up toward mommy.
That is, correspondences between verbal
statements and actual observed events may
provide the statistical basis for learning to
represent the meanings of full sentences.

4.4. Summary

The thread of research described in Section
3 suggested that the semantic system may
serve a particular functional role: the abil-
ity to make context-appropriate inferences
about the properties of objects, given their
name or some other perceptual input. To ac-
complish this role, it is necessary for the se-
mantic system to represent conceptual simi-
larity relationships among familiar items and
to adapt these relationships as necessary ac-
cording to the situation or context. Section
3 suggested that some of the information
necessary to acquire such knowledge may
be present in the overlap of sensory and mo-
tor properties across different modalities and
across different situations. The work pré-
cised in the current section adds to this sug-
gestion by showing how the semantic system
can become sensitive to temporal structure,
both within language and between language
and other aspects of experience. Elman’s
(1990) work provided a simple mechanism
for learning temporal structure; the work of
Landauer and Dumais (1997), Burgess and
Lund (1997), and others has shown how
rich such structure can be, even just con-
sidering temporal structure in natural lan-
guage; and the Gestalt models described by
McClelland and St. John (St. John & Mc-
Clelland, 1990; St. John, 1992) provide
a simple framework for thinking about
how coherent covariation between linguis-
tic structure and other aspects of experience
can promote the representation of meaning

for full sentences and events. These devel-
opments thus begin to offer leverage on the
three issues that remained unaddressed or
only partially addressed at the end of the
last section: the context-sensitive nature of
concepts, the representation of meaning for
abstract words, and the representation and
processing of full events encompassing mul-
tiple items.

5. Neurocognitive Models

All of the models reviewed thus far are best
construed as cognitive models – they offer
limited insight at best into the nature of
the neural systems and processes that sup-
port semantic abilities. The final thread of
research considered here encompasses neu-
rocognitive models. The majority of this
work has focused on understanding impair-
ments to semantic abilities following brain
damage. Two principal questions addressed
by this work are: (1) How can patterns of
observed semantic impairment be explained
given what we know about the cortical orga-
nization of information-processing systems
in the brain, and (2) what do patterns of
semantic impairment tell us about the neu-
roanatomical organization of the semantic
system?

Until very recently, these questions have
been pursued more-or-less independently of
the computational issues discussed in the
previous two sections. In this final section,
the two most widely studied forms of se-
mantic impairment and the models that
have been proposed to explain them are con-
sidered. Although these models share many
properties in common, they differ in impor-
tant respects that have implications for the
view of semantic abilities considered in Sec-
tions 3 and 4.

5.1. Category-Specific Semantic
Impairment

The first form of semantic impairment
is category-specific impairment: semantic
deficits that appear to be restricted to one
semantic domain while largely sparing oth-
ers. By far the most commonly observed
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category-specific impairment involves seri-
ously degraded knowledge of living things,
with comparatively good knowledge of
manmade objects (Capitani et al., 2003;
Martin & Caramazza, 2003; Warrington &
McCarthy, 1983). The reverse dissociation
has, however, also been reported (War-
rington & McCarthy, 1987; Warrington &
Shallice, 1984), along with other appar-
ently selective semantic deficits (Crutch &
Warrington, 2003; Samson & Pillon, 2003),
seeming to indicate that different forms of
brain damage can differentially affect knowl-
edge of different semantic domains. One
straightforward interpretation of this im-
pairment is that different parts of the brain
have been “specialized” over the course of
evolution for storing and retrieving seman-
tic information about living and nonliving
things (Caramazza, 1998). In early discus-
sions of apparent category-specific impair-
ments, however, Warrington and Shallice
(1984) suggested an alternative explanation:
Perhaps semantic representations of living
things depend to a greater extent on knowl-
edge of perceptual qualities, whereas seman-
tic representations of manmade objects de-
pend more on knowledge of their functional
characteristics. If so, then damage to regions
of the brain that support knowledge of vi-
sual attributes may produce a seeming “liv-
ing things” deficit, whereas damage to re-
gions that support knowledge of action or
function may produce an apparent “man-
made object” impairment.

This hypothesis had appeal for at least
two reasons. First, it was consistent with
what was already known about the func-
tional organization of cortex. That is, cor-
tical regions supporting visual perception of
objects are quite removed from those that
support action/object use, so the hypoth-
esis offered a means of understanding the
pattern without requiring the ad-hoc pro-
posal of separate cortical regions for repre-
senting different kinds of concepts. Second,
the hypothesis explained a few apparent ex-
ceptions to the supposed “category-specific”
patterns. For instance, some patients with
living things impairments were also seri-
ously impaired at naming and recognizing

musical instruments and minerals – artifacts
that might well depend to a greater ex-
tent than usual on knowledge of percep-
tual characteristics. Similarly, some patients
with “manmade object” impairments also
showed deficits for recognizing body parts,
arguably, living things that are closely tied
to knowledge of action and function (War-
rington & Shallice, 1984).

An influential computational implemen-
tation of the sensory-functional hypothesis
was put forward by Farah and McClelland
(1991). In addition to demonstrating that
the theory was indeed tractable, simulations
with the model showed that it also had some
counterintuitive implications. The model, il-
lustrated in the top panel of Figure 8.8, is a
fully recurrent network, in which activation
may flow in either direction between con-
nected layers. For instance, visual input to
the Visual layer can flow up to the Semantic
layer, and then in turn to the Verbal layer;
or alternatively, input from the Verbal layer
can flow to the Semantic layer and back to
the Visual layer. Thus, the units in the Se-
mantic layer may be construed as computing
mappings between visual and verbal infor-
mation presented from the environment.

Representations of objects in the model
take the form of distributed patterns of ac-
tivity across groups of units. The units them-
selves can be thought of as each responding
to some aspect of the entity represented by
the whole pattern, although these aspects
need not be nameable features or corre-
spond in any simple way to intuitions about
the featural decomposition of the concept.
In the Semantic layer, some units may re-
spond to objects with some particular vi-
sual property, whereas others may respond
to aspects of the object’s functional role. In
the Visual layer, patterns of activity corre-
spond to more peripheral visual represen-
tations, whereas patterns of activity in the
Verbal layer form representations of words.
To present a visual stimulus to the network,
the corresponding pattern of activation is
clamped across Visual units; these activa-
tions feed forward to Semantic units, then
on to Verbal units. The activations of Verbal
units can then feed back to the Semantic
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Shape
(Posterior temporal/
inferior parietal cortex)

Color
(Posterior ventral
occipetal-temporal
cortex)

Motion
(Middle temporal gyrus)

Sound
(Occipetal-temporal-
parietal junction)

Words
(Perisylvian cortex)

Touch
(sensorimotor cortex)

Action
(premotor cortex)

Semantic
representation

(anterior temporal
cortex)

Visual Verbal

Semantic

Perceptual features Functional features

A. Farah-McClelland model

B. The Convergence theory

Figure 8.8. Panel A. The Farah-McClelland model. Panel B: The Convergence theory of
semantic memory. Unit pools shown in black were implemented in the models described by
Rogers et al. (2004) and Lambon Ralph, Lowe, and Rogers (2007).

units, and this dynamic flow of activation
proceeds until the unit states stop chang-
ing, at which point the network is said to
have settled into a steady state or attractor.
The location of such stable configurations
depends on the connection weight matrix.
The role of learning in this model is to con-
figure the weights in such a way that, when
the network is presented with a particular
word or picture as input, it will settle into a
stable state in which the correct pattern of

activity is observed across units in the visual,
verbal, and semantic layers.

Farah and McClelland (1991) created
representations for ten “living” and ten “non-
living” objects, by generating random pat-
terns of −1 and +1 across all three layers of
units in the model. Each unique pattern cor-
responded to a representation of an individ-
ual item. Representations of living and non-
living things differed only in the proportion
of active semantic units in the “functional”
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and “perceptual” pools. These were set to
match the observed ratio of perceptual to
functional features of objects in dictionary
definitions. Living things in the model were
represented with an average of 16.1 visual
and 2.1 functional units active, whereas non-
living things were represented with an aver-
age of 9.4 visual and 6.7 functional units
active. All patterns had some units active in
both semantic pools. The verbal and visual
representations were random patterns gen-
erated in the same way for living and nonliv-
ing items. To find a configuration of weights
that would allow the network to perform
correctly, the model was trained with the
delta rule (McClelland & Rumelhart, 1985)
to associate Visual and Verbal patterns with
the appropriate Semantic pattern. When the
model had finished learning, it could gener-
ate the correct Semantic pattern from any
Verbal or Visual input, and activation of this
pattern would then correctly “fill in” the cor-
responding Verbal or Visual pattern.

Of interest was the model’s behavior
when its semantic units were damaged.
Under the sensory-functional hypothesis,
units representing the functional-semantic
aspects of an item can be damaged indepen-
dently of the units representing the item’s
perceptual-semantic properties. How did
the model’s performance deteriorate with
increasing damage to each of these pools
of units? To simulate neural trauma in the
network, Farah and McClelland (1991) sim-
ply deleted some proportion of the units in
either the perceptual-semantic pool or the
functional-semantic pool. They then tested
the network’s ability to perform model ana-
logues of picture naming and match-to-
sample tasks. In the former, the model was
presented with the picture of an object (by
applying a pattern of activity to the visual
units) and allowed to settle to a steady state.
The resulting pattern of activity across the
word units could then be read off and com-
pared with all the patterns in the training
corpus. The model’s response was consid-
ered correct if the pattern of activity across
word units was more similar to the correct
pattern than to any other pattern. The same
procedure was employed in the match-to-

sample task, using a word as input and exam-
ining patterns of activity across visual units
to determine the response.

Two aspects of their results are of inter-
est. First, the model showed a clear dou-
ble dissociation in its ability to name and
match living and nonliving things. When
visual semantic units were destroyed, the
model exhibited a greater naming impair-
ment for living relative to nonliving objects.
The opposite was true when functional units
were destroyed. Second, and more interest-
ing, in neither case was the model com-
pletely unimpaired in the “spared” domain.
Although the model was worse at naming
living things when perceptual-semantic fea-
tures were destroyed, it was also impaired at
naming nonliving things. Living things rely
more heavily on perceptual-semantic fea-
tures in the model, but such features inform
the representation of both living and nonliv-
ing objects to some degree. As this knowl-
edge deteriorates in the model, it tends to af-
fect naming performance for both domains,
albeit to differing degrees. The same graded
impairments are also witnessed in the pa-
tient data – profound impairments in one
domain are almost without exception ac-
companied by mild impairments in the rel-
atively spared domain.

Farah and McClelland (1991) also ex-
amined the network’s ability to retrieve
functional- and perceptual-semantic infor-
mation when given a picture or a word as
input. Considering only the perceptual or
the functional unit pools, they compared the
pattern of activity in the damaged network
when it had settled to the correct pattern
for each object. The network was considered
to have spared knowledge of the perceptual
properties of an item if the observed pattern
of activity across perceptual-semantic units
was closest to the correct pattern and spared
knowledge of functional properties if the
observed pattern across functional-semantic
units was closest to the correct pattern.

The simulations showed that the loss of
semantic features in one modality had im-
portant consequences for the model’s ability
to retrieve properties in the spared modality.
When perceptual semantic features were
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lost, the model had a tendency to gener-
ate an incorrect pattern of activity across
functional-semantic units, especially for liv-
ing things. The reason is that the recip-
rocal connections among semantic features
lead the network to rely on activity in
perceptual-semantic units to help produce
the appropriate patterns across functional
units. When this activation is reduced or dis-
rupted as a result of damage, these lateral
connections can interfere with the model’s
ability to find the correct states, even in the
spared units. Thus, the loss of “perceptual”-
semantic knowledge can precipitate a dis-
ruption of knowledge about functional prop-
erties, especially for categories that rely to
a large extent on perceptual information in
their representation. Of course, the reverse
is true when functional-semantic features
are damaged. So, counterintuitively, it is not
the case that patients with worse knowledge
of animals than artifacts should always show
preserved knowledge of functional proper-
ties under the theory, even though the the-
ory attributes the apparent category effect to
the loss of knowledge about sensory proper-
ties of objects.

5.2. The Convergence Model

The second well-studied form of seman-
tic impairment is the progressive and pro-
found degeneration of semantic knowledge
observed in the syndrome known as seman-
tic dementia (SD). There are three remark-
able facts about SD that constrain theories
about the neural basis of semantic abilities.
First, the semantic impairment appears to
encompass knowledge of all kinds of con-
cepts, tested in all modalities of reception
and expression. In contrast to the “category-
specific” cases described earlier, for in-
stance, patients with SD show equally poor
knowledge about living and nonliving things
(Garrard, Lambon Ralph, & Hodges, 2002).
They are profoundly anomic (Hodges,
Graham, & Patterson, 1995; Lambon Ralph
et al., 1998; Rogers et al., 2006), but their
impairments are not restricted to language:
they show serious deficits recognizing line
drawings of common objects (Rogers et al.,

2003), drawing pictures of objects after a
brief delay (Bozeat et al., 2003), coloring
black-and-white line drawings of common
objects (Rogers et al., 2007), assessing the
usual function of everyday objects (Bozeat
et al., 2002), matching a sound (such as
a telephone ring) to a picture of the item
that makes the sound (Adlam et al., 2006,
Bozeat et al., 2000) – effectively any task
that requires them to make an inference
about an object’s properties (regardless of
whether the item is depicted or denoted by a
word).

Second, other aspects of cognitive func-
tioning are remarkably spared in the dis-
order. Patients with SD are generally well
oriented in space and time; show com-
paratively normal episodic and recognition
memory; have speech that is grammatical
and, apart from word-finding problems, flu-
ent; have normal or near-normal perception;
show no attentional dysfunction; and per-
form well on tests of reasoning and problem
solving (Patterson & Hodges, 2000).

Third, the neuropathology that produces
SD is not widespread in the brain, but is
relatively circumscribed. The condition fol-
lows from the temporal-lobe variant of fron-
totemporal dementia, a disease that pro-
duces a slowly progressing deterioration of
cortical gray matter in the anterior temporal
lobes of the brain. Although the pathology
is often more pronounced in the left hemi-
sphere, it is virtually always bilateral and, in
some cases, can be worse in the right hemi-
sphere.

On the basis of these observations, Rogers
et al. (2004) proposed a theory about the
neural basis of semantic memory, illustrated
in the bottom panel of Figure 8.8. Like the
approaches discussed in Sections 3 and 4,
the theory proposes that semantic memory
serves a key function: to promote inferences
about the properties of objects and events
that are not directly perceived in the envi-
ronment. For instance, when encountering a
line drawing of a banana, representation of
the depicted object’s shape may depend pre-
dominantly on perceptual and not seman-
tic processes; but the semantic system then
promotes retrieval of the item’s name, its
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characteristic color, its taste, the actions re-
quired to peel it, and so on. In this sense, the
“meaning” of the image inheres in the coacti-
vation of various associated sensory, motor,
and linguistic representations.

Different kinds of sensory, motor, and
linguistic information are known to be
coded in widely distributed and functionally
specialized cortical regions, with some re-
gions specialized, for instance, for color per-
ception, others for motion perception, oth-
ers for representation of orthographic or
phonological words forms, and so on (Chao,
Haxby, & Martin, 1999; Martin & Chao,
2001). On the basis of the neuroanatomical
observations from SD, Rogers et al. (2004)
suggested that these widely distributed sen-
sory, motor, and linguistic representations
communicate with one another via the an-
terior temporal-lobe regions affected in SD.
That is, the anterior temporal lobes act
as a kind of “hub” or “convergence zone”
(Damasio & Damasio, 1994) that promotes
the interactive activation of linguistic, per-
ceptual, and motor representations. When
the hub deteriorates as a consequence of
disease, this degrades the ability to map be-
tween such surface forms.

Rogers et al. (2004) used a simplified
implementation of the theory to illustrate
some desirable consequences of this pro-
posal. The model’s architecture (the black
ovals in the second panel of Figure 8.8)
was similar to that of the Farah-McClelland
(Farah & McClelland, 1991) model: It in-
cluded a layer to code visual shape repre-
sentations, a layer to code verbal inputs-
outputs, and an intermediating Hidden layer
(labeled “Semantic” in the figure). Units in
the Visual layer were understood to repre-
sent visual properties of objects that could
be directly perceived, whereas units in the
Verbal layer were understood to represent
individual words. Visual and Verbal units
could get direct input from the environ-
ment, and both layers sent connections to
and received connections from the inter-
mediating Semantic units. Thus, the model
could be presented with a visual input (cor-
responding to a pattern of activity across
Visual units), a single name or word (cor-

responding to activation of a single Ver-
bal unit), or a phrase describing an object’s
properties (corresponding to a pattern of ac-
tivation across Verbal units).

This Convergence model contrasted
with the Farah-McClelland (Farrah &
McClelland, 1991) model in three impor-
tant ways. First, the patterns of activity that
constituted the Visual and Verbal represen-
tations were not random vectors, but in-
stead captured aspects of similarity appar-
ent in line drawings of common objects
and in the verbal statements we tend to
make about such objects. That is, items with
many visual properties in common were rep-
resented with overlapping patterns in the
Visual layer, whereas items to which sim-
ilar spoken predicates apply were repre-
sented with similar patterns in the Verbal
layer. Second, no “semantic” representations
were assigned. Instead, the model was sim-
ply trained (using a backpropagation algo-
rithm suited to recurrent networks) to com-
plete mappings between individual names,
visual representations, and verbal descrip-
tions of various objects. The patterns of ac-
tivation that arose across Semantic units in
the trained models thus constituted learned
internal representations, just as in the mod-
els described in Sections 3 and 4. Third, the
Convergence model proposed no functional
specialization of the intermediating seman-
tic units.

Rogers et al. (2004) simulated the neu-
ropathology of SD by removing an increas-
ing proportion of the weights projecting into
or out from the Semantic layer. The sim-
ulation experiments were able to replicate
several interesting aspects of impairment
in SD and made a variety of new predic-
tions about the consequences of temporal-
lobe damage for semantic memory (Lambon
Ralph et al., 2007; Rogers et al., 2004).
Rather than reviewing all of these results,
one aspect of the simulations that provides a
clue as to why the cortical semantic network
might employ a convergent architecture will
be discussed.

The key observation concerns the fact
that the learned internal representations in
the model end up capturing the semantic
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similarity relations existing among the items
in the training corpus for essentially the
same reasons discussed earlier with respect
to the Rumelhart model. More interestingly,
the authors showed that these acquired sim-
ilarity relations differed from those appar-
ent in the overlap of the model’s Visual and
Verbal patterns considered independently.
Specifically, from overlap in visual features,
the category of fruits was largely intermin-
gled with manmade objects, whereas, from
overlap in verbal features, the same items
were represented as quite distinct from both
manmade objects and from animals. The in-
ternal representations formed across Seman-
tic units in the Convergence model captured
a blend of these similarity relations: Fruits
were represented as (1) similar to one an-
other, (2) distinct from both manmade ob-
jects and animals, but (3) considerably more
similar to the former than the latter. This
counter intuitive finding (that fruits may be
represented as more similar to manmade ob-
jects than to animals) predicted that patients
with SD should be more likely to confuse
fruits with artifacts than with animals, a pre-
diction that was confirmed in a subsequent
sorting experiment (Rogers et al., 2004).

In other words, the simulation showed
that the intermediating representations that
arise from learning in a convergent architec-
ture can capture similarity structure that is
not directly apparent in any individual sur-
face representation. This observation is im-
portant precisely because surface represen-
tations – the sensory, motor, and linguistic
representations from which “meanings” are
thought to arise – often do not seem to faith-
fully capture semantic/conceptual similari-
ties. Light bulbs and pears may have similar
shapes, fire engines and strawberries have
similar colors, potato-mashers and plungers
engage similar motor programs; and so on.
The Convergence model suggests that, al-
though conceptual similarity structure may
not be directly captured by any of these sur-
face representations, it may be apparent in
the pattern of overlap across the different
kinds of representation. Thus, the explana-
tion as to why, computationally, the cor-
tex should employ a convergent architec-

ture is as follows: To acquire representations
that capture conceptual similarity relations
(and thus promote appropriate generaliza-
tion of stored information to newly encoun-
tered items), the semantic system must be
sensitive to overlap across widely distributed
surface representations, and such sensitivity
depends in turn on there being, somewhere
in the cortical semantic network, a region
where all these different kinds of informa-
tion converge.

5.3. Summary

The two previously described semantic syn-
dromes seem to point to different conclu-
sions about the neuroanatomical organiza-
tion of the semantic system. Studies of pa-
tients with apparent category-specific im-
pairment seem to suggest that there exists
a certain degree of functional specialization
within the semantic system, and theorists
vary considerably in their opinions as to the
degree and nature of such functional spe-
cialization. On the other hand, studies of
patients with SD seem to suggest that there
exists in the anterior temporal cortex a rel-
atively circumscribed region that is critical
to semantic processing for all variety of con-
cepts and all modes of reception and expres-
sion. The Farah-McClelland model may be
viewed as an effort to find a middle way be-
tween a complete balkanization of the sem-
antic system and a fully homogeneous sys-
tem. Related efforts have been put forward
by Plaut (2002), Humphreys and Forde
(2001), Tyler and colleagues (Tyler et al.,
2000), Devlin and colleagues (Devlin et al.,
1998), Lambon Ralph et al. (2007), and
many others. Although there is as yet no
clear consensus as to the resolution of these
issues, it is apparent that computational
models are providing important tools for an
increasing number of researchers interested
in the neural basis of semantic abilities.

An important direction for future efforts
will be to relate these neurocognitive models
back to the computational issues motivating
the more abstract models reviewed in earlier
sections of this chapter. That is, rather than
asking, “What architecture best explains the
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pattern of sparing and impairment observed
from different forms of brain damage,” one
may ask, “What architectures yield the com-
putational properties that, from more ab-
stract semantic theories, we believe the se-
mantic system must possess?”

6. Conclusion and Open Issues

This overview indicates that, for many of
the challenging puzzles currently facing re-
search in human semantic memory, the be-
ginnings of answers exist in the literature.
Important questions about category coher-
ence and feature weighting may be ad-
dressed by the fact that certain network
architectures promote sensitivity to high-
order covariance structure among stimulus
properties across different modalities of re-
ception and expression. Context-sensitivity
may also reflect sensitivity to higher-order
correlational structure in that any particu-
lar situation or context constrains which of
an item’s properties are “important” or rel-
evant and which similarity relationships are
best used to govern generalization and in-
duction. One way of understanding such in-
fluences is to propose that the distributed
semantic representations that govern perfor-
mance in the moment are shaped not only
by the particular item in question, but also
by a representation of the current context,
as is the case in the Rumelhart model (see
also Chapter 15 on cognitive control in this
volume). Finally, the semantic system’s abil-
ity to comprehend full events, as well as its
knowledge of “abstract” properties – prop-
erties that are not plausibly instantiated di-
rectly in sensory and motor systems – may
derive, at least in part, from its sensitivity to
temporal structure.

Important directions for future work in-
volve drawing these various threads together
in three different respects. First, the existing
work is dispersed across a variety of mod-
els employing quite different architectures,
differing degrees of abstraction, and differ-
ent assumptions about the nature of learning
and the information available to the seman-
tic system. It is not clear how the differ-

ent pieces fit together into a single frame-
work – a model in which coherent covaria-
tion among perceptual, motor, and linguistic
properties, sensitivity to temporal structure,
and representation of task context all con-
tribute together to semantic representation
and processing. Clearly, the development of
such a model is beyond the current state of
the art, but important next steps will involve
addressing at least some components of this
uber-system.

Second, this chapter focuses predom-
inantly on PDP approaches to semantic
memory, not because there are no other
computational approaches, but because
these other approaches typically focus on a
slightly different set of issues. For instance,
semantic memory is clearly important for
human induction and inference; but induc-
tion and inference also constitute seper-
ate domains of study in their own right,
in which Bayesian approaches are probably
most influential. Similarly, studies of cat-
egorization, although clearly overlapping
with issues addressed here, also constitute
a separate domain of study in which math-
ematical approaches (including prototype
and instance-trace models) are the norm.
As previously mentioned, these overlapping
domains of study, and the methods they
adopt, are reviewed in other chapters of
this volume. An important direction for fu-
ture research in semantic cognition and in
these other domains will be to understand
whether the theoretical approaches adopted
there differ fundamentally from those de-
scribed in the current chapter or whether
they constitute different formal descriptions
of the same underlying processes.

Finally, there is clearly much to be done
in relating computational theories of se-
mantic abilities to information processing
in the brain. Although most theories about
the neural basis of semantic cognition sup-
port the notion that semantic memory arises
from the association of perceptual, motor,
and linguistic representations that are widely
distributed in the brain, there remain many
open questions about the structure and pro-
perties of the cortical semantic network. For
instance, how can sensory-motor learning
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lead to knowledge of conceptual similarity
relations? How are abstract properties repre-
sented in the brain, if the semantic system is
built on sensory and motor properties? How
does the brain achieve the flexibility and
context-sensitivity observed in the seman-
tic system? What cortical mechanisms sup-
port conceptual development, and to what
extent are these driven by experience ver-
sus maturation? The simulations reviewed
in the current chapter provide intriguing
clues about the answers to these questions;
the next decade of research will need to in-
tegrate these computational ideas with the
emerging picture from neuroscience.
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CHAPTER 9

Models of Categorization

1. Introduction

This chapter surveys a variety of formal
models of categorization, with emphasis on
exemplar models. The chapter reviews ex-
emplar models’ similarity functions, learn-
ing algorithms, mechanisms for exemplar
recruitment, formalizations of response
probability, and response dynamics. The
intended audience of this chapter is stu-
dents and researchers who are beginning
the daunting task of digesting the literature
regarding formal models of categorization.
There are numerous variations for formaliz-
ing the component processes in exemplar
models of categorization, and one of the
contributions of the chapter is a direct com-
parison of component functions across mod-
els. For example, the similarity functions of
several different models are expressed in a
shared notational format, and formulas for
the special case of present/absent features
are derived, which permits direct compari-
son of their behaviors. No previous review
cuts across models this way, also including
comparisons of learning, exemplar recruit-
ment, and so forth.

By decomposing the models and display-
ing corresponding components side by side,
the chapter intends to reveal some of the
issues that motivate model builders, and
to identify some of the unresolved issues
for future investigators. Along the way, a
few promising but undeveloped ideas are
pointed out, such as an identity-sensitive
similarity function (Kruschke, 1993), a new
gradient-descent learning rule for the Super-
vised and Unsupervised Stratified Adaptive
Incremental Network (SUSTAIN) model
(Love, Medin, & Gureckis, 2004), an atten-
tionally modulated exemplar recruitment
mechanism (Kruschke, 2003b), a proposal
for cascaded activation in Attentional Learn-
ing Covering map (ALCOVE; Kruschke,
1992), among others.

Whereas this chapter is specifically in-
tended to survey exemplar model for-
malisms, it avoids discussions of the various
empirical effects explained or unexplained
by each model variation. A survey of empir-
ical phenomena can be found in the highly
readable book by Murphy (2002). A chap-
ter by Goldstone and Kersten (2003) de-
scribes the various roles of categorization in

267
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cognition. Another chapter by Kruschke
(2005) surveys models of categorization
with special emphasis on the role of selective
attention and attentional learning. Previous
reviews by Estes (1993, 1994) emphasize
particular exemplar models and associated
empirical results through the early 1990s.

1.1. Everyday Categorization

Everyone does categorization. For example,
if you were in an office, and your companion
pointed to the piece of furniture by the desk
and asked, “What’s that?” you would eas-
ily reply, “It’s a chair.” Such facility in cate-
gorization is not to be taken sitting down:
There are hundreds of different styles of
chairs, many of them novel, seen from thou-
sands of different angles, yet all can be effort-
lessly categorized as chair. Whereas people
include many items in the category chair,
they also exclude similar items that are cat-
egorized instead as a park bench or a car seat.
Putting those examples behind us, we con-
clude, a posteriori, that categorization is a
complex process.

Categorization is not just an armchair
amusement. It has consequences with costs
or benefits. If you mistakenly categorize a
dog as a chair and try sitting on it, the
category of teeth might suddenly leap to
mind. You might think it is ridiculous to
confuse a dog with a chair, but there are
children’s chairs manufactured to resemble
dogs. Moreover, categorizing a dog as a dog
is not always easy; a Labrador is doggier than
a Pekinese. A humorous consequence of cat-
egory atypicality was revealed in a 1933 car-
toon by Rea Gardner in the New Yorker
Magazine: A rotund wealthy lady enters a
posh restaurant clutching her tiny lap dog,
to which the snooty maitre d’ remarks, “I’m
sorry, Madam, but if that’s a dog, it’s not
allowed.” For a more thorough review of
the many uses and consequences of categori-
zation, see the chapter by Goldstone and
Kersten (2003).

1.2. Categorization in the Laboratory

Models of categorization are usually de-
signed to address data from laboratory ex-

periments, so “categorization” might be best
defined as the class of behavioral data gener-
ated by experiments that ostensibly study
categorization. Perhaps the iconic catego-
rization experiment is one that presents a
stimulus to an observer and asks him or her
to select a classification label for the stim-
ulus. In some experiments, corrective feed-
back is then supplied.

There are many kinds of procedures
and measurements in categorization experi-
ments, which can assay many different as-
pects of behavior. One such measure is
the proportion of times each category la-
bel is chosen when a stimulus is presented
repeatedly on different occasions. Experi-
menters can also measure confidence rat-
ings, response times, typicality ratings, eye
gaze, recognition accuracy or rating, and so
forth. Those dependent variables can be as-
sessed as a function of many different in-
dependent variables. For example, behavior
can be tracked as a function of the number
of stimulus exposures, whereby the experi-
menter can assess learning, priming, habitu-
ation, and so forth. Experimenters can also
manipulate category structure, that is, how
the stimuli from different categories are sit-
uated relative to each other. (For example,
the categories “stars in Orion” and “stars in
the Big Dipper” are fairly easy to distinguish
because their structures put them in distinct
regions of the sky. But the categories “stars
closer than 50 light years” and “stars far-
ther than 50 light years” are more difficult
to distinguish because stars from those cat-
egories are scattered in overlapping regions
of the sky.) The variety of independent vari-
ables is bounded only by the experimenter’s
imagination. A very accessible review of the
empirical literature has been presented by
Murphy (2002).

1.3. Informal and Formal Models

It is the constellation of categorization phe-
nomena that theorists want to explain. In-
formal theories provide some insights into
the possible shapes behind that constella-
tion. For instance, one may informally hy-
pothesize that a bird is defined by necessary
and sufficient features: A bird is something
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that flies, sings, and has feathers. By that
definition, however, a bird can be an opera
diva wearing a feather boa in an airplane.
So, instead, one might informally hypothe-
size that a bird is defined by similarity to a
prototype: A bird is something like a robin,
which is an often-seen bird for North Amer-
icans.

Informal theories are a very useful first
step in creating explanations of complex
behaviors. Unfortunately, informal theories
rarely make precise predictions and are often
difficult to distinguish empirically. Some-
times, it is only intuition that generates pre-
dictions from an informal theory, so differ-
ent theorists can make different predictions
from the same informal theory.

All branches of science progress from in-
formal theory to formal model. If all that
Isaac Newton did was propose informally
that there is a mysterious force that acts on
apples and the moon in the same way, it is
unlikely that his theory would be remem-
bered today. It was the precision and verac-
ity of his formal model of gravity that made
his idea famous. Whereas Newton invented
a formal model of how apples and moons
interact among themselves, cognitive scien-
tists have been inventing formal theories of
how apples and moons are mentally catego-
rized by observers. Just as there are many
possible aspects of objects that could be for-
mally specified in a model of gravitational
behavior, there are many aspects of mental
processing that could be formally specified
in a model of categorical behavior.

1.4. Types of Representation and Process

Any model must assume that the stimu-
lus is represented by some formal descrip-
tion.1 This input representation could be de-

1 This representational assumption for a model does
not necessarily imply that the mind makes a for-
mal representation of the stimulus. Only the formal
model requires a formal description. This is exactly
analogous to formal models of motion: Newton’s
formal model uses representations of mass and dis-
tance to determine force and acceleration, but the
objects themselves do not necessarily measure their
masses and distances and then compute their force
and acceleration. The representations in the model
help us understand the behavior, but those repre-

rived from multidimensional scaling (e.g.,
Kruskal, 1964; Shepard, 1962). For exam-
ple, an animal might be represented by its
precise coordinates in a psychological space
that includes dimensions of size, length of
hair/fur, and ferocity. Other methods for de-
riving a stimulus representation include fea-
ture extraction from additive clustering or
factor analysis. Any model must also assume
a formal representation of the cognizer’s re-
sponse. In the case when the cognizer is
asked to produce a category label for a pre-
sented stimulus, the formal representation
of the response could be a simple 1/0 cod-
ing for the presence/absence of each possible
category label.

Some key differences among models are
the representations and transformations that
link the input and response representa-
tions. These intermediate representations
and transformations are supposed to de-
scribe mental processes.2 In general, a model
of categorization specifies three things:
(1) the content and format of the internal
categorical knowledge representation, (2)
the process of matching a to-be-classified
stimulus to that knowledge, and (3) a pro-
cess of selecting a category (or other re-
sponse) based on the results of the matching
process.

It can be useful to categorize models of
categorization according to the content and
format of their internal knowledge. Essen-
tially, this content and format describe the
type of representation that models use to
mediate the mapping from input to output.
The usual five types of representation are ex-
emplars, prototypes, rules, boundaries, and
theories. Many models of categorization are
explicitly designed to be a clear case of one
of those representational types, and some
models are explicitly designed to be hy-
brids of those types, whereas yet other mod-
els are not easily classified as one of the
five.

sentations need not be reified in the behavior being
modeled.

2 Just as input and output representations are in
the model but not necessarily in the world, an
intermediate transformation and representation in
the model need not be reified in the mind being
modeled.
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1.4.1. exemplar models

The canonical exemplar model simply stores
every (distinct) occurrence of a stimulus and
its category label. To classify a stimulus, the
model determines the similarity of the stim-
ulus to all the known exemplars, aggregates
the similarities, and then decides the cate-
gorization of the stimulus. Exemplar mod-
els are the primary focus of this chapter
and will be discussed extensively later. The
other types of models are only briefly de-
scribed to establish a context for exemplar
models.

1.4.2. prototype models

A prototype model operates analogously to
an exemplar model, but instead of storing in-
formation about every instance, the model
only stores a summary representation of the
many instances in a category. This represen-
tative stimulus could be a central tendency
that expresses an average of the category.
This average need not be the same as any
actually experienced instance. The represen-
tative prototype could instead be a modal
stimulus defined either as the most frequent
instance or as a derived stimulus that is a
combination of all the most frequent fea-
tures. In the latter case, this modal stimu-
lus need not be the same as any actually
experienced instance. Finally, the prototype
could instead be an “ideal” exemplar or car-
icature that indicates not only the content
of the items in the category but also em-
phasizes those features that distinguish the
category from others. This ideal need not be
actually attained by any real instance of the
category.

In “pure” prototype models, the models
take a stimulus as input, compute its similar-
ity to various explicitly specified prototypes,
and then generate categorical response ten-
dencies. A famous early application of a
prototype model to human classification of
schematic faces was conducted by Reed
(1972). Any one-layer feed-forward connec-
tionist model can be construed as a proto-
type model; an example is the component-
cue model of Gluck and Bower (1988), in
which a category is defined by a vector of
weighted connections from features. (For

a discussion of connectionist models, see
Chapter 2 in this volume.)

Pure prototype models have a single ex-
plicit prototype per category. It is possible
instead to represent a category with mul-
tiple prototypes, especially if the category
is multimodal or has “jagged” boundaries
with adjacent categories. Taken to the limit,
this multiple-prototype approach can as-
sign one prototype per instance, so it be-
comes an exemplar model. Some examples
of models that recruit multiple prototypes
during learning of labeled categories will be
discussed later, but there are also models
that recruit multiple prototypes while trying
to learn clusterings among unlabeled items
(e.g., Carpenter & Grossberg, 1987; Rumel-
hart & Zipser, 1985).

In another form of prototype model, the
prototypes for the categories are implicit and
dynamic (and in fact, it might be debatable
to assert that these models “have” prototypes
at all). An example of this sort of model
is a recurrent connectionist network. When
a few nodes in the network are clamped
“on,” activation spreads via weighted con-
nections to other nodes. Some other nodes
will be stably activated, whereas other nodes
will be suppressed. If each node represents
a feature, then the collection of co-activated
nodes can be interpreted as having filled in
the typical features of the category to which
the initially clamped-on features belonged.
Models that implement this approach in-
clude the “brain state in a box” model of An-
derson et al. (1977) and the constraint-satis-
faction network of Rumelhart et al. (1986).

1.4.3. rule models

Another type of model that specifies a cat-
egory by a summary of its content is a rule
model. A rule is a list of necessary and suffi-
cient features for category membership. For
example, a bachelor is anything that is hu-
man, male, unmarried, and eligible. (No-
tice that the features themselves are cat-
egories.) Examples of rule models include
the hypothesis-testing approach of Levine
(1975) and the RULEX model of Nosofsky
et al. (Nosofsky & Palmeri, 1998; Nosofsky,
Palmeri, & McKinley, 1994).
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1.4.4. boundary models

Unlike the previously described types
of models, a boundary model does not
explicitly specify the content of a category
but instead specifies the boundaries between
categories. For example, one might define
a skyscraper as any building that is at least
twenty stories tall. The value, twenty sto-
ries, is the boundary between skyscraper and
non-skyscraper. Sometimes, boundary mod-
els are also referred to as rule models, be-
cause the boundary is a specific condition
for category membership just like necessary
and sufficient features are a specific condi-
tion. The usage here emphasizes that rules
specify interior content, whereas boundaries
specify edges between. The best developed
boundary models have been expounded in a
series of publications by Ashby and collab-
orators (e.g., Ashby & Gott, 1988; Ashby &
Maddox, 1992)

1.4.5. content/boundary duality

and on-the-fly equivalence

In some cases, it is only a matter of empha-
sis to think of a model as specifying content
or boundary, because there may be ways to
convert a content model to an equivalent
boundary model and vice versa. For exam-
ple, suppose two categories are represented
by one prototype for each category, and the
categorization is made by classifying a stim-
ulus as whichever prototype is closer. From
this it can be easily inferred that the model
makes a linear boundary between the two
categories, and an equivalent model states
that the stimulus is classified by whichever
side of the linear boundary it falls on.

It might be possible in principle to con-
vert any content model to an equivalent
boundary model and vice versa, but that
does not mean that the two types of mod-
els are equally useful. Especially when cate-
gory structure is complex, when there are
many categories involved, and when new
categories might be created, it is probably
easier to describe a category by content than
by boundary. For example, if new category
members are observed that are somewhat
different from previously learned instances,
it is easy to simply add the new items to

memory, but potentially difficult to add ex-
plicit “dents” in all the category boundaries
between that category and many others. The
actual difficulty depends on the particular
formalization of boundaries, so this intuitive
argument must be considered with caution.

There is another way in which a pure ex-
emplar model encompasses the others. If a
cognizer has perfect memory of all instances
encountered, then the cognizer could, in
principle, generate prototypes, rules, or the-
ories at any moment, on the fly, and use
those derived representations to categorize
stimuli. Although this process is possible,
presumably it would generate long response
latencies compared with a process that has
those representations immediately available
because of previously deriving them during
learning.

1.4.6. theory models

The fifth approach to models of categoriza-
tion is the “theory theory.” This approach
asserts that people have theories about the
world, and people use those theories to cat-
egorize things. This approach can explain a
variety of complex phenomena that are dif-
ficult for simpler models to address. The pri-
mary statement of this approach was writ-
ten by Murphy and Medin (1985), and
more recent reviews have been writtten by
Murphy (1993, 2002). Theory theories have
had limited formalizations, however, in part
because it can be difficult to formally spec-
ify all the details of a complex knowledge
structure. Some recent models that include
formalizations of previous knowledge, if not
full-blown theories, are those by Heit and
Bott (2000); Heit, Briggs, and Bott (2004)
and Rehder (2003a, 2003b).

1.4.7. hybrid models

The various representations and processes
described in previous sections have differ-
ent properties, and it may turn out to be the
case that no single representation captures
all of human behavior. It is plausible that the
breadth of human behavior is best explained
by a model that uses multiple representa-
tions. The challenge to the theorist then
goes beyond specifying the details of any one
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representational type. The theorist must also
specify exactly how the different represen-
tations interact and the circumstances under
which each subsystem is selected for action
or learning. Only a few combinations of rep-
resentation have been explored.

Busemeyer, Dewey, and Medin (1984)
combined prototype and exemplar mod-
els and found no consistent benefit of in-
cluding prototypes. A model proposed by
Smith and Minda (2000) combined pro-
totypes with punctate exemplars, in which
only exact matches to the exemplars have
an influence; but Nosofsky (2000) showed
that this particular hybrid model has serious
shortcomings.

Other models have combined rules or
boundaries with exemplars or multiple pro-
totypes. For example, the COVIS model
(Ashby et al., 1998; Ashby & Maddox,
2005) includes two subsystems, an explicit
verbal subsystem that learns boundaries
aligned with stimulus dimensions and an im-
plicit system that learns to map exemplars
or regions of stimulus space to responses. As
another example, a “mixture of experts” ap-
proach (Erickson & Kruschke, 1998, 2002;
Kalish, Lewandowsky, & Kruschke, 2004;
Kruschke, 2001a; Kruschke & Erickson,
1994; Yang & Lewandowsky, 2004) com-
bines modules that learn boundaries and
modules that learn exemplar mappings. The
mixture-of-expert approach also incorpo-
rates a gating system that learns to allocate
attention to the various modules.

1.5. Learning of Categories

A model of categorization can specify a map-
ping from input to output without specify-
ing how that mapping was learned. Theo-
ries of learning make additional assumptions
about how internal representations change
with exposure to stimuli. Different types of
representation may require different types
of learning. This section merely mentions
some of the various possibilities for learning
algorithms. Examples of each are described
in Section 2.

Perhaps the simplest learning mechanism
is a tally of how many times a particu-

lar feature co-occurs with a category label.
Somewhat more general are simple Heb-
bian learning algorithms that increment a
connection weight by a constant amount
whenever the two nodes at the ends of that
connection are co-activated. More sophis-
ticated Hebbian algorithms adjust the size
of the increment so that the magnitude of
the weight is limited. Notice that in these
schemes the weights are adjusted indepen-
dently of how well the system is performing
its categorization.

Alternatively, learning could be driven by
categorization performance, not by mere co-
occurrence of stimuli. The model can com-
pare its predicted categorization with the
actual category and, from the discrepancy,
adjust its internal states to reduce the error.
Thus, error minimization can be one goal
for learning. In other approaches to learn-
ing, the goal is to adjust the internal repre-
sentation such that it maximizes economy
of description or the amount of information
transmitted through the system.

Yet another scheme is learning by
Bayesian updating of beliefs regarding al-
ternative hypotheses. In the previous non-
Bayesian schemes, learning was a matter of
adjusting the values of a set of parameters,
such as associative weights. By contrast, in
a Bayesian framework, there are a large set
of hypothetical fixed parameter values, each
with a certain degree of belief. Bayesian
learning consists of shifting belief away from
hypotheses that fail to fit observations, to-
ward hypotheses that better fit the observa-
tions.

2. Exemplar Models

The previous section provided a brief infor-
mal description of some of the concepts that
will be formally expressed in the remain-
der of the chapter. From here on, the chap-
ter unabashedly employs many mathemati-
cal formulas to express ideas.

In recent decades, theories of categoriza-
tion emphasized rule-based theories (e.g.,
Bourne, 1966; Bruner, Goodnow, & Austin,
1956), then changed to prototype-based
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theories (e.g., Reed, 1972; Rosch & Mervis,
1975), and then moved to boundary (e.g.,
Ashby & Gott, 1988) and exemplar theories
(e.g., Medin & Schaffer, 1978; Nosofsky,
1986). Although a variety of representa-
tions have been formalized, exemplar mod-
els have been especially richly explored in
recent years, in no small part because they
have been shown to fit a wide variety of
empirical data. Exemplar models also form
a nice display case for illustrating the is-
sues mentioned in the preceding introduc-
tory paragraphs.

2.1. Exemplary Exemplar Models

Exemplar models have appeared in domains
other than categorization, such as percep-
tion, memory, and language (e.g., Edelman
& Weinshall, 1991; Hintzman, 1988; Logan,
2002; Regier, 2005). Within the categoriza-
tion literature, however, a dominant family
line of exemplar models centers on the Gen-
eralized Context Model (GCM; Nosofsky,
1986). The GCM is a formal generalization
of the context model of Medin and Schaf-
fer (1978). In these models, a stimulus is
stored in memory as a complete exemplar
that includes the full combination of stim-
ulus features. It is not the case that each
feature is stored independently of other fea-
tures. Thus, the “context” for a feature is
the other features with which it co-occurs.
Exemplar representation allows the models
to capture many aspects of human catego-
rization, including the ability to learn non-
linear category distinctions and correlated
features, while at the same time producing
typicality gradients.

In the context model and GCM, perhaps
just as important as exemplar representation
is selective attention to features. With selec-
tive attention, the same underlying exem-
plar representation can be used to represent
different category structures in which dif-
ferent features are relevant or irrelevant to
the categorization. The context model and
GCM had no learning mechanism for atten-
tion, however. Kruschke (1992) provided
such a learning mechanism for attention in
the ALCOVE model and at the same time

provided an error-driven learning mecha-
nism for associations between exemplars
and categories (unlike the simple frequency
counting used in the GCM). Hurwitz
(1994) independently developed a similar
idea but based on the formalism of the
context model, not the GCM. Attentional
shifting in ALCOVE was assumed to be
gradual over trials, but human attentional
shifting is probably much more rapid within
trials while retention is gradual across trials.
Rapid attention shifts were implemented
in the Rapid Attention Shifts ’N’ Learn-
ing (RASHNL) model of Kruschke and Jo-
hansen (1999). The basic formulas for the
GCM and ALCOVE are presented next,
so that subsequent researchers’ variations of
these formulas can be provided.

The GCM assumes that stimuli are
points in an interval-scaled multidimen-
sional space. For example, a stimulus might
have a value of 47 on the dimension of per-
ceived size and a value of 225 on the dimen-
sion of perceived hue. Formally, exemplar x
has value xi on dimension i .

The similarity between memory exem-
plar x and stimulus y is computed in two
steps. First, the psychological distance be-
tween x and y is computed:

d(x, y) =
∑

i

αi |xi − yi | (9.1)

where αi is the attention allocated to di-
mension i . Equation 9.1 simply says that
for each dimension i , the absolute differ-
ence between x and y is computed, and then
those dimensional differences are added up
to determine the overall distance. Each di-
mension contributes to the total distance
only to the extent that it is being attended
to; the degree of attention to dimension i
is captured by the coefficient αi (which
is non-negative). Notice that when αi gets
larger, the difference on dimension i is
weighted more heavily in the overall dis-
tance function. Equation 9.1 applies when
the dimensions are psychologically separa-
ble; that is, when they can be selectively
attended. In some applications, the atten-
tion strengths are assumed to sum to 1.0, to
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Figure 9.1. Similarity function in Generalized Concept Model (GCM) and Attentional Learning
Covering (ALCOVE) map. A memory exemplar is located at position x = (0, 0), and the height of
the surface is the similarity of stimulus y = (y1, y2) to x. The closer y is to (0, 0), the more similar it
is to x, so that the similarity peaks when y = x at (0, 0). Notice that the level contours, which can be
glimpsed on the floor of the plot, are diamond shaped. These diamonds mark points of equal
distance from the exemplar, using the “city-block” metric of Equation 9.1. The curved surface drops
exponentially as a function of distance, as dictated by Equation 9.2.

reflect the notion that dimensions compete
for attention.

After the distance is computed, the sim-
ilarity is determined as an exponentially de-
caying function of distance:

s(x, y) = exp(−c d(x, y)) (9.2)

where c > 0 is a scaling parameter. Thus,
when the distance is zero, that is, d(x, y) =
0, then the similarity is 1, that is, s(x, y) =
1. As the distance increases, the similarity
drops off toward zero. The rapidity of the
decrease in similarity, as a function of dis-
tance, is governed by the scaling parame-

ter, c: When c is large, the similarity drops
off more rapidly with distance. The expo-
nential form of the similarity function has
been motivated both empirically and theo-
retically (cf. Shepard, 1987; Tenenbaum &
Griffiths, 2001a, but note that those analy-
ses refer to generalization regarding a single
category, not exemplars). Figure 9.1 shows a
plot of this similarity function for an exem-
plar set arbitrarily at x = (0, 0). The caption
of the figure provides detailed discussion.

After similarity is computed, a categor-
ical response is then generated on the ba-
sis of which category’s exemplars are most
similar to the stimulus and most frequently
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observed. In a sense, the exemplars “vote”
for the category with which they are associ-
ated. The strength of the vote is determined
by how strongly the exemplar is activated
(by similarity) and how strongly it is asso-
ciated with the category (by frequency of
co-occurrence). The probability of choosing
a category is then just the proportional num-
ber of votes it gets. Formally, in the original
GCM (Nosofsky, 1986), the probability of
category R given stimulus y is

p(R|y) = βR
∑

x∈R NRx s(x, y)∑
r βr

∑
k∈r Nrk s(k, y)

(9.3)

where βr is the response bias for category r ,
and Nrk is the frequency that exemplar k has
occurred as an instance of the category r .
This rule is an extension of the similarity-
choice model for stimulus identification
(Luce, 1963; Shepard, 1957) and is often
referred to as the ratio rule. The numerator
of Equation 9.3 simply expresses the total
weighted vote for category R, and the de-
nominator simply expresses the grand total
votes cast. Thus, Equation 9.3 expresses the
proportion of votes cast for category R.

In summary, Equations 9.1, 9.2, and 9.3
describe how the GCM transforms a stimu-
lus representation, y, to a categorical choice
probability, p(R | y). The transformation
is mediated by similarity to exemplars in
memory.

In the GCM, the attention weights (αi in
Equation 9.1) were either freely estimated
to best fit data or set to values that opti-
mized the model’s performance for a given
category structure. The ALCOVE model
(Kruschke, 1992) instead provided a learn-
ing algorithm for the attention and associa-
tive strengths. For a training trial in which
the correct classification is provided (as in
human learning experiments), ALCOVE
computes the discrepancy, or error, between
its predicted classification and the actual
classification. The model then adjusts the
attention and associative weights to reduce
the error. To describe this error reduction
formally, let the correct (i.e., teacher) cat-
egorization be denoted tk, such that tk = 1
when category k is correct and tk = 0 oth-

erwise. The model’s predicted category ac-
tivation, given stimulus y, is defined to be
the sum of the weighted influences of the
exemplars. Denote the associative weight to
category k from exemplar x as wkx. Then
the predicted activation of category k is
ak =

∑
x wkx s(x, y). Notice that this sum is

the same as the sum that appears in the
GCM’s Equation 9.3 if wkx = Nkx. When
a stimulus is presented, the model’s error in
categorization is then defined as

E = .5
∑

k

(tk − ak)2
. (9.4)

The model strives to reduce this error
by changing is attention and associative
weights.

Of the many possible methods that could
be used to adjust attention and associative
weights, ALCOVE uses gradient descent on
error. Generally in gradient descent, a pa-
rameter value is changed in the direction
that most rapidly reduces error. Because the
gradient (i.e., derivative) of a function spec-
ifies the direction of greatest increase, gradi-
ent descent follows the negative of the gra-
dient. Gradient descent yields the following
formulas for changing weights and attention:

�wkx = λw (tk − ak) s(x, y) (9.5)

�αi = −λα

∑
x

∑
k

(tk − ak)

×wkx s(x, y) c|xi − yi | (9.6)

where λw and λα are constants of propor-
tionality, called learning rates, that are freely
estimated to best fit human learning data.
Equation 9.5 says that the change in weight
wkx, which connects exemplar x to cate-
gory k, is proportional to the error (tk − ak)
in the category node and the similarity
s(x, y) in the exemplar node. Equation 9.6
says that the error at the category nodes
is propagated backwards to the exemplar
nodes. Define the error at each exemplar
as εx =

∑
k (tk − ak) wkx s(x, y) c. Then the

change in attention to dimension i is simply
the sum, over exemplars, of each exemplar’s
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error, times its closeness to the stimulus on
that dimension: �αi = −λα

∑
x εx|xi − yi |.

The RASHNL model (Kruschke & Jo-
hansen, 1999) is an extension of ALCOVE
that makes large attentional shifts on each
trial and better mimics individual differ-
ences and human probabilistic category
learning than ALCOVE. In particular,
RASHNL includes a mechanism that grad-
ually reduces the learning and shifting rates,
so that a large shift of attention can be
“frozen” into the learned structure.

The previous section summarized the
GCM and ALCOVE models. They pro-
vide a reference point for exploring other
exemplar models. The discussion of other
exemplar models will emphasize the follow-
ing processes: computing similarity, learn-
ing associations and attention, recruiting ex-
emplars, choosing a response category, and
their timing, that is, temporal dynamics.
Each of these five aspects will be explored
at length in the following sections. One of
the goals is to show in detail how each of
the five aspects can be formalized in a vari-
ety of ways. This side-by-side comparison of
the internal components of each model is in-
tended to clarify how the models do indeed
have components, rather than being indivisi-
ble all-or-nothing entities. The juxtaposition
of components also reveals the variety of for-
malisms that has evolved over the years and
is suggestive of variation for future intelli-
gent designers.

2.2. Similarity

The GCM and its relatives, such as
ALCOVE, assume that stimuli can be rep-
resented as points on “interval” scales, such
as size. Stimuli that are instead best rep-
resented on “nominal” scales, such as po-
litical party (e.g., Republican, Democrat,
Libertarian, or Green Party), are not di-
rectly handled. Moreover, in the GCM and
ALCOVE, all that affects similarity is dif-
ferences between stimuli; the number of di-
mensions on which stimuli match has no im-
pact. Empirical evidence demonstrates that
the number of matching features can, in

fact, affect subjective similarity (e.g., Gati
& Tversky, 1984; Tversky, 1977).

Various researchers have contemplated
alternative stimulus representations and
similarity functions in attempts to expand
the range of applicability of exemplar mod-
els. The variations can be analyzed on two
factors (among others). First, the similar-
ity models can address stimuli represented
on either continuous, interval-scaled dimen-
sions or discrete, nominally scaled dimen-
sions. Second, similarity models can be sen-
sitive to either stimulus differences only
or stimulus commonalities as well. For ex-
ample, imagine two schematic drawings of
faces, composed merely of an oval outline
and two dots that indicate eyes. The sepa-
ration of the eyes differs between the two
faces. The perceived similarity of these two
faces is some baseline value denoted sb. Now
imagine including in both faces identical
lines for mouths and noses. Still, the only
difference between the faces is the eye sep-
aration; both faces merely have additional
identical features. The perceived similarity
of the augmented faces is denoted sa. If
sa �= sb, then the similarity is affected by the
number of matching features or dimensions.

Similarity models that are sensitive to the
number of matching features can be further
partitioned into two types. One type is sen-
sitive to stimulus commonalities only when
there is at least one difference between stim-
uli. In this type of model, when the stimuli
are identical, then the similarity of the stim-
uli is 1.0 regardless of how many features or
dimensions are present. In other words, the
self-similarity of any stimulus is 1.0 regard-
less of how rich or sparse the stimulus is. In a
different type of model, even self-similarity
is affected by how many stimulus features
or dimensions are present.

Table 9.1 lays out the two characteris-
tics of similarity functions, with the columns
corresponding to the type of scale used for
representing the stimuli and the rows cor-
responding to how the similarity function
is affected by the number of matching fea-
tures or dimensions. The following para-
graphs will first describe variations of models
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Table 9.1: Characteristics of similarity functions for various models

Scale for stimulus representation

Similarity is Continuous
sensitive to: Binary features N-ary features (interval) scale

Mismatches only Featural ALCOVE (Lee &
Navarro, 2002)

GCM (Nosofsky,
1986), ALCOVE
(Kruschke, 1992)

Number of matches,
but only with a
mismatch present

WRM (Lamberts, 1994),
Configural Model (Pearce,
1994)

SUSTAIN (Love
et al., 2004)

Number of
matches, including
self-similarity

SDM (Kanerva, 1988),
ADDCOVE (Verguts
et al., 2004)

Rational Model
(featural version;
Anderson, 1990)

APPLE (Kruschke,
1993)

that handle continuous scaled stimuli and
then describe several models that handle
nominally scaled stimuli. Finally, a hybrid
model will be presented.

A stimulus will be denoted y and the
value of its i th feature is yi . A copy of that
stimulus in memory is called an exemplar
and will be denoted x = {xi }. This nota-
tion can be used regardless of whether the
features are represented on continuous or
nominal scales. In the special circumstance
that every feature is simply present or ab-
sent, the presence of the i th feature is in-
dicated by yi = 1, and its absence is indi-
cated by yi = 0. As a reminder that this is
a special situation, the stimulus will be de-
noted as uppercase Y (instead of lowercase
y). When dealing with present/absent fea-
tures, the number of features that match
or differ across the stimulus Y and a mem-
ory exemplar X can be counted. The set of
present features that are shared by X and Y
is denoted X∩ Y, and the number of those
features is denoted nX∩Y . Some models are
also sensitive to the absence of features. The
set of features absent from a stimulus is de-
noted Y, and the number of features absent
from both X and Y is denoted nX∩Y . The set
of features present in X but absent from Y is
denoted X¬Y ≡ X∩ Y, and the number of
such features is denoted nX¬Y .

Similarity functions must specify, at least
implicitly, the range of features over which
the similarity is computed. In principle,
there are an infinite number of features ab-
sent from any two stimuli (e.g., they both
have no moustache, they both have no freck-
les, they both have no nose stud, etc.) and an
infinite number of features present in both
stimuli (e.g., they are both smaller than a
battleship, they are both mounted on shoul-
ders, they are both covered in skin, etc.).
The following discussion assumes that the
pool of candidate features over which simi-
larity is computed has been prespecified.

2.2.1. continuous scale, sensitive

to differences only

In the GCM and ALCOVE, stimuli are rep-
resented as values on continuously scaled di-
mensions. The similarity between a stimu-
lus and an exemplar declines from 1.0 only
if there are differences between the exem-
plar and the stimulus. If the exemplar and
stimulus have no differences, then their sim-
ilarity is 1.0, regardless of how many dimen-
sions are involved. Therefore, the GCM and
ALCOVE are listed in the upper right cell
of Table 9.1.

Although the GCM/ALCOVE similarity
function is meant to be applied to dimen-
sions with continuous scales, it will be useful
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for comparison with other models to con-
sider the special case when all dimensions
have only present/absent values. To simplify
even further, assume that αi = 1 for all i and
that c = 1. In this special case, Equations 9.1
and 9.2 reduce to

s(X, Y) = exp(−[nX¬Y + nY¬X]). (9.7)

Clearly, the similarity depends only on the
number of differing features and not on
the number of matching features. The term
in Equation 9.7 will arise again when dis-
cussing the featural ALCOVE model of Lee
and Navarro (2002).

2.2.2. continuous scale, sensitive

to matches

The similarity function in GCM/ALCOVE
proceeds in two steps. First, as expressed in
Equation 9.1, the model computes an over-
all distance between exemplar and stimulus
by summing across dimensions. Second, as
expressed in Equation 9.2, the model gener-
ates the similarity by applying an exponen-
tially decaying function to the overall dis-
tance.

In the Approximately ALCOVE (APPLE)
model of Kruschke (1993), that ordering of
computations is reversed. First, a similarity
is computed on each dimension separately,
using an exponentially decaying function of
distance within each dimension:

si (x, y) = exp(−αi |xi − yi |). (9.8)

Second, an overall similarity is computed by
combining the dimensional similarities via a
sigmoid (also known as squashing or logistic)
function:

s(x, y)

= sig
(∑

i

si (x, y); g , θ

)

=
[
1+ exp

(
−g

{∑
i

si (x, y)− θ

})]−1

(9.9)

where the gain, g > 0, is the steepness of the
sigmoid and θ is a threshold that is typically
somewhat less than the number of dimen-
sions being summed.

Figure 9.2 shows a plot of this similar-
ity function, which should be contrasted
with the GCM/ALCOVE similarity func-
tion shown in Figure 9.1. This similarity
function has some attractive characteristics,
one being that individual featural matches
can have disproportionately strong influence
on overall similarity. This is revealed in Fig-
ure 9.2 as the “ridges” where either x1 = y1

or x2 = y2. Another useful property of the
similarity function is that self-similarity (i.e.,
when y = x) can vary from exemplar to ex-
emplar if they have different thresholds or
gains. In particular, the self-similarity can
be less than 1.0 when the threshold, θ , is
high. Finally, when there are more dimen-
sions on which the stimuli match, then the
similarity is larger. This can be inferred from
Equation 9.9: When there are more dimen-
sional si (x, y) terms contributing to the sum,
the overall s(x, y) is larger. Thus, APPLE’s
similarity function operates on continuously
scaled stimuli and is affected by the number
of matching dimensions, even for identical
stimuli. Therefore, it is listed in Table 9.1 in
the lower right cell.

When the continuously scaled dimen-
sions assumed by APPLE are reduced to
present/absent features represented by 1/0
values, the similarity function can be ex-
pressed in terms of the number of matching
and differing features. Simplify by assuming
αi = 1 for all i , then Equations 9.8 and 9.9
imply

s(X, Y) = sig
(

nX∩Y + nX∩Y

+ 1
e

(nX¬Y + nY¬X); g , θ

)
(9.10)

where e = 2.718 is the base of the expo-
nential function. Clearly, this similarity is
a function of both the number of match-
ing features and the number of mismatching
features.
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Figure 9.2. Similarity function in Approximately ALCOVE (APPLE), from Equations 9.8
and 9.9, using specific parameter values indicated in the title of the figure. Compare with
Figure 9.1.

2.2.3. nominal scale, sensitive to

differences only

Whereas the GCM, ALCOVE, and APPLE
apply to stimuli represented on continuous
scales, there are also many models of cate-
gorization that apply to stimulus represen-
tations composed of nominally scaled di-
mensions. This section reviews several such
models that are sensitive only to stimulus
differences, not to stimulus commonalities
(analogous to GCM/ALCOVE). A later sec-
tion addresses similarity functions in which
commonalities do have an influence (analo-
gous to APPLE).

Lee and Navarro (2002) discussed a fea-
tural ALCOVE model in which stimuli are
represented as features derived from addi-
tive clustering techniques. Let xi denote the
presence or absence of feature i in stimu-

lus x, such that xi = 1 if x has features i ,
and xi = 0 otherwise. The distance between
exemplar x and stimulus y is given by

d(x, y) =
∑

i

αi [xi (1− yi )+ (1− xi )yi] .

(9.11)

Notice in Equation 9.11 that the term inside
the square brackets is simply 1 if feature i
mismatches and 0 otherwise. The distance
is algebraically equivalent to

∑
i αi |xi − yi |,

which is an expression seen before in Equa-
tion 9.1 and which will be seen again in
Equation 9.14. Lee and Navarro (2002) pre-
ferred to express the distance as shown in
Equation 9.11 because it suggests discrete
values for xi and yi rather than continuous
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values. Lee and Navarro (2002) then de-
fined similarity as the usual exponentially
decaying function of distance. In the spe-
cial case that αi = 1 for all i , the similar-
ity function becomes exactly Equation 9.7.
This similarity function is not sensitive to
matching features, so this model is listed in
the upper left cell of Table 9.1. Lee and
Navarro (2002) collected human learning
data for stimuli that were well described by
present/absent features, and found that AL-
COVE with the featural representation fit
the data better than the original continuous-
scaled ALCOVE.

2.2.4. nominal scale, sensitive

to matches

Several models are considered in this sec-
tion. This section first describes models that
assume binary valued (present/absent) fea-
tures and then moves on to models that as-
sume features with m values. Within each of
those, the discussion first addresses models
that are sensitive to the number of matching
features only when at least one mismatch
is present and then addresses models that
are sensitive to the number of matching fea-
tures, even when there are no mismatching
features.

Pearce (1987) developed a model in
which similarity is a function of both match-
ing and distinctive features. He defined the
similarity of two stimuli, X and Y, to be

s(X, Y ) = f (X∩ Y ) f (X∩ Y )
f (X ) f (Y )

(9.12)

where f (X ) is a monotonic function of the
number of features in X and of the individ-
ual saliences of the features.

Pearce (1994) proposed a specific version
of that function in his configural model of
associative learning. First, restrict consider-
ation to a situation where all features are
equally salient. Let the number of features
in stimulus X be denoted nX. When exem-
plar X is perceived, its features compete for
limited attention, such that each feature is
activated to a level 1/

√
nX. This level of ac-

tivation implies that the sum of the squared

activations is unity. Every distinct stimulus
recruits a copy of that stimulus activation in
exemplar memory. Pearce (1994) referred
to those exemplars as configurations of fea-
tures, hence, the moniker of the configural
model.

The similarity of a memory exemplar and
a stimulus was then defined to be simply
the sum over features of the products of
the feature activations. Because absent fea-
tures have zero activation, the sum over
all features reduces to a sum over match-
ing present features; hence, the similarity is
given by:

s(X, Y)

=
∑

i∈X∩Y

1√
nX

1√
nY

= nX∩Y
1√
nX

1√
nY

=
[

nX∩Y

(nX∩Y + nX¬Y)
nX∩Y

(nX∩Y + nY¬X)

]1/2

.

(9.13)

Notice that the similarity increases when the
number of matching features increases, as
long as there is at least one differing feature.
Hence, the configural model is listed in the
middle-left cell of Table 9.1.

Young and Wasserman (2002) compared
Pearce’s (1994) model and ALCOVE on a
task involving learning about stimuli with
present/absent features. ALCOVE was not
designed for present/absent features, and
Pearce’s model does not have selective
attention. Young and Wasserman (2002)
found that neither model accurately cap-
tured the learning trends in their set of cate-
gory structures, but suggested that it might
be possible to modify the attentional capac-
ity constraints in the models to address their
findings.

Lamberts (1994) explored another sim-
ilarity function that is sensitive to match-
ing features and distinctive features. Again,
consider features that are binary valued, ei-
ther present or absent, and coded as 1 or 0,
respectively. In Lamberts’s Weighted Ratio
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Model (WRM), the similarity of exemplar x
to stimulus y is given by

s(x, y)

= µ
∑

i αi (1− |xi − yi |)
µ

∑
i αi (1− |xi − yi |)+ (1− µ)

∑
i αi |xi − yi |

(9.14)

where (1− |xi − yi |) is 1 if and only if the
exemplar and stimulus match on dimen-
sion i , and |xi − yi | is 1 if and only if the ex-
emplar and stimulus differ on dimension i .
The value of µ (between 0 and 1) in Equa-
tion 9.14 determines the influence of match-
ing features relative to differing features.
As in previous sections, αi is the attention
allocated to dimension i . Lamberts (1994)
explored some aspects of this similarity
function in model fitting, but the similarity
function has not been extensively pursued
in subsequent work.

Notice that in Equation 9.14, the compo-
nent of the denominator that measures feat-
ural differences,

∑
i αi |xi − yi |, is the same as

Equation 9.1 and is algebraically equivalent
to Equation 9.11 used by Lee and Navarro
(2002). The WRM goes beyond the GCM
by including the influence of matching fea-
tures in addition to mismatching features.
The number of matching features only af-
fects the similarity, however, when there is
at least one mismatch; therefore, the WRM
is listed in the middle-left cell of Table 9.1.
Again it is worth emphasizing that, despite
the comparison of the WRM with the GCM,
the GCM applies to continuous dimensions,
whereas the WRM applies to present-absent
features.

The similarity function of the WRM
can be expressed in terms of the number
of matching and differing features. Just as
Pearce (1994) assumed equal salience for all
features, set αi = 1 for all i , which implies
that

∑
i αi (1− |xi − yi |) = nX∩Y + nX∩Y and∑

i αi |xi − yi | = nX¬Y + nY¬X. When µ =
0.5, Equation 9.14 becomes

s(x, y) = nX∩Y + nX∩Y

nX∩Y + nX∩Y + nX¬Y + nY¬X
.

(9.15)

Equation 9.14 reduces to the similarity func-
tion of the configural model under slightly
different special circumstances. First, sup-
pose that nX∩Y = 0; second, set µ = 2/3,
that is, put twice as much weight on match-
ing features than differing features; third,
suppose nX¬Y = nY¬X. Then the WRM sim-
ilarity of Equation 9.15 becomes

s(x, y) = nX∩Y

nX∩Y + nX¬Y
= nX∩Y

nX∩Y + nY¬X
.

(9.16)

When those final two (equal) expressions
in Equation 9.16 are multiplied times each
other and square-rooted, the result is an ex-
pression that matches the configural model’s
similarity in Equation 9.13. In their general
forms, however, the WRM similarity allows
differential salience (i.e., attention) to fea-
tures and differential weighting of matching
and differing features, whereas the configu-
ral model predicts that the effect of increas-
ing nX¬Y can be different than the effect of
increasing nY¬X.

The Sparse Distributed Memory (SDM)
model of Kanerva (1988) can be interpreted
as a form of exemplar model. In SDM, stim-
uli are assumed to be represented as points
in a high-dimensional binary-valued space,
such that yi ∈ {1, 0}. Memory exemplars are
represented by weights such that xi = 1 for
a present feature, but, unlike previous mod-
els, xi = −1 for an absent feature (and xi = 0
for a feature about which the exemplar is in-
different, but such a case will not be consid-
ered here). A memory exemplar is activated
when

∑
i xi yi > θx, where θx is the thresh-

old of the exemplar. This activation can be
interpreted as the similarity of the stimulus
to the exemplar; here, the similarity has just
two values. Thus,

s(X, Y) =
{

1 if
∑

i xi yi ≥ θx

0 otherwise

= step (nX∩Y − nY¬X − θx) (9.17)

where step(n) = 1 when n ≥ 0 and
step(n) = 0 when n < 0. Clearly, the sim-
ilarity function in SDM is sensitive to both
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matching and differing features, and it is
listed in the lower-left cell of Table 9.1.
SDM has not been extensively applied to
many behavioral phenomena, but it is in-
cluded here as an example of the variety of
possible similarity functions.

Verguts et al. (2004) developed a varia-
tion of ALCOVE that they called Additive
ALCOVE (ADDCOVE) because the first
step in its similarity computation is an addi-
tive weighting of features. Specifically, sup-
pose a stimulus consists of features xi . The
corresponding exemplar in memory is given

feature weights wi = xi/

√∑
j x2

j = xi/‖x‖.
When presented with stimulus y, a baseline
exemplar activation is computed by adding
weighted features as follows:

a(x, y) =
∑

i

xi

‖x‖ yi . (9.18)

When x and y consist of 0/1 bits, Equa-
tion 9.18 becomes

a(x, y) =
∑

i∈X∩Y

1√
nX

= nX∩Y/
√

nX, (9.19)

which is like the configural model (Equa-
tion 9.13), except that here, yi = 1, not
1/
√

nY .
These baseline activations are then nor-

malized relative to other exemplar activa-
tions. Included in the set of other exemplar
activations is a novelty detector, which has
aN(y) = θ‖y‖ = √

nY with θ close to 1.0, for
example, 0.99. The similarity of exemplar x
to stimulus y is then given as

s(x, y) = a(x, y)φ

/[∑
k

a(k, y)φ + aN(y)φ

]
(9.20)

where the index, k, varies over all exemplars
in memory. When x and y consist of 0/1 bits,

Equation 9.20 becomes

s(x, y)

= (nX∩Y/
√

nX )φ[∑
K(nK∩Y/

√
nK )φ + (θ

√
nY )φ

]
= (nX∩Y/

√
nX∩Y + nX¬Y )φ[∑

K(nK∩Y/
√

nK∩Y + nK¬Y)φ + (θ
√

nY)φ
] .

(9.21)

As can be gleaned from Equation 9.21,
this similarity function depends on both the
shared and the distinctive features between
the exemplar and the stimulus.

Notice that the similarity function of
Equation 9.21 can be asymmetric: s(x, y) �=
s(y, x) when X¬Y �= Y¬X. In other words,
if a memory exemplar has, say, one feature
that a stimulus does not have, but that stim-
ulus has two features that the memory ex-
emplar does not have, then the similarity
of the stimulus to the exemplar is differ-
ent from the similarity of the exemplar to
the stimulus. This asymmetry might be use-
ful for addressing analogous asymmetries in
human similarity judgments. (Another ex-
ample of an asymmetric similarity function
can be found in Sun, 1995, p. 258.) Inter-
estingly, moreover, the similarity in Equa-
tion 9.21 also depends on what other ex-
emplars are currently in memory. Thus, a
stimulus might be fairly similar to an ex-
emplar at one moment, but after another
highly similar exemplar is added to mem-
ory, the similarity to the first exemplar will
be reduced.

The SUSTAIN model of Love et al. (2004)
employs a similarity function that oper-
ates on multivalued (not just binary valued)
nominal dimensions. Different nominal di-
mensions can have different numbers of val-
ues. For example, the dimension of marital
status might have three values (single, mar-
ried, divorced), and the dimension of politi-
cal affiliation might have four values (Demo-
crat, Republican, Green, Libertarian). If di-
mension i has mi values, then a stimulus is
represented by a bit vector of length

∑
i mi

that has 1’s in positions of present features
and 0’s elsewhere.
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In SUSTAIN, what is here being referred
to as “exemplars” are not just copies of in-
dividual stimuli, but are instead central ten-
dencies of clusters of stimuli. In certain con-
ditions, SUSTAIN could recruit a cluster
node for every presented instance and could
therefore become a pure exemplar model.
The representation for a cluster is also a vec-
tor of

∑
i mi values, but the values are the

means (between 0 and 1) of the instances
represented by the cluster. The components
of the vectors are denoted xiv, where the
subscript indicates the vth element of the i th

dimension. The similarity of a cluster node
x to a stimulus y is then defined as

s(x, y) = 1∑
i α

γ

i

×
∑

i

α
γ

i exp

(
−.5αi

∑
v∈i

|xiv − yiv|
)

(9.22)

where γ ≥ 0 governs the relative dominance
of the most attended dimension over the less
attended dimensions. Notice that if x = y
then s(x, y) = 1 regardless of how many di-
mensions are involved.

It should be noted that Love et al. (2004)
never asserted that Equation 9.22 is a model
of similarity; rather, they simply defined the
activation of a cluster node when a stimulus
is presented. It is merely by analogy to other
models that it is here being called similar-
ity. Moreover, the final activation of cluster
nodes in SUSTAIN is another step away:
There is competition and then only the win-
ner retains any activation at all. Because the
SUSTAIN model incorporates several other
mechanisms that distinguish it from other
exemplar models, it is not clear which as-
pects of the specific formalization in Equa-
tion 9.22 are central to the model’s behavior.
The function is described here primarily as
an example of how similarity can be defined
on multivalued nominal dimensions.

SUSTAIN’s similarity function can be re-
lated to previous approaches that assumed
binary valued features. Suppose that ev-

ery feature is binary valued, suppose that
αi = 1 for all features, and suppose that
clusters represent single exemplars (so that
xi ∈ {0, 1}). Then Equation 9.22 becomes

s(x, y) = (nX∩Y + nX∩Y)+ 1
e (nX¬Y + nY¬X)

(nX∩Y + nX∩Y)+ (nX¬Y + nY¬X)

(9.23)

where e = 2.718 is the base of the exponen-
tial function. This special case of the sim-
ilarity function clearly decomposes the in-
fluence of matching and differing features.
The numerator of this equation appeared
before, specifically in Equation 9.10, which
expressed the APPLE model when applied
to the special case of binary features. The
APPLE model compresses the range of that
numerator by passing it through a sigmoidal
squashing function. The SUSTAIN model
compresses the range of that numerator by
dividing by the total number of features.
However, unlike APPLE, the ratio in SUS-
TAIN is only sensitive to the number of
matching features when there is at least one
mismatching feature; hence, SUSTAIN is
listed in the center cell of Table 9.1.

Another approach to similarity, and the
last that will be considered here, is provided
by the rational model of Anderson (1990,
1991). Like SUSTAIN, the rational model
recruits cluster nodes as training progresses.
In the limit, it can recruit one cluster per
(distinct) exemplar and behave much like
the GCM (Nosofsky, 1991).

The rational model takes a Bayesian ap-
proach, which entails fundamental onto-
logical differences from the previous ap-
proaches. (For a discussion of Bayesian
models more generally, see Chapter 3 in
this volume.) The goal of the rational model
is to mimic the probability distribution of
features observed in instances. Each clus-
ter node represents the probability of sam-
pling any particular feature value, and the
model overall represents the probability of
instances as a mixture of cluster-node dis-
tributions. But that statement does not cap-
ture an important subtlety of the Bayesian
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approach: Each cluster node represents an
entire distribution of beliefs about possible
probabilities of features values.

For example, suppose a cluster node is
representing the distribution of heads and
tails (i.e., the feature values) in a sequence
of coin flips (i.e., the instances). Denote the
underlying probability of heads as θ1 and the
probability of tails as θ2 (= 1− θ1). One pos-
sible belief about the underlying probability
of heads is that θ1 = 0.5, that is, the coin
is fair. But there are other possible beliefs
that the coin is biased, such as θ1 = 0.1 or
θ1 = 0.9. The cluster node represents the
degree of belief in every possible value of
θ1 and θ2. By assumption, the model be-
gins (before seeing any instances) with be-
liefs spread out uniformly over all possible
values of θ . Gradually, the model loads up
its beliefs onto those values of θ that best
mimic the observed values, simultaneously
reducing its belief in values of θ that do not
easily predict the observed values. Figure 9.3
illustrates this process of updating belief dis-
tributions.

In general, when a feature has V values,
any particular belief specifies the probabil-
ity θv of each of the V feature values. A
cluster node represents a degree of belief
in every possible particular combination of
probabilities. The degree of belief is a distri-
bution over the space of all possible values
of θ1, . . . , θV. Such a distribution could, in
principle, be specified in a variety of ways;
typically, the specification of the distribu-
tion will involve parameter values. Ander-
son (1990) uses the Dirichlet distribution,
which has parameters, av, one per feature
value, that determine the distribution’s cen-
tral tendency and shape. In the earlier ex-
ample with two scale values (i.e., heads and
tails), the Dirichlet distribution has two pa-
rameters, a1 and a2 (and in this case is com-
monly called the Beta distribution). Exam-
ples of the Dirichlet distribution are shown
in Figure 9.3. Anderson assumes that clus-
ters begin with unbiased beliefs, parameter-
ized by av = 1 for all values v. With each
observation of an instance, the distribution
of beliefs is updated according to Bayes’ the-
orem. Conveniently, the updated (“poste-

rior”) distribution of beliefs turns out also
to be a Dirichlet distribution in which the
a parameter of the observed feature value is
incremented by one. Again, see the caption
of Figure 9.3 for an example of this pro-
cess. Thus, after mv instances with value v,
the parameters of the belief distribution are
av = mv + 1.

The value θv is, by definition, the prob-
ability that the feature value would be
generated by the cluster if the value θv were
true. So the cluster’s predicted probability
of feature value v is the integral over all
possible values of θv weighted by the prob-
ability of believing it is true. Thus, p(v) =∫ · · ·∫ dθ1· · ·dθV θv p(θ1, . . . , θV|a1, . . . , aV).
For the Dirichlet distribution, the integral
simplifies to

p(v) = av

/∑
w

aw

= (mv + 1)
/∑

w

(mw + 1) . (9.24)

To reiterate, Equation 9.24 provides the
probability that a cluster would generate
feature value v within a particular featural
dimension.

Stimuli do not usually have just one feat-
ural dimension, however. For example, they
might have the features of political party,
marital status, ethnicity, and so forth. The
rational model assumes that, within any
cluster, the features are independent of each
other. Because of this assumed indepen-
dence, the probability of observing value v1

on feature 1 in conjunction with value v2

on feature 2, and so forth, is the product
of their individual probabilities: p({vd}) =∏

d p(vd). Anderson used that overall prob-
ability of the stimulus as a measure of how
similar the stimulus is to the cluster. For-
mally, for a stimulus y = {vd} and a cluster
x = {avd }, the “similarity” of y to x is

s(x, y) =
∏

d

p(vd)

=
∏

d

mvd + 1∑
w∈d (mw + 1)

. (9.25)
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Figure 9.3. Each panel corresponds to the state of a cluster node in Anderson’s (1990) rational
model. Here, the cluster node is representing a single featural dimension that has two possible values.
In each panel, the horizontal axis shows θ1, which indicates the probability that the feature takes on
its first value. (Of course, θ2 = 1− θ1.) The vertical axis indicates the degree of belief in values of θ1.
Before observing any instances, the cluster begins in the top-left state, believing uniformly in any
possible value of θ1, which is parameterized as a1 = 1 and a2 = 1. If the first observed instance
displays value 1, then the cluster node adjusts its distribution of beliefs to reflect that observation,
moving to the left-middle state, parameterized as a1 = 2 and a2 = 1. If the next observed instance
displays value 2, then the cluster node changes its beliefs to the center state, parameterized as a1 = 2
and a2 = 2. At this point, because 50% of the instances have shown value 1, the cluster believes most
strongly that θ1 = 0.50, but because there have only been two observations, beliefs are still spread out
over other possible values of θ1.

Anderson intended this as similarity only
metaphorically and not as an actual model
of similarity ratings (Anderson, 1990,
p. 105).

Consider the special circumstances
wherein all dimensions are binary valued
and a cluster represents a single exemplar.

When the cluster represents a single exem-
plar, it implies that mv = 0 for all v but one.
If the represented instance occurred r times,
then mv = r for the feature value that actu-
ally appeared in the instance. In this partic-
ular situation, the similarity formula can be
expressed in terms of the number of features
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that match or mismatch between the cluster
and the stimulus. Equation 9.25 becomes

s(x, y) =
(

r + 1
r + 2

)nX∩Y+nX∩Y

×
(

1
r + 2

)nX¬Y+nY¬X

. (9.26)

Because similarity of an instance to its corre-
sponding exemplar is influenced by how of-
ten the instance has previously appeared, the
rational model is listed in the lower-center
cell of Table 9.1.

2.2.5. hybrid scale

Nosofsky and Zaki (2003) proposed a sim-
ilarity function that incorporates aspects
of the standard spatial similarity metric of
Equation 9.2 with coefficients that express
discrete-feature matching and mismatching.
Their hybrid similarity function defined sim-
ilarity as

sh(x, y) = C D exp(−c d(x, y)) (9.27)

where C > 1 expresses the boost in similar-
ity from matching features, and 0 < D < 1
expresses the decrease in similarity from dis-
tinctive features. Notice in particular that
the similarity of an item to itself is C > 1.
Nosofsky and Zaki (2003) found that the
hybrid-similarity model fit their recognition
data very well, whereas the standard simi-
larity function did not.

2.2.6. attention in similarity

Finally, a crucial aspect of similarity that
has not been yet emphasized is selective
attention to dimensions or features. Most
of the models reviewed earlier do explic-
itly allow for differential weighting of di-
mensions. Even the SDM model permits
differential feature weights (Kanerva, 1988,
p. 46). Only the configural model (Pearce,
1994) and the rational model (Anderson,
1990) do not have explicit mechanisms for
selective attention.3 This lack of selective at-

3 Anderson (1990, pp. 116–117) describes a way to
differentially weigh the prior importance of each

tention leaves those models unable to gener-
ate some well-established learning phenom-
ena, such as the relative ease of categories for
which fewer dimensions are relevant (e.g.,
Nosofsky et al., 1994). See Chapter 9 in this
volume for a review that emphasizes the role
of attention.

2.2.7. summary of similarity

formalizations

One of the contributions of this chapter is
a review of these various models of similar-
ity in a common notation to facilitate com-
paring and contrasting the approaches. In
particular, expressions were derived for the
similarity functions in terms of the number
of matching and mismatching features when
the models are applied to the special case of
present/absent features, with equal atten-
tion on all the features. This restriction to
a special case permits a direct comparison
of the similarity functions in terms of the
influence of the number of features in each
stimulus, the number of distinctive features,
and so forth.

If nothing else, what can be concluded
from the variety of similarity functions re-
viewed in this section is that the best for-
mal expression of similarity is still an open
issue. The shared commitment in this vari-
ety is the claim that categorization is based
on computing the similarity of the stim-
ulus to exemplars in memory. Although
the review of similarity functions has re-
vealed that there are a variety of formaliza-
tions that different researchers have found
useful in different circumstances, what is
lacking is specific guidance regarding which
formalization is appropriate for which sit-
uation. A general answer to this question
is a foundational issue for future research.
A thought-provoking review of how peo-
ple make similarity judgments has been

featural dimension, but this is opposite from learned
selective attention. In Anderson’s approach, the
model begins with strong prior selectivity that
subsequently gets overwhelmed with continued
learning. But in human learning, the prior state
is, presumably, noncommittal regarding selectiv-
ity and subsequently gets stronger with continued
learning.
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provided by Medin, Goldstone, and Gentner
(1993). A perspective on similarity judg-
ment, as a case of Bayesian integration over
candidate hypotheses for generalization, has
been presented by Tenenbaum and Griffiths
(2001a).

2.3. Learning of Associations

Exemplar models assume that at least three
aspects of the model get learned. First,
the stimulus exemplars themselves must be
stored. This aspect is discussed in a sub-
sequent section. Second, once the exem-
plars are in memory, the associations be-
tween exemplars and category labels must
be established. Third, the allocation of at-
tention to stimulus dimensions must be de-
termined. In principle, other aspects of the
model could also be adjusted through learn-
ing. For example, the steepness of the gen-
eralization gradient (e.g., parameter c in
Equation 9.2) could be learned, or the de-
cisiveness of choice (e.g., parameter φ in
Equation 9.36) could be learned. These in-
triguing possibilities will not be further ex-
plored here.

This section focuses on how the associ-
ations between exemplars and category la-
bels are learned. Learned attentional allo-
cation can also be implemented as learned
associations to attentional gates, and there-
fore attentional learning is also a topic of
this section. (For a discussion of associative
learning in humans and animals, see Chapter
22 in this volume.)

Associative strengths can be adjusted
many different ways. Perhaps the simplest
way is adding a constant increment to the
weight whenever both its source and tar-
get node are simultaneously activated. More
sophisticated schemes include adjusting the
weight so that the predicted activation at
the target node better matches the true tar-
get activation. These and other methods are
discussed en route.

2.3.1. co-occurrence counting

The GCM establishes associations between
exemplars and categories by simply counting
the number of co-occurrences. This can be

understood in the context of Equation 9.3,
wherein the effective associative influence
between exemplar x and response r is Nr x,
that is, the number of times that response
r has occurred with instance x. Somewhat
analogously, in SDM (Kanerva, 1988), asso-
ciative weights from exemplar nodes to out-
put nodes are incremented (by 1) if both the
exemplar and the output are co-activated,
and associative weights are decremented
(by 1) if either is active whereas the other
is not.

A related approach is taken by the ra-
tional model (Anderson, 1990, p. 136).
When implemented in a network architec-
ture, the weight from cluster node k to
category-label node r can be thought of as
p(r |k) = (mr + 1)/

∑
�(m� + 1), where m� is

the number of times that category label � has
co-occurred with an instance of cluster k.
Thus, the change in the associative weight
is affected only by the co-occurrence of the
cluster and the label. (The assignment of the
stimulus to the cluster is affected by past
learning, however.)

In all these models, regardless of whether
the model is classifying a stimulus well or
badly, the associative links are incremented
the same amount. Other models adjust their
weights only to the extent that there is er-
ror in performance (as described in the next
section).

In none of these models is there learned
allocation of selective attention. In the
GCM, attention is left as a free parameter
that is estimated by fits to data. In some early
work (e.g., Nosofsky, 1984), it was assumed
that attention is allocated optimally for the
categorization, but there was no mechanism
suggested for how the subject learns that op-
timal allocation.

2.3.2. gradient descent on error

ALCOVE uses gradient descent on error
to learn associative weights and attentional
strengths. On every trial, the error between
the correct and predicted categorization is
determined (see Equation 9.4), and then
the gradient of that error is computed, fol-
lowed by adjustments in the direction of
the gradient (see Equations 9.5 and 9.6).
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RASHNL also uses gradient descent, iter-
ated to achieve large shifts of attention on
single trials.

In the SUSTAIN model of Love et al.
(2004), only the winning cluster (exemplar)
node learns, and only its output weights
learn by gradient descent on categorization
error. The dimensional attention strengths
and cluster coordinates learn (almost) by
gradient ascent on similarity. That is, the
attention strengths are adjusted to increase
the similarity of the winning cluster node to
the stimulus, and the coordinates of the win-
ning cluster node are moved to increase its
similarity to the stimulus. The particular for-
mulas used in SUSTAIN for learning atten-
tion and cluster coordinates are not exactly
gradient ascent on similarity, however. The
goal for the remainder of this section is to
demonstrate how gradient ascent on simi-
larity yields learning formulas that are much
like the ones used in SUSTAIN.

The SUSTAIN model adjusts the win-
ning cluster’s coordinates, xiv, by applying
a learning formula from Kohonen (1982):

�xiv = η (yiv − xiv) (9.28)

where η is a constant of proportionality.
(The Kohonen learning rule can be derived
as gradient ascent on a Gaussian density
function with respect to its mean.) Gradi-
ent ascent on the winning cluster’s similar-
ity, with respect to its coordinates, yields
almost the same formula:

�xiv ∝ ∂

∂xiv
s(x, y)

= ηi sgn(yiv − xiv) (9.29)

where sgn(z) is the sign of z, such that
sgn(z) = +1 if z > 0, sgn(z) = −1 if
z < 0, and sgn(z) = 0 if z = 0. Equa-
tion 9.29 involves coefficients ηi that de-
pend on the dimension i : ηi = .5α

γ+1
i

exp(−.5αi
∑

v∈i |xiv − yiv|)/
∑

j α
γ

j .
To adjust attention, Love et al. (2004,

p. 314, discussion of their Equation 3) con-
sider the gradient of each dimension’s in-
dividual similarity with respect to atten-

tion, and heuristically use the formula (their
Equation 13):

�α j ∝ exp(−α j dj )
(
1− α j dj

)
. (9.30)

This can be recognized as a truncated form
of gradient ascent on the winning cluster’s
overall similarity to the stimulus, as follows.
Computation of the derivative yields

�α j ∝ ∂

∂α j
s(x, y)

= 1∑
i α

γ

i

{
exp(−α j dj )

×
(
γα

γ−1
j − α

γ

j dj

)
− γα

γ−1
j s(x, y)

}
(9.31)

where dj = (1/2)
∑

v j
|xjv j − yjv j|. In the

special circumstances when γ = 1 and∑
i αi = 1, Equation 9.31 reduces to

�α j ∝ exp(−α j dj )
(
1− α j dj

)− s(x, y),

(9.32)

which is very similar to the formula used by
Love et al. (2004).

In summary, although it is not clear that
the formulas used by SUSTAIN always in-
crease the similarity of the winning cluster
to the stimulus (because the formulas do not
implement gradient ascent), the formulas
are analogous to true gradient ascent on sim-
ilarity. The goal of the formulas in SUSTAIN
is to increase the winning cluster’s repre-
sentativeness of the instances it wins. True
gradient ascent on similarity would be one
way to achieve that goal. Notice, however,
that increasing the similarity of the winning
cluster to the stimulus might not necessarily
reduce error in predicting the category label.

2.3.3. systematic or random

hill-climbing

Error reduction can be achieved without
explicit computation of the gradient. In
principle, any method for function opti-
mization could be used. Indeed, if the pa-
rameter space is small enough, a dense
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search of parameter combinations could be
undertaken. But when the parameter space
is large, as in most learning situations, there
are various “hill-climbing” algorithms that
probe the error near the current parameter
values and creep their way down the error
surface (e.g., Press et al. 1992, pp. 394–
455). Some algorithms, for example, nu-
merically estimate the gradient of the error
without an explicit formula for the gradient
by trying two different values of a parame-
ter, say w and w +�w; computing the error
generated by each value, E and E +�E ; and
approximating the gradient as �E/�w. The
algorithms then use the estimates of gradi-
ent (and sometimes also curvature) to make
systematic jumps to new parameter values.

Other algorithms do not bother comput-
ing the gradient at all and simply probe
nearby values of the parameters, chang-
ing to those values if the error is reduced.
The algorithms differ in how they de-
cide which nearby values to probe. The
Stochastic COntext DEpendent Learning
(SCODEL) model of Matsuka (2005) is a
noisy hill-climbing algorithm for learning
associative weights and attention strengths
in ALCOVE. SCODEL randomly tries new
values that are close to its current values. If
a candidate value decreases error, then the
value is kept. But even if the candidate value
increases error, there is a nonzero proba-
bility that the change is kept. This proce-
dure can allow the model to jump over local
minima in the error surface and produces
large individual differences between differ-
ent runs of the model that may mimic the
large variance seen in human learners.

2.3.4. bayesian learning

A rather different approach to learning is
taken by Bayesian parameter estimation. In a
Bayesian conceptualization, the mind of the
learner is conceived to contain a large set of
hypotheses, with each hypothesis specifying
particular parameter values. Learning does
not change the parameter values within each
hypothesis. Instead, learning changes how
strongly one believes each hypothesis.

This type of idea was encountered ear-
lier in the context of the rational model

(Anderson, 1990). There were various hy-
potheses about the underlying probabilities,
θv, of encountering feature values v. For ex-
ample, the model could believe strongly that
a feature value v has probability θv = 0.2
and believe only weakly that the feature
value has probability θv = 0.9. The degree
of belief was governed by a parameterized
(Dirichlet) distribution, and Bayesian learn-
ing adjusted the parameters of the distri-
bution (see the discussion accompanying
Figure 9.3).

Instead of entertaining hypotheses about
feature probabilities, consider hypotheses
about the magnitude of associative weights
in an associative network. For example, one
might have two hypotheses about an associ-
ation between an exemplar and a category.
Hypothesis H+ specifies an associative
weight of +1, and hypothesis H− specifies
an associative weight of −1. At first, one
might have no preference for one hypothe-
sis over the other. This state of beliefs can be
expressed as p(H+) = .5 and p(H−) = .5.
Suppose that a learning trial is then experi-
enced, in which the instance occurs and is
taught to be a member of the category. This
occurrence is consistent with H+, so be-
liefs should shift toward H+; perhaps then
p(H+) = .9 and p(H−) = .1. Notice that
none of the associative weights has changed,
but the degree of belief in each one has
changed.

A useful property of Bayesian learning is
that changes in degree of belief about one
hypothesis must affect degree of belief in
other hypotheses. This is because it is as-
sumed that the hypotheses in the hypothe-
sis space are mutually exclusive and exhaust
all possible hypotheses. So if evidence com-
pels you to believe less strongly in one hy-
pothesis, you must believe more strongly in
other hypotheses. Conversely, if evidence
makes you believe more strongly in one
hypothesis, you must believe less strongly
in other hypotheses. There has been much
empirical research demonstrating that peo-
ple are not very accurate Bayesian reason-
ers (e.g., Edwards, 1968; Van Wallendael
& Hastie, 1990). But in simple situations,
people do show Bayesian-like trade-offs in
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beliefs. For example, when you find an ob-
ject d’art fallen from its shelf, you might
hypothesize that the cause was either the
cat or the toddler. When you then see the
cat lying on the shelf where the object d’art
was, you exonerate the toddler. Conversely,
if you learn that the cat has the alibi of hav-
ing been outside, the toddler is implicated
more strongly.

Bayesian learning of associative weights in
connectionist networks has been actively ex-
plored in recent years (e.g., MacKay, 2003;
Neal, 1996). Psychologists have successfully
applied other Bayesian models of learning
to associative and causal learning paradigms
(e.g., Anderson, 1990, 1991; Courville
et al., 2004; Courville, Daw, & Touret-
zky, 2004; Dayan & Kakade, 2001; Dayan,
Kakade, & Montague, 2000; Gopnik et al.,
2004; Sobel, Tenenbaum, & Gopnik, 2004;
Steyvers et al., 2003; Tenenbaum & Grif-
fiths, 2001b, and Chapter 3 in this volume).

In most existing Bayesian models of cat-
egory learning, the model has a (possibly
infinite) set of hypotheses in which each
hypothesis constitutes a complete map-
ping from stimulus to categorical response.
Bayesian learning consists of updating the
degree of belief in each of these complete
mappings. An alternative new approach
uses Bayesian updating within successive
subcomponents of the mapping Kruschke
(2006). For example, a model such as
ALCOVE can be thought of as a succession
of two components: The first component
maps a stimulus to an allocation of attention
across stimulus dimensions; the second com-
ponent maps attentionally weighted simi-
larities to categorical responses (Kruschke,
2003a). In a typical globally Bayesian ap-
proach to ALCOVE, a hypothesis would
consist of particular weights on the atten-
tion in combination with particular weights
on category associations, that is, a hypothesis
would be a complete mapping from stim-
ulus to response. In a locally Bayesian ap-
proach, there are hypotheses about atten-
tion weights separate from hypotheses about
category association weights, and Bayesian
updating occurs separately on the two hy-
pothesis spaces. The hypothesis space re-

garding category associative weights is up-
dated by using the corrective feedback about
the categories. But the hypothesis space re-
garding attention strengths needs target at-
tention values, analogous to the target cate-
gory values used for the associative weights.
The target attention strengths are deter-
mined by choosing those values that max-
imize (or at least improve) the predictive
accuracy of the current associative beliefs.
Thus, the internal attentional targets are
chosen to be maximally consistent with cur-
rent beliefs, and only then are beliefs up-
dated with respect to external targets. The
approach combines the ability of Bayesian
updating to exhibit trade-offs among hy-
potheses, with the ability of selective atten-
tion to produce phenomena such as trial-
order effects seen in human learning. See
Kruschke (2006) for a description of var-
ious phenomena addressed by the locally
Bayesian approach.

2.4. Exemplar Recruitment

The previous section described learning of
associative strengths, assuming that the ex-
emplars were already in memory. But get-
ting those exemplars into memory is itself
a learning process. This section describes a
variety of exemplar recruitment models.

2.4.1. no recruitment: pre-loaded

exemplars

In SDM (Kanerva, 1988), memory consists
of a set of randomly scattered exemplars, but
these memory exemplars need not be copies
of presented instances. Instead, the memory
exemplars are pre-loaded and form a cov-
ering map of the stimulus space. This idea
influenced the development of ALCOVE.
SDM generates interesting behavior because
it assumes high-dimensional spaces for in-
put, exemplars, and output.

One interpretation of the GCM assumes
that every distinct trial instance is pre-
loaded as an exemplar in memory. This sim-
plification, although expedient for illustrat-
ing the power of the model, is logically
dissatisfying because it assumes knowledge
is in the model before it could have been
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learned. The original ALCOVE model fi-
nessed the issue by assuming the stimulus
space was initially covered by a random cov-
ering map of exemplars as in SDM; that cov-
ering map was the impetus for ALCOVE’s
name. It turned out that fits to selected data
sets were affected little by whether a ran-
dom covering map or a set of pre-loaded
exemplars was used, so most reported fits of
ALCOVE use the exemplar version.

2.4.2. incessant recruitment

Instead of thinking of the GCM as pre-
loading the exemplars and then increment-
ing their weights on subsequent presen-
tations, the GCM can be thought of as
recruiting a new exemplar with every train-
ing instance and creating a link that has
weight +1 between the newly recruited
exemplar and the correct category node
(Nosofsky, Kruschke, & McKinley, 1992,
p. 215). The associative weights of exem-
plars are unaffected by the specifics of subse-
quent training. In this way, exemplar learn-
ing and associative learning occur with the
same magnitude on every trial. Denote the
tth repetition of instance x by xt , where
the superscript is merely an index, not a
power. Then Equation 9.3 becomes

p(R|y) = βR
∑

x∈R
∑Nx

t s(xt , y)∑
r βr

∑
k∈r

∑Nk
t s(kt , y)

.

(9.33)

This is formally equivalent to constant in-
crements on the associative weights (via co-
occurrence counting), but a benefit is that
each instance merely recruits a new exem-
plar, rather than having to check if there is
already an exemplar that matches it.

2.4.3. novelty driven recruitment

The ADDCOVE model (Verguts et al.,
2004), described earlier beginning with
Equation 9.18, has exemplar recruitment.
When a stimulus occurs that does not match
an existing exemplar in memory, then a new
exemplar is recruited into memory that ex-
actly copies the current stimulus. Notice
that this recruitment process is driven by

stimulus novelty alone, regardless of the per-
formance of the model. Thus, if a novel stim-
ulus appears, a new exemplar is recruited
even if the novel item is correctly classified
by the model (but the newly recruited ex-
emplar might not learn a very large associa-
tive weight to the category nodes if there is
little error).

2.4.4. performance driven

recruitment

Incessant recruitment does not solve a ba-
sic problem of frequency counting models:
They can become entrenched by large num-
bers of repeated items in early training. If the
correct categorization changes, the model
can only slowly learn the change by accu-
mulating vast numbers of subsequent coun-
tervailing exemplars. People, however, are
quick to relearn after shifts in categories.
One solution to this problem is to allow the
exemplars to be probabilistically forgotten
(e.g., Estes, 1994, p. 63) or for the asso-
ciative strengths to decay (Nosofsky et al.,
1992). In either of those approaches, the ini-
tial learning of any exemplar is full strength.
As an alternative new approach, suppose
that the initial learning of exemplars should
depend on the current performance of the
model. An exemplar should be recruited for
a stimulus depending on the degree of error
generated on that stimulus.4 When there is a
large error, there should be a high probabil-
ity of recruiting an exemplar. When there is
a small error, there should be a small proba-
bility of recruiting an exemplar. A challenge
to this proposed approach is that probabilis-
tic mappings would continually generate er-
ror and endlessly recruit exemplars.

The SUSTAIN model of Love et al.
(2004) recruits new cluster nodes under
certain conditions, depending on the type
of training. For supervised training, that
is, when category labels are provided as
feedback, a new cluster node is recruited
when an instance is presented for which the

4 Previous exemplar theorists have described proba-
bilistic remembering of features or exemplars (e.g.,
Hintzman, 1986, 1988), but not such that the prob-
ability depends on the momentary accuracy of the
model.
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maximally activated category label is not the
correct label. For unsupervised training, a
new cluster node is recruited when an in-
stance is sufficiently novel, that is, when no
existing cluster node is strongly activated
(analogous to ADDCOVE). In the unified
SUSTAIN (uSUSTAIN) model of Gureckis
and Love (2003), the recruitment condi-
tion for supervised training is modified to
be more consistent with the character of the
unsupervised condition. A new cluster node
is recruited when no existing cluster node
for that category label is strongly activated.
The recruitment rule presumes determin-
istic mappings of instances to category la-
bels, so that there is no ambiguity regarding
which label a cluster belongs to.

An attentionally based approach to
exemplar recruitment was proposed by
Kruschke (2003b, 2003c). In this frame-
work, every node in the network has its
output gated by a corresponding attentional
multiplier. Even the exemplars are atten-
tionally modulated. When an instance is pre-
sented at the input nodes, a novel candidate
exemplar node is recruited. Attention is dis-
tributed to the novel candidate exemplar
node, and to all previously recruited nodes,
according to the similarity of the nodes to
the input and according to any previously
learned allocation of attention. When the
corrective feedback is provided, the discrep-
ancy between the correct and predicted out-
put is computed, and attention is shifted
to reduce that discrepancy. If the error-
reducing attentional shift causes a shift away
from the candidate exemplar node, toward
previously existing nodes, then the candi-
date is immediately retired. But if the error-
reducing attentional shift brings more atten-
tion to the candidate node, it is retained.

Another model with performance-based
exemplar recruitment is the rational model
of Anderson (1990, 1991). When an in-
stance appears, the rational model computes
the probability that the instance belongs to
each cluster and the probability that the
instance belongs to a novel cluster. If the
highest probability is for a novel cluster,
the model recruits a new cluster and assigns
the instance to that cluster. Equation 9.25

stated the probability of an instance y =
{vd} for a particular cluster node x, that is,
p({vd}|x) = ∏

d px(vd). For cluster recruit-
ment, however, what is needed is the prob-
ability of the cluster given the instance, that
is, the reverse conditional probability. Bayes’
theorem provides the relation between re-
versed conditional probabilities: p(x|{vd}) ∝
p({vd}|x)p(x) where p(x) is the probability
of the cluster prior to seeing an information
about the particular instance.

Anderson (1990, 1991) derived an ex-
pression for the prior cluster probabilities
analogous to those used for feature values
within clusters, but now with a free param-
eter called a coupling probability, which is a
fixed background probability c (0 ≤ c ≤ 1)
that two random instances come from the
same cluster. The probability that a ran-
dom instance belongs to an existing clus-
ter x, prior to actually having any informa-
tion about the instance, is p(x) = cqx/((1−
c)+ cq), where q is the total number of
instances seen so far, and qx is the num-
ber of instances assigned to cluster x. The
probability that a random instance belongs
to a novel cluster x0, prior to actually hav-
ing any information about the instance, is
p(x0) = (1− c)/((1− c)+ cq). Notice that
before seeing any instances, when q = 0, the
probability of assigning the first instance to
a novel cluster is p(x0) = 1.0. After see-
ing one instance, that is, when q = 1, then
the background probability of another in-
stance being in the same cluster is p(x) = c,
and the probability of being in a different
cluster is p(x0) = 1− c. After seeing many
instances, qx dominates c, so p(x) ≈ qx/q
and p(x0) ≈ 0. To recapitulate: A new clus-
ter node is recruited for instance {vd} when
p({vd}|x0)p(x0) > p({vd}|x)p(x) for all ex-
isting clusters x. Although p(x) can increase
across trials as more instances are included
in the cluster, p({vd}|x) can decrease be-
cause the cluster can become more sharply
tuned to the specific instances it represents
(cf. Equation 9.26). In particular, new clus-
ters can be recruited when existing clus-
ters are tuned to particular feature combina-
tions, and the current instance is not similar
enough to any existing cluster.
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It might turn out to be the case that an
entirely different approach mimics human
performance best. For example, rather than
explicitly constructing new nodes “from
thin air,” it might be possible to perform
something functionally analogous in a dis-
tributed representation. In such a scheme,
there would be a fixed array of represen-
tational nodes, but their various parameter
values (weights, thresholds, gains, etc.) are
adjusted such that the array as a whole be-
haves as if a new exemplar node were re-
cruited. Alas, it remains for future research
to evaluate the relative merits of these vari-
ous recruitment algorithms.

2.5. Response Probability

Exemplar models are committed to the no-
tions of exemplar representation and selec-
tive attention to features. They are not com-
mitted to a particular response function,
however. Different response functions have
been explored.

One simple modification to the ratio rule
(Equation 9.3) is the inclusion of a guessing
parameter, G:

p(R|y) = βR
(∑

x∈R NRx s(x, y)+G
)∑

r βr
(∑

k∈r Nrk s(k, y)+G
)

(9.34)

The guessing parameter keeps the choice
probabilities early in learning (when the Nrk
are small) close to chance levels, instead of
being unduly influenced by just a few cases.
The guessing parameter also reduces the ex-
tremity of choices when a stimulus is pre-
sented that is not very similar to any mem-
ory exemplars (Nosofsky et al., 1992).

Ashby and Maddox (1993) extended the
original GCM response rule to modulate its
decisiveness with a power parameter γ :

p(R|y) =
(∑

x∈R s(x, y)
)γ∑

r

(∑
k∈r s(k, y)

)γ . (9.35)

When γ is large, it converts a small advan-
tage in summed similarity to a strong pref-
erence; conversely, when γ is small, choice

probabilities are less extreme. Nosofsky and
Palmeri (1997) provided a process interpre-
tation of the γ parameter in terms of how
much exemplar-based evidence needs to be
accumulated before a response is made. The
γ parameter is especially useful for fitting
data from individual subjects, as opposed to
group average data (for a review, see Nosof-
sky & Zaki, 2002) and can be crucial for
fitting other data, such as inferences of miss-
ing features (Kruschke, Johansen, & Blair,
1999).

Another variation of the ratio rule for re-
sponse choice was used in the ALCOVE
model (Kruschke, 1992). There, the re-
sponse function is the normalized exponen-
tial, or softmax rule,

p(R|y) = exp
(
φ
∑

x wRx s(x, y)
)∑

r exp
(
φ
∑

x wr x s(x, y)
) ,

(9.36)

which has been used previously in connec-
tionist models (e.g., Bridle, 1990). The ex-
ponential transformation is especially im-
portant in models for which the summed
similarities can be negative because of neg-
ative associative weights. This is not an is-
sue in the GCM, but in ALCOVE, it is
crucial because learned association weights
can become negative. The φ parameter in
Equation 9.36 governs the decisiveness of
the model: When φ is large, a small advan-
tage in summed similarity translates into a
big choice preference; conversely, when φ is
small, choice preferences are muted.

Wills et al. (2000) examined the ratio rule
in a general way and presented empirical re-
sults that they argued were difficult for the
ratio rule to explain. They proposed instead
a winner-take-all response network, which
implements competition between response
nodes in a recurrent network.

Juslin, Wennerholm, and Winman
(2001) appended an additional response
strategy called eliminative inference, which
supercedes the ratio rule when the stimulus
is too different from known exemplars. The
reasoning goes as follows: When a stimulus
appears that is clearly unlike previously
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learned stimuli, then the response given to
it should also be unlike previously learned
responses. That is, for an unknown stimulus,
eliminate the known categories, and guess
at random from the remaining categories.
There clearly are circumstances in which
people will spontaneously use this strategy
(Juslin et al., 2001; Kruschke & Bradley,
1995), but its impact on categorization
phenomena more broadly has not been
demonstrated (Kruschke, 2001b). More
generally, however, this raises the point that
there are many possible response strategies
that people could use, in addition to or
instead of the ratio rule.

2.6. Response Time and Choice as a
Function of Time

The GCM has no temporal dynamics within
or across trials. ALCOVE and RASHNL
have dynamics across trials because they
learn, but they have no dynamics within
trials. Thus, these models make no predic-
tions about response times after onset of a
stimulus.

The Exemplar-Based Random Walk
model (EBRW; Nosofsky & Palmeri, 1997;
Nosofsky & Stanton, 2005) addresses the
dynamics of the response process. In the
EBRW, exemplars are conceived to be in-
stantly and fully activated by the onset of
the stimulus, but then the response is gen-
erated by an iterative race to cross response
thresholds for each category. Think of each
category as having its own horse, racing to
cross its response threshold. The race is con-
ceptualized as a series of brief moments of
time. In each moment of time, a spinner is
spun that points to one of the exemplars at
random. The pointed-at exemplar belongs
to one of the categories, and the horse for
that category moves ahead one unit toward
its response threshold (and the other horses
move back one unit). The probability of
the spinner pointing to an exemplar, that
is, the amount of space an exemplar gets
on the spinner, is proportional to the exem-
plar’s similarity to the stimulus. More ex-
actly, the EBRW is applied to two-category
situations, and when one horse is moved
ahead, the other horse is moved backward.

It is as if there is just one horse, moving ei-
ther toward one threshold for category A or
moving in the opposite direction toward the
threshold for category B. The response time
is assumed to be proportional to the number
of iterations needed until a category thresh-
old is crossed. If the response thresholds for
A and B are γ units away from the starting
position (in opposite directions), then the
probability of choosing category A turns out
to be exactly the choice rule described ear-
lier in Equation 9.35 (for a derivation, see
Nosofsky & Palmeri, 1997).

Other models of response dynamics in-
clude models with recurrent activation and
lateral inhibition (Usher & McClelland,
2001; Wills et al., 2000). These models are
based on different assumptions than the dif-
fusion/race model assumptions of EBRW.
Usher and McClelland (2001) compared
the recurrent activation approach with the
diffusion model approach (but not the
EBRW itself ). Wills et al. (2000) applied
a winner-take-all recurrent activation net-
work to responses in category learning, but
their emphasis was response proportions,
not response times.

The EBRW has been applied to domains
with integral dimensions, where it is not un-
reasonable to suppose that exemplars are
activated in one fell swoop. When stimu-
lus dimensions are separable, however, then
issues about the temporal processing of di-
mensions loom large. The EBRW was in-
tended primarily as a model of response time
dynamics and not so much as a model of per-
ceptual dynamics.

The Extended Generalized Context
Model (EGCM) of Lamberts (1995, 1997,
2000) addresses the dynamics of exemplar
processing, not just response processing. In
the EGCM (Lamberts, 1995, 1998), simi-
larity is a function of time:

s(t, x, y) = exp

(
−c

∑
i

αi[πi (t)|xi − yi |]
)

(9.37)

where αi is the utility of dimension i for
the categorization, just as in the GCM or
ALCOVE, but a new term, πi (t), is the
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(cumulative) inclusion probability of dimen-
sion i at time t. Lamberts (1995, 1998) sug-
gests that the inclusion rate for a dimension
should be constant through time and that
therefore the cumulative inclusion probabil-
ity can be expressed as

πi (t) = 1− exp(−qi t) (9.38)

where qi is the inclusion rate for dimension i .
The inclusion rate for a dimension is tied to
its physical salience, irrespective of the di-
mension’s relevance for the particular cate-
gorization. Notice that a dimension with a
fast inclusion rate has a relatively high prob-
ability of being included in the similarity
computation. When the time t is small, the
inclusion probabilities of all dimensions are
small, so the similarity is close to 1 for all
exemplars. When the time t is very large,
the inclusion probabilities of all dimensions
are nearly 1, so the similarities shrink to the
values they would be in the basic GCM.

One of the interesting predictions of the
EGCM is that categorization tendencies can
change nonmonotonically after stimulus on-
set. One such situation can occur because
salient dimensions (i.e., those with high in-
clusion rates) dominate response tendencies
early in processing, but those salient dimen-
sions might not be the most relevant to the
categorical distinction. That is, the relevant
dimensions with high αi might be nonsalient
dimensions with low πi when t is small.
Nonmonotonic response tendencies can also
be produced when an exemplar of one cat-
egory is set in the midst of several exem-
plars from a different category. Early in pro-
cessing, all the πi are small, and therefore
the surrounded exemplar is highly similar
to its many neighbors that belong to the
other category. Consequently, it is classified
as a case of the neighbor’s category. Later
in processing, the πi have grown large, and
the surrounded exemplar is less similar to its
neighbors. Consequently, it is classified in its
own correct category. Lamberts and collab-
orators have documented several such non-
monotonicities; for example, Experiment 2
of Lamberts and Freeman (1999) examined
a case of a surrounded exemplar. The EBRW
cannot account for these nonmonotonici-

ties because its similarity values are fixed
through time, and its random walks are (on
average) monotonically related to the rela-
tive similarities.

The EGCM (Lamberts, 1995, 1998)
models similarity and choice tendency as
a function of time, but it does not predict
specific latencies to respond. The EGCM
Response Time (EGCM-RT) (Lamberts,
2000) is a model of response time per
se. It generates RTs by sampling elements
from separable dimensions, and after each
sample determining a probability of stop-
ping (i.e., making a response) that is re-
lated to the current summed similarity of the
stimulus to all exemplars (Lamberts, 2000,
Equation 14, p. 230). Lambert’s mecha-
nism for gradual dimension accumulation
was combined with the EBRW’s response
race mechanism into a model called “EBRW
with perceptual encoding” (EBRW-PE) by
Cohen and Nosofsky (2003). They found
comparable fits to data by EBRW-PE and
EGCM-RT, and suggested that although
future experiments might better distin-
guish the models, the random-walk response
mechanism in the EBRW-PE is more thor-
oughly studied in the literature than the
stopping-rule mechanism in EGCM-RT. Fu-
ture research will have to explore potential
differences between the models; but there
are yet other possibilities for dynamic mech-
anisms to consider, described next.

In the connectionist literature, process-
ing analogous to Lamberts’s inclusion rate
can be found in McClelland’s cascaded acti-
vation approach (McClelland, 1979). That
approach assumes that the i th node’s net in-
put accumulates through time, according to
the temporal integration equation

neti (t) = κ
∑

j

wi j aj (t)

+ (1− κ) neti (t − 1) (9.39)

where wi j is the connection weight to node i
from node j , aj (t) is the activation of node j
at time t, and κ is the cascade rate for
the node. It can easily be seen from Equa-
tion 9.39 that neti =

∑
j wi j aj is a stable

value: Just plug that into the right side and
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notice that it comes out again on the left
side. Moreover, this value is reached asymp-
totically. At each moment in time, the net
input is (instantaneously) transformed into
activation by the usual sigmoidal squashing
function:

ai (t) = 1/[1+ exp(−neti (t))]. (9.40)

McClelland and Rumelhart (1988, pp. 153–
155, 304–305) showed that cascaded activa-
tion networks can produce nonmonotonic
outputs through time. In particular, con-
sider two hidden nodes that converge on a
single output node. The first hidden node
has large positive incoming weights and a
weak positive outgoing weight to the out-
put node. The second hidden node has small
positive incoming weights, but a strong neg-
ative outgoing weight to the output node.
When the input nodes are activated, the
first hidden node will become activated
more quickly than the second hidden node,
because the first hidden node has larger in-
coming weights. Hence, the output node
will initially feel the positive connection
from the first hidden node and be acti-
vated. Later, however, the second hidden
node will become as activated as the first
hidden node, and then its stronger nega-
tive output weight will be felt at the out-
put. Hence, the output activation will have
changed from initially growing to asymp-
totically low. Such nonmonotonicities were
exhibited by a model of memory for arith-
metic described by Dallaway (1992, 1994).
His network, when queried with “3× 8 =,”
initially activated a response of 27 before
settling to the correct response of 24.

Although it has not been previously de-
scribed in the literature, it would be straight-
forward to implement cascaded activation
in the ALCOVE or APPLE networks. Sim-
ply let each dimensional distance accumu-
late through time:

di (t, x, y) = κ αi |xi − yi | + (1− κ)

× di (t − 1, x, y). (9.41)

This formula has dimensional salience al-
ready implicit in the stimulus coordinates,

because a more salient dimension has feature
values that are farther apart in psychological
space. Alternatively, salience could be ex-
plicitly marked by another multiplicative
factor, analogous to the inclusion rate in the
ECGM. The cascaded dimensional distance
is used in the natural ways in ALCOVE
and APPLE: For ALCOVE, the overall dis-
tance is d(t, x, y) = ∑

i di (t, x, y) (cf. Equa-
tion 9.1), and for APPLE, si (t, x, y) =
exp (−di (t, x, y)) (cf. Equation 9.8). At
asymptote, di (t, x, y) converges to αi |xi −
yi |, so asymptotic choice proportions are
as in the original models. Presumably, the
cascaded activation versions of the models
would generate dynamic behaviors much
like the EGCM, but combined with the ad-
ditional ability to learn associative weights
and attentional allocations. (Learning takes
place once the activations have reached
asymptote, without any change in algo-
rithm.) Analogous cascaded similarity func-
tions could be implemented in a variety of
models discussed earlier.

3. Conclusion

This chapter began with a quick overview of
the representational options for models of
categorization. These options included ex-
emplars, prototypes, rules, boundaries, and
theories. A mutual goal of different formal
models is to account for detailed quanti-
tative data from laboratory experiments in
categorization. These data can include in-
formation about what stimuli or categories
are learned more or less easily, the degree to
which categorical responses are generalized
from learned stimuli to novel stimuli, and
the speed with which categorical responses
are made.

Although a variety of representational
formats have been formalized, exemplar
models have been especially richly explored
by many researchers. The main goal of the
chapter has been to slice across numerous
exemplar models, to excise their functional
components, and to examine those com-
ponents side by side. The main functional
components included the computation of
similarity, the learning of associations and
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attention, the recruitment of exemplars, the
determination of response probability, and
the generation of response times. This dis-
section revealed a variety of formalizations
available for expressing any given psycho-
logical process. The analysis also suggested
numerous directions for novel research.
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CHAPTER 10

Micro-Process Models of Decision Making

1. Introduction

Computational models are like the new kids
in town for the field of decision making. This
field is largely dominated by axiomatic util-
ity theories (Bell, Raiffa, & Tversky, 1998;
Luce, 2000) or simple heuristic rule mod-
els (Gigerenzer, Todd, & the ABC Research
Group, 1999; Payne, Bettman, & Johnson,
1993). It is difficult for the new kids to break
into this field for a very important reason:
They just seem too complex in compari-
son. Computational models are constructed
from a large number of elementary units
that are tightly interconnected to form a
complex dynamic system. So the question,
“what does this extra complexity buy us?,”
is raised. Computational theorists first have
to prove that their models are worth the ex-
tra complexity. This chapter provides some
answers to that challenge.

First, the current state of decision re-
search applied to preferences under uncer-
tainty is reviewed. The evolution of the al-
gebraic utility approach that has dominated
the field of decision making is described,
showing a steady progression away from a

simple and intuitive principle of maximizing
expected value. The development of util-
ity theories into their current form has
included modifications for the subjective
assessment of objective value and probabil-
ity, with the most recent work focusing on
finer specification of the latter. The impe-
tus for these modifications is then discussed;
in particular, specific and pervasive “para-
doxes” of human choice behavior are briefly
reviewed. This section arrives at the conclu-
sion that no single utility theory provides an
accurate descriptive model of human choice
behavior.

Then, computational approaches to de-
cision making are introduced, which seem
more promising in their ability to capture
robust trends in human choice behavior.
This advantage is due to their common focus
on the micro-mechanisms of the underlying
deliberation process, rather than solely on
the overt choice behavior driven by choice
stimuli. A number of different approaches
are introduced, providing a broad survey of
the current corpus of computational mod-
els of decision making. The fourth section
focuses on one particular model to offer a

302
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detailed example of the computational ap-
proach. Specifically, decision field theory is
discussed, which has benefit from the most
extensive (to date) application to a variety of
choice domains and empirical phenomena.

The fifth section provides concrete illus-
tration of how the computational approach
can account for all of the behavioral para-
doxes in the second section that have con-
tested utility theories. Again, decision field
theory is recruited for this analysis because
of its success in accounting for all the rel-
evant phenomena. However, the extent to
which the other computational models have
been successful in accounting for the results
is also discussed. We conclude with com-
parisons among the computational mod-
els introduced, and summary comparisons
between the computational approach and
utility-based models of decision making.

2. Decision Models: State of the Art

2.1. The Evolution of Utility-Based
Models

Decision theory has a long history, starting
as early as the seventeenth century with pro-
babilistic theories of gambling by Blaise Pas-
cal and Pierre Fermat. Consider an option, or
prospect, that offers some n number of qua-
ntifiable outcomes, {x1, . . . , xn}, each with
some specified probability, {p1, . . . , pn}, re-
spectively. The initial idea was that the de-
cision maker should choose to maximize the
long run average value or expected value
(EV), EV = ∑

p j · xj . But the EV principle
soon came under attack because it prescribes
paying absurd prices to play a celedraft-
brated gamble known as the St. Petersburg
paradox. It was also criticized because it fails
to explain why people buy insurance (the
premium exceeds the expected value). To
fix these problems, Daniel Bernoulli (1738)
proposed that the objective outcome xj be
replaced with the subjective utility of this
outcome u(xj ), and recommended that the
decision maker should choose to maximize
the expected utility (EU), EU =∑

p j · u(xj ).
For many years, Bernoulli’s EU theory

was disregarded by economists because it

lacked a rational or axiomatic foundation.
For example, why should one choose on the
basis of expectation if the game is played
only once? Von Neumann and Morgenstern
(1947) rectified this problem by (a) propos-
ing a set of rational axioms (e.g., transitiv-
ity, independence, solvability), and (b) prov-
ing that the EU principle uniquely satisfies
these axioms. This led to EU theory being
accepted by economists as the rational basis
for making decisions. Thus far, EU theory
was restricted to decisions with objectively
known probabilities (e.g., well-defined lot-
teries). Shortly afterward, Savage (1954)
provided an axiomatic foundation for as-
signing personal probabilities to uncertain
events (e.g., presidential elections).

Unfortunately, people are not always ra-
tional, and subsequent empirical research
soon demonstrated systematic violations of
these rational axioms (see Allais, 1961;
Ellsberg, 1953). To explain these violations,
Kahneman and Tversky (1979) developed
prospect theory, which changed EU theory
in two important ways. Following an ear-
lier suggestion by Edwards (1962), they re-
placed the objective probabilities pi with
subjective decision weights π(pi ), where
π is an inverse S shaped function. Un-
like Savage’s (1954) theory, these decision
weights are not constrained to obey the
laws of probability. Second, the utility func-
tion was defined with respect to a reference
point: for losses (below the reference), the
function is convex (risk seeking); for gains
(above the reference), the function is con-
cave (risk averse); and the function is steeper
on the loss compared with the gain side (loss
aversion). The initial prospect theory was
severely criticized for two main reasons (see
Starmer, 2000): (1) it predicted preferences
for stochastically dominated options that are
never empirically observed (anomalies that
had to be removed by ad hoc editing opera-
tions); and (2) the theory was limited to bi-
nary outcomes, and it broke down and made
poor predictions for a larger number of out-
comes (Lopes & Oden, 1999).

Recognizing these limitations, Tversky
and Kahneman (1992) modified and ex-
tended prospect theory to form cumulative
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prospect theory (CPT), which builds on ear-
lier ideas of rank dependent utility (RDU)
theories (Quiggin, 1982). The problem
to be solved was the following: On the
one hand, nonlinear decision weights were
needed to explain violations of the ratio-
nal axioms; but on the other hand, nonlin-
ear transformations of outcome probabilities
led to absurd predictions. To overcome this
problem, RDU theories such as CPT employ
a more sophisticated method for computing
decision weights.1 Suppose payoffs are rank-
ordered in preference according to the index
j so u(xj+1) > u(xj ). The rank dependent
decision weight for outcome xj is then de-
fined by the formula: w(xj ) = π(

∑n
j p j )−

π(
∑n

j+1 p j ) for j = n− 1, n− 2, . . . , 2, 1,
and w(xn) = π(pn).

Here, π is a monotonically increasing
weight function designed to capture opti-
mistic (more weight to higher outcomes)
or pessimistic (more weight to lower out-
comes) beliefs of a decision maker. The term
(
∑n

j p j ) is called the decumulative probabil-
ity (one minus the cumulative probability),
which is the probability of getting a pay-
off at least as good as xj . Whereas prospect
theory transformed the outcome probabili-
ties, π(p j ), CPT transforms the decumula-
tive probabilities, π(

∑n
j p j ). By doing this,

one can account for systematic violations of
the EU axioms, while at the same time avoid
making absurd predictions about dominated
options. This is the current state of utility
theories.

2.2. Problems with Utility Models:
Paradoxes in Decision Making

This section briefly and selectively re-
views some important paradoxes of deci-
sion making (for a more complete review,
see Rieskamp, Busemeyer, & Mellers, 2006;
Starmer, 2000) and points out shortcomings
of utility theories in explaining these phe-
nomena.

1 Note that CPT is one exemplar from the class of
RDU, which in turn are a subset of the more general
EU approach. For the current chapter, reference to
one class subsumes the more specific model(s); e.g.,
claims regarding RDU theory apply also to CPT.

2.2.1. allais paradox

This most famous paradox of decision mak-
ing (Allais, 1979; see also Kahneman &
Tversky, 1979) was designed to test ex-
pected utility theory. In one example, the
following choice was given:

A: “win $1 M (million) dollars for sure,”
B: “win $5 M with probability .10, or

$1 M with probability .89, or nothing.”

Most people preferred prospect A even
though prospect B has a higher expected
value. This preference alone is no violation
of expected utility theory – it simply reflects
a risk averse utility function. The violation
occurs when this first preference is com-
pared with a second preference obtained
from a choice between two other prospects:

A′: “win $1 million dollars with probabil-
ity .11, or nothing,”

B′: “win $5 million dollars with probabil-
ity .10, or nothing.”

Most people preferred prospect B′, and the
(A, B′) preference pattern is the paradox.

To see the paradox, one needs to an-
alyze this problem according to expected
utility theory. These prospects involve a to-
tal of three possible final outcomes: {x1 =
$0, x2 = $1 M, x3 = $5 M}. Each prospect
is a probability distribution, (p1, p2, p3),
over these three outcomes, where p j is the
probability of getting payoff xj . Thus, the
prospects are:

A= (0, 1, 0) A′ = (.89, .11, 0)
B = (.01, .89, .10) B′ = (.90, 0, .10).

Now define three new prospects:

O= (0, 1, 0) Z = (1, 0, 0)
F = (1/11, 0, 10/11).

It can be seen that A= (.11) · O+ (.89) · O
and B = (.11) · F + (.89) · O, producing
EU(A)− EU(B) = [(.11) · EU(O)+ (.89) ·
EU(O)]− [(.11) · EU(F )+ (.89) · EU(O)].

The common branch, (.89) · EU(O), can-
cels out, making the comparison of utilities
between Aand B reduce to a comparison of
utilities for O and F . It can also be seen that:
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A′ = (.11) · O+ (.89) · Z and B′ = (.11)·
F + (.89) · Z, producing EU(A′)− EU(B′)
=[(.11) · EU(O)+ (.89) · EU(Z)]− [(.11)·
EU(F )+ (.89) · EU(Z)].

Again a common branch, (.89) · EU(Z),
cancels out, making the comparison be-
tween A′ and B′ reduce to the same compar-
ison between O and F . More generally, EU
theory requires the following independence
axiom: for any three prospects {A, B, C},
if A is preferred to B, then A′ = p · A+
(1− p) ·C is preferred to p · B + (1− p) ·
C = B′. The Allais preference pattern
(A, B′) violates this axiom.

To account for these empirical violations,
the independence axiom has been replaced
by weaker axioms (see Luce, 2000, for a re-
view). The new axioms have led to the de-
velopment of the RDU class of theories in-
troduced earlier, including CPT, which can
account for the Allais paradox. However,
the RDU theories (including CPT) must sat-
isfy another property called stochastic dom-
inance.

2.2.2. stochastic dominance

Assume again that the payoffs are rank or-
dered in preference according to the in-
dex j , so u(xj+1) > u(xj ). Define X as the
random outcome produced by choosing a
prospect. Prospect A stochastically domi-
nates prospect B if and only if Pr[u(X) ≥
u(xj ) | A] ≥ Pr[u(X) ≥ u(xj ) | B] for all xj .

In other words, if Aoffers at least as good
a chance as B of obtaining each possible out-
come or better, then A stochastically dom-
inates B.2 The reason RDU theories (e.g.,
CPT) must satisfy stochastic dominance
(predict choice of stochastically dominating
prospects) is straightforward. If A stochas-
tically dominates B with respect to the
payoff probabilities, then it follows that A
stochastically dominates B with respect to
the decision weights, which implies that the
RDU for A is greater than that for B, and
this finally implies that A is preferred to

2 Note that, technically, A must also offer a better
chance of obtaining at least one outcome. That is,
the inequality must be strict for at least one out-
come, otherwise the prospects A and B are identical.

B. Unfortunately for decision theorists, hu-
man preferences do not obey this property
either – systematic violations of stochastic
dominance have been reported (Birnbaum
& Navarrete, 1998; Birnbaum, 2004). In
one example, the following choice was pre-
sented:

F: “win $98 with .85, or $90 with .05, or
$12 with .10,”

G: “win $98 with .90, or $14 with .05, or
$12 with .05.”

Most people chose F in this case, but it is
stochastically dominated by G. To see this,
we can rewrite the prospects as follows:

F′: “win $98 with .85, or $90 with .05, or
$12 with .05, or $12 with .05,”

G′: “win $98 with .85, or $98 with .05,
or $14 with .05, or $12 with .05.”

Most people chose G′ in this case. The
choice of F violates the principle of stochas-
tic dominance, which is contrary to RDU
theories such as CPT. More complex deci-
sion weight models, such as Birnbaum’s Tax
model, are required to not only explain vi-
olations of stochastic dominance, but to si-
multaneously account for the pattern (F, G′;
see Birnbaum, 2004).

2.2.3. preference reversals

Violations of independence and stochastic
dominance are two of the classic paradoxes
of decision making. Perhaps the most seri-
ous challenge for all utility theories is one
that calls into question the fundamental
concept of preference. According to most
utility theories (including prospect theory),
there are two equally valid methods for mea-
suring preference – one based on choice,
and a second based on price. If prospect
A is chosen over prospect B, then u(A) >

u(B), which implies that the price equiva-
lent for prospect A should be greater than
the price equivalent for prospect B (this
follows from the relations, $A = A > B =
$B, where $K is the price equivalent of
prospect K). Contrary to this fundamen-
tal prediction, systematic reversals of pref-
erences have been found between choices
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and prices (Grether & Plott, 1979; Lichten-
stein & Slovic, 1971; Lindman, 1971; Slovic
& Lichtenstein, 1983). In one example, the
following prospects were presented:

P: “win $4 with 35/36 probability,”
D: “win $16 with 11/36 probability.”

Most people chose prospect P over prospect
D, even though D has a higher expected
value – they tend to be risk averse with
choices. The same people, however, most
frequently gave a higher price equivalent to
prospect D than to prospect P . Further-
more, another interesting finding in need
of explanation is that the variance of the
prices for prospect D is much larger than
that for prospect P (Bostic, Herrnstein, &
Luce, 1990).

Tversky, Sattath, and Slovic (1988) ini-
tially explained preference reversals be-
tween choice and price by arguing that deci-
sion makers place more weight on the prob-
ability dimension when making choices,
whereas the price task shifts weight to
the price dimension. Alternatively, Mellers,
Schwartz, and Cooke (1998) argued that de-
cision makers use different strategies when
making choices versus prices. However, a se-
rious problem for both of these explanations
is that preferences also reverse when individ-
uals are asked to give two different types of
prices, such as minimum selling prices (will-
ingness to accept [WTA]) versus maximum
buying prices (willingness to pay [WTP]),
for the same prospects (Birnbaum & Zim-
merman, 1998). Consider the following two
prospects:

F: “win $60 with probability .50, other-
wise $48.”

G: “win $96 with probability .50, other-
wise $12.”

People gave a higher WTA for prospect G
compared with prospect F , but the opposite
order was found for WTP. So, not only do
preferences change depending on whether
choices or prices are used, but also when dif-
ferent types of prices are used. Furthermore,
such violations extend beyond trivial tasks

involving hypothetical or low-stakes gam-
bles to situations involving more realistic
consequences, such as managerial decisions,
medical decisions, environmental protection
policies, and highway safety programs.

Neither choice-pricing nor WTP-WTA
reversals can be explained with a single
utility model such as prospect theory, but
only by assuming arbitrary task-dependent
changes in the decision weights and/or util-
ity function and/or combination of weight
and utility. These unnerving findings have
led researchers to question stability of pref-
erences and to argue instead that prefer-
ences are constructed on the fly in a task-
dependent manner (e.g., Slovic, 1995).

2.2.4. context-dependent

preferences

A final challenge for utility theories is that
preferences seem to depend not only on
changes in the task, but also in changes in
the context produced by the choice set for
a single task. These preference reversals in-
volve violations of a principle called indepen-
dence from irrelevant alternatives. According
to this principle, if option A is chosen most
frequently over option B in a choice set that
includes only {A , B}, then Ashould be cho-
sen more frequently over B in a larger choice
set {A, B, C} that includes a new option C.
This principle is required by a large class of
utility models called simple scalable utility
models (see Tversky, 1972). However, em-
pirical evidence points to at least three direct
violations of this principle.

The first violation is produced by what is
called the similarity effect (Tversky, 1972;
Tversky & Sattath, 1979), in which case the
new option, labeled S, is designed to be sim-
ilar and competitive with the common op-
tion B. In one example, participants chose
among hypothetical candidates for graduate
school that varied in terms of intelligence
and motivation scores:

Candidate A: Intelligence = 60, Motiva-
tion = 90,

Candidate B: Intelligence = 78, Motiva-
tion = 25,
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Candidate S: Intelligence = 75, Motiva-
tion = 35.

Participants chose B more frequently than
A in a binary choice. However, when can-
didate S was added to the set, then pref-
erences reversed and candidate A became
the most popular choice. The similarity ef-
fect rules out all simple scalable utility mod-
els, but it can be explained by a heuris-
tic choice model called the elimination by
aspects (EBA) model (Tversky, 1972). Ac-
cording to this model, decision makers sam-
ple a feature based on its importance and
eliminate any option that does not contain
the selected feature; the process continues
until there is only one option left, and the
last surviving option is then chosen. Apply-
ing EBA to the previous example, if grade-
point average is most important, then A is
most likely to be eliminated at the first stage,
leaving B as the most frequent choice; how-
ever, when S is added to the set, then both
B and S survive the first elimination, and S
reduces the share of B.

The second violation is produced by what
is called the attraction effect (Huber, Payne,
& Puto, 1982; Huber & Puto, 1983; Simon-
son, 1989), in which case the new option,
labeled D, is similar to A but dominated
by A. In one example, participants chose
among cars varying in miles per gallon and
ride quality:

Brand A: 73 rating on ride quality,
33 miles per gallon (mpg),

Brand B: 83 rating on ride quality,
24 mpg,

Brand D: 70 rating on ride quality,
33 mpg.

Brand B was more frequently chosen over
brand Aon a binary choice; however, adding
option D to the choice set reversed prefer-
ences so that brand A became most pop-
ular. In this second case, the new option
helps rather than hurts the similar option.
The attraction effect is important because it
violates another principle called regularity,
which states that adding an option to the
set can never increase the popularity of one

of the original options from the subset. The
EBA model satisfies regularity, and there-
fore it cannot explain the attraction effect
(Tversky, 1972).

The third violation is produced by what
is called the compromise effect (Simon-
son, 1989; Simonson & Tversky, 1992), in
which a new extreme option A is added to
the choice set. In one example, participants
chose among batteries varying in expected
life and corrosion rate:

Brand A: 6% corrosion rate, 16 hours
duration,

Brand B: 2% corrosion rate, 12 hours
duration,

Brand C: 4% corrosion rate, 14 hours
duration.

When given a binary choice between B and
C, brand B was more frequently chosen
over brand C. However, when option A
was added to the choice set, then brand C
was chosen more often than brand B. Thus,
adding an extreme option A, which turns
option C into a compromise, reverses the
preference orders obtained between the bi-
nary and triadic choice methods. The com-
promise effect is interesting because it rules
out another heuristic choice rule called the
lexicographic (LEX), or “take the best,”
strategy. According to this strategy, the de-
cision maker first considers the most impor-
tant dimension and picks the best alternative
on this dimension, but if there is a tie, then
the decision maker turns to the second most
important dimension and picks the best on
this dimension, and so forth. According to
the LEX strategy, individuals should never
choose the compromise option!

The collection of results presented in this
section indicate that preferences among a set
of options are not subject to the calculus of
probability and are dependent on the choice
context and the elicitation method. These
results are only a subset of the decades of
research showing that human decisions do
not correspond to those predicted by util-
ity models. Any serious model of decision
making must account for effects such as the
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robust and representative examples men-
tioned in this section. We now turn to exam-
ining a distinctly different type of modeling
approach that shows promise in this respect.

3. Computational Models of Decision
Making: A Survey

In an attempt to retain the basic utility
framework, constraints on utility theories
are being relaxed, and the formulas are be-
coming more deformed. Recently, many re-
searchers have responded to the growing
corpus of phenomena that challenge tra-
ditional utility models by applying wholly
different approaches. That is, rather than
continuing to modify utility equations to ac-
commodate each new empirical trend, these
researchers have adopted alternative repre-
sentations of human decision making. The
common thread among these approaches is
their attention to the processes, or compu-
tations, that are assumed to produce ob-
servable decision behavior. Beyond this, the
popular approaches outlined in this section
diverge in precisely how they model deci-
sion making.

3.1. Heuristic Rule-Based Systems

Payne, Bettman, and Johnson (1992, 1993)
propose an adaptive approach to decision
making. Essentially, this approach assumes
that decision makers possess a repertoire of
distinct decision strategies that they may
apply to any given task. The repertoire of
strategies usually includes noncompensatory
rules that do not require trade-offs among
attributes, such as EBA and LEX, as well
as compensatory rules that are based on at-
tribute trade-offs such as a weighted additive
(WADD) rule or EU rule. Furthermore, it is
assumed that the strategy applied is selected
as a trade-off between the mental effort re-
quired to apply the strategy and the accu-
racy or performance of the strategy. Thus, in
trivial situations or those involving extreme
time pressure, individuals may employ rel-
atively simple strategies that do not involve
complex calculations such as the LEX or

EBA rules. In contrast, in important situa-
tions where a high level of performance is
required, decision makers may apply more
cognitively intensive strategies such as the
WADD or EU rule.

This approach assumes that each possi-
ble strategy is assembled from elementary
information processing units, such as “re-
trieve,” “store,” “move,” “compare,” “add,”
“multiply,” and so forth (Payne et al., 1993).
For example, the EBA rule might be in-
stantiated by a “retrieve” of a prospect’s at-
tribute value, followed by a “compare” to
some threshold value defining deficiency.
EU could be formalized by a “multiply” of
subjective probability and utility values, the
“store” of each product, and an “add” across
products; choice is defined by a “compare”
operation among expected utilities. Mental
effort is defined by the sum of processing
times for these elementary mental opera-
tions, and accuracy is typically defined by
performance relative to the WADD or EU
rule.

Gigerenzer and colleagues (Gigerenzer
et al., 1999) have developed a closely re-
lated approach. Their simple heuristics are
formulated in terms of their rules for (a)
searching through information, (b) stop-
ping this search, and (c) selecting an option
once the search concludes. For exam-
ple, Brandstätter, Gigerenzer, and Hertwig
(2006) recently proposed a LEX model
called the “priority heuristic,” which as-
sumes the following process for positively
valued gambles: (1) first compare the low-
est outcomes for each prospect, and if this
difference exceeds a cutoff, then choose the
best on this comparison; otherwise (2) com-
pare the probabilities associated with the
lowest payoffs, and if this difference exceeds
a cutoff then choose the best on this compar-
ison; otherwise (3) compare the maximum
possible payoff for each prospect and choose
the best on this maximum.

The strength of heuristic models is their
ability to explain effects of effort, conflict,
time pressure, and emotional content on
choices and other processing measures (e.g.,
amount of information searched, order of
search) in terms of changes in decision
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strategies. However, one drawback to these
models is their lack of specification across
applications; it is often difficult to deter-
mine exactly which strategy is used in any
given situation. Furthermore, when consid-
ering the findings summarized earlier, the
heuristic models cannot account for all of
the results reviewed previously despite this
flexibility. They have been used to explain
violations of independence for risky choices
but not the violations of stochastic dom-
inance. They also have been used to ex-
plain preference reversals between choice
and prices, but not between buying and
selling prices. Finally they can explain the
similarity effect but not the compromise or
attraction effect.

3.2. Dynamic Systems/Connectionist
Networks

Many researchers prefer to adopt a single
dynamic process model of decision making
rather than proposing a tool box of strate-
gies. This idea has led to the development
of several computational models that are
formulated as connectionist models or dy-
namic systems (see Chapter 2 on connec-
tionist models and Chapter 4 on dynamic
systems in this volume).

3.2.1. affective balance theory

Grossberg and Gutowski (1987) presented a
dynamic theory of affective evaluation based
on an opponent processing network called
a gated dipole neural circuit. Habituating
transmitters within the circuit determine
an affective adaptation level, or reference
point, against which later events are evalu-
ated. Neutral events can become affectively
charged either through direct activation or
antagonistic rebound within the habituated
dipole circuit. This neural circuit was used
to provide an explanation for the probabil-
ity weighting and value functions of Kahne-
man and Tversky’s (1979) prospect theory,
and preference reversals between choices
and prices. However, this theory cannot ex-
plain preference reversals between buying
and selling prices, nor can it explain viola-
tions of stochastic dominance. Finally, the

affective balance theory has never been ap-
plied to more than two choice options, so it
is not clear how it would explain the sim-
ilarity, attraction, and compromise context
effects.

3.2.2. echo

Holyoak and Simon (1999) and Guo and
Holyoak (2002) proposed a connectionist
network, called ECHO, adapted from Tha-
gard and Millgram (1995). According to this
theory, there is a special node, called the ex-
ternal driver, representing the goal to make a
decision, which is turned on when a decision
is presented. The driver node is directly con-
nected to attribute nodes, with a constant
connection weight. Each attribute node is
connected to an alternative node with a
bidirectional link, which allows activation
to pass back and forth from the attribute
node to the alternative node. The connec-
tion weight between an attribute node and
an alternative node is determined by the
value of the alternative on that attribute.
There are also constant lateral inhibitory
connections between the alternative nodes
to produce a competitive recurrent network.

The decision process works as follows.
On presentation of a decision problem, the
driver is turned on and applies constant in-
put activation into the attribute nodes, and
each attribute node then activates each al-
ternative node (differentially depending on
value). Then each alternative node pro-
vides positive feedback to each attribute
node and negative feedback to the other al-
ternative nodes. Activation in the network
evolves over time according to a nonlinear
dynamic system, which keeps the activa-
tions bounded between zero and one. The
decision process stops as soon as the changes
in activations fall below some threshold. At
that point, the probability of choosing an
option is determined by a ratio of activation
strengths.

The ECHO model has been shown to ac-
count for the similarity and attraction ef-
fect, but it cannot account for the com-
promise effect. It has not been applied to
risky choices, so it remains unclear how it
would explain violations of independence
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or stochastic dominance. Finally, this theory
is restricted to choice behavior, and it has no
mechanisms for making predictions about
prices. One interesting prediction of the
ECHO model is that the weight of an at-
tribute changes during deliberation in the di-
rection of the currently favored alternative.
Evidence supporting this prediction was re-
ported by Simon, Krawczyk, and Holyoak
(2004).

3.2.3. leaky competing

accumulator model

Usher and McClelland (2004) proposed a
connectionist network model of decision
making called the leaky competing accu-
mulator model. Preference is based on the
sequential evaluation of attributes, where
each evaluation compares the relative ad-
vantages and disadvantages of each prospect.
These comparisons are integrated over time
for each option by a recursive network. The
accumulation continues until a threshold is
crossed, and the first option to reach the
threshold is chosen.

This theory is closely related to decision
field theory (described later), with the fol-
lowing important exceptions. First, the acti-
vation for each option is restricted to remain
positive at all times, which requires the tem-
poral integration to be nonlinear. Second,
the leaky competing accumulator model
adopts Tversky and Kahneman’s (1991) loss
aversion hypothesis so that disadvantages
have a larger impact than advantages.

Usher and McClelland (2004) have
shown that the leaky competing accumu-
lator can explain the similarity, attraction,
and compromise effects using a common set
of parameters. However, this model has not
been applied to risky choices or to prefer-
ence reversals.

3.3. Models Cast in Cognitive
Architectures

Some researchers have taken advantage of
the extensive work that has been done in
developing comprehensive cognitive archi-
tectures that can then be specified for al-

most any conceivable individual task (see
Chapter 6 on cognitive architectures in this
volume). In particular, researchers have re-
cently formulated models within two pop-
ular cognitive architectures for choice tasks
that are the focus of the current chapter.

3.3.1. subsymbolic and symbolic

computation in act-r

Although one of the most popular cognitive
architectures, ACT-R, incorporates a sim-
ple expected utility mechanism by default,
other researchers have realized the draw-
backs with the expected utility approach
and developed alternative models within
ACT-R. Specifically, Belavkin (2006) has
developed two models that can correctly
predict the Allais paradox (it has not been
applied to the other paradoxes). In fact,
these decision models are not unique to
the ACT-R implementation proposed by
Belavkin (2006); each model is actually
a probabilistic extension of earlier simple
heuristic rules guiding choice.

The first model essentially reduces to a
simple rule of maximizing the probability
of the largest outcome possible. Due to
the negative correlation that typically ex-
ists between outcome and probability (e.g.,
to maintain constant expected value across
gambles), this first rule results in the likeli-
hood of choosing the option with the larger
outcome to be equal to the probability of
this outcome. The second model is formu-
lated at the symbolic rule level in ACT-R
and defines preference relations on each
component of the stimuli (i.e., first out-
come, probability of first outcome, second
outcome, and probability of second out-
come). A simple tally rule is assumed, and
the proportion of total relations (including
indifference) that favor each option pro-
duces the probability of choosing the option.
Although each of these simple rule mod-
els can predict choices that produce the Al-
lais paradox, they cannot predict a number
of more basic results. For example, in both
models, changing the value of an outcome
does not affect choice if the rank order is
preserved, contrary to empirical evidence.
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Figure 10.1. Illustration of preference evolution for three options (A, B,
and C), according to decision field theory. The threshold is shown as a
dashed line; the three options are shown as solid lines of different
darkness.

4. Computational Models of Decision
Making: A Detailed Example

It is impossible to describe all of the previ-
ously mentioned computational models in
detail, so this section will focus on one,
called decision field theory (DFT; Buse-
meyer & Townsend, 1993; Diederich, 1997;
Roe, Busemeyer, Townsend, 2001; Johnson
& Busemeyer, 2005a).3 This model has been
more broadly applied to decision-making
phenomena compared with the other com-
putational models at this point.

4.1. Sequential Sampling Deliberation
Process

DFT is a member of a general class of
sequential sampling models that are com-
monly used in a variety of fields in cognition
(Ashby, 2000; Laming, 1968; Link & Heath,
1975; Nosofsky & Palmeri, 1997; Ratcliff,

3 The name “decision field theory” reflects the influ-
ence of Kurt Lewin’s (1936) field theory of conflict.

1978; Smith, 1995; Usher & McClelland,
2001). The basic ideas underlying the deci-
sion process for sequential sampling models
are illustrated in Figure 10.1. Suppose the
decision maker is initially presented with a
choice between three risky prospects, A, B,
C, at time t = 0. The horizontal axis on the
figure represents deliberation time (in mil-
liseconds), and the vertical axis represents
preference strength. Each trajectory in the
figure represents the preference state for one
of the risky prospects at each moment in
time.

Intuitively, at each moment in time, the
decision maker thinks about various payoffs
of each prospect, which produces an affec-
tive reaction, or valence, to each prospect.
These valences are integrated across time to
produce the preference state at each mo-
ment. In this example, during the early
stages of processing (between 200 and
300 ms), attention is focused on advan-
tages favoring prospect B, but later (after
600 ms), attention is shifted toward advan-
tages favoring prospect A. The stopping rule
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Figure 10.2. Connectionist network representation of decision field
theory.

for this process is controlled by a threshold
(which is set equal to 1.0 in this example):
The first prospect to reach the top threshold
is accepted, which in this case is prospect
A after about 1 second. Choice probability
is determined by the first option to win the
race and cross the upper threshold, and de-
cision time is equal to the deliberation time
required by one of the prospects to reach
this threshold.

The threshold is an important parameter
for controlling speed-accuracy trade-offs. If
the threshold is set to a lower value (about
.50) in Figure 10.1, then prospect B would
be chosen instead of prospect A (and done
so earlier). Thus, decisions can reverse under
time pressure (see Diederich, 2003). High
thresholds require a strong preference state
to be reached, which allows more informa-
tion about the prospects to be sampled, pro-
longing the deliberation process and increas-
ing accuracy. Low thresholds allow a weak
preference state to determine the decision,
which cuts off sampling information about
the prospects, shortening the deliberation
process and decreasing accuracy. There are
many examples of task and individual vari-
ables that could determine the threshold for
an individual application. As an example of
the former, under high time pressure, de-
cision makers must choose a low thresh-
old; but under low time pressure, a higher
threshold can be used to increase accuracy.
Concerning personal variables, very careful

and deliberative decision makers tend to use
a high threshold, and impulsive or careless
decision makers can be described as using a
low threshold.

4.2. Connectionist Network
Interpretation

Figure 10.2 provides a connectionist inter-
pretation of DFT for the example shown in
Figure 10.1. Assume once again that the de-
cision maker has a choice among three risky
prospects, and also suppose for simplicity
that there are only four possible final out-
comes. Thus, each prospect is defined by
a probability distribution across these same
four payoffs. The subjective, affective values
produced by each payoff are represented by
the inputs, mj , shown on the far left side
of this network. At any moment in time,
the decision maker anticipates the payoff of
each prospect, which produces a momen-
tary evaluation, Ui (t), for prospect i , shown
as the first layer of nodes in Figure 10.2.
This momentary evaluation is an attention-
weighted average of the affective evaluation
of each payoff: Ui (t) =

∑
Wi j (t) ·mj . The

attention weight at time t, Wi j (t), for pay-
off j offered by prospect i , is assumed to
fluctuate according to a stationary stochastic
process. This reflects the idea that attention
is shifting from moment to moment, caus-
ing changes in the anticipated payoff of each
prospect across time.
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The momentary evaluation of each
prospect is compared with other prospects
to form a valence for each prospect at each
moment, vi (t) = Ui (t)−U.(t), where U.(t)
equals the average momentary evaluation
across all the prospects. The valence vi (t)
represents the relative advantage or disad-
vantage of prospect i at time t, and this is
shown as the second layer of nodes in Fig-
ure 10.2. The total valence balances out to
zero so that all the options cannot become
attractive simultaneously.

Finally, the valences are the inputs to a
dynamic system that integrates the valences
over time to generate the output prefer-
ence states. The output preference state for
prospect i at time t is symbolized as Pi (t),
which is represented by the last layer of
nodes in Figure 10.2 (and plotted as the
trajectories in Figure 10.1). The dynamic
system is described by the following linear
stochastic difference equation for a small
time step h in the deliberation process:

Pi (t + h) =
∑

j
si j · Pj (t)+ vi (t + h)

(10.1)

The positive self-feedback coefficient,
sii = s > 0, controls the memory for past in-
put valences for a preference state. Values of
sii < 1 suggest decay in the memory or im-
pact of previous valences over time, whereas
values of sii > 1 suggest growth in impact
over time (primacy effects). The negative
lateral feedback coefficients, si j = s ji < 0 for
i �= j , produce competition among actions
so that the strong inhibit the weak. In other
words, as preference for one prospect grows
stronger, then this moderates the preference
for other prospects. The magnitudes of the
lateral inhibitory coefficients are assumed to
be an increasing function of the similarity
between choice options. These lateral in-
hibitory coefficients are important for ex-
plaining context effects on preference.

Formally, this decision process is a
Markov process, and matrix formulas have
been mathematically derived for computing
the choice probabilities and distribution of
choice response times (for details, see Buse-

meyer & Diederich, 2002; Busemeyer &
Townsend, 1992; Diederich & Busemeyer,
2003). Alternatively, Monte Carlo com-
puter simulation can be used to generate
predictions from the model.

4.3. Attention Switching Mechanism

What is the psychological source of deci-
sion weights? According to DFT, an atten-
tion process is used to generate the pre-
dicted payoff for each prospect at each time
step of the sequential sampling process. In
this context, the decision weight for a pay-
off equals the average amount of time an
individual spends paying attention to that
payoff. Consequently, the decision weights
are derived from a micro-process model of
attention (Johnson & Busemeyer, 2006).

Consider a prospect with payoffs x1 ≤
x2, . . . ,≤ xn and associated probabilities
(p1, . . . , pn). The attention process starts at
the lowest payoff and works its way up the
ranks. Given that the attention process is fo-
cused on a particular payoff xj for 1 < j <

n, it can make four transitions: predict xj
with probability p j ; do not predict this right
away, but remain focused on it with prob-
ability β · (1− p j ); or switch the focus up
to the next highest payoff or down to the
next lowest payoff with equal probability,
(1− β) · (1− p j )/2. If attention is focused
on the lowest (highest) payoff, then fo-
cus may only switch to the next lowest
(highest) payoff; that is, the probability of
switching focus is (1− β) · (1− p j ), for j =
{1, n}. This attention mechanism is then
used to mathematically derive (again us-
ing Markov chain theory) the mean at-
tention weights, wi j = E[Wi j (t)], for DFT
(see Johnson & Busemeyer, 2006). In this
way, all of the decision weight parame-
ters are derived on the basis of a single
attention parameter, 0 ≤ β ≤ 1, that rep-
resents the tendency to dwell on any given
outcome once focused on the outcome.

4.4. Response Mechanism

How can a choice process be used to de-
termine prices, yet still produce preference
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reversals? According to DFT, a sequential
comparison process is used to search and
find a price that makes the decision maker
indifferent when faced with a choice be-
tween a prospect and a price (Johnson &
Busemeyer, 2005a).

Consider, for example, the task of finding
a price for the D bet given earlier, “win $16
with probability 11/36.” For simplicity, as-
sume the feasible set of candidate prices in-
cludes the dollar values $0, $1, $2, . . . , $16.
For a simple price equivalent, the most effi-
cient place to start searching is in the middle
of this set ($8); when buying, it is advan-
tageous to start bargaining with the lowest
possible bid ($0); and it is advantageous for
sellers to start by asking for the highest price
($16). The sequential comparison then in-
serts this starting value into a binary choice
process (the D prospect is compared with
the candidate dollar value). This compari-
son process can result in one of three out-
puts: (a) if the process results in (implicit)
choice favoring the prospect D over the can-
didate value, then the price is too low, and
it is incremented by a dollar; (b) if the pro-
cess results in preference for the candidate
value over the prospect D, then the price is
too high, and the price is reduced by a dol-
lar; however, (c) each time that the com-
parison process transits through the zero
(indifference) preference state, then there
is some probability, r , that the comparison
process will stop and exit, and report finding
a price equivalent. This sequential compar-
ison process is then used to mathematically
derive (again using Markov chain theory)
the entire distribution of prices for gambles
(see Johnson & Busemeyer, 2005a).

4.5. Model Parameters

It is now possible to identify and compare
the parameters of DFT model with those
of RDU theories, such as CPT. First, DFT
has a set of affective values, mj , that cor-
respond to the utilities of outcomes, u(xj ),
used in RDU theories. Second, DFT has
a set of mean attention weights, wi j , that
correspond to the decision weights, wi (xj ),
of RDU theories. However, the weights for
DFT are generated from an attention mech-

anism, which requires only one parameter,
β. To account for prices, DFT requires only
one additional parameter, the exit rate pa-
rameter r , whereas RDU theories require a
new set of weights for choices and prices to
account for preference reversals.

In addition, DFT includes three types
of parameters to describe properties of hu-
man decision making that RDU models
(including CPT) cannot. First, DFT uses
a threshold-bound parameter to account
for speed-accuracy trade-offs (RDU theories
fail to do this because they are static). Sec-
ond, DFT includes a variance term to ac-
count for the probabilistic nature of choice
(RDU theories are deterministic, and proba-
bilistic extensions require additional param-
eters). A parameter for the self-feedback co-
efficient, sii = s, is needed to account for
primacy/recency effects on the growth of
preferences over time, and parameters for
the lateral inhibition coefficients, si j = s ji
for i �= j , are needed to explain context-
dependent preferences.

5. Accounting for Paradoxes
in Decision Making

As indicated by the selective survey of re-
sults in Section 2.2, human decision-making
behavior is complex, even under extremely
simple decision situations. Can the compu-
tational models account for this daunting
collection of empirical results? In this sec-
tion, we will show how DFT is able to ac-
count for all of the findings introduced in
Section 2.2. Although this is the only the-
ory that has been shown to account for this
entire collection of results, we also mention
where appropriate the success or failure of
other computational approaches in account-
ing for some of these findings.

5.1. Accounting for Violations of
Independence and Stochastic Dominance

Recall that RDU theories (including CPT)
are unable to account for violations
of stochastic dominance. The attention-
switching mechanism of DFT is responsi-
ble for its ability to predict violations of
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Table 10.1: Predictions derived from micro-process model of
attention to payoffs

Prospect Probabilities Weights Mean value

Allais problem

A 0, 1, 0 0, 1, 0 1.00
B .01, .89, .10 .03, .96, .01 .986
A′ .89, .11, 0 .99, .01, 0 .011
B′ .90, 0, .10 .99, 0, .01 .045

Stochastic dominance problem

F .10, .05, .85 .40, .16, .44 62.65
G .05, .05, .90 .24, .20, .56 60.64
F′ .05, .05, .05, .85 .27, .28, .12, .33 49.85
G′ .05, .05, .05, .85 .27, .28, .12, .33 51.38

independence and stochastic dominance
(see Johnson & Busemeyer, 2006). Ta-
ble 10.1 presents the predictions for both
the Allais and the stochastic dominance
choice problems from Section 2.2, when
the “dwell parameter” was set to β = .70.
The columns show the prospect, the prob-
abilities, the weights, and the mean values
(assuming E[Ui (t)] = ui =

∑
wi j ·mj with

mj = xj ). As can be seen in this table, both
paradoxes are explained using the same at-
tention mechanism and the same parame-
ter value. Intuitively, the tendency to be-
gin by considering low outcomes, coupled
with a moderate dwelling probability, re-
sults in “overweighting” of the small proba-
bilities associated with the lowest outcomes
of the prospects. Note that the β parameter
and/or mj values could be fit to amplify or
moderate the effects shown in Table 10.1
However, we avoid this in order to illus-
trate that a simple and consistent applica-
tion can produce the paradox. Furthermore,
Johnson and Busemeyer (2006) show how
the attention process accounts for several
other findings that are not reviewed here,
using the same assumptions and parameter
value.

5.2. Accounting for Preference Reversals

As noted earlier, strategy switching between
tasks can explain reversals between choices
and prices, but they fail to explain reversals

between buying and selling prices. To illus-
trate the predictions of the DFT model for
reversals between choice and pricing, con-
sider prospects P and D introduced in Sec-
tion 2.2.3, for which robust preference re-
versals have been observed. The first result
that must be predicted is the risk-averse ten-
dency found with choices (a higher propor-
tion of P choices). To obtain this, Johnson
and Busemeyer (2005a) assumed the af-
fective values of the payoffs to be a con-
cave function of the payoffs (specifically,
mj = x0.7

j ). This produces a higher predicted
choice probability (0.68) for prospect P
compared with prospect D. To generate
price equivalents, the exit rate parameter
for indifference was set equal to r = .02.
This generates both a higher predicted mean
price for prospect D ($4.82) compared with
prospect P ($3.42), as well as a larger pre-
dicted variance in the prices for prospect D
($4.13) compared with prospect P ($.31).

Next, consider the application to pros-
pects F and G described in Section 2.2.3.
Using exactly the same parameter values
and assumptions as those applied to P and
D produces the following results: the mean
buying price for prospect F ($52) exceeds
that for prospect G ($38), but the mean sell-
ing price for prospect G ($64) is higher than
that for prospect F ($56). More generally,
this sequential comparison process is able
to reproduce the observed preference or-
ders for five different measures of preference
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Table 10.2: Choice probabilities predicted by decision field theory for similarity,
attraction, and compromise effects

Similarity Attraction Compromise

Options Probability Options Probability Options Probability

A: (1.0, 3.0) .39 A: (1.0, 3.0) .59 A: (1.0, 3.0) .31
B: (3.0, 1.0) .31 B: (3.0, 1.0) .40 B: (3.0, 1.0) .25
S: (2.99, 1.01) .30 D: (1.0, 2.5) .01 C: (2.0, 2.0) .44

Note: Simulation results based on 10,000 replications.

(see Johnson & Busemeyer, 2005a): choices,
price equivalents, minimum selling prices,
maximum buying prices, and probability
equivalents.

5.3. Accounting for Context Dependent
Preferences

Can a single theory account for similarity,
attraction, and compromise effects, using
a common set of assumptions and a single
set of parameter values? Recall that sim-
ple scalable utility models fail to explain
the similarity effect, the EBA model fails
to account for the attraction effect, and the
LEX model fails to account for the com-
promise effect. Roe et al. (2001) initially
demonstrated that DFT provides a robust
and comprehensive account for all three ef-
fects. For multi-attribute choice tasks, at-
tention is assumed to drift back and forth
between attributes across time (Diederich,
1997). For example, when choosing among
consumer products, attention shifts between
thinking about quality and price. Although
mathematical formulas have been derived
for calculating the model predictions for this
process (see Diederich, 1997; Roe et al.,
2001), it is simpler (albeit slower) to gener-
ate predictions from computer simulations,
especially when the number of alternatives
is large.4

Predictions from DFT for an example of
all three context effects are presented in
Table 10.2. The values of the alternatives on

4 The predictions in Table 10.2 were generated from
a simulation program available at http://mypage.
iu.edu/∼jbusemey/lab/sim mdf.m.

each attribute are shown in the table (these
determine the inputs, mi j , for the network).
For all three effects, the same set of param-
eters were used: the mean attention weight
for the two attributes was set equal to .51
and .49 (reflecting slightly greater weight on
the first dimension); the threshold bound
was set equal to 12; the variance parameter
for the valence was set equal to 1; the self-
feedback coefficient was set equal to .93;
the lateral inhibitory coefficient connection
between the two most extremely different
options, A and B, was set to zero; and the
lateral inhibitory coefficient between similar
option pairs was set to −.07.

Option B tends to be chosen more fre-
quently in a binary choice (.55 for B for
all three conditions), because of the larger
weight given to the first attribute. However,
as shown in Table 10.2, this preference is re-
versed by the introduction of a third option
in the triadic choice sets. As shown in Ta-
ble 10.2, the model successfully reproduces
all three effects: for the similarity effect, the
addition of a new similar competitive op-
tion hurt option B; for the attraction effect,
the addition of a new similar dominated op-
tion helped option A; and for the compro-
mise effect, the addition of the extreme op-
tion made the compromise option C most
popular.

According to DFT, the attention switch-
ing mechanism is crucial for producing the
similarity effect, but the lateral inhibitory
connections are critical for explaining the
compromise and attraction effects. If the
attention switching process is eliminated,
then the similarity effect disappears, and if
the lateral connections are all set to zero,
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then the attraction and compromise effects
disappear. This property of the theory en-
tails an interesting prediction about the ef-
fects of time pressure on preferences. The
contrast effects produced by lateral inhibi-
tion require time to build up, which im-
plies that the attraction and compromise ef-
fects should become larger under prolonged
deliberation (see Roe et al., 2001). Alter-
natively, if context effects are produced by
switching from a weighted average rule un-
der binary choice to a quick heuristic strat-
egy for the triadic choice, then these effects
should get larger under time pressure. Em-
pirical tests show that prolonging the de-
cision process indeed increases the effects
(Simonson, 1989) and time pressure de-
creases the effects (Dhar, Nowlis, & Sher-
man, 2000).

6. Discussion

This chapter began with a challenge to
computational models: What can they con-
tribute that goes beyond the explanatory
power of the more popular approaches to
decision making based on algebraic utility
or heuristic rules? Following, a synopsis is
provided that is based on the detailed discus-
sions presented in the earlier sections. The
issue of complexity of computational mod-
els is also addressed, followed by a discussion
of some connections to work on computa-
tional models in other domains of judgment.

6.1. Comparison Among Models

Modern rank dependent utility theories,
such as cumulative prospect theory, are able
to explain some old paradoxes of risky deci-
sion making, such as the Allais paradox. But
they fail to explain new paradoxes of risky
decision making, such as stochastic domi-
nance violations. Furthermore, they cannot
explain preference reversals between choice
and prices without postulating entirely new
utility functions for each measure. Finally,
they are unable to account for context ef-
fects on choice including similarity, attrac-
tion, and compromise effects.

Simple heuristic rule-based models allow
for changes in strategy from compensatory
rules (e.g., WADD or EU) to noncompen-
satory rules (e.g., EBA and LEX). These
switches occur under time pressure or with
increases in choice set size and may depend
on the response measure. Simple heuristic
rules can explain the Allais paradox with
risky decisions, but not violations of stochas-
tic dominance. Strategy switching between
response measures can account for prefer-
ence reversals between choice and prices,
but not between buying and selling prices.
Finally, simple heuristic rules can account
for similarity effects on choice, but they are
unable to account for attraction and com-
promise effects. In short, despite the in-
creased flexibility provided by allowing mix-
tures of strategies, these models have not yet
proven capable of providing a coherent ex-
planation for many of the well-established
findings.

Several computational models were pre-
sented, but two in particular stand out as
most promising for meeting the challenge
of this chapter. Both DFT and the leaky ac-
cumulator model provide coherent explana-
tions for similarity, attraction, and compro-
mise effects on choice. Furthermore, both
of these models can predict how time pres-
sure moderates these effects. In fact, the two
models are based on very similar principles
for making a choice, that is, a race between
accumulators of preference to a threshold.
The models differ in terms of their details
concerning lateral inhibition and nonlinear
accumulation. However, DFT has been ap-
plied more broadly than the leaky accumu-
lator; the former also accounts for prefer-
ence reversal among different measures of
preference (choice vs. prices and buying
prices vs. selling prices) as well as the para-
doxes of risky decision making (Allais and
stochastic dominance paradoxes). In conclu-
sion, these two “accumulation to threshold”
models provide explanatory power that goes
beyond the algebraic utility models and the
simple heuristic models.

Critics of computational models may
claim that the power of these models comes
at a cost of increased complexity. However,
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it is important to note that computational
models may have the same number of (or
even fewer) free parameters than the al-
gebraic utility models applied to the same
domain (see Section 3.4; cf. Johnson &
Busemeyer, 2005a). By focusing on un-
derlying cognitive processes, computational
models can provide parsimonious explana-
tions for broad collections of puzzling be-
havioral phenomena. In addition, computa-
tional models make precise predictions not
possible with other approaches. Unlike typ-
ical utility models, computational models
are dynamic and thus offer deliberation time
predictions. Many of these models – includ-
ing DFT, the focus of the current chapter –
also account for variability in human behav-
ior, in contrast to deterministic approaches,
such as RDU theory and simple heuristic
models.

6.2. Connections to Computational
Modeling in Judgment

There are now a variety of computational
models relevant to judgment and deci-
sion making research. Connectionist models
of social reasoning are reviewed in Chap-
ter 18 in this volume, and Stasser (2000)
has considered computational models for in-
formation sharing in group decision making.
Instance-based memory models of Bayesian
inference (Dougherty, Gettys, & Ogden,
1999) and decision making (Stewart,
Chater, & Brown, 2006) have been devel-
oped. Stochastic models of confidence judg-
ments have been proposed (Brenner, Grif-
fin, & Koehler, 2005; Erev, Wallsten &
Budescu, 1994; Wallsten & Barton, 1982;
Wallsten & Gonzalez-Vallejo, 1994). Sev-
eral computational models of strategy learn-
ing have appeared (Busemeyer & Myung,
1992; Johnson & Busemeyer, 2005b;
Rieskamp & Otto, 2006). This chapter is
directed at decision making rather than rea-
soning or inference (but see Chapter 11 in
this volume); it is focused on performance
rather than memory or learning models; and
it concerns individual as opposed to group
decision processes.

7. Conclusion

This chapter discussed how a particular
computational model could account for a
wide variety of empirical trends that have
resisted a coherent explanation by models
cast in the dominant framework. This ac-
complishment was made possible by consid-
ering an alternative level of analysis, rather
than attempting to further modify the util-
ity framework. In addition, computational
models have distinct advantages – both theo-
retical and practical – over contemporary ap-
proaches toward the study of decision mak-
ing. Hopefully, more and more researchers
will appreciate these advantages and con-
tribute to an expanding and interesting lit-
erature involving computational models.
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CHAPTER 11

Models of Inductive Reasoning

1. Introduction

How do you make a prediction about the
unpredictable? Inductive reasoning is about
drawing conclusions that are not certain or
logically valid, but still likely. Suppose you
are buying a new CD for your friend. It
is impossible to know with certainty what
she will like, and it does not seem that the
rules of logic will tell you which CD to
buy. There is no correct answer. Nonethe-
less, you can make an informed guess, and
indeed she will probably like the CD that
you buy. The more you know about her
taste in music and which categories of music
she likes and does not like, the more likely
it is that your prediction will be correct.
Our everyday experiences are filled with
predictions of this nature – we use induc-
tive reasoning to make likely but not cer-
tain predictions about how people will act
and about things we have not seen. For ex-
ample, when we open a door to a room,
we predict that the room will have a floor
and ceiling. In spite of the uncertainty, we
manage to be fairly successful in our predic-

tions – we can buy gifts that our friends will
enjoy and avoid walking into rooms without
floors.

When it comes to making predictions
about the unpredictable, computational
models are in a similar position to people.
Because the judgments being modeled are
themselves uncertain, it is unlikely that
models of inductive reasoning will be per-
fectly correct. Any computational model of
inductive reasoning could probably be im-
proved by taking account of more knowl-
edge or more principles of prediction.
Nonetheless, current models of inductive
reasoning already do a fairly good job of
capturing patterns and regularities in how
people make likely predictions.

This chapter first reviews some of the em-
pirical work on inductive reasoning, sum-
marizing regularities that people show. The
second part of the chapter describes compu-
tational models of inductive reasoning, par-
ticularly from the psychology literature. The
concluding section addresses more general
issues in modeling inductive reasoning and
other cognitive activities.

322
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2. Human Inductive Reasoning:
The Data

Inductive reasoning is potentially an ex-
tremely large topic, especially because it is
often defined as reasoning about problems
that do not involve perfectly certain con-
clusions (Heit, 2007). The class of prob-
lems that have perfectly certain conclusions
is much more circumscribed, for example, it
could be defined in terms of a set of logical
rules about what conclusions must follow
from a given set of premises. In compari-
son, the set of problems for which inductive
reasoning applies is potentially “everything
else,” and that is indeed a large and varied
set. It is instructive to examine several text-
books on cognitive psychology. They will
each no doubt have a section on inductive
reasoning, but one is likely to find that dif-
ferent textbooks cover different topics un-
der this heading. These topics will include
analogical reasoning (Gentner, Holyoak, &
Kokinov, 2001; for some connections to
inductive reasoning, see Lassaline, 1996;
Thagard, 2007; Wu & Gentner, 1998), cat-
egorization (see Chapter 9 in this volume),
judgment and decision making (see Chap-
ter 10 in this volume), and causal rea-
soning (Sloman, 2005). Likewise, inductive
reasoning has been an important issue in
artificial intelligence and computer science
(e.g., Collins & Michalski, 1989; Sun, 1995;
Sun & Zhang, 2006). Some of these topics
are referred to indirectly over the course of
this chapter; however, this chapter neces-
sarily has a focus. It addresses one impor-
tant aspect of inductive reasoning, namely,
psychological research on category-based in-
duction, or how people use categories to
make likely inferences.

Categories and inductive reasoning go
hand in hand. For example, Anderson
(1991) suggested that the most important
function of categories is not that they al-
low us to categorize things, but rather that
they allow us to draw inferences. Return-
ing to the example of buying your friend
a CD, let us say that you know that your
friend likes some 1960s music and hates
Celine Dion. In predicting which CDs she

will like, it seems safer to choose something
from within the 1960s category than from
within the Celine Dion category. Category-
based induction has been studied exten-
sively by psychologists, although usually not
with musical categories but with more struc-
tured categories that are part of people’s
basic knowledge, such as different kinds of
animals.

In one of the earliest studies of category-
based induction, Rips (1975) examined how
people project properties of one category
of animal to another. Subjects were told
to imagine that on an island, all members
of a species of mammals catch a particular
disease; then they were asked what propor-
tion of other species will catch the disease.
For example, knowing that all horses have
the disease, what proportion of cows will
have the disease? What proportion of dogs?
Mice?

This was a very useful task, but before
reviewing results in inductive reasoning, an-
other important step in studying inductive
reasoning will be described. A limitation of
the Rips (1975) task was that it was best
suited for drawing inferences from one cat-
egory to another, whereas inductive reason-
ing usually involves more pieces of informa-
tion. Osherson et al. (1990) made an influ-
ential contribution to the study of inductive
reasoning by having subjects evaluate writ-
ten inductive arguments in the format usu-
ally used for logic problems.

All horses have property X. (1)

All cows have property X.

All mice have property X.

All lions have property X.

--------------------------

All mammals have property X.

In argument (1), the premise statements
above the line are taken to be true, and
the task is to judge the degree to which the
conclusion statement, below the line, fol-
lows from the premises. Essentially this is a
judgment of argument strength. This task is
very flexible in the sense that any number of
premises can be used, and various properties
could be swapped for property X (or the
uninformative property X could be used).
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Osherson et al. reported eleven main phe-
nomena or regularities regarding how people
perform inductive reasoning. A later review
paper by Heit (2000) split things up dif-
ferently, considering some newer data, and
reported eight main phenomena in induc-
tive reasoning. In the next sections of this
chapter, some of these phenomena will be
described, setting the stage for the presen-
tation of computational models of inductive
reasoning. Note that results from adults only
will be discussed here. There is also a rich lit-
erature on inductive reasoning by children
that could be used to constrain modeling;
for reviews, see Heit (2000; Heit, Hahn, &
Feeney, 2005; Heit & Hayes, 2005), as well
as Hayes (2007).

2.1. Similarity Effects

The idea that similarity should guide induc-
tive reasoning has a distinguished history.
Mill (1874, Book III, Chapter III, Section I)
argued that “what happens once, will, under
a sufficient degree of similarity of circum-
stances, happen again.” Going back to the
example of buying a CD for your friend, if
you know that she likes 1960s albums by
the Rolling Stones and does not like Ce-
line Dion, the most promising strategy is no
doubt to buy her a CD by a similar 1960s
band rather than by someone else who sings
like Celine Dion. These similarity effects are
backed up by a lot of laboratory evidence –
similarity effects are the most robust result
in inductive reasoning. For example, Rips
(1975) found a strong correlation between
strength of inferences and measures based
on similarity judgments. If all horses had the
disease, then most cows would have the dis-
ease, but fewer dogs and yet fewer mice.
Likewise, Osherson et al. (2000) found that
given a choice such as between argument
(2) and argument (3), about 95% of people
chose argument (2) because of the greater
similarity of sparrows to robins and bluejays
versus geese to robins and bluejays.

Robins use serotonin as a neurotransmitter.(2)

Bluejays use serotonin as a neurotransmitter.

--------------------------------------------

Sparrows use serotonin as a neurotransmitter.

Robins use serotonin as a neurotransmitter.(3)

Bluejays use serotonin as a neurotransmitter.

--------------------------------------------

Geese use serotonin as a neurotransmitter.

Despite this strong evidence, there are some
exceptions to similarity effects and some
complications, as will soon be described.
Yet, clearly any computational model of in-
duction will have to address similarity ef-
fects (and ideally the exceptions and com-
plications, too).

2.2. Typicality Effects

Another very robust finding in inductive
reasoning is the typicality effect. This phe-
nomenon is closely tied to categorization
research, in particular, the idea that not
all category members are equal, but in-
stead some are more prototypical than oth-
ers (e.g., Rosch & Mervis, 1975). Returning
to buying a CD for your friend, if you know
that she likes albums by the Rolling Stones,
a prototypical 1960s guitar-based rock band,
there would seem to be a lot of similar 1960s
bands to choose from. On the other hand,
if you know that she likes albums by the
Moody Blues, a much less typical 1960s
band that recorded with a symphony or-
chestra, it would seem harder to choose an-
other 1960s band that she would like – she
might only like rock bands that use classical
music.

Like similarity effects, typicality effects
have been well documented in laboratory
research. For example, Rips (1975) found
that when a more typical mammal, such
as horses, had the disease, people generally
drew stronger inferences to other mammals,
compared with a situation in which a less
typical mammal, such as mice, had the dis-
ease. There was an additional effect of typi-
cality beyond what might be predicted based
only on similarity. Intuitively, if a typical
mammal, such as horses, have the disease,
then perhaps all mammals have it, that is,
the property applies to the superordinate
category. On the other hand, if mice have
the disease, it might be restricted to a sub-
category of mammals, such as rodents.
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Indeed, Osherson et al. (1990) addressed
this intuition directly. They compared ar-
guments like (4) and (5). Here, knowing a
fact about robins seems to license a stronger
inference about all birds compared with
knowing a fact about penguins. More than
90% of people chose argument (4).

Robins have a higher potassium concentration

in their blood than humans. (4)

---------------------------------------------

All birds have a higher potassium concentration

in their blood than humans.

Penguins have a higher potassium concentration

in their blood than humans. (5)

---------------------------------------------

All birds have a higher potassium concentration

in their blood than humans.

In sum, the typicality effect is another ro-
bust phenomenon that must be addressed
by models of inductive reasoning.

2.3. Diversity Effects

The diversity effect is somewhat more elu-
sive than similarity or typicality, but it,
too, has a distinguished history (Heit et al.,
2005). Bacon (1620) argued that before
drawing inferences about a category, such
as things possessing heat, diverse instances of
this category should be examined. In mak-
ing this point, he listed twenty-eight differ-
ent kinds of heat and hot things, including
the rays of the sun, steam, burning hay, and
the insides of animals. The diversity effect is
also well illustrated in the example of buy-
ing CDs. If your friend actually likes both
the Rolling Stones and Celine Dion, then
you might infer that she has broad tastes in
music, and it would be safe to buy her one
of many styles of music. On the other hand,
if you know she likes the Rolling Stones and
The Who, another guitar-based 1960s band,
you might infer that her musical tastes are
fairly narrow after all, and you should not
stray too far from similar bands.

Studying the diversity effect in laboratory
experiments requires giving people at least
two pieces of information and varying the
diversity of these two items. In the study by
Rips (1975), subjects were only given one

fact at a time, so diversity effects were not
addressed. It was the Osherson et al. (1990)
study that first focused on diversity effects
in inductive reasoning by adults, using argu-
ments such as the following:

Hippos have a higher sodium concentration in

their blood than humans. (6)

Hamsters have a higher sodium concentration in

their blood than humans.

--------------------------------------------

All mammals have a higher sodium concentration

in their blood than humans.

Hippos have a higher sodium concentration in

their blood than humans. (7)

Rhinos have a higher sodium concentration in

their blood than humans.

--------------------------------------------

All mammals have a higher sodium concentration

in their blood than humans.

About 75% of people chose argument (6),
with the more diverse set of category mem-
bers, over argument (7), with the less diverse
set. In essence, diverse evidence is stronger
than nondiverse evidence. Osherson et al.’s
own explanation for this phenomenon was
in terms of coverage: Hippos and hamsters
cover, or span, the category of mammals
better than do hippos and rhinos. Hence,
a property of hippos and hamsters is more
likely to generalize to other mammals.

Although diversity effects have been
found in other laboratory experiments,
there are more exceptions compared with
similarity and typicality effects (see Heit,
2000, and Heit et al., 2005, for reviews).
Still, because of the very nature of inductive
reasoning, namely, that it is probabilistic,
there are likely to be exceptions to any reg-
ularity that is found. Hence, diversity is an-
other effect that computational models will
need to address.

2.4. Other Phenomena, Including
Background Knowledge Effects

Although similarity, typicality, and diversity
are three of the most important phenom-
ena, there are several others summarized
by Osherson et al. (1990) and Heit (2000),
and reported by other researchers. Some of
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these are fairly straightforward, encompass-
ing other points about the structure of in-
ductive arguments. For example, Osherson
et al. reported that more evidence leads to
stronger generalizations than less evidence
(see also Nisbett et al., 1983). Looking back
at argument (1), this argument with four
premises seems fairly strong, and it would be
stronger than another argument with just a
single premise, for example, that only horses
have property X.

There is another class of phenomena that
is much messier but much more interest-
ing, both in its own right and as challenges
for computational models. These phenom-
ena involve the use of more background
knowledge, and as such, are closely linked
to the nature of inductive reasoning. That
is, because inductive reasoning is uncertain
by nature, there is always room for improve-
ment by drawing on some other source of
knowledge. (This makes a sharp contrast
with deductive reasoning, or logical reason-
ing, where the conclusion is certain and us-
ing background knowledge is usually consid-
ered an error.) Returning to the example of
buying a CD that your friend will like, the
more information that you can accumulate
about her musical tastes and listening habits,
the more successful you will be in choosing a
CD for her. In fact, with enough knowledge
about her habits, you might be able to make
detailed and sophisticated predictions, such
as music to play in the car versus while at
home studying.

Heit and Rubinstein (1994) reported one
such phenomenon based on background
knowledge, showing a kind of exception to
the similarity effect. Suppose there are two
inductive arguments as follows:

Bears have property X. (8)

---------------------------------

Whales have property X.

Tuna have property X. (9)

---------------------------------

Whales have property X.

Which argument is stronger, (8) or (9)? Heit
and Rubinstein showed that the answer de-

pends on X. If property X is filled in with
an anatomical property, such as having a
liver with two chambers, then (8) is con-
sidered stronger than (9) by virtue of other
shared anatomical properties of the two
mammals, bears and whales. On the other
hand, if property X is filled in with a be-
havioral property, such as traveling shorter
distances in extreme heat, then (9) is con-
sidered stronger than (8). Here, shared be-
havioral properties are considered, and the
two swimmers, tuna and whales, have more
in common on this basis. Heit and Rubin-
stein concluded that the basic similarity ef-
fect in inductive reasoning is not a singu-
lar phenomenon but instead is mediated by
background knowledge.

There have been many other demon-
strations of background knowledge effects
in inductive reasoning (Lopez et al., 1997;
Medin et al., 2003; Proffitt, Coley, & Medin,
2000; Rehder, 2006; Ross & Murphy, 1999;
Shafto & Coley, 2003; Sloman, 1994). For
example, Medin et al. (2003) reported an
exception to the diversity effect, known
as the nondiversity by property reinforce-
ment effect. The idea behind nondiversity
by property reinforcement is that two di-
verse categories may nonetheless have some
characteristic in common and tend to gen-
eralize only to other categories with this
same characteristic. This phenomenon is il-
lustrated by the following arguments.

Polar bears have property X. (10)

Antelopes have property X.

------------------------------------

All animals have property X.

Polar bears have property X. (11)

Penguins have property X.

------------------------------------

All animals have property X.

When given a choice between polar bears
and antelopes versus polar bears and pen-
guins, people judged the two animals from
the same biological class, polar bears and an-
telopes, to be more similar than the two an-
imals from different biological classes, polar
bears and penguins. However, when asked
to assess the inductive strength of each
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argument, argument (11) was judged to be
less convincing than argument (10). That is,
argument (10) had less diverse evidence, yet
it was the stronger argument. Intuitively, al-
though polar bears and penguins are from
different biological classes, people use their
knowledge that both live in a cold climate
and infer that property X does not apply
to all animals but only to animals living in
cold climates (see Heit & Feeney, 2005, for
further discussion).

The more general point is that when
people evaluate inductive arguments, they
potentially draw on a variety of resources.
When people use background knowledge,
it is illuminating to think of what people
are doing as causal reasoning, that is, they
are reasoning about relations between causes
and effects (Rehder, 2006). People are rea-
soning about what causes whales to move
more slowly in extreme heat, what causes
two cold-weather animals to have other
properties in common, and so on. One con-
sideration to keep in mind as computational
models are presented is whether they have
any facility for addressing not only similar-
ity, typicality, and diversity effects, but also
background knowledge effects and indeed
whether they show any capacity for causal
reasoning.

3. Human Inductive Reasoning: The
Computational Models

Having reviewed some of the important em-
pirical phenomena, it is time to turn to mod-
els of inductive reasoning. A representative
sample will be given rather than complete
details on all models. First, two earlier mod-
els by Osherson et al. (1990) and Sloman
(1993) will be described. These models
do an excellent job of addressing many
structural phenomena in inductive reason-
ing, but do not address background knowl-
edge effects sufficiently. Next, an alternative
kind of model based on Bayesian hypothe-
sis testing is presented in some detail (Heit,
1998). Bayesian models have the potential
to address some background knowledge ef-

fects, and further applications by Tenen-
baum and colleagues (Kemp & Tenenbaum,
2003; Tenenbaum & Griffiths, 2001; Tenen-
baum, Kemp, & Shafto, 2007) are described.
Other modeling work in the psychology lit-
erature, not described here, can be found in
papers by Rips (1975), Smith, Shafir, and
Osherson (1993), McDonald, Samuels, and
Rispoli (1996), Sloutsky and Fisher (2004),
Heit and Hayes (2005), and Blok, Osherson,
and Medin (2007). Likewise, some of the
empirical regularities documented and mod-
eled by psychologists were anticipated in
a seminal paper in artificial intelligence by
Collins and Michalski (1989).

3.1. Osherson et al. (1990)

The most influential computational model
of inductive reasoning was proposed by Os-
herson et al. (1990). This model has two
main components. The first component as-
sesses the similarity between the premise
categories and the conclusion category. In
the most straightforward application of the
model, this information is simply taken from
people’s similarity judgments for various
pairs of categories. The model predicts that
the basic similarity effect that is pervasive in
inductive reasoning. The second component
measures how well the premise categories
cover the superordinate category that in-
cludes all the categories mentioned in an ar-
gument. For single-premise arguments, cov-
erage more or less reduces to typicality, but
for multiple-premise arguments, coverage
gives something closer to a measure of di-
versity. Coverage is most easily explained
with examples.

Mice have property X. (12)

----------------------------------

All mammals have property X.

Horses have property X. (13)

----------------------------------

All mammals have property X.

Hippos have property X. (14)

Rhinos have property X.

----------------------------------

All mammals have property X.
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Hippos have property X. (15)

Hamsters have property X.

---------------------------------

All mammals have property X.

For arguments (12) and (13), the lowest-
level superordinate that includes all the cat-
egories is mammal. Coverage is assessed
in terms of the average similarity of the
premise category to members of the super-
ordinate. To the extent that horses are more
typical mammals than are mice and there-
fore more similar to other kinds of mam-
mals, argument (13) will have greater cov-
erage than argument (12). This is how the
model addresses typicality effects.

The remaining arguments have multiple
premises. When assessing similarity between
members of the superordinate category and
the multiple premises, only the maximum
similarity for any one premise category is
considered. So for argument (14), very large
mammals tend to be similar to both hippos
and rhinos, and smalls mammals tend not to
be similar to hippos and rhinos. So includ-
ing rhino as a premise category does not add
much information beyond just having hippo
as a premise category alone. In contrast, for
argument (15), some mammals are similar
to hippos and other mammals are similar to
hamsters. Therefore, the hamster premise
adds information, and the coverage for argu-
ment (15) is greater than for argument (14).
Hence, the Osherson et al. (1990) model
addresses diversity effects to the extent that
greater coverage is correlated with greater
diversity.

The Osherson et al. (1990) model can
be written out more formally, as shown in
Equation (11.1)

Strength = αSIM(P1, . . . Pn; C)+ (1− α)

× SIM(P1, . . . Pn; [P1, . . . Pn, C]).

(11.1)

Here, α refers to the relative influence of
the similarity component (ranging from 0
to 1) and (1− α) is the influence of the
coverage component. This equation applies
when there are n premise categories P

and one conclusion category C. When the
premise and conclusion categories are all at
the same taxonomic level (e.g., robins, blue-
jays; sparrows), then SIM returns the max-
imum of the pairwise similarities between
each Pi and C. When the conclusion cat-
egory is at a higher taxonomic level than
the premise categories (e.g., robins, blue-
jays; birds), then SIM is applied recursively
to known c that are members of C and aver-
aged over these c. For example, SIM(robins,
bluejays; birds) = AVERAGE(SIM(robins,
bluejays; sparrows), SIM(robins, bluejays;
penguins), SIM(robins, bluejays; chickens),
SIM(robins, bluejays; pigeons), . . . .). Fi-
nally, the bracket function [] returns
the lowest-level superordinate covering all
of the included categories, for example,
[robins, bluejays, sparrows]=birds; [robins,
bluejays, birds]=birds; [robins, bluejays,
dogs]=animals.

Generally speaking, the Osherson et al.
(1990) model addressed a wide variety of
structural phenomena in inductive reason-
ing and is particularly impressive in how
it puts together information from multiple
premises, because of the powerful combina-
tion of similarity and coverage components.
Although the model does incorporate some
information about categories and similarity,
it does not address background knowledge
effects, such as the differential use of simi-
larity and properties in Heit and Rubinstein
(1994), exceptions to diversity in Medin
et al. (2003), or, more generally, any use
of causal knowledge or causal reasoning.

3.2. Sloman (1993)

The model by Sloman (1993) is particu-
larly interesting because it asks the question
of whether the coverage component in the
Osherson et al. (1990) model is really nec-
essary. Sloman’s model was implemented
as a connectionist network, and it can ac-
count for many of the same phenomena as
the Osherson et al. model. (For compari-
son, see an alternate connectionist model in
the artificial intelligence literature in Sun,
1995.) The way Sloman’s model works is
that premises of an argument are encoded by
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training the connectionist network to learn
associations between input nodes represent-
ing the features of the premise categories
and an output node for the property to be
considered, using the classic delta rule (e.g.,
Sutton & Barto, 1981). For example, for the
model to learn that apples have property X,
it would learn to associate a vector of fea-
tures such as {is round, is red, is edible, . . .}
with an output node representing property
X. Then the model is tested by presenting
the features of the conclusion category and
measuring the activation of the same output
node. For example, to evaluate the strength
of the conclusion that oranges have prop-
erty X, the model would use a somewhat
different input vector of features {is round,
is orange, is edible, . . . ) and measure the
degree of activation for the output unit cor-
responding to property X.

The model accounts for similarity effects
because training and testing on similar in-
put vectors will lead to strong outputs dur-
ing testing. Going back to arguments (2)
and (3), the model would first be trained
to associate input representations for robins
and bluejays with an output node repre-
senting the property in the conclusion. Be-
cause the representation for sparrows would
have a lot of overlap with representations
of robins and bluejays, presenting sparrow
to the network would also activate the out-
put node strongly. In comparison, the rep-
resentation of geese would have much less
overlap with representations for robins and
bluejays. Hence, presenting geese to the net-
work would only weakly activate the output
node.

The activation function is as follows:

a(C | Pi , . . . , Pn) = W(Pi , . . . , Pn) •C
|C|2 .

(11.2)

This function refers to the output activation
given a set of n premise categories P and a
conclusion category C. W is a vector cor-
responding to the already-trained weights
in the network after the premise categories
have been learned. C is a vector correspond-
ing to the featural representation of the con-

clusion category. The dot product between
W and C is computed, yielding a value cor-
responding to the similarity between the
premise categories and the conclusion cate-
gory. For example, donkey and mule would
have many features in common, and there
would be a fairly high, positive dot prod-
uct between the two vectors. On the other
hand, donkey and ostrich would have fewer
features in common and a lower dot prod-
uct, perhaps close to zero. Finally, the acti-
vation is scaled in the denominator, by the
squared length of the vector C, essentially a
measure of the number of known features
of C. If C corresponds to a well-known cat-
egory, such as dogs, it will be relatively dif-
ficult to draw a new conclusion. If C corre-
sponds to a poorly known category, such as
ocelots, it will be easier to draw new conclu-
sions about the category.

The model accounts for diversity effects
because training on a diverse set of cate-
gories will tend to strengthen a greater num-
ber of connections in W than training on a
narrow range of categories. In terms of ar-
guments (6) and (7), training the network
that both hippos and hamsters have a certain
property would activate a broad range of fea-
tures that apply to various mammals, lead-
ing to a strong conclusion that all mammals
have that property. That is, hippos and ham-
sters would activate different features and
different connections. In comparison, train-
ing the network that hippos and rhinos have
a property would only activate a narrow
range of features and connections. Although
this model does have a notion of breadth of
features, there is no distinct component for
assessing coverage of a superordinate cate-
gory, as in the Osherson et al. (1990) model,
and indeed Sloman’s (1993) model does not
even rely on knowledge about superordinate
categories (see also Sloman, 1998, and see
Sun & Zhang, 2006, for an alternative ac-
count). Nonetheless, the Sloman model can
account for not only diversity effects but a
variety of other phenomena involving mul-
tiple premises.

The treatment of typicality effects is
slightly less straightforward. The model
would correctly predict that argument (4)
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is stronger than argument (5), namely, that
robins lead to stronger inferences about all
birds than do penguins. The Sloman (1993)
model makes this prediction in terms of
overlap in representations. On the assump-
tion that the featural representations for
robins and birds are closer than the repre-
sentations for penguins and birds, the model
predicts greater activation for birds after
training on robins compared with training
on penguins. Yet the model essentially pre-
dicts the typicality effect in the same way
as the similarity effect. This seems to be at
odds with a finding by Rips (1975) of an in-
dependent contribution of typicality beyond
similarity. Still, at a broad level, the Sloman
model predicts a kind of typicality effect (see
Heit, 2000, for further discussion).

More importantly, the Sloman (1993)
model, like the Osherson et al. (1990)
model, can account for many structural
phenomena in inductive reasoning, but it
does not address background knowledge ef-
fects and does not use knowledge about the
properties being reasoned about to guide
the use of similarity or information about
causality.

3.3. Bayesian Model

The next model to be discussed is the
Bayesian model, applied to inductive reason-
ing problems by Heit (1998; see also Tenen-
baum & Griffiths, 2001, as well as Chapter
3 in this volume). According to the Bayesian
model, evaluating an inductive argument is
conceived of as learning about a property,
in particular, learning for which categories
the property is true or false. For example, in
argument (16),

Cows have property X. (16)

----------------------------------

Sheep have property X.

the goal is to learn which animals have prop-
erty X and which do not. The model as-
sumes that for a novel property X, people
would rely on prior knowledge about famil-
iar properties to derive a set of hypotheses
about what property X may be like. For ex-
ample, people know some facts that are true
of all mammals, including cows and sheep,

but they also know some facts that are true
just of cows and some facts that are true
just of sheep. The question is which kind
of property is property X. Is it a cow-and-
sheep property, a cow-only property, or a
sheep-only property? To answer this ques-
tion, the Bayesian model treats the premise
or premises in an inductive argument as ev-
idence, which is used to revise beliefs about
the prior hypotheses according to Bayes’
theorem. Once these beliefs have been re-
vised, then the plausibility of the conclusion
is estimated.

People know quite a few properties of
animals, but these known properties must
fall into four types: properties that are true
of cows and sheep, properties that are true
of cows but not sheep, properties that are
true of sheep but not cows, and properties
that are not true of either cows or sheep.
These types of known properties can serve as
four hypotheses when reasoning about novel
properties, because any new property must
also be one of these four types, as listed in
Table 11.1. As shown in the table, a per-
son would have prior beliefs about these
hypotheses. For example, the value of .70
for hypothesis 1 represents the belief that
there is a 70% chance that a new property
would be true of both cows and sheep. This
high value could reflect the high degree of
similarity between cows and sheep, and that
people know many other properties that are
true of both cows and sheep. (The particu-
lar numbers are used only for illustration.)
However, the person might see a 5% chance
that a new property would be true of cows
and not sheep, a 5% chance that a new prop-
erty would be true of sheep and not cows,
and a 20% chance that the property is true
of neither category.

The next step is to combine these prior
beliefs with new evidence, using Bayes’ the-
orem as shown in Equation (11.3). The
given premise, “Cows have property X,” is
used to update beliefs about the four hy-
potheses, so that the conclusion, “Sheep
have property X,” can be evaluated. In ap-
plying Bayes’ theorem in Equation (11.3),
the premise is treated as the data, D. The
prior degree of belief in each hypothesis is
indicated by P (Hi ). (Note that there are
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Table 11.1: Sample application of the Heit (1998) model

Degree of Posterior
Hypothesis prior belief belief
number Cows? Sheep? P (Hi ) P (D |Hi ) P (Hi | D)

1 True True .70 1 .93
2 True False .05 1 .07
3 False True .05 0 .00
4 False False .20 0 .00

four hypotheses, so n = 4 here.) The task
is to estimate P (Hi | D), that is, the poste-
rior degree of belief in each hypothesis given
the data.

P (Hi | D) = P (Hi )P (D |Hi )∑n
j=1 P (Hj )P (D |Hj )

(11.3)

The calculations are shown for all four hy-
potheses, given the data that cows have
property X. The calculation of P (D |Hi ) is
easy. Under hypotheses 1 and 2, cows have
the property in question, so obtaining the
data (that cows have the property) has a
probability of 1. But under hypotheses 3
and 4, cows do not have the property, so
the probability of obtaining the data must
be 0 under these hypotheses. The final col-
umn, indicating the posterior beliefs in the
four types of properties, is calculated using
Bayes’ theorem. Notably, hypothesis 1, that
cows and sheep have the property, and hy-
pothesis 2, that just cows have the prop-
erty, have been strengthened, and the two
remaining hypotheses have been eliminated
from consideration.

Finally, the values in Table 11.1 may be
used to evaluate the conclusion, that sheep
have property X. The degree of belief in this
conclusion is simply the sum of the posterior
beliefs for hypotheses 1 and 3, or .93. Re-
call that before the introduction of evidence
that cows have the property, the prior be-
lief that sheep have the property was only
.75. Hence, the premise that cows have the
property led to an increase in the belief that
sheep have the property.

The Bayesian model addresses many of
the key phenomena in inductive reasoning.
For example, the model predicts the simi-
larity effect because novel properties would
be assumed to follow the same distribu-
tions as familiar properties. Generalizing
from cows to sheep seems plausible because
many known properties are true of both cat-
egories. In contrast, generalizing from cows
to mice seems weaker because prior knowl-
edge indicates that there are fewer prop-
erties in common for these two categories.
The Bayesian model also addresses typicality
effects under the assumption that accord-
ing to prior beliefs, atypical categories, such
as mice, would have a number of idiosyn-
cratic features. A premise asserting a novel
property about mice would suggest that this
property is likewise idiosyncratic and not to
be widely generalized. In comparison, prior
beliefs about typical categories would indi-
cate that they have many features in com-
mon with other categories; hence, a novel
property of a typical category should gener-
alize well to other categories.

The Bayesian model also addresses diver-
sity effects, with a rationale similar to that
for typicality effects. An argument with two
similar premise categories, such as hippos
and rhinos, could bring to mind a lot of id-
iosyncratic properties that are true just of
large mammals. Therefore, a novel prop-
erty of hippos and rhinos might seem id-
iosyncratic as well. In contrast, an argument
with two diverse premise categories, such
as hippos and hamsters, could not bring
to mind familiar idiosyncratic properties
that are true of just these two animals. In-
stead, the prior hypotheses would be derived
from known properties that are true of all
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mammals or all animals. Hence, a novel
property of hippos and hamsters should gen-
eralize fairly broadly. More generally, Heit
(1998) showed that the Bayesian model
addresses about the same range of struc-
tural phenomena in inductive reasoning as
does the Osherson et al. (1990) and Sloman
(1993) models.

Although it is by no means a complete
model of the use of background knowledge
in inductive reasoning, the Bayesian model
does make a start at addressing background
knowledge effects. For example, when rea-
soning about the anatomical and behavioral
properties in Heit and Rubinstein (1994),
subjects could have drawn on different pri-
ors for the two kinds of properties. Rea-
soning about anatomical properties led peo-
ple to rely on prior knowledge about fa-
miliar anatomical properties, so there was
stronger generalization from bears to whales
than from tunas to whales. In contrast,
when reasoning about a behavioral prop-
erty, the prior hypotheses could be drawn
from knowledge about familiar behavioral
properties. These priors would tend to pro-
mote inferences between animals such as tu-
nas and whales that are similar behaviorally
rather than anatomically. Although by no
means does the Bayesian model itself per-
form causal reasoning, the priors used in the
model could be the end-product of causal
reasoning.

Indeed, a fair criticism of the Bayesian
model would be that its predictions are cap-
tive to assumptions about distributions of
prior beliefs. Heit (1998) responded to this
criticism, in part, by stating that the ex-
act values of priors do not usually matter,
for example, the values for prior beliefs in
Table 11.1 could be somewhat different and
the same general pattern would emerge.
Also, Heit argued that priors would be de-
rived from psychologically plausible mech-
anisms. It could be assumed that priors are
determined by the number of known prop-
erties of each type that are brought to mind
in the context of evaluating an inductive ar-
gument. In this way, prior beliefs for new
properties would be estimated using some-
thing like an availability heuristic (Tversky

& Kahneman, 1973) based on known prop-
erties.

Still, it would be a major improvement
to the Bayesian model if assumptions about
prior beliefs could be generated by a model
rather than just simply assumed. Tenen-
baum and colleagues (Chapter 3 in this
volume; Kemp & Tenenbaum, 2003; Tenen-
baum et al., 2007) have made improve-
ments in this regard. Their central idea is
that properties of living things have come
about due to a process, rather than being
arbitrarily distributed. That is, because of
an evolutionary process, living things can
be thought of as being on the branches of
a tree. Two very similar animals probably
have a relatively recent common ancestor,
whereas two animals that are very differ-
ent probably only have a common ancestor
from very long ago. The starting point for
Tenenbaum and colleagues was a large set
of ratings on whether different animals pos-
sess various known properties. From princi-
ples of branching evolution as well as muta-
tion, they derived a tree structure, in effect,
inferring common ancestors for each pair
of animals. Tenenbaum and colleagues then
used the tree structure to set the priors for
the Bayesian model. It was found that priors
derived from the tree structure were much
more successful at predicting people’s judg-
ments than priors derived from their prop-
erty ratings. Interestingly, Tenenbaum and
colleagues have argued that this method of
setting priors is particularly successful be-
cause it represents people’s causal knowl-
edge of how properties of living things come
about and the mechanisms by which they
could be shared.

To sum up the description of Bayesian
modeling of inductive reasoning, this kind
of modeling does address many phenomena
and regularities. The greatest weakness of
Bayesian models, that they are subject to
assumptions about priors, may also be their
greatest strength, in the sense that many pre-
dictions are robust over different assump-
tions about priors, and furthermore, the pri-
ors themselves could be derived from other
reasoning processes that likewise could be
modeled.
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4. Causal Learning and Causal
Reasoning

An interim summary of the chapter so far
could be that current models of inductive
reasoning can account for much of what
people do, but they especially fall short
when it comes to causal knowledge. Part of
the problem, from the modeling perspec-
tive, is that research on modeling of induc-
tive reasoning has largely proceeded sepa-
rately from research on modeling the use
of causal knowledge. Research on modeling
the use of causal knowledge has itself largely
taken two separate approaches. One ap-
proach focuses on causal learning, or causal
induction, namely, how people infer a causal
structure from a set of observations. For ex-
ample, a novice DJ at a party could observe
that playing some songs makes people get
up and dance, whereas playing other songs
makes people sit quietly, and could draw
inferences about what kinds of songs are as-
sociated with different behaviors. The other
approach focuses on causal reasoning, which
mainly addresses how often complex knowl-
edge structures can be used to make fresh in-
ferences. For example, an expert with years
of experience in the music industry could
make detailed predictions about which new
performers will succeed and which will not,
and give an elaborate causal explanation in
terms of market forces, demographics, cur-
rent trends, and so forth. Of course, there is
much overlap between causal learning and
causal reasoning, but the emphasis in causal
learning research is more on the acquisition
of causal knowledge and in causal reasoning
research, it is on the use of causal knowl-
edge.

The question of how to infer causation
from a set of observations has been consid-
ered a central problem of induction at least
since the time of Hume (1777). If event
B tends to follow event A, does A cause
B? At the simplest level, this is the most
important question faced by animals seek-
ing food or other necessities – which cues
are predictive of obtaining nourishment or
some other needed reward? Indeed, one of
the most important models of causal learn-

ing has its origins in animal conditioning
research (Rescorla & Wagner, 1972). The
Rescorla-Wagner model can be written as
shown in Equation (11.4).

VA(n+ 1) = VA(n)+ β(λ(n)− VA(n))

(11.4)

This formula gives the associative strength,
V, of stimulus A, on trial n+ 1, as a function
of the associative strength of A, on trial n,
a learning rate β, and a level of reinforce-
ment, λ(n), on trial n. In the asymptote,
the associative strength of A will tend to-
ward the expected value of the level of rein-
forcement. The consequence is that stimuli
that are followed by reinforcement tend to
gain higher levels of associative strength than
stimuli that are not reinforced. Of course,
the Rescorla-Wagner model can also be ex-
tended to situations where there is more
than one stimulus on each learning trial. In
these situations, the stimuli compete with
each other to be the best predictor of re-
inforcement. For example, once the animal
learns that A is associated with reinforce-
ment, if the compound stimulus A+X is
reinforced, the animal will be blocked from
learning an association between X and rein-
forcement, because Aalone sufficiently pre-
dicts the outcome.

There is a lively debate about whether
such associative mechanisms are good ac-
counts of people’s causal learning (e.g., see
Buehner & Cheng, 2005; Luhmann & Ahn,
2004; Novick & Cheng, 2004; Shanks, 2007;
Waldmann, 2000; White, 2005), to which
the reader is referred. However, there is no
doubt that people do acquire causal beliefs.
Hence, the next question is how do people
represent and reason using this causal infor-
mation.

The current state of the art in cogni-
tive science is that people represent causal
knowledge in the form of a causal network,
akin to a formalization known as Bayes nets
(Gopnik et al., 2004; Pearl, 2000; Sloman,
2005; Spirtes, Glymour, & Scheines, 2001).
These networks allow for the representa-
tion of complex causal configurations, such
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as a causal chain (e.g., the boy threw the
ball that broke the window that woke the
cat), a common effect from multiple causes
(e.g., a fire is caused by a spark in the pres-
ence of oxygen and some kind of fuel), and
common effects from a single cause (e.g., a
cold caused a runny nose, fever, and redness
of the eyes). Bayes nets provide a formal-
ism for using this structured knowledge to
draw inferences, for example, to estimate
the probability that the cat will wake. Al-
though this kind of modeling no doubt pro-
vides a valuable framework for describing
causal reasoning, further work needs to be
done to integrate this framework with hu-
man data. Although there have been some
efforts to relate this kind of formalism to
results from inductive reasoning (Rehder,
2006, 2007; Rehder & Burnett, 2005), for
the most part, modeling of causal reason-
ing stands apart from modeling of inductive
reasoning as captured by the results in this
chapter. It remains a challenge for Bayes nets
or some related model of causal reasoning to
show that they cannot only explain what the
current models of inductive reasoning can
explain but also do a better job by incorpo-
rating the use of causal knowledge.

5. Conclusion

5.1. Summary

Although inductive reasoning is by its
very nature uncertain reasoning, there are
nonetheless regularities and patterns that
people show when performing inductive
reasoning. These regularities include simi-
larity effects, typicality effects, diversity ef-
fects, and several others. Current models of
inductive reasoning, such as the influential
Osherson et al. (1990) model, are success-
ful at explaining these regularities, but have
problems addressing the exceptions to these
regularities, particularly when people use
other kinds of background knowledge out-
side the scope of these models, such as causal
knowledge. There are also extant models of
causal induction and causal reasoning, but
these models have generally been used to ad-
dress other sets of results. It remains an im-

portant task for future research to integrate
computational modeling work on inductive
reasoning, causal induction, and causal rea-
soning, as applied to a diverse set of human
results.

This chapter concludes by discussing two
general issues that arise in modeling induc-
tive reasoning, but also arise in computa-
tional modeling of other cognitive activities.
The first issue is that cognitive activities do
not fall neatly into pigeonholes. The second
is that putting background knowledge into
models is the necessary next step.

5.2. Everything Is Intertwingled

As Nelson (1987) noted, everything is
deeply intertwingled. Although it is conve-
nient for books to have separate chapters
about different cognitive activities, and like-
wise, it is convenient for researchers to have
separate model for different cognitive activ-
ities, the truth is that cognitive activities are
not as separate as they are portrayed. For
example, there is a traditional split between
inductive reasoning and deductive reason-
ing, yet it is still not known where the divid-
ing line is or even if inductive reasoning and
deductive reasoning involve distinct cogni-
tive processes (Heit, 2007; Heit & Rotello,
2005). The well-known mental model the-
ory of reasoning (Johnson-Laird & Yhang,
this volume), usually applied to deductive
reasoning problems, has also been applied
to inductive reasoning problems (Johnson-
Laird, 1994; Johnson-Laird et al., 1999). An
alternative to mental model theory is the
probabilistic account, which aims to account
for a variety of reasoning phenomena, par-
ticularly traditional deduction problems, in
terms of probabilistic formulas (Chater &
Oaksford, 2000). The probabilistic account
says that people solve deduction problems
by means of induction processes. Likewise,
Osherson et al. (1990) applied their model
of inductive reasoning to some problems in-
volving deductively valid conclusions, and
some modeling work in the artificial intel-
ligence literature has addressed both de-
ductive reasoning and inductive reasoning
to some extent (Collins & Michalski, 1989;
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Sun, 1995). Although there are likely some
important differences in the reasoning pro-
cesses involved in induction versus deduc-
tion (Rips, 2001), it would be ideal if mod-
els of reasoning addressed both rather than
focusing on one or the other. Likewise,
causal reasoning is another kind of proba-
bilistic reasoning, and as noted, models of
inductive reasoning would no doubt be im-
proved by capturing causal reasoning, par-
ticularly when addressing effects of back-
ground knowledge. The same point can be
made about models of judgment and deci-
sion making (e.g., Chapter 10 in this vol-
ume) – these models essentially address in-
ductive phenomena.

Inductive reasoning is related to not only
other kinds of reasoning, but also to other
cognitive activities, such as categorization
and recognition memory. For example, in
a set of experiments, Sloutsky and Fisher
(2004) examined relations between induc-
tive reasoning, categorization, and recogni-
tion memory. For sets of various animals,
subjects either made inductive reasoning
judgments, inferring hidden properties, or
made categorization judgments, assigning
the animals to categories. There was a strong
correlation between inductive reasoning and
categorization (see also Rehder & Hastie,
2001). Moreover, Sloutsky and Fisher found
systematic relations between inductive rea-
soning and recognition memory. For exam-
ple, after seeing some pictures of cats with a
particular property and inferring that all cats
have this property, people tended to falsely
recognize other pictures of cats, that is, re-
member them as having been seen when
they had not been seen. In assessing this
work, Heit and Hayes (2005) argued that
the boundaries between induction, catego-
rization, and recognition are fuzzy. Induc-
tive reasoning can be thought of as a kind
of categorization, categorization itself can
be said to involve reasoning, and likewise a
recognition judgment can be thought of as a
kind of categorization. Heit and Hayes con-
cluded that induction, categorization, and
recognition should not be modeled sepa-
rately, but instead, it would be desirable for
models to capture the theoretical relations

among these activities and likewise the em-
pirical relations, such as how one kind of
judgment is correlated with another or even
how one kind of judgment directly affects
another.

5.3. Knowledge Is Power

The second, and final general issue to be
raised about modeling is that incorporating
background knowledge into models is usu-
ally the most important next step and the
most difficult. Taking a point from Sir Fran-
cis Bacon, knowledge is power. Again, com-
paring inductive reasoning to categorization
is useful in terms of historical progression.
Following years of research in which compu-
tational models of categorization had been
compared to each other, for example, exem-
plar models versus prototype models, Mur-
phy and Medin (1985) concluded that all
the current models were wrong! Exemplar
models, prototype models, and alternatives
would not be able to, say, categorize some-
one who jumps into a swimming pool with
all his clothes on as a drunk, because catego-
rization models did not take account of peo-
ple’s background knowledge, intuitive theo-
ries, and use of causal reasoning and expla-
nations. Since that time, most research on
computational modeling of categorization
has still focused on structural issues that do
not depend heavily on background knowl-
edge and for which models might make dif-
ferent predictions only in the fine details.
Still, there have been some efforts to incor-
porate background knowledge into catego-
rization models (Heit, 1997; Heit & Bott,
2000, Heit, Briggs, & Bott, 2004; Rehder &
Murphy, 2003).

Computational modeling of inductive
reasoning is now at a similar point in its own
history. The models reviewed in this chapter
by Osherson et al. (1990), Sloman (1993),
and Heit (1998) are successful at address-
ing largely the same set of structural phe-
nomena in inductive reasoning without ad-
dressing important background knowledge
effects. (See also Heit and Hayes, 2005, for
further examples of current models of in-
duction making very similar predictions.)
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Although it is no doubt possible to con-
duct experiments splitting apart the detailed
predictions of these models, what is needed
most is new efforts on modeling, incorporat-
ing background knowledge and causal rea-
soning.

Returning to the themes at the start of
this chapter, models of inductive reasoning
have a particularly hard job, because they
are addressing a form of reasoning that is it-
self uncertain and does not have a correct
answer. In such a situation, the success of
the models can only be improved by taking
account of additional knowledge. Doing so is
especially important because the structural
phenomena, such as similarity, typicality,
and diversity effects, have exceptions and
can indeed be overridden by other knowl-
edge. In addressing these knowledge effects,
models of inductive reasoning will need to
become closer to models of causal reasoning.
Going back to the example of buying a CD
for your friend, it may be useful to buy CDs
that are similar to what she already has. But
the most successful strategy for predicting
the unpredictable would no doubt to be to
discover why she likes some CDs and does
not like others.
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CHAPTER 12

Mental Logic, Mental Models, and

Simulations of Human Deductive Reasoning

1. Introduction

Individuals who know no logic are able to
make deductive inferences. Given a problem
such as:

If the printer test was run then the printer
produced a document.

The printer test was run.
What follows?

they draw the conclusion:

The printer produced a document.

The conclusion is the result of a valid de-
duction, that is, if the premises are true, then
the conclusion must be true also. How naive
individuals – those untrained in logic – are
able to draw valid conclusions is a matter
of controversy, because no one has access to
the mental processes underlying inferences.
Some cognitive scientists believe that these
processes are analogous to those of “proof”
theory in logic (see Chapter 5 in this vol-
ume on logic-based modeling); some believe
that they are analogous to those of “model”

theory in logic; and some believe that logic is
irrelevant and that the probability calculus
is a better guide to human deductive rea-
soning. The present chapter focuses on sim-
ulations based on proof theory and model
theory, but it has something to say about
the probabilistic theory.

The chapter starts with an outline of how
psychological theories based on formal rules
of inference – proof theory, that is – can be
implemented to simulate reasoning. It uses
as a test-bed so-called sentential reasoning
based on negation and connectives, such as
“if,” “and,” and “or.” This sort of reasoning
lies at the heart of our everyday deductions,
although we are soon defeated by complex
inferences in this domain. The chapter then
turns to programs simulating the theory in-
spired by “model” theory in logic, that is, the
theory of mental models, which posits that
the engine of human reasoning relies on con-
tent. It illustrates two simulations of the the-
ory. One program simulates spatial reason-
ing, and it shows how valid inferences can
be drawn without explicit representations
of the logical properties of relations. Instead,
they emerge from the representations of the

339
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meanings of relational terms. The other pro-
gram concerns sentential reasoning, and it
shows how an apparently unexceptional as-
sumption leads to a striking prediction of
systematic fallacies in reasoning – a case that
yields crucial predictions about the nature
of human deductive reasoning. The chapter
concludes with an attempt to weigh up the
nature of human rationality in the light of
these and other simulation programs.

2. The Simulation of Formal Theories
of Reasoning

For many years, psychologists argued that
deduction depends on an unconscious sys-
tem of formal rules of inference akin to
those in proof-theoretic logic. The inference
in the opening example, for example, could
be drawn using the formal rule of inference
known as modus ponens:

If A then B
A
Therefore, B.

The human inference engine matches the
form of the premises to this rule, where A
has as its value: the printer test was run, and
B has as its value: the printer produced a doc-
ument. The use of the rule proves the con-
clusion, B. This sort of theory has its pro-
ponents both in artificial intelligence and in
cognitive psychology. Its intellectual god-
father in psychology was the Swiss theo-
rist, Jean Piaget (see, e.g., Beth & Piaget,
1966), but many theorists have proposed
versions of the doctrine (e.g., Braine, 1978;
Braine & O’Brien, 1998; Johnson-Laird,
1975; Osherson, 1974–1976; Rips, 1983,
1994).

Rips (1994) describes an implementation
of his version of the theory, and the propo-
nents of the other leading formal rule theory
(Braine & O’Brien, 1998) have described an
algorithm for it, although they did not im-
plement a program. Hence, this section fo-
cuses on Rips’s (1994) program. He argues
that formal rules, such as modus ponens, are
central to human cognition, underlying not

just deduction but all thinking. Hence, for-
mal rules on his account are part of cog-
nitive architecture and akin to a general-
purpose programming system in which any
sort of theory can be implemented, even,
say, Newell’s (1990) Soar theory (see Chap-
ter 6 in this volume on cognitive architec-
ture). Soar is a so-called production sys-
tem, which is made up of a large number of
productions, that is, conditional rules with
specific contents. They have the form: if con-
dition X holds then carry out action Y, and
a production can be triggered whenever its
antecedent condition is satisfied. Rips ar-
gues that this method of applying the rules
is akin to the use of modus ponens, but
that Newell’s theory is “too unconstrained
to explain what is essential about deduction”
(Rips, 1994, p. 30).

At the heart of Rips’s (1994) theory is the
notion of a mental proof, so theorists need to
devise psychologically plausible formal rules
of inference and a psychologically plausi-
ble mechanism to use them in construct-
ing mental proofs. Like several proposals in
the mid-1970s (e.g., Braine, 1978; Johnson-
Laird, 1975; Osherson, 1974–1976), Rips
adopts the “natural deduction” approach to
rules of inference. Each logical connective
has its own rules. Each quantifier, such as
“every” and “some,” also has its rules, too,
although Rips presupposes an input to the
program that captures the logical form of
premises (see Chapter 5 in this volume on
logic-based modeling). This section accord-
ingly focuses on Rips’s system for reasoning
with sentential connectives. It has rules to
introduce each connective into a proof, for
example:

A
B
A and B

where the proposition beneath the line sig-
nifies the conclusion. And the system has
rules to eliminate connectives, for example:

If A then B
A
B.
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Natural deduction can yield intuitive proofs,
and it was popular in logic texts, although
the so-called “tree” method supplanted it
(e.g., Jeffrey, 1981). Rips refers to the tree
method, which simulates the search for
counterexamples, but he considers it to be
psychologically implausible, because “the
tree method is based on a reductio ad absur-
dum strategy” (p. 75), that is, the assump-
tion for the sake of argument of the nega-
tion of the conclusion to be proved. In fact,
the tree method can be used to derive con-
clusions without using the reductio strategy
(see Jeffrey 1981, Chapter 2).

Natural deduction relies on suppositions,
which are sentences that are assumed for
the sake of argument and which must be
“discharged” if a derivation is to yield a con-
clusion. One way to discharge a supposition
is to make it explicit in a conditional conclu-
sion (conditional proof ), and another way is
to show that it leads to a contradiction and
must therefore be false (reductio ad absur-
dum). An example is the following proof of
an inference in the form known as modus
tollens:

1. If the printer test was run then the
printer produced a document.

2. The printer did not produce a docu-
ment.

3. The printer test was run. (Supposition)
4. The printer produced a document.

(Modus ponens applied to 1 and 3)

At this point, a contradiction occurs be-
tween one of the premises and the most
recent conclusion. The rule of reductio ad
absurdum discharges the supposition by
negating it:

5. The printer test was not run.

Rips (1994) could have adopted a single rule
for modus tollens, but it is a more difficult
inference than modus ponens, so he assumes
that it depends on the chain of inferential
steps illustrated here. The main problems
in developing a formal system are to ensure
that it is computationally viable and that it
explains robust psychological findings. An

example of a computational difficulty is that
the rule for introducing “and” can run amok,
leading to such futile derivations as:

A
B

∴ A and B
∴ A and (A and B)
∴ A and (A and (A and B))

and so on ad infinitum. The rules that
are dangerous are those that introduce a
connective or a supposition. Programs in
artificial intelligence, however, can use a
rule in two ways: either to derive a step in a
forward chain leading from the premises to
the conclusion or to derive a step in a back-
ward chain leading from the conclusion to
the premises. In a backward chain, the effect
of a rule is to create subgoals, for example,
given the goal of proving a conclusion of the
form, A and B, the rule for “and” creates a
subgoal to prove Aand a subgoal to prove B.
If the program satisfies these two subgoals,
then it has in effect proved the conjunction:
A and B, and it terminates there with no
further application of the rule. Rips (1994)
prevents rules from running amok by using
those that introduce connectives or suppo-
sitions only in backward chains. His system
therefore has three sorts of rules: those that
it uses forward, those that it uses backward,
and those that it uses in either direction.
Table 12.1 summarizes these rules in Rips’s
system.

The formal rules postulated in a psycho-
logical theory should be ones that naive
individuals recognize as “intuitively sound”
(Rips, 1994, p. 104). One worry about the
rules in Table 12.1 is whether they are all in-
tuitive. The rule for introducing “or,” for ex-
ample, was used appropriately by only 20%
of participants in Rips’s own study. Indeed,
this rule is not part of other formal theories
(e.g., Braine, 1978). What complicates mat-
ters is that Rips allows that individuals may
differ in the rules they possess, they may
learn new rules, and they may even use non-
standard rules that lead them to conclusions
not sanctioned by classical logic (Rips, 1994,
p. 103).
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Table 12.1: The forward, backward, and bidirectional rules in Rips’s
(1994) system

Forward rules
IF P THEN Q* IF P OR Q THEN R* IF P AND Q THEN R
P P P
Q R Q

R

P AND Q* NOT (P AND Q)* NOT (P AND Q)*
P (NOT P) OR (NOT Q) P

NOT Q

P OR Q*
NOT P NOT (P OR Q)
Q NOT P

P OR Q
IF P THEN R
IF Q THEN R NOT NOT P*
R P

Backward rules
+P +NOT P +P
: : :
Q Q AND (NOT Q) Q AND (NOT Q)
IF P THEN Q P NOT P

P
Q P
P AND Q P OR Q

P OR Q NOT (P OR Q)
+P (NOT P) AND (NOT Q)
:
R
+Q
:
R
R

∗ Signifies that a rule can also be used backward. Rules, such as the one eliminating
AND, are shown leading to the conclusion P; other versions of such rules yield
the conclusion Q. Plus sign (+) designates a supposition and colon (:) designates
a subsequent derivation.

A major problem for systems implement-
ing proofs is to embody an efficient method
of searching for the correct sequence of in-
ferential steps. The process is computation-
ally intractable, and the space of possible
sequences of inferential steps grows very
rapidly (Cook, 1971). Rips’s system uses a

fixed deterministic search procedure in eval-
uating an inference with a given conclu-
sion. It tries each of its applicable forward
rules in a breadth-first search until they yield
no new conclusions. It checks whether the
conclusion is among the results. If not, it
tries to work backward from the conclusion,
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pursuing a chain of inference depth first
until it finds the sentences that satisfy the
subgoals or until it has run out of rules to
apply (Rips, 1994, p. 105). Either it suc-
ceeds in deriving the conclusion or else it re-
turns to an earlier choice point in the chain
and tries to satisfy an alternative subgoal. If
all the subgoals fail, it gives up. However,
Rips’s system is incomplete, that is, there
are valid inferences that it cannot prove.
As Barwise (1993, p. 338) comments: “The
‘search till you’re exhausted’ strategy gives
one at best an educated, correct guess that
something does not follow.” In other words,
when Rips’s system fails to find a proof, it
may do so because an inference is invalid or
else because it is valid but the incomplete
rules fail to yield its proof.

Rips’s system constrains the use of suppo-
sitions. They can be made only in a backward
chain of inference from a given conclusion,
so reasoners can use suppositions only when
there is a given conclusion or they can some-
how guess a conclusion. In everyday life, rea-
soners are not constrained to making suppo-
sitions only when they have a conclusion in
mind. “Suppose everyone suddenly became
dyslexic,” they say to themselves, and then
they follow up the consequences to an unex-
pected conclusion, for example, the sale of
dictionaries would decline. In an earlier ac-
count, Rips (1989) allowed suppositions to
occur in forward chains of reasoning. But, in
that case, how can they be prevented from
running amok? One possibility is to distin-
guish between the strategies that reasoners
adopt and the lower level mechanisms that
sanction inferential steps. One strategy is to
make a supposition, but the strategic ma-
chinery must keep the lower level mecha-
nisms in check to prevent them from losing
track of the purpose of the exercise. Indeed,
human reasoners develop a variety of strate-
gies for sentential reasoning, and they use
suppositions in ways not always sanctioned
by Rips’s theory (van der Henst, Yang, &
Johnson-Laird, 2002).

Braine and colleagues have described a se-
ries of theories based on natural deduction
(see, e.g., Braine, 1978; Braine & O’Brien,
1998). Their rules differ from Rips’s rules in

two main ways. First, “and” and “or” can ap-
ply to any number of propositions, so they
formulate the following rule to introduce
“and”:

P1, P2,. . . Pn

P1 and P2 . . . and Pn.

Second, they do not distinguish between for-
ward and backward rules. Instead, they try
to build the effects of dangerous rules, such
as: P ; therefore, P or Q, into other rules.
Hence, they have a rule of the form: If P1 or
P2, . . . or Pn then Q; P1; therefore, Q. Their
idea is to obviate the need for the rule in-
troducing disjunction. Like Rips, however,
they appear to postulate a single determin-
istic search strategy in which individuals ap-
ply simple rules before they apply rules that
make suppositions. A problem that both
Rips and Braine share is that it is often not
obvious what conclusion, if any, their the-
ories predict that individuals should draw
spontaneously from a set of premises. At this
point, the first author should declare an in-
terest. At one time, he was a proponent of
formal rules of inference (see Johnson-Laird,
1975), but, as the next section illustrates, he
has now come to believe that the human in-
ference engine relies, not on form, but on
content.

3. The Simulation of Spatial
Reasoning Using Mental Models

The theory of mental models postulates that
when individuals understand discourse, they
construct models of the possibilities consis-
tent with the discourse (e.g., Johnson-Laird
& Byrne, 1991; Johnson-Laird, 2006). Each
mental model represents a possibility. A fre-
quent misunderstanding is that mental mod-
els are images. In fact, they are more akin
to three-dimensional models of the world
of the sort that underlie the phenomena of
mental rotation (Metzler & Shepard 1982).
Because each model represents a possibility,
a conclusion is necessary if it holds in all the
models of the premises, it is possible if it
holds in at least one model of the premises,
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and it is probable if it holds in most of the
models of the premises given that the mod-
els are equiprobable. The theory accordingly
embraces deductions, reasoning about pos-
sibilities, and probabilistic reasoning, at least
of the sort that depends on the various ways
in which events can occur (Johnson-Laird
et al., 1999).

The first mental model theory was for
simple inferences based on quantifiers, and
programs have simulated various versions
of this theory (see Bucciarelli & Johnson-
Laird, 1999, for a review). Polk and Newell
(1995) simulated a model theory in which
counterexamples played no role, but more
recent evidence implies that human rea-
soners do make use of them (Bucciarelli
& Johnson-Laird, 1999; Johnson-Laird &
Hasson, 2003). Bara, Bucciarelli, and Lom-
bardo (2001) developed a program that sim-
ulated both sentential and quantified rea-
soning in a single model-based program. In
contrast, Johnson-Laird has written a series
of small-scale programs that simulate vari-
ous sorts of reasoning. The general design of
these programs is the same. Each program
has a lexicon that specifies the meanings of
the key words in the input, which, depend-
ing on the domain, may be sentential con-
nectives, quantifiers, causal verbs, deontic
verbs, relational terms, or nouns referring
to objects. The program also has a gram-
mar of the relevant fragment of English.
In many cases, this fragment is infinite in
size because the grammar contains recursive
rules. Such a grammar is illustrated in the
next section. Associated with each gram-
matical rule is a function that carries out
the corresponding semantic interpretation.
The parser is a “shift-and-reduce” one famil-
iar in the design of compilers (see, e.g., Aho
& Ullman, 1972). It constructs a represen-
tation of the meaning of each sentence as it
uses the grammar to parse the sentence. The
program accordingly implements a “compo-
sitional” semantics (Montague, 1974), that
is, the meanings of the words in a sen-
tence are composed to yield the meaning of
the sentence from its grammatical structure.
The resulting meaning can then be used to
update the model, or models, of the dis-

course so far, which represent the context
of each sentence. The present section illus-
trates how such a system works in a program
for spatial reasoning.

The program simulates three-dimen-
sional spatial reasoning based on mental
models (Byrne & Johnson-Laird, 1989). The
input to the program is a description with,
or without, a given conclusion. There can be
any number of premises, and they can de-
scribe complex three-dimensional relations.
But a simple inference best shows how the
program works:

The triangle is to the right of the circle.
The circle is to the right of the diamond.
Therefore, the triangle is to the right of

the diamond.

The program composes a representation of
the meaning of the first premise, which it
uses to build a model. It uses the meaning
of the circle to insert a token representing
the circle into a minimal three-dimensional
spatial model:

◦

The meaning of to the right of specifies that
the model-building system scans in a right-
ward direction from the circle, so the pro-
gram increments the left-to-right axis from
the circle while holding constant the values
on the other two axes (up-and-down and
front-and-back). It uses the meaning of the
triangle to insert a representation of the tri-
angle into an empty location in the model:

◦ �

The left-to-right axis in this diagram corre-
sponds to the left-to-right spatial axis of the
model.

The program can search for referents in
its spatial models. Hence, given the second
premise:

The circle is to the right of the diamond

it discovers that the circle is already repre-
sented in its current model of the premises.
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Table 12.2: Seven procedures for reasoning using models

1. Start a new model. The procedure inserts a new referent into the model according to a premise.
2. Update a model with a new referent in relation to an existing referent.
3. Update a model with a new property or relation.
4. Join two separate models into one according to a relation between referents in them.
5. Verify whether a proposition is true or false in models.
6. Search for a counterexample to refute a proposition. If the search fails, then the proposition follows

validly from the previous propositions in the description.
7. Search for an example to make a proposition true. If the search fails, then the proposition is

inconsistent with the previous propositions.

It uses the meaning of the sentence to up-
date this model. It therefore inserts a repre-
sentation of the diamond into an appropriate
position in the model:

� ◦ �

With the first premise, human reasoners can
scan from the circle in the direction that
the relation specifies to find a location for
the triangle. But, with the second premise,
this natural procedure is not feasible, be-
cause the subject of the sentence is already
in the model. The program therefore scans
in the opposite direction to the one that the
relation specifies – from the circle to a loca-
tion for the diamond. This task ought to be a
little bit harder, and psychological evidence
shows that it is (e.g., Oberauer & Wilhelm,
2000). If a premise refers to nothing in the
current model, then the program constructs
a new model. Later, given an appropriate
premise, it can integrate the two separate
models into a single model. This case also
adds to the difficulty of human reasoning.

Given the putative conclusion in the
example:

The triangle is to the right of the diamond

the program discovers that both referents
are already represented in its current model.
It checks whether the appropriate relation
holds between them. It scans in a rightward
direction from the diamond until it finds the
triangle. The relation holds. Next, it checks
whether any other model of the premises
is a counterexample to the conclusion. It

finds none, so it declares that the inference
is valid. In case a conclusion does not hold
in the current model, the program checks
whether any other model of the previous
premises allows the relation to hold. If not,
the program declares that the proposition
is inconsistent with what has gone before.
Table 12.2 summarizes the main procedures
used in the program. If the human inferen-
tial system uses models, it needs such pro-
cedures, too.

In formal systems, the previous inference
can be proved only if an additional premise
specifies the transitivity of “to the right of”:

For any x, y, and z, if x is to the right of
y, and y is to the right of z, then x is to
the right of z.

This premise functions as an axiom for any
inference concerning the relation, and for
obvious reasons, logicians refer to such ax-
ioms as meaning postulates. Proof theory in
logic and formal rule theories in psychology
need meaning postulates to allow deduc-
tions whose validity depends on the mean-
ings of relations. In contrast, as the pro-
gram shows, the model theory does not need
meaning postulates, because the validity of
inferences emerges from the meanings of re-
lations, which specify the direction in which
to scan models, and from the procedures
that construct models and search for coun-
terexamples.

One point is easy to overlook. The pro-
gram’s search for counterexamples works
because it has access to the representations
of the meanings of the premises. Without
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these representations, if the program were
to change a model, it would have no way to
check whether the result was still a model
of the premises. Any inferential system that
constructs alternative models therefore
needs an independent record of the pre-
mises. It must either have a memory for their
meanings, or be able to return to each pre-
mise to re-interpret it.

The strategy embodied in the spatial rea-
soning program is to construct a single model
at a time. When a description is consistent
with more than one layout, the program
builds whichever model requires the least
work. An alternative strategy, which is im-
plemented in a program for reasoning about
temporal relations, is to try to build all the
different possible models. Still another strat-
egy is to represent the alternative possibili-
ties within a single model using a way to in-
dicate the uncertain positions of entities in
the model. Human reasoners can probably
develop any of these strategies, depending
on the particulars of the problems that they
tackle (see, e.g., Carreiras & Santamarı́a,
1997; Jahn, Knauff, & Johnson-Laird, 2007;
Schaeken, Johnson-Laird, & d’Ydewalle,
1996a, 1996b; Vandierendonck, Dierckx, &
De Vooght, 2004).

The evidence corroborates the use of
models in spatial reasoning. Participants in
experiments report that they imagine lay-
outs. They often make gestures with their
hands that suggest they have a spatial model
in mind. Likewise, if they have paper and
pencil, they draw diagrams. Yet, such evi-
dence does not rule out the possibility that
deep down, the unconscious inferential pro-
cesses are guided by form rather than con-
tent. Several experiments, however, provide
crucial evidence supporting the model the-
ory. One experiment used descriptions of
two-dimensional spatial layouts of house-
hold objects and showed that inferences that
depend on a single model are easier than
those that depend on multiple models. Yet,
the one-model problems called for longer
formal proofs than the multiple-model
problems (Byrne & Johnson-Laird, 1989).

A recent study demonstrated a still
greater difficulty for meaning postulates

(Goodwin & Johnson-Laird, 2005). It ex-
amined such inferences as:

Alice is a blood relative of Brian.
Brian is a blood relative of Charlie.
What follows?

The participants tended to infer that Alice
is a blood relative of Charlie. They presum-
ably thought of a set of siblings or a line
of descendants. Yet, there are counterex-
amples to the conclusion. Suppose, for in-
stance, that Alice is Brian’s mother, and
Charlie is his father. Alice is related to Brian,
and he is related to Charlie, but his mother
and father are probably not blood relatives.
These “pseudo-transitive” inferences depend
on relations that are neither transitive nor
intransitive, but that yield models of typi-
cal situations in which a transitive conclu-
sion holds. The model theory therefore pre-
dicts that the way to block these inferences
is to get the participants to search harder for
counterexamples. Hence, when the prob-
lem about “blood relatives” was prefaced
with the clue that people can be related
either by blood or by marriage, the pro-
portion of transitive inferences was reduced
reliably.

If human reasoners use formal rules to
reason, then they need meaning postulates
that capture the transitivity of relations. So
what sorts of relations should be tagged as
transitive? The reader might suppose that
good candidates would be comparative rela-
tions, such as “taller than.” But, consider this
problem:

Cate is taller than Belle.
Belle was taller than Alice.
Who is tallest?

The change in tense no longer guarantees
transitivity, and again individuals are much
less inclined to draw the transitive con-
clusion (Goodwin & Johnson-Laird, 2005).
It follows that no comparative terms, not
even “taller than,” can be classified as transi-
tive in all cases. In other words, the logical
form of an assertion depends on its signifi-
cance, which in turn depends on its tense, its
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context, and general knowledge. The obvi-
ous route to discover its correct logical form
is to use this information to construct mod-
els of the situations to which it refers. But
once one has constructed such models, they
can be used directly in reasoning: There is
no need to recover the assertion’s logical
form. Hence, if the system builds models,
then it no longer needs meaning postulates.
The models either support a transitive con-
clusion or not.

4. The Simulation of Sentential
Reasoning Using Mental Models

Sentential reasoning hinges on negation
and such connectives as “if,” “or,” and
“and,” which interconnect atomic proposi-
tions, that is, those that do not contain nega-
tion or connectives. Section 2 illustrated
how sentential reasoning could be simulated
using formal rules. Connectives have ideal-
ized meanings in logic, so that the truth-
values of sentences formed with them de-
pend solely on the truth-values of those
atomic propositions or their negations that
they interconnect. For example, an exclu-
sive disjunction of the form: A or else B but
not both, is true if one proposition is true and
the other false, and in any other case the dis-
junction is false. Model theory in logic cap-
tures this analysis in a truth-table, as shown
in Table 12.3. Each row in the table repre-
sents a different possibility, for example, the
first row represents the case in which both A
and B are true, and it shows that the disjunc-
tion is false in this case. Truth-tables can be
used to determine the validity of sentential
inferences: An inference is valid if any row in
its truth-table in which the premises are true
is also one in which its conclusion is true.
However, truth-tables double in size with
each additional atomic proposition in an in-
ference, whereas the psychological difficulty
of inferences does not increase at anything
like the same rate (Osherson, 1974–1976).

The theory of mental models is based on
a fundamental assumption that obviates this
problem and that is known as the principle
of truth:

Table 12.3: A truth-table for an exclusive
disjunction

A or else B
A B but not both

True True False
True False True
False True True
False False False

Mental models represent only what is
true, that is, they represent only true
possibilities and within them they rep-
resent only those atomic propositions
or their negations in the premises that
are true.

As an example, consider an exclusive dis-
junction, such as:

The machine does not work or else the
setting is high, but not both.

The principle of truth implies that individ-
uals envisage only the two true possibilities.
They therefore construct the following two
mental models shown in the rows of the fol-
lowing diagram, where “¬” designates nega-
tion:

¬ Machine works
Setting high

The principle of truth has a further, less ob-
vious, consequence. When individuals think
about the first possibility, they tend to ne-
glect the fact that it is false that the setting is
high in this case. Likewise, when they think
about the second possibility, they tend to
neglect the fact that it is false that the ma-
chine does not work in this case, that is, the
machine does work. The relation between
these mental models and the truth-table for
an exclusive disjunction is transparent (see
Table 12.3). The mental models correspond
to those rows in the table in which the dis-
junction is true, and they represent only
those literals in the premises that are true in
the row, where a literal is an atomic propo-
sition or its negation.
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The principle of truth postulates that in-
dividuals normally represent what is true,
but not what is false. It does not imply,
however, that they never represent falsity.
Indeed, the theory proposes that they rep-
resent what is false in “mental footnotes,”
but that these footnotes are ephemeral. Peo-
ple tend to forget them. But as long as they
are remembered, they can be used to con-
struct fully explicit models, which represent
the true possibilities in a fully explicit way.
Hence, the footnotes about what is false al-
low reasoners to flesh out the models of the
proposition:

The machine does not work or else the
setting is high, but not both.

to make them fully explicit:

¬ Machine works ¬ Setting high
Machine works Setting high

where a true negation is used to represent a
false affirmative proposition. This represen-
tation of negation makes models more ab-
stract than images, because you cannot form
an image of negation. Even if you imagine,
say, a large red cross superimposed on what-
ever is to be negated, nothing in the image
alone captures the meaning of negation.

The meanings of conditional proposi-
tions, such as:

If the machine works then the setting is
high

are a matter of controversy. Their meanings
depend both on context and on the semantic
relations, if any, between their two clauses –
the antecedent clause following “if” and
the consequent clause following “then” (see
Johnson-Laird & Byrne, 2002). The core log-
ical meaning of a conditional is independent
of its context and of the meanings and
referents of its antecedent and consequent
clauses. It yields two mental models. One
mental model represents the salient possi-
bility in which both the antecedent and the
consequent are true. The other model is
wholly implicit, that is, it has no explicit

content, but allows for possibilities in which
the antecedent of the conditional is false.
The mental models for the preceding condi-
tional are accordingly:

Machine works Setting high
. . .

where the ellipsis denotes the implicit
model, and a mental footnote indicates the
falsity of the antecedent in the implicit pos-
sibilities. A biconditional, such as:

The machine works if and only if the set-
ting is high

has exactly the same mental models, but a
footnote indicates that both the antecedent
and the consequent are false in the possibil-
ities that the implicit model represents. It
is the implicit model that distinguishes the
models of a conditional from the model of a
conjunction, such as:

The machine works and the setting is high

which has only a single model:

Machine works Setting high

The fully explicit models of the conditional
can be constructed from the mental mod-
els and the footnote on the implicit model.
They are as follows:

Machine works Setting high
¬ Machine works Setting high
¬ Machine works ¬ Setting high

Likewise, the fully explicit models of the
biconditional are:

Machine works Setting high
¬ Machine works ¬ Setting high

One point bears emphasis: These diagrams
refer to mental models, but mental models
themselves represent entities in the world –
they are not merely strings of words. Ta-
ble 12.4 summarizes the mental models and
the fully explicit models of sentences formed
from the main sentential connectives in their
“logical” senses.
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Table 12.4: The mental models and fully
explicit models for sentences based on the
main sentential connectives

Mental Fully explicit
Connective models models

A and B: A B A B

A or else B: A A ¬ B
B ¬ A B

A or B, or both: A A ¬ B
B ¬ A B

A B A B

If A then B: A B A B
. . . ¬ A B

¬ A ¬ B

If and only if A B A B
A then B: . . . ¬ A ¬ B

“¬” denotes negation and “. . . ” denotes a wholly
implicit model. Each line represents a model of
a possibility.

How are sentential inferences made with
mental models? A computer program sim-
ulates the process (see Johnson-Laird &
Byrne, 1991). The program takes as input
a set of sentences. It is sensitive to the oc-
currence of the following sentential con-
nectives: and (conjunction), or (inclusive
disjunction), ore (exclusive disjunction), if
(conditional), iff (biconditional), and then,
which serves only a syntactic role.

The program has a grammar that can be
summarized as follows, where the items in
parentheses may, or may not, occur in a sen-
tence, and comma is a syntactic element:

sentence = (negation) variable
= negation sentence
= (comma) sentence connective

sentence
= (comma) if sentence then

sentence.

These four rules allow for different sorts of
sentences, but because “sentence” occurs on
both the left- and right-hand sides of some
rules, the rules can be used recursively to

analyze complex sentences, such as:

if not A and B then, C or D

where A, B, C, and D are all variables. Not
A, for example, is analyzed as a sentence ac-
cording to the first rule in the set shown pre-
viously, and C or D is analyzed as a sentence
according to the third rule. Each of the rules
in the grammar has an associated function
for carrying out the appropriate semantics,
so that the parser controls the process of in-
terpretation, too.

The program’s process of inference can
be illustrated by the following example:

A ore B.
Not A.
What follows?

The exclusive disjunction symbolized by
“ore” yields the mental models:

A
B

The categorical premise yields the model:

¬ A

This model eliminates the first model of
the disjunction because they cannot both
be true. But it is consistent with the second
model of the disjunction. Their conjunction:

¬ A B

yields the conclusion:

B.

This conclusion is valid, because it holds
in all the models – in this case, the single
model – consistent with the premises.

The principles for conjoining mental
models seem straightforward, but contain
some subtleties. If one model represents a
proposition, A, among others, and another
model represents its negation,¬A, their con-
junction yields the empty (or null) model
that represents contradictions. The previous
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example illustrated this principle. But what
happens if the two models to be conjoined
contain nothing in common? An exam-
ple illustrating this case occurs with these
premises:

If C then D.
E ore C.

The reader is invited to consider what
possibilities are compatible with the two
premises. Most individuals think that there
are two:

C D
E

The mental models of the first premise are:

C D
. . .

and the mental models of the second
premise are:

E
C

One possibility according to the second
premise is E, so the program conjoins:

C D and E

C occurs in the set of models of the disjunc-
tion from which E is drawn, so the interpre-
tative system takes the absence of C in the
model of E to mean not C:

C D and E ¬ C

Because there is now a contradiction –
one model contains C and the other its nega-
tion – the result is the null model. The pro-
gram next conjoins the pair:

C D and C

D does not occur elsewhere in the set of
models of the disjunction containing C, so
the two models are compatible with one

another. Their conjunction yields:

C D

The program now constructs conjunctions
with the implicit model of the conditional.
The conjunction:

. . . and E

yields E, because E does not occur in the
models of the conditional containing the im-
plicit model. The final conjunction:

. . . and C

yields the null model, because C occurs in
the models of the conditional, so its absence
in the implicit model is treated as akin to
its negation. The mental models of the con-
junction of the premises are accordingly:

C D
E

The null models are not shown because they
do not represent possibilities. The two mod-
els of possibilities yield the valid conclusion:

C and D, ore E.

Table 12.5 summarizes the mechanisms for
forming conjunctions of pairs of models.
These principles apply both to the combi-
nation of sets of models, as in the preceding
disjunctive inference, but they also apply to
the combination of possible individuals in
models of quantified propositions (Johnson-
Laird, 2006).

The same mechanisms apply to the con-
junction of fully explicit models except
that the first mechanism in the table does
not come into play. Here are the previous
premises again:

If C then D.
E ore C.

A mechanism that uses mental footnotes can
flesh our mental models into fully explicit
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Table 12.5: The mechanisms for forming conjunctions of pairs of mental models and pairs
of fully explicit models

1. If one model represents a proposition, A, which is not represented in the second model, then
if A occurs in at least one of the models from which the second model is drawn, then its absence
in the second model is treated as its negation (and mechanism 2 applies); otherwise, its absence
is treated as its affirmation (and mechanism 3 applies). This mechanism applies only to mental
models.

2. The conjunction of a pair of models containing respectively a proposition and its negation yield
the null model, e.g.:

A B and ¬ A B yield nil.

3. The conjunction of a pair of models that are not contradictory yields a model representing all the
propositions in the models, e.g.:

A B and B C yield A B C

4. The conjunction of a null model with any model yields the null model, e.g.:
A B and nil yield nil.

models. The fully explicit models of the con-
ditional and the disjunction (see Table 12.4)
are, respectively:

C D E ¬ C
¬ C D ¬ E C
¬ C ¬ D

There are six pair-wise conjunctions, but
three of them are contradictions yielding the
null model. The remaining pairs yield the
following models:

C D ¬ E
¬ C D E
¬ C ¬ D E

The same conclusion follows as before:

C and D, ore E.

But reasoners who rely on mental models
will fail to think of the second of the these
three possibilities.

A problem for formal rule theories is to
find the right sequence of inferential steps
to prove that a conclusion follows from the
premises. The model-based program does
not have a search problem, because it merely
updates its set of models for each new
premise. As the number of distinct atomic

propositions in the premises increases, the
number of models tends to increase, but it
does so much less rapidly than the number
of rows in a truth-table. Nevertheless, the
intractability of sentential reasoning does
catch up with the program and with human
reasoners as the number of distinct atoms in
a problem increases.

The principles for constructing conjunc-
tions of mental models seem innocuous –
just a slight variation on those for fully
explicit models, which yield a complete ac-
count of sentential reasoning. After the pro-
gram was written, however, it was given a
test of the following sort of premises based
on a hand of cards:

If there is a king then there is an ace ore if
there is not a king then there is an ace.

There is a king.

When the program reasoned using mental
models, it returned a single mental model:

King Ace

But when it reasoned using fully explicit
models, it returned the fully explicit model:

King ¬ Ace

Did it really follow that there is not an ace?
This result was so bizarre that Johnson-Laird
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spent half a day searching for a bug in his
program, but at last discovered it in his own
mind. The force of the exclusive disjunc-
tion in the first premise is that one of the
two conditionals is false, and the falsity of
either conditional implies that there is not
an ace, so the fully explicit models did yield
a valid conclusion. Given an inclusive inter-
pretation of the disjunction, or a bicondi-
tional interpretation of the conditionals, or
both, mental models still yield the (invalid)
conclusion that there is an ace, whereas fully
explicit models do not. Nothing definite fol-
lows from the premises with these interpre-
tations: There may, or may not, be an ace.
Yet, as experiments showed (Johnson-Laird
& Savary, 1999), nearly everyone succumbs
to the illusion that there is an ace. Johnson-
Laird modified the program so that it would
search for illusions by generating a vast num-
ber of premises and comparing their mental
models with their fully explicit models. Sub-
sequent experiments corroborated the oc-
currence of various sorts of illusory inference
in sentential reasoning (Walsh & Johnson-
Laird, 2004), modal reasoning about what is
possible (Goldvarg & Johnson-Laird, 2000),
deontic reasoning about what is permissible
(Bucciarelli & Johnson-Laird, 2005), reason-
ing about probabilities (Johnson-Laird et al.,
1999), and reasoning with quantifiers (Yang
& Johnson-Laird, 2000a, 2000b). The the-
ories based on formal rules did not predict
the illusory inferences, and they have no way
of postdicting them unless they posit invalid
rules of inference. But in that case, they then
run the risk of inconsistency. Illusory infer-
ences are therefore a crucial corroboration of
the use of mental models in reasoning, and
their discovery was a result of a simulation
of the theory.

5. Concepts, Models, and
Minimization

Because infinitely many valid conclusions
follow from any set of premises, computer
programs for proving theorems do not nor-
mally draw conclusions, but instead eval-
uate given conclusions (see, e.g., Pelletier,

1986). Human reasoners, however, exer-
cise real intelligence because they can draw
conclusions for themselves. They abide by
two principal constraints (Johnson-Laird &
Byrne, 1991). First, they do not normally
throw semantic information away by adding
disjunctive alternatives. Second, they aim
for conclusions that re-express the seman-
tic information in the premises parsimo-
niously. They never, for example, draw a
conclusion that merely forms a conjunction
of all the premises. Of course, human per-
formance degrades with complex problems,
but the goal of parsimony provides a ratio-
nal solution to the problem of which con-
clusions intelligent programs should draw.
They should express all the semantic infor-
mation in the premises in a minimal descrip-
tion. The logic of negation, conjunction, and
disjunction is often referred to as “Boolean,”
after the logician George Boole. Minimiza-
tion accordingly has a two-fold importance.
On the one hand, it is equivalent to the mini-
mization of electronic circuits made up from
Boolean units, which are powerful enough
for the central processing units of comput-
ers (Brayton et al., 1984). On the other
hand, cognitive scientists have argued that
simplicity is a cognitive universal (Chater
& Vitányi, 2003) and that the difficulty of
the human learning of Boolean concepts de-
pends on the length of their minimal de-
scriptions (Feldman, 2000).

A simple algorithm to find a minimal
description of a set of possibilities checks
all possible descriptions, gradually increas-
ing the number of literals and connectives
in them, until it discovers one that describes
the set. The problem is computationally in-
tractable, and this method is grossly inef-
ficient. Hence, various other methods ex-
ist (e.g., Quine, 1955), but, because of the
intractability of the problem, circuit de-
signers use approximations to minimal cir-
cuits (Brayton et al., 1984). Another version
of the program described in the previous
section uses the notation of the sentential
calculus: & (conjunction), v (inclusive dis-
junction), ∇ (exclusive disjunction), →
(conditional), and↔ (biconditional). It finds
minimal descriptions using fully explicit
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Table 12.6: The possibilities compatible with four Boolean concepts, putatively
minimal descriptions of them, and true minimal descriptions discovered by the
program using fully explicit models

III. a ¬ b c
¬ a b ¬ c
¬ a ¬ b c
¬ a ¬ b ¬ c

Putative minimal description: (¬ a & ¬ (b & c)) v (a & (¬ b & c))

The program’s description: (¬ a v c) & (¬ b v ¬ c)

IV. a ¬ b ¬ c
¬ a b ¬ c
¬ a ¬ b c
¬ a ¬ b ¬ c

Putative minimal description: (¬ a & ¬ (b & c)) v (a & (¬ b & ¬ c))

The program’s description: (c → (¬ a & ¬ b)) & (a → ¬ b)

V. a b c
¬ a b ¬ c
¬ a ¬ b c
¬ a ¬ b ¬ c

Putative minimal description: ((¬ a & ¬ (b & c)) v (a & (b & c)))

The program’s description: a ↔ (b & c)

VI. a b ¬ c
a ¬ b c

¬ a b c
¬ a ¬ b ¬ c

Putative minimal description: (a & ((¬ b & c) v (b & ¬ c)) v ¬ a & ((¬ b & ¬ c) v (b & c))

The program’s description: (a ∇ b) ↔ c

The Roman numbers are the labels of the problems in Shepard et al. (1961).

models. Table 12.6 presents four Boolean
concepts, first studied by Shepard et al.
(1961), with Feldman’s (2000) putative
minimal descriptions and, as the program
revealed, actual minimal descriptions. Shep-
ard et al. (1961) found that concepts III,
IV, and V were roughly equally difficult for
their participants to learn but VI was reliably
harder, so Feldman concluded that subjec-
tive difficulty is well predicted by his puta-
tive descriptions. But, as the table shows,
true minimal length does not correlate
with psychological complexity. In fairness
to Feldman, he used only approximations to
minimal descriptions, and he restricted his
vocabulary to negation, conjunction, and in-

clusive disjunction on the grounds that these
are the traditional Boolean primitives. How-
ever, Goodwin (2006) has shown that when
concepts concern patterns of switch posi-
tions that cause a light to come on, naive
individuals neither restrict their vocabulary
to these primitives nor are they able to dis-
cover minimal descriptions (less than 4% of
their descriptions were minimal). Parsimo-
nious descriptions are hard to find, and they
may not relate to the psychological difficulty
of learning concepts.

When the program builds models from
premises, it multiplies them together to in-
terpret conjunctions. Hence, to describe a
given set of models, it works backward,
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dividing the set up into subsets of models
that can be multiplied together to get back
to the original set. The process of division
proceeds recursively until it reaches models
that each contain only two items. Pairs of
items are easy to describe, because the stan-
dard connectives do the job. Consider, for
example, the following description (of con-
cept V in Table 12.6):

((¬ a & ¬ (b & c)) v (a & (b & c))).

It yields these fully explicit models of possi-
bilities:

a b c
¬ a b ¬ c
¬ a ¬ b c
¬ a ¬ b ¬ c

The reader may notice, as the program does,
that all four possible combinations of b and
c, and their negations, occur in these possi-
bilities. The program therefore recodes the
models as:

a X
¬ a ¬ X

where the value of the variable X is: b &
c. The program compares these two models
with each of its connectives and finds the de-
scription: a ↔ X. It plugs in the description
of X to yield the overall minimal descrip-
tion: a ↔ (b & c).

There are six sorts of decomposition of
a set of models depending on whether or
not any pairs of propositions or variables
occur in all four possible contingencies and
how the other elements relate to them. Any
procedure for minimization is necessarily in-
tractable, but the program is more efficient
than some algorithms. Table 12.7 presents
some typical examples of its performance
with examples from logic textbooks. Each
example shows the input, and the program’s
output, which in each of these cases are both
an evaluation of the given conclusion (the
last assertion in the input) and a minimal
valid conclusion expressing all the informa-
tion in the premises.

6. General Discussion: The Nature
of Human Deductive Reasoning

Does the engine of inference rely on form or
content? Indeed, might it rely on entirely
different principles? For example, Shastri
and Ajjanagadde (1993) describe a “connec-
tionist” system of simulating a network of
idealized nerve cells capable of simple in-
ferences (see also Chapter 2 in this volume
on connectionist models). Likewise, in a se-
ries of striking studies, Oaksford and Chater
(e.g., 1998) have argued that logic is irrel-
evant to our everyday reasoning and to our
deductions in the psychological laboratory.
The right criterion to assess them is the
probability calculus, and they even claim
that this calculus describes our deductions.
Our reasoning, they say, is a rational adap-
tation to the world, and it depends on a
tractable process. Because the probability
calculus is not tractable, they argue that we
use heuristics rather than the calculus itself.
Yet, they reject Tversky and Kahneman’s
(e.g., 1973) findings that heuristics can lead
to into errors in probabilistic thinking. They
advocate instead different heuristics, which
they claim are rational. Their theory is in-
genious, and, granted certain assumptions
about the interpretations of premises, it
gives a good account of three sorts of rea-
soning: performance in a hypothesis-testing
task, reasoning from simple quantified as-
sertions, and simple inferences from condi-
tional assertions (Oaksford & Chater, 1998).
Yet, serious difficulties exist for the theses of
rationality, tractability, and probability: Any
heuristic process that seeks to circumvent
the intractability of sentential reasoning is
bound to lead to systematic error, for exam-
ple, the illusory inferences described earlier.
And recent empirical studies have shown
that the probabilistic theory often makes un-
satisfactory predictions (e.g., Espino et al.,
2005; Schroyens, Schaeken, & d’Ydewalle,
2001). But the decisive issue is that the
preservation of truth in a valid deduction
transcends validity in the probability calcu-
lus (Rips, 2002).

Many observations suggest that human
deductive reasoning does not rely on form.
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Table 12.7: Some examples of the program using fully explicit models

1. Input: a v b
a → c
b → d
c v d

Output: This premise follows from those that preceded it: c v d

Premises are equivalent to: (a → c) & ((b → d) & (a v b))

2. Input: w v (p → i)
i → (c v s)
s → u
¬ c & ¬ u
¬ w

Output: This premise follows from those that preceded it: ¬ w

Premises are equivalent to: ¬ w & (¬ p & (¬ i & (¬ c & (¬ s & ¬ u))))

3. Input: (a → b) & (c → d)
(b → e) & (d → f )
¬(e & f )
a → c
¬ a

Output: This premise follows from those that preceded it: ¬ a.

Premises are equivalent to: ¬ a & ((b → e) & ((e → ¬ f ) & ((d → f ) & (c → d))))

4. Input: (v → (s & (p & m)))
(r → (g → (¬ l → ¬ m)))
s → r
(p → (c → g))
l → ¬ c
c
¬ v

Output: This premise follows from those that preceded it: ¬ v.

Premises are equivalent to: ¬ v & (¬ l & (c & ((p → g) & ((s → r) & ((m & g) → ¬ r)))))

One observation is that theorists have yet
to devise an algorithm for recovering the
logical form of propositions. Another obser-
vation is that the inferential properties of
relations and connectives are impossible to
capture in a simple way. Reasoners use their
knowledge of meaning, reference, and the
world to modulate their interpretation of
these terms. Hence, no sentential connec-
tives in everyday language, such as “if” and
“or,” can be treated as they are in logic. For
example, the truth of a conjunction, such as,
“He fell off his bicycle and he broke his leg,”
depends on more than the truth of its two
clauses: The events must also be in the cor-

rect temporal order for the proposition to
be true. Likewise, a conditional, such as “If
she’s in Brazil then she is not in Rio,” has an
interpretation that blocks a modus tollens
inference (Johnson-Laird & Byrne, 2002),
whereas a counterfactual conditional, such
as “If she had been in Rio then she would
have been in Brazil,” facilitates the inference
(Byrne, 2005). The use of axioms to spec-
ify the logical properties of relations, such as
“taller than,” faces similar problems. Logical
properties depend on the proposition as a
whole and its context. Instead, as the sim-
ulation program in Section 3 showed, rea-
soners can use the meanings of propositions
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to construct appropriate models from which
logical consequences emerge. A more re-
cent simulation has shown how context, de-
pending both on the current models of the
discourse and on general knowledge, over-
rules the “logical” interpretations of connec-
tives (Johnson-Laird, Girotto, & Legrenzi,
2004).

Because human working memory is lim-
ited in capacity, human reasoners cannot
rely on truth-tables. Their mental mod-
els represent atomic propositions and their
negations only when they are true in a
possibility. The failure to represent what
is false seems innocuous. Indeed, for sev-
eral years, no one was aware of its seri-
ous consequences. However, the simulation
program implementing the theory revealed
for some inferences radical discrepancies
between mental models and fully explicit
models. These discrepancies predicted the
occurrence of illusory inferences, which sub-
sequent experiments corroborated. Some
commentators argue that human reasoning
depends on both formal rules and on men-
tal models, and that the evidence shows only
that sometimes human reasoners do not rely
on logic, not that they never use formal
rules. No conceivable evidence could ever
rule out the use of formal rules on at least
some occasions, but theoretical parsimony
suggests that in general, human reasoners
rely on mental models.

7. Conclusions

If humans err so much, how can they be ra-
tional enough to invent logic and mathemat-
ics, and science and technology? At the heart
of human rationality are some simple princi-
ples that almost everyone recognizes: A con-
clusion must be the case if it holds in all the
possibilities compatible with the premises. It
does not follow from the premises if it runs
into a counterexample, that is, a possibil-
ity that is consistent with the premises, but
not with the conclusion. The foundation of
rationality is our knowledge of these princi-
ples, and they are embodied in the programs
simulating the theory of mental models.

References

Aho, A. V., & Ullman, J. D. (1972). The
theory of parsing, translation, and compiling,
Vol. 1: Parsing. Englewood Cliffs, NJ: Prentice
Hall.

Bara, B., Bucciarelli M., & Lombardo V. (2001).
Model theory of deduction: A unified compu-
tational approach. Cognitive Science, 25, 839–
901.

Barwise, J. (1993). Everyday reasoning and log-
ical inference. Behavioral and Brain Sciences,
16, 337–338.

Beth, E. W., & Piaget, J. (1966). Mathemat-
ical epistemology and psychology. Dordrecht,
Netherlands: Reidel.

Braine, M. D. S. (1978). On the relation between
the natural logic of reasoning and standard
logic. Psychological Review, 85, 1–21.

Braine, M. D. S., & O’Brien, D. P. (Eds). (1998).
Mental logic. Mahwah, NJ: Lawrence Erl-
baum.

Brayton, R. K., Hachtel, G. D., McMullen, C. T.,
& Sangiovanni-Vincentelli, A. L. (1984). Logic
minimization algorithms for VLSI synthesis.
New York: Kluwer.

Bucciarelli, M., & Johnson-Laird, P. N. (1999).
Strategies in syllogistic reasoning. Cognitive
Science, 23, 247–303.

Bucciarelli, M., & Johnson-Laird, P. N. (2005).
Naı̈ve deontics: A theory of meaning, repre-
sentation, and reasoning. Cognitive Psychology,
50, 159–193.

Byrne, R. M. J. (2005). The rational imagination:
How people create alternatives to reality. Cam-
bridge, MA: MIT Press.

Byrne, R. M. J., & Johnson-Laird, P. N. (1989).
Spatial reasoning. Journal of Memory and Lan-
guage, 28, 564–575.

Carreiras, M., & Santamarı́a, C. (1997). Rea-
soning about relations: Spatial and nonspa-
tial problems. Thinking & Reasoning, 3, 191–
208.
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CHAPTER 13

Computational Models of Skill Acquisition

1. Introduction: Topic, Scope
and Viewpoint

Daily life is a sequence of tasks: cook break-
fast; drive to work; make phone calls; use
a word processor or a spread sheet; take an
order from a customer, operate a steel lathe
or diagnose a patient; plan a charity event;
play tennis; shop for groceries; cook dinner;
load the dishwasher; tutor children in arith-
metic; make a cup of tea; brush teeth; and
set the alarm for next morning. The number
of distinct tasks a person learns to perform in
a lifetime is certainly in the hundreds, prob-
ably in the thousands.

There is no entirely satisfactory way to
refer to the type of knowledge that sup-
ports task performance. The phrase know-
how has entered the popular lexicon but
is stylistically unbearable. The philosopher
Gilbert Ryle (1949/1968) famously distin-
guished knowing how from knowing that. Psy-
chometricians talk about abilities (Carroll,
1993), whereas artificial intelligence re-
searchers talk about procedural knowledge
(Winograd, 1975); both terms are some-
what misleading or awkward. The alterna-

tive term practical knowledge resonates with
other relevant usages, such as the verb to
practice, the cognitive anthropologist’s con-
cept of a practice, the philosopher’s con-
cept of practical inference, and the common
sense distinction theory versus practice. In
this review, the term “practical knowledge”
refers to whatever a person knows about
how to perform tasks, achieve desired ef-
fects, or reach goals, whereas “declarative
knowledge” refers to knowledge about how
things are.

How is practical knowledge acquired?
How can a person – or some other intel-
ligent agent, if any – bootstrap himself or
herself from inability to mastery? The pur-
pose of this chapter is to organize the stock
of current answers to this question in a way
that facilitates overview, comparison, and
future use.

This chapter focuses on cognitive as op-
posed to sensori-motor skills. The distin-
guishing feature of a cognitive skill is that the
physical characteristics of the relevant ac-
tions (amplitude, force, speed, torque, etc.)
are not essential for task performance. Com-
pare tennis with chess in this respect. The
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success of a tennis serve is a function of the
exact trajectory of the racket, but a chess
move is the same move, from the point of
view of chess, whether it is executed by
moving the piece by hand, foot, or mouth,
physically very different movements. The
equivalence class of movements that count
as making chess move so-and-so abstracts over
the physical characteristics of those move-
ments, and its success, as a chess move, is
not a function of those characteristics. Many
skills have both cognitive and sensori-motor
components, but the hypotheses discussed
in this chapter were not designed to explain
the acquisition of the latter.

A second boundary of this review derives
from its focus on computer models. It is
possible and useful to reason with informal
hypotheses, but for inclusion here, a hypo-
thesis has to be implemented as a running
computer program, and there must be at
least one publication that reports results of
a simulation run. Also, this chapter empha-
sizes models that have been proposed as
explanations for human learning over con-
tributions to machine learning research or
robotics. This chapter focuses on models
that create or alter symbolic knowledge rep-
resentations and deals only briefly with mod-
els that learn by adjusting quantitative prop-
erties of knowledge structures. Although
occasionally refering to empirical studies,
this chapter is primarily a review of theoret-
ical concepts. This chapter does not attempt
to pass judgment on the empirical adequacy
of the different models, for reasons that are
spelled out in the last section. Although no
current hypothesis explains all skill acquisi-
tion phenomena, this chapter proceeds on
the assumption that each hypothesis con-
tains some grain of truth to be extracted and
incorporated into future models.

The unit of analysis throughout is the
individual learning mechanism. A learning
mechanism is specified by its triggering con-
ditions, that is, the conditions under which
it will execute, and by the particular change
that occurs under those conditions. As an il-
lustration, consider the classical concept of
association: If two concepts are active simul-
taneously, a memory link is created between

them. The triggering condition is in this
case the simultaneous occurrence of the two
concepts in working memory; the change is
the creation of a link. The learning mecha-
nisms considered in this chapter are consid-
erably more complicated, but their descrip-
tions can nevertheless be parsed into a set of
triggering conditions and a change process.

The learning mechanism is a more fine-
grained unit than the model or the cognitive
architecture because a model might include
multiple learning mechanisms and, in fact,
some models do. Slicing models into their
component learning mechanisms facilitates
comparisons among the latter. This chap-
ter does not review every application of ev-
ery model, but focuses on publications that
introduce, explain, or demonstrate learning
mechanisms.

Improvements in a skill cannot come
out of thin air, so a learning mechanism
must draw on some source of information.
Different mechanisms operate on different
sources: Learning from instruction is not the
same process as learning from error. In gen-
eral, each learning mechanism takes a spe-
cific type of information as input. I refer to
this as the Information Specificity Principle.
(see Figure 13.1).

It is highly unlikely that all phenomena
associated with the acquisition of cognitive
skills can be explained by a single learning
mechanism. We do not know how many
distinct modes of cognitive change there are,
but it is assumed that the observable changes
in overt behavior are a product of multiple,
interacting mechanisms.

In short, to explain skill acquisition is
to specify a repertoire of learning mecha-
nisms, each mechanism consisting of a trig-
gering condition and a change process, to
implement these within some performance
system and to demonstrate, by running the
resulting simulation model, that the cumu-
lative outcome of the interactions among
the specified mechanisms mimics the ac-
quisition of ecologically relevant cognitive
skills across tasks, initial knowledge states,
and learning scenarios. This formulation of
the skill acquisition problem is the product
of a century of scientific progress.
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Figure 13.1. Schema for learning mechanisms.

2. History

In William James’ (1980) comprehensive
summary of the principles of psychology,
there is a chapter on habit formation but
no chapter on learning. Systematic empiri-
cal research on the acquisition of cognitive
(as opposed to sensori-motor) skills began
with Edward Thorndike’s PhD thesis, be-
gun in 1896 under James at Harvard Uni-
versity but issued a few years later from
Teachers College at Columbia University.
Thorndike (1898) investigated how various
species of animals learned to escape from
cages with nonobvious door-opening mech-
anisms. He displayed the time it took in-
dividual animals to escape from a box as
a function of trial number. Although Her-
mann Ebbinghaus (1885/1964) had already
published curves for the memorization and
forgetting of lists of syllables, Thorndike was
the first person to plot what we now call
practice curves for complex skills. He for-
mulated the Law of Effect, which says that
the probability that a learner will perform a
particular action is increased when the ac-
tion is followed by a positive outcome (a
“satisfier” in Thorndike’s terminology) and
decreased when followed by a negative out-
come (“annoyer”; Thorndike, 1927). This
proved to be an enduring insight.

Learning became the major theme of
the behaviorist movement, conventionally
dated as beginning with Watson’s (1913) ar-
ticle, “Psychology as the Behaviorist Views
It.” During the 1913–1955 period, experi-
mental psychology and learning theory became
almost synonymous in the United States,
but the dominant experimental paradigm
for the study of learning was the memoriza-
tion of lists of letters, syllables, or words.
Woodworth’s (1938) attempt to replicate

James’s comprehensive summary from fifty
years earlier included a chapter on prac-
tice and skill that mentioned twenty-seven
studies that tracked learning in complex
tasks, like archery, telegraphy, and typing
(pp. 156–175). The negatively accelerated
shape of the practice curve was well es-
tablished, and the search for a mathemati-
cal equation had begun (pp. 170–173). The
idea that the process of acquiring a new skill
goes through phases that involve different
types of changes was stated but not devel-
oped. Both ideas have turned out to be en-
during (Ackerman, 1990; Newell & Rosen-
bloom, 1981).

During World War II, psychologists in
Britain and the United States were promp-
ted to move away from list learning and fo-
cus on complex skills by the need to con-
tribute to the war effort (Gardner, 1985).
The war posed novel problems, such as how
to train anti-aircraft gunners. (Anti-aircraft
guns were still aimed manually.) A sec-
ond transforming influence was that psy-
chologists worked alongside engineers, sci-
entists, and mathematicians who were in the
process of creating new information tech-
nologies. Code breaking and other informa-
tion processing problems led researchers to
realize that information can be measured
and processed in objective and systematic
ways, making it possible both to build in-
formation processing systems and to view
humans and animals as examples of such
systems.

Immediately after the war, Norbert
Weiner at the Massachusetts Institute of
Technology envisioned an interdisciplinary
science – called cybernetics – which was to
study complex information-based systems,
encompassing humans, machines, and ani-
mals, in terms of feedback circles. The idea of
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replacing the stimulus–response reflex with
the feedback circle as the central concept of
psychology played the star role in Miller,
Galanter, and Pribram’s (1960) sketch of
what we now call the cognitive architec-
ture. Although the concept of feedback re-
mains important, a variety of factors, includ-
ing Wiener’s focus on continuous feedback,
which can only be manipulated with com-
plex mathematics, reduced the influence
of the cybernetic approach (Conway &
Siegelman, 2005). It was soon overtaken by
the digital approach, variously called com-
plex information processing and, eventually,
artificial intelligence, launched by Newell,
Shaw, and Simon (1958) with an arti-
cle describing the Logic Theorist, the first
symbol-processing computer program that
performed a task, logical deduction, that is
recognized as requiring intelligence when
done by people. The program formalized
the notion of heuristic search, another en-
during concept. Significantly, the article was
published in Psychological Review rather than
an engineering journal, and the authors of-
fered speculations on the relation between
their program and human reasoning. The
article thus simultaneously established the
two fields of artificial intelligence and cogni-
tive modeling (Crevier, 1993).

Paradoxically, the success of the digital
symbol manipulating approach had a detri-
mental effect on the study of learning. In
the period 1958–1979, few leading cogni-
tive psychologists studied the effects of prac-
tice or other problems related to skill acqui-
sition (but see Welford, 1968, for an excep-
tion). The new modeling techniques were
at first applied to steady-state performance.
This was difficult enough with the crude
programming tools available at the time.
Success in simulating human behavior – any
behavior – was recognized as an achieve-
ment in and of itself, even if a model did not
simulate changes in that behavior over time.

The era of computational skill acquisition
models was inaugurated with a Psychological
Review article by Anzai and Simon (1979).
They presented a computer program that
modeled the successive strategy changes of
a single person who solved the Tower of
Hanoi problem multiple times. The article

demonstrated the feasibility of simulating
the acquisition and not only the execution
of cognitive skills. The article was closely
followed by the first set of learning assump-
tions associated with J. R. Anderson’s ACT
model. Anderson, Kline, and Beasley (1978)
laid out a design for a cognitive architecture
with multiple learning mechanisms, later
published in Anderson (1982, 1983, 1987,
1993).

Several of the early simulation efforts
were formulated within the production
system framework (Davis & King, 1977;
Neches, Langley, & Klahr, 1987; Newell,
1972, 1973; Newell & Simon, 1972;
Waterman & Hayes-Roth, 1978). In this
framework, practical knowledge is encoded
in rules, knowledge structures of the form
if the current goal is G, and the current situ-
ation is S, then consider performing action A.
A production system architecture executes a
collection of such rules through a cyclic pro-
cess: Match the G and S components against
the current goal and the current situation
(as represented in working memory); enter
all matching rules into a conflict set; select a
rule by resolving the conflict; and execute
(the action of) the selected rule. The action
alters the state of the world, and the cycle
repeats. The production rule notation

Goal, Situation → Action

is as close as the field has come to a lingua
franca for the analysis of cognitive skills.

The Anzai and Simon (1979) article,
the emergence of production systems as a
shared formalism, the launching of Ander-
son’s ACT project, and other events col-
lectively triggered an unprecedented explo-
sion of the theoretical imagination. More
new hypotheses about the mechanisms be-
hind the acquisition of cognitive skills were
proposed in the years 1979–1995 than in
the previous century. The success of the
initial models established computer simu-
lation as a workable and even indispens-
able theoretical tool. Informal arguments to
the effect that this or that learning mech-
anism has such-and-such behavioral conse-
quences remain acceptable, but they are
clearly inferior to predictions produced by
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running a simulation model. The last twenty
years have seen a proliferation of formal ap-
proaches, including neural networks (Chap-
ter 2 in this volume), genetic algorithms (De
Jong, 1990; Holland, 1975), and dynamic
systems (Chapter 4 in this volume). How-
ever, the invention of novel learning mech-
anisms appears to have slowed.

The following four sections review the
skill acquisition mechanisms that have been
proposed since Thorndike’s experimental
subjects clawed, pecked, and pushed their
way out of his problem boxes. The explana-
tory power of these mechanisms disproves
the pessimists who would argue that cog-
nitive modeling of learning has made lit-
tle progress.The task of disproving the op-
timists is postponed until the last section.

3. How Does Skill Practice Begin?

The three phases of skill acquisition
sketched by Woodworth (1938) and articu-
lated further by Fitts (1964) and others pro-
vide a useful framework for thinking about
skill acquisition. At the outset of practice,
the learner’s main problem is how to get
started, how to construct an initial strategy
for the target task. Once the learner is act-
ing vis-à-vis the task, the challenge is to im-
prove that initial strategy until the task has
been mastered. Finally, in the long run, the
challenge is to optimize the mastered strat-
egy. Each phase provides different sources
of information and hence affords different
learning mechanisms. This section reviews
learning mechanisms that primarily operate
within the first phase, while the following
two sections focus on the second and third
phases. Within each phase, learning mech-
anisms are distinguished on the basis of the
source of information that they draw on,
their triggering conditions, and the type of
change they compute.

The grouping of learning mechanisms by
phase should not be interpreted as a claim
that the phases are created by a big switch in
the mind that turns mechanisms on and off.
I assume that all learning mechanisms op-
erate continuously and in parallel, but the
types of information they require as input

might vary in abundance and accessibility
over time. The phases emerge out of the
fact that some types of information becomes
less accessible, frequent, or useful as learn-
ing progresses, whereas other types of infor-
mation increase, producing a gradual shift
in the relative importance of different types
of changes across the successive phases. The
final behavior – the fast, accurate, smooth,
and nearly effortless expert performance –
is the composite and aggregate outcome
of the mechanisms operating in all three
phases.

For present purposes, the first phase is de-
fined as starting when the learner encounters
the task and as ending when the learner com-
pletes the task for the first time. The learn-
ing mechanisms that dominate this phase are
answers to the question, how can skill prac-
tice begin? How does a learner know what
to do before he or she has learned what to
do? There are at least four principled ap-
proaches to this paradox, corresponding to
four distinct sources of information that can
be available at the outset of practice: instruc-
tions, abstract declarative knowledge, prior
skills, and someone else’s solution.

3.1. Interpret Exhortations

Unfamiliar tasks often come with written or
spoken recipes for what to do, variously re-
ferred to as advice or instructions; in linguistic
terminology, exhortations. Dispensing spo-
ken advice is a large part of what coaches
and tutors do. Written sources include cook
books, manuals for electronic devices, in-
struction sheets for assembly-required fur-
niture, and software manuals. Exhortations
are presumably understood via the standard
discourse comprehension processes studied
in psycholinguistics (word recognition, men-
tal lexicon look-up, disambiguation, syntac-
tic parsing, implicit inferences and so on;
see Gernsbacher, 1994), but people cannot
follow complex instructions without hesita-
tion, backtracking, errors, and repeated re-
hearsals, even when those instructions are
fully understood, so additional processes are
required to translate the output of discourse
comprehension into executable practical
knowledge.
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In McCarthy’s (1959, 1963)1 early de-
sign for an advice taker system, reasoning
about exhortations and actions was assim-
ilated to logical deduction via axioms that
define nonlogical operators like can and do.
Instructions are propositional grist for the
deductive mill; no special process needed
(see also Simon, 1972). This deductive rea-
soning approach continues within logic pro-
gramming (Amir & Maynard-Zhang, 2004;
Giunchiglia et al., 2004) but remains largely
unexplored by psychologists modeling hu-
man skill acquisition (but see Chapter 5 in
this volume).

The Advice Taker model described by
Mostow (1983) and Hayes-Roth, Klahr, and
Mostow (1981) was designed to opera-
tionalize exhortations by transforming them
into executable plans. In the context of the
game of hearts, a novice might be told if you
can’t take all the points in a round, take as few
as possible. If the learner does not yet know
how to take few points, he or she has to refer
to the definitions of take, few, and points to
expand the advice into an action he or she
knows how to do, for example, play a low
card. This amounts to a top-down search
through all alternative transformations al-
lowed by concept definitions, background
knowledge, and so on. Mostow (1983) re-
ports using a repertoire of approximately
200 transformation rules to find a 100-step
expansion of the advice avoid taking points
into the executable action play a low card
(given a particular state of knowledge about
the game).

Nonlogical operators and transformation
rules have to be general across domains to
serve their purpose, so they share the dif-
ficult question of their origin. A contrast-
ing approach is employed in Instructo-Soar
(Huffman & Laird, 1995). An exhortation
is operationalized by constructing an ex-
planation for why it is good advice. The

1 The two papers referenced here were reprinted as
sections 7.1 and 7.2, respectively, of a chapter titled
“Programs with Common Sense” in Minsky (1968).
Note that the chapter with that same title in Lif-
schitz (1990) corresponds to section 7.1, i.e., to
McCarthy (1959), but leaves out the content in
McCarthy (1963).

system conducts an internal search (look-
ahead) from the current situation (or a hy-
pothetical situation specified in the condi-
tional part of an exhortation like, if the red
light is flashing, sound the alarm) until it finds
a path to the relevant goal that includes the
recommended step. Soar’s chunking mech-
anism – a form of explanation-based learn-
ing2 – is then applied to create a new rule (or
rules) that can generate that path in the fu-
ture without search. This technique allows
Instructo-Soar to acquire complex actions
as well as other types of knowledge from
task instructions. Instructo-Soar is equipped
with a natural language front end and re-
ceives instructions in English. An alter-
native approach to translating instructions
for a radar operting task into production
rules in the ACT-R system is described by
Taatgen (2005). A simpler translation of in-
structions into production rules was imple-
mented in the Instructable Production Sys-
tem (Rychener, 1983; Rychener & Newell,
1978).

Doane et al. (2000) described a system,
UNICOM, that learns to use the Unix
operating system from instructions. An
updated version, called ADAPT-PILOT,
accurately models the effect of on-line in-
structions on the behavior of jet pilots dur-
ing training (Doane & Sohn, 2000; Sohn
& Doane, 2002). These models are based on
the construction-integration theory of dis-
course comprehension proposed by Kintsch
(1998). General background knowledge and
knowledge of the current state of the
world are represented as propositions, and
plan elements – internal representations of
executable actions – are represented in

2 Explanation-based learning, henceforth EBL, is a
machine learning technique that compresses a de-
ductive proof or a sequence of rule executions
into a single knowledge structure that connects the
premises and the conclusion. The key aspect of
the technique is that it aligns variable bindings in
the successive steps in such a way as to identify
which constants can be replaced by variables. That
is, it produces a motivated, conservative general-
ization of the compressed structure. What kind of
learning EBL implements depends on context, ori-
gin of its input, and the use made of its output. See
Russell and Norvig (1995) for an introduction.
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terms of their preconditions and outcomes.
All of these are linked in a single associative
network on the basis of overlap of predi-
cates. Links can be excitatory or inhibitory.
In each cycle of operation, a standard net-
work algorithm is used to compute the cur-
rent activation level of each node (propo-
sition or plan element). The plan element
with the highest activation level is chosen
for execution. Its outcome is recorded in the
network, and the cycle starts over. Learning
occurs by incorporating verbal prompts, for
example, you will need to use the arrow sym-
bol “≥” that redirects the output from a com-
mand to a file, into the associative network.
This alters the set of connections, hence,
the outcome of the construction-integration
process, and, ultimately, which plan ele-
ment is executed.

There are other applications of the net-
work concept to the problem of learn-
ing from instruction. The CAP2 network
model described by Schneider and Oliver
(1991) and Schneider and Chein (2003) is
instructable in the related sense that a sym-
bolic representation of the target skill can
inform and speed up learning in a neural
network.

The proposed mechanisms capture the
complexity of learning from exhortations,
but the psychological validity of their de-
tails is open to question. Also, these mecha-
nisms apply primarily to initial instructions.
They do not model learning from tutorial
feedback, because they do not relate what is
said to what was just done. Models of learn-
ing from instruction are potentially useful in
educational research (Ohlsson, 1992; Ohls-
son, Ernst & Rees, 1992; VanLehn, Ohlsson,
& Nason 1994).

3.2. Reason from Abstract Declarative
Knowledge

An intelligent agent who desires to travel
southward but who is facing north, and who
knows something about the compass, should
be able to infer that his or her next action
ought to be turn around. The abstract declar-
ative principles that hold in this situation –
the agent’s mental model of the Earth, the

compass, and their relation – can guide ac-
tion, and it is tempting to believe that the
flexibility of human beings is, in part, a func-
tion of cognitive processes that make such
guidance explicit. How else did Christoffer
Columbus decide that the Earth is round im-
plies sail West? The strength of the intuition
belies the difficulty of specifying the relevant
processes.

The proceduralization mechanism pro-
posed by Anderson (1982, 1983) processes
abstract declarative knowledge with inter-
pretative production rules, which match
parts of declarative representations and cre-
ate new production rules. To illustrate the
flavor of the approach, consider the follow-
ing didactive example (not identical to any
of the author’s own examples): If you want
to achieve G, and you know the proposition “if
S, then G,” then form the new production rule:
if you want to achieve G, then set the subgoal
to achieve S. Execution of this interpretative
rule has two important consequences: It in-
corporates the declarative principle if S, then
G into the learner’s practical knowledge,
and it eliminates the need to retrieve that
piece of knowledge from memory. Neves
and Anderson (1981) demonstrated how a
collection of interpretative rules can pro-
duce executable rules for proof finding in
plane geometry from declarative represen-
tations of geometry theorems.

The principles-to-actions transformation
has been studied in depth in the domain
of counting. Empirical studies indicate that
children know very early some relevant prin-
ciples, for example, that the counting words
form a linear sequence, that the mapping
from words to objects is supposed to be
one-one, and that the last counting word
represents the cardinality of the set that
is counted (Gelman & Gallistel, 1978). In
the COUNTPLAN model (Greeno, Riley,
& Gelman, 1984; Smith, Greeno, & Vitolo,
1989), these principles are represented as
action schemata, which are processed by
a planning-like process to yield a plan for
how to count a set of objects. A strong
feature of the model is that it can gener-
ate plans for nonstandard counting tasks, for
example, count the yellow objects before the
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blue ones. A very different process for turn-
ing the counting principles into practical
knowledge is described in Ohlsson and Rees
(1991a).

That these mechanisms operate in the do-
mains of geometry and counting is no acci-
dent. The idea that action is – or ought to
be – derived from principles is entrenched in
mathematics education research (Hiebert,
1986). To the extent that the principled
knowledge is communicated via written or
spoken discourse, the problem of deriving
action from abstract knowledge and of learn-
ing from instruction become intertwined.
But proceduralization and planning apply
equally well to knowledge retrieved from
long-term memory.

3.3. Transfer Prior Knowledge

Initial rules for an unfamiliar task can be gen-
erated by adapting previously learned rules.
That is, the problem of how practice gets
under way can be subsumed under the prob-
lem of transfer of training. There are three
principled ideas about how learners can uti-
lize this source of information: identical el-
ements, analogy, and subsumption.

3.3.1. identity

If the unfamiliar task is identical in some
respects to an already familiar task, then
components of the previously learned skill
might apply to the unfamiliar task with-
out change (the identical elements hypothesis;
Thorndike, 1911, pp. 243–245). This hy-
pothesis comes for free with a production
system architecture because rules are auto-
matically considered whenever they match
the current situation. Kieras and Bovair
(1986), Singley and Anderson (1989), and
Pirolli and Recker (1994) report success in
predicting the magnitude of transfer effects
by counting the number of rules shared be-
tween two methods. However, the identi-
cal rules hypothesis predicts that positive
transfer effects are necessarily symmetrical
in magnitude, a dubious prediction (Ohls-
son, 2007). Also, identity is a very restrictive
criterion for the re-use of practical knowl-
edge.

3.3.2. analogy

The hypothesis of analogical transfer as-
sumes a mapping process that identifies
structural similarities between the task at
hand and some already mastered task. The
mapping is used to construct a method or
a solution for the unfamiliar task, using the
familiar one as a template. For example,
consider a situation described by Block A
is on the table, Block B is on the table, and
Block C is on top of Block B. If the goal is to
put Block C on Block A, then the successful
action sequence is to grasp C, lift C up,
move C sideways, and put C down. When
the learner encounters a second situation in
which Box R is inside Box X, Box S is inside
Box X, Box T is inside Box S, and the goal is
to put T inside R, the mapping

{table → Box X,
on top of → inside,
Block A → Box R,
etc.}

leads to the analogous solution grasp T, take
T out of X, move T sideways, and put T inside
R. The two analogues are not similar in any
perceptual sense, but they share the same
relational structure, so one can serve as a
template for the other.

There are multiple ways to implement
the two processes of analogical mapping and
inference. The structure mapping principle
proposed by Gentner (1983) and imple-
mented in the Structure Mapping Engine
(Falkenhainer, Forbus, & Gentner, 1989;
Forbus, Gentner, & Law, 1994) says that
higher-order relations should weigh more
in choosing a mapping than lower-order
relations and perceptual features. Holyoak
and colleagues (Holyoak, 1985; Holyoak
& Thagard, 1989a; Spellman & Holyoak,
1996) emphasized pragmatic factors, that is,
which mapping seems best from the point
of view of the learner’s current purpose.
The mapping processes by Keane, Ledge-
way, and Duff (1994) and Wilson et al.
(2001) are designed to minimize cognitive
load, the former by satisfying a variety of
constraints, for example, map only objects
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of the same type, and the latter by only
mapping a single pair of propositions at a
time. The path-mapping process proposed
by Salvucci and Anderson (2001), however,
pursues flexibility by separating a low-level,
object-to-object mapping process from the
higher-order, acquired, and hence poten-
tially domain-specific processes that use it.
Mapping processes can be implemented as
connectionist networks (Holyoak & Tha-
gard, 1989b; Hummel & Holyoak, 1997,
2003). Anderson and Thompson (1989) and
Kokinov and Petrov (2001) emphasize the
need to integrate analogical reasoning with
other cognitive functions.

Of particular interest from the point of
view of skill acquisition is the distinction
between different types of analogical infer-
ences. In some models, an analogical map-
ping is used to construct a solution path for
the target problem, as in the previous di-
dactic block/box example. Carbonell (1983,
1986; Veloso & Carbonell, 1993) proposed
a derivational analogy mechanism of this
sort. The learner infers a solution to the
target problem, a sequence of actions, but
no general strategy or method, so this con-
servative process will primarily affect be-
havior on the current task. In other mod-
els, an analogical mapping is used to infer
a solution method; see VanLehn and Brown
(1980) for an early attempt in terms of plan-
ning nets. At a more fine-grained level, the
analogy might generate a part of a method,
such as a single production rule (Anderson
& Thompson, 1989; Blessing & Anderson,
1996; Pirolli, 1986, 1991). In these cases,
the learner gains new practical knowledge
that might apply not only to the target task
but also to future tasks, a riskier type of ana-
logical inference.

In yet another variation on the analogy
theme, the EUREKA system by Jones and
Langley (2005) uses analogical mapping to
infer how a fully specified, past problem-
solving step can be applied to the current
situation. The Cascade model (VanLehn &
Jones, 1993) uses a closely related mech-
anism. Although this application of anal-
ogy – analogical operator retrieval – is a part
of the performance mechanism rather than

a learning mechanism, it allows past steps,
derivations, or problem-solving episodes,
even if completely specific, to affect future
behavior.

3.3.3. subsumption

Some prior cognitive skills transfer to the
target task because they are general enough
to subsume the unfamiliar task at hand. The
idea of wide applicability through abstrac-
tion or generality goes back to antiquity, but
takes a rather different form in the context
of practical as opposed to declarative knowl-
edge. General or weak methods make few
assumptions about the task to which they
are applied, so the learner does not need
to know much about the task to use them
(Newell, 1990; Newell & Simon, 1972). By
the same token, such methods do not pro-
vide strong guidance. Different weak meth-
ods structure search in different ways. Hill-
climbing (take only steps that improve the
current situation), backward search (iden-
tify what the last step before achieving the
current goal would have to be and pose
its requirements as subgoals, then iterate)
and means–ends analysis (identify differ-
ences between the current state and the
goal and think of ways to reduce each one)
are the most well-known weak methods.
For example, Elio and Scharf’s (1990) EU-
REKA model initially solves physics prob-
lems via means–ends analysis, but accumu-
lates problem-solving experiences into prob-
lem schemas that gradually come to direct
future problem-solving efforts.

People also possess a repertoire of slightly
more specific but still weak heuristics such
as if you want to figure out how to use an
unfamiliar device, push buttons at random
and see what happens, and if you want to
know how to get to location X, ask some-
one. Weak methods and heuristics are not
learning mechanisms – they do not create
new practical knowledge – but they serve
to generate task-relevant actions. The ac-
tions produce new information about the
task, which in turn can be used by a variety
learning mechanisms; see the following sec-
tion. When weak methods dominate initial
task behavior, skill acquisition is a process of
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specialization, because it transforms those
methods into domain-specific heuristics and
strategies. This is a widely adopted principle
(Anderson, 1987; Jones, Ritter & Wood,
2000; Langley, 1985; Ohlsson, 1996; Rosen-
bloom, Laird, & Newell, 1993; Sun, Slusarz,
& Terry, 2005; VanLehn, 1999; VanLehn &
Jones, 1993). It represents an important in-
sight, because common sense suggests that
learning proceeds in the opposite direction,
from concrete actions to more abstract com-
petencies.

There is no reason to doubt the psycho-
logical reality of either of these three transfer
relations – identity, analogy, and subsump-
tion – but there are different ways to exploit
each one. Both analogy and subsumption are
relaxations of the strict criterion of identity.
They make prior skills more widely appli-
cable by allowing for some differences be-
tween past and current tasks.

3.4. Study Someone Else’s Solution

A fourth source of information on which to
base initial behavior vis-à-vis an unfamiliar
task is a solution provided by someone else.
In an educational setting, a teacher or help-
ful textbook author might provide a writ-
ten representation of a correct solution, a
so-called solved example. To learn from a
solved example, the learner has to study
the successive steps and infer how each step
was generated. There are at least three key
challenges to learning from solved exam-
ples: The example might be incomplete,
suppressing some (presumed obvious) steps
for the sake of conciseness, which forces
the learner to interpolate the missing steps.
Also, a solved example might not explain
why each step is the correct step where it
occurs, which forces the learner to guess the
correct conditions on the actions. Finally,
because a solved example is specific (by def-
inition of “example”), there is the issue how,
and how far, to generalize each step.

The Sierra model (VanLehn, 1983, 1987)
learned procedures from sequences of solved
examples, organized into lessons, in the do-
main of place-value arithmetic. The ex-
amples were parsed both top-down and

bottom-up. Various constraints were ap-
plied to choose a possible way to close the
gap, especially the one-subprocedure per les-
son constraint (VanLehn, 1987). Sierra pro-
duced a set of initial (“core”) procedures that
were not guaranteed to be complete and
hence might generate impasses when ex-
ecuted, necessitating further learning. The
main purpose of Sierra was to explain, in
conjunction with Repair Theory, the origin
of errors in children’s arithmetic (see Sec-
tion 4.2 on learning at impasses).

The Cascade model (VanLehn, 1999;
VanLehn & Jones, 1993; VanLehn, Jones,
& Chi, 1992) learns from solved examples
in the domain of physics. The model studies
examples consisting of sequences of lines.
It attempts to derive each line, using its
domain-specific knowledge. If the deriva-
tion succeeds, it stores the derivation itself;
because Cascade uses analogies with past
derivations to guide search, stored deriva-
tions can affect future processing. If the
derivation fails, the system engages back-
ground knowledge that can be of various
types but is likely to be overly general. If
the derivation succeeds using overly gen-
eral knowledge, the system applies an EBL
technique called explanation-based learning
of correctness to create a specialized ver-
sion. Once it has proven its worth, the
new rule is added to the learner’s domain-
specific knowledge. Finally, if Cascade can-
not derive the line even with its general
knowledge, it stores the line itself in a
form that facilitates future use by analogy.
Reimann, Schult, and Wichman (1993) de-
scribed a closely related model of learning
to solve physics problems via solved exam-
ples, using both rules and cases. The X sys-
tem described by Pirolli (1986, 1991) uses
analogies to solved examples to guide ini-
tial problem solving rather than overly gen-
eral background knowledge, and it uses the
knowledge compilation mechanism of the
ACT* model rather than EBL to cache
the solution for future use, but its princi-
pled approach to initial learning is similar.

In some instructional settings, it is com-
mon for a coach to demonstrate the cor-
rect solution, that is, to perform the task
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while the pupil is observing. Learning from
demonstrations poses all the same problems
as learning from solved examples (except
possibly incompleteness), plus the prob-
lems of visual perception and learning un-
der real-time constraints. Having to explain
vision as well as learning is not a simplifi-
cation, and I know of no cognitive model
of human learning that learns by observing
demonstrations. Learning by mimicry has
played a central role in social learning theory
(Bandura, 1977). Donald (1991) has made
the interesting suggestion that mimicry was
the first representational system to appear
in hominid evolution and that remnants of
it can still be seen in the play of children.

3.5. Discussion

The four principled answers to the question
of how a learner can start practicing – follow
exhortations; reason from abstract declar-
ative knowledge; transfer identical, analo-
gous, or general prior skills; and study some-
one else’s solution – can be implemented in
multiple ways. The diversity of approaches
to the generation of initial rules is high-
lighted in Table 13.1. All four modes of
learning have a high degree of psychologi-
cal plausibility, but the validity of the exact
processing details of the competing mech-
anisms is difficult to ascertain. Each mode
is likely to produce initial rules that are in-
correct or incomplete: Details might be lost
in the translation of verbal recipes, reason-
ing can be faulty, identical elements might
be incomplete, analogies might not be ex-
act, search by weak methods might not find
an optimal path, and solved examples and
real-time demonstrations can be misunder-
stood. Exhortations, principles, prior skills,
and solved examples are sources of initial
rules that are likely to require fine tuning by
other learning mechanisms.

4. How Are Partially Mastered Skills
Improved?

The second phase of skill acquisition be-
gins after the first correct performance and

ends with mastery, that is, reliably cor-
rect performance. The learning mechanisms
that are responsible for improvement dur-
ing this phase answer the question, how
can an initial, incomplete, and perhaps erro-
neous method improve in the course of practice?
Although the mechanisms that dominate
in the first phase necessarily draw on infor-
mation sources available before action be-
gins, the mechanisms that dominate this
phase capitalize on the information that is
generated by acting. The latter includes in-
formation to the effect that the learner is on
the right track (positive feedback). An impor-
tant subtype of positive feedback is subgoal
satisfaction. The discovery that a subgoal has
been achieved is very similar to the recep-
tion of environmental feedback in its impli-
cations for learning – the main difference
is whether the information originates inter-
nally or externally – and the two will be dis-
cussed together. The environment can also
produce information to the effect that an
action was incorrect, inappropriate, or un-
productive in some way (negative feedback).
Feedback is both a triggering condition and
a source of information, but learning from
positive and negative feedback requires dif-
ferent processes. Another important type of
triggering event is the occurrence of an im-
passe, a situation in which the learner cannot
resolve what to do next.

4.1. Positive Feedback and Subgoal
Satisfaction

As the learner acts vis-à-vis the task on the
basis of initial rules, he or she will sooner
or later perform a correct action or obtain
some useful or desirable intermediate result.
Information that designates an action or its
outcome as correct or useful can originate
internally (well, that worked), in causal con-
sequences (if the apple falls in your hand, you
know you shook the tree hard enough), or in
utterances by an instructor (well done). The
receipt of positive feedback is a trigger for
learning. The theoretical question is what is
learned. If the learner takes a correct step
knowing that it is correct, there is nothing
to learn. Yet, positive feedback facilitates
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human learning, presumably because many
steps generated by initial rules are tentative,
and positive feedback reduces uncertainty
about their correctness.

4.1.1. increase rule strength

The simplest mechanism for uncertainty
reduction is described in the first half
of Thorndike’s Law of Effect (Thorndike,
1927): Increase the strength of the rule
that generated the feedback-producing ac-
tion. Variants of this strengthening idea are
incorporated into a wide range of cognitive
models.

The EUREKA model described by Jones
and Langley (2005) stores past problem-
solving steps, fully instantiated, in a
semantic network memory. When faced
with a decision as to what to do in a cur-
rent situation S, the model spreads activa-
tion across the network to retrieve a set of
past steps that are relevant for S. A step is
selected for execution based on degree of
similarity to the current situation. (When a
problem is encountered a second time, the
exact same step that led to success last time
is presumably maximally similar and hence
guaranteed to be selected for execution.) Fi-
nally, analogical mapping between the past
step and S is used to apply the step to S.
As experience accumulates, the knowledge
base of past steps grows. Positive and nega-
tive feedback are used to adjust the strengths
of the relevant network links, which in turn
alters the outcome of future retrieval pro-
cesses. In the GIPS model, Jones and Van-
Lehn (1994) interpreted positive feedback
as evidence in favor of the hypothesis that
the action was the right one under the cir-
cumstances and increased the probability of
that hypothesis with a probabilistic concept
learning algorithm, a very different concept
of strengthening.

There are multiple implementation is-
sues: By what function is the strength incre-
ment to be computed? How is the strength
increment propagated backward through
the solution path if the feedback-producing
outcome required N steps? How is the
strength increment to be propagated up-
ward in the goal hierarchy? Should a higher-

order goal be strengthened more, less, or
by the same amount as a lower-order
goal (Corrigan-Halpern & Ohlsson, 2002)?
Strengthening increases the probability that
the feedback-producing rule will be exe-
cuted in every situation in which it can, in
principle, apply. But a rule that is useful in
some class of situations {S} is not necessarily
useful in some other class of situations {S′}.
The purpose of learning must be to sepa-
rate these two classes of situations, some-
thing strengthening does not accomplish.

4.1.2. create a new rule

Positive feedback following a tentative ac-
tion A can trigger the bottom-up creation of
a new rule that recommends the successful
action in future encounters with the same
situation. The theoretical problem is that
the situation S itself is history by the time
the feedback arrives and will never recur.
The purpose thus cannot be to create a rule
that executes A in S, but in situations like
S. A mechanism for creating a new rule fol-
lowing success must provide for some level
of generality.

One solution is to create a very specific
rule by using the entire situation S as its
condition and then rely on other learning
mechanisms to generalize it. This is the so-
lution used in the CLARION system (Sun,
Merril, & Peterson, 2001; Sun et al., 2005),
which is a hybrid model with both subsym-
bolic and symbolic learning. Actions can be
chosen on the basis of a quantitative mea-
sure called a Q-value, computed by a con-
nectionist network. When an action chosen
in this way is rewarded with a positive out-
come, and there is no symbolic rule that
would have proposed that action in that sit-
uation, the system creates a new rule with
the current state as the condition on that ac-
tion. (If such a rule already exists, the rule
is generalized.) The opposite solution is to
create a maximally general rule and rely on
other learning mechanisms to restrict its ap-
plication. This solution has received less at-
tention (but see Bhatnagar & Mostow, 1994;
Ohlsson, 1987a).

The more common solution is to general-
ize the specific step conservatively, usually
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by replacing (some) constants with vari-
ables. An early model of this sort was de-
scribed by Larkin (1981). It responded to
successful derivations of physics quantities
by creating new rules that could duplicate
the derivations. Particular values of physi-
cal magnitudes were replaced with variables,
on what basis was not stated. Lewis (1988)
combined analogy from existing productions
and explanation-based generalization to cre-
ate new rules in response to positive out-
comes.

Later systems have used some version of
EBL to contract derivations or search paths
into single rules and to provide a judicious
level of generality. This principle is at the
center of the Soar system (Newell, 1990;
Rosenbloom et al., 1993). Soar carries out
all activities through problem space search.
When the goal that gave rise to a problem
space is reached, Soar retrieves the search
path that led to it and applies an EBL-
like mechanism called chunking (Newell &
Rosenbloom, 1981; Rosenbloom & Newell,
1986, 1987). The result is a rule of grounded
generality that can regenerate the positive
outcome without search. The theme of
searching until you find and then using EBL
or some related technique to cache the suc-
cessful path with an eye toward future use
recurs in several otherwise different models
(e.g., VanLehn, 1999).

4.1.3. generalize rules

When a rule already exists and generates
a positive outcome, a possible response is
to generalize that rule. If it is allowed to
apply in more situations, it might generate
more positive outcomes. In the CLARION
model (Sun et al., 2001, 2005), when an ac-
tion proposed by a rule generates positive
feedback, the rule is generalized. Curiously,
this is done by adding a condition element,
a value on some dimension describing the
current situation, to the rule. In a pattern-
matching architecture, adding a condition
element restricts the range of situations in
which a rule matches, but CLARION counts
the number of matches, so one more con-
dition element provides one more chance

of scoring a match, giving the rule more
chances to apply.

If multiple rule applications and their
consequences – an execution history – are
stored in memory, rule generalization can be
carried out inductively. In ACT*, a collec-
tion of specific rules (or rule instances) that
all recommended the same action and pro-
duced positive feedback can serve as input to
an inductive mechanism that extracts what
the rules have in common and creates a new
rule based on the common features (An-
derson, 1983; Anderson, Kline, & Beasley,
1979). However, inductive, commonalities-
extracting mechanisms that operate on syn-
tactic similarities have never been shown
to be powerful. Life is full of inconsequen-
tial similarities and differences, so getting to
what matters usually requires analysis.

Indeed, Lenat (1983) made the intriguing
observation that heuristics of intermediate
generality appear to be less useful than ei-
ther very specific or very general heuristics.
For example, the specific heuristic, to turn
on the printer in Dr. Ohlsson’s office, lean as
far toward the far wall as you can, reach into
the gap between the wall and the printer with
your left arm, and push the button that is lo-
cated toward the back of the printer, is useful
because it provides very specific guidance,
whereas the general heuristic, to turn on any
electric device, push its power button, is useful
because it is so widely applicable. The inter-
mediate heuristic, if you want to turn on a
printer, push its power button, provides nei-
ther advantage. An inductive rule general-
ization mechanism is likely to produce rules
of such intermediate generality.

4.2. Interlude: Learning at Impasses

Impasses are execution states in which the
cognitive architecture cannot resolve what
to do next. An impasse is a sign that the
current method for the target task is in-
complete in some way, so impasses should
trigger learning. The mere occurrence of
an impasse is not in and of itself very in-
formative, so the question is how the in-
ability to proceed can be turned into an
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opportunity to improve. The general answer
is that some trick must be found that re-
solves the impasse and enables problem solv-
ing to continue; learning occurs when the
latter produces a positive outcome. Differ-
ent models differ in how they break out of
the impasse as well as in how they learn from
the subsequent success.

In Repair Theory (Brown & VanLehn,
1980; VanLehn, 1983, 1990), the cognitive
architecture has access to a short list of re-
pairs, processes it can execute when it does
not know what action to take next. Van-
Lehn (1983, p. 57) described five repairs:
pass over the current step (No-op); return to
a previous execution state and do something
different (Back-up); give up and go to the
next problem (Quit); revise the execution
state (technically, the arguments in the top
goal) so as to avoid the impasse (Refocus);
and relax the criteria on the application of
the current step (Force). Although applica-
tions of a repair can be saved for future use
(VanLehn, 1990, pp. 43, 188), repairs are
not learning mechanisms. They enable task-
relevant behavior to continue and are in that
respect analogous to weak methods. The
purpose of Repair Theory was to explain, in
combination with the Sierra model of induc-
tion from solved example, the emergence of
children’s incorrect subtraction procedures.

The previously mentioned Cascade
model (VanLehn, 1988, 1999; VanLehn &
Jones, 1993; VanLehn et al., 1992) of learn-
ing from solved examples also learns at im-
passes while solving physics problems. If a
subgoal cannot be achieved with the sys-
tem’s current strategy, it brings to bear back-
ground knowledge that might be overly gen-
eral. If the knowledge allows the impasse
to be resolved and if a positive outcome
eventually results, then a new, domain-
specific rule is created using explanation-
based learning of correctness. The new rule
is added tentatively to the model’s domain
knowledge until further evidence is avail-
able as to its appropriateness or usefulness.
The new domain rule is a special case of the
overly general rule, so this is yet another case
of specialization. If an impasse cannot be re-

solved even by engaging general background
knowledge, the system uses a version of anal-
ogy to continue problem solving (not un-
like applying a repair), but does not learn a
new rule. Similarly, Pirolli’s (1986, 1991) X
model responded to impasses through analo-
gies with available examples. If an analogy
was successful in resolving an impasse, the
resolution was stored as production rules for
future use.

In the Soar system (Newell, 1990; Rosen-
bloom, Laird & Newell, 1993; Rosenbloom
& Newell, 1986, 1987), an impasse causes
the creation of a subgoal that poses the reso-
lution of the impasse as a problem in its own
right. That subgoal is pursued by searching
the relevant problem space, bringing to bear
whatever knowledge might be relevant and
otherwise falling back on weak methods.
When the search satisfies the subgoal, the
problem-solving process is captured in one
or more production rules through chunk-
ing, an EBL-like mechanism that compresses
the successful search path into a single rule
of appropriate generality. Another model,
Icarus, which also engages in problem solv-
ing in response to an impasse, has been de-
scribed by Langley and Choi (2006). This
model uses a variant of backward chaining
to resolve a situation in which no existing
skill is sufficient to reach the current sub-
goal. When the solution has been found, it
is stored for future use.

These models differ in how they resolve
an impasse: call on repairs, apply weak
methods like search and backward chaining,
reason from general background knowledge,
and use analogy to past problem-solving ex-
periences. These mechanisms are not learn-
ing mechanisms; they do not change the
current strategy. Their function is to allow
task-oriented behavior to continue. Once
the impasse is broken and problem solving
continues, learning occurs at the next pos-
itive outcome via the same learning mech-
anisms that are used to learn from positive
outcomes in general. Impasses trigger learn-
ing but do not provide unique information,
so learning at impasses is a special case of
learning from positive outcomes.
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4.3. Negative Feedback

Much of the information generated by ten-
tative actions resides in errors, failures, and
undesirable outcomes. There are multiple
mechanisms for making use of such informa-
tion. The basic response is to avoid repeating
the action that generated the negative feed-
back. More precisely, the problem of learn-
ing from negative feedback can be stated as
follows: If rule R recommends action A in
situation S, and A turns out to be incorrect,
inappropriate or unproductive vis-à-vis the
current goal, then what is the indicated re-
vision of R? The objective of the revision is
not so much to prevent the offending rule
from executing in S, or situations like S, but
to prevent it from generating similar errors
in the future.

4.3.1. reduce strength

The simplest response to failure is de-
scribed in the second half of Thorndike’s
Law of Effect: Decrease the strength of
the feedback-producing rule. As a conse-
quence, that rule will have a lower prob-
ability of being executed. Like strengthen-
ing, this weakening mechanism is a common
component of cognitive models (e.g., Jones
& Langley, 2005). As with strengthening,
there are multiple issues: By what func-
tion should the strength values be decre-
mented, and how should the strength decre-
ment be propagated backward through prior
steps or upward through the goal hierar-
chy (Corrigan-Halpern & Ohlsson, 2002)?
Weakening lowers the probability that the
rule will execute in any future situation.
The purpose of learning from negative feed-
back is to discriminate between those sit-
uations in which the rule is useful from
those in which it is incorrect, and a strength
decrement is not an effective way to accom-
plish this. Jones and VanLehn (1994) in-
stead interpreted negative feedback as evi-
dence against the hypothesis that the action
was the right one under the circumstances
and reduced the probability of that hypoth-
esis with a probabilistic concept learning
algorithm.

4.3.2. specialization

Ohlsson (1993, 1996, 2007; see also Ohls-
son et al., 1992; Ohlsson & Rees, 1991a,
1991b) has described constraint-based rule
specialization, a mechanism for learning
from a single error. It presupposes that
the learner has sufficient (declarative) back-
ground knowledge, expressed in terms of
constraints, to judge the outcomes of his or
her actions as correct or incorrect. A con-
straint is a binary pair <R, C> of conditions,
the first determining when the constraint
is relevant and the second determining
whether it is satisfied. When an action vi-
olates a constraint, that is, creates a situa-
tion in which the relevance condition is sat-
isfied but the satisfaction condition is not,
the violation is processed to create a more
restricted version of the offending rule. The
constraint-based rule specialization mecha-
nism identifies the weakest set of conditions
that will prevent the rule from violating the
same constraint in the future. For example,
if the rule is if the goal is G and the situation
is S, then do A, and it turns out that doing A
in S violated some constraint <R, C>, then
the constraint-based mechanism specializes
the rule by creating two new rules, one that
includes the new condition not-R (do not
recommend A when the constraint applies)
and one that includes the condition C (rec-
ommend A only when the constraint is guar-
anteed to be satisfied); see Ohlsson and Rees
(1991a) for a formal description of the algo-
rithm. The purpose of constraint-based spe-
cialization is not primarily to prevent the
rule from executing in the current situation
or in situations like it, but to prevent it from
violating the same constraint in the future.
The algorithm is related to EBL as applied
to learning from errors, but does not require
the combinatorial process of constructing an
explanation of the negative outcome.

The CLARION model (Sun et al., 2001,
2005) contains a different specialization
mechanism: If an action is executed and fol-
lowed by negative feedback, and there is a
rule that proposed that action in that sit-
uation, then the application of that rule is
restricted. This is done by removing a value,



P1: IBE

CUFX212-13 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 17:9

computational models of skill acquisition 375

that is, a measure on some dimension used
to describe the current situation. In the con-
text of CLARION, this decreases the num-
ber of possible matches and hence restricts
the range of situations in which the rule will
be the strongest candidate.

A rather different conception of special-
ization underpins systems that respond to
negative feedback by learning critics, rules
that vote against performing in action dur-
ing conflict resolution. The ability to encode
missteps into critics removes the need to
specialize overly general rules, because their
rash proposals are weeded out during con-
flict resolution (Ohlsson, 1987a). This idea
has been explored in machine learning re-
search (Bhatnage & Mostow, 1994), where
critics are sometimes called censors or cen-
sor rules (Bharadwaj & Jain, 1992; Jain &
Bharadwaj, 1998; Winston, 1986).

The previous mechanisms improve prac-
tical knowledge by making it more spe-
cific and thereby restricting its application,
in direct contrast to the idea that practical
knowledge becomes generalized and more
abstract over time. The latter view is com-
mon among lay people and researchers in
the fields of educational and developmental
psychology, in part, perhaps, as a legacy of
Jean Piaget’s (1950) and his followers’ claim
that cognitive development progresses from
sensori-motor schemas to formal logical op-
erations. “Representations are literally built
from sensory-motor interactions” (Fischer,
1980, p. 481).

4.3.3. discrimination

Restle (1955) and others tried to accommo-
date discrimination within the behaviorist
framework, but an explanation of discrim-
ination requires symbolic representations.
Langley (1983, 1987) described SAGE, a
system that included a discrimination mech-
anism. The model assumes that each appli-
cation of a production rule, including any
positive and negative feedback, and the state
of the world in which the rule applied are
recorded in memory. Once memory con-
tains some instances that were followed by
positive feedback and some that were fol-

lowed by negative feedback, the two sets
of situations can be compared with the pur-
pose of identifying features that differentiate
them, that is, that hold in the situations in
which the rule generated positive outcomes
but not in the situations in which it gener-
ated negative outcomes, or vice versa. One
or more new rules are created by adding the
discriminating features to the condition side
of the original rule. A very similar mecha-
nism was included in the 1983 version of the
ACT* theory (Anderson, 1983). A rather
different mechanism for making use of an
execution history that records both success-
ful and unsuccessful actions, based on quan-
titative concept learning methods, was in-
corporated into the GIPS system described
by Jones and VanLehn (1994).

Implementation of a discrimination me-
chanism raises at least the following issues:
What information should be stored for each
rule application? The instantiated rule? The
entire state of working memory? How many
examples of negative and positive outcomes
are needed before it is worth searching for
discriminating features? By what criterion
are the discriminating features to be identi-
fied? Which new rules are created? All possi-
ble ones? If not, then how are the new rules
selected?

4.4. Discussion

Positive and negative outcomes are simulta-
neously triggers for learning and inputs to
learning mechanisms. Learning from feed-
back is not as straightforward as Thorndike
(1927) presupposed when he formulated
the Law of Effect. The simplicity of early
formulations hid the complexity of decid-
ing to which class of situations the feedback
refers. If doing A in S led to the attainment
of goal G, what is the class {S} of situations
in which A will have this happy outcome?
If I see a movie by director X and lead actor
Y on topic Z, and I enjoy the movie, what
is the conclusion? It takes more than syntac-
tic induction to realize that see more movies
by director X is a more sensible conclusion
than see more movies on topic Z. If A leads to
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an error, the even harder question is which
revision of the responsible rule will prevent
it from causing similar errors in the future.
The variety of approaches to learning from
feedback is highlighted in Table 13.2.

5. How Do Skills Improve Beyond
Mastery?

The third phase of skill acquisition be-
gins when the learner exhibits reliably cor-
rect performance and lasts as long as the
learner keeps performing the task. Dur-
ing this period, the performance becomes
more streamlined. Long after the error rate
has moved close to zero, time to solution
keeps decreasing (Crossman, 1959), possi-
bly throughout the learner’s entire lifetime,
or at least until the onset of cognitive ag-
ing (Salthouse, 1996). The learning mech-
anisms operating during this phase are an-
swers to the question, how can an already
mastered skill undergo further improvement?
What is changing, once the strategy for the
task is correct? Even a strategy that con-
sistently delivers correct answers or solu-
tions might contain inefficient, redundant,
or unnecessary steps. Changes of this sort
are devided into three types: changes in the
sequence of overt actions (optimization at
the knowledge level), changes in the men-
tal code for generating a fixed sequence of
actions (optimization at the computational
level), and the replacement of computation
with memory retrieval. The main source
of information to support these types of
changes is the current execution state and,
to the extent that past execution states are
stored in memory, the execution history of
the learner’s current strategy.

5.1. Optimization at the Knowledge Level

The strategy a learner acquires in the course
of practice might be correct but inefficient.
Over time, he or she might discover or in-
vent a shorter sequence of actions to accom-
plish the same task. The challenge is to ex-
plain what drives the learner to find a shorter
solution when he or she cannot know ahead

of time whether one exists and when there
is no negative feedback (because his or her
current strategy leads to correct answers).

A well-documented example of short-cut
detection is the so-called SUM-to-MIN tran-
sition in the context of simple mental addi-
tions. Problems like 5+ 3 = ? is at a certain
age solved by counting out loud, one, two,
three, four, five, six, seven, eight – so eight is the
answer. Only after considerable practice do
children discover that the first five steps are
unnecessary and transition to the more eco-
nomical MIN-strategy, in which they choose
the larger addend and count up: five, six,
seven, eight – eight.

Neches (1987) described seven different
types of optimization mechanisms in the
context of the HPM model, including delet-
ing redundant steps, replacing a subproce-
dure, and reordering steps, and he showed
that they collectively suffice to produce
the SUM-to-MIN transformation. Jones and
VanLehn (1994) modeled the same shortcut
discovery in their GIPS model. Each con-
dition on a GIPS action is associated with
two numerical values, sufficiency and neces-
sity. Conflict resolution uses these values to
compute the odds that the action is worth
selecting, and the action with the highest
odds wins. The two values are updated on
the basis of successes and failures with a
probabilistic concept learning algorithm. A
more recent model, the Strategy Choice and
Discovery Simulation (SCADS), was pro-
posed by Shrager and Siegler (1998; see also
Siegler & Araya, 2005). SCADS has lim-
ited attentional resources, so at the outset of
practice, it merely executes its given strat-
egy. Once the answers to some problems
can be retrieved from memory and hence
require little attention, attention is allocated
to strategy change processes that (a) inspect
the execution trace and delete redundant
steps, and (b) evaluate the efficiency of dif-
ferent orders of execution of the steps in the
current strategy and fixate the more efficient
one (p. 408). These two change mechanisms
turn out to be sufficient to discover the MIN
strategy.

Another strategy shift that results in
different overt behavior transforms the
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novice’s laborious problem solving through
means–ends analysis or backward chaining
into the expert’s forward-inference process
that develops the knowledge about a prob-
lem until the desired answer can be found,
perhaps without ever setting any subgoals.
The ABLE model of physics problem solv-
ing by Larkin (1981) simulated this trans-
formation in the domain of physics. Elio
and Scharf (1990) achieved the same ef-
fect, also in the domain of physics, with so-
phisticated indexing of successful problem-
solving episodes in memory. Their EUREKA
model created problem solving schemas
and used positive and negative outcomes
to adjust the level of generality of the
schemas. Over time, it relied increasingly
on the forward-inference schemas and less
on means–ends analysis.

Anderson (1982, 1983) explained both
the transition from backward to forward
chaining and the transition from serial to
parallel search in the Sternberg short-term
memory task by showing that rule composi-
tion can squeeze subgoals out of rules. In
contrast, Koedinger and Anderson (1990)
attributed the forward-inference behavior of
geometry experts to a repertoire of diagram
chunks that allow experts to quickly identify
possible inferences in a geometric diagram,
thus seemingly arriving at conclusions be-
fore they derive them, but Koedinger and
Anderson did not model the acquisition of
those diagram chunks. Taking a different
tack, Blessing and Anderson (1996) argued
that rule-level analogies suffice to discover
strategic shortcuts.

Another empirically documented strat-
egy discovery is the invention of the pyramid
recursion strategy of Tower of Hanoi. Unlike
the MIN-to-SUM and backward-to-forward
transitions, the transition from moving sin-
gle discs to moving pyramids of discs re-
quires an increase in the complexity of in-
ternal processing to simplify overt behavior.
Ruiz and Newell (1993) modeled this strat-
egy discovery in the Soar system by adding
special productions that (a) notice subpyra-
mids and (b) reason about spatial arrange-
ments like stacks of objects, but without
postulating any other learning mechanisms

than Soar’s standard impasse-driven chunk-
ing mechanism.

A different hypothesis about shortcut de-
tection is that the mind reasons from declar-
ative background knowledge to new pro-
duction rules that may represent shortcuts
(Ohlsson, 1987b). For example, if the cur-
rent strategy contains a production rule that
matches goal G and produces some partial
result B, and there is in memory a general
implication A1 and A2 implies B, then it
makes sense to create the new rule, if you
want G and you have A1, set the subgoal to
get A2, as well as, if you want G and you have
both A1 and A2, infer B. The first rule en-
codes a backward-chaining subgoaling step –
get the prerequisites for the target conclu-
sion – and the second new rule is akin to the
result of the proceduralization process dis-
cussed previously. This and two other mech-
anisms for reasoning about a set of rules on
the basis of general if–then propositions were
implemented in a model called PSS3, which
reduced the simulated time for performing
a simple spatial reasoning task by two orders
of magnitude.

Several of these learning mechanisms re-
quire that production rules can test for prop-
erties of other production rules – the men-
tal code, not merely traces of executions –
a psychologically problematic assumption.
Although these mechanisms are intended to
explain success in strategy revision, Fu and
Gray (2004) provide a useful counterpoint
by specifying some of the conditions and fac-
tors that might prevent optimization mech-
anisms from operating and hence keep the
performer on a stable but suboptimal solu-
tion path.

5.2. Optimization at the
Computational Level

Even when the learner cannot find a shorter
action sequence, he or she might be able
to save on the mental computations re-
quired to generate the relevant sequence. In
this case, overt behavior does not change,
but the learner produces that behavior with
fewer or less capacity-demanding cognitive
steps.
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An optimization mechanism, rule compo-
sition, was invented by Lewis (1987) and in-
cluded in the ACT* model (Anderson, 1983;
Neves & Anderson, 1981). This mechanism
requires a less extensive access to the exe-
cution trace than shortcut detection: It need
only keep track of the temporal sequence of
rule executions. If two rules are repeatedly
executed in sequence, then a new rule is
created that performs the same work as the
two rules. To illustrate the flavor of this type
of change, imagine that G, S1 → A1 and
G, S2 → A2 are two rules that repeatedly
execute in sequence. A plausible new rule
would be G, S1 → A1; A2, which is exe-
cuted in a single production system cycle.
Given that A2 is always performed after A1,
there is no need to evaluate the state of the
world after A1. A full specification of this
contraction mechanism needs to take inter-
actions between the action of the first rule
and the conditions of the second rule into
account. In ACT*, composition worked in
concert with proceduralization. The combi-
nation of the two mechanisms was referred
to as knowledge compilation.

Recently, the composition mechanism
has been replaced by the related produc-
tion compilation mechanism (Taatgen, 2002,
2005; Taatgen & Anderson, 2002; Taatgen
& Lee, 2003). The triggering condition for
this learning mechanism is also that two
rules repeatedly execute in temporal se-
quence, and, again like composition, it cre-
ates a single new rule. The resulting rule
is specialized by incorporating the results
of retrievals of declarative information into
the resulting rule. The combination process
eliminates memory retrieval requests in the
first rule and tests on retrieved elements in
the second rule. For example, if the two
rules if calling X, then retrieve his area code
and if calling X and his area code is remem-
bered to be Y, then dial Y are executed in the
course of calling a guy called John with area
code 412, production compilation will cre-
ate the new rule if calling John, then dial 412.
Because there can only be a single request on
memory in any one ACT-R production rule,
eliminating such requests saves production
system cycles.

However, there is more to combining
rules than mere speed-up. Anderson (1986)
argued that knowledge compilation can
mimic the effects of other learning mech-
anisms, such as discrimination and general-
ization, and produce qualitatively new prac-
tical knowledge. In the same vain, Taatgen
and Anderson (2002) modeled the transi-
tion from incorrect use of regular past tense
for irregular verbs like “break” to the correct
irregular form, using nothing but production
compilation. The effects of optimization by
contraction are more complicated than they
first appear and deserve further study.

The issues in designing a rule combina-
tion mechanism include: What is the trig-
gering criterion? How many times do the
two rules have to execute in sequence for
there to be sufficient reason to compose
them? Does the new rule replace the pre-
vious rules or is it added to them? Are there
counterindications? If the learner’s execu-
tion history for the relevant rules also con-
tains situations in which the two rules did
not execute in sequence, should the rules
nevertheless be combined?

5.3. Retrieve Solutions from Memory

If people perform the same tasks over and
over again, they eventually remember the
answers and hence need not perform any
other processing than retrieving those an-
swers from long-term memory. In a re-
stricted domain such as arithmetic, the
balance between computing and retrieving
might over time shift in favor of retrieval.
A shift from, for example, 60% of answers
being calculated and 40% retrieved to the
opposite percentages might have a strong ef-
fect on the mean solution time.

This shift toward memory-based re-
sponding is central to the instance-based
model by Logan (1998) and the series of
models of children’s strategy choices in
arithmetic described by R. S. Siegler and
associates: the distribution of associations
model (Siegler & Shrager, 1984); the Adap-
tive Strategy Choice Model (ASCM; Siegler
& Shipley, 1995); and the SCADS model
(Shrager & Siegler, 1998). All three models
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use the idea that associations between par-
ticular problems and their answers are grad-
ually strengthened until they can provide a
solid basis for answering. Hence, the propor-
tion of memory-based responses increases
with practice.

The psychological reality of instance
memorization and a gradual shift toward
memory-based responding as experience of
a task domain accumulates is hardly in doubt
(everyone knows the multiplication table),
but this type of learning cannot be impor-
tant in all domains. For example, it does not
apply to buying a house because few people
buy the same house multiple times.

5.4. Discussion

Cognitive psychologists discuss the long-
term consequences of practice in terms of
two concepts that in certain respects are
each others’ opposites: automaticity and ex-
pertise. The essential characteristics of au-
tomaticity include rigidity in execution and
a high probability of being triggered when
the relevant stimuli are present (Schneider
& Chein, 2003). The consequences include
capture errors (Reason, 1990), Einstellung
effects (Luchins & Luchins, 1959), and
negative transfer (Woltz, Gardner & Bell,
2000). But we think of experts as exhibiting
a high degree of awareness, flexibility, and
ability to adapt to novel situations (Ericsson
et al., 2006). Which view is correct? If
one practices four hours a day, six days
a week, for ten years, does one end up a
rigid robot or an elastic expert? Both end
states are well documented, so the question
is which factors determine which end state
will be realized in any one case. Ericsson,
Krampe, and Tesch-Rober (1993) have pro-
posed that experts engage in deliberate prac-
tice, but they have not offered a compu-
tational model of how deliberate practice
might differ from mere repetitive activity
in terms of the cognitive processes involved.
Deliberate practice is undertaken with the
intent to improve, but how does that af-
fect the operation of the relevant learning
mechanisms? Salomon and Perkins (1989)
has summarized studies that indicate that

the variability of practice is the key, with
more variability creating more flexible skills.
Another hypothesis, popular among educa-
tional researchers, is that flexibility is a side
effect of conceptual understanding. To ex-
plain the difference between automaticity
and expertise, a model cannot postulate two
sets of learning mechanisms, one that pro-
duces rigidity and one that leads to flexi-
bility. The theoretical challenge is to show
how one and the same learning mechanism
(or set of mechanisms) can produce either
automaticity or expertise, depending on the
properties of the training problems (com-
plexity, variability, etc.), the learner, the
learning scenario, or other factors. It is not
clear whether the current repertoire of op-
timization mechanisms (see Table 13.3 for
an overview) is sufficient in this respect.

6. Capture the Statistical Structure
of the Environment

As the learner becomes familiar with a par-
ticular task environment, he or she accu-
mulates information about its quantitative
and statistical properties. For example, the
members of a tribe of foraging hunter-
gatherers might have implicit but never-
theless accurate estimates of the average
distance between food sources and the prob-
ability of discovering a new food source in
a given amount of time, for example, be-
fore the sun sets or before winter sets in
(Simon, 1956). Quantitative information of
this sort was abundant in the environments
in which human beings evolved (How often
has such and such an animal been sighted re-
cently? How many days of rain in a row should
we expect? How high up the banks will the river
flood?), so it is plausible that they evolved
cognitive mechanisms to capture it. A mod-
ern descendant might use such mechanisms
to estimate the expected travel time to the
airport or the probability that a sports team
will win its next match.

The behaviorist learning theories of the
1895–1945 era were the first psychological
theories to focus on the effect of environ-
mental quantities, especially the frequency,
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type, and amount of feedback (also known
as reinforcement), on skill acquisition. The
first theories of this sort were proposed by
E. Thorndike, E. R. Guthrie, C. L. Hull,
E. C. Tolman, B. F. Skinner, and others;
Hilgard and Bower (1966) wrote the clas-
sical review. These theorists conceptualized
the effect of feedback in cause–effect and
motivational terms: Each event impacts the
learner, and the effect of multiple events
is merely the sum of their impacts. The
strength of the disposition to perform an ac-
tion could not yet be seen as an estimate
of the relative frequency of environmental
events like positive and negative feedback,
because the learner was not yet seen as an
information processor.

Mathematical psychologists in the 1945–
1975 period discovered and investigated
several types of adaptation to quantitative
properties of the environment (see, e.g.,
Neimark & Estes, 1967). In a standard lab-
oratory paradigm called probability match-
ing, subjects are presented with a long se-
quence of binary choices (e.g., left, right)
and given right–wrong feedback on each.
The relative frequencies of trials on which
“left” or “right” is the correct response is
varied between groups. Over time, the rel-
ative frequencies of the subjects’ responses
begin to match the relative frequencies of
the feedback, so if “left” is the correct re-
sponse 80% of the time, then the subject
tends to say “left” 80% of the time. In the ab-
sence of other sources of information, prob-
ability matching provides a lower hit rate
than choosing the response that is more of-
ten followed by positive feedback on every
trial. Other well-documented sensitivities to
event frequencies include word frequency
effects, prototype effects in classification,
the impact of co-occurrences on causal
reasoning, the role of estimated outcome
probabilities in decision making, and many
more.

Two distinct lines of research laid the
foundation for the contemporary concept of
implicit or subsymbolic learning (see Chap-
ter 14 in this volume). Models of semantic
networks (Anderson & Pirolli, 1984; Collins
& Loftus, 1975; see Chapter 8 in this vol-
ume) contributed the important idea of

splitting the quantity associated with a
knowledge unit into two. The strength of a
unit is an estimate of its past usefulness. It
moves up or down according to the feed-
back generated when the unit is active. Ac-
tivation is a transient quantity that estimates
the moment-to-moment relevance for the
situation at hand. When activation spreads
across the network, the amount of activation
each unit receives from other nodes is pro-
portional to its strength. Models of neural
networks, also known as connectionist mod-
els, have extended this basic idea with math-
ematically sophisticated studies of different
schemes and regimens for the propagation of
strength adjustments throughout a network
(see Chapter 2 in this volume).

Although connectionist and symbolic
network models were initially conceived
as competing accounts of human learning,
modelers have come to realize that it is
more fruitful to see them as complementary.
Schneider and Oliver (1991) and Schneider
and Chein (2003) described CAP2, a hybrid
model that could transfer information from
the symbolic to the subsymbolic level, thus
speeding up learning at the notoriously slow
connectionist level. In the CLARION model
(Sun et al., 2001, 2005), a connectionist net-
work is used to represent actions and to se-
lect an action to perform in a particular sit-
uation. A combination of two connectionist
learning algorithms are used to adjust the
network to experience. The distributed rep-
resentation models implicit skill. CLARION
extracts explicit rules from such implicit
knowledge and generalizes and specializes
them in response to positive and negative
feedback, thus relating the symbolic and
subsymbolic levels in the opposite way com-
pared with CAP2. In yet another twist on
this two-roads-to-mastery theme, the Soar
architecture has been revised to augment its
symbolic chunking mechanism with mech-
anisms for so-called reinforcement learn-
ing, that is, the learning of a quantitative
function for predicting the value of execut-
ing a particular action in a given situation
(Nason & Laird, 2005). In this case, sym-
bolic and statistical learning mechanisms
are conceptualized to run in parallel and
to be mutually supporting, without either
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level dictating what should be learned at the
other.

In a series of path-breaking analyses,
Anderson (1989, 1990) has developed the
idea that mental quantities, like strengths,
are estimates of environmental magnitudes,
not repositories of causal impacts, into a rad-
ical new approach to the modeling of learn-
ing. The starting point for his rational anal-
ysis is that the mind is maximally efficient,
that is, it solves each information process-
ing task as well as the nature of the task
allows. Consequently, the structure of the
mind mirrors the structure of the task en-
vironment, a fundamental point often illus-
trated with a mythical beast called Simon’s
ant; its winding path across a beach reflects
the topology of the beach more than its
decision-making mechanism (Simon, 1970).
In humans, the task of the long-term mem-
ory system is to correctly estimate, for each
memory entry, the probability that it is the
entry that needs to be retrieved in the next
unit of time, given the person’s current sit-
uation and goal. This probability can be
estimated from prior experience: How of-
ten has the entry been needed in the past,
how much time has gone by since it was
needed last, and how does the probabil-
ity that an entry is needed depend on the
time since it was needed last? The mem-
ory entry to be retrieved is the one with
the highest estimated probability of being
the one that is needed. When the outcome
of the retrieval becomes available – did the
retrieved entry support goal attainment? –
the relevant probabilities can be updated
with Bayes’ rule, a sound statistical infer-
ence rule (see Chapter 3 in this volume).

When a rational analysis is integrated
into a cognitive architecture, the combina-
tion extends cognitive modeling in multiple
ways. First, seeing mental quantities as es-
timates of environmental quantities focuses
modelers’ attention on the need for a seri-
ous analysis of the latter; which environmen-
tal quantities are people sensitive to, and
how do those quantities, in fact, behave? As-
tonishing regularities have been found. The
probability that an email address is the next
one to be needed declines over time accord-
ing to the same function as the probabil-

ity that a particular word is the next one
to appear in a newspaper headline (Ander-
son & Schooler, 1991, p. 401). To make ac-
curate estimates, our brains must be sen-
sitive to the shape of such functions. To
make accurate models, modelers have to
identify those functions by studying the en-
vironment, an unfamiliar type of activity.
Second, the rationality assumption and the
use of Bayes’ rule and other sound infer-
ence rules emphasizes the question of how
closely the operation of the mind approxi-
mates the maximally possible performance.
If the approximation is close, then behav-
ior can be predicted by asking how a maxi-
mally efficient system would behave. It turns
out that at least some behavioral regularities,
including forgetting curves, can indeed be
predicted this way (Anderson & Schooler,
1991) without any processing assumptions.

The theory and practice of rational anal-
ysis is a growing enterprise (Anderson &
Lebiere, 1998; Oaksford & Chater, 1998;
Petrov & Anderson, 2005; Schooler &
Hertwig, 2005), Indeed, the practice of
modeling adaptation as a process of adjust-
ing cognitive magnitudes so as to estimate
environmental magnitudes is, in general, a
growing enterprise, and it has been applied
to many types of mental quantities (e.g.,
Altmann & Burns, 2005; Gray, Shoelles, &
Sims, 2005).

How do mental estimates of environmen-
tal magnitudes help optimize a cognitive
skill in the long run? Consider the following
everyday example: Many of the operations
I perform during word processing cause a
dialogue window to appear with a request
for confirmation of the operation; for ex-
ample, do I really intend to shut down my
computer, print this file, and so forth. Af-
ter using the same computer and the same
software for several years, I know exactly
where on my computer screen the dialogue
box and hence the confirmation button will
appear. Before my computer presents the
dialogue box, I have already moved my cur-
sor to that position, so there is zero time lag
between the appearance of the button and
the click (see Gray & Boehm-Davis, 2000,
for other examples of such micro-strategies).
This rather extreme adaptation to the task
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environment is a case of computational opti-
mization (clicking fast and clicking slow are
equally correct), and it depends crucially on
having sufficient experience for the estimate
of the button location to become stable and
accurate. Other quantities affect processing
in other ways, optimizing memory retrieval,
conflict resolution, goal setting, attention
allocation, and so on. As practice progresses,
the internal estimates of the relevant envi-
ronmental quantities become more accurate
and less noisy, and enable fine tuning of the
relevant processes. Capturing the statistical
structure of task environment is likely to be
responsible for a significant proportion of
the speed-up that accompanies practice in
the long run.

7. Obstacles and Paths to Further
Progress

Research on skill acquisition draws on a cen-
tury of scientific progress. The computa-
tional models proposed since 1979 address
a wide range of theoretical questions, and
they are more detailed, more precise, and
more explanatory than the verbal formula-
tions and mathematical equations that pre-
ceded them. Nevertheless, there are reasons
to despair.

What is the next step? According to the
textbook definition of research, the next
wave of skill acquisition research should
consist of empirical studies to test which of
the many hypotheses previously reviewed
is correct. Researchers are supposed to de-
rive the behavioral predictions from each
hypothesized learning mechanism and test
them against empirical data. The hypothe-
ses that remain standing at the end of the
day are the true ones.

There are several problems with this
cartoon of research. The most serious for
present purposes is the implicit assump-
tion that we can test hypothesized learn-
ing mechanisms one at a time. But it is un-
likely that the human capacity for change
relies on a single learning mechanism, so we
should not expect a single learning mech-
anism to explain all behavioral phenomena

associated with skill acquisition. Instead, we
should expect the theory we seek to include
a repertoire of N interacting learning mecha-
nisms (Anderson, 1983; Gagné, 1970). The
total amount of behavioral change that oc-
curs in each successive phase of training is
divided among the members of that reper-
toire, and the relative contributions of the
different mechanisms shift gradually as prac-
tice continues. Figure 13.2 shows a didactic
example. The relative contributions of four
sources of information are plotted in terms
of the proportion of the total behavioral
change within each phase that each source
accounts for, in a hypothetical learner who
has a single learning mechanism for each
source. The character of each phase is deter-
mined by the relative contributions of dif-
ferent types of information and associated
learning mechanisms, and these contribu-
tions shift across time. In the figure, instruc-
tions and solved examples account for al-
most all change in the initial phase, whereas
responding to feedback is the most impor-
tant type of learning in the middle phase and
memory-based responding becomes domi-
nant in the optimization phase. This is a
hypothetical, didactic case. Each repertoire
of learning mechanisms will exhibit its own
succession of shifts.

The methodological difficulty is that we
have no way of disabling N-1 of the mech-
anisms to test different models of the Nth
one. Instead, all N mechanisms must be
assumed to be operating continuously and
in parallel. If so, then the overt, observ-
able change in behavior is a product of the
interactions among the N learning mecha-
nisms. Behavioral data cannot speak to the
existence or nature of any one mechanism
but only to some ensemble of mechanisms.
Hence, we cannot test hypotheses about,
for example, analogical transfer per se, only
about analogical transfer in the context
of whichever other learning mechanisms
we believe that people possess. Attempts
to derive a specific phenomenon like the
power law of practice from a single learn-
ing mechanism (a widespread misdemeanor;
see, e.g., Anderson, 1982; Logan, 1998;
Newell & Rosenbloom, 1981; Ohlsson,
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Percent of total
change

100%

0%

50%

Initial
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Mastery
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Optimization
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Solved
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Memory
for past
answers

Figure 13.2. Successive shift in the relative importance of four sources of information
across the three phases of skill practice in a hypothetical learner. Instruction = task
instructions, exhortations, and so forth. Examples = solved examples and
demonstrations. Feedback = positive and negative on-line feedback from the
environment during practice. Memory = accumulated store of information about the
task, including past solutions and answers, execution history of the skill, and cumulative
statistics about the task environment.

1996; Shrager, Hogg, & Huberman, 1988)
are unwarranted, and the outcomes of such
single-mechanism derivations are uninter-
pretable (Ohlsson & Jewett, 1997).

Pursuing the interaction argument to its
natural end point, we reach a radically coun-
terintuitive conclusion: If a single learning
mechanism successfully predicts a particu-
lar behavioral phenomenon, the hypothe-
sis it represents must be false. Furthermore,
the better the fit between the hypothesis
and the data, the stronger the reason to re-
ject the hypothesis. These conclusions fol-
low because the behavior that results from
the interactions among N learning mecha-
nisms is highly likely to differ from the be-
havior that would result if the mind only
possessed a single mechanism. Hence, if a
single-mechanism hypothesis accounts for
certain data in the absence of interactions with
other learning mechanisms, then it is highly
unlikely that it will fit those same data in
the presence of such interactions. In other

words, fit to data in a single-mechanism sim-
ulation is good reason to doubt that good fit
would result if the interactions with other
mechanisms were factored into the gener-
ation of the predictions. Because we have
stronger reasons for believing in the exis-
tence of multiple learning mechanisms than
for believing in any one mechanism, the ra-
tional response to a good fit by a model built
around a single learning mechanism is to re-
ject that model.

This methodological conundrum pre-
vents modelers from carrying out the
divide-and-test program of cartoon science.
Modelers have to investigate and test en-
tire repertoires of learning mechanisms. The
resulting theory space is immense. For ex-
ample, with ten different potential learning
mechanisms, each of which can be either in-
cluded or excluded, there are 210, or 1,024
different models to test. If it takes 10 years
to evaluate each one, we will know the true
theory in the spring of the year 12,246 a.d.
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The standard response to a large search
space is to apply information to prune the
possibilities. However, the interaction argu-
ment applies to falsification as well as confir-
mation: If a single-mechanism model fails to
fit a data set, nothing follows. That mech-
anism might account for those data very
well in interaction with other mechanisms
(Ohlsson & Jewett, 1997). It is not obvious
how cognitive modelers are to claw, peck,
or push their way out of this problem box.

One approach is to adopt the spirit of ra-
tional analysis. Human beings are such good
learners – we are not merely superior, but
orders of magnitude superior to other an-
imals in this respect – that we might in
fact be maximally efficient learners. Once
prehumans adopted the evolutionary strat-
egy of relying on learned rather than innate
competencies, selective pressures propelled
the evolution of multiple distinct learning
mechanisms, one for every type of informa-
tion that might be available to the learner
during skill practice. Each mechanism is de-
signed to make maximal use of the type of
information it takes as input, and, in con-
junction, the mechanisms cover all poten-
tially available sources of information. As
the retinas in our eyes are maximally sen-
sitive in the sense that they can react to a
single photon, so the learning mechanisms in
our head are collectively sufficient to make
use of every bit of information. I call this ra-
tionality principle the Principle of Maximally
Efficient Learning.

To evaluate the plausibility of this pro-
posal, the reader might try the thought ex-
periment of imagining a model of skill ac-
quisition that lacks one or more modes of
learning reviewed in the previous sections.
Which one might turn out false if we could
make the appropriate empirical test? Is it
plausible that we would ever conclude that
people cannot benefit from instructions and
exhortations? That they cannot re-use prior
skills? Are unable to capitalize on positive
outcomes produced by tentative steps? Can-
not learn from their errors? Have no way of
responding to impasses? Cannot find short-
cuts or optimize their mental code? Do not
absorb the statistical structure of the envi-

ronment? The idea that we would ever reject
any one of these hypotheses on the basis of
data is quixotic, because the intuition that
people can learn in each and every one of
these ways is stronger than our belief in any
one experimental study.

The previous sections identified nine dis-
tinct sources of information for learning: ex-
hortations, abstract declarative knowledge,
prior skills, solved examples and demon-
strations, positive feedback (including sub-
goal satisfaction), negative feedback and er-
rors, execution states and histories, memory
for problem-answer links, and the statisti-
cal properties of the environment. Recogni-
tion of the fact that these different sources
of information are available to a learner is
by itself a conceptual advance in the study
of skill acquisition. If we assume that peo-
ple can use each type of information and
that different processes are needed to use
each type, as per the Information Specificity
Principle, then a first-approximation model
of skill acquisition should be equipped with
at least nine different learning mechanisms,
one for each source of information.

The first mission for such a model might
be to simulate the broad functionality of hu-
man learning. The model should be able to
acquire the entire range of cognitive skills
that people can learn (universality); draw
on information from diverse sources dur-
ing learning (integration); be able to make
progress even when insufficient information
is available (graceful degradation); override
prior experience when what is learned turns
out to be a mistake or the task environ-
ment changes (defeasibility); and accumu-
late learning effects over long periods of
practice (accumulation). Once a set of learn-
ing mechanisms has been shown to capture
these and other broad features of human
learning, quantitative data can be brought
to bear to identify the exact details of each
mechanism. If the model has N learning
mechanisms, the implementation of each
mechanism can be seen as a parameter. By
varying the implementations, we might be
able to improve the model’s fit to empirical
phenomena. This functionality first, fit later
research strategy requires complex models,
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but it takes the logic of the interaction argu-
ment seriously.

A breakthrough in our understanding of
skill acquisition can be sought along two
other lines of inquiry. The set of possible
or plausible learning mechanisms is con-
strained by the structure of the knowledge
representations they operate on. Different
representations afford or suggest different
types of changes. One reason the produc-
tion rule format has attracted skill acqui-
sition researchers is that the rule notation
is fertile in such suggestions: The ideas of
adding or deleting conditions elements or of
composing rules are irresistibly suggested by
the notation itself. Likewise, nodes and links
in a semantic network afford the ideas of
creating and deleting links, whereas propo-
sitional representations afford the replace-
ment of constants with variables (or vice
versa). Although a deeper understanding of
the space of possible knowledge represen-
tations was heralded in the early years of
cognitive science as one of the field’s ma-
jor goals and potentially unique contribu-
tions, the problem of identifying exactly
how the mind encodes information turned
out to be intractable. For example, debates
about the different roles of phonetic and se-
mantic codes in short-term memory (Bad-
deley & Levy, 1971; Kintsch & Buschke,
1969; Wickelgren, 1969) and about holis-
tic versus propositional encodings of images
(Anderson, 1978, 1979; Pylyshyn, 1979)
were intensively engaged but put aside with-
out resolution. By the 1990s, the field had
settled for an irregular collection of par-
tial solutions, including semantic networks,
sets of propositions, production rules, and
schemas (Markman, 1999). Each of these
representations captures some but not all
features of human knowledge, and collec-
tively they have no principled rationale over
and above the fact that we know how to
implement them in computer code.

A second wave of inquiry into knowl-
edge representation might provide us with
a new and psychologically accurate repre-
sentation which, in turn, will suggest the
right set of learning mechanisms. Because
the individual concept is the building block

for any knowledge representation, such an
enterprise might benefit from linking skill
acquisition research to theories of seman-
tics. If we could understand the mental rep-
resentation of a single concept (e.g., make
tea), perhaps we could understand how the
mind links concepts into the larger struc-
tures that make up practical knowledge.
Whether such a project would benefit most
from reaching back to the semantic theo-
ries proposed in decades past (Jackendoff,
1983; Lakoff, 1971; Miller & Johnson-Laird,
1976), attending to more recent seman-
tic endeavors (e.g., Engelberg, 2004; Puste-
jovsky, 2005), or striking out in an entirely
new direction (e.g., Fauconnier & Turner,
2002; Gärdenfors. 2000) is an open ques-
tion, but a grounded theory of represen-
tation might constrain the set of plausible
learning mechanisms.

A similar situation holds with respect
to motor action. The field of computa-
tional modeling has settled on the so-called
STRIPS operator as the standard represen-
tation for actions (Fikes & Nilsson, 1993),
but this representation bears little relation
to motor schemas and other types of repre-
sentations that are discussed in the neigh-
boring and yet so distant field of motor
skill learning (Adams, 1987; Fischer, 1980;
Gallistel, 1980; Wolpert, Ghahramani &
Flanagan, 2001; see Chapter 24 in this
volume). Again, an empirically grounded
theory of the representation of elementary
actions might suggest novel learning mech-
anisms or help modelers to choose among
those already under consideration.

Another promising but as yet untapped
source of constraints on the repertoire of
learning mechanisms is the brain. There is
no evidence that the mind is a blob of ecto-
plasm hovering somewhere just out of sight
from scientific observation, so it must be as-
sumed that every learning mechanism will
one day be understood as implemented in
neural matter. Cognitive descriptions of pro-
cesses in the mind are functional descrip-
tions of what this or that piece of wetware
is doing, what function it carries out. This
perspective points to the need to understand
the relation between learning mechanisms
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like those reviewed in this chapter and
modes of neural plasticity. How does the ne-
ural matter change when a learner changes
his or her mind in some particular way, for
example, by collapsing two production rules
into one, creating a new subgoal, or lowering
the strength of a link?

How many distinct modes of neural plas-
ticity are there? One or one hundred? The
cognitive neuroscience literature indicates
that the answer is somewhere in between.
There is long-term potentiation (the lowering
of the threshold for signal transmission be-
tween one neuron and a downstream neuron
consequent on repeated transmissions), con-
solidation, and synaptic pruning, but also the
creation of new synapses and even whole-
sale replacement of brain cells. The chal-
lenge is to understand how these changes
in neural matter relate to changes of mind
as described at the cognitive level. For ex-
ample, is long-term potentiation the same
as strengthening? That is, can we reason-
ably assume that long-term potentiation is
operating each time one of our simulation
models upgrades the strength of a link as a
function of frequency of use (Martin, Grim-
wood, & Morris, 2000; Martin & Morris,
2002)? Or is it not possible to map cog-
nitive change mechanisms onto modes of
neural plasticity in this way? Once we are
past the potentiation-strengthening linkage,
it becomes suspiciously difficult to make
further mappings of this sort. For exam-
ple, which type of neural plasticity should
we conceive as implementing discrimination
learning? Perhaps synaptic pruning can serve
that purpose? But is pruning sensitivity to
feedback? So little is understood about how
to make such mind-brain mappings that it
is unclear whether this approach is a tool
or a problem, but it seems likely that an ex-
haustive list of the modes of neural plasticity
would have implications for the plausibility
of rival learning mechanisms defined at the
cognitive level.

In the end, what is needed for further
progress is a brilliant guess. Somebody has to
propose a repertoire of learning mechanisms
that happens to be close enough to the truth
so that incremental improvement of fit to

data can be pursued through the hypothesis-
testing and parameter-fitting procedures of
normal science. Cognitive skill acquisition
awaits its Newton.
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CHAPTER 14

Computational Models of Implicit Learning

1. Introduction

Implicit learning – broadly construed as
learning without awareness – is a complex,
multifaceted phenomenon that defies easy
definition. Frensch (1998) listed as many as
eleven definitions in an overview, a diversity
that is undoubtedly symptomatic of the con-
ceptual and methodological challenges that
continue to pervade the field forty years af-
ter the term first appeared in the literature
(Reber, 1967). According to Berry and Di-
enes (1993), learning is implicit when an in-
dividual acquires new information without
intending to do so and in such a way that the
resulting knowledge is difficult to express. In
this, implicit learning thus contrasts strongly
with explicit learning (e.g., as when learn-
ing how to solve a problem or learning a
concept), which is typically hypothesis-
driven and fully conscious. Implicit learning
is the process through which one becomes
sensitive to certain regularities in the envi-
ronment: (1) without trying to learn regular-
ities, (2) without knowing that one is learn-
ing regularities, and (3) in such a way that
the resulting knowledge is unconscious.

Over the last twenty years, the field of im-
plicit learning has come to embody ongoing
questioning about three fundamental issues
in the cognitive sciences: (1) consciousness
(how one should conceptualize and measure
the relationships between conscious and un-
conscious cognition); (2) mental represen-
tation (in particular, the complex issue of
abstraction); and (3) modularity and the ar-
chitecture of the cognitive system (whether
one should think of implicit and explicit
learning as being subtended by separable sys-
tems of the brain or not). Computational
modeling plays a central role in addressing
these issues.

2. Implicit Cognition:
The Phenomena

Everyday experience suggests that implicit
learning is a ubiquitous phenomenon. For
instance, we often seem to know more than
we can tell. Riding a bicycle, using chop-
sticks or driving a car all involve mastering
complex sets of motor skills that we find
very difficult to describe verbally. These
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dissociations between our ability to report on
cognitive processes and the behaviors that
involve these processes are not limited to ac-
tion but also extend to high-level cognition.
Most native speakers of a language are un-
able to articulate the grammatical rules they
nevertheless follow when uttering expres-
sions of the language. Likewise, expertise in
domains such as medical diagnosis or chess,
as well as social or aesthetic judgments, all
involve intuitive knowledge that one seems
to have little introspective access to.

We also often seem to tell more than we
can know. In a classic article, social psychol-
ogists Nisbett and Wilson (1977) reported
on many experimental demonstrations that
verbal reports on our own behavior often re-
flect reconstructive and interpretative pro-
cesses rather than genuine introspection.
Although it is often agreed that cognitive
processes are not in and of themselves open
to any sort of introspection, Nisbett and
Wilson further claimed that we can some-
times be “(a) unaware of the existence of a
stimulus that importantly influenced a re-
sponse, (b) unaware of the existence of the
response, and (c) unaware that the stimulus
has affected the response” (p. 231).

Demonstrations of dissociations between
subjective experience and various cognitive
processes have now been reported in many
domains of cognitive science. For instance,
dissociations have been reported between
conscious awareness and memory. Memory
for previous events can be expressed explic-
itly, as a conscious recollection, or implic-
itly, as automatic, unconscious influences on
behavior. Numerous studies have demon-
strated dissociations between implicit and
explicit memory, both in normal partici-
pants (see Schacter, 1987) as well in special
populations. Amnesic patients, for instance,
who exhibit severe or total loss in their abil-
ity to explicitly recall previous experiences
(conscious recollection) nevertheless retain
the ability to learn novel procedural skills or
to exhibit sensitivity to past experiences of
which they are not conscious.

Findings of “learning without awareness”
have also been reported with normal sub-
jects (Cleeremans, Destrebecqz, & Boyer,

1998). Arthur Reber, in a classic series
of studies conducted in 1965 (see Reber,
1967), first coined the term “implicit learn-
ing” (although the phenomenon as such
was discussed before Reber, e.g., in Clark
Hull’s PhD dissertation, published in 1920).
Implicit learning contrasts with implicit
memory in that implicit learning focuses on
generalization to new stimuli rather than
sensitivity to processing the same stimulus
again. Implicit learning also contrasts with
subliminal perception in that it can involve
consciously perceived stimuli.

Implicit learning research has essen-
tially been focused on three experimen-
tal paradigms: artificial grammar learning
(AGL), dynamic system control, and se-
quence learning (SL). Paradigms that will
not be discussed include probability learning
(Millward & Reber, 1968), hidden covaria-
tion detection (Lewicki, 1986), acquisition
of invariant characteristics (Lewicki, Hill, &
Czyzewska, 1992), and visual search in com-
plex stimulus environments (Chun & Jiang,
1999).

In Reber’s (1967) seminal study of AGL,
subjects were asked to memorize meaning-
less letter strings generated by a simple set
of rules embodied in a finite-state gram-
mar (Figure 14.1). After this memorization
phase, subjects were told that the strings
followed the rules of a grammar and were
asked to classify novel strings as grammati-
cal or not. In this experiment and in many
subsequent replications, subjects were able
to perform this classification task better than
chance despite remaining unable to describe
the rules of the grammar in verbal reports.
This dissociation between classification per-
formance and verbal report is the finding
that prompted Reber to describe learning as
implicit because subjects appeared sensitive
to and could apply knowledge that they re-
mained unable to describe and had had no
intention to learn.

In a series of studies that attracted re-
newed interest in implicit learning, Berry
and Broadbent (1984, 1988) showed that
success in learning how to control a sim-
ulated system (e.g., a “sugar factory”) so
as to make it reach certain goal states was
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Figure 14.1. A finite-state grammar (Reber, 1976) is a simple
directed graph consisting of nodes connected by labeled arcs.
Sequences of symbols can be generated by entering the grammar
through a “begin” node and moving from node to node until an
“end” node is reached. Each transition between one node and the
next produces the label associated with the arc linking the two
nodes. Concatenating the symbols together produces strings of
symbols, in this case, letters of the alphabet. Finite-state
grammars have been used both in the context of Sequence
Learning studies and in the context of artificial grammar learning
studies.

independent from ability to answer ques-
tions about the principles governing the
subject’s inputs and the system’s output:
Practice selectively influenced ability to con-
trol the system, whereas verbal explanations
about how the system worked selectively in-
fluenced ability to answer questions.

Today, another paradigm, SL, has be-
come dominant in the study of implicit
learning. In SL situations (Clegg, DiGiro-
lamo, & Keele, 1998), participants are asked
to react to each element of a sequentially
structured visual sequence of events in the
context of a serial reaction time (SRT) task.
On each trial, subjects see a stimulus that
appears at one of several locations on a com-
puter screen and are asked to press as fast
and as accurately as possible on the key cor-
responding to its current location. Nissen
and Bullemer (1987) first demonstrated that
subjects progressively learned about the se-
quential structure of a repeating series of
stimuli in spite of showing little evidence of
being aware that the material was so struc-
tured. To establish that reaction time (RT)
savings reflect sequence knowledge rather

than mere familiarization with the task,
a different sequence is typically presented
during an unannounced transfer block, ex-
pected to elicit slower reaction times to the
extent that people use their knowledge of
the sequence so as to anticipate the location
of the next event. Cleeremans and McClel-
land (1991) used a different design in which
the stimulus’ location was probabilistically
determined based on a finite-state grammar
similar to that shown in Figure 14.1 and
in which nongrammatical stimuli were ran-
domly interspersed with those produced by
the grammar. Numerous subsequent studies
have indicated that subjects can learn about
complex sequential relationships despite re-
maining unable to fully deploy this knowl-
edge in corresponding direct tasks.

Most of the modeling work has focused
on the AGL and SL tasks, and this chapter
therefore focuses on these paradigms (see
Dienes & Fahey, 1995; Gibson, Fichman,
& Plaut, 1997; Lebiere, Wallach, & Taat-
gen, 1998; and Sun, 2002, for simulations
of process control tasks). Both the AGL
and SL tasks involve learning sequential
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dependencies and thus involve similar com-
putational problems. To put the compu-
tational modeling work in perspective and
to highlight the challenging methodological
and conceptual issues that characterize the
domain, however, the next section is dedi-
cated to discussing how to explore implicit
learning empirically.

3. Demonstrating That Implicit
Learning Is Implicit

The findings briefly reviewed earlier all sug-
gest that unconscious influences on behav-
ior are pervasive. This raises the question
of how to best characterize the relation-
ships between conscious and unconscious
processes, and in particular, whether one
should consider that mental representations
can be unconscious. Settling the concep-
tual question of what conscious awareness is
would help settle the methodological ques-
tion of how to measure it. But there is no
general agreement concerning what it means
for an agent to be conscious of some state of
affairs. There is a sense in which any per-
ception of an object involves one being con-
scious of it. Thus, if by looking, a person
can discriminate the presence or absence of
an object then they are, in that sense, con-
scious of it being there. This sense of being
“conscious of” methodologically leads one
to using direct forced choice tests as mea-
sures of awareness. If a person can discrim-
inate whether an object is moving up or
down when forced to say “up” or “down”
on each trial, then in the sense we are talk-
ing about, the person is conscious of the ob-
ject’s direction of movement. In a similar
way, if a person can discriminate whether a
set of stimuli shared common features, one
should conclude that they are conscious of
that regularity. In this sense, subjects in im-
plicit learning experiments are conscious of
many regularities (e.g., Dulany, Carlson, &
Dewey, 1984; Perruchet & Pacteau, 1990).
For example, in AGL, subjects can indicate
relevant parts of strings of letters that make
them grammatical or non-grammatical
(Dulany et al., 1984) and they can say

whether particular bigrams (sequences of
two letters) are allowed by a grammar or not
(Perruchet & Pacteau, 1990). In SL, subjects
can recognize parts or all of the sequence as
old or new (e.g., Shanks & Johnstone, 1999).
Further, in this sense of being conscious of
regularities, the process of becoming con-
scious of the regularities can be simulated
by computational models that learn to make
the same discriminations as people do, as de-
scribed in Section 4.

However, the useful distinction between
implicit and explicit knowledge may not
hinge on whether or not one is conscious
of a regularity. It may hinge on whether a
person is conscious of the regularity with
a conscious rather than unconscious men-
tal state. For example, in the sense we have
been using, a “blindsight” patient is con-
scious of whether an object is moving up or
down because the patient can discriminate
direction of motion. But the seeing by which
the patient is conscious of the object is not
conscious seeing: The blindsight patient is
conscious of the object with an unconscious
mental state; one could say that the patient
is sensitive to the object.

As a matter of general terminology, some
people reserve the phrase “conscious of” for
cases in which one is conscious of something
by a conscious mental state; others use the
phrase more generally, as is done here. In any
case, there is now the problem of determin-
ing what a mental state’s being conscious
consists of. The conceptual answer to this
question suggests both the methodology for
determining whether people have conscious
or unconscious knowledge in an implicit
learning experiment and the sort of compu-
tational model needed for simulating con-
scious rather than unconscious knowledge.
Three approaches to defining the conscious
status of mental states will be considered.

One approach claims that a mental state’s
being conscious is its being inferentially
promiscuous, globally accessible (Baars,
1988; Block, 1995), or part of a suitable
global pattern of activity (Tononi & Edel-
man, 1998). According to this approach, a
person has conscious knowledge of a reg-
ularity if that knowledge can be expressed
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in different ways, for example, in verbal re-
port or in different structured tests (Lewicki,
1986; Reber, 1967). The knowledge in im-
plicit learning experiments is typically diffi-
cult to express in verbal report; indeed, this
is the original finding that prompted Reber
to conclude his AGL paradigm elicited un-
conscious knowledge. Further, the knowl-
edge generated in implicit learning experi-
ments can often be expressed only in some
structured tasks but not in others. For ex-
ample, Jiménez, Mendez, and Cleeremans
(1996) measured the expression of knowl-
edge learned through an SRT task using
both reaction time and the ability to sub-
sequently generate the sequence. Through
detailed correlational analyses, they were
able to show there was knowledge that was
only expressed through the reaction time re-
sponses, but not through the sequence gen-
eration measure. The knowledge was thus
not globally available. This type of study
is more concincing than those using free
report, as free report is often taken after a
delay, without all retrieval cues present, and
gives the subject the option of not reporting
some conscious knowledge (Dulany, 1968).
Thus, knowledge may be globally available
yet not elicited on a test that is insensitive or
not asking for the same knowledge (Shanks
& St. John, 1994). These issues can be ad-
dressed, for example, by asking subjects to
predict the next element under the same
conditions that they initially reacted to it, as
Jimenez et al. did. Computational models
based on defining a conscious mental state
in terms of global access include those of
Tononi (2005) and Dehaene and collabora-
tors (e.g., Dehaene, Sergent, & Changeux,
2003), but will not be discussed here.

Another approach is to identify conscious
knowledge with knowledge that can be
used according to one’s intentions (Jacoby,
1991). This is a restricted form of inferential
promiscuity that Jacoby operationally de-
fines by his process dissociation procedure. In
the process dissociation procedure, a subject
is asked in two different conditions (“inclu-
sion” and “exclusion”) to do opposite things
with a piece of knowledge. If the knowl-
edge can be used according to opposing in-

tentions, the knowledge is taken to be con-
scious (and unconscious otherwise). For ex-
ample, Destrebecqz and Cleeremans (2001)
applied the process dissociation procedure
to SL, asking trained participants to ei-
ther generate a sequence that resembled
the training sequence (inclusion) or a se-
quence that was as different as possible from
the training sequence (exclusion). Results
indicated that although subjects could in-
clude the sequence when instructed, un-
der certain conditions, participants were un-
able to exclude familiar sequence fragments,
thus suggesting that they had no control
over the knowledge acquired during train-
ing. Subjects could use the knowledge ac-
cording to the intention to include but not
the intention to exclude. Use was thus not
determined by intentions. Destrebecqz and
Cleeremans concluded that this knowledge
was best described as implicit, for its expres-
sion was not under conscious control. They
also produced a computational model of
performance in the process dissociation task,
discussed later (see also Tunney & Shanks,
2003; Vokey & Higham, 2004).

A third approach is to identify conscious
mental states with states one is conscious
of (Rosenthal, 2006), that is, with higher-
order states (i.e., mental states about men-
tal states). On this approach, one must
know that one knows for knowledge to be
conscious. This approach suggests the use
of subjective measures of awareness, such as
confidence ratings. For example, individuals
may say, for each discrimination they per-
form in an AGL task, whether they were
just guessing or whether they knew the cor-
rect answer. Two common criteria based
on the confidence responses are the guess-
ing and zero correlation criteria. According
to the guessing criterion, if people can dis-
criminate above chance when they believe
they are guessing, the knowledge is uncon-
scious. According to the zero correlation cri-
terion, if people cannot discriminate with
their “guess” and “know” responses between
when they did and did not know, the knowl-
edge is unconscious. According to both cri-
teria, the knowledge acquired in AGL and
SL paradigms is partly unconscious. The
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problem for computer simulation is to de-
termine how a network could come to rep-
resent its own states as internal states and
specifically as knowledge states. The prob-
lem is not trivial and as yet not fully resolved
(Cleeremans, 2005).

Despite the considerable methodological
advances achieved over the past decade or
so, assessing awareness in implicit learning
and related fields remains particularly chal-
lenging. There is no conceptual consensus on
what a mental state’s being conscious con-
sists of and hence no methodological con-
sensus for determining the conscious status
of knowledge. Although the central issue of
the extent to which information processing
can occur in the absence of conscious aware-
ness remains as controversial today as it was
forty years ago, the conceptual and method-
ological tools are certainly more refined
today.

A further challenge is to determine how
to best interpret dissociations between con-
scious and unconscious knowledge in terms
of systems or processes. Dunn and Kirsner
(1988) pointed out that even crossed dou-
ble dissociations between two tasks do not
necessarily indicate the involvement of sep-
arable, independent processes. Many au-
thors have described nonmodular architec-
tures that can nevertheless produce double
dissociations. Plaut (1995) explored these
issues in the context of cognitive neuropsy-
chology. In a compelling series of simulation
studies, Plaut not only showed that lesion-
ing a single connectionist network in various
ways could account for the double dissoci-
ations between concrete and abstract word
reading exhibited by deep dyslexic patients,
but also that lesions in a single site produced
both patterns of dissociations observed with
patients. In other words, the observed dis-
sociations can clearly not be attributed to
architectural specialization, but can instead
be a consequence of functional specialization
(functional modularity) in the representa-
tional system of the network. These issues
are also debated in the context of implicit
learning research.

Computational modeling plays a key part
in resolving such issues, just as it has in other

domains. The process of implementing core
conceptual ideas concerning the nature of
conscious versus unconscious states together
with ideas concerning the nature of human
learning, testing implementations against
human data, revising core concepts, and so
on, cyclically, will help the field get beyond
simple dichotomies. The brain is both in a
sense one system, yet it is also inhomoge-
neous. The verbal question of how many
learning systems there are is in danger of
being vacuous. If God were to tell us how
many learning systems there were with a
single number (one? two? three?), we would
have learned nothing. What we really need
to know are the principles by which a work-
ing computational model of human learning
could be built. It is still early, and models of
implicit learning have focused more on the
mechanisms of learning rather than on the
conscious versus unconscious distinction
(but see Sun, 2002). Future developments
are eagerly awaited.

4. Computational Models
of Implicit Learning

Computational modeling has played a cen-
tral role in deconstructing early verbal the-
ories of the nature of what is learned in
implicit learning paradigms (1) by offering
“proof of existence” demonstrations that el-
ementary, associative learning processes (as
opposed to rule-based learning) are in fact
often sufficient to account for the data,
(2) by making it possible to cast specific pre-
dictions that can then be contrasted with
those of competing models, and (3) by
making it possible to explore how specific
computational principles can offer novel,
unitary accounts of the data. Detailed com-
putational models have now been proposed
for all three main paradigms of implicit
learning. Two families of models are cur-
rently most influential: neural network mod-
els and fragment-based, or “chunking,” mod-
els. Both approaches find their roots in
exemplar-based models (Estes, 1957; Hintz-
mann, 1986; Medin & Schaffer, 1978),
which had already captured the central
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Exemplar-based approaches
assume that whole instances are 
memorized during training. New 
exemplars can then be classified 
according to their similarity with 
either specific items or with the entire 
memorized database.

Fragment-based and chunking 
approaches exploit the redundancy of 
the training material by decomposing it 
into short chunks such as bigrams or 
trigrams. The resulting database can be 
organized hierarchically or not. New 
exemplars are classified according to 
how many chunks they share with the 
training material.

Rule abstraction approaches
produce symbolic knowledge of the 
material in the form of production 
rules, discrimination trees, or 
classifiers:

“Grammatical strings begin with T or 
P”

Distributional and statistical approaches 
(including neural network models), develop 
superpositional representations of the 
statistical constraints present in the material 
based on associative learning mechanisms.

Figure 14.2. A representation of different computational approaches to artificial grammar learning
(see text for details).

intuition that rule-following behavior can
emerge out of the processing of exemplars
in a germane domain – categorization.

Neural network models typically consist
of simple auto-associator models (Dienes,
1992) or of networks capable of process-
ing sequences of events, such as the sim-
ple recurrent network (SRN) introduced
by Elman (1990) and first applied to SL
by Cleeremans and McClelland (1991).
Chunking models (e.g., Perruchet and
Vinter, 1998), in contrast, are variants of
exemplar-based models that assume that
learning results in the acquisition of memory
traces such as whole exemplars or fragments
thereof. Although no type of model can
currently claim generality, both approaches
share a number of central assumptions: (1)
learning involves elementary association or
recoding processes that are highly sensitive
to the statistical features of the training
set, (2) learning is viewed essentially as a
mandatory by-product of ongoing process-
ing, (3) learning is based on the processing
of exemplars and produces distributed knowl-
edge, and (4) learning is unsupervised and
self-organizing. More recently, hybrid models
that specifically attempt to capture the re-
lationships between symbolic and subsym-
bolic processes in learning have also been
proposed. Sun (2002), for instance, has in-
troduced models that specifically attempt to
link the subsymbolic, associative, statistics-
based processes characteristic of implicit

learning with the symbolic, declarative, rule-
based processes characteristic of explicit
learning.

These different models have been essen-
tially directed at addressing the questions of
(1) what can be learned implicitly and (2)
what are the computational principles char-
acteristic of the mechanisms involved in im-
plicit learning. In discussing the models, a
third, important question will also be con-
sidered: How does one determine whether
a model provides a good explanation of
human learning? This issue is particularly
acute in the domain of implicit learning be-
cause there are often competing and over-
lapping accounts of the data. For example,
consider what could be learned based on
having memorized a few letter strings from
a finite-state grammar (Figure 14.2). People
could learn about the rules that govern string
generation; they could memorize a few fre-
quent fragments of the training strings; they
could learn about the statistical features of
the material (e.g., the probability that each
letter follows others); or they could simply
memorize entire strings. Each of these pos-
sibilities would result in better-than-chance
performance in a subsequent task asking
participants to make decisions concerning
the grammaticality of novel strings, and it
remains a significant methodological chal-
lenge to design experimental situations that
make it possible to successfully discriminate
between the different competing accounts.
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Computational modeling is of great help in
this respect because it forces modelers to be
explicit about their theories, but modeling
raises its own challenge when it comes to
comparing different models with a joint set
of empirical data.

Section 5 is dedicated to considering the
extent to which demonstrated dissociations
between conscious and unconscious knowl-
edge in people should be interpreted as
reflectingthe involvementof separable learn-
ing systems. The basic features of the con-
nectionist, chunking, and hybrid approaches
are examined in the following sections.

4.1. Connectionist Models
of Implicit Learning

The first fully implemented connectionist
models of implicit learning are found in the
early efforts of Dienes (1992) and Cleere-
mans and McClelland (1991). Although au-
thors such as Brooks (1978) and Berry and
Broadbent (1984) had already suggested
that performance in implicit learning tasks
such as AGL or process control may be
based on retrieving exemplar information
stored in memory arrays (see Chapter 9
in this volume), such models have in gen-
eral been more concerned with accounting
for performance at retrieval rather than ac-
counting for learning itself. The connection-
ist approach (see Chapter 2 in this volume),
by contrast, has been centrally concerned
with the mechanisms involved during learn-
ing since its inception and therefore con-
stitutes an excellent candidate framework
with which to examine the processes in-
volved in implicit learning. Because long-
term knowledge in connectionist networks
accrues in connection weights as a manda-
tory consequence of information processing,
connectionist models capture, without any
further assumptions, two of the most im-
portant characteristics of implicit learning:
(1) the fact that learning is incidental and
mandatory, and (2) the fact that the result-
ing knowledge is difficult to express. A typi-
cal connectionist network, indeed, does not
have direct access to the knowledge stored in
connection weights. Instead, this knowledge

can only be expressed through the influence
that it exerts on the model’s representations,
and such representations may or may not
contain readily accessible information (i.e.,
information that can be retrieved with low
or no computational cost; see Kirsh, 1991).

An important distinction in this regard
is the distinction between supervised and
unsupervised learning. O’Reilly and Mu-
nakata (2000) have characterized this dis-
tinction as a contrast between model learn-
ing (Hebbian, unsupervised learning) and
task learning (error-driven, supervised learn-
ing). Their analysis is framed in terms of
the different computational objectives the
two types of learning fulfill: capturing the
statistical structure of the environment so
as to develop appropriate models of it on
the one hand, and learning specific input-
output mappings so as to solve specific prob-
lems (tasks) in accordance with one’s goals
on the other hand. Although many connec-
tionist models of implicit learning have used
supervised learning procedures, often, such
models can also be interpreted as involving
unsupervised learning (e.g., auto-associator
networks).

Turning now to specific connectionist
models of implicit learning, we will consider
first a simple auto-associator as applied to
AGL; then the more powerful SRN, which
has been applied to both SL and AGL tasks;
and finally the memory buffer model, which
has also been applied to both SL and AGL
tasks.

4.1.1. the auto-associator network

Dienes (1992) proposed that performance
in an AGL task could be accounted for based
on the idea that, over training, people in-
cidentally accumulate knowledge concern-
ing the structure of the exemplars of the
domain and subsequently use that knowl-
edge to make decisions concerning the gram-
maticality of novel exemplars in the transfer
task. Dienes compared several instantiations
of this basic idea in auto-associator networks
trained with either the Hebb Rule or the
Delta Rule.

In auto-associator networks, the task of
the model is simply to reproduce the input
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pattern on its output units. The first prob-
lem in constructing a neural network is to
decide how to encode the input. Dienes’s
models had no “hidden” units and used sim-
ple localist representation on both their in-
put and output units, that is, each unit in
the network represented the occurrence of
a particular letter at a particular position
in a string or the occurrence of a particu-
lar bigram. The second problem is to decide
what pattern of connection to implement.
Dienes had each unit connected to all other
units, that is, the network attempted to pre-
dict each unit based on all other units in
the network. Finally, one has to decide what
learning rule to use. Dienes used either the
Hebb rule or the delta rule. The learning
rules were factorially crossed with different
coding schemes.

The two learning rules produce different
types of knowledge. The Hebb rule, that is,
the notion that “units that fire together wire
together,” learns the association between
two units independently of any association
those units may have with other units. After
Hebbian learning, the weights are like first-
order correlations. The delta rule, by con-
trast, involves competition between units in
making predictions, so the weights are like
multiple regression coefficients. The conse-
quence was that for bigram models, the delta
rule network could perfectly reproduce the
training strings used and also any new string
that could be formed by adding or sub-
tracting any training strings. That is, simple
associative learning produced rule-like be-
havior – perfect reproduction of any linear
combination of the training strings without
that rule being explicitly represented any-
where in the network – definitely one of the
most important insights gained through con-
nectionist modeling in this context.

All networks could classify test strings
as well as people could, that is, all net-
works tended to reproduce grammatical test
strings more faithfully than nongrammati-
cal test strings. This raises a methodological
problem: Why should one model be pre-
ferred over another as an account of human
implicit learning? This question will be con-

sidered in the context of examining the dif-
ferent models of implicit learning that have
been developed.

A key aspect of this problem is that net-
works in general have free parameters –
numbers, like the learning rate, that have to
be assigned some value for the network to
give simulated behavior. The delta rule net-
work, for example, requires a learning rate;
different learning rates lead to different be-
haviors. Dienes dealt with this problem by
producing parameter-free predictions. With
a sufficiently small learning rate and suffi-
ciently many training epochs the delta rule
converges in the limit to producing multi-
ple regression coefficients. The Hebb rule
was parameter free in any case because it is
a one-shot learning rule. The parameter-free
models were tested by determining how well
they predicted the order of difficulty human
subjects had with classifying the strings. The
delta rule model could predict the order of
difficulty better than the Hebb rule.1

The delta rule auto-associator models
passed the tests they were subjected to, but
they have a couple of serious weaknesses.
First, those models entail that people can
learn to predict a letter in one position by
the letters in any other position, no matter
how far away; distance is irrelevant. But this
entailment is false: People find long-distance
dependencies in AGL hard to learn (Math-
ews et al., 1989). Second, those models en-
tail that the association between two letters
in two positions should not generalize to
knowing the association between those let-
ters in different positions. This entailment
is very unlikely. Cleeremans and McClel-
land (1991) simulated implicit learning with
a connectionist model that dealt with both
these problems.

1 Dienes (1992) also considered variants of exemplar-
based models (Estes, 1957; Hintzmann, 1986;
Medin & Schaffer, 1978). These will not be elab-
orated on further here, but such models all share
the assumption that grammaticality decisions are
taken based on an item’s similarity with the stored
exemplars, accumulated over training with the ma-
terial. These models turned out not to be good at
predicting the order of difficulty of the test items,
given the coding assumptions used.
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Figure 14.3. The simple recurrent network introduced by
Elman (1990). The network takes the current element of
a sequence as input and is trained to predict the next
element using backpropagation. Context units, which on
time step contain a copy of the activation pattern that
existed over the network’s hidden units on the previous
time step, enable previous information to influence
current predictions.

4.1.2. the simple recurrent network

Cleeremans and McClelland (1991) simu-
lated performance in the SRT task. The net-
work, Elman’s (1990) SRN (Figure 14.3), is
a three-layer backpropagation network that
is trained to predict each element of a se-
quence presented on its input units (see
also Chapter 2 in this volume). Thus, on
each trial, element t of a sequence is pre-
sented to the network (by activating a sin-
gle input unit), and the network has to
predict element t + 1 of the sequence by
activating the corresponding output unit.
To make this prediction task possible, the
network is equipped with so-called context
units, which, on each time step through
the sequence, contain a copy of the net-
work’s pattern of activity over its hidden
units. Over time, the network learns to use
these representations of its own activity in
such a way as to refine its ability to pre-
dict the successor of each sequence element.
Detailed analyses of the network’s perfor-
mance in learning sequential material have
shown that the SRN’s responses come to ap-
proximate the conditional probability of oc-
currence of each element in the temporal
context set by its predecessors (Cleeremans,
Servan-Schreiber, & McClelland, 1989).

Servan-Schreiber, Cleeremans, and McClel-
land (1991) have shown that learning pro-
gresses through three qualitatively different
phases when the network is trained on ma-
terial generated from a finite-state grammar
such as the one illustrated in Figure 14.1.

During a first phase, the network tends
to ignore the context information. This is a
direct consequence of the fact that the pat-
terns of activation on the hidden layer – and
hence the context layer – are continuously
changing from one epoch to the next as the
weights from the input units (the letters)
to the hidden layer are modified. Conse-
quently, adjustments made to the weights
from the context layer to the hidden layer
are inconsistent from epoch to epoch and
cancel each other. In contrast, the network
is able to pick up the stable association be-
tween each letter and all its possible succes-
sors. In a second phase, patterns copied on
the context layer are now represented by a
unique code designating which letter pre-
ceded the current letter, and the network
can exploit this stability of the context in-
formation to start distinguishing between
different occurrences of the same letter –
different arcs in the grammar. Finally, in a
third phase, small differences in the context
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information that reflect the occurrence of
previous elements can be used to differenti-
ate position-dependent predictions resulting
from length constraints.

The internal representations that result
from such training can be surprisingly rich
and structured. Cluster analysis of the
patterns of activation obtained over the
network’s hidden units after training on ma-
terial generated from the probabilistic finite-
state grammar revealed that the internal
representations learned by the network are
organized in clusters, each of which corre-
sponds to a node of the finite-state grammar.
This turns out to be the most efficient rep-
resentation of the input material from the
point of view of a system that continuously
attempts to predict what the next element
will be, because knowing at which node a
given sequence fragment terminates pro-
vides the best possible information concern-
ing its possible successors. Just as the simple
auto-associator considered by Dienes (1992)
in some sense acquired abstract knowledge,
so did the SRN. Cleeremans (1993) sug-
gested that it is useful to think of abstract-
ness as lying on a continuum and that verbal
disputes over whether implicit knowledge
is or is not abstract may be ill formed. The
knowledge acquired by the SRN, in any
case, has a level of abstractness somewhere
between that of rote learning exemplars and
learning the finite-state grammar propo-
sitionally.

As a model of human performance in
SRT tasks, the SRN model has been shown
to account for about 80% of the variance in
the reaction time data (Cleeremans & Mc-
Clelland, 1991). To capture reaction time
data, one simply assumes that the normal-
ized activation of each output unit is in-
versely proportional to reaction time. This is
obviously a crude simplification, made nec-
essary by the fact that backpropagation is
unable to capture the time course of pro-
cessing. Other connectionist models have
been more successful in this respect, such
as Dominey’s (1998) “Temporal Recurrent
Network.”

In modeling people’s behavior with the
SRN, there are a number of free parame-

ters, including the learning rate, number of
hidden units, and momentum. There is no
easy way of obtaining parameter-free pre-
dictions. This is a methodological issue that
will be addressed shortly in terms of what it
means for assessing the SRN as an account
for human learning.

The SRN model has also been applied
to AGL tasks. For instance, Boucher and
Dienes (2003) contrasted the SRN with
a fragment-based model. Similarly, Kinder
and Shanks (2001) used the SRN to model
AGL in considering the question of how
many learning systems there are (see Sec-
tion 5).

Both AGL and the SL task require the
subject to learn sequential dependencies, so
it is not surprising that the same model has
been brought to bear on the two tasks. To
what extent learning principles are the same
in different domains of implicit learning is
an interesting question. There is one key dif-
ference between AGL and SL stimuli, how-
ever. In AGL, the whole string is typically
presented at once; in SRT, there is only
one element of the sequence presented at
a time. In fact, in AGL, performance de-
creases when the string is presented sequen-
tially rather than simultaneously (Boucher &
Dienes, 2003), implying that some modifi-
cation of either coding or learning is needed
when modelling standard AGL with the
SRN. This point has not yet been addressed.

Dienes, Altmann, and Gao (1999) con-
sidered a simple adaptation of the SRN
to model the phenomenon of transfer be-
tween domains. Significantly, Reber (1969)
showed that people trained on a finite-state
grammar with one set of letters can clas-
sify new strings using a different set of let-
ters (but the same grammar). The problem
for the standard SRN is that the knowl-
edge embedded in the connection weights
is linked to particular letters. If new input
units were activated, no previous learning
would be relevant. Indeed, Marcus (2001)
has regarded the inability to generalize out-
side the training space to be a general prob-
lem for connectionist models. Dienes et al.
(1999) solved this problem by introduc-
ing an extra encoding layer between the
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Figure 14.4. The model of Dienes, Altmann, and Gao (1999). Transfer between
domains is achieved by augmenting a simple recurrent network with “mapping”
weights that make it possible for the knowledge embedded in the “core” weights
to be preserved and used for generalization when switching to a different set of
stimuli.

input units and the hidden units, as shown
in Figure 14.4.

In the training phase, the network adjusts
weights between the “domain one” input
units all the way up to the “domain one”
output units. The weights from the encod-
ing layer to the hidden units and from the
context units to the hidden units – called
the “core weights” – encode structural prop-
erties of the stimuli not tied to any par-
ticular letter set. In testing, the “domain
two” input units are activated, and activa-
tion flows through the core weights to the
output units. The core weights are frozen,
and the network learns the weights from
the core part of the network to the input
and output units in the new domain. Thus,
the network learns how to best map the new
domain onto the structures already present
in its core weights. In this way, the net-
work can indeed generalize outside of its

training space and reveal various detailed
properties shown by people (including in-
fants) in transfer between domains in AGL.
Although the freezing of the core weights is
simplistic, it shows that connectionist net-
works can generalize beyond their training
space. The freezing idea is similar to that of
a switching device that determines how and
when neural networks interface with each
other (Jacobs, Jordan, & Barto, 1991).

Dienes et al. (1999) showed that the
augmented SRN could predict a number
of characteristics of human performance to
within the 95% confidence limits of the ef-
fects. Fitting any more accurately would be
fitting noise. Still, we must confront the
methodological problem that the model has
many free parameters. The required qual-
itative behavior of the model was not re-
stricted to a small region of parameter space.
Nonetheless, simply showing that a model
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Figure 14.5. The buffer network. A fixed-width time
window is implemented by input units dedicated for each
time slot.

can fit some behavior is a weak scientific test.
In general, if a model could produce a wide
range of behavior when the parameters are
chosen appropriately, in what sense can the
model explain any specific behavior? Com-
pare the exhortations of Popper (1959) that
a theory that can explain everything explains
nothing and likewise, the more a theory rules
out, the more it explains. The discussion of
the memory buffer model will methodolog-
ically squarely face up to these exhortations.

4.1.3. the memory buffer model

The SRN is just one way, albeit an elegant
way, of instantiating a memory buffer. The
context units allow the SRN to learn (falli-
bly) how far into the past it needs a memory
to reduce error. The SRN can be contrasted
with a fixed memory buffer model, similar to
the SRN in operating characteristics, learn-
ing rule, and so forth, except for how time
is coded. The architecture of the memory
buffer model is similar to the SRN except
that it has no context units (see Figure 14.5).

Rather than storing information about
the previous events in the recurrent context
units, the input units of the memory buffer
model not only encode the input presented
at time t, but also at time t-1, t-2, and t-3.
The size of the memory buffer is specified by
the number of time steps that are encoded.
Moreover, the number of time steps that
have been encoded will determine defini-

tively the length of the non-local depen-
dency that can be learned. The simplicity of
this means of encoding time (i.e., unfolded
in space) has often recommended itself to
researchers (see Sejnowski & Rosenberg,
1987, who developed NETtalk). Cleere-
mans (1993) fit a buffer network, coding
four time steps into the past, to the re-
actions times of people learning the SRT
task. He found that people became gradu-
ally sensitive in their reaction times to in-
formation contained up to four time-steps
into the past, and the buffer network could
behave in a similar way. The SRN and the
buffer model were about equally good in
this respect. He found that where the buffer
model (with a buffer of four time steps)
and the SRN made different predictions, and
where the data differed significantly in that
respect, the buffer model performed better
than the SRN. Specifically, both the buffer
model and people could learn a certain prob-
abilistic difference over random intervening
material, whereas the SRN could not.

Human learning in general requires a
buffer. Aspects of language and music that
can be learned in the lab rely on non-local
dependencies, that is, dependencies that
take the form of two dependent items that
are separated by a varying number of em-
bedded items. Several studies have shown
that under certain circumstances, people
can learn non-local dependencies that go
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Figure 14.6. Performance of the memory buffer network and of the simple recurrent
network (SRN) on music stimuli over a full range of parameters. The box shows a
standard error above and below human means. The buffer network is
characteristically more like human behavior than is the SRN. See text for a full
explanation.

beyond the learning of adjacent regularities.
Kuhn and Dienes (2005) investigated the
implicit learning of music with the AGL
paradigm. People heard eight-note tunes in
which the first note predicted the fifth, the
second the sixth, and so on. (In fact, to be
precise, the last four notes were the mu-
sical inversion of the first four.) After suffi-
cient exposure, people came to like melodies
respecting these mapping rules rather than
other melodies. Some of the test melodies
respecting the mapping rules had repeated
sequences of notes from the training strings
(the fragment set) and others were made
from new note bigrams (the abstract set).
People liked both sets equally; they had
learned the long-distance dependencies, and

this requires that people had a buffer. But
what sort of buffer do the mechanisms that
subtend implicit learning use?

Kuhn and Dienes (in press) investigated
how the SRN and the buffer network would
learn the material. They found that with
suitable encoding and parameter values,
both networks could fit the subjects’ level of
performance. Figure 14.6 shows the behav-
ior of the SRN and memory buffer model
over a full range of parameter values on
both fragment and abstract test sets, with
one input unit coding each musical note.
The square in the figure represents a stan-
dard error above and below the human per-
formance means. The SRN was relatively
more sensitive to adjacent associations than
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long distance ones; the fixed buffer model
was equally sensitive to each. As people
with these musical stimuli found the ab-
stract and fragment sets equally difficult,
the characteristic behavior of the memory
buffer model was more like that of people
than the characteristic behavior of the SRN.
In fact, significantly more memory buffer
models fell in the box defining human be-
havior than SRN models.

With neural network models, one always
has to consider whether different methods
of coding the input would change the behav-
ior of the model. With different, more mu-
sically relevant coding schemes, more SRN
models fell in the box defining human be-
havior. That is, the SRN could fit the data.
But there were always significantly more
memory buffer models in the box than SRN
models. The methodological moral is that to
explain human data, find out if the model’s
characteristic behavior matches that of peo-
ple. The point is thus not so much whether
the model can “fit” the data; rather, it is
whether the model can explain the data be-
cause its processing principles and hypothe-
ses about encoding entail a characteristic be-
havior that matches that of people.

In sum, at this point, there is no clear
“victor neural network model” of implicit
learning. Perhaps the memory buffer model,
although used in only two studies in the
implicit learning literature, has an edge in
SL and AGL applied to music. Future work
needs to explore its use for AGL generally
and whether it can be extended in the man-
ner of Dienes et al. (1999) to allow transfer
to different domains. However, it may be
that different domains are learned in differ-
ent ways. People do not implicitly learn long
distance contingencies with strings of letters
very easily at all. What we learn about let-
ters in everyday life is which letters chunk
together, not what long distance dependen-
cies there may be.

4.2. Fragment-Based Models
of Implicit Learning

Although connectionist models of implicit
learning have been highly successful, one

might argue that they fail to capture the
fact that people, particularly in the AGL
paradigm, typically perform a memorization
task and hence end up consciously memoriz-
ing fragments, or chunks, of the material.
There is ample evidence that this knowl-
edge is available for verbal report (Reber
& Lewis, 1977), and it is therefore but a
short step to assume that this knowledge is
what drives people’s ability to classify novel
strings above chance (Perruchet & Gallego,
1997). These ideas are nicely captured by
models that assume that learning involves
accumulating fragmentary knowledge of the
training material and that performance at
test involves using this knowledge to de-
cide on the grammaticality of each novel
string, for instance, by comparing its over-
lap in terms of fragments. The first such
model was proposed by Servan-Schreiber
and Anderson (1990) in the context of AGL.
The model was called “Competitive Chunk-
ing” (CC). The central idea, well-known in
the memory literature (Miller, 1956) but
also in other domains (Newell, 1990) is
that learning involves chunking of informa-
tion: Production rules are combined so as to
form larger units that execute faster; com-
plex percepts are formed by combining el-
ementary features in different ways; items
are committed to memory by organizing in-
formation so as to make it possible to ex-
ploit the redundancy of the material. In an
AGL task, people asked to memorize mean-
ingless letter strings chunk the material in
short fragments (e.g., bigrams and trigrams).
The CC model assumes that processing a
letter string (or any other combination of
elements) proceeds by recursively combin-
ing fragments of it until a single chunk
can be used to represent the entire string.
Thus, for instance, a string such as TTXVPS
might first be analyzed as (TT)X(VPS),
then as (TT(X))(VPS), and then finally as
((TT(X))(VPS)). At this point, the entire
string is represented as a single unit in the
model and is said to be maximally famil-
iar. Chunk formation in the model is a
competitive process in which different po-
tential chunks compete with each other:
Each chunk receives bottom-up “support”
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from its constituent chunks, and its acti-
vation decays over time (see the Appendix
for technical details). Servan-Schreiber and
Anderson (1990) showed that competitive
chunking offered a good account of perfor-
mance in AGL tasks. More recently, Per-
ruchet and Vinter (1998) have elaborated
on these ideas by introducing a chunking
model dubbed PARSER, based on similar
principles (see the Appendix for further de-
tails concerning PARSER and a comparison
with CC). Although the model has not yet
been applied in detail to implicit learning
data, it shows great promise in capturing
the fact that people naturally come to per-
ceive AGL strings as composed of chunks
that they can report (Perruchet & Pacton,
2006; Servan-Schreiber & Anderson, 1990).

Boucher and Dienes (2003) contrasted
the CC with the SRN as models of AGL. At
one level, both models learn the sequential
dependencies produced by frequent bigrams
and other chunks in the training strings. But
the principles through which they learn are
very different. The SRN is based on error-
correction. If the bigram “BV” occurs fre-
quently in training, the SRN learns to pre-
dict that whenever B occurs, then V is likely
to happen next. If BV no longer occurs but
BX does, the SRN unlearns the BV connec-
tion and now comes to predict X given a B
has occurred. This is a form of “catastrophic
interference” (McCloskey & Cohen, 1989)
that some neural networks are subject to.
On the other hand, once the competitive
chunker has learned BV, it can then learn
that BX is a chunk without unlearning that
BV is also a chunk.

Boucher and Dienes (2003) presented
people with training stimuli in which one bi-
gram, BV, occurred in the first half of train-
ing and another in the last half. In the con-
flict condition, the other bigram was BX. In
a control group, PX occurred in the last half
instead of BX. The question is, to what ex-
tent did people unlearn in the conflict condi-
tion. People were asked to endorse different
bigrams at the end of the test phase. The
SRN and competitive chunker models were
trained and tested in the same way over a
full range of parameter values. Figure 14.7

shows the relative tendency of the models
over a full range of parameter values to en-
dorse bigram BV and also shows the mean
value for people with confidence intervals.
Note that the SRN is spread out all over
the space; the competitive chunker’s behav-
ior is more compact. Importantly, although
the SRN models could “fit” the data, it was
the characteristic behavior of the compet-
itive chunker that best matched people’s
behavior.

To summarize the main points so far,
connectionist modeling is an excellent way
of exploring theories of implicit learning.
The SRN offers an elegant account of the
data, but people show less interference and
more sensitivity to long-distance dependen-
cies. Chunking models can capture the for-
mer, but not the latter (the long-distance
dependencies learned by Kuhn and Dienes’s
(in press) subjects cannot be learned by cur-
rent chunking models). A memory buffer
model can capture the latter point but not
the former, as it depends on error cor-
rection. Thus, there remains a problem of
getting one model to exhibit all character-
istics of human implicit learning! Perhaps
this state of affairs will act as a spur to
people interested in computational model-
ing. Finally, a simple but important point
is worth stressing: In comparing models, do
not merely attempt to fit the data. Instead,
look at the characteristic performance of
models.

4.3. Hybrid Models of Implicit Learning

Although the connectionist and fragment-
based models reviewed previously have
proven extremely successful in account-
ing for implicit learning data, none have
successfully addressed the central issue of
how implicit knowledge may turn into ex-
plicit knowledge. This, however, is a cen-
tral issue in the cognitive sciences (Smolen-
sky, 1988). Clark and Karmiloff-Smith
(1993) pointed out that connectionist net-
works (and, by extension, any association-
based model) have no “self-generated means
of analyzing their own activity so as to
form symbolic representations of their own
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Figure 14.7. Performance of the competitive chunker (CC) and simple recurrent network
(SRN) models in dealing with prediction conflicts. The competitive chunker is resistant to
conflict, whereas the SRN shows a range of sensitivity to it. Humans are resistant, like the
competitive chunker. See text for full explanation.

processing. Their knowledge of rules always
remains implicit unless an external theorist
intervenes” (p. 504). It is therefore a gen-
uine, singular challenge, as Pinker (1999)
suggests, to figure out how to best com-
bine symbolic and subsymbolic approaches
to cognition. In this respect, there are essen-
tially four possible points of view about this,
humorously summarized (from the perspec-
tive of die-hard connectionists) by Clark and
Karmiloff-Smith (1993, pp. 504–505):

(1) Give up connectionism entirely and re-
vert to a thoroughly classical approach
(despair)

(2) Augment connectionist-style networks
with the symbol structures of natural
language (a representational leap)

(3) Combine elements of connectionism
and classicism in a single system
(hybridization)

(4) Use thoroughly connectionist resources
in increasingly sophisticated ways
(more of the same).
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Recently, several models of implicit
learning have been specifically directed at
addressing the synergy between implicit and
explicit learning. This approach makes a lot
of sense because participants, even when
placed in experimental situations designed
to minimize the possibility of their becom-
ing aware of the relevant regularities, will
always attempt to infer explicit, conscious
rules based on their experience of the sit-
uation. Further, many often also turn out
to know something that they can verbal-
ize about the material. In other words, one
cannot simply turn awareness off, and there
are good reasons to believe that performance
in typical implicit learning situations always
involve a mixture of implicit and explicit
learning. Sun and colleagues (Sun, 1997,
2002; Sun, Slusarz, & Terry, 2005) have at-
tempted to address this issue by proposing
a hybrid model of implicit learning called
CLARION. The model uses both bottom-
up, neural-network-based learning mecha-
nisms and top-down, rule-based learning
mechanisms. The model is thus genuinely
hybrid in that it assumes continuous inter-
action between two separable components:
one that is essentially symbolic in its rep-
resentations and learning mechanisms and
another that is clearly subsymbolic. Sun has
applied CLARION to SL and process con-
trol tasks, simulating, for instance, the data
of Curran and Keele (1993), in great details,
which interestingly contrasted the influence
of different instructions manipulating ori-
entation to learn (i.e., incidental vs. inten-
tional) in the task and the resulting differ-
ing degree of awareness of the material. Sun
was able to capture these differences by ma-
nipulating the extent to which CLARION’s
symbolic component is allowed to extract
rules from its subsymbolic component.

In the same spirit, Lebiere and col-
laborators (Lebiere et al., 1998; Wallach
& Lebiere, 2000) have proposed ACT-R
(Anderson, 1993) models of performance
in SL and in process control tasks. Learn-
ing in ACT-R (see Chapter 6 in this vol-
ume) assumes that information processing
is driven by the interaction between declar-
ative knowledge structures (e.g., chunks

of the stimulus material) and procedural
knowledge, which in ACT-R take the form
of production rules that implement the sys-
tem’s goals. The basic goal, for instance, in
an SL situation, is to encode each stimulus
and to respond to it using through a spe-
cific key. This and other productions op-
erate on the declarative chunks acquired
over training by the model, retrieving previ-
ously encoded chunks whenever appropri-
ate to anticipate the location of the next
stimulus. In such a model, explicit knowl-
edge thus consists of the learned chunks, and
implicit knowledge consists in the associa-
tion strength between different co-occuring
chunks that the model learns automatically.
Despite the appeal of hybrid models in ac-
counting for the complex interactions be-
tween implicit and explicit learning (Do-
mangue et al., 2004), detailed assessment
of how well they compare with fragment-
based and connectionist models in account-
ing for the human data must await further
research.

5. Theoretical and Conceptual
Implications

In this section, three central issues are ad-
dressed: whether performance in implicit
learning situations result in abstract knowl-
edge, whether the data and the modeling
suggest the involvment of single or multiple
systems; and whether modeling is relevant to
addressing the conscious versus unconscious
nature of the acquired knowledge.

5.1. Rules versus Statistics

As discussed previously, early characteriza-
tions of implicit knowledge have tended to
describe it as abstract, based essentially on
findings that subjects exhibit better-than-
chance transfer performance, as when asked
to make grammaticality judgments on novel
strings in the context of AGL situations
(Reber, 1989). Likewise, it has often been
assumed that the reaction time savings ob-
served in SRT tasks reflect the acquisition
of “deep” knowledge about the rules used



P1: JZP

CUFX212-14 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 17:11

414 cleeremans and dienes

to generate the stimulus material (Lewicki,
Czyzewska, & Hoffman, 1987). These ab-
stractionist accounts have generally left the
exact form of the acquired knowledge un-
specified, short of noting that it must some-
how represent the structure of the stimuli
and their relationships and be independent
of the surface features of the material. The
latter claim was further substantiated by
findings that AGL knowledge transfers to
strings based on the same grammar but in-
stantiated with a different letter set, or even
across modalities, as when training involves
letter strings but transfer involves tone se-
quences.

However, as overviewed earlier, there
now is considerable evidence that nonab-
stractionist mechanisms are largely sufficient
to account for the data. Brooks (1978) first
suggested that subjects in AGL experiments
were classifying novel strings based not on
abstract knowledge of the rules, but simply
based on the extent to which novel gram-
matical or ungrammatical strings are similar
to whole exemplars memorized during train-
ing. Perruchet and Pacteau (1990) showed
that the knowledge acquired in both AGL
and SL tasks might consist of little more
than explicitly memorized short fragments
or chunks of the training material, such as
bigrams or trigrams, or simple frequency
counts, which are perhaps the simplest form
of abstraction. Both learning and transfer
performance can then be accounted for by
the extent to which novel material con-
tains memorized chunks, as pointed out by
Redington and Chater (1996, 2002), who
emphasized that rule-like behavior does
not necessarily entail rule-based representa-
tions – a point also made clear by many of
the computational models reviewed here,
such as Dienes et al. (1999)’s augmented
SRN.

Overall, although it is clear that the
knowledge acquired in typical implicit
learning situations need not be based on the
unconscious acquisition of symbolic rules,
significant areas of debate remain about the
extent to which unitary, fragment-based,
or associative mechanisms are sufficient to
account for sensitivity to both the general

and specific features of the training material.
Simulation models have generally suggested
that such mechanisms can in fact be suf-
ficient to account simultaneously for both
grammaticality and similarity effects, partly
because some instantiations of these mech-
anisms produce knowledge that lies on a
continuum of abstractness. They can pro-
duce sets of weights that specify very pre-
cise rule-like behavior (Dienes, 1992) that
form graded finite-state patterns (Cleere-
mans, 1993) and that learn the specific lags
over which dependencies occur (Kuhn &
Dienes, in press); (Boyer, Destrebecqz, &
Cleeremans, 2005).

The fact that both rule-based and
exemplar-based approaches produce identi-
cal predictions over a large range of data is
a significant issue that Pacton et al. (2001)
attempted to address by examining the un-
taught (and hence, incidental) acquisition of
orthographic regularities over five years in
a school setting. One prediction that rule-
based approaches make is that after suf-
ficient training, any acquired rules should
generalize perfectly. Any learning mecha-
nism based on the operation of associative
learning mechanisms, however, would pre-
dict that performance on novel material will
always lag behind performance on famil-
iar material (the transfer decrement) These
conditions are impossible to obtain in the
laboratory, which motivated Pacton et al.’s
longitudinal study. They found that perfor-
mance on novel material indeed tended to
lag, by a constant amount, behind perfor-
mance on familiar material, a result that
reinforces the idea that what people learn
when they learn incidentally is essentially
associative, rule-like knowledge, rather than
rule-based knowledge.

5.2. Separable Systems?

Dissociations between implicit and explicit
learning or processing have often been inter-
preted as suggesting the existence of separa-
ble memory systems. For instance, Knowl-
ton et al. (1992) have shown that AGL is
largely preserved in amnesia to the extent
that amnesic patients perform at the same



P1: JZP

CUFX212-14 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 17:11

computational models of implicit learning 415

level as normal controls when asked to clas-
sify strings as grammatical or not, but are
impaired when asked to discriminate be-
tween familiar and novel instances (or frag-
ments) of the strings. These results suggest
that the processes that subtend declarative
and nondeclarative memory depend on sep-
arable brain systems respectively dedicated
to representing either information about the
specific features of each encountered ex-
emplar, on the one hand (the hippocam-
pus and related structures), and informa-
tion about the features shared by many
exemplars, on the other hand (the neo-
cortex).

In this case also, however, computational
modeling often casts the empirical findings
in a different light. For instance, Kinder
and Shanks (2001) were able to simulate
the observed dissociations by tuning a sin-
gle parameter (the learning rate) in an SRN
trained on the same material as used in the
behavioral studies and therefore concluded
that a single-system account is in fact suf-
ficient to account for the data. The finding
arises from the fact that the classification
task and the recognition task were based
on different test stimuli. The classification
test consisted of new grammatical and new
ungrammatical strings. The recognition task
consisted of old grammatical and new gram-
matical material. The discriminations turned
out to be differentially sensitive to changes
in learning rate.

Not all learning by people consists of
gradual change in sensitivity to distribu-
tional statistics, however. People consider
possibilities and test hypotheses. The mod-
els overviewed in this chapter only function
to model reality as it actually is. In the terms
of Perner (1991), the models constitute “sin-
gle updating models.” As new information
comes in, the model updates itself in an at-
tempt to match reality more closely. The
weights try to match the statistical struc-
ture of the world and the input units the
occurrent stimulus. People can, however,
in Perner’s terms, consider multiple mod-
els of the world – the real and the possible
or the counterfactual. Our ability to engage
with multiple models underlies much of our

explicit learning. Integrating implicit and ex-
plicit learning processes in a single model
certainly deserves more work, following the
example of Sun (2002).

5.3. Conscious versus Unconscious
Knowledge

As discussed in the Introduction, there is
no sense in which current computational
models can say much about the distinction
between conscious and unconscious knowl-
edge as observed in implicit learning tasks
or, for that matter, in any other task (but see
Dehaene et al., 2003 and Mathis & Mozer,
1996, for interesting attempts). Neverthe-
less, there have been a few attempts at cap-
turing the functional consequences of the
distinction in terms of performance on dif-
ferent tasks (e.g., Sun, 2002, as discussed
earlier). For instance, the SRN model as
it stands fails to distinguish between antic-
ipation and prediction responses, yet this
difference is at the heart of the difference
between the (largely implicit) facilitation
observed when processing a sequence in the
context of the SRT task and the (largely ex-
plicit) performance of participants asked to
produce the same or a different sequence
in the subsequent generation task. Destre-
becqz and Cleeremans (2003) sought to ad-
dress this limitation of the SRN by combin-
ing it with an auto-associator, so as to reflect
the fact that people’s task during the SRT
task merely consists of mapping the current
stimulus onto the correct response, whereas
in the generation task, they are expected
to predict the location of the next element.
The model was successful in capturing hu-
man data obtained over a range of conditions
that either facilitated or promoted the ac-
quisition of conscious knowledge. Likewise,
Destrebecqz (2004) was able to capture the
effects of manipulating orientation to learn
and information both in an SRT task and on
the subsequent generation task by pretrain-
ing an SRN to different degrees, thus reflect-
ing the idea that differences in availability
to consciousness in this task reflect differ-
ences in the strength of the stored represen-
tations.
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6. Conclusions

Implicit learning has proven to be a rich do-
main not only for the exploration of the
differences between information process-
ing with and without consciousness, but
also for the development of computational
models of the mechanisms involved in ele-
mentary learning. Because implicit learning
situations typically involve incidental in-
structions, the mechanisms of change in
such situations necessarily involve unsuper-
vised processes that characterize learning
as a byproduct of information processing
rather than as hypothesis-driven. Because
the resulting knowledge is typically difficult
to express, the most successful models all
share the characteristic that they only in-
volve elementary, associative learning mech-
anisms that result in distributed knowledge.

Based on the principles of successful
models of implicit learning, it is appealing
to consider it as a complex form of prim-
ing whereby experience continuously shapes
memory and through which stored traces
in turn continuously influence further pro-
cessing. Implicit learning studies suggest that
such priming is far more interesting than the
mere reinstatement of specific past experi-
ences: The processes that produce it lead to
quasi-abstract knowledge structures that al-
low the interesting generalizations that are
at the heart of implicit learning.

Finally, although both fragment-based
and neural network models make it clear
how sensitivity to the distributional prop-
erties of an ensemble of stimuli can emerge
out of the processing of exemplars, they dif-
fer in whether they assume that the shared
features of the training materials are repre-
sented as such or merely computed when
needed. This locus of abstraction issue is a
difficult one that is unlikely to be resolved
by modeling alone. Thus, it appears that the
knowledge acquired through implicit learn-
ing is best described as lying somewhere on a
continuum between purely exemplar-based
representations and more general, abstract
representations – a characteristic that neural
network models have been particularly apt
at capturing. Further research is needed to

develop unified models of implicit learning
and to gain insight into the computational
principles that differentiate conscious from
unconscious processing.

Appendix

The equations for the two main chunk-
ing models in the implicit learning liter-
ature, the Competitive Chunker (CC) of
Servan-Scheiber and Anderson (1990) and
the PARSER model of Perruchet and Vinter
(1998), are presented here.

Competitive Chunker

CC perceives a stimulus by successively
chunking together the basic components of
that stimulus until a single chunk represents
it. So, using brackets to denote a chunk, the
exemplar “MTVR” might be perceived at
first as “MTVR,” that is, as “(M)(T)(V)(R),”
then “(MT)VR,” then “(MT)(VR),” and fi-
nally “((MT)(VR)).” Once a stimulus is fully
chunked, it is said to be maximally familiar,
or memorized.

Initially, CC is given elementary chunks,
for example, letters. Each chunk has a
strength. Strength is increased by one unit
every time the chunk is used or recreated.
However, strength decays with time. At any
point in time, the strength of a chunk is the
sum of its successive individually decaying
strengthenings:

strength = �iT−d
i (14.1)

where Ti is the time elapsed since the ith
strengthening, and d is the decay parameter
(0 < d < 1).

Given “MTVR,” it will consider all pos-
sible combinations of two adjacent exist-
ing chunks as possible new chunks, that is,
“MT,” “TV,” and “VR.” Each possibility has a
support, given by the sum of the strengths of
each of its subchunks. The probability that
a new chunk will be formed is given by:

(1− e−c∗support)/(1+ e−c∗support) (14.2)
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where c is the competition parameter, c > 0.
Only one new chunk is formed at a time.
Thus, the three chunks “MT,” “TV,” and
“VR” will compete with each other to be cre-
ated. If “MT” is formed as a chunk, next time
the stimulus is seen, possible new chunks are
“MTV,” and “VR,” which will compete to be
formed by the same process.

When a stimulus is presented, the mere
existence of a chunk that matches part of the
stimulus does not mean it will be retrieved.
The probability of retrieving a chunk is given
by equation (2), the same equation as for
chunk creation. Thus, it may be that two
competing chunks are retrieved, for exam-
ple, both “MTV” and “VR”. In that case,
the stronger chunk wins. The greater the
value of c, the more likely it is that chunks
will be retrieved, and hence the greater the
probability of competition. After a first pass,
another pass is made to see if the exist-
ing chunks can be perceived as higher-order
chunks. At a certain point, no further chunks
are retrieved. At this stage, if the resulting
percept is not one single chunk, a further
chunk may be created, as described.

The familiarity of a stimulus is given by
the number of active chunks resulting from
the perceptual process, for example:

familiarity = e1−nactive (14.3)

This familiarity value can then be used to
classify strings as grammatical, old, and so
forth.

Parser

Like CC, PARSER begins with a set of
primitives, for example, letters. When pre-
sented with a string like “MTVRXX,” it ran-
domly considers perceiving groups of 1, 2,
or 3 primitives reading from left to right.
(PARSER differs from CC in parsing from
left to right: PARSER was originally used
to model the perception of auditory strings,
and CC was developed to model visual
strings.) For example, if it randomly pro-
duced “1, 3, 2,” it would see the string as
(M)(TVR) (XX). Because TVR and XX do
not exist as units, they become new per-

ceptual units and are assigned weights (like
CC’s strengths; e.g., all new units could be
assigned weights of 1). “M” already exists,
and its weight is incremented (by an amount
a). At each time step, all units are affected
by forgetting and interference. Forgetting is
simulated by decreasing all the units by a
fixed value f . Interference is simulated by
decreasing the weights of the units in which
any of the letters involved in the currently
processed unit are embedded (by an amount
i). Once new units have been formed, they
act in the cycle described just like primitive
units. All units can contribute to perception
as long as their weight exceeds a threshold
(t). As for CC, the number of chunks a string
is perceived as could be used to determine
its familiarity.

Comparison

CC and PARSER both postulate that learn-
ing occurs by chunking in which (a) the
use of a chunk increments its weight, and
(b) each chunk decays in weight on each
time step; they theoretically differ in that
(c) PARSER, but not CC, has an interfer-
ence process by which chunks that are not
used but that contain an element that was
used are decremented in weight. Because
of (a) and (b), both models correctly pre-
dict that with the strengthening of common
chunks and fading of infrequent ones, peo-
ple will come to perceive stimuli as made of
the commonly occurring chunks.

PARSER’s interference parameter has
two effects. One is that it tends to elim-
inate long items (long items are obviously
very prone to interference, because many
small items interfere with them). But per-
haps more importantly, it makes PARSER
sensitive to both forward transitional pro-
babilities (the conditional probability of a
second event given a first) and backward
transitional probabilities (the conditional
probability of a first event given a second).
CC is mainly sensitive to the frequency
of co-occurrence of two items next to
each other rather than transitional proba-
bilities. The SRN is sensitive to forward
but not backward transitional probabilities.
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Perruchet and Peereman (2004) showed
that in rating the goodness of nonwords as
being words, people were sensitive to both
forward and backward transitional probabil-
ities, consistent with PARSER but not with
the SRN or with CC. Further, in many sta-
tistical learning situations, people are sensi-
tive to transition probabilities (e.g., Aslin,
Saffran, & Newport, 1998). Conversely,
Boucher and Dienes (2003) found support
for CC over the SRN in artificial grammar
learning because people were mainly sensi-
tive to co-occurrence frequency. Thus, it is
likely that PARSER could fit the Boucher
and Dienes data by letting the interference
parameter go to 0, but that would be an ad-
hoc solution because PARSER’s characteris-
tic behavior is sensitivity to transition prob-
abilities. Nonetheless, PARSER provides a
framework for future research to establish a
meaningful way of indicating when its inter-
ference parameter should go to 0 and when
it should not.
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CHAPTER 15

Computational Models of Attention

and Cognitive Control

1. Introduction

The study of attention is central to un-
derstanding how information is processed
in cognitive systems. Modern cognitive re-
search interprets attention as the capacity
to select and enhance limited aspects of
currently processed information, while sup-
pressing the remaining aspects. Cognitive
scientists interpret attention as a solution
to a fundamental computational trade-off
that limited agents face in complex environ-
ments: on one side, the necessity to focus
on as much information as possible in or-
der to be vigilant and opportunistic, on the
other side, the necessity to optimize per-
formance by allocating, in a coherent and
continuous manner, cognitive resources to
the most salient and behaviorally relevant
events and actions (Allport, 1989). As such,
attention turns out not to be a unitary phe-
nomenon, but instead is present at many
stages of cognitive information processing,
involves many different brain regions, and
relates to almost all psychological processes.

This chapter reviews the existing liter-
ature on computational models of atten-

tion, with the aim of fleshing out the
progress that has been made in elucidating
the core mechanisms of attentional modu-
lation and attentional control. The chapter
starts with a description of work that fo-
cuses on visual selective attention and the
computational mechanisms that exist at the
site of attentional influence within visual
perceptual pathways. Subsequent sections
focus on work at the intersection of atten-
tion and executive control, which empha-
sizes the mechanisms by which goal-driven
attentional control signals are represented,
shaped, and propagated according to the
various constraints and dynamics of task pro-
cessing. In the concluding section, the focus
is on the contrast or continuum between
attentional control and automaticity, an is-
sue that becomes crystallized when examin-
ing the distinctions between, or transitions
from, novice to expert cognitive task perfor-
mance.

It is important to begin with a caveat –
this chapter is not intended to be compre-
hensive or exhaustive in the coverage of
computational cognitive modeling work on
attention. Instead, the goal is to provide a

422
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road map to the relevant literature, high-
lighting example models that best reflect the
core mechanistic principles that are emerg-
ing from recent research or that illustrate
new directions in which the field is headed.
Moreover, the coverage is admittedly biased
toward connectionist or neural network
models. The reason for this bias is not only
due to the expertise of the authors, but also
to an overarching interest in computational
models that have the most potential for
integrating the large emerging corpus of lit-
erature, arising not only out of cognitive be-
havioral research, but also cognitive neuro-
science and animal neurophysiology studies.
Traditionally, this approach has been most
closely aligned with connectionist/neural
network models, although recent trends
suggest that this traditional dichotomy
between connectionist and symbolic mod-
els is beginning to blur (e.g., Anderson
et al., 2004).

Nevertheless, it is still our belief that
models that make strong attempts to in-
corporate as many core principles of neu-
ral information processing and computation
as possible are the ones most likely to ex-
plain empirical data regarding attentional
phenomena across the widest range of ex-
planatory levels, from single-cell neurophys-
iology to observable behavior. Although this
philosophical bias is reflected throughout
the chapter, influential examples are also
reviewed from work in symbolic, hybrid,
or production system modeling, as well as
more abstract mathematical models. Read-
ers interested in learning more about both
neurally oriented models of attention and
symbolic ones are directed toward the many
additional reviews of this literature aris-
ing from a variety of different theoreti-
cal perspectives and focus (i.e., Anderson
et al., 2004; Itti & Koch, 2001; O’Reilly &
Munakata, 2000).

2. Visual Attention

When we observe and interact with our en-
vironment, the focus of what we are attend-
ing to constantly changes. There are a variety

of theoretical views regarding why attention
selectively focuses on some aspects of the
environment and away from others. Perhaps
the oldest argument is that our processing
capabilities are limited whereas the compu-
tational demands of processing visual input
are huge. Under this account, the role of at-
tention is to filter this spatiotemporal stream
of information to a manageable size (Broad-
bent, 1958; Mozer, Sitton, & Pashler, 1998).
A second theoretical argument regarding se-
lection in visual attention is that not all of
the information present in the visual envi-
ronment is equally relevant at a given point
in time. Under this account, the role of at-
tention is to quickly detect, orient, and select
the aspects of the visual environment that
are most informative or of greatest relevance
at the time, so as to produce efficient and
optimized perceptual processing and subse-
quent behavior (Chang et al., 2001; van der
Heijden & Bem, 1997). Yet, a third theoret-
ical perspective is that the primary role of
visual attention is to solve the binding prob-
lem: to produce a coherent interpretation of
the visual environment based on integration
of visual features into a unified whole. Un-
der this account, selective attention enables
visual perceptual processing to be concen-
trated on a restricted set of visual features
to enable these to be correctly bound to-
gether into higher-level object representa-
tions (Treisman, 1999; Treisman & Gelade,
1980). And, lastly, a more recent theoretical
view is the biased competition framework,
which postulates that attention should be
interpreted primarily as an emergent phe-
nomenon of activation dynamics arising in a
system in which inhibitory competition and
constraint satisfaction is a ubiquitous com-
ponent of the network (Desimone & Dun-
can, 1995; O’Reilly & Munakata, 2000).

Regardless of the particular theoretical
perspective one adopts, there is clearly a
consensus among theorists that: (1) atten-
tion is a core component of visual percep-
tual processing; (2) focus of attention is de-
termined by an interaction of bottom-up
processes that compute the “importance”
of visual stimuli and top-down processes
that modulate visual processing according
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to goals and intentions; and (3) top-down
processes can operate by directing attention
either to locations in space or to specific ob-
jects or object features in the visual field.

A number of theories of visual attention
have been implemented in computational
models. The design and scope of the exist-
ing computational models of visual attention
vary widely and are determined by the prob-
lems they are meant to resolve. Some mod-
els were built to explicitly test specific as-
pects of existing theories of visual attention
or to account for empirical data that apply to
specific experimental domains, such as stim-
ulus filtering, visual search, and perceptual
cueing (Cave, 1999; Deco & Zihl, 2001a;
Heinke & Humphreys, 2003; Humphreys &
Mueller, 1993; Mozer et al., 1998; Phaf, Van
der Heijden, & Hudson 1990; Wolfe, 1994).
Other models were particularly geared to-
ward explaining the mechanisms underlying
particular neuropsychological deficits, such
as attentional neglect (Cohen et al., 1994;
Deco & Rolls, 2002; Heinke & Humphreys,
2003). Still other models were designed pri-
marily from a neurophysiological perspec-
tive to account for basic aspects of early vi-
sual processing and identification of salient
locations in visual field (Itti & Koch, 2000;
Koch & Ullman, 1985; Lee et al., 1999;
Parkhurst, Law, & Niebur, 2002) or to un-
derstand the core neurobiological mecha-
nisms involved in attention (Braun, Koch, &
Davis, 2001; Hamker, 2003). Finally, some
models were built primarily from a machine
learning rather than cognitive, neuropsycho-
logical, or neurobiological perspective, such
as advancing the development of computer
vision systems (Tsotsos et al., 1995). Rather
than detailing each one of these models, the
following subsections focus on what might
be considered a “consensual” model that
contains core features common to many of
the specific implementations.

2.1. The Base Model

Computational models of visual attention
share a very similar overall organization,
which follows at least coarsely the struc-
ture and organization of the visual percep-

Figure 15.1. Base model depicting core
elements of the visual system and their
connections, within which attention is
implemented.

tual system. This commonality enables the
description of a core consensual model ar-
chitecture, consisting of a set of primary cog-
nitive elements that are present in different
forms throughout a variety of computational
models. The base model provides a joint ref-
erence for reviewing and comparing specific
computational solutions proposed by the in-
dividual models. It consists of topograph-
ically and hierarchically organized feature
maps, a spatial map coding locations, and
two modules providing top-down bias by
coding target location and content, respec-
tively (Figure 15.1).

Feature maps are postulated to code for
specific properties of visual input. Such fea-
ture maps were first proposed in the influ-
ential feature integration theory of atten-
tion (Treisman, 1999; Treisman & Gelade,
1980), which assumed that basic visual fea-
tures are represented in separate topograph-
ical maps, each of them linked to a master
map of locations that allows later binding
of individual features for further processing.
Feature maps, at least in their initial compu-
tational implementation, were assumed to
code low-level basic features of visual input,
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such as color, orientation, and intensity
(Koch & Ullman, 1985) that could be rep-
resented in primary visual cortext (VI). Yet,
it has also been appreciated that such maps
might as well be used to code progressively
more complex features, such as motion,
shape, and object identity, depending on the
focus and complexity of the model. In cog-
nitive neuroscience terms, these maps rep-
resent different stages of visual analysis of
the ventral, or “what,” stream, starting from
the primary visual cortex to the inferotem-
poral cortex (IT). Although the initial fea-
ture maps coding low-level features are sup-
posed to be independent, their combination
to ever higher levels of representation can
be seen as comprising a hierarchical system
dedicated to object recognition (Mozer et
al., 1998). The maps are topographically or-
ganized with the nodes in the initial maps
having relatively small reception fields, and
the nodes in the higher feature maps hav-
ing large receptive fields, ultimately cover-
ing the whole visual field.

Whereas feature maps deal with what is
present in visual input, spatial maps code
information about where visual input is
present. Such coding occurs through topo-
graphical representation of locations in the
visual field. In feed-forward models of atten-
tion, the spatial map also frequently serves as
the map that explicitly codes spatial atten-
tion, earning the name saliency map (Koch
& Ullman, 1985), activation map (Wolfe,
1994), or simply attentional map (Mozer
et al., 1998). The spatial map is supposed
to be instantiated in the dorsal, or “where,”
stream of visual processing, most frequently
in the posterior parietal (PP) cortex. Feature
maps and the spatial map are densely inter-
connected. Most models assume each of the
feature maps to be connected to the location
map. In many models, these connections
are unidirectional, leading primarily from
low-level feature maps to the spatial map
(e.g. Koch & Ullman, 1985); however, other
models include recurrent feedback connec-
tions, from the spatial map back to low-level
feature maps (e.g., Deco, 2001).

The feature maps and spatial map repre-
sent the most frequent core of the model,

where attentional influences emerge and
are expressed. To also model the top-down
influence on attention, most models as-
sume modulatory connections from struc-
tures coding goals and intentions. In the base
model, the top-down modulatory effect is
exerted by an element that is holding a rep-
resentation of target location and an element
that is holding a representation of target con-
tent. The former projects to the spatial map
and the latter to the feature maps. Both are
assumed to be located in the anterior part
of the brain (i.e., in the prefrontal cortex
[PFC]), closely connected to cognitive con-
trol processes and the production of goal-
directed behavior.

2.2. Explicit Computation and
Representation of Attention

Within the architecture of the base model,
various computational models of attention
can be implemented, differing significantly
in the pattern of connectivity, the functional
roles played by individual components, and
the ensuing dynamics and behavior of the
model. One conceptualization of attention
assumes it is a distinct, explicitly computed
and represented feature of the system en-
abling selection and filtering of visual input
for further analysis. Attentional dynamics
are assumed to evolve through two clearly
defined steps. In the first step, stimulus fea-
tures are used to compute and identify most
salient locations in the visual field, repre-
senting the focus of attention. In the second
step, the representation of spatial attention
is used to focus the flow of visual informa-
tion in an object processing stream.

Computation of visual attention using the
saliency map was first explicitly proposed
in the model of Koch and Ullman (1985)
and led to a number of similar implementa-
tions in other models (Mozer et al., 1998;
Wolfe, 1994) as well as more detailed re-
finements and additions to the original pro-
posed mechanisms of feature extraction and
saliency computation (Itti & Baldi, 2005;
Itti, Koch, & Niebur, 1998; Lee et al., 1999).
As proposed by Koch and Ullman (1985;
see Figure 15.2), the visual input is first



P1: IBE

CUFX212-15 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 17:12

426 de pisapia, repovš, and braver

Figure 15.2. A schematic representation of the saliency map based on the
computational model of visual attention initially proposed by Koch and Ullman
(1985) and fully implemented by Itti et al. (1998).

decomposed by several feature detection
mechanisms working in parallel at differ-
ent spatial scales. Resulting individual fea-
ture maps represent the salience of loca-
tions in regard to the basic visual features
being represented. The key element in de-
termining the saliency of a location is not
the intensity of the feature, but rather its
local contrast judged in the context of the
rest of the visual field. A red dot is more
likely to attract attention than a uniform
field of red. Furthermore, a particular red
dot is more likely to attract attention when

it is the only red dot in the visual field than
when it is just one of many in a field of red
dots. To take both properties of attention
into account, the computation of saliency is
proposed to be based on both short-range
center-surround differences, which identify
the presence of local contrast, as well as
long-range spatial normalization, which es-
timates its importance in regard to the en-
tire visual field. Resulting activity in feature
maps is combined in “conspicuity maps” for
each feature type and summed into a sin-
gle, “master” saliency map coding overall
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saliency of stimuli within a given location in
a topographical representation of the visual
field. In this manner, the model collapses
the representation of saliency over specific
visual features, making the map blind and
indifferent to which feature caused specific
locations to be salient.

Once saliency is computed, the model
has to be able to select a single location
on which to focus attention. This step in
ensured through a separate winner-take-all
(WTA) network. Receiving topographical
input from the saliency map and implement-
ing strong global inhibition, the WTA net-
work quickly settles on the winning neuron
(or a population of them) receiving highest
activation from the saliency map and repre-
senting the focus of attention.

Given a static display, the described net-
work would compute and lock on to the
most salient location in the visual field. To
be able to disengage from the winning lo-
cation and explore other salient locations,
the model has to incorporate an “inhibition
of return” (IOR) mechanism that temporar-
ily inhibits the activity in the winning lo-
cation. This inhibition then enables the sec-
ond most active location in the saliency map
to drive the shift in activity in the WTA
network, representing a new focus of at-
tention. Such IOR in covert shifts of atten-
tion has been experimentally well demon-
strated (Kwak & Egeth, 1992; Posner, Co-
hen, & Rafal, 1982). In the Itti and Koch
(2000) implementation of the model, it is
realized through inhibitory feedback from
the WTA network back to the saliency
map. Other models have been developed
that use similar types of active or passive
(e.g., fatigue-like) inhibition mechanisms
(Houghton & Tipper, 1996; O’Reilly & Mu-
nakata, 2000). Depending on the parame-
ters of the model, IOR enables a network
to sequentially select or search through a
number of the most salient locations in the
visual field before returning to the initial
one.

A number of implementations of the
saliency-based computational models have
shown it to be successful in predicting hu-
man performance in psychophysical exper-

iments and visual search tasks (Itti & Koch,
2000; van de Laar, Heskes, & Gielen, 1997),
as well as accounting for the pattern of hu-
man eye movements made during the view-
ing of images containing complex natural
and artificial scenes (Parkhurst et al., 2002).
For an excellent review of saliency-based
computation of attention, see Itti and Koch
(2001).

Once attention is focused on a specific
location, the mechanism of guiding further
visual processing needs to be specified. The
most straightforward solution uses saliency
representation as a gating signal modulat-
ing the flow of information from lower-level
feature maps to higher levels of visual anal-
ysis. In a model proposed by Mozer et al.
(1998), the information coming from low-
level feature maps is multiplied by the activ-
ity in the topographically equivalent area of
the saliency map, limiting further process-
ing to salient locations while attenuating the
rest. Significantly more complex solutions
are based on a dynamical routing approach
proposed by Olshausen, Anderson, and Van
Essen (1993) and recently instantiated by
Heinke and Humphreys (2003) in their Se-
lective Attention for Identification Model
(SAIM). The routing and SAIM models
build on the idea that translation-invariant
pattern recognition can be achieved by an
attentional window that can be moved over
the visual field, focusing on its relevant sec-
tions and feeding that partial image to a
recognition network. The task is realized by
a complex network of connections (termed
the “contents network”) that map retinal in-
put through a number of stages to a smaller
“focus of attention” (FOA) layer. The ap-
propriate mapping is ensured by a selection
network (spatial map analogue), whose mu-
tually inhibitory units activate only those
connections of the contents network that
project from the currently relevant part of
the input layer to the FOA layer. In this
manner, the network not only gates the vi-
sual input, but also translates it to a single
layer for further analysis. Both models are
successful in accounting for a number of em-
pirical findings relating to both normal as
well as pathological attentional phenomena.
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For a review, see Heinke and Humphreys
(2005).

Although bottom-up influences are im-
portant in drawing our attention to objects
in the environment, models of visual atten-
tion must also appropriately account for vol-
untary top-down control. The models con-
sidered so far allow for both spatially based
as well as feature-based top-down control
of attention. Intentional guidance of spa-
tial attention is presumed to occur via top-
down inputs to the spatial map, which ei-
ther bias or directly determine its pattern
of activation. On the other hand, feature-
or object-based attention is assumed to be
brought about by biasing the computation
of saliency. Searching for red horizontal bars
in the visual scene would, for instance, en-
tail selectively enhancing the contribution of
feature maps coding red color and horizon-
tal orientation to the master map of saliency,
leading to the highest buildup of activity in
location(s) where a conjunction of both fea-
tures is present (Wolfe, 1994). As recently
shown by Navalpakkam and Itti (2005), top-
down control of attention using biased com-
putation of the saliency map is not limited
to simple features. Using learned sets of low-
level features related to different views of an
object, their model was successful in locat-
ing complex visual objects in natural scenes.

2.3. Interactive Emergence of Attention

An alternative approach to conceptualizing
attention has been to consider it an emer-
gent property of the system evolving seam-
lessly through competitive interactions be-
tween modules. Dense bidirectional (i.e.,
recurrent) connections between processing
modules enable the active representation in
any module to be the source or the target of a
biasing signal affecting the local competition
between representations, hence, the name
“biased competition models.” This bidirec-
tional connectivity enables a dynamic set-
tling process to occur that stabilizes on a
coherent representation expressed through-
out the system. Attention is not computed
explicitly through distinct steps but rather
emerges continuously as a property of ac-
tivation dynamics in the system (Desimone

& Duncan, 1995). The initial proposal for
these types of models can be traced to Phaf
et al. (1990) and Desimone and Duncan
(1995), with more recent models being pro-
posed by Ward (1999) and Deco (2001;
Deco & Rolls, 2005a).

Representative biased competition mod-
els of visual attention have been developed,
described and explored by Deco and col-
leagues (Deco, 2001; Deco & Lee, 2004;
Deco, Polatos, & Zihl, 2002; Deco & Rolls,
2002, 2003, 2004, 2005a; Deco & Zihl,
2004). The simplest instantiation of the
model assumes existence of three processing
modules, V1, PP, and IT, respectively corre-
sponding to low-level feature maps, the spa-
tial map, and the high-level feature map in
the base model (Figure 15.3). Each module
consists of a number of units, each repre-
senting a pool of neurons with similar prop-
erties. The activity of each unit is described
using mean field approximation, where each
unit i is characterized by its activation xi , re-
flecting an average firing rate of the pool and
an activity level of the input current Ai . The
input-output relationship is defined as:

xi = F (Ai (t)) = 1
Tr − τ log(1− 1/τ Ai (t))

in which Tr denotes the cell’s absolute re-
fractory period (e.g., 1 ms) and τ stands for
the membrane time constant. The dynamics
of each excitatory unit within a module is
described by:

τ
δ

δt
Ai (t) = −Ai + aF (Ai (t))− bF (AI (t))

+ IB
i (t)+ IT

i (t)+ I0 + v.

The first term is a habituation decay term.
The second term represents the recurrent
self-excitation that maintains the activity of
the cells and mediates their cooperative in-
teraction within the unit (a = 0.95). The
third term represents a local inhibitory in-
put from the inhibitory unit providing the
basis for local competition between excita-
tory units within the module (b = 0.8). IB

i
denotes a specific bottom-up input from a
lower cortical module, whereas IT

i repre-
sents a specific top-down bias from higher
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Figure 15.3. Schematic representation of biased competition model (Deco, 2001). Units within V1
hypercolumns coding eight orientations at three spatial scales are connected to (PP) units
bidirectionally with Gaussian spatial distribution of weights. Units in IT are bidirectionally connected
to every unit in V1 with variable weights defined through supervised Hebbian learning rule. (Only
sample connections with various weights are shown.)

cortical modules. I0 denotes a spontaneous
background input, and v is an additive Gaus-
sian noise in the system.

The inhibitory unit integrates informa-
tion from all the excitatory units within the
module and feeds back nonspecific inhibi-
tion to all excitatory units in the module. Its
dynamics is defined by:

τI
δ

δt
AI (t) = −AI − c F (AI (t))

+ d
m∑

i=1

F (Ai (t)).

With τI = 7 ms, c = 0.1, and d = 0.1, the
first two terms describe decay and self-
excitation, respectively, whereas the third
term is a function of activities of all excita-
tory units within the module connected to
the inhibitory unit.

Input IS
i of any connected module that

provides either bottom-up input or top-
down bias is described by:

I S
i (t) = α

n∑
j=1

wi j F
(
AS

j (t)
)
,
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where AS
j denotes the activity level of the

source module unit, wi j denotes the con-
nection weight between source unit j and
target unit i , and 1/α reflects an attenu-
ation factor. Setting α = 1 for bottom-up
input and α = 0.6 for top-down bias pre-
vents the latter from dominating V1 units,
and allows lower level representations to
change the state of higher-order modules.
The V1 module represents the input layer
of the visual system and consists of a lat-
tice of 33× 33 hypercolumns topographi-
cally covering a 66- × -66-pixel scene. Each
hypercolumn consists of twenty-four excita-
tory feature detector units (pools) represent-
ing eight spatial orientations in three spatial
scales. The sensory input to the excitatory
units is computed using 2D-Gabor func-
tions, which act as local spatial bandpass
filters detecting the presence of sensory in-
put in a given orientation at a given spa-
tial scale in the relevant location of the pre-
sented input image (for additional details,
see Deco, 2001 and Lee, 1996). An addi-
tional inhibitory unit per scale is used to
mediate global normalization within units
at each scale.

The PP module encodes spatial location
in the visual field, representing the function
of the PPC. It consists of a lattice of 66× 66
units, each of them receiving input from a
limited spatial neighborhood of V1 hyper-
columns. To capture the Gaussian-like na-
ture of the spread of activation, the mutual
connection weights between the units at hy-
percolumn pq in V1 and unit ij in PP are
given by equation:

wpqi j = Ce−
(i−p)2+( j−q)2

2σw2 − B.

With C = 1.5, B = 0.5, and σw = 2, the re-
sulting center-excitatory, surround-inhibi-
tory weight profile connects bilaterally each
PP unit to a spatial neighborhood of about
5× 5 V1 hypercolumns, giving an effective
receptive field of about 17 pixels in diame-
ter. Local competition between PP units is
ensured by one inhibitory unit that receives
input from all excitatory units and inhibits
all units uniformly, enabling WTA compe-
tition within PP.

The IT module encodes object class or
categorical information corresponding to the
function of inferotemporal cortex. IT con-
sists of a finite set of units, each receiving
connections from all units in V1 and return-
ing attenuated symmetrical reciprocal feed-
back connections to V1. Similarly to PP, lo-
cal competition is ensured by an additional
inhibitory unit receiving excitatory input
from and returning inhibitory feedback to all
excitatory units in IT. Connection weights
between V1 an IT are trained by supervised
Hebbian learning. During learning, a target
image is presented as input to V1 whereas
top-down bias is imposed on PP unit coding
for location of the target and IT unit cod-
ing for its identity. The network is allowed
to settle into a steady state, after which all
the relevant V1–IT connection weights are
updated using Hebbian learning rule:

wi j = wi j + ηF
(
AV1

i (t)
)

F
(
AI T

j (t)
)

where η denotes the learning coefficient
and t is large enough to allow for conver-
gence. Having successfully learned to per-
form translation invariant object recogni-
tion, the model can operate in three modes:
preattentive mode, spatial attention mode,
and object attention mode (Deco, 2001;
Deco & Lee, 2004). In the preattentive
mode, no top-down biasing signal is pro-
vided. The perceptually most salient object
in the visual field will cause a stronger in-
put from feature maps to the representation
of its location in the spatial map. This en-
hanced activation of the relevant location in
the spatial map is then fed back to the fea-
ture maps, biasing their activation and thus
the flow of information to the object recog-
nition pathway. The recurrent, bidirectional
flow of activity occurring in biased compe-
tition models results in a positive feedback
loop that leads to iterative convergence on
a single winning representation both in the
spatial map as well as in the feature maps
and the object identity module. This win-
ning representation effectively marks both
the position and the identity of the most
salient object in the visual field.

In the spatial attention mode, object
recognition at the attended location is
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implemented through preselecting a partic-
ular location in the representation of tar-
get location, presumably hosted in the dor-
sal PFC, which provides a top-down bias
causing the activation of appropriate units
in the spatial map. Feedback connections
from the spatial map to the low-level fea-
ture maps enhance the activation of corre-
sponding units, acting as a spatial attention
beam. Excited by both the sensory input
and the top-down signal from the spatial
map, those units representing the features at
the attended location will provide a stronger
input to the related identity units in the
higher-level maps, enabling them to win the
local competition leading to identification of
the object present at the attended location.
In a model simulation, implementing a top-
down spatial bias to PP results in an early
differentiation of activity between the cell
assemblies coding the target and distractor
locations, respectively. The differentiation
spreads both to V1 and IT, causing the cell
assemblies coding the target object to be sig-
nificantly more active than the ones coding
the distractor object, signaling object iden-
tification.

The dynamics of the “object attention”
mode mirrors that of the “spatial attention”
mode. A biasing signal arising presumably
from the ventral PFC leads to activation
of the higher-level map units coding the
identity of the attended object. Feedback
connections to the low-level feature maps
enhance the activity of units coding visual
features of the attended object, effectively
“back-projecting” the response pattern asso-
ciated with the object across all retinotopic
locations in parallel. The units receiving in-
put from an appropriate visual stimulus will
resonate best with the feedback signals lead-
ing to their enhanced activation. Providing
stronger input to the units in the spatial map
that code the position of the attended object
will enable them to win the local compe-
tition, effectively completing visual search.
Monitoring the dynamics of the model sim-
ulation reveals that the local competition is
first resolved in the IT module, which then
drives the competition in V1 and PP mod-
ules in favor of the units corresponding to
the target object. The object is considered

found when competition is eventually re-
solved in PP.

Simulations using the biased competi-
tion model were found to be successful in
accounting for a number of empirical re-
sults in visual search (Deco & Lee, 2004;
Deco & Zihl, 2001b). For example, the
model showed that added difficulty of con-
straints in conjunction search tasks causes
the network to take longer to settle. Con-
gruent with behavioral findings, the times
for the network to settle were independent
of the number of distractors in a feature
set task, whereas the times in conjunction
search tasks were progressively longer with
increasing number of distractors. Further-
more, reaction time slopes related to differ-
ent types of conjunction search obtained by
model simulations were successful in pre-
dicting subsequent psychophysical investi-
gations (Deco et al., 2002). The model thus
demonstrated that some, seemingly serial
cognitive tasks may actually be a result of
neuronal dynamics in a fully parallel system,
bypassing the need for a dedicated imple-
mentation of a serial process guiding atten-
tional spotlight from one item to the other.

Introducing artificial lesions in the model,
enables testing of possible accounts of atten-
tional deficits caused by brain lesions. Selec-
tive damage to the right side of the PP mod-
ule reproduced some of the symptoms of the
left spatial hemineglect typically caused by
lesions to the right parietal cortex (Heinke
et al., 2002). Replacing global inhibition
with the local lateral inhibition enabled the
model to also account for object-based ne-
glect in which only the left side of the objects
in the visual field is not seen (Deco & Rolls,
2002). Additionally, it also provided novel
predictions about how patients with object-
based neglect might perceive objects when
they are joined with cross-links or brought
toward each other (Deco & Rolls, 2002).

2.4. Key Issues in Models
of Visual Attention

The present overview of visual attention
models offers only selected highlights of
some of the important progress being made
in recent years. Advances in understanding
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Figure 15.4. Two possible routes of top-down object attention. (A) In feedforward models, attention
is guided by biasing input from the low-level feature maps to the spatial map that gates the flow of
information to the higher levels of visual processing. (B) In biased competition account, the attention
is guided by propagation of bias over rich recurrent connections from a high-level object
representation to the low-level feature maps and through them, to the spatial map, ultimately leading
the network to settle in a state representing the target object and its location.

of the architectural structure of the visual
system have enabled the design of computa-
tional models that closely mimic the known
neurophysiology of vision and are able to
qualitatively match a wide variety of neuro-
physiological findings. They also agree with
behavioral results coming from the basic
experimental paradigms and with the data
from brain-damaged patients suffering from
attentional impairments. Nevertheless, de-
spite convergence in a number of areas, im-
portant dilemmas still remain, most of them
illustrated by the differences between the
two basic categories of attentional architec-
ture described earlier: feedforward versus bi-
ased competition (see Figure 15.4).

The core dilemma relates to the question
of representation of attention: Should atten-
tion be represented explicitly in a single or
perhaps in multiple spatial maps that code
saliency of visual areas, or should it be repre-
sented implicitly in the interactive dynamics
of the network? The first alternative is em-
bodied in the models of attention centered
around a feed-forward saliency map mecha-
nism, which can be traced back to the pro-
posal by Koch and Ullman (1985). In focus-
ing on the problem of effective computation
of saliency, these models have been effec-
tive in capturing the known neurobiology of

low-level visual processing, while simulat-
ing findings from the empirical visual search
and natural scene viewing, and providing a
successful architecture for various computer
vision applications.

The second alternative builds on the con-
ceptualization of attention as an emergent
property of activation dynamics. It relies on
rich recurrent connections between process-
ing modules that bias local competition be-
tween representations. Although successful
in replicating visual search findings, the true
strength of these models lies in their ability
to model the qualitative pattern of impair-
ments associated with neuropsychologically
based attentional disorders, such as the spa-
tial neglect syndrome (Deco & Rolls, 2002),
and in providing a coherent and seamless
neural architecture that relates perception
to action (Ward, 1999).

Both types of models exhibit a range of
specific strengths and weaknesses. Their fu-
ture development will depend on their abil-
ity to relate to the known brain anatomy
and physiology (Shipp, 2004). In this regard,
those models that incorporate a detailed
mathematical description of neuronal dy-
namics are already successful in replicating
and predicting spiking activity of single
neurons (Deco & Rolls, 2003, 2005b), as
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well as local population dynamics, as re-
flected in the hemodynamical response ob-
served with functional magnetic resonance
imaging (fMRI; Deco et al., 2004). Besides
the models presented here, there are also
other contenders providing alternative ap-
proaches that should be considered, among
them, Bundesen’s Theory of Visual Atten-
tion (TVA). It started as a formal mathe-
matical theory describing behavioral results
(Bundesen, 1990, 1998), but was recently
developed into a neural theory (Bundesen,
Habekost, & Kyllingsbaek, 2005), which
successfully applies the same basic equations
to provide both a quantitative account of
human performance on a set of attentional
experimental paradigms and an account of
a range of attentional phenomena studied at
the single cell level using electrophysiology.

Furthermore, the models of visual atten-
tion will also need to successfully scale up to-
ward the more complex visual tasks, includ-
ing higher-level cognitive processing (Deco
& Rolls, 2005a; Navalpakkam & Itti, 2005).
Moreover, to provide a comprehensive de-
scription of visual attention and to eliminate
any remnant of the “ghost in the machine,”
the models of attention in visual processing
will have to be related to those explaining
the ways in which top-down, goal-driven in-
tentions are represented, manipulated, and
controlled. These models have been devel-
oped and explored within the research of
cognitive control, which will be addressed
in the following section.

3. Models of Goal-Driven
Attentional Control

For many theorists, the terms executive con-
trol, cognitive control, controlled attention,
and executive attention are interchangeable
(and they will be used somewhat inter-
changeably here as well), referring to the
notion that sometimes attention appears to
be directed in a top-down, volitional fashion
according to abstract, internally represented
goals, rather than by detection or extraction
of specific perceptual features or objects.
Similarly, in some cases, attention appears
to have its effect in biasing the selection of

actions rather than inputs, or more globally,
in modulating whole task-processing path-
ways rather than specific components of per-
ception.

Cognitive control is often described in
opposition to automaticity. Automaticity
refers to the capacity of a cognitive system to
streamline well-practiced behavior, so that
task-relevant actions can be executed with
minimal effort. As a complement to auto-
matic behavior, cognitive control refers in-
stead to the effortful biasing or inhibiting
of sensory-motor information in the service
of novel and unpracticed goal-directed be-
haviors. Top-down attention is what arises
out of the neuronal activity shift guided by
cognitive control, and it is typically assumed
to be the product of biasing representations
(such as intentions, rules, goals, and task
demands) in the PFC that compete with
perceptually based representations in the
posterior cortex. Cognitive control is the
mechanism that guides the entire cognitive
system and orchestrates thinking and acting,
and top-down attention is interpreted as its
main emergent consequence.

Computational models seem best posi-
tioned to describe how top-down atten-
tional control is engaged during the course
of task processing and to indicate the con-
sequences of such engagement. Critically,
the explanations that arrive out of com-
putational models are explicitly mechanis-
tic in character, and they minimize the re-
liance on a hidden homunculus. Although
formal theoretical investigations in the study
of cognitive control have not advanced to
the same degree as those in visual selec-
tive attention, there have been a number
of computational models developed in this
domain. Many of these models adopt the
biased competition framework discussed in
the preceding section as a core architec-
tural assumption. Additionally, a primary
focus of most models has been to address
human experimental data, arising from ba-
sic cognitive performance, neuropsycholog-
ical impairment, and neuroimaging findings,
particularly regarding PFC function. This
may be because many of the core phenom-
ena of cognitive control relate to tasks most
easily examined in humans, although this
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Figure 15.5. J. Cohen’s model of the Stroop test (Cohen et al., 1990) This model provides
a minimal account of top-down attentional biasing effects emerging from prefrontal cortex-
based task-set representations.

has begun to change more recently (e.g.,
Miller & Cohen, 2001). In the next section, a
fundamental but minimal model that illus-
trates the core principles of cognitive con-
trol is described first, then other key cog-
nitive control models and the attentional
issues they address are discussed.

3.1. The Base Model

A basic model that illustrates the key hy-
pothesized mechanisms of attentional con-
trol is one developed by Cohen, Dunbar,
and McClelland (1990) to account for pro-
cessing and behavioral performance during
the classic Stroop test (Stroop, 1935) of se-
lective attention. The Stroop test may rep-
resent the paradigmatic example of the rela-
tionship and contrast between automaticity
and cognitive control. The basic paradigm
(although there have been many differ-
ent variants) involves processing of colored
word stimuli and selectively attending to ei-
ther the word name or ink color. Attention
is thought to be more critical for color nam-

ing than word reading, because the latter
skill is so highly overlearned and practiced
for most literate adults. The role of atten-
tion is especially critical for color naming
in incongruent trials in which there is a di-
rect conflict between the ink color and the
color indicated by the word name (e.g., the
word “GREEN” in red ink). In such a case,
cognitive control over attention must en-
able preferential processing in a weaker task
pathway (color naming) over a competing
and stronger but task-irrelevant one (word
reading).

The Cohen et al. (1990) model put forth
a highly influential framework for under-
standing the mechanisms of cognitive con-
trol and attention in the Stroop task. Crit-
ically, the model illustrates very simple
principles of biased competition in that at-
tention is just another source of input that
serves to strengthen the activation of hidden
layer units, which then leads to a shift in the
outcome of competition within a response
layer (see Figure 15.5). The original model
is feed-forward, although later models have
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used a fully bidirectional architecture
(Cohen & Huston, 1994; O’Reilly & Muna-
kata, 2000) that includes more natural lat-
eral inhibitory mechanisms. The model uses
a standard connectionist activation frame-
work in which the activation aj of each unit
j at time t is a logistic function of the net
input:

aj (t) = 1
1+ e−net j (t)

.

The net input from every unit i into unit j
is first computed as:

rawnet j (t) =
∑

i

ai (t)wi j

where wi j is the weight from each unit
i to unit j . This raw net input is then
transformed into a “cascade” form (McClel-
land, 1979) to simulate continuous time
dynamics:

net j (t) = ((1− τ )∗net j (t − 1))

+ (τ ∗rawnet j (t))

where τ is a constant.
Attention demands arise in the model be-

cause of the asymmetry of weight strengths
in the word-reading versus color-naming
task pathways. This asymmetry arises during
a learning phase in which the network re-
ceives greater practice in word reading than
color naming. Because the training phase
is accomplished with the backpropagation
learning algorithm (Rumelhart & McClel-
land, 1986), weight strengths change in di-
rect proportion to training experience. The
key attentional mechanism arises from the
task demand units, which represent top-
down attentional effects arising out of the
PFC. These units have a sensitizing effect on
hidden-layer activation, particularly for the
color pathway, such that with task demand
(attentional) input, the color hidden units
are maximally sensitive to stimulus input
and can compete strongly with activation
arising out of the word pathway. The mag-
nitude of the attentional effects depend on

the size of the weights from the task demand
units to the hidden layer, and they are com-
puted as a cascading net input defined as in
the previous equation.

Another core principle behind this
model, which was also present in the orig-
inal Norman and Shallice (1986) theory of
cognitive control, is that the attentional sys-
tem does not directly enable task process-
ing, but only modulates its efficacy. This can
be illustrated in the model in that the two
task pathways, representing word reading
and color naming, can each work in isolation
(i.e., for unidimensional stimuli) to produce
task-appropriate processing and responses,
even in the absence of attentional signals.
However, when both the word-reading and
color-naming pathways are simultaneously
engaged, competition between the two di-
mensions that occurs at the level of over-
lapping response representations produces
a demand for attentional intervention. This
demand for attention is most acute when
performing color naming under competition
conditions, because of the weaker strength
of the color pathway. Thus, in the absence
of attentional modulation, the word-reading
pathway will dominate processing competi-
tion at the response layer.

In contrast, when there is an attentional
influence from the task demand input on
the color pathway, this pathway can success-
fully compete with the otherwise stronger
word pathway by providing a stronger input
to the response layer from the color-naming
hidden layer. In the model, the mechanism
of attentional modulation occurs via a non-
linearity of the activation function in task-
processing units, such that, under the in-
fluence of top-down control, the activation
function will be in its most sensitive region
to be activated by bottom-up input, whereas
without such an influence, the sensitivity to
input is greatly reduced. Such top-down bi-
asing mechanisms cause the color pathway
to be more sensitive to the presence of color
stimuli. This effect leads to a shift in the
outcome of competition such that the color
dimension successfully drives the response.

It is important to note that in the Stroop
model, attention serves as an emergent
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influence in that the activity in the task de-
mand unit has a top-down biasing effect on
the information processing taking place in
the rest of the network. But this top-down
biasing role does not have any special prop-
erty, that is, these higher-level units are con-
ceptually identical to the other units in the
network. Therefore, attention is framed as
a very general property that can arise out
of the influence that representations of any
kind can have on processing of information
taking place in any other area.

A further postulate of the Cohen et al.
model of attentional control, which was
further elaborated in later papers (Cohen,
Braver, & O’Reilly, 1996; Cohen & Huston,
1994; Cohen & Servan-Schreiber, 1992),
goal-driven attentional biasing effects are
critically related to the functions of PFC.
In this region, goal-related contextual infor-
mation is thought to be actively represented
and feeds back into other regions of the pos-
terior neocortex, where it can exert a top-
down bias on competitive interactions oc-
curring among local populations (Miller &
Cohen, 2001). As a consequence of this
coordinative activity, the PFC can both im-
plement a top-down sustained attentional
function (to keep active and operate on
representations elsewhere in the brain) and
also an inhibitory one (to suppress task-
irrelevant pathways), but with this latter
function emerging as an indirect conse-
quence of excitatory attentional bias on local
competitions, rather than via a direct top-
down inhibitory signal.

3.2. Extensions and Alternatives
to the Base Model

This basic mechanism of PFC-mediated top-
down attentional biasing that forms the core
of the Stroop model has provided a relatively
comprehensive and influential account of
a range of empirical phenomena. More-
over, the same architectural framework has
been utilized to simulate a range of other
attentional phenomena in the Stroop task
and in other attention and cognitive control
paradigms (e.g., Barch et al., 1999; Braver

& Cohen, 2001; Carter et al., 1998; Cohen
et al., 1994; Dehaene & Changeux, 1991;
Servan-Schreiber et al., 1998). A recent ex-
tension of the basic model was utilized to
address fMRI data regarding the activation
of PFC and posterior cortical regions dur-
ing Stroop performance (Herd, Banich, &
O’Reilly, 2006). A key feature of this re-
cent model was the addition of a separate
task demand unit coding for general color-
related representations, both perceptual and
linguistic. In other studies using the Stroop
model as a theoretical framework, the pri-
mary motivation was to investigate the
cognitive impairments in schizophrenia, a
psychiatric condition believed to involve im-
pairments of cognitive control due to alter-
ations in the transmission of dopamine in
the PFC. Individuals with schizophrenia, for
example, are well known to show particu-
larly large interference effects in the Stroop
task, although recent data have suggested
that the empirical phenomena are more
complex than originally thought (Barch,
Carter, & Cohen, 2004). The Cohen et al.
(1990) model suggests that weakened at-
tentional representations in schizophrenia
patients impair the ability to successfully
bias competition in favor of color naming
over word reading, even when required by
task conditions (Cohen & Servan-Schreiber,
1992).

Given the role of the Stroop task as
the paradigmatic example of selective at-
tention, it is perhaps not surprising that a
variety of alternative computational mod-
els have been developed to explain atten-
tion in the Stroop. Yet, in many ways,
these alternative models, which have been
developed in both connectionist and sym-
bolic architectures, can be seen as being for-
mally very analogous in terms of attentional
mechanisms to the Cohen et al. (1990)
account. However, some of the models
have had different emphasis, such as to
try to explain Stroop phenomena within
more generic and comprehensive architec-
tural frameworks, such as modeling of visual
attention more broadly (Phaf et al., 1990)
and word reading (Roelofs, 2000), or to
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account for potential high-level strategic
variability (Lovett, 2002).

However, another recent model, put
forth by Melara and Algom (2003), may
provide an important conceptual alterna-
tive to the Cohen et al. (1990) Stroop
model. In this so-called tectonic model,
Stroop attentional effects are conceived of
as being due to a continuous process of
experience-dependent learning within two
memory-based structures (the name tectonic
for this theory, from the ancient Greek
word tektonikon, meaning to structure, is due
to this central feature of the model). One
structure is a short-term memory of the
dimensional uncertainty of the most recent
trials, where values along the word di-
mension are more varied perceptually than
values along the color dimension. The other
structure is a long-term memory of the di-
mensional unbalance, storing asymmetry in
the record of the observer’s past efficiency
in accessing the target dimension relative
to the distractor dimension. This structure
reflects the relative difficulty with which
the currently accessed representations can
be activated in long-term memory. Each
structure contributes to building up exci-
tation of the task-relevant dimension and
inhibition of the task-irrelevant dimension.
This complex model (see Melara & Algom,
2003, for equations and all technical details)
has been shown to account for an impressive
set of empirical behavioral phenomena that
extend from the standard Stroop findings
to other related effects, such as Garner
interference. Nevertheless, the differences
in the models may relate not to top-down
attentional mechanisms per se, but to their
interaction with a dynamically changing per-
ceptual representation. Further work should
be conducted to test the relationship be-
tween the Cohen et al. (1990) and tectonic
model framework more systematically.

Subsequent models have attempted to
expand the scope of the basic Stroop ac-
count by addressing the issue of the re-
lationship of attention to the related con-
struct of working memory. In particular,
Cohen, Braver, and colleagues developed

a model that integrated top-down bias-
ing with the well-established active mainte-
nance functions of PFC and also attempted
to more thoroughly capture both the fa-
cilitation and inhibition effects of atten-
tion (Braver, Cohen, & Barch, 2002; Braver,
Cohen, & Servan-Schreiber, 1995; Cohen
et al., 1996). In this model, the central
role of PFC is still to adapt the behav-
ior of the entire cognitive system to the
task demands via active representation of
goal-related context, but additionally, the
later models incorporated explicit mecha-
nisms by which PFC representations could
be actively maintained over time. Thus, in
these models, top-down attentional effects
could emerge following a delay interposed
after presentation of a contextual cue. A
further feature of this work was explicit in-
corporation of dopamine-mediated neuro-
modulation of PFC representations (Barch
& Cohen, 1999; Braver & Cohen, 2000;
Braver et al., 1995; Cohen, Braver & Brown,
2002). This dopamine modulatory input
served both to stabilize active maintenance
processes (via tonic dopamine activation in
PFC) and to enable appropriate updating of
PFC representations (via phasic dopamine
activation, synchronous with cues indicat-
ing a new task goal or context). Other re-
cent work has explored how norepinephrine
neuromodulation, in addition to dopamine,
might also play a particular role in modu-
lating attentional focus (Aston-Jones & Co-
hen, 2005; Usher & Cohen, 1999; Yu &
Dayan, 2005). More recently, a number of
other models have been developed by dis-
tinct groups of investigators to address sim-
ilar issues, but with more biologically de-
tailed and realistic computational architec-
tures (e.g., spiking units, distinct synaptic
currents; Brunel & Wang, 2001; Durste-
witz, Kelc, & Gunturkun, 1999). Neverthe-
less, these models have converged on similar
prinicples regarding the role of biased com-
petition mechanisms, active maintenance in
PFC, and also dopaminergic neuromodula-
tion in accounting for attentional effects in
Stroop-like and other selective attention and
working memory paradigms (for reviews of
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this work, see Cohen et al., 2002; Durste-
witz et al., 2000; O’Reilly, 2006).

Another key issue first addressed by the
Stroop model but expanded in subsequent
work is the role of inhibitory mechanisms
in attention. In the Stroop model and many
other biased competition based models of
top-down attentional control, inhibition ef-
fects emerge as an indirect consequence of
local competition, rather than as a direct ex-
plicit inhibitory mechanism. Yet, it is still
controversial as to whether or not top-down
attentional mechanisms might include a spe-
cial inhibitory function, at least in some
cases, such as in response inhibition tasks
(Aron & Poldrack, 2006). There have been
computational models developed that pos-
tulate a specialized role for direct atten-
tional inhibition mechanisms as an alterna-
tive to the standard biased competition ac-
count as a means of explaining distractor
suppression and negative priming type ef-
fects (Houghton & Tipper, 1996). However,
even in this model, there is no “central” top-
down inhibition mechanism; rather, the in-
hibitory effects are achieved by local posi-
tive and negative feedback circuits thought
to be widely distributed throughout the
brain.

A final area of recent activity in elabo-
rating on the computational mechanisms
of goal-driven attention concerns mecha-
nisms by which attentional biases arise or
are modulated during the course of task
performance. In particular, one influential
account has suggested that top-down at-
tentional biases are modulated in response
to mechanisms that monitor dimensions of
ongoing performance. Specifically, it has
been postulated that the anterior cingulate
cortex (ACC) detects response conflict
present during task performance and trans-
lates this conflict index into an output signal
that modulates attentional biases within lat-
eral PFC (Botvinick et al., 2001). The basic
hypothesis is that when high conflict occurs
between different motor or behavioral
responses, cognitive control mechanisms in-
tervene to bias the relevant response versus
the others, thus overcoming the conflict.
These interactions have been characterized

in terms of a single conflict-control loop
mechanism, where the performance of
certain task conditions leads to detection of
response conflict, which in turn leads to the
engagement or increase of cognitive control,
and in improved conflict resolution in
subsequent performance. However, a new
model proposes that ACC–PFC interactions
are described by two, rather than one,
distinct conflict-control loops (De Pisapia
& Braver, 2006). The first loop implements
a reactive control mechanism in which con-
flict detected in ACC over a short-time scale
transiently modulates PFC activity to adjust
within-trial attentional biases. The second
loop implements a proactive control mech-
anism, in which long-time scale conflict is
also detected in ACC and more slowly ad-
justs attentional biases in PFC across trials.
The model was used to successfully account
for detailed aspects of behavioral and brain
activation patterns in the Stroop task.

3.3. Multi-Tasking

The previous sections described computa-
tional models of attention that operate at
different levels of information processing,
from fine-grained influence on visual per-
ception to representations of goal informa-
tion actively maintained in working mem-
ory. An intriguing question that has recently
been garnering a great deal of theoretical in-
terest is whether there are even higher forms
of attention, such as those that can aid in
the selection of one out of many possible
tasks to perform. In particular, the question
is whether the attentional biasing effects dis-
cussed previously can operate not just at
the level of perceptual features (e.g., red vs.
green colors) or dimensions (color vs. word),
but that can also influence the activation of
whole task pathways over competing path-
ways. This issue becomes more clear when
considering multitasking situations, which
seem to approximate well the real-world
demands of everyday cognition. In the so-
called multi-tasking situations, more than
one task needs to be performed at a time,
either through simultaneous (i.e., nested or
interleaved) engagement or through rapid
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Figure 15.6. The Gilbert and Shallice (2002) model of task switching. This model is built on and
extends earlier connectionist models of the Stroop task (Cohen et al., 1990; Cohen & Huston, 1994).

sequential alternation. Such situations seem
to pose heavy attentional demands, and
therefore they provide an excellent test bed
for cognitive theories on attention at the task
or dimensional level, rather than at the fea-
tural level of the stimuli.

One particular focus has been on task
switching, an experimental paradigm requir-
ing rapid switching among two or more
tasks, in either an uncued-but-predictable or
cued-but-random sequence. One consistent
finding of such task-switching experiments
is that there are reliable and robust switch
costs; for example, performance is poorer on
a trial in which the task is switched, in terms
of both longer reaction times and a higher
percentage of errors, compared with when
the task is repeated. The original explana-
tion for this finding is that a special time-
consuming internal reconfiguration process
is required to switch between tasks, which
enables the engagement or “loading in” of
the appropriate task representations that can
bias attention appropriately during task per-

formance. However, an important question
is whether this task-set reconfiguration pro-
cess actually requires a dedicated mecha-
nism that enables the appropriate form of
attentional shift. A few theoretical models
have been developed that provide an ac-
count of the types of attentional control and
reconfiguration mechanisms involved in task
switching.

One influential theoretical account of
task switching that has been instanti-
ated as a computational model is that of
Gilbert & Shallice (2002; see Figure 15.6),
which adopted the basic interactive archi-
tecture used in later models of the Stroop
task (Cohen & Huston, 1994; O’Reilly &
Munakata, 2000). The network consists of
two separate input and output layers for
words and colors, and a task-demand layer.
In addition to top-down attentional ef-
fects, the task-demand units receive bottom-
up connections from the input layers and
the response layer. These bottom-up in-
puts allow for associative learning effects



P1: IBE

CUFX212-15 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 17:12

440 de pisapia, repovš, and braver

and item-specific priming based on past ex-
periences. The task-demand layer has one
unit for the color-naming task and one
unit for the word-reading task. Thus, the
model has the potential to implement task-
switching paradigms by shifting which task-
set unit is active. Lateral inhibition be-
tween task pathways provides a means for
top-down excitatory input to bias the out-
come of representational competition. Task-
demand units receive an input from a top-
down control input, which specifies which
of the two tasks the network has to execute
for a particular trial.

All units in the model compute acti-
vations in response to the weighted sum
of all incoming inputs, both top-down and
bottom-up. Thus, as in the Cohen et al.
(1990) Stroop model, there is no distinc-
tion between task-demand (attentional) in-
put and bottom-up perceptual signals. The
activations themselves are computed as in
the standard interactive activation equations
(McClelland & Rumelhart, 1981), where
the increase in activation for each cycle is
given by:

if the net input is positive:
�act = step∗net∗(max− act)

if the net input is negative:
�act = step∗net∗(act−min)

where step is the step size (establishing the
speed of the activation update in each cycle),
net is the net input, max is the maximum ac-
tivation value allowed, and min is the min-
imum activation value. A random Gaussian
noise is also added to the activation values
of each unit.

The core feature of this model is that
the task-demand units retain a residual level
of activation even after that task is com-
pleted. This type of mechanism implements
a version of the task-carryover account
(Allport, Styles, & Hsieh, 1994), which pos-
tulates that switch costs are due to interfer-
ence between this residual task-set activa-
tion and the engagement of a new task-set
representation corresponding to the cur-

rently relevant task. Importantly, however,
the model suggests that there is no spe-
cialized reconfiguration mechanism that is
only engaged on switch trials. Activation of
the relevant task-set representation occurs
in the same way on every trial; it is just that
on switch trials, there is increased compe-
tition between this new representation and
the residual activation from the previously
engaged task representation. Such compe-
tition does not occur on task-repeat trials
when the same task-set representation as the
previous trial is activated again.

A second important attentional mecha-
nism implemented in the Gilbert and Shal-
lice (2002) model is the bottom-up activa-
tion of task-set representations from features
of task stimuli. The model implements a
Hebbian (i.e., activity-dependent) learning
mechanism. The weights between the stim-
ulus input j and task demand units i are set
with the learning rate lrate according follow-
ing equation:

wi j = lrate ∗aj
∗ai

This equation does not establish an update
of the weights based on previous values, but
instead the weights are calculated as new at
the end of each trial, and the weights derived
only affect the model’s performance in the
next trial. This mechanism allows the learn-
ing of associations between an active task-set
representation and the particular stimulus
features present on a task trial. This learning
effect means that if such features are pre-
sented again on the subsequent trial, they
will have the ability to “prime” the previ-
ously associated task-set representation due
to strengthened associative weights.

Gilbert and Shallice (2002) applied their
model to a task-switching version of the
Stroop task (in which word reading and
color naming randomly alternate across tri-
als). The model was able to account for
a wide range of experimental phenomena,
including not only switch-cost effects and
their temporal dynamics, but also phenom-
ena related to item-specific priming effects
as well. Importantly, the model’s ability to
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account for task-related attention does not
rely on any type of specialized represen-
tations or mechanisms, but instead gener-
alized mechanisms of biased competition,
which play out not only in task-specific
processing layers but also within the task-
demand layer. Moreover, because the model
is fully bidirectional and interactive, atten-
tion effects are fully emergent and can arise
not only because of task-demand inputs, but
also via effects emanating from the input
level. However, one limitation of the Gilbert
and Shallice (2002) model is that it does
not address the question of whether task-
demand representations themselves involve
specialized content or coding schemes or
how such “global” representations develop.
This issue is taken up again in the concluding
section of the chapter.

The Gilbert and Shallice (2002) model
provides a useful starting point for under-
standing some of the core issues regarding
computational mechanisms of task switch-
ing. In the last few years, other researchers
have begun developing models that address
some additional key issues in this litera-
ture. One issue concerns the mechanisms of
task-set updating and advance task prepa-
ration and biasing. Some models have sug-
gested that updating and advance prepara-
tion may occur in an all-or-none manner,
but probabilistically across trials (Reynolds
et al., 2006), or across the preparation inter-
val (Sohn & Anderson, 2001). Interestingly,
the Reynolds et al. (2006) model also makes
contact with earlier models by postulat-
ing that dopamine neuromodulation is the
source of the task-set updating and mainte-
nance signal. In a second set of mathematical
models, Logan and colleagues have argued
that it is not necessary to postulate mecha-
nisms of advance preparation and that task
switching can occur purely retroactively as
a retrieval process driven by the target pre-
sentation (Schneider & Logan, 2005). A dif-
ferent issue that has been addressed is the
role of higher-order sequential processes in
task switching (Brown, Reynolds, & Braver,
2006). In this work, conflict-control loops
similar to those postulated in the previously

described models of ACC–PFC interactions
(i.e., Botvinick et al., 2001) adjust both at-
tentional biases and response speed across
trials in response to the experience of inter-
ference due to either task switches or the
processing of task-irrelevant features.

3.4. Dual-Task Coordination

A second important component of multi-
tasking arises in dual-task conditions, where
two tasks must be performed in an over-
lapping period of time, such that some co-
ordination or time sharing of processing re-
sources is needed. Within this latter domain,
there has been a great deal of interest in
the so-called psychological refractory period
(PRP) paradigm. In this dual-task paradigm,
the relative timing of the two tasks is strictly
controlled by manipulating the onset time
of the target stimulus for the second task
(termed T2) relative to the timing of the
first task stimulus (termed T1). The basic
finding is that that when the T2 onset time
is short (relative to T1 reaction times), this
causes an additional slowing of T2 reaction
time (but not T1), which is termed the PRP
effect. The primary theoretical interpreta-
tion of this effect is that there are certain
stages of task processing that are particu-
larly sensitive to dual-task overlap or inter-
ference and that some form of coordination
mechanism is invoked to “serialize” process-
ing as a means of minimizing this interfer-
ence (Pashler, 1994).

Logan and Gordon (2001) developed a
formal mathematical model that accounts
for dual-task situations and used the model
to extensively investigate the PRP effect.
They found that only a model with a ded-
icated attention-switching mechanism was
capable of fitting the behavioral data, thus
suggesting that some form of reconfiguration
of attention control takes place in overlap-
ping task situations. Specifically, according
to the model, a task-set refers to a partic-
ular set of control parameters that govern
strategic aspects of how task stimuli are
processed. When processing must rapidly
shift from one task to another, new control
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parameters have to be loaded, which may
take a fixed amount of time. Ironically,
as discussed earlier, this attention-switching
mechanism was not found to be neces-
sary to account for switch-cost effects in
explicit task-switching paradigms (Logan,
2005). This is because the model does not
assume any form of persistent storage of old
control parameters after a task trial has been
completed. In other words, according to the
model, task-set switching processes will only
affect performance latency when two tasks
are overlapping in time.

Kieras and colleagues (Meyer & Kieras,
1997) have also modeled PRP effects in
multitasking situations using the Executive-
Process Interactive Control (EPIC) sym-
bolic computational architecture. Their ac-
count of PRP phenomena assumes that
dual-task coordination is purely under stra-
tegic control and that any form of serial-
izing, time-sharing, or switching processes
are not mandatory for performance. Instead,
scheduling and task deferment is introduced
in PRP situations to avoid potential interfer-
ence or ordering confusions between tasks
(e.g., responding to T2 before T1). Task
deferment is accomplished by activation of
a time-consuming control mechanism that
implements lock and unlock commands on
T2 processing. Thus, the engagement of this
control mechanism is the source of PRP
effects. Nevertheless, a key aspect of the
model is that the point at which further
T2 processing is “locked-out” (and then “un-
locked” again) can depend on complex rela-
tionships between the two tasks and other
experimental demands. Such flexible defer-
ment implies an attentional control system
that is strategic and subject to adjustments
based on task experience. Typically, in sim-
ulations with the model, the primary deter-
minant of changes in task-scheduling and
deferment strategies is the presence of re-
sponse level conflict or cross-talk. Thus, al-
though as yet unexplored, the EPIC model
may provide an account of the PRP effect
that relies on dynamic conflict-control loop
mechanisms similar to that postulated in the
conflict monitoring account.

Other symbolic architectures, such as
ACT-R, have also addressed the issue
of dual-task coordination and PRP effects
(Byrne & Anderson, 2001). In the ACT-R
framework, the different modules – con-
taining production rules – are intrinsically
serial. Thus, in overlapping dual-task sit-
uations, ACT-R naturally implements a
task-processing bottleneck that can induce
PRP-type slowing. The inherent seriality of
ACT-R sets it apart from both EPIC and
other cognitive architectures in the treat-
ment of dual-task attentional control.

A final issue that is just beginning to
be explored is the more generic role of
task-scheduling processes during multitask
environments. The critical problem is that
many multitask situations require a continu-
ous and repeated inter-leaving of processing
across different tasks due to the tasks’ com-
plexity and duration. Thus, in addition to
the problem of time sharing, multitask co-
ordination in these situations also requires
mechanisms that can handle more com-
plex scheduling processes, such as interrup-
tion and time-dependent resumption. Such
complexity might seem to require a more
general-purpose high-level controller that
can carry out the appropriate scheduling
and coordination functions when needed,
across a wide variety of multitask situa-
tions. A recent model using the ACT-R ar-
chitecture has been used to examine the
functionality of a general purpose execu-
tive controller (Salvucci, 2005). The model
proposes that generic multitasking abilities
are accomplished through a goal-queuing
mechanism that sets time-based priorities
on the execution of different goals, and thus
allows effective scheduling within the con-
straints of a serialized goal-execution pro-
cess. The model was effectively applied to
the task of driving in a virtual environment,
with required control and monitoring of all
its subtask components. It seems clear that
this form of generic goal-queuing mecha-
nism may represent the highest form of
attentional control by specifying not only
how attention gets allocated to a partic-
ular task, but also when and with what
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priority the attentional allocation process
occurs.

3.5. Automaticity: Actions Without
Attention?

The general concept that behaviors exe-
cuted repeatedly become less demanding
and less effortful – a view that is clearly in
line with subjective experience – has been
studied at least since the dawn of modern
psychology (James, 1890). More recently,
this idea of automaticity has been consid-
ered to describe a specific mode of func-
tioning in the mind/brain after extensive
training in the execution of tasks. This au-
tomatic mode of processing enables perfor-
mance to be qualitatively more efficient, ro-
bust, and rapid (Posner & Snyder, 1975;
Schneider & Shiffrin, 1977). The key as-
pects that define automatic task process-
ing are: (1) a decrease in effort, (2) an in-
crease in speed along with practice, (3) no
dependency on voluntary control, and (4)
no interference with concurrent processes.
A hybrid symbolic-connectionist computa-
tional architecture (CAP2) that accounts for
these aspects can be found in Schneider and
Chein (2003). It consists of a network of
task-processing modules, each of which is a
connectionist network linked with a central
control system sending priority signals. The
key process in this framework that enables a
transition from controlled to automatic pro-
cessing is a reduction in the requirement
for such control signal intervention to en-
sure appropriate processing and selection in
the distributed network of task-processing
modules. Specifically, in the controlled pro-
cessing state, control signal input is required
for selection and amplification of the output
of task-relevant processing modules, such
that these outputs can be broadcast to other
modules (e.g., those involved in response
generation). In the automatic state, learning
has occurred that enables certain outputs of
a module to be coded as high priority, which
then enables transmission to other modules,
even in the absence of control system inputs.
Thus, the transition from controlled to au-

tomatic processing in this model can be seen
as a shift in whether attentional selection is
governed by top-down or bottom-up biasing
mechanisms.

One question that has been debated is
whether automaticity reduces or even stops
the demands of attention. The view taken in
connectionist modeling is that automaticity
does not completely shut off the require-
ment of attention, but simply reduces it. In
other words, the role of controlled attention
in task execution is not of the all-or-none
variety. Graded and continuous attributes
of automaticity, as well as of attention,
should instead be considered. In the Stroop
models of Cohen et al. (1990) described
earlier, color naming is considered in need
of attention. However, word reading, even
though considered to be automatic, also still
requires a top-down modulatory input from
the task-demand units to generate a response
within an appropriate timeframe. There-
fore, word reading requires attentional con-
trol, although to a much lesser extent than
color naming due to the stronger weights on
the word-reading pathway.

A rather detailed analysis and model of
the processes associated with automaticity
can be found in the ACT-R framework
(e.g., in Anderson, 1992). The basic view
is that automaticity is due to the progressive
compilation and associative linking of task-
related production rules due to extensive
training. The ACT-R framework has pro-
vided the most successful and comprehen-
sive account to date regarding phenomena
associated with automatization of process-
ing, such as the power law rule of learning.

Another formal theory of automaticity
can be found in Logan (2005). The key
principle of this theory is that novel actions
must be executed sequentially, according to
a step-by-step algorithm. However, after the
completion of each such action, a memory
trace of its execution is formed. In the fu-
ture, when that action is required again,
it can be executed step by step as before
or by accessing its memory, depending on
which is faster. Each performance of an ac-
tion and accumulation of experience leads
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to the storage of further (discrete) instances
of the action in memory, which in turn leads
to a higher likelihood that one of these in-
stances will be retrieved from memory and
faster than the algorithm, thus producing
automaticity.

3.6. Unresolved Issues and
Future Directions

Several key issues remain unresolved in re-
search on attentional control, and many
research challenges still await a solution.
A fundamental issue concerns the well-
known capacity-limited nature of attention
and cognitive control. Cognitive control is
effortful, and the capacity to maintain task-
relevant representations active even for in-
tervals of seconds is a very limited ability,
as several studies on these constraints have
shown (Ansorge, 2004; Cowan, 2001; En-
gle, Kane, & Tuholski, 1999; Schneider &
Shiffrin, 1977). But a clear theoretical justi-
fication for capacity constraints is still lack-
ing, except for speculations that they are due
to limitations of metabolic resources (Just
et al., 2001) or that they are an emergent
computational property arising from the ne-
cessity to constrain a massively parallel com-
puter (the brain) into actions that have to be
performed serially and unequivocally (All-
port, 1989). A further speculation may have
to do with competitive interactions between
actively maintained goal representations in
PFC, such that only a limited number can
be sustained simultaneously without mutual
interference or decay (O’Reilly, Braver, &
Cohen, 1999; Usher & Cohen, 1999).

Another issue relates to exactly how
attentional control is engaged and im-
plemented and its relationship with con-
flict. The conflict-monitoring hypothesis of
ACC–PFC interactions starts to tackle this
issue, but convincing explanations and ex-
perimental verification of how conflict mod-
ulates control is still an open question. Is
the information conveyed by the conflict
signal precise enough to even address spe-
cific attentional control strategies that may
be implemented in PFC? Other more gen-
eral issues relate to the nature and function-

ing of the attention-related representations
thought to be housed in PFC. These are usu-
ally referred to as rules, task demands, in-
tentions, or goals, but explanations of how
the anterior part of the neocortex imple-
ments and develops these representations is
only just beginning. Such theoretical devel-
opments are critical for understanding the
potentially specialized role of PFC represen-
tations in attention and for understanding
their power in enabling flexible behavior.

One attempt to examine and understand
the nature and development of PFC goal
representations involved simulations train-
ing a single model to perform several dif-
ferent cognitive control tasks through an in-
terleaved learning protocol (Rougier et al.,
2005). As a result of this training, the
model self-organized to develop abstract
rule-like representations that preferentially
coded dimensional properties of task stim-
uli. These representations were found to be
sufficient to enable the model to success-
fully perform new attentional tasks, such
as the Stroop without additional special-
ized training. Most importantly, the devel-
oped representations also enabled a high de-
gree of within-task generalization, such that
appropriate performance could be exhib-
ited by the model for stimuli that it had
never previously encountered during train-
ing. However, this model constitutes only a
first attempt to understand the nature of
PFC representations and their functional-
ity. More complex forms of complex sym-
bolic reasoning still remain to be addressed,
for example, the dynamical recombina-
tion of different representations and how
these interact with other cognitive systems.
Nonetheless, it is an important manifesta-
tion of how computational modeling can
provide an understanding of even hard
dilemmas, such as flexible attentional con-
trol, without recourse to the homunculus.

Even setting aside questions of how goal-
related representations develop, there are
other important questions of the activation
dynamics of such representations. For one,
how is it possible to maintain a goal or inten-
tion for days and years, and not just seconds,
as is usually modeled? These representations
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cannot be explained just by active represen-
tations in PFC, but necessarily by some other
flexible mechanism acting in a much larger
time scale. One such mechanism may in-
volve the storage and retrieval of goal infor-
mation in episodic memory. However, the
specifics of whether, how, and when such
storage occurs are as yet unknown. A re-
lated issue concerns the scheduling of at-
tentional control for goals and subgoals in
the execution of complex tasks. The pre-
cise neural mechanisms involved in the co-
ordination, transformation, and integration
of stored and hierarchically organized infor-
mation in complex task situations are still
poorly understood. Recent empirical stud-
ies have begun to focus investigation on
the most anterior part of the PFC as crit-
ical for a variety of goal-scheduling func-
tions, such as branching (Koechlin et al.,
1999), deferral (Burgess et al., 2003) and
integration/coordination (Braver & Bongio-
latti, 2002; De Pisapia & Braver, in press)
during multitask conditions. But, as yet,
there have been no computational models
developed that can integrate and synthesize
the accumulating data into an account of
how anterior PFC mechanisms might specif-
ically contribute to high-level multitasking
functions.

A final important issue relates to how at-
tention relates to other critical constructs
and motivation, such as emotion, moti-
vation, and consciousness. With regard to
emotion, it is clear that any comprehensive
theory of attention will need to address how
attentional mechanisms are modulated by
internal estimates of value. Yet, at this point,
models of attention have been developed in-
dependently of affective/motivational con-
siderations and vice versa. Nevertheless, the
inclusion of neural mechanisms in atten-
tional models that are also thought to have
affective and motivational functions, such
as the ACC and dopamine neurotransmitter
system, may point to the route for these con-
structs to be eventually integrated within a
unified framework.

With regard to consciousness, it seems
critical to understand why voluntary atten-
tional control and the effort it requires seem

very prominent in subjective experience,
whereas other forms of attentional mod-
ulation seem to go on in the absence of
awareness. A recent review (Maia & Cleere-
mans, 2005) suggests the intriguing possibil-
ity that computational modeling of cognitive
control and the biased competition frame-
work could provide the theoretical path for
an integration of attentional control with
consciousness and working memory based
on the idea of global competition between
representations with the top-down biasing
from PFC. These and other questions on at-
tentional control and related cognitive con-
structs, as interesting as they are, remain
without convincing answers.

4. Conclusion

This chapter has reviewed key computa-
tional models and theoretical directions pur-
sued by researchers trying to understand the
multifaceted phenomenon of attention. A
broad division is drawn between theories
and models addressing the mechanisms by
which attention modulates specific aspects
of perception (primarily visual) and those
that have focused on goal-driven and task-
oriented components of attention. Although
the scope of the field is broad, the vari-
ous accounts that have been put forth all
seem to converge on the idea that atten-
tion can be understood as the mechanisms of
focused selection and enhancement of cur-
rently processed information, and the sup-
pression of perceived background aspects.
Inquiring more specifically into how these
mechanisms actually work has produced
many more questions than answers, and this
proliferation of unresolved issues likely will
not end soon. On the other hand, over the
last twenty years, there has been tremen-
dous progress in the number and success of
attempts to embody theoretical hypothesis
into explicit computational and mathemati-
cal models. A particularly noteworthy point
of convergence has been the widespread
adoption of the biased competition frame-
work as the core computational backbone
of many attention models. More islands of
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growing convergence will probably emerge
in the coming years. Implemented models
are the main instrument that researchers
have available to substantiate or falsify their
theories. The use of formal models that
serve as explicit information-processing de-
vices and that do not assume an internal ob-
server or hidden homunculus will be critical
in the effort to eventually fit, predict, and
decompose human data from complex cog-
nitive activities down to the most elemental
components.
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CHAPTER 16

Computational Models of Developmental

Psychology

1. Introduction

This chapter provides a comparative sur-
vey of computational models of psycho-
logical development. Because it is impos-
sible to cover everything in this active
field in such limited space, the chap-
ter focuses on compelling simulations in
domains that have attracted a range of
competing models. This has the advan-
tage of allowing comparisons between dif-
ferent types of models. After outlining
some important developmental issues and
identifying the main computational tech-
niques applied to developmental phenom-
ena, modeling in the areas of the balance
scale, past tense, object permanence, arti-
ficial syntax, similarity-to-correlation shifts
in category learning, discrimination-shift
learning, concept and word learning, and
abnormal development is discussed. This is
followed by preliminary conclusions about
the relative success of various types of
models.

2. Developmental Issues

To understand how computational mod-
eling can contribute to the study of psy-
chological development, it is important to
appreciate the enduring issues in devel-
opmental psychology. These include issues
of how knowledge is represented and pro-
cessed at various ages and stages, how chil-
dren make transitions from one stage to an-
other, and explanations of the ordering of
psychological stages. Although many ideas
about these issues have emerged from stan-
dard psychological research, these ideas of-
ten lack sufficient clarity and precision.
Computational modeling forces precision
because models that are not clearly specified
will either not run or will produce inappro-
priate results.

3. Computational Techniques

The most common computational techni-
ques applied to psychological development
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are production systems, connectionist net-
works, dynamic systems, robotics, and
Bayesian inference. Production systems rep-
resent long-term knowledge in the form of
condition-action rules that specify actions to
be taken or conclusions to be drawn under
particular conditions (see Chapter 6 in this
volume). Conditions and actions are com-
posed of symbolic expressions containing
constants as well as variables that can be
bound to particular values. The rules are
processed by matching problem conditions
(contained in a working-memory buffer)
against the condition side of rules. Ordi-
narily, one rule with satisfied conditions is
selected and then fired, meaning that its
actions are taken or its conclusions drawn.
Throughout matching and firing, variable
bindings must be consistently maintained so
that the identities of particular objects re-
ferred to in conditions and actions are not
confused.

Although first-generation production sys-
tem models involved programmers writ-
ing rules by hand (Klahr & Wallace, 1976;
Siegler, 1976), it is more interesting for
understanding developmental transitions if
rules can be acquired by the model in
realistic circumstances. Several such rule-
learning systems have been developed, in-
cluding Soar (Newell, 1990), which learns
rules by saving the results of look-ahead
search through a problem space; ACT-R
(Anderson, 1993), which learns rules by
analogy to existing rules or by compiling less
efficient rules into more efficient ones; and
C4.5 (Quinlan, 1993), which learns rules by
extracting information from examples of ob-
jects or events. Rule learning is a challenging
computational problem because an indefi-
nitely large number of rules can be consis-
tent with a given data set, and because it is
often unclear which rules should be modi-
fied and how they should be modified (e.g.,
by changing existing conditions, adding new
conditions, or altering the certainty of con-
clusions).

Connectionism represents knowledge in
a subsymbolic fashion via activation pat-
terns on neuron-like units (see Chapter 2
in this volume). Connectionist networks

process information by passing activation
among units. Although some networks, in-
cluding connection weight values, are de-
signed by hand, it is more common in
developmental applications for programer-
designed networks to learn their connec-
tion weights (roughly equivalent to neu-
ronal synapses) from examples. Some other
neural networks also construct their own
topology, typically by recruiting new hid-
den units. The neural learning algorithms
most commonly applied to development in-
clude back-propagation (BP) and its vari-
ants, cascade-correlation (CC) and its vari-
ants, simple recurrent networks (SRNs),
encoder networks, auto-association (AA),
feature-mapping, and contrastive Hebbian
learning.

A dynamic system is a set of quantita-
tive variables that change continually, con-
currently, and interdependently over time in
accordance with differential equations (see
Chapter 4 in this volume). Such systems can
be understood geometrically as changes of
position over time in a space of possible sys-
tem states. Dynamic systems overlap con-
nectionism in that neural networks are of-
ten dynamic systems. In recurrent networks,
activation updates depend in part on cur-
rent activation values; and in learning net-
works, weight updates depend in part on
current weight values. However, it is also
common for dynamic-system models to be
implemented without networks, in differen-
tial equations where a change in a dependent
variable depends in part on its current value.

Another relatively new approach is de-
velopmental robotics, a seemingly unlikely
marriage of robotics and developmental psy-
chology (Berthouze & Ziemke, 2003). A
principal attraction for roboticists is to cre-
ate generic robots that begin with infant
skills and learn their tasks through interact-
ing with adults and possibly other robots.
The primary hook for developmentalists is
the challenge of placing their computational
models inside of robots operating in real en-
vironments in real time.

Bayesian inference, which is rapidly gain-
ing ground in modeling a variety of cogni-
tive phenomena, is starting to be applied to
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developmental problems (see Chapter 3 in
this volume). At its heart is the use of Bayes’
rule to infer posterior probabilities (of a hy-
pothesis given some data) from products of
prior and likelihood probabilities divided by
the sum of such products across all known
hypotheses. The CC and C4.5 algorithms
are discussed here in some detail because
they are not treated elsewhere in this vol-
ume, but have been used in a variety of de-
velopmental simulations.

4. Cascade-Correlation

CC networks begin with just input and out-
put units, ordinarily fully connected. They
are feed-forward networks trained in a su-
pervised fashion with patterns representing
particular input and target output values.
Any internal, hidden units required to deal
with nonlinearities in the training patterns
are recruited one at time, as needed. The CC
algorithm alternates between output and in-
put phases to reduce error and recruit help-
ful hidden units, respectively (Fahlman &
Lebiere, 1990). The function to minimize
during output phase is error at the output
units:

E =
∑

o

∑
p

(
Aop − Top

)2 (16.1)

where A is actual output activation and T is
target output activation for unit o and pat-
tern p. Error minimization is typically ac-
complished with the Quickprop algorithm
(Fahlman, 1988), a fast variant of the gener-
alized delta rule that uses curvature as well
as slope of the error surface to compute
weight changes. When error can no longer
be reduced by adjusting weights entering the
output units, CC switches to input phase to
recruit a hidden unit to supply more com-
putational power.

In input phase, a pool of usually eight can-
didate hidden units with typically sigmoid
activation functions have random trainable
weights from the input units and any exist-
ing hidden units. These weights are trained
by attempting to maximize a covariance

C between candidate-hidden-unit activation
and network error:

C =
∑

o

∣∣∣∑p

(
hp − 〈h〉

) (
eop − 〈eo〉

)∣∣∣∑
o
∑

p

(
eop − 〈eo〉

)2

(16.2)

where hp is activation of the candidate hid-
den unit for pattern p, <h> is mean acti-
vation of the candidate hidden unit for all
patterns, eop is residual error at output o for
pattern p, and <eo> is mean residual error at
output o for all patterns. C represents the ab-
solute covariance between hidden-unit ac-
tivation and network error summed across
patterns and output units and standardized
by the sum of squared error deviations. The
same Quickprop algorithm used for output
training is used here, but with the goal of
maximizing these correlations rather than
reducing network error. When the corre-
lations stop increasing, the candidate with
the highest absolute covariance is installed
into the network, with its just-trained input
weights frozen, and a random set of output
weights with the negative of the sign of the
covariance C. The other candidates are dis-
carded.

The basic idea of input phase is to select a
candidate whose activation variations track
current network error. Once a new recruit
is installed, CC returns to output phase to
resume training of weights entering output
units to decide how to best use the new re-
cruit to reduce network error. Standard CC
networks have a deep topology with each
hidden unit occupying its own layer.

A variant called sibling-descendant CC
(SDCC) dynamically decides whether to in-
stall each new recruit on the current highest
layer of hidden units (as a sibling) or on its
own new layer (as a descendant; Baluja &
Fahlman, 1994). SDCC creates a wider va-
riety of network topologies, normally with
less depth, but otherwise performs much the
same as standard CC on simulations (Shultz,
2006).

CC and SDCC are constructivist al-
gorithms that are theoretically compati-
ble with verbally formulated constructivist
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theories of development (Piaget, 1954).
Qualitative changes in cognition and behav-
ior potentially can be attributed to qualita-
tive changes in underlying computational re-
sources, namely recruited hidden units and
their connectivity.

5. C4.5

In some ways, C4.5 is the symbolic analog
of CC and accordingly has been applied to
several developmental domains. To learn
to classify examples, C4.5 builds a decision
tree that can be transformed into production
rules (Quinlan, 1993). C4.5 processes a set
of examples in attribute-value format and
learns how to classify them into discrete
categories using information on the correct
category of each example. A decision tree
contains leaves, each indicating a class, and
branching nodes, each specifying a test of
a single attribute with a subtree for each
attribute value. C4.5 learning proceeds as
follows:

1. If every example has the same predicted
attribute value, return it as a leaf node.

2. If there are no attributes, return the
most common attribute value.

3. Otherwise, pick the best attribute, par-
tition the examples by values, and recur-
sively learn to grow subtrees below this
node after removing the best attribute
from further consideration.

C4.5 creates smaller and more general trees
by picking the attribute that maximizes in-
formation gain. Symbolic rules can be de-
rived from a decision tree by following the
branches (rule conditions) out to the leaves
(rule actions). C4.5 is a reasonable choice
for modeling development because it learns
rules from examples, just as connection-
ist models do, and without the background
knowledge that Soar and ACT-R often re-
quire. Like CC, C4.5 grows as it learns,
building its later knowledge on top of ex-
isting knowledge as a decision tree is be-
ing constructed. The two algorithms thus

make an interesting and parallel contrast
between constructive neural and symbolic
systems.

A hybrid learning system that does Con-
nectionist Learning with Adaptive Rule In-
duction Online (CLARION; Sun, Slusarz,
& Terry, 2005) may also be worth trying in
a developmental context. CLARION works
on two levels: BP networks learn from ex-
amples, and explicit rules can be extracted
from these networks.

6. Balance Scale

One of the first developmental tasks to at-
tract a wide range of computational mod-
els was the balance scale. This task presents
a child with a rigid beam balanced on
a fulcrum (Siegler, 1976). This beam has
pegs spaced at regular intervals to the left
and right of the fulcrum. An experimenter
places a number of identical weights on a
peg on the left side and a number of weights
on a peg on the right side. While supporting
blocks prevent the beam from tipping, the
child predicts which side of the beam will
descend, or whether the scale will balance,
if the supporting blocks are removed.

Children are typically tested with six
types of problems on this task. Two of
these problems are simple because one cue
(weight or distance from the fulcrum) per-
fectly predicts the outcome, whereas the
other cue is constant on both sides. A third
is even simpler, with identical cues on each
side of the fulcrum. The other three prob-
lem types are more complex because the
two cues conflict, weight predicting one out-
come and distance predicting a different
outcome. The pattern of predictions across
these problem types helps to diagnose how
a child solves these problems.

Despite ongoing debate about details, it
is generally agreed that there are two ma-
jor psychological regularities in the balance-
scale literature: stage progressions and the
torque-difference effect. In stage 1, chil-
dren use weight information to predict that
the side with more weights will descend or
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Table 16.1: Characteristics of balance-scale models

All Torque-difference
Author Model 4 stages effect

Langley (1987) Sage noa no
Newell (1990) Soar nob no
Schmidt & Ling (1996) C4.5 yesc yesd

van Rijn et al. (2003) ACT-R yese yes f

McClelland (1989) BP nog yes
Shultz et al. (1994) CC yes yes

aSage only learned stage 3, not stages 1, 2, and 4.
bSoar learned stages 1–3, but not stage 4.
cC4.5 learned all four stages, but to get the correct ordering of the first two stages,
it was necessary to list the weight attributes before the distance attributes because
C4.5 breaks ties in information gain by picking the first-listed attribute with the
highest information gain.

dTo capture the torque-difference effect, C4.5 required a redundant coding of
weight and distance differences between one side of the scale and the other. In
addition to doing a lot of the work that a learning algorithm should be able to do
on its own, this produced strange rules that children never show.

eThe ordering of stages 1 and 2 and the late appearance of addition and torque
rules in ACT-R were engineered by programmer settings; they were not a natural
result of learning or development. The relatively modern ACT-R model is the only
balance-scale simulation to clearly distinguish between an addition rule (comparing
the weight + distance sums on each side) and the torque rule.

f ACT-R showed a torque-difference effect only with respect to differences in dis-
tance but not weight and only in the vicinity of stage transitions, not throughout
development as children apparently do.

g BP oscillated between stages 3 and 4, never settling in stage 4.

that the scale will balance when the two
sides have equal weights (Siegler, 1976). In
stage 2, children start to use distance in-
formation when the weights are equal on
each side, predicting that in such cases the
side with greater distance will descend. In
stage 3, weight and distance information are
emphasized equally, and the child guesses
when weight and distance information con-
flict on complex problems. In stage 4, chil-
dren respond correctly on all problem types.
The torque-difference effect is that prob-
lems with large torque-differences are eas-
ier for children to solve than problems with
small torque differences (Ferretti & But-
terfield, 1986). Torque is the product of
weight× distance on a given side; torque dif-
ference is the absolute difference between
the torque on one side and the torque on
the other side.

The ability of several different computa-
tional models to capture these phenomena
is summarized in Table 16.1. The first four
rows in Table 16.1 describe symbolic, rule-
based models, and the last two rows describe
connectionist models.

In one of the first developmental con-
nectionist simulations, McClelland (1989)
found that a static BP network with two
groups of hidden units segregated for ei-
ther weight or distance information devel-
oped through the first three of these stages
and into the fourth stage. However, these
networks did not settle in stage 4, instead
continuing to cycle between stages 3 and 4.
The first CC model of cognitive develop-
ment naturally captured all four balance-
scale stages, without requiring segregation
of hidden units (Shultz, Mareschal et al.,
1994).
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The ability of these network models to
capture stages 1 and 2 is due to a bias to-
ward equal-distance problems in the train-
ing set, that is, problems with weights placed
equally distant from the fulcrum on each
side. This bias, justified by noting that chil-
dren rarely place objects at differing dis-
tances from a fulcrum but have considerable
experience lifting differing numbers of ob-
jects, forces a network to emphasize weight
information first because weight informa-
tion is more relevant to reducing network
error. When weight-induced error has been
reduced, then the network can turn its atten-
tion to distance information. A learning al-
gorithm needs to find a region of connection-
weight space that allows it to emphasize the
numbers of weights on the scale before mov-
ing to another region of weight space that al-
lows correct performance on most balance-
scale problems. A static network such as BP,
once committed to using weight informa-
tion in stage 1, cannot easily find its way
to a stage-4 region by continuing to reduce
error. In contrast, a constructive algorithm
such as CC has an easier time with this
move because each newly recruited hidden
unit changes the shape of connection-weight
space by adding a new dimension.

Both of the connectionist models read-
ily captured the torque-difference effect.
Such perceptual effects are natural for
neural models that compute a weighted
sum of inputs when updating downstream
units. This ensures that larger differences
on the inputs create clearer activation pat-
terns downstream at the hidden and output
units. In contrast, crisp symbolic rules care
more about direction of input differences
than about input amounts, so the torque-
difference effect is more awkward to capture
in rule-based systems.

7. Past Tense

The morphology of the English past tense
has generated considerable psychological
and modeling attention. Most English verbs
form the past tense by adding the suffix -ed
to the stem, but about 180 have irregular

past-tense forms. Seven psychological regu-
larities have been identified:

1. Children begin to overregularize irregu-
lar verbs after having correctly produced
them.

2. Frequent irregulars are more likely to be
correct than infrequent ones.

3. Irregular and regular verbs that are sim-
ilar to frequent verbs are more likely to
be correct. (Two regularities are com-
bined here into one sentence.)

4. Past-tense formation is quicker with
consistent regulars (e.g., like) than with
inconsistent regulars (e.g., bake), which
are in turn quicker than irregulars (e.g.,
make).

5. Migrations occurred over the centuries
from Old English such that some irreg-
ulars became regular and some regulars
became irregular.

6. Double-dissociations exist between reg-
ulars and irregulars in neurological dis-
orders, such as specific language impair-
ment and Williams syndrome.

The classical rule-rote hypothesis holds that
the irregulars are memorized, and the add –
ed rule applied when no irregular memory
is retrieved (Pinker, 1999), but this has not
resulted in a successful published computa-
tional model. The ability of several different
computational models to capture past-tense
phenomena is summarized in Table 16.2.
All of the models were trained to take a
present-tense verb stem as input and pro-
vide the correct past-tense form.

One symbolic model used ID3, a pre-
decessor of the C4.5 algorithm that was
discussed in Section 5, to learn past-tense
forms from labeled examples (Ling & Mari-
nov, 1993). Like C4.5, ID3 constructs a de-
cision tree in which the branch nodes are
attributes, such as a particular phoneme in a
particular position, and the leaves are suf-
fixes, such as the phoneme −t. Each ex-
ample describes a verb stem, for example,
talk, in terms of its phonemes and their po-
sitions, and is labeled with a particular past-
tense ending, for example, talk-t. Actually,
because there are several such endings, the
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Table 16.2: Coverage of English past-tense acquisition

Ling & Taatgen & Plunkett & Daugherty & Hare &
Marinov Anderson Marchman Seidenberg Elman Westermann

Authors (1993) (2002) (1996) (1992) (1995) (1998)

Model ID3 ACT-R BP BP BP CNNa

Over-regularization yes yes yes – – yes
Frequency yes yes – yes – yes
Similarity-irregulars no no – yes – yes
Similarity-regulars no no – yes – –
Reaction time no no – yes – –
Migration no no – – yes –
Double-dissociation no no – – – yes

aCNN is a Constructivist Neural Network model with Gaussian hidden units.

model used a small grove of trees. Instead of
a single rule for the past tense as in the rule-
rote hypothesis, this grove implemented
several rules for regular verbs and many
rules for irregular verbs. Coverage of over-
regularization in the ID3 model was due
to inconsistent and arbitrary use of the m
parameter that was originally designed to
control the depth of decision trees (Quin-
lan, 1993). Although m was claimed by
the authors to implement some unspeci-
fied mental capacity, it was decreased here
to capture development, but increased to
capture development in other simulations,
such as the balance scale (Schmidt & Ling,
1996).

The ACT-R models started with three
handwritten rules: a zero rule, which does
not change the verb stem; an analogy rule,
which looks for analogies to labeled exam-
ples and thus discovers the –ed rule; and a
retrieval rule, which retrieves the past tense
form from memory (Taatgen & Anderson,
2002). Curiously, this model rarely applied
the –ed rule because it mostly used retrieval;
the –ed rule was reserved for rare words,
novel words, and nonsense words.

As shown in Table 16.2, none of the com-
putational models cover many past-tense
phenomena, but collectively, a series of
neural-network models do fairly well. Sev-
eral of these phenomena naturally emerge
from neural models, where different past-

tense patterns are represented in common
hidden units. In these neural models, less
frequent and highly idiosyncratic verbs can-
not easily resist the pull of regularization
and other sources of error. Being similar
to other verbs can substitute for high fre-
quency. These effects occur because weight
change is proportional to network error, and
frequency and similarity effects create more
initial error. In symbolic models, memory
for irregular forms is searched before the reg-
ular rule is applied, thus slowing responses
to regular verbs and creating reaction times
opposite to those found in people.

8. Object Permanence

A cornerstone acquisition in the first two
years is belief in the continued existence of
hidden objects. Piaget (1954) found that ob-
ject permanence was acquired through six
stages, that the ability to find hidden ob-
jects emerged in the fourth stage between
the ages of eight and twelve months, and
that a full-blown concept of permanent ob-
jects independent of perception did not oc-
cur until about two years. Although data
collected using Piaget’s object-search meth-
ods were robust, recent work using differ-
ent methodologies suggested that he might
have underestimated the cognitive abilities
of very young infants.
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Figure 16.1. Modular network topology for looking and reaching.
The network in the lower left learns to recognize objects based
on their static features. The network on the right learns to follow the
trajectory of moving objects. The network in the upper left learns
to reach for objects by integrating visual tracking and object recog-
nition. (Adapted, with permission, from Mareschal et al., 1999).

An influential series of experiments sug-
gested that infants as young as 3.5 months
understand the continued existence of hid-
den objects if tested by where they look
rather than where they reach (Baillargeon,
1987). Infants were familiarized to a simple
perceptual sequence and then shown two
different test events: one that was percep-
tually more novel but consistent with the
continued existence of objects and one that
was perceptually more familiar but that vi-
olated the notion that hidden objects con-
tinue to exist. Infants looked longer at the
impossible event, which was interpreted as
evidence that they understand the contin-
ued existence of occluded objects.

Computational modeling has clarified
how infants could reveal an object concept
with looking but not by reaching. In one
model, perceptual input about occluded ob-
jects fed a hidden layer with recurrent con-
nections, which in turn fed two distinct out-
put systems: a looking system and a reaching
system (Munakata et al., 1997). Both sys-
tems learned to predict the location of an
input object, but the reaching system lagged
developmentally behind the looking system
because of differential learning rates. The
same underlying competence (understand-
ing where an object should be) thus led to
different patterns of performance, depend-

ing on which system was used to assess that
competence.

A different model of the lag between
looking and reaching (Mareschal, Plunkett,
& Harris, 1999) used a modular neural
network system implementing the dual-
route hypothesis of visual processing (i.e.,
that visual information is segregated into
a what ventral stream and a where dorsal
stream). Like the previous model, this one
had a shared bank of hidden units receiv-
ing input from a recurrent bank of visual-
memory inputs. As shown in Figure 16.1,
these hidden units fed two output mod-
ules: a trajectory-prediction module and a
response-integration module. The former
was trained to predict the position of an ob-
ject on a subsequent time step. The latter
was trained to combine hidden-unit activa-
tions in the trajectory module with object-
recognition inputs. Here, the time lag be-
tween looking and reaching was explained
by the what and where streams needing to
be integrated in reaching tasks, but not in
looking tasks, which can rely solely on the
where stream. The model uniquely predicted
developmental lags for any task requiring in-
tegration of the two visual routes.

Although both models simulated a lag be-
tween looking and reaching, some embodied
simulations integrated the what and where
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functions into a how function (Schlesinger,
2004; Schlesinger, Parisi, & Langer, 2000).
Here, the problem of reaching was con-
strained by mechanical and kinematic prop-
erties of the task that facilitate learning.

A novel experiment used a primitive
robot to produce looking-time data in an
object-permanence experiment measuring
looking (Baillargeon, 1986). This robot
knew nothing about objects and their per-
manence, but was designed to habituate to
visual stimuli that it captured through video
cameras (Lovett & Scassellati, 2004). Its be-
havior as a surrogate participant in the in-
fant experiment suggested that looking-time
differences between possible and impossible
events could be due to mere habituation to
stimuli, having nothing to do with knowl-
edge of objects or their permanence.

A major subtopic in development of the
object concept concerns the so-called A-not-
B error. Between seven and twelve months
of age, infants search for a hidden object
in one location (conventionally called loca-
tion A), but when it is moved to another
hiding place (location B), they persevere in
searching at A (Piaget, 1954). Ten major
regularities have been noted in the exten-
sive psychological literature on the A-not-B
error.

1. Age. Before seven to eight months, in-
fants do not search for a hidden object.
Between seven and twelve months, they
perseverate in searching A. After twelve
months, they search in B.

2. Delay. No error with no delay between
hiding and search; error increases with
amount of delay.

3. Décalage. Well before twelve months,
infants look longer at an event in which
the hidden object is retrieved from a dif-
ferent place than where they last saw it.

4. Distinctiveness. Making the hiding places
more distinctive reduces error, for ex-
ample, by using distinctive covers, land-
marks, or familiar environments. Con-
versely, using identical covers increases
error.

5. Multiple locations. Decrease error.

6. Reaching to A. The more reaches to A,
the more likely the error.

7. Interestingness. Less error the more in-
teresting the toy; hiding a cookie re-
duces error.

8. Objectless. Cuing a cover is sufficient
to elicit the error without any hidden
object.

9. Object helpful. Less error in covers-only
condition when a toy is hidden at B.

10. Adult error. Even adults can make this
error under certain conditions.

Two quite different computational mod-
els addressed these regularities, one using
a feed-forward neural network with self-
recurrent excitatory connections within hid-
den and output layers to maintain represen-
tations over time and inhibitory connections
within these layers to implement compe-
tition (Munakata, 1998). The network re-
ceived sequential input about three hiding
locations, two types of cover, and two toys.
These inputs fed a bank of self-recursive hid-
den units representing the three locations.
These hidden units fed two separate banks
of outputs: gaze/expectation units, repre-
senting where infants look, and reach units
representing where infants reach. Because
reaching was permitted only near the end
of a trial, these units were updated less
frequently than the gaze/expectation units,
which produced earlier looking than reach-
ing. The network was trained with a few
standard A-not-B observations. Learning of
feed-forward weights was done with a zero-
sum Hebbian rule that increased a weight
when its sending unit’s activation was higher
than the mean of its layer and decreased a
weight when its sending unit activation was
lower than the mean of its layer. Recurrent
and inhibitory weights were fixed. Age ef-
fects were covered by increasing the recur-
rent weights from .3 to .5, that is, stronger
recurrence with increasing age.

The other model of the A-not-B error
was a dynamic-system model (Thelen et al.,
2001). A decision to reach in a particular di-
rection (A or B) was modeled as activation
in a dynamic field, expressed in a differential
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equation, the details of which can be found
elsewhere (Thelen et al., 2001). Somewhat
informally,

activation = −decay+ cooperativity+ h
+ noise+ task+ cue
+ reach.memory (16.3)

where decay was a linear decrease in activa-
tion, cooperativity included both local exci-
tation and distant inhibition integrated over
field positions, h was the resting activation
level of the field, Gaussian noise ensured that
activations were probabilistic rather than
deterministic, task reflected persisting fea-
tures of the task environment, cue reflected
the location of the object or attention to a
specific cover, and reach memory reflected
the frequency and recency of reaching in a
particular direction. Development relied on
the resting activation level of the field. When
h was low, strong inputs predominated and
activation was driven largely by inputs and
less by local interactions, a condition known
as noncooperation. When h was large, many
field sites interacted, and local excitation
was amplified by neighboring excitation and
distant inhibition, allowing cooperation and
self-sustained excitation, even without con-
tinual input. Parameter h was set to −6 for
cooperation and −12 for noncooperation.
All parameters but h were differential func-
tions of field position and time. Variation
of the cue parameter implemented different
experimental conditions. Other parameters
were held constant, but estimated to fit psy-
chological data.

The differential equation simulated up to
10 sec of delay in steps of 50 msec. An
above-threshold activation peak indicated a
perseverative reach when centered on the
A location or a correct reach when cen-
tered on the B location. This idea was sup-
ported by findings that activity in popu-
lations of neurons in monkey motor and
premotor cortex became active in the 150
msec between cue and reach, and pre-
dicted the direction of ordinary reaching
(Amirikian & Georgopoulos, 2003). See Fig-
ure 4.3 in this volume, which shows that

Table 16.3: Model coverage of the
A-not-B error in object permanence

Model

Munakata Thelen et al.
Regularity (1998) (2001)

Age yes yes
Delay yes yes
Décalage yes no
Distinctiveness yes yes
Multiple locations yes no
Reaching to A yes no
Interestingness no no
Objectless yes yes
Object helpful yes no
Adult error no no

neighboring excitation sustains local activa-
tion peaks whereas global inhibition pre-
vents diffusion of peaks and stabilizes against
competing inputs.

In simulation of younger infants, imple-
mented by noncooperation (h = −12), a
cue to location B initially elicited activa-
tion, which then decayed rapidly, allowing
memory of previous reaching to A to pre-
dominate. But in simulations of young in-
fants allowed to reach without delay, the
initial B activation tended to override mem-
ory of previous A reaches. In simulation of
older infants, implemented by cooperation
(h = −6), the ability to sustain initial B ac-
tivation across delays produced correct B
reaches despite memory of reaching to A.
This model suggested that the A-not-B error
has more to do with the dynamics of reach-
ing for objects than with the emergence of a
concept of permanence.

Comparative coverage of the psycholog-
ical regularities by these two models is in-
dicated in Table 16.3. The neural-network
model covered almost all of these regular-
ities, and it is possible that the dynamic-
system model could also achieve this by
manipulation of its existing parameters. It
would be interesting to see if the dynamic-
system model could be implemented in a
neurally plausible way. Both models were
highly designed by fixing weights in the
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neural model and by writing equations
and fitting parameters in the dynamic-
system model. Modeler-designed parameter
changes were used to implement age-related
development in both models.

9. Artificial Syntax

An issue that attracted considerable simu-
lation activity concerns whether cognition
should be interpreted in terms of symbolic
rules or subsymbolic neural networks. For
example, it was argued that infants’ ability
to distinguish one syntactic pattern from an-
other could only be explained by a symbolic
rule-based account (Marcus et al., 1999).
After being familiarized to sentences in an
artificial language with a particular syntactic
pattern (such as ABA), infants preferred to
listen to sentences with an inconsistent syn-
tactic form (such as ABB). The claim about
the necessity of rule-based processing was
contradicted by a number of neural-network
models showing more interest in novel
than familiar syntactic patterns (Altmann &
Dienes, 1999; Elman, 1999; Negishi, 1999;
Shultz, 1999; Shultz & Bale, 2001; Sirois,
Buckingham, & Shultz, 2000). This princi-
pal effect from one simple experiment is
rather easy for a variety of connectionist
learning algorithms to cover, probably due
to their basic ability to learn and generalize.
In addition to this novelty preference, there
were a few infants who exhibited a slight fa-
miliarity preference, as evidenced by slightly
more recovery to consistent novel sentences
than to familiar sentences.

One of the connectionist simulations
(Shultz & Bale, 2001) was replicated (Vilcu
& Hadley, 2005) using batches of CC en-
coder networks, but it was claimed that this
model did not generalize well and merely
learned sound contours rather than syntax.
Like other encoder networks, these net-
works learned to reproduce their inputs on
their output units. Discrepancy between in-
puts and outputs is considered as error,
which networks learn to reduce. Infants are
thought to construct an internal model of
stimuli to which they are being exposed

and then differentially attend to novel stim-
uli that deviate from their representations
(Cohen & Arthur, 1983). Because neural
learning is directed at reducing the largest
sources of error, network error can be con-
sidered as an index of future attention and
learning.

The CC simulations captured the essen-
tials of the infant data: more interest in sen-
tences inconsistent with the familiar pattern
than in sentences consistent with that pat-
tern and occasional familiarity preferences
(Shultz & Bale, 2001). In addition, CC net-
works showed the usual exponential de-
creases in attention to a repeated stimulus
pattern that are customary in habituation
experiments and generalized both inside and
outside of the range of training patterns.
Follow-up simulations clarified that CC net-
works were sensitive to both phonemic con-
tent and syntactic structure, as infants prob-
ably are (Shultz & Bale, 2006).

A simple AA network model contained a
single layer of interconnected units, allowing
internal circulation of unit activations over
multiple time cycles (Sirois et al., 2000). Af-
ter learning the habituation sentences with
a delta rule, these networks needed more
processing cycles to learn inconsistent than
consistent test sentences. The mapping of
processing cycles to recovery from habitua-
tion seems particularly natural in this model.

A series of C4.5 models failed to cap-
ture any essential features of the infant data
(Shultz, 2003). C4.5 could not simulate fa-
miliarization because it trivially learned to
expect the only category to which it was ex-
posed. When trained instead to discriminate
the syntactic patterns, it did not learn the
desired rules except when these rules were
virtually encoded in the inputs.

Three different SRN models covered the
principal finding of a novelty preference,
but two of these models showed such a
strong novelty preference that they would
not likely show any familiarity preference.
Two of these SRN models also were not
replicated by other researchers (Vilcu &
Hadley, 2001, 2005). Failure to replicate
seems surprising with computational mod-
els and probably deserves further study.
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Table 16.4: Coverage of artificial syntax phenomena

Regularity
Novelty Familiarity Simulation

Author Model preference preference replicated

Altmann & Diennes (1999) SRN yes – no
Elman (1999) SRN yes no no
Negishi (1999) SRN yes no –
Shultz & Bale (2001) CC yes yes yes
Sirois et al. (2000) AA yes yes –
Shultz (2003) C4.5 no no –

Comparative performance of each of
these models is summarized in Table 16.4.
Dashes in the table indicate uncertainty. It
is possible that the SRN models and the AA
model might be able to show some slight fa-
miliarity preference if not so deeply trained.

10. Similarity-to-Correlation Shift in
Category Learning

Research on category learning with a fa-
miliarization paradigm showed that four-
month-olds process information about inde-
pendent features of visual stimuli, whereas
ten-month-olds additionally abstract rela-
tions among those features (Younger &
Cohen, 1986). These results addressed a
classic controversy about whether percep-
tual development involves integration or
differentiation of stimulus information, inte-
gration being favored by developing the abil-
ity to understand relations among already
discovered features. Following repetitions of
visual stimuli with correlated features, four-
month-olds recovered attention to stimuli
with novel features more than to stimuli
with either correlated or uncorrelated famil-
iar features. However, ten-month-olds re-
covered attention both to stimuli with novel
features and to stimuli with familiar uncor-
related features more than to stimuli with fa-
miliar correlated features. Uncorrelated test
items violated the correlations in the train-
ing items. The four-month-old finding is
termed a similarity effect because the uncor-
related test item was most similar to those

in the familiarization set. The ten-month-
old finding is termed a correlation effect.
Both groups learned about individual stim-
ulus features, but older infants also learned
how these features correlate.

These effects, including the shift from
similarity to correlation, were simulated
with three different neural-network al-
gorithms: BP networks with shrinking
receptive fields (Shrink-BP; Westermann
& Mareschal, 2004), Sustain networks
(Gureckis & Love, 2004), and CC en-
coder networks (Shultz & Cohen, 2004).
Westermann and Mareschal (2004) used
more Gaussian hidden units than inputs and
shrank the width of Gaussian receptive fields
for older infants to mimic developing vi-
sual acuity. Increased acuity arising from de-
creased field size presumably enhances se-
lective response to unique conjunctions of
feature values. The Sustain algorithm tries to
assimilate new stimuli to existing prototypes
and recruits a new prototype when stim-
uli are sufficiently novel. A parameter con-
trolled the number of prototypes that could
be recruited and was set higher for older in-
fants. Alternatively, Sustain could capture
the infant data if the inputs were random-
ized to mimic poor visual acuity in younger
infants. In CC networks, age was imple-
mented by setting the score-threshold pa-
rameter higher for four-month-olds than for
ten-month-olds, an approach that has been
used successfully to model other age-related
changes in learning tasks (Shultz, 2003).
Training continues until all output activa-
tions are within a score threshold of their
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Table 16.5: Coverage of the shift from features to correlations in category learning

Effect

Authors Model Similarity Correlation Shift Habituation

Westermann & Mareschal (2004) Shrink-BP yes yes yes no
Gureckis & Love (2004) Sustain yes yes yes no
Shultz & Cohen (2004) CC yes yes yes yes
Shultz & Cohen (2004) BP no no no no

target values for all training patterns. Thus,
a lower score-threshold parameter produces
deeper learning.

In contrast to these successful models, a
wide range of topologies of ordinary BP net-
works failed to capture any of these effects
(Shultz & Cohen, 2004). Comparative pat-
terns of data coverage are summarized in
Table 16.5.

The three successful models shared sev-
eral commonalities. They all employed un-
supervised (or self-supervised in the case
of encoder networks) connectionist learn-
ing, and they explained apparent qualitative
shifts in learning by quantitative variation
in learning parameters. Also, the Shrink-BP
and Sustain (in the randomized-input ver-
sion) models both emphasized increased vi-
sual acuity as an underlying cause of learn-
ing change. Finally, both the Sustain and CC
models grew in computational power.

When CC networks with a low score
threshold were repeatedly tested over the fa-
miliarization phase, they predicted an early
similarity effect followed by a correlation
effect. Tests of this habituation prediction
found that ten-month-olds who habituated
to training stimuli looked longer at uncorre-
lated than correlated test stimuli, but those
who did not habituate did the opposite,
looking longer at correlated than uncorre-
lated test stimuli (Cohen & Arthur, 2003).

CC might be preferred over Sustain
because: (a) the effects in Sustain are
smaller than in infants, necessitating 10,000
networks to reach statistical significance,
whereas the number of CC networks
matched the nine infants run in each con-
dition, (b) parameter values had to be op-

timally fit in Sustain, but not in CC, and
(c) like the well-known ALCOVE, concept-
learning algorithm, Sustain employs an at-
tention mechanism that CC does not re-
quire. One could say that Sustain attends
to learn, whereas CC learns to attend. Like-
wise, CC seems preferable over Shrink-BP
because CC learns much faster (tens vs.
thousands of epochs), thus making a better
match to the few minutes of familiarization
in the infant experiments. CC is so far the
only model to capture the habituation effect
across an experimental session at a single age
level. Shrink-BP and Sustain would not cap-
ture this effect because their mechanisms
operate over ages, not over trials; CC mech-
anisms operate over both trials and ages.

11. Discrimination-Shift Learning

Discrimination-shift learning tasks stretch
back to early behaviorism (Spence, 1952)
and have a substantial human literature with
robust, age-related effects well suited to
learning models. In a typical discrimination-
shift task, a learner is shown pairs of stim-
uli with mutually exclusive attributes along
two perceptual dimensions (e.g., a black
square and a white circle or a white square
and a black circle, creating four stimulus
pairs when left-right position is counter-
balanced). The task involves learning to
pick the consistently-rewarded stimulus in
each pair, where reward is linked to an at-
tribute (e.g., black). When the learner con-
sistently picks the target stimulus (usually
eight times or more in ten consecutive tri-
als), various shifts in reward contingencies
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are introduced. A within-dimension shift in-
volves an attribute from the initially relevant
dimension as the new learning target (e.g.,
shifting from black to white). Conversely,
a between-dimensions shift involves a new
learning target from the previously irrele-
vant dimension (e.g., from black to circle).

Children above ten years and adults typ-
ically exhibit dimensional transfer on these
tasks, whereby within-dimension shifts are
easier (i.e., require fewer learning trials)
than between-dimension shifts, and gener-
alization of shift learning is observed on
untrained stimuli. In contrast, preschool-
ers do not show dimensional transfer, and
their learning is often explained as stimulus-
response association. A popular interpre-
tation of this age-related change in per-
formance was that development involves
a change from associative to mediated
information processing during childhood
(Kendler, 1979).

A simulation of these tasks with BP net-
works (Raijmakers, van Koten, & Molenaar,
1996) found that performance was compa-
rable to that of preschoolers because net-
works failed to show dimensional transfer
and generalization. Even though these net-
works included hidden units, which might
mediate between inputs and outputs, they
failed to exhibit mediated processing typ-
ical of older children and adults. The au-
thors concluded that feed-forward neu-
ral networks were unable to capture the
rule-like behavior of adults who abstract
the relevant dimensions of variation in a
problem.

However, research with CC networks
showed that these shift-learning tasks are
linearly separable problems and that mul-
tilayered BP nets make the problem more
complicated than necessary (Sirois & Shultz,
1998). These authors argued, based on psy-
chological evidence, that preschoolers and
adults differ in depth of processing rather
than on qualitatively different representa-
tional structures. They further suggested
that adults acquire more focused representa-
tions through extensive iterative processing,
which can be simulated in neural networks
by lowering the score-threshold parameter.

These CC networks provided successful
coverage of a wide range of discrimination-
shift phenomena, capturing the perfor-
mance of both preschoolers and adults. Two
empirical predictions were made. One was
that adults would perform like preschool-
ers if iterative processing were blocked.
Overtraining research had already shown
that preschoolers would perform like adults
through additional learning trials. New re-
search using a cognitive load during discrim-
inative learning confirmed that adults do
perform like preschoolers (Sirois & Shultz,
2006), revealing a continuity of representa-
tions between preschoolers and adults.

The second prediction concerned associa-
tive learning in preschoolers and was coun-
terintuitive. Researchers had suggested that
preschoolers do not respond on the basis of
perceptual attributes but rather treat stim-
uli as perceptual compounds. The idea was
that preschoolers are under object control,
whereas adults are under dimensional con-
trol. But networks were sometimes correct
on stimulus pairs and incorrect for each
stimulus in a pair (Sirois & Shultz, 1998).
The prediction here was that preschoolers
would be under pair control rather than
object control, such that they would have
difficulty categorizing individual stimuli fol-
lowing successful pairwise learning. This has
since been confirmed in experiments with
children (Sirois, 2002).

12. Concept and Word Learning

The classic developmental problem of how
children learn concepts and words is attract-
ing a flurry of interest from both Bayesian
and connectionist modelers. Four-year-olds
and adults were reported to be consistently
Bayesian in the way they generalized a novel
word beyond a few provided examples (Xu
& Tenenbaum, 2007). When three exam-
ples of a novel word were generated by a
teacher, learners were justified in assum-
ing that these examples represented a ran-
dom sample from the word’s extension. As
a result, they restricted generalization to a
specific, subordinate meaning. In contrast,
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when three examples were provided but
only one of them was a randomly selected
instance of the word meaning (the other
two examples having been chosen by the
learner), subjects generalized more broadly,
to the basic level, just as in previous studies
that had provided only one example of the
word’s extension. The authors argued that
other theories and models that do not ex-
plicitly address example sampling could not
naturally account for these results.

Other, related phenomena that are at-
tracting modeling concern shape and mate-
rial biases in generalizing new word mean-
ings. Six regularities from the psychological
literature deserve model coverage:

1. Shape and material bias. When shown a
single novel solid object and told its novel
name, 2.5-year-olds generalized the name
to objects with the same shape. In contrast,
when shown a single novel nonsolid sub-
stance and told its novel name, children of
the same age typically generalized the name
to instances of the same material (Colunga
& Smith, 2003; Imai & Gentner, 1997; Soja,
Carey, & Spelke, 1992). These biases are
termed overhypotheses because they help
to structure a hypothesis space at a more
specific level (Goodman, 1955/1983).

2. Development of shape bias and material
bias. The foregoing biases emerge only after
children have learned some names for solid
and nonsolid things (Samuelson & Smith,
1999). One-year-old infants applied a novel
name to objects identical to the trained ob-
ject but not to merely similar objects. Fur-
thermore, the training of infants on object
naming typically requires familiar categories
and multiple examples. This is in contrast
to 2.5-year-olds’ attentional shifts being
evoked by naming a single novel example.

3. Shape bias before material bias. At
two years, children exhibit shape bias on
these tasks, but not material bias (Imai &
Gentner, 1997; Kobayashi, 1997; Landau,
Smith, & Jones, 1988; Samuelson & Smith,
1999; Soja, Carey, & Spelke, 1991; Subrah-
manyam, Landau, & Gelman, 1999).

4. Syntax. Name generalization in these
tasks is influenced by syntactic cues mark-
ing the noun as a count noun or mass noun
(Dickinson, 1988; Imai & Gentner, 1997;
Soja, 1992). If an English noun is preceded
by the article a or the, it yields a shape bias,
but if preceded by some or much it shows a
material bias.

5. Ontology bias. Names for things tend to
not refer to categories that span the bound-
ary between solids and nonsolids, for ex-
ample, water versus ice (Colunga & Smith,
2005). This underscores greater complexity
than a mere shape bias for solids and ma-
terial bias for nonsolids. Solid things do not
typically receive the same name as nonsolid
stuff does.

6. Material-nonsolid bias. In young children,
there is an initial material bias for nonsolids
(Colunga & Smith, 2005).

All six of these phenomena were covered
by a constraint-satisfaction neural network
trained with contrastive Hebbian learning
(see Figure 2.2 in this volume) that ad-
justs weights on the basis of correlations be-
tween unit activations (Colunga & Smith,
2005). Regularities 5 and 6 were actually
predicted by the network simulations be-
fore being documented in children. Each
word and the solidity and syntax of each ex-
ample were represented locally by turning
on a particular unit. Distributed activation
patterns represented the shape and mate-
rial of each individual object or substance.
Hidden units learned to represent the cor-
relations between shape, material, solidity,
syntax, and words. After networks learned a
vocabulary via examples that paired names
with perceptual instances, they were tested
on how they would categorize novel things.
Statistical distributions of the training pat-
terns matched adult judgments (Samuel-
son & Smith, 1999). The recurrent connec-
tion scheme is illustrated by the arrows in
Figure 16.2.

A hierarchical Bayesian model covered
the mature shape bias and material bias de-
scribed in regularity 1 and probably could
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Figure 16.2. Topology of the network used by
Colunga and Smith (2005). (Adapted with
permission.)

be extended to cover regularities 4 and
5 (Kemp, Perfors, & Tenenbaum, 2007).
Such models include representations at sev-
eral levels of abstraction and show how
knowledge can be acquired at levels remote
from experiential data, thus providing for
both top-down and bottom-up learning. Hy-
potheses at some intermediate level are con-
ditional on both data at a lower level and
overhypotheses at a higher level (see Chap-
ter 3 in this volume).

This model also generated several pre-
dictions that may prove to be somewhat
unique. For example, the optimal number
of examples per category is two, assuming a
fixed number of total examples. Also, learn-
ing is sometimes faster at higher than lower
levels of abstraction, thus explaining why
abstract knowledge might appear to be in-
nate even when it is learnable. This is likely
to happen in situations when a child en-
counters sparse or noisy observations such
that any individual observation is difficult to
interpret, although the observations taken
together might support some hypothesis.

As is typical, this Bayesian model is
pitched at a computational level of analy-
sis, whereas connectionist models operate at
more of an implementation level. As such,
a computational-level Bayesian model may
apply to a variety of implementations. The
other side of this coin is that Bayes’ rule
does not generate representations – it instead
computes statistics over structures designed
by the modelers. In contrast, connectionist
approaches sometimes are able to show how
structures emerge.

Kemp et al. (2007) note that a common
objection is that the success of Bayesian
models depends on the modeler’s skill in
choosing prior probabilities. Interestingly,
hierarchical Bayesian models can solve this
problem because abstract knowledge can be
learned rather than specified in advance.

A final point is that the correlations be-
tween syntax, solidity, shape, and material
that underlie learning and generalization in
this domain are far from perfect (Samuel-
son & Smith, 1999). For example, accord-
ing to adult raters, bubble names a non-
solid but shape-based category; soap names
a solid but material-based category; crayon,
key, and nail name categories that are based
on both shape and material. The many ex-
ceptions to these statistical regularities sug-
gest that symbolic rule-based models would
be nonstarters in this domain.

Particularly challenging to learn are so-
called deictic words, such as personal pro-
nouns, whose meaning shifts with point of
view. Although most children acquire per-
sonal pronouns such as me and you with-
out notable errors (Charney, 1980; Chiat,
1981; Clark, 1978), a small minority of chil-
dren show persistent pronoun errors before
getting them right (Clark, 1978; Oshima-
Takane, 1992; Schiff-Meyers, 1983). The
correct semantics are such that me refers
to the person using the pronoun and you
refers to the person who is addressed by the
pronoun (Barwise & Perry, 1983). Unlike
most words, the referent of these pronouns
is not fixed, but instead shifts with conver-
sational role. Although a mother calls her-
self me and calls her child you, these pro-
nouns must be reversed when the child ut-
ters them. Because the referent of a personal
pronoun shifts with conversational role, an
imitative model for correct usage can be dif-
ficult to find. If children simply imitated
what they heard in speech that was di-
rectly addressed to them, they would in-
correctly refer to themselves as you and to
the mother as me. These are indeed the
typical errors made by a few children be-
fore sorting out the shifting references. A
challenge for computational modelers is to
explain both this rare sequence and the



P1: IBE

CUFX212-16 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 17:14

computational models of developmental psychology 467

virtually errorless acquisition observed in
most children.

The most coherent explanation and evi-
dence focused on the extent to which chil-
dren were exposed to speech directly ad-
dressed to them versus speech that they
overheard (Oshima-Takane, 1988). In over-
heard speech, children can observe that you
refers to a person other than themselves
and that me and you reciprocate each other
with shifts of speaker, addressee, and refer-
ent. But in directly addressed speech, chil-
dren would observe that you always refers to
themselves and that me refers to the speaker.
Thus, the correct semantics are better un-
derstood as children listen to others address-
ing each other.

This idea was supported by a training ex-
periment using the so-called me-you game
for several weeks with nineteen-month-olds
who were just starting to acquire personal
pronouns (Oshima-Takane, 1988). Correct
pronoun production benefited more from
listening to overheard speech (for example,
the mother looks at the father, points to
herself, and says me) than from listening to
directly addressed speech (e.g., the father
looks at the child, points to the child, and
says you). Only those children assigned to
the overheard speech condition could pro-
duce pronouns without errors. Also sup-
portive was a naturalistic study in which
second-borns acquired these pronouns ear-
lier than did first-borns, even though these
two groups of children did not differ on
other measures of language development
(Oshima-Takane, Goodz, & Derevensky,
1996). The explanation is that second-born
children have relatively more opportunities
to hear pronouns used in speech not ad-
dressed to them in conversations between
a parent and an older sibling.

There are some theoretically interesting,
albeit extreme, conditions of pronoun expe-
rience that cannot be found with children,
such as exclusive exposure to either directly
addressed speech or overheard speech. One
advantage of simulation work is that such
variations can be systematically explored.
Several simulations with CC networks ma-
nipulated the relative amounts of directly

addressed speech and overheard speech
(Oshima-Takane, Takane, & Shultz, 1999;
Shultz, Buckingham, & Oshima-Takane,
1994). As in the psychology experiment
(Oshima-Takane, 1988), the networks had
input information on speaker, addressee,
and referent, and learned to predict the
correct pronoun. As with children, error-
free pronoun acquisition by networks was
achieved with a high proportion of over-
heard speech patterns, whereas persistent
reversal errors resulted from a high propor-
tion of directly addressed speech patterns.
Thus, both errorless acquisition and a pro-
gression from reversal errors to correct usage
can be achieved, depending on the relative
proportions of directly addressed and over-
heard speech. In an attempt to find effective
therapeutic techniques for persistent rever-
sal errors, simulations pointed to the bene-
fits of massive amounts of overheard speech.
Attempts to correct pronoun reversal er-
rors using directly addressed speech are no-
toriously difficult because the child misun-
derstands the correction (Oshima-Takane,
1992), and this difficulty was verified with
simulations.

Simulation of first- and second-person
pronoun acquisition was also implemented
within a developmental robotics approach
(Gold & Scassellati, 2006). Instead of
learning a pronoun-production function
of speaker, addressee, and referent, p =
f (s, a, r ), as in Oshima-Takane’s psychol-
ogy experiment and the CC network simula-
tions, a humanoid robot learned a pronoun-
comprehension function, referent as a func-
tion of speaker, addressee, and pronoun,
r = f (s, a, p). This comprehension func-
tion was learned in a game of catch with
a ball between two humans and the robot.
The robot’s video camera captured both vi-
sual and auditory information, the latter be-
ing processed by a speech-recognition sys-
tem. The humans tossed the ball back and
forth and occasionally to the robot, while
commenting on the action with utterances
such as, “I got the ball” or “You got the
ball.” Once reference was established, word
counts for each pronoun were updated by
the robot’s computer in 2× 2 tables for
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each pronoun-property pair. The highest
significant chi-square value indicated the
meaning of the utterance. Results revealed
that you as addressee was acquired first and
more strongly than I as speaker. Although
the robot’s distinction between I and you
captures the correct semantics, it is not gen-
erally true that children acquire second- be-
fore first-person pronouns. If anything, there
is a tendency for children to show the re-
verse order: first-person pronouns before
second-person pronouns (Oshima-Takane,
1992; Oshima-Takane et al., 1996).

In a simulation of blind children, the
robot in another condition could not see
which of the humans had the ball, but could
sense whether it (the robot) had the ball.
This blind robot fell into the reversal er-
ror of interpreting you as the robot, as do
young blind children (Andersen, Dunlea, &
Kekelis, 1984).

The game of catch seems like an inter-
esting and natural method to facilitate per-
sonal pronoun acquisition. Although tabu-
lating word-property counts in 2× 2 tables
and then analyzing these tables with chi-
square tests is a common technique in the
study of computational semantics, it is un-
clear whether this could be implemented
with neural realism.

A major difference between the psychol-
ogy experiment and neural-network model
on the one hand and the robotic model on
the other hand concerns the use of gestures.
Both the psychology experiment and the
neural-network model liberally used point-
ing gestures to convey information about
the referent, as well as eye-gaze information,
to convey information about the addressee.
In contrast, the robotic model eschewed
gestures on the grounds that pointing is
rude, unnecessary, and difficult for robots
to understand. Paradoxically then, even
though developmental robotics holds the
promise of understanding embodied cogni-
tion, this robotic model ignored both ges-
tural and eye-gaze information. The game
of catch, accompanied by appropriate ver-
bal commentary, nicely compensated for
the absence of such information in the

robot. However, humans are well known
to both use and interpret gestures to com-
plement verbal communication (Goldin-
Meadow, 1999), and deictic (or pointing)
gestures (McNeill, 1992) are among the first
to appear in young children, as early as ten
months of age (Bates, 1979). Hence, future
humanoid robotic modelers might want to
incorporate gesture production and inter-
pretation in an effort to more closely follow
human strategies.

It would seem interesting to explore
computational systems that could learn all
the functions relating speaker, addressee,
referent, and pronoun to each other as
well as extended functions that included
third-person pronouns. Could learning some
of these functions afford inferences about
other functional relations? Or would every
function have to be separately and explicitly
learned? Bayesian methods and neural net-
works with recurrent connections might be
good candidates for systems that could make
inferences in various directions.

13. Abnormal Development

One of the promising ideas supported by
connectionist modeling of development is
that developmental disorders might emerge
from early differences that lead to abnor-
mal developmental trajectories (Thomas &
Karmiloff-Smith, 2002). One such simula-
tion was inspired by evidence that larger
brains favor local connectivity and smaller
brains favor long-distance connections
(Zhang & Sejnowski, 2000) and that chil-
dren destined to become autistic show ab-
normally rapid brain growth in the months
preceding the appearance of autistic symp-
toms (Courchesne, Carper, & Akshoomoff,
2003). Neural networks modeled the com-
putational effects of such changes in brain
size (Lewis & Elman, 2008). The net-
works were feed-forward pattern associa-
tors, trained with backpropagation of error.
As pictured in Figure 16.3, each of two hemi-
spheres of ten units was fed by a bank of five
input units. Units within a hemisphere were
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Figure 16.3. Topology of the autism network. Each of two
hemispheres of ten units was fed by a bank of five input units.
Units within a hemisphere were recurrently connected, and two units
in each hemisphere were fully connected across hemispheres. Each
hemisphere, in turn, fed a bank of five output units.

recurrently connected, and two units in each
hemisphere were fully connected across
hemispheres. Each hemisphere, in turn, fed
a bank of five output units. Both inter-
and intra-hemispheric connections exhib-
ited conduction delays, implemented by pe-
riodically adding or subtracting copy units
forming a transmission chain – the more
links in the chain, the longer the conduc-
tion delay. The networks simulated inter-
hemispheric interaction by growing in spa-
tial extent, with consequent transmission
delays, at the rate of either typically devel-
oping children or those in the process of be-
coming autistic.

Those networks that simulated autistic
growth (marked by rapid increases in the
space taken up by the network) were less af-
fected by removal of inter-hemispheric con-
nections than those networks that grew at
a normal rate, indicating a reduced reliance
on long-distance connections in the autistic
networks. As these differences accelerated,
they were reflected in declining connec-
tivity and deteriorating performance. The
simulation offers a computational demon-
stration of how brain overgrowth could pro-
duce neural reorganization and behavioral
deficits.

In a similar vein, researchers have exam-
ined the role of initial conditions in develop-
mental dyslexia (Harm & Seidenberg, 1999),
specific language impairments (Hoeffner &

McClelland, 1994), and Williams syndrome
(Thomas & Karmiloff-Smith, 2002).

14. Conclusions

14.1. Computational Diversity

Computational modeling of development
is now blessed with several different tech-
niques. It started in the 1970s with pro-
duction systems, which were joined in the
late 1980s by neural networks. But by the
early twenty-first century, there were also
dynamic system, robotic, and Bayesian ap-
proaches to development. This diversity is
welcome because each approach has already
made valuable contributions to the study of
development, just as they have in other ar-
eas of psychology. All of these approaches
have contributed to the notion that an un-
derstanding of development can be facili-
tated by making theoretical ideas precise and
systematic, covering various phenomena of
interest, linking several different findings to-
gether, explaining them, and predicting new
phenomena. Such activities significantly ac-
celerate the scientific process.

Production systems are to be admired
for their precision and clarity in specifying
both knowledge representations and pro-
cesses that operate on these representations
to produce new knowledge. Connection-
ist systems have the advantage of graded
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knowledge representations and relative
closeness to biological neural systems in
terms of activation functions, connectivity,
and learning processes. Dynamic systems il-
lustrate how the many different features of a
complex computational system may interact
to yield emergent behavior and ability. De-
velopmental robotics forces modelers to deal
with the complexities of real environments
and the constraints of operating in real time.
Bayesian methods contribute tools for mak-
ing inferences despite incomplete and un-
certain knowledge.

14.2. Complementary Computation

These different modeling approaches tend
to complement each other, partly by being
pitched at various levels. Marr’s (1982) lev-
els of computational analysis, imperfect as
they are, can be used to explore this. Marr
argued that explanations of a complex sys-
tem can be found in at least three levels:
analysis of the system’s competence, design
of an algorithm and representational for-
mat, and implementation. Analyzing a sys-
tem’s competence has been addressed by
task analysis in symbolic approaches, dif-
ferential equations in a dynamic system ap-
proach, and Bayesian optimization.

Every computational model must cope
with the algorithmic level. Symbolic rule-
based models do this with the mechanics
of production systems: the matching and
firing of rules, and the consequent updat-
ing of working memory. In neural networks,
patterns of unit activations represent ac-
tive memory, whereas weight updates rep-
resent the learning of long-term memory.
Activation fields geometrically represent the
changing positions of a dynamic system.
Bayesian approaches borrow structures from
symbolic approaches and compute statistics
over these structures to identify the most
probable hypothesis or structure given cur-
rent evidence.

The implementation level can be taken
to refer to the details of how a particu-
lar model is instantiated. In this context,
higher-level approaches, such as production
systems (Lebiere & Anderson, 1993) and

dynamic systems (van Gelder, 1998), have
sometimes been implemented as neural net-
works. One can also be concerned with how
a system is implemented in neural tissue. Of
the approaches considered in this chapter,
neural networks come closest to simulating
how this might be done because these net-
works were largely inspired by principles of
how the brain and its neurons work. Growth
of brain structure within a network and in-
tegration of brain structures across networks
have both been stressed in this and other re-
views (Westermann et al., 2006). As noted,
dynamic systems can also be inspired by neu-
roscience discoveries. There is, of course, a
continuum of neural realism in such imple-
mentations.

If the different modeling approaches do
exist at different levels, wouldn’t it make
sense to use the lowest level to obtain the
finest grain of detail, perhaps to a biologi-
cally realistic model of actual neural circuits?
Remembering the reductionist cruncher ar-
gument (Block, 1995), the answer would be
negative because different levels may be bet-
ter for different purposes. It is preferable
to work at the most appropriate level for
one’s goals and questions, rather than al-
ways trying to reduce to some lower level.
Nonetheless, one of the convincing ratio-
nales for cognitive science was that differ-
ent levels of analysis can constrain each
other, as when psychologists try to build
computational models that are biologically
realistic.

14.3. Computational Bakeoffs

Even if computational algorithms exist at
somewhat different levels, so-called bake-
off competitions are still possible and in-
teresting, both between and within vari-
ous approaches. This is because different
approaches and models sometimes make
different, and even conflicting, predictions
about psychological phenomena. Focusing
on phenomena that have attracted a lot of
modeling attention, as in this chapter, pro-
vides some ready-made bakeoff scenarios.

Symbolic and connectionist models were
sharply contrasted here in the cases of the
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balance scale, past tense, artificial syntax,
and pronouns. In balance-scale simulations,
rule-based models, but not connectionist
models, had difficulty with the torque-
difference effect. This is a graded, percep-
tual effect that is awkward for crisp symbolic
rules but natural for neural systems with
graded representations and update processes
that propagate these gradations. Past-tense
formation was likewise natural for neural
approaches, which can implement regu-
larities and exceptions in a homogeneous
system and thus capture various phenomena
by letting them play off against each other,
but awkward for symbolic systems that
isolate rule processing from other processes.
Several connectionist models captured the
novelty preference in learning an artificial
syntax, but the one rule-based approach that
was tried could not do so. Although no rule-
based models have yet been applied to pro-
noun acquisition, the graded effects of varia-
tion in amount of experience with overheard
versus directly addressed speech would pose
a challenge to rule-based models.

Attractive modeling targets, such as the
balance scale, artificial syntax, similarity-to-
correlation shift, and discrimination shift
also afforded some bakeoff competitions
within the neural approach in terms of static
(BP) versus constructive (CC) network
models. On the balance scale, CC networks
uniquely captured final, stage-4 perfor-
mance and did so without having to segre-
gate inputs by weight and distance. CC also
captured more phenomena than did static
BP models in simulations of the similarity-
to-correlation shift. This was probably be-
cause CC naturally focused first on identify-
ing stimulus features while underpowered
and only later with additional computa-
tional power abstracted correlations among
these features. In discrimination-shift learn-
ing, the advantage of CC over static BP was
a bit different. Here, BP modelers were led
to incorrect conclusions about the inability
of neural networks to learn a mediated ap-
proach to this problem by virtue of trying
BP networks with designed hidden units.
Because CC networks only recruit hidden
units as needed, they were able to verify

that these simple learning problems were
actually linearly separable, suggesting that
hidden units were making learning more
difficult than it needed to be. Other con-
structive versus static network competitions
have also favored constructive networks
on developmental problems (Shultz, 2006).
To simulate stages and transitions between
stages, there is an advantage in starting small
and increasing in computational power as
needed.

The notion of underlying qualitative
changes causing qualitative changes in psy-
chological functioning differs from the idea
of underlying small quantitative changes
causing qualitative shifts in behavior, as in
mere weight adjustment in static neural net-
works or quantitative changes in dynamic-
system parameters. There are analogous
qualitative structural changes at the neu-
rological level in terms of synaptogenesis
and neurogenesis, both of which have been
demonstrated to be under the control of
pressures to learn in mature as well as devel-
oping animals (Shultz, Mysore, & Quartz,
2007). The CC algorithm is neutral with
respect to whether hidden-unit recruitment
implements synaptogenesis or neurogenesis,
depending on whether the recruit already
exists in the system or is freshly created. But
it is clear that brains do grow in structure and
there seem to be computational advantages
in such growth, particularly for simulating
qualitative changes in behavioral develop-
ment (Shultz, 2006).

This is not to imply that static connec-
tionist models do not occupy a prominent
place in developmental modeling. On the
contrary, this review highlights several cases
in which static networks offered compelling
and informative models of developmental
phenomena. Static networks may be partic-
ularly appropriate in cases for which evo-
lution has prepared organisms with either
network topologies or a combination of con-
nection weights and topologies (Shultz &
Mareschal, 1997). When relevant biological
constraints are known, as in a model of ob-
ject permanence (Mareschal et al., 1999),
they can guide design of static network
topologies. In some studies, the process



P1: IBE

CUFX212-16 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 17:14

472 shultz and sirois

of network evolution itself has been mod-
eled (Schlesinger et al., 2000). Ultimately,
models showing how networks evolve,
develop, and learn would be a worthy
target.

The more recently applied modeling
techniques (dynamic systems, developmen-
tal robotics, Bayesian) do not yet have
enough bakeoff experience to draw firm
conclusions about their relative effective-
ness in modeling development. For example,
in the A-not-B error, the dynamic system ap-
proach seemed promising but did not cover
as many phenomena as BP networks did.
However, as noted, this dynamic system has
several parameters whose variation could be
explored to cover additional phenomena.

Likewise, although Bayesian approaches
are only just starting to be applied to de-
velopment, they have already made some
apparently unique predictions in the do-
main of word learning: inferences allowed
by random sampling of examples and esti-
mates of the optimal number of examples
for Bayesian inference. Also in the word-
learning domain, the Bayesian approach
covered only a portion of the shape-and-
material-bias phenomena covered by the
neural-network model. Nonetheless, the hi-
erarchical Bayesian model employed there
seems to have the potential to integrate phe-
nomena across different explanatory levels.
Before leaving these biases, it is perhaps
worth remembering, in a bakeoff sense, that
rule-based methods would likely be both-
ered by the many exceptions that exist in
this domain.

In the domain of pronoun acquisition, the
robotics model did not address the same psy-
chology experiment as did the CC model,
so the robot could not realistically cover
the findings of that experiment. However,
a blind catch-playing robot did simulate the
reversal errors made by blind children. How-
ever, a sighted robot developed you before
I , something that is not true of children.

The domain of syntax learning proved to
be too easy for a variety of connectionist
models, so it was difficult to discriminate
among them – they all captured the main
infant finding of a novelty preference. This

problem was not so easy for C4.5, though,
which could not capture any phenomena
from the infant experiment. Moving to re-
alistically complex syntactic patterns will
likely prove challenging for all sorts of
models.

Simulation of abnormal development has
a number of promising connectionist mod-
els, but it is too early to tell which particular
approaches will best capture which particu-
lar developmental disorders.

14.4. Development via Parameter
Settings?

Some of the models reviewed in this chapter
simulated development with programmer-
designed parameter changes. Variations in
such parameter settings were used to im-
plement age-related changes in both con-
nectionist and dynamic-systems models of
the A-not-B error, the CC model of dis-
crimination-shift learning, all three models
of the similarity-to-correlation shift, and the
autism model. Granted that this technique
captured developmental effects and ar-
guably could be justified on various grounds,
but does it really constitute a good explana-
tion of developmental change? Or is this a
case of divine intervention, manually imple-
menting changes that should occur naturally
and spontaneously? ACT-R simulations of
development also have this character as pro-
grammers change activation settings to allow
different rules to come to the fore. Perhaps
such parameter settings could be viewed as a
preliminary step in identifying those changes
a system needs to advance. One hopes that
this could be followed by model improve-
ments that would allow for more natural and
spontaneous development.
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CHAPTER 17

Computational Models of Psycholinguistics

1. Introduction

The computational mechanisms that under-
lie how people process and acquire lan-
guage has been a central topic for cogni-
tive science research since the beginning
of the field. Indeed, Chomsky’s revolution-
ary impact on linguistics (e.g., 1957, 1959,
1965) involved the attempt to align linguis-
tics with the project of cognitive science.
The project of linguistics was viewed as pro-
viding a formally specified account of the
knowledge that underpins linguistic behav-
ior. This specification took the form of a
generative grammar – a set of rules that de-
termined which linguistic forms (strings of
phonemes, strings of words, etc.) are linguis-
tically acceptable and which are not. Gen-
erative grammars themselves had direct re-
lationships to models of formal languages in
automata theory and are used to specify for-
mal languages, both in logic and the devel-
opment of programming languages.

For Chomsky, computational ideas were
also fundamental to understanding human
language in another way. He defined a for-
mal hierarchy of grammars and associated

languages (regular, context-free, context-
sensitive, unrestricted grammars), each of
which relates elegantly to the kind of
language-processing operations that can
parse and produce them (Chomsky &
Schützenberger, 1963). Thus, for example,
a finite state automaton can parse and pro-
duce only finite-state languages, a push-
down automaton can deal with finite-state
and context-free languages, and so on. More-
over, Chomsky used these observations to
devastating effect, in considering existing
behaviorist theories of linguistic behavior
(Chomsky, 1959; Skinner, 1957). He ar-
gued that human languages correspond to
the highest level in the Chomsky hierar-
chy and, hence, cannot be accounted for
by existing associative theories, which ap-
pear to be limited to processing mechanisms
that correspond to a finite state machine. In-
deed, Chomsky’s arguments concerning the
formal and computational properties of hu-
man language were one of the strongest and
most influential lines of argument behind
the development of the field of cognitive sci-
ence, in opposition to behaviorism. More-
over, Chomsky’s (1968, 1980) arguments
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concerning the poverty of the linguistic in-
put available to the child in relation to the
spectacular intricacy of the linguistic system
that children acquire became a major impe-
tus for strongly nativist theories of language
(e.g., Berwick, 1986; Crain, 1991; Light-
foot, 1991; Pinker, 1984), but also, by ex-
tension, nativist theories across a wide range
of cognitive domains (e.g., Hirschfeld &
Gelman, 1994; Pinker, 1997).

Given this historical background, it is
perhaps not surprising that computational
models of language processing and acquisi-
tion have been theoretically central to the
development of cognitive science over the
past fifty years. But the direction that these
models have taken has been much less pre-
dictable. Chomsky’s initial suggestion that a
formal theory of linguistic knowledge should
integrate smoothly with computational the-
ories of processing and acquisition has run
into a number of difficulties. Reactions to
these difficulties vary widely, with the result
that computational models in psycholin-
guistics have fragmented into different
traditions, which are not readily integrated
into a single perspective. The resulting work
has been rich and varied, and has led to
considerable qualitative insights into many
aspects of human language processing and
acquisition; but it is by no means clear
how to synthesize the variety of computa-
tional methods and insights into anything
resembling an integrated theoretical frame-
work. This chapter outlines the historical
origins and the state of the art of computa-
tional models of psycholinguistic processes.
Also considered are the interrelationships
between the different theoretical traditions
that have emerged from, and in reaction
to, the Chomskyan revolution. This sur-
vey is necessarily highly selective, both in
terms of the topics covered and the research
within each topic. The survey aims, though,
to focus attention on topics that have the
widest general theoretical implications, both
for other fields of computational cognitive
modeling and for the project of cognitive
science more broadly.

The next section, Three Computational
Frameworks for Psycholinguistics, begins by

outlining and contrasting symbolic, connec-
tionist, and probabilistic approaches to the
computational modeling of psycholinguistic
phenomena (see Chapter 1 in this volume).
There are important overlaps and relation-
ships between these traditions, and each
tradition itself contains a range of incom-
patible viewpoints. Nonetheless, this three-
way division is at least a convenient start-
ing point for discussion. Next, attention
turns to specific computational proposals
and associated theoretical positions across
specific psycholinguistic topics. From Signal
to Word considers word segmentation and
recognition, and single word reading. Sen-
tence Processing primarily focusses on pars-
ing, relating connectionist and probabilistic
models to the symbolic models of grammar
and processing associated with Chomsky’s
program. Language Acquisition reviews for-
mal and computational models of language
learning and re-evaluates, in the light of cur-
rent computational work, Chomsky’s early
theoretical arguments for a strong nativist
view of the computational mechanisms in-
volved. Finally, in Where Next? the future of
computational models of psycholinguistics
is considered.

2. Three Computational Frameworks
for Psycholinguistics

2.1. Chomsky and the Symbolic Tradition

Chomsky’s initiation of the cognitive science
of language proposed that human language
should be assimilated into the domain of
formal languages, and this immediately sug-
gests that the computational mechanisms
involved in parsing and producing formal
languages, which is a rich area of research
in computer science, (e.g., Aho & Ullman,
1972; Hopcroft, Motwani, & Ullman,
2000), might be co-opted and extended to
provide models of human language process-
ing. This is a rigorously symbolic perspective
on the structure of language and the nature
of the computational processes operating
over language – a perspective that meshed
well with the prevalent computational
models of mind, inspired by spectacular
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theoretical and technical advances in sym-
bolic computation (e.g., Winograd, 1972).

This perspective provides an attractively
crisp picture of the relationship between
knowledge of the language, and the process-
ing operations used in parsing or producing
it. The knowledge of the language is em-
bodied in a set of declarative rules (i.e., the
rules are explicitly represented in symbolic
form), and a set of processing operations
applies these rules in parsing and produc-
tion. In parsing, the problem is to find a syn-
tactic derivation (typically corresponding to
a tree structure), using the rules, that yields
the observed sequence of words; in pro-
duction, there is the converse problem of
using the rules to construct a derivation and
then to output the resulting sequence of
words. From this point of view, too, the
problem of language learning can be stated
as a problem of induction, that is, inducing
a grammar (i.e., a set of symbolic linguistic
rules) from a set of observed sentences, and
this problem yields readily to formal analy-
sis, using techniques from theoretical com-
puter science.

Yet, despite these evident strengths,
and moreover, extensive developments in
linguistic theory based on the symbolic
approach, the expected program of com-
putational models of psycholinguistic phe-
nomena rapidly ran into difficulties. Ini-
tial grammar formalisms proposed that the
derivation of a sentence required the op-
eration of a succession of transformations,
leading to the natural assumption that a
computational model of language parsing
and production would need to recapit-
ulate these transformations and that the
number and complexity of transformations
should therefore correlate with process-
ing time and difficulty in psycholinguis-
tic experiments. This derivational theory of
complexity (Miller, 1962) proved to be a
poor computational model when compared
with empirical data and was rapidly aban-
doned. In the generative grammar tradition,
the relationship between linguistic theory
and processing was assumed to be indirect
(e.g., Fodor, Bever, & Garrett, 1974), and
this led subsequent developments in the

Chomskyan tradition in generative grammar
to disengage from work on computational
modeling.

Yet, in parallel with this, a wide range
of research in computational linguistics took
the generative approach to linguistic the-
ory and attempted to build computational
mechanisms for language processing that
could serve as potential cognitive models.
For example, early debates concerned al-
ternative mechanisms for parsing versions
of transformational grammar or related but
simpler formalisms, for example, Wanner
and Maratsos’s (1978) Augmented Tran-
sition Networks and Frazier and Fodor’s
(1978) “sausage machine.” Work on cogni-
tive models of symbolic parsing has also con-
tinued (e.g., Crocker, 1996; Gibson, 1998).
Early and recurring issues arising from these
models concerned how to deal with the huge
local ambiguity of natural language, which
appears to lead to a combinatorically explo-
sive number of possible parses. Are many
parallel parses computed at once? If not,
what constraints determine which parse is
pursued? (Marcus, 1980).

Psycholinguistic theories focusing on the
generative tradition tended to assume that
language processing is an autonomous do-
main (Ferreira & Clifton, 1986), that is, lan-
guage processing can be separated from pro-
cesses of general world knowledge (Fodor,
1983). Moreover, it is typically assumed that
structural, rather than probabilistic, features
of language are central. The idea is that the
cognitively represented linguistic rules de-
termine what it is possible to say (the linguis-
tic rules aim to capture linguistic competence;
Chomsky, 1965); all manner of pragmatic,
and knowledge-based constraints, as well as
processing limitations, will determine what
people actually say (such matters are as-
sumed to be theoretically secondary issues
of performance, Chomsky, 1965). For these
reasons, early proposals concerning parsing
and production assumed these processes to
be determined by aspects of syntactic struc-
ture, that is, that the processing system may
aim to build a tree with as few nodes as pos-
sible (the core of Frazier’s [1979] proposal
of minimal attachment).
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Attempts to model psycholinguistic data
have, however, been relatively rare, in the
symbolic tradition. Purely structural fea-
tures of language appear to be just one of
the factors that determine performance in
psycholinguistic experiments, for example.
Predictably enough, experimental results
are strongly influenced by the very prob-
abilistic and world-knowledge factors that
the Chomskyan viewpoint aims to relegate
to the realm of “performance” (e.g., Mac-
Donald, Pearlmutter, & Seidenberg, 1994;
Trueswell & Tanenhaus, 1992). One ap-
proach is to view psycholinguistic paradigms
as highly imperfect measures of the “pure”
language module – and, indeed, classical lin-
guistics has typically taken this perspective
and ignored experimental psycholinguistic
evidence concerning the structure of lan-
guage to the exclusion of direct linguistic
acceptability judgments from native speak-
ers. Another approach is to propose that
structural factors determine which options
the processor considers and that probabil-
ity and world knowledge may arise purely in
pruning such proposals (Crain & Steedman,
1985; Fodor, 1983). From the point of view
of building computational models of psy-
cholinguistic processes, it seems inevitable
that probabilistic aspects of language pro-
cessing must take center stage. This ob-
servation has been one line of impetus
behind two rather different, but related, al-
ternative computational frameworks: con-
nectionist and probabilistic models of lan-
guage, which are discussed in the following
subsections.

2.2. Connectionist Psycholinguistics

A symbolic perspective on language process-
ing fits well with, and was a strong moti-
vation for, the broader view of the mind
as a symbol-processing system, based on
principles analogous to the digital computer
(Newell & Simon, 1972). Connectionism
has a different origin in attempts to design
computers inspired by the brain (see Chap-
ter 2 in this volume). At a coarse level,
the brain consists of a very large number
of densely interconnected neurons, each of

which is computationally relatively simple.
These neurons do not appear to operate in-
dividually in tackling information processing
problems; rather, large numbers of neurons
operate simultaneously and co-operatively
to process information. Furthermore, neu-
rons appear to communicate real num-
bers (approximately encoded by firing rate)
rather than symbolic messages, and there-
fore neurons can be viewed as mapping real-
valued inputs (from other neurons) onto a
real-valued output (which is transmitted to
other neurons). Connectionist nets mimic
these properties, although typically without
attempting high levels of biological realism
(although see Dayan & Abbott, 2001). Con-
nectionist methods also provide interesting
“bottom-up” models of learning – learning
occurs by a multitude of small adjustments
to the “weights” of the connections between
processing units, which can be determined
purely locally; this is a very different pic-
ture of learning from the traditional serial
hypothesis-generation and test envisaged by
typical symbolic models of learning. This
raises the possibility that connectionism may
shed new light on processes underlying lan-
guage acquisition (Bates & Elman, 1993;
Elman 1993, 2003; Redington & Charter,
1998).

The relative merits of connectionist and
symbolic models of language are, as noted
earlier, hotly debated. But should they be
in competition at all? Advocates of sym-
bolic models of language processing assume
that symbolic processes are somehow imple-
mented in the brain: They, too, are connec-
tionists, at the level of implementation. They
assume that language processing can be de-
scribed both at the psychological level, in
terms of symbol processing, and at an imple-
mentational level, in neuroscientific terms
(to which connectionism approximates). If
this is right, then connectionist modeling
should start with symbol processing mod-
els of language processing and implement
these in connectionist nets. Advocates of
this view (Fodor & Pylyshyn, 1988; Marcus,
1998; Pinker & Prince, 1988) typically as-
sume that it implies that symbolic modeling
is entirely autonomous from connectionism;
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symbolic theories set the goalposts for con-
nectionism, but not the reverse. Chater and
Oaksford (1990) argued that, even accord-
ing to this view, there will be a two-way in-
fluence between symbolic and connectionist
theories, since many symbolic accounts can
be ruled out precisely because they could
not be neurally implemented to run in real
time. Indeed, some computational propos-
als concerning, for example, morphology or
reading single words, have a hybrid charac-
ter, in which aspects of what is fundamen-
tally a symbolic process are implemented in
connectionist terms, to explain, for exam-
ple, complex statistical patterns in dealing
with irregular items, alongside apparently
rigid rule-based patterns, for regular items
(e.g., Coltheart et al., 2001; Marcus, 2000).

Many connectionists in the field of
language processing have a more radical
agenda: to challenge, rather than reimple-
ment, the symbolic approach. They see
many aspects of language as consisting of a
multitude of “soft” regularities, more nat-
urally captured by connectionist, rather
than rule-based, methods (e.g., Seidenberg,
1997). There are also theoretical positions
that take inspiration from both symbolic and
connectionist paradigms: In linguistics, op-
timality theory attempts to define a middle
ground of ranked, violable linguistic con-
straints, used particularly to explain phono-
logical regularities (Smolensky & Legendre,
2006). And in morphology, there is debate
over whether “rule+ exception” regularities
(e.g., English past tense, German plural) are
better explained by a single stochastic pro-
cess (Hahn & Nakisa, 2000; Marcus et al.,
1995). Overall, then, a central theoretical
question is how far connectionist models
complement, or compete with, symbolic
models of language processing and acquisi-
tion (Marcus, 1998; Seidenberg & Elman,
1999; Smolensky, 1999; Steedman, 1999).

2.3. Probabilistic Models of Language

As noted earlier, according to Chomsky
(1965), the study of language should pri-
marily focus on competence, rather than per-
formance, that is, what is linguistically ac-

ceptable, rather than the statistical proper-
ties of what people actually say. This has
led to the downplaying of probabilistic fea-
tures of language, more generally, in favor of
the putatively rigid linguistic rules (although
there has been a long tradition of interest in
statistical properties of language in sociolin-
guistics, e.g., Labov, 1972).

Yet, recent work, particularly in compu-
tational linguistics and, as is described later,
connectionist psycholinguistics, has sug-
gested that a probabilistic viewpoint may be
central to understanding language process-
ing, language acquisition, and perhaps the
structure of language itself (Chater & Man-
ning, 2006). Thus, for example, whereas
from a symbolic perspective, parsing is nat-
urally viewed as the problem of constructing
a logical derivation from grammatical rules
to a string of words generated by the ap-
plication of those rules (Pereira & Warren,
1983), from a probabilistic point of view,
the problem is not merely to find any deriva-
tion, but to find the most probable derivation
(or the most probable derivations, ranked by
their probability). Moreover, given the no-
torious local ambiguity of language (where
large numbers of lexical items are syntacti-
cally ambiguous and can combine locally in
many ways), focusing on the most probable
local derivation can potentially lead to a dra-
matic reduction in the problem of searching
for globally viable parses.

In particular, probabilistic Bayesian
methods (see Chapter 3 in this volume)
specify a framework showing how infor-
mation about the probability of generating
different grammatical structures and their
associated word strings can be used to in-
fer grammatical structure from a string of
words. An elegant feature of the probabilis-
tic viewpoint is that the same Bayesian ma-
chinery can also be turned to the problem
of learning: of showing how information
about the degree to which different prob-
abilistic grammars have different probabil-
ities of generating observed linguistic data
and using this to infer grammars, at least to
a limited extent, from linguistic data. More-
over, this Bayesian framework is analogous
to probabilistic models of vision, inference,
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and learning (Chater, Tenenbaum, & Yuille,
2006); what is distinctive is the specific
structures (e.g., syntactic trees, dependency
diagrams) relevant for language.

As with the relationship between sym-
bolic and connectionist viewpoints, the rela-
tionship between probabilistic and symbolic
views can be viewed as complementary or
competitive. The complementary viewpoint
needs assume only that probabilities are
added to existing linguistic rules to indicate
how often rules of each type are used; a clean
separation between nonprobabilistic linguis-
tic competence and probabilistic informa-
tion and processing used in linguistic perfor-
mance can thus be maintained. But the more
radical viewpoint is that some, and perhaps
many, aspects of language structure should
be viewed probabilistically (Bod, Hay, &
Jannedy, 2003).

In linguistics, there has been renewed in-
terest in phenomena that seem inherently
graded and/or stochastic, from phonology
to syntax (Fanselow et al., in press; Hay &
Baayen, 2005). There have also been revi-
sionist perspectives on the strict symbolic
rules thought to underlie language and an
increasing emphasis on nonrule-based pro-
cesses, for example, processes based on in-
dividual linguistic constructions (Goldberg,
2006; Tomasello, 2003). Indeed, some the-
orists suggest that many aspects of language
processing and acquisition may be best un-
derstood in terms of retrieving similar previ-
ous cases from a large store of prior instances
of linguistic structure (Bod, 1998; Daele-
mans & van den Bosch, 2005). Memory, or
instance-based, views are currently widely
used across many fields of cognitive science.

3. From Signal to Word

Early theories of speech processing adopted
a symbolic viewpoint in which a set of
symbolically represented word forms were
matched against the acoustic or visual in-
put, in some cases, assuming a sequential
search in memory, by analogy with the op-
eration of memory retrieval in digital com-
puters (Forster, 1976). Other early models
assumed that multiple word forms could be

activated in parallel, and choice was resolved
by a process of competition (Morton, 1969);
and, in the context of speech, this compe-
tition was assumed to proceed incremen-
tally, and very rapidly, as the speech signal
was encountered (Marslen-Wilson & Welsh,
1978).

These models were typically not imple-
mented, however, and hence not quantita-
tively matched against empirical data. Two
sources of candidate computational mod-
els began to emerge, however. The first
arose from the application of sophisticated
probabilistic and mathematical techniques,
such as from hidden Markov models, vector
quantization, and dynamic programming,
in the development of speech technology
(Juang & Rabiner, 1991). These technical
developments had relatively little impact on
psychological theories of speech processing,
although the probabilistic tradition that they
embody has more recently had a substan-
tial impact, as will become clear. The sec-
ond source of candidate models arose from
connectionism, which led to a range of im-
portant detailed cognitive models. Connec-
tionist modeling of speech processing begins
with TRACE, which has an “interactive ac-
tivation” architecture, with a sequence of
“layers” of units (Figure 17.1A), for phonetic
features, phonemes, and words (McClelland
& Elman, 1986). Speech input corresponds
to activation of phonetic features, which al-
low the recognition of phonemes and the
words; at each level, representations com-
pete via mutually inhibitory links. Hence,
alternative phonemes compete to explain
particular bundles of phonetic features, and
different hypothetical words inhibit each
other. Between layers, mutually consistent
hypotheses support each other, for example,
phonetic features consistent with a particu-
lar phoneme reinforce each other; a word
and its constituent phonemes are mutually
reinforcing. The bidirectional, interactive
character of these links underpins TRACE’s
ability to capture apparently top-down ef-
fects – if there is evidence that a partic-
ular word has been heard, that word will
support a constituent phoneme for which
the input at the phonetic level might be
ambiguous.
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Figure 17.1. Interactive and feed-forward
connectionist architectures. A fundamental
divide between neural network architectures
concerns whether the input is processed
unidirectionally or whether top-down feedback
is allowed. (A) Top-down feedback is a
distinctive feature of the interactive activation
network (as used in TRACE; McClelland &
Elman, 1986). The network has bidirectional
excitatory (arrows) or inhibitory (filled circles)
links. Activation flows bottom-up and
top-down, reinforcing mutually consistent states
and inhibiting inconsistent states. Inhibitory
connections within layers implement
competition between alternative words,
phonemes, or phonetic features. The weights in
TRACE are hand-coded rather than learned.
(B) A feedforward network passes information in
one direction, with no feedback connections.
Feedforward networks are typically not
hand-coded, but are trained using
backpropagation, which minimizes the
discrepancy between the network’s actual and
desired output. Information flows bottom-up
from input to output units (see Chapter 2 in
this volume).

TRACE captured a wide range of em-
pirical data and made important novel pre-
dictions. TRACE is most controversial be-
cause it is interactive – the bidirectional
links between units mean that information
flows top-down as well as bottom-up. Other
connectionist models, by contrast, assume
purely bottom-up information flow (Norris,
1994). TRACE provided an impetus for the
interactive versus bottom-up debate, with
a prediction apparently incompatible with
bottom-up models.

To understand this novel prediction, it is
necessary to sketch two background results
on speech perception. First, note that if an
ambiguous phoneme is sometimes resolved
by the word context in which that phoneme
is embedded. Thus, if an ambiguous /s/-/š/
phoneme (the /s/ and /š/ are pronounced
as in the onsets of the words sip and ship)
is presented at the end of fooli-, it is heard
as a /š/, because foolish is a word and fooliss
is not; conversely, in the context Christma-,
the same ambiguous phoneme is heard as
a /s/, because Christmas is a word, whereas
Christmash is not. This is the Ganong ef-
fect (Ganong, 1980), and it follows natu-
rally from an interactive viewpoint, where
word recognition can feed back to phoneme
recognition. But it can be equally well ex-
plained by bottom-up models by assuming
that the participant’s responses concerning
phoneme identity are simultaneously influ-
enced by both the phoneme and lexical lev-
els (Fodor, 1983). The second background
result to motivate Elman and McClelland’s
(1988) prediction comes from the observa-
tion that, in natural speech, the pronuncia-
tion of a phoneme is affected by surrounding
phonemes: this is “coarticulation.” Thus, for
example, /t/ and /k/ differ only by the pho-
netic feature of place of articulation, that
is, tongue position. But the location of the
tongue for the current phoneme is also influ-
enced by its previous position and hence by
the previous phoneme. In particular, for ex-
ample, /s/ and /t/ have the same place of ar-
ticulation; but after a /š/, the place of articu-
lation of the /t/ is dragged somewhat toward
that which is normal for a /k/. The oppo-
site pattern occurs for /k/, which is dragged
somewhat toward the pronunciation of a /t/
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when preceded by a /s/. Mann and Repp
(1981) put an ambiguous /k/-/t/ phoneme
in the context of –apes, so that when heard
alone, the input was judged equally often to
the capes or tapes. After the word Christ-
mas, the ambiguous input is most often
heard as capes – the ambiguous phoneme is
“explained” by the speech processor by the
influence of the previous /š/ context. Con-
versely, after the word foolish, the same am-
biguous phoneme is heard as tapes. Thus,
Mann and Repp (1981) concluded that the
speech processor engages in “compensation
for coarticulation” (CFC); it compensates
for the coarticulation that arises in speech
production.

Elman and McClelland (1988) observed
that TRACE makes an interesting prediction
where the preceding phoneme is also am-
biguous – between /š/ and /s/. If the word
level directly influences the phoneme level
(and this type of direct interactive influence
is what leads to the Ganong effect), then
the compensation of the /k/ should occur
even when the /s/ relies on lexical input for
its identity (i.e., with an ambiguous /s/-/š/
in Christmas, the /s/ should be restored and
thus CFC should occur as normal, so that
the following ambiguous /k/-/t/ should be
perceived as /k/). TRACE’s novel predic-
tion was experimentally confirmed (Elman
& McClelland 1988).

3.1. Bottom-Up Connectionist Models
Capture “Top-Down” Effects

Yet, bottom-up connectionist models can
capture these results. One study used a sim-
ple recurrent network (SRN; Elman, 1990)
to map phonetic input onto phoneme out-
put (Norris, 1993). The SRN is a standard
feedforward network (Figure 17.1B), where
hidden units are copied back at a given time-
step and presented to the network at the
next time-step, so that the network’s behav-
ior is determined by a sequence of inputs,
rather than just the current input (Figure
17.2A). In Norris’s model, when the SRN
received phonetic input with an ambiguous
first word-final phoneme and ambiguous ini-
tial segments of the second word, an analog
of CFC was observed. The percentages of

/t/ and /k/ responses to the first phoneme of
the second word depended on the identity
of the first word (as in Elman & McClelland,
1988). Importantly, the explanation for this
pattern of results cannot be top-down in-
fluence from word units, because there are
no word units. Nonetheless, the presence of
“feedback” connections in the hidden layer
of the SRN might suggest that some form of
interactive processing occurs in this model.
But this is misleading – the feedback occurs
within the hidden layer (i.e., from its previ-
ous to its present state), rather than flowing
from top to bottom. This model, although
an important demonstration, is small-scale –
it deals with just twelve words. However,
a subsequent study scaled up these results
using a similar network trained on phono-
logically transcribed conversational English
(Cairns et al., 1997).

How is it possible that bottom-up pro-
cesses can mimic what appear to be top-
down effects from the lexicon? It was argued
that restoration depends on local statistical
regularities between the phonemes within
a word, rather than depending on access
to lexical representations, thus, individual
phonemes are supported by phonemes in
the same word, not via links to an abstract
word-level representation but instead by lat-
eral connections between the phonemes,
exploiting the statistical dependencies be-
tween neighboring phonemes. More recent
experiments have since shown that CFC
is indeed determined by statistical regu-
larities for nonword stimuli, and that, for
word stimuli, there appear to be no resid-
ual effects of lexical status once statistical
regularities are taken into account (Pitt &
McQueen, 1998). It is not clear, though,
whether bottom-up models can model
other evidence that phoneme identification
is affected by the lexicon, for example,
from signal detection analyses of phoneme
restoration (Kraljic & Samuel, 2005; Norris,
McQueen, & Cutler, 2000; Samuel, 1996).

3.2. Exploiting Distributed
Representations

A different line of results provides ad-
ditional evidence that bottom-up models
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A. Simple Recurrent Network
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B. Two-Route Network
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Figure 17.2. Connectionist architectures for cognitive models. The structure of the
network is represented more schematically than in Figure 17.1. Each block
represents a bank of units, and arrows between blocks indicate full connectivity
between each unit in the relevant blocks. (A) A simple recurrent network is
essentially a standard feedforward network equipped with an extra layer of
so-called context units. At each-time step, an input propagates through the hidden
units to the outputs (solid arrows). The hidden-unit activation at the previous
time-step is copied back to the context layer (dashed arrows) and paired with the
current input (solid arrows). Thus, the hidden units influence the processing of
subsequent inputs, providing a limited ability to deal sequential inputs. (B) Here,
there are two routes from input to output – one that is direct and can only encode
simple relationships and one that is indirect and can encode more complex
relationships between input and output. Zorzi, Houghton, & Butterworth (1998)
use this structure to illustrate how a single network can simultaneously learn both
simple patterns (the basic grapheme-phoneme correspondences of English) using
one route while simultaneously learning a complex pattern of exceptions with the
other route. Note that the resulting model of reading differs from standard
dual-route models (Coltheart et al., 2001) because the route encoding lexical
exceptions can operate by “correcting” the simpler route rather than proceeding
independently of it. (C) A fully recurrent network in which activation flows both
up and down the network and also recirculates between banks of units (Allen &
Seidenberg, 1999). The network can be trained using the backpropagation-
through-time learning algorithm (e.g., Williams & Zipser, 1990). The recirculation
within banks of units serves to “clean up” any errors that may have been introduced.
The labels “input” and “output” are shown in quotes because all connections are
bidirectional. Thus, although the network can be used to map form to meaning (as
in Allen & Seidenberg, 1999), it could equally be used to map meaning to form.

can accommodate apparently top-down ef-
fects (Gaskell & Marslen-Wilson, 1995).
An SRN was trained to map a system-
atically altered featural representation of
speech onto a phonemic and semantic rep-
resentation of the same speech (follow-
ing previous work, Kawamoto, 1993). Af-
ter training, the network showed evidence

of lexical effects in modeling lexical and
phonetic decision data (Marslen-Wilson &
Warren, 1994). This work was extended by
an SRN trained to map sequential phonetic
input onto corresponding distributed repre-
sentations of phonological surface forms and
semantics (Gaskell & Marslen-Wilson,
1997a, 1997b). This style of representation
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contrasts with the localist representations
used in TRACE. The ability of the SRN to
model the integration of partial cues to pho-
netic identity and the time course of lexi-
cal access provides support for a distributed
approach. An important challenge for such
distributed models is to model the simul-
taneous activation of multiple lexical can-
didates necessitated by the temporal am-
biguity of the speech input (e.g., /kæp/
could continuecaptain and captive; see Al-
lopenna, Magnuson, & Tanenhaus, 1998, for
a generalization of this phenomenon). The
“coactivation” of several lexical candidates
in a distributed model results in a seman-
tic “blend” vector. Computational explo-
rations (Gaskell & Marslen-Wilson, 1999) of
such semantic blends provide explanations
of recent empirical results aimed at measur-
ing lexical coactivation (Gaskell & Marslen-
Wilson, 1997a, 1997b) and more gener-
ally provide a concrete implementation of
theoretical proposals that were previously
expressed informally (Marslen-Wilson &
Warren, 1994).

3.3. Speech Segmentation

Further evidence for the bottom-up ap-
proach to speech processing comes from the
modeling of speech segmentation (Chris-
tiansen, Allen, & Seidenberg, 1998). An
SRN was trained to integrate sets of pho-
netic features with information about lex-
ical stress (strong or weak) and utterance
boundary information (encoded as a binary
unit) derived from a corpus of child-directed
speech. The network was trained to predict
the appropriate values of these three cues
for the next segment. After training, the
network was able to generalize patterns of
cue information that occurred at the end
of utterances to when the same patterns
occurred elsewhere in the utterance. Rely-
ing entirely on bottom-up information, the
model performed well on the word segmen-
tation task and captured important aspects
of infant speech segmentation. Speech seg-
mentation has also been the subject a wide
variety of alternative computational propos-
als (e.g., Hockema, in press).

3.4. Reading Aloud

Connectionist research on reading aloud has
focused on single words. A classic early
model used a feedforward network (Fig-
ure 17.1B) to map from a distributed or-
thographic representation to a distributed
phonological representation for monosyl-
labic English words (Seidenberg & McClel-
land, 1989). The net’s performance cap-
tured a wide range of experimental data
on the assumption that network error maps
onto response time. This model contrasts
with standard views of reading, which as-
sume both a “phonological route,” applying
rules of pronunciation, and a “lexical route,”
which is a list of words and their pronuncia-
tions. Regular words (e.g., sing) can be read
using either route, exception words (e.g.,
colonel) by the lexical route, and nonwords
by the phonological route. It was claimed
that, instead, a single connectionist route
can pronounce both exception words and
nonwords. Critics have responded that the
network’s nonword reading is well below
human performance (Besner et al., 1990,
although see Seidenberg & McClelland,
1990). Another difficulty is the model’s re-
liance on (log) frequency compression dur-
ing training (otherwise exception words are
not learned successfully). Subsequent re-
search has addressed both limitations, show-
ing that a network trained on actual word
frequencies can achieve human levels of
performance on both word and nonword
pronunciation, which has led to a range
of new connectionist models (e.g., Plaut,
1999).

3.5. Explaining the Acquired Dyslexias

The number of routes by which words can
be recognized is a central point of theoret-
ical debate. It is widely agreed that both
semantic (where orthography is mapped
to meaning and then to phonology) and
nonsemantic routes (which map orothog-
raphy to phonology without going through
semantics) are available. The key contro-
versy is whether there are one or two
non-semantic routes. Dual-route theorists
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typically argue that there are two such
routes – a phonological route that uses the
rules of regular orthography/phonology to
pronounce words piecemeal and a “lexical”
route, which maps whole orthographic in-
puts to whole phonological outputs by a
process akin to table look-up. Some con-
nectionists take a single nonsemantic route
viewpoint, arguing, for example, that the di-
vision of labor between phonological and
semantic routes can explain diverse neu-
ropsychological syndromes that have been
taken to require a dual-route account (Plaut
et al., 1996). One viewpoint is that a divi-
sion of labor emerges between the phono-
logical and the semantic pathway during
reading acquisition: the phonological path-
way specializes in regular orthography-to-
phonology mappings at the expense of ex-
ceptions, which are read by the semantic
pathway. Damage to the semantic pathway
causes “surface dyslexia” (where exceptions
are selectively impaired), and damage to the
phonological pathway causes “phonological
dyslexia” (where nonwords are selectively
impaired). According to this viewpoint, the
syndrome of “deep dyslexia” (severe read-
ing impairment, with meaning-based errors,
such as reading the word peach as apricot)
occurs when the phonological route is dam-
aged and the semantic route is also par-
tially impaired (which leads to semantic er-
rors that are characteristic of the syndrome).
Other highly successful connectionist mod-
els take the opposite line and directly im-
plement both phonological routes, in line
with standard views in cognitive neuropsy-
chology (Coltheart et al., 1993). As well as
exploring data on the breakdown of read-
ing, there has also been a lively literature
of (primarily) connectionist computational
models of acquisition, although this issue
is not explored here (Brown & Chater,
2003; Harm, McCandliss, & Seidenberg,
2003).

3.6. Capturing the Psycholinguistic Data

Moving from neuropsychological to experi-
mental data, connectionist models of read-
ing have been criticized for not modeling

effects of specific lexical items (Spieler &
Balota, 1997). One defense is that cur-
rent models are too partial (e.g., contain-
ing no letter recognition and phonological
output components) to model word-level
effects (Seidenberg & Plaut, 1998). How-
ever, this challenge is taken up in a study
in which an SRN is trained to pronounce
words phoneme-by-phoneme (Plaut, 1999).
The network can also refixate the input
when unable to pronounce part of a word.
The model performs well on words and
nonwords, and fits empirical data on word
length effects (Rastle & Coltheart, 1998;
Weekes, 1997). Complementary work us-
ing a recurrent network focuses on providing
a richer model of phonological knowledge
and processing (Harm & Seidenberg, 1999,
2004), which may be importantly related
to reading development (Bradley & Bryant,
1983).

Finally, it has been shown how a two-
route model of reading might emerge nat-
urally from a connectionist learning archi-
tecture (Zorzi et al., 1998). Direct links
between orthographic input and phono-
logical output learn to encode letter-to-
phoneme correspondences (a phonological
route) whereas links via hidden units spon-
taneously learn to handle exception words
(a lexical route; Figure 17.2B). Here, as else-
where, connectionist and indeed probabilis-
tic models can provide persuasive instantia-
tions of a range of theoretical positions.

3.7. Probabilistic Approaches

In recent work, there has been a trend
toward developing probabilistic models of
reading. One attraction of this approach
is that it allows a clearer and more direct
explanation of how the statistical struc-
ture of the orthography-phonology mapping
and other factors such as word frequency
lead to variations in reading performance.
This approach can, to some degree, be
viewed as providing a theoretical analysis
of why some of the connectionist models
work as they do. For example, many as-
pects of network behavior can be under-
stood as depending on the regularity of the
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orthography-phonology mapping at differ-
ent levels of analysis (individual phonemes,
trigrams, onsets/rimes, etc.); probabilistic
models can provide a principled way of syn-
thesizing regularities at different levels to
produce predictions about how non-words
should be read; dissonances between lev-
els will suggest that processing is likely to
be slowed (Brown, 1998). A comprehensive
model by Norris (2006) provides examples
of this approach. Moreover, probabilistic
methods have also been extended recently
to provide an “ideal” model of how eye
movements should be controlled to maxi-
mize the expected information throughput
to the reading system (Legge, Klitz, & Tjan,
1997).

4. Sentence Processing

Although symbolic models of sentence
processing have been extensively devel-
oped in computational linguistics and many
proposals concerning sentence processing
have been framed in symbolic terms (e.g.,
Berwick & Weinberg, 1984; Crocker, 1996;
Kurtzman, 1985; Yngve, 1960), much re-
cent work oriented toward explaining spe-
cific psycholinguistic data has been carried
out within the connectionist and probabilis-
tic traditions.

Sentence processing provides a consid-
erable challenge for connectionism. Some
connectionists (Miyata, Smolensky, & Leg-
endre, 1993) have built symbolic structures
directly into the network, whereas others
have chosen to construct a modular sys-
tem of networks, each tailored to acquire
different aspects of syntactic processing
(Miikkulainen, 1996). However, the ap-
proach that has had the most impact in-
volves directly training networks to discover
syntactic structure from word sequences
(Elman, 1991). This approach is the most
radical approach, that is, it aims to dis-
pense with traditional rule-based models of
language and, indeed, any rigid distinction
between grammar and processing, or com-
petence and performance (Christiansen,
1992).

4.1. Capturing Complexity Judgment
and Reading Time Data

One study has explored the learning of
different types of recursion by training an
SRN on small artificial languages (Chris-
tiansen & Chater, 1999). Christiansen and
Chater reasoned that processing will be dif-
ficult to the extent that each piece of sub-
sequent linguistic input is not predicted.
They measured the average prediction er-
ror for the network, when trained on dif-
ferent sentence types, and predicted that
errors should correlate with psycholinguis-
tic data on processing difficulty. The re-
sults provided a good match with human
data concerning the greater perceived diffi-
culty associated with center-embedding in
German compared with cross-serial depen-
dencies in Dutch (Bach, Brown, & Marslen-
Wilson, 1986). Moreover, error scores con-
sidered word by word from a related model
were mapped directly onto reading times,
providing an experience-based account for
human data concerning the differential
processing of singly center-embedded sub-
ject and object relative clauses by good
and poor comprehenders (MacDonald &
Christiansen, 2002).

Another approach to sentence process-
ing involves a two-component model of
ambiguity resolution, combining an SRN
with a “gravitational” mechanism (Tabor,
Juliano, & Tanenhaus, 1997). The SRN
was trained in the usual way on sentences
derived from a grammar. After training,
SRN hidden unit representations for individ-
ual words were placed in the gravitational
mechanism, and the latter was allowed to
settle into a stable state. Settling times were
then mapped onto word-reading times. The
two-component model was able to fit data
from several experiments concerning the in-
teraction of lexical and structural constraints
on the resolution of temporary syntactic am-
biguities (i.e., garden path effects) in sen-
tence comprehension. The two-component
model has also been extended (Tabor &
Tanenhaus, 1999) to account for empirical
findings reflecting the influence of seman-
tic role expectations on syntactic ambiguity
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resolution in sentence processing (McRae,
Spivey-Knowlton, & Tanenhaus, 1998).

4.2. Capturing Grammaticality Rratings
in Aphasia

Some headway has also been made in ac-
counting for data concerning the effects of
acquired aphasia (i.e., language processing
difficulties, typically resulting from damage
to, or degeneration of, brain areas involved
with language) on grammaticality judg-
ments (Allen & Seidenberg, 1999). A bidi-
rectional recurrent network (Figure 17.2C)
was trained mutually to associate two input
sequences: a sequence of word forms and
a corresponding sequence of word mean-
ings. The network was able to learn a small
artificial language successfully, enabling it
to regenerate word forms from meanings
and vice versa. Grammaticality judgments
were simulated by testing how well the net-
work could recreate a given input sequence,
allowing activation to flow from the pro-
vided input forms to meaning and then back
again. Ungrammatical sentences were recre-
ated less accurately than grammatical sen-
tences; hence, the network was able to dis-
tinguish grammatical from ungrammatical
sentences. The network was then “lesioned”
by removing 10% of the weights in the
network. Grammaticality judgments were
then elicited from the impaired network for
ten different sentence types from a classic
study of aphasic grammaticality judgments
(Linebarger, Schwartz, & Saffran 1983).The
aphasic patients had problems with three of
these sentence types, and the network fit-
ted this pattern of performance impairment.
Computational models of aphasia have
also been formulated within the symbolic
tradition (Haarmann, Just, & Carpenter
1997).

4.3. Probabilistic Approaches to
Sentence Processing

In contrast to the connectionist models de-
scribed earlier, probabilistic models have
typically been viewed as complementary
to symbolic linguistic representations, al-

though many theorists take probabilistic
methods to have substantial revisionist im-
plications for traditional linguistic represen-
tations (e.g., Bod et al., 2003). Here, the fo-
cus is on how probabilistic ideas have led to a
rethinking of structural accounts of parsing,
such as minimal attachment (Frazier, 1979),
as mentioned previously.

Structural principles have come under
threat from psycholinguistic data that indi-
cates that parsing preferences over structural
ambiguities, such as prepositional phrase at-
tachment, differ across languages, often in
line with variations in observed corpus fre-
quencies in these languages (e.g., Mitchell
et al., 1995). Psycholinguists are increasingly
exploring corpus statistics across languages,
and parsing preferences seem to fit the prob-
abilities evident in each language (Desmet
et al., in press; Desmet & Gibson, 2003).

Structural parsing principles also have
difficulty capturing the probabilistic influ-
ence of lexical information. Thus, a struc-
tural principle finds it difficult to account
for the difference in parsing preference be-
tween the astronomer saw the planet with a
telescope and the astronomer saw the star with
a moon. The probabilistic approach seems
useful here because it seems important to
integrate the constraint that seeing-with-
telescopes is much more likely than seeing-
with-moons.

One way to capture these constraints
aims to capture statistical (or even rigid)
regularities between words. For example,
“lexicalized” grammars, which carry infor-
mation about what material co-occurs with
specific words, substantially improve com-
putational parsing performance (Charniak,
1997; Collins, 2003). More generally, the
view that parsing preferences are deter-
mined by the integration of many “soft” con-
straints, rather than by any single principle,
structural or otherwise, is compatible with
both connectionist and probabilistic frame-
works (Seidenberg & MacDonald, 1999).

4.4. Plausibility and Statistics

Statistical constraints between words are,
however, a crude approximation of what
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sentences are plausible. In off-line judge-
ment tasks, for example, where people as-
sign explicit ratings of plausibility, people
can use world knowledge, the understand-
ing of the social and environmental context,
pragmatic principles, and much more, to
determine what people might plausibly say
or mean. Determining whether a statement
is plausible may involve determining how
likely it is to be true, but also whether, given
the present context, it might plausibly be
said. The first issue requires a probabilistic
model of general knowledge (Pearl, 1988).
The second issue requires engaging “the-
ory of mind” (inferring the other’s mental
states) and invoking principles of pragmat-
ics. Models of these processes, probabilistic
or otherwise, are very preliminary (Jurafsky,
2003).

A fundamental theoretical debate con-
cerns whether plausibility is used on-line
in parsing decisions. Are statistical depen-
dencies between words used as a compu-
tationally cheap surrogate for plausibility?
Or are both statistics and plausibility de-
ployed on-line, perhaps in separate mecha-
nisms? Eye-tracking paradigms (Tanenhaus
et al., 1995; McDonald & Shillcock, 2003)
have been used to suggest that both factors
are used on-line, although this interpreta-
tions is controversial. However, recent work
indicates that probabilistic grammar models
often predict the time course of processing
(Hale, 2003; Jurafsky, 1996; Narayanan &
Jurafsky, 2002).

4.5. Is the Most Likely Parse Favored?

In the probabilistic framework, it is typically
assumed that on-line ambiguity resolution
favors the most probable parse. Yet, Chater,
Crocker, and Pickering (1998) suggest that,
for a serial parser, whose chance of “recov-
ery” is highest if the “mistake” is discovered
soon, this is an oversimplification. In partic-
ular, they suggest that because parsing de-
cisions are made on-line (Pickering, Traxler,
& Crocker, 2000), there should be a bias
to choose interpretations that make specific
predictions, which might rapidly be falsi-
fied. For example, in the phrase John realized

his . . . , the more probable interpretation is
that realized introduces a sentential com-
plement (i.e., John realized [that] his . . . ).
On this interpretation, the rest of the noun
phrase after his is unconstrained. By con-
trast, the less probable transitive reading
(John realized his goals/potential/objectives)
places very strong constraints on the subse-
quent noun phrase. Perhaps, then, the parser
should favor the more specific reading be-
cause if wrong, it may rapidly and success-
fully be corrected. Chater, Pickering, and
Crocker (1998) provide a Bayesian analysis
of “optimal ambiguity resolution” capturing
such cases. The empirical issue of whether
the human parser follows this analysis (Pick-
ering et al., 2000) is not fully resolved. Note,
too, that parsing preferences appear to be
influenced by additional factors, including
the linear distance between the incoming
word and the prior words to which it has
a dependency relation (Grodner & Gibson,
2005).

Overall, connectionist and probabilistic
computational proposals have allowed a
more fine-grained match with psycholin-
guistic data than obtained by early symbolic
models. The question of how far models
of sentence processing, considering the full
complexity of natural language syntax and
the subtlety of compositional semantics, can
avoid adopting traditional symbolic repre-
sentations, as postulated by linguistic the-
ory, remains controversial.

5. Language Acquisition

Chomsky (1965) frames the problem of lan-
guage acquisition as follows: The child has a
hypothesis-space of candidate grammars and
must choose, on the basis of (primarily lin-
guistic) experience, one of these grammars.
From a probabilistic standpoint, each can-
didate grammar is associated with a prior
probability, and these probabilities will be
modified by experience using Bayes’ theo-
rem (see Chapter 3 in this volume). The
learner will presumably choose a language
with high, and perhaps the highest, poste-
rior probability.
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Figure 17.3. The problem of recovery from
overgeneral grammars. Suppose that sentences
(gray triangles) are generated according to a true
grammar, indicated by the unbroken circles. The
learner considers an alternative, incorrect,
grammar, shown by the broken circles. How can
the learner realize that its current guess is
incorrect and that it needs to search for an
alternative grammar? (A) When the grammars
partially overlap, a sentence will eventually be
encountered that is outside the hypothesized
grammar. (B) The same is true when the
learner’s proposed grammar is undergeneral, that
is, the sentences of the hypothesized grammar
are all allowed in the true language, but the
proposed grammar does not allow some
sentences that are grammatical. (C) A problem
arises when the learner’s grammar is overgeneral
because all the sentences that are encountered
by the learner fit the overgeneral language;
hence, there is no decisive way of falsifying the
overgeneral language from observed sentences.
Of course, if the learner produces an illegitimate
sentence, it may obtain feedback that this
sentence is not acceptable, but it is widely,
although controversially, argued that such
feedback is not required for language acquisition.
The puzzle of how to recover from postulating
an overgeneral grammar, which arises in a range
of guises, has been seen as so serious as to pose a
“logical” problem for language acquisition (e.g.,
Baker & McCarthy, 1981; see MacWhinney,
2004, for discussion). (D) If, however, the
learner finds that only a portion of the space of
possible sentences is actually used, for example,

5.1. The Poverty of the Stimulus?

Chomsky (1968, 1980) influentially argued,
as noted earlier, that the learning problem is
unsolvable without strong prior constraints
on the language, given the “poverty” (i.e.,
partiality and errorfulness) of the linguistic
stimulus. Indeed, Chomsky (1981) argued
that almost all syntactic structure, aside
from a finite number of binary parameters,
must be innate. Independent mathemati-
cal results by Gold (1967) indicated that,
under certain assumptions, learners prov-
ably cannot converge on a language even
“in the limit” as the corpus becomes indef-
initely large (for discussion, see MacWhin-
ney, 2004; Rohde & Plaut, 1999). In essence,
the problem is that the learner seems to have
no way of guaranteeing recovery from for-
mulating an overgeneral grammar, at least if
it is restricted to observing sentences in the
language. This is because all the sentences
that it hears are allowed by the overgeneral
grammar, and hence the learner appears to
have no impetus to switch to a new grammar
(Figure 17.3).

A probabilistic standpoint yields more
positive learnability results. For example,
Horning (1969) proved that phrase struc-
ture grammars are learnable (with high
probability) to within a statistical toler-
ance if sentences are sampled as indepen-
dent, identically distributed data. Chater
and Vitányi (2007; Chater, 2004, gives a
brief summary) generalize to a language
that is generated by any computable pro-
cess (i.e., sentences may be interdependent,

Figure 17.3 (cont.)
those that fit with some other grammar, then the
learner should become increasingly persuaded
that the grammar is overgeneral. This argument,
although intuitively appealing, is not
straightforward, however, because, of course,
the learner’s experience of the language is always
a finite subset of an infinite set of possible
sentences. A key observation is that an
alternative simple and less general grammar is
available that captures all observed sentences.
This type of argument can be made rigorous
(e.g., Horning, 1969; Chater, 2004).
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as they are in real language corpora, and
sentences may be generated by any com-
putable process, i.e., the highest level in the
Chomsky hierarchy). They show that pre-
diction, grammaticality, and semantics are
all learnable to a statistical tolerance. These
results are “ideal”; however, they consider
what would be learned if the learner could
find the shortest representation of linguis-
tic data and use this representation as the
basis for prediction, grammaticality judge-
ments, and so on. In practice, the learner
may find a short code, but not the shortest,
and theoretical results are not available for
this case. Nonetheless, from a probabilistic
standpoint, learning looks less intractable,
partly because learning need only succeed
with high probability and to an approxima-
tion (speakers may learn slightly different
idiolects).

5.2. Computational Models of
Language Learning

Yet, the question of learnability and the po-
tential need for innate constraints remain.
Machine learning methods have success-
fully learned small artificial context-free lan-
guages (e.g., Anderson, 1977; Lari & Young,
1990), but profound difficulties in extend-
ing these results to real language corpora
have led computational linguists to focus
on learning from parsed trees (Charniak,
1997; Collins, 2003), presumably not avail-
able to the child. Connectionist models are
restricted to small artificial languages (El-
man, 1990; Christiansen & Chater, 1999)
and, despite having considerable psycholog-
ical interest, they often do not scale well
(though see Reali, Christiansen, & Mon-
aghan, 2003).

Klein and Manning (2002, 2004) have re-
cently made substantial steps toward solv-
ing the problem of deriving syntactic con-
stituency from a corpus of unlabelled,
unparsed text. Klein and Manning (2002)
extended the success of distributional clus-
tering methods for learning word classes
(Redington et al., 1998; Schütze 1998),
discussed later. Roughly, they classify the
categories of phrases by grouping together

phrases that have similar contexts (con-
text here concerns the word immediately
preceding and immediately following the
phrase). As discussed later, this corresponds
to a statistical version of the distributional
test in linguistics. Klein and Manning (2004)
combine this work with a system for learn-
ing linguistic dependency relations. The de-
pendency model uses data on which words
occur together, with two additional and cru-
cial constraints: that dependencies between
nearby words are preferred and a preference
for words to have few dependencies. Klein
and Manning’s work shows that central fea-
tures of language, phrase structure and de-
pendency relations can be learned to a good
approximation from unlabelled language –
clearly a task crucial to child language ac-
quisition.

This work is a promising demonstration
of empirical language learning from a proba-
bilistic standpoint, but most linguistic theo-
ries use richer structures than surface phrase
structure trees. Moreover, learning the syn-
tactic regularities of language should, pre-
sumably, be in the service of learning how
to map linguistic forms to meanings. In the
probabilistic tradition, there is some work
on mapping to meaning representations of
simple data sets (Zettlemoyer & Collins,
2005) and work on unsupervised learning
of a mapping from surface text to seman-
tic role representations (Swier & Steven-
son, 2005). There is also a related tradi-
tion of work, especially on thematic role
assignment, in the connectionist tradition
(Lupyan & Christiansen, 2002; McClelland
& Kawamoto, 1986; St. John, 1992).

5.3. Poverty of the Stimulus, Again

The status of Chomsky’s (1965) poverty
of the stimulus argument remains unclear,
beginning with the question of whether
children really do face a poverty of linguistic
data (see the debate between Pullum &
Scholz, 2002, and Legate & Yang, 2002).
Perhaps no large and complex grammar
can be learned from the child’s input, or
perhaps certain specific linguistic patterns
(e.g., perhaps encoded in an innate universal
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grammar) are in principle unlearnable. In-
terestingly, however, Reali and Christiansen
(2005) have shown that both probabilistic
and connectionist methods can successfully
be applied to learning an apparently prob-
lematic linguistic construction, auxiliary
fronting, suggesting that more linguistic
phenomena may be learnable than is typi-
cally assumed in linguistics (e.g., Chomsky,
1957).

Presently, theorists using probabilistic
methods diverge widely on the severity of
the prior “innate” constraints they assume.
Some theorists focus on applying probabil-
ity to learning parameters of Chomskyan
Universal Grammar (Gibson & Wexler,
1994; Niyogi, 2006); others focus on learn-
ing relatively simple aspects of language,
such as learning morphological structure, or
learning approximate syntactic or seman-
tic categories, with relatively weak prior
assumptions.

5.4. Acquiring Morphological Structure

A key issue in computational models of
morphological processing and acquisition is
how computational analysis has addressed
a key theoretical question: whether inflec-
tional morphology requires two “routes,”
one to handle regular morphology (e.g.,
“go” → “went”) or whether a single com-
putational mechanism can account for both
rules and exceptions paralleling the single
route vs. dual route debate in reading, dis-
cussed previously. Studies with idealized
languages patterned on English past tense
morphology suggest that a single route may
handle both cases (Hahn & Nakisa, 2000).
However, Prasada and Pinker (1993) argued
that the success of these models results from
the distributional statistics of English. Many
regular English /-ed/ verbs have low token
frequencies, which a connectionist model
can handle by learning to add /-ed/ as a de-
fault. For irregular verbs, token frequency is
typically high, allowing the network to over-
ride the default. Prasada and Pinker argued
that a default regular mapping with both
low type and token frequency could not be
learned by a connectionist network. The pu-

tative default /-s/ inflection of plural nouns
in German appears to provide an example of
such a “minority default mapping.” Marcus
et al. (1995) proposed that the German plu-
ral system must be modeled by two routes:
a pattern associator, which memorizes spe-
cific cases (both irregular and regular), and
a default rule (add /s/), which applies
when the connectionist pattern associator
fails.

Hahn and Nakisa (2000) asked whether
single route associative models (they tested
two exemplar-based learning models and
a simple feed-forward connectionist net
with one hidden layer) could learn the
German plural system and generalize ap-
propriately to novel regular and irregular
nouns. Their models’ task was to predict to
which of 15 different plural types the in-
put stem belonged. The inputs to the learn-
ing mechanisms were phonetic representa-
tions of 4,000 German nouns taken from
the CELEX database (token frequency was
ignored). All models showed good perfor-
mance in predicting the plural form of 4,000
unseen nouns, and the connectionist model
obtained the best performance, at over 80%
correct.

Crucially, Hahn and Nakisa (2000) also
simulated the Marcus et al. (1995) model
by assuming that any test word which is
not close to a training word, according to
the associative model (for which the lexical
memory fails), will be dealt with by a de-
fault “add /-s/” rule. The associative models
were trained on the irregular nouns, and the
models were tested as before. They found
that for all three models, the presence of the
rule led to a decrement in performance. In
general, the higher the threshold for mem-
ory failure (the more similar a test item had
to be to a training item to be irregularized
via the associative memory), the greater the
decrement in performance. The use of a
default rule could only have improved per-
formance for regular nouns occupying re-
gions of phonemic space surrounding clus-
ters of irregulars. Hahn and Nakisa’s findings
demonstrate that very few regular nouns oc-
cur in these regions in the German lexicon.
The extension of Hahn and Nakisa’s findings
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to the production of the plural form (in-
stead of merely indicating the plural type)
and to more realistic input (for instance, tak-
ing account of token frequency) remains to
be performed. Further work might also fo-
cus on the extent to which different single-
and dual-route models are able to capture
changes in detailed error patterns of under-
regularization- and overregularization dur-
ing development. Another interesting topic
for future work is the processing of deriva-
tional, rather than inflectional, morphology
(e.g., Plaut & Gonnerman, 2000).

5.5. Acquiring Syntactic Categories

The problem of categorizing phrases us-
ing distributional methods from unlabelled
text (Klein & Manning, 2002) has been dis-
cussed. A more basic question is how does
the child acquire lexical syntactic categories,
such as noun and verb. This problem encom-
passes both discovering that there are dif-
ferent classes and ascertaining which words
belong to each class. Even for theorists who
assume that the child innately possesses a
universal grammar and syntactic categories
(as is assumed in the traditional Chomskyan
framework), identifying the category of par-
ticular words must primarily be a matter of
learning. Universal grammatical features can
only be mapped on to the specific surface
appearance of a particular natural language
once the identification of words with syn-
tactic categories has been made, although
once some identifications have been made,
it may be possible to use prior grammati-
cal knowledge to facilitate further identifi-
cations. The contribution of innate knowl-
edge to initial linguistic categories must
be relatively slight. Both language-external
and language-internal cues may be rele-
vant to learning syntactic categories. One
language-external approach, semantic boot-
strapping, exploits the putative correlation
between linguistic categories (in particu-
lar, noun and verb) and the child’s per-
ception of the environment (in terms of
objects and actions). This may provide a
means of “breaking in” to the system of syn-
tactic categories. Also, there may be many

relevant language-internal factors: regulari-
ties between phonology, prosody and dis-
tributional analysis, both over morpholog-
ical variations between lexical items (e.g.,
affixes such as “-ed” are correlated with syn-
tactic category; Maratsos & Chalkley, 1980;
see also Onnis & Christiansen, 2005), and at
the word level.

Here, the focus is on this last approach,
which has a long history, although this
method of finding word classes has often
been dismissed on a priori grounds within
the language learning literature. The “distri-
butional test” in linguistics is based on the
observation that if all occurrences of word
A can be replaced by word B without loss of
syntactic acceptability, then they share the
same syntactic category. For example, dog
can be substituted freely for cat in phrases
such as: the cat sat on the mat, nine out of
ten cats prefer . . . , indicating that these items
have the same category. The distributional
test is not a foolproof method of grouping
words by their syntactic category, because
distribution is a function of many factors
other than syntactic category (such as word
meaning). Thus, for example, cat and barna-
cle might appear in very different contexts in
some corpora, although they have the same
word class. Nevertheless, it may be possible
to exploit the general principle underlying
the distributional test to obtain useful infor-
mation about word classes. One approach is
to record the contexts in which the words to
be classified appear in a corpus of language
and group together words with similar distri-
butions of contexts. Here, context is defined
in terms of co-occurrence statistics.

Redington et al. (1998) used a window
of two words before and after each target
word as context. Vectors representing the
co-occurrence statistics for these positions
were constructed from a 2.5 million-word
corpus of transcribed adult speech taken
from the CHILDES corpus (MacWhinney
& Snow, 1985), much of which was child-
directed). The vectors for each position were
concatenated to form a single vector for each
of 1,000 target words. The similarity of dis-
tribution between the vectors was calcu-
lated using Spearman’s rank correlation, and
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hierarchical cluster analysis was used to
group similar words together.

This approach does not partition words
into distinct groups corresponding to the
syntactic categories, but produces a hier-
archical tree, or dendrogram, whose struc-
ture reflects to some extent the syntactic
relationships between words. Figure 17.4A
shows the high-level structure of the den-
drogram resulting from the previous analy-
sis. Figure 17.4B shows part of the Adjective
cluster in Figure 17.4A, illustrating how sta-
tistical distributional analysis reflects syntac-
tic and semantic information at a very fine
level.

A quantitative analysis of the mutual in-
formation between the structure of the den-
drogram and a canonical syntactic classifi-
cation of the target words (defined as their
most common syntactic usage in English)
as a percentage of the joint information
in both the derived and canonical classifi-
cations revealed that at all levels of simi-
larity, the dendrogram conveyed useful in-
formation about the syntactic structure of
English. Words that were clustered together
tended to belong to the same syntactic cat-
egory, and words that were clustered apart
tended to belong to different syntactic cate-
gories. Thus, computational analysis of real
language corpora shows that distributional
information at the word level is highly in-
formative about syntactic category, despite
a priori objections to its utility (see Mon-
aghan, Chater, & Christiansen, 2005). Sim-
ilar results, typically on a smaller scale, have
been obtained from hidden-unit analysis of
connectionist networks (e.g., Elman, 1990;
although such results also arise when the
network is untrained; Kolen, 1994).

5.6. Acquiring Lexical Semantics

Acquiring lexical semantics involves identi-
fying the meanings of particular words. Even
for concrete nouns, this problem is compli-
cated by the difficulty of detecting which
part of the physical environment a speaker is
referring to. Even if this can be ascertained,
it may still remain unclear whether the term
used by the speaker refers to a particular ob-

ject, a part of that object, or a class of ob-
jects. For abstract nouns and other words
that have no concrete referents, these diffi-
culties are compounded further.

Presumably, the primary sources of in-
formation for the development of lexical
semantics are language-external. Relation-
ships between the child and the physical
environment, and especially the social en-
vironment, are likely to play a major role in
the development of lexical semantic knowl-
edge. However, it also seems plausible that
language-internal information might be used
to constrain the identification of the possi-
ble meaning of words. For instance, just as
semantics might constrain the identity of a
word’s syntractic category (words referring
to concrete objects are likely to be nouns),
knowing a word’s syntactic category pro-
vides some constraint on its meaning; in gen-
eral, knowing that a word is a noun, perhaps
because it occurs in a particular set of local
contexts, implies that it will refer to a con-
crete object or an abstract concept, rather
than an action or process.

Because there are potentially informative
relationships between aspects of language at
all levels, this means that even relatively
low-level properties of language, such as
morphology and phonology, might provide
some constraints on lexical semantics. Gleit-
man has proposed that syntax is a potentially
powerful cue for the acquisition of meaning.
Gleitman assumes that the child possesses
a relatively high degree of syntactic knowl-
edge. However, an examination of Figure
17.4B shows that the distributional method
used earlier to provide information about
syntactic categories also captures some de-
gree of semantic relatedness without any
knowledge of syntax proper. More direct
methods for deriving semantic relationships
have been proposed (e.g., Landauer & Du-
mais, 1997; Lund & Burgess, 1996; Schütze,
1993).

These statistical approaches do, however,
have a somewhat arbitrary quality. Griffiths
and Steyvers (2004) have more recently de-
veloped a more rigorous Bayesian approach,
in which the words in a text are viewed
as generated from a mixture of “topics,”
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Verb 

WH-, WH- + aux, Pronoun + aux 

Verb, Present Participle 

Determiner, Possessive Pronoun 

Conjunction, Interjection, Proper Noun 

Proper Noun 

Proper Noun 

Preposition 

Noun 

Adjective 

Verb 

Pronouns, Pronouns + Aux, Aux, Aux + Negations 

(a)

little 
big 
other 
new 
red 
yellow 
blue 
green 
white 
black 
orange 
very 
pretty 
real 
different 
old 
same 
whole 
last 
great 
brown 
pink 
special 
tiny 
two 
three 
four 
five 
six 
seven 
ten 
eight 
nine 
number 
ice 
peanut 
chocolate 
candy 
toast 
rice 
sugar  
corn 

(b)

Figure 17.4 Word clusters from distributional
information, based on Redington, Chater, and
Finch (1998). Analysis was conducted over a
large corpus of transcribed adult speech from
the CHILDES database (MacWhinney & Snow,
1985). (A) The overall structure of a cluster of
the lexicon in which the syntactic labels, added
by hand, classify the category of the vast
majority of the words correctly compared with
standard classifications. The numbers in
parentheses indicate the number of lexical items
in each category. (B) A close-up of part of the
adjective cluster. Note the fine-grained semantic
groupings obtained, such as groupings of color
and number words. (Reprinted with permission
of the Cognitive Science Society, from
Redington, M., Chater, N., & Finch, S. [1998].
Distributional information: A powerful cue for
acquiring syntactic categories. Cognitive Science,
22, 425–469.)
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TRANSPORTATION 
CARS 
TRUCKS 
ROADS 
TRAVEL 
TRAINS 
AIRPLANES 
AUTOMOBILES 
HIGHWAYS 
CARRY 
TRANSPORT 
GOODS 
BUSES 
BUILT 
CITIES 
MOVE 
FREIGHT 
RAILROADS 
PASSENGERS 
SHIPS 

 
BEANS  
POTATOES  
POTATO  
TOMATOES  
SWEET  
VEGETABLES  
CORN  
LETTUCE  
CARROTS  
BEAN  
EAT  
SQUASH  
CABBAGE  
TOMATO  
PEAS  
BANANAS  
PEPPERS  
CABBAGES  
SPROUTS  
PEANUTS  

ROOM  
HOUSE  
BED  
TABLE  
KITCHEN  
ROOMS  
BEDROOM  
DOOR  
WALLS  
FLOOR  
CHAIR  
WALL  
LIVING  
WINDOWS  
HALL  
DINING  
FURNITURE 
CHAIRS  
CURTAINS  
SHELVES  

BARN  
CHICKENS 
HOUSE  
HEN  
BIG  
FARM  
COWS  
HAY  
STRAW  
LANTERN  
HENS  
HORSE  
STALL  
SHED  
PIGS  
ROOSTER  
COW  
HORSES  
CHICKEN  
STALLS  

CREEK  
BANK  
STREAM  
SIDE  
WOODS  
FEET  
MEADOW  
DEEP  
RIVER  
BUSHES  
RAN  
BROOK  
STOOD  
POOL  
WATER  
EDGE  
BRANCHES 
TREES  
LAY  
WALKED  

SAVINGS  
MONEY  
ACCOUNT  
INTEREST  
ACCOUNTS  
FUNDS  
LOAN  
BANK  
DEPOSITS  
MUTUAL  
DEPOSIT  
CHECKING  
HIGHER  
INSTITUTION  
OFFER  
FUND  
ASSOCIATIONS 
PROVIDE  
INVEST  
EARN  

Figure 17.5. Semantic relations between lexical items, learned from distributional information.
Six semantic “topics” derived from a large text corpus (the TASA corpus), using the method of
Griffiths & Steyvers (2004) and chosen from 1,700 topics used in this analysis. The top twenty
most frequent words for each topic are shown in rank order. They correspond to transport,
food, furniture, barnyard animals, pastoral, and finance topics. Note that bank occurs in both
the latter contexts, indicating that multiple readings of a word can be recognized.

and the topics themselves are inferred from
the data. This Bayesian approach provides
an elegant way of finding semantic cate-
gories from text. Thus, good approxima-
tions to syntactic categories and semantic
classes have been learned by clustering items
based on their linear distributional contexts
(e.g., the distribution over the word that
precedes and follows each token of a type)
or broad topical contexts (see Figure 17.5).
One can even simultaneously cluster words
exploiting local syntactic and topical simi-
larity (Griffiths et al., 2005).

Grouping words that are semantically re-
lated is only a small part of the problem of
learning lexical semantics, of course. One
particularly pressing problem is that such
analyses merely relate words to each other,
rather than connecting them to objects in
the world. The problem of relating words to
the referents (e.g., as presented in percep-
tual input for words with concrete referents)
raises very large computational challenges.
Nonetheless, some interesting work has
been carried out that begins to address this
problem (e.g., Regier, 2005; Roy, 2005).

6. Conclusion and Future Directions

Linguistics has traditionally viewed language
as a symbolic system, governed by a rich
system of rules; yet, computational models
of human language processing have focused
on graded and probabilistic aspects of lan-
guage structure and processing. Connection-
ist and probabilistic computational accounts
of psycholinguistic phenomena have been
proposed, ranging from speech processing
to phonology, morphology, reading, syntax,
semantics, and language production. More-
over, as has been seen, connectionist and
probabilistic approaches have provided both
new theoretical perspectives and specific
computational models of a range of aspects
of language acquisition, typically emphasiz-
ing the importance of information in the lin-
guistic input far more than the strongly na-
tivist tradition in Chomskyan linguistics.

There is reason to expect, nonetheless,
that future developments in computational
modeling of psycholinguistic phenomena
will involve an interplay between all three
perspectives on language. Language has a
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substantial symbolic component, even if
it also has much graded and probabilistic
structure; a wide variety of recent work in
linguistics, much of it inspired by or directly
rooted in computational modeling, proposes
that symbolic and probabilistic aspects of
language must be explained simultaneously
(e.g., Goldberg, 2006). There is a variety of
overlapping ways in which rule-based and
probabilistic factors may interact: The set
of potentially conflicting linguistic rules to
apply may be determined using probabilis-
tic methods (e.g., Smolensky & Legendre,
2006); rules may be embodied directly in
stochastic grammars (e.g., Charniak, 1997);
rules, and perhaps also their exceptions, may
be probabilistically approximated using con-
nectionist networks (Christiansen & Chater,
2001). The project of building deeper mod-
els of human language processing and ac-
quisition involves paying attention to both
rules and to graded/probabilistic structure
in language. At the same time, the project
of computational modeling must be in close
dialogue with both theoretical work in lin-
guistics and, perhaps most crucially, with
the increasingly sophisticated and detailed
body of empirical data on how people use
and acquire language.
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CHAPTER 18

Computational Models in Personality

and Social Psychology

1. Introduction

This chapter focuses on computational mod-
els in social psychology and personality.
Although there has been a considerable
amount of simulation work of social behav-
ior in other fields such as anthropology, so-
ciology, and political science, that work will
not be reviewed here. Some of the work
in those fields is covered in Chapter 19 in
this volume. Computational modeling in so-
cial psychology and personality started in
the early days of computational modeling
of human psychology; however, this chap-
ter focuses on work over roughly the last
fifteen years, occasionally referring to earlier
work.

Coverage of various simulations is largely
organized in terms of the substantive
questions being addressed, rather than by
the particular simulation technique being
used. It was felt that most readers of this
chapter would be more interested in how
they could address a particular issue and less
interested in learning about the different
ways that a particular simulation technique
has been used.

Currently, the most frequently used com-
putational models in social psychology are
probably various kinds of connectionist
models, such as constraint satisfaction net-
works, feedforward pattern associators with
delta-rule learning, and multilayer recurrent
networks with learning (see Chapter 2 in
this volume). Another frequently used mod-
eling technique is cellular automata. Al-
though multiagent systems (see Chapter 19
in this volume) have been widely used in
other fields studying social behavior, such as
anthropology, sociology, and organizational
behavior, this technique has only occasion-
ally been used in social psychology.

Several authors have used sets of differ-
ence equations as the basis of simulations of
personality or of personality stability. Oth-
ers have used coupled logistic equations to
simulate aspects of dyadic interaction. De-
spite the popularity of production system
models, such as ACT-R (Anderson, 1993;
Anderson & Lebiere, 1998) and CLAR-
ION (Sun, Slusarz, & Terry, 2005), and
other symbolic models in cognitive psychol-
ogy and cognitive science, symbolic mod-
els are largely absent in current modeling
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in social psychology or personality. How-
ever, symbolic models were important in
early work in computational modeling in
personality and social psychology, as exem-
plified by such work as Abelson and Carroll’s
(1965) simulation of conservative ideol-
ogy, the Goldwater machine, Gullahorn
and Gullahorn’s (1963) simulation of so-
cial interaction, Loehlin’s (1968) personal-
ity model, and Colby’s (1975, 1981) model
of paranoid personality (for overviews of
this early work, see Abelson, 1968; Loehlin,
1968; Tomkins & Messick, 1963).

Although the discussion is largely orga-
nized around particular substantive topics,
there tends to be a strong correlation be-
tween the types of topics being addressed
and the simulation techniques that are
used. Work on intra-personal or individual
cognitive and emotional phenomena, such
as causal reasoning, impression formation,
stereotyping, attitude formation and atti-
tude change, and personality, have largely
relied on various kinds of connectionist
models. In contrast, work that has focused
on interpersonal phenomena, such as dyadic
relationships, mating choice, social influence
and group discussion, and decision making,
has tended to focus on techniques such as
cellular automata, multiagent systems, and
symbolic models.

The chapter begins with work on causal
learning, causal reasoning, and impression
formation for several reasons. First, it has
been one of the most active areas of work
in social modeling over the last ten to fifteen
years, involving a relatively wide range of re-
searchers. Second, it has historically been a
central area in social psychology, although
one that is currently less active. Third, be-
cause it deals with many of the models
that are used in other substantive areas, it
provides a useful introduction to this other
work.

2. Computational Models

2.1. Causal Learning, Causal Reasoning,
and Impression Formation

Research in this area has examined both the
learning of causal relationships and the use

of such previously learned relationships in
causal reasoning and impression formation.

2.1.1. causal learning

Several different sets of researchers (e.g.,
Shanks, 1991; Van Overwalle, 1998; Van
Overwalle & Van Rooy, 1998, 2001; see
Chapter 12 in this volume) have used a
feedforward network, with delta-rule learn-
ing, to capture a number of different phe-
nomena in human and animal causal learn-
ing, such as overshadowing (cues compete
for associative strength), blocking (a previ-
ously learned cue blocks the learning of a
new cue), and conditioned inhibition (learn-
ing that one cue inhibits an outcome in-
creases the strength of a countervailing cue).
These researchers have noted that the stan-
dard delta rule (Widrow & Hoff, 1960), used
in neural network models, is almost iden-
tical to the well-known Rescorla-Wagner
(Rescorla & Wagner, 1972) model of ani-
mal learning. Both are error-correcting rules
that modify the weight strength or strength
of association between an input or cue and
an output or response in such a way as to
reduce the error of prediction from the in-
put to output. One aspect of this kind of
error-correcting rule is that it models the
impact of competition between cues for pre-
dicting outcomes. For example, if two cues
simultaneously predict the same outcome,
then associative strength is divided between
them (overshadowing). Or if an organism
first strongly learns that cue A predicts C, if
they are then presented situations in which
cue A and B predict C, they will fail to learn
that B also predicts C (blocking). This occurs
because A already predicts C, and in the ab-
sence of an error signal for C, there can be
no change in associative strength between B
and C.

This work has shown that a feedforward
network, with delta-rule learning, can model
essentially all of the classic human and an-
imal causal learning phenomena that can
be captured by the Rescorla-Wagner rule.
However, one important limitation of these
models is that because they are feedforward
networks, they can only capture the for-
ward associations from input to output or
cue to response. They cannot model any
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backward associations from the output to
the input. This is a limitation that is shared
by the standard version of the Rescorla-
Wagner model.

2.1.2. causal reasoning

Other researchers have used Thagard’s
(1989, 2000) ECHO model of explanatory
coherence as the basis of a model of causal
reasoning and impression formation. ECHO
is a bidirectionally connected, recurrent net-
work that functions as a constraint satisfac-
tion network and implements a number of
principles of explanatory coherence, such as
breadth of explanation and simplicity of ex-
planation or parsimony. In this model, nodes
represent the evidence to be explained, as
well as the proposed explanatory hypothe-
ses. Evidence nodes are connected to a spe-
cial node that provides activation to them.

Explanatory hypotheses have positive
links to the data they explain and nega-
tive links to data that contradicts them.
Further, hypotheses that are contradictory
have negative or inhibitory links to each
other, whereas hypotheses that support one
another have positive links. Principles of
explanatory coherence are instantiated in
terms of patterns of connectivity. For exam-
ple, breadth of explanation follows because
an explanation that explains more facts will
receive more activation from those con-
nected facts. And simplicity is implemented
by dividing the weights between explana-
tions and facts as a function of the number
of explanatory hypotheses needed to explain
a given fact. Thus, more hypotheses mean
smaller weights from each one.

Goodness of explanations is evaluated
by passing activation through the recurrent
connections among the evidence and hy-
potheses until the activation levels asymp-
tote. Thagard has shown that such a con-
straint satisfaction network can capture
a number of different aspects of causal
reasoning, specifically scientific reasoning
(Thagard, 2000) and jury decision making
(Thagard, 2003).

Read and Marcus-Newhall (1993)
showed that human subjects’ patterns of so-
cial causal reasoning followed the principles
of goodness of explanation that are em-

bedded in ECHO’s constraint satisfaction
network. They tested this by developing a
number of scenarios in which they could
manipulate the influence of different prin-
ciples of explanatory coherence and then
had subjects rate the goodness of various
explanations. They showed that ECHO
could simulate their experimental results.

Read and Miller (1993) also showed how
the same kind of network could capture
several fundamental phenomena in social
psychological work on causal reasoning, in-
cluding the well-known correspondence bias
(or fundamental attribution error), which is
the tendency to overattribute behavior to
a trait and underweight the importance of
situational forces. They suggested that the
correspondence bias could be captured by
assuming that decreased attention to a po-
tential cause (here, the situation) leads to a
decrease in the spreading of activation from
that node, thus making it less able to inhibit
the alternative explanation, the individual’s
trait.

Subsequently, in response to a critique
by Van Overwalle (1998) that noted (accu-
rately) that ECHO did not include learning
and which expressed doubt that a constraint
satisfaction network, such as ECHO, could
include learning, Read and Montoya (1999a,
1999b) presented a combined model of
causal learning and causal reasoning that
combined the constraint satisfaction capa-
bilities of a recurrent, auto-associative net-
work with the error-correcting learning of
the delta rule. Their model was based on
McClelland and Rumelhart’s (1986, 1988)
auto-associator, which is a recurrent or feed-
back network that implements delta-rule
learning. Read and Montoya showed that
this integrated model was just as capable as
feedforward, pattern associators of captur-
ing classic phenomena in human and animal
causal learning, such as blocking, overshad-
owing, and conditioned inhibition. At the
same time, it could capture many aspects
of causal reasoning from previously learned
causal relationships. First, it could capture
the impact of principles of explanatory co-
herence that were previously captured by
ECHO (Read & Marcus-Newhall, 1993).
Second, it could model classic phenomena
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in causal reasoning, such as augmenting and
discounting. Discounting, for example, is the
tendency to reduce the strength of an hy-
pothesized explanation to the extent that
there is a plausible alternative. It can be im-
plemented by a negative or inhibitory link
among alternative causes. Augmenting is the
tendency to judge a cause to be stronger
if it results in an outcome in the face of
countervailing or inhibitory forces. Third,
Montoya and Read (1998) showed how this
auto-associator could also model the corre-
spondence bias (or fundamental attribution
error) in terms of accessibility of compet-
ing explanations. The basic idea is that, at
least among Americans, trait explanations
are more chronically accessible than are situ-
ational explanations. And a more accessible
trait explanation can send more activation
and inhibit competing situational explana-
tions. In summary, this auto-associator inte-
grated a wide range of phenomena in causal
learning and reasoning.

2.2. Impression Formation

Constraint satisfaction models have also
been used to model impression formation.
Read and Miller (1993) showed how an
ECHO-type model could be used to sim-
ulate how social perceivers formed trait im-
pressions of others from sequences of behav-
iors, or narratives. They also described how
conceptual combinations could be formed
from different combinations of traits by
modeling how the underlying conceptual
components of several traits were intercon-
nected by excitatory and inhibitory links.
After the network settled, the underlying
concepts that remained activated would rep-
resent the meaning of the conceptual com-
bination.

Kunda and Thagard (1996) used a related
constraint satisfaction model, IMP (IMPres-
sion formation model), in their discussion
and simulation of a wide range of research in
impression formation, including the integra-
tion of stereotypes and individuating infor-
mation in forming impressions. They con-
trast their approach with Brewer’s (1988)
and Fiske and Neuberg’s (1990) models of

impression formation. Both models distin-
guish between top-down, stereotype-driven
processing and bottom-up, attribute-based
processing. Both are serial process mod-
els and hypothesize that stereotype-driven
processing occurs first and then, under the
right circumstances, may be followed by
attribute-based processes.

In contrast, Kunda and Thagard (1996)
argue that both stereotype- and attribute-
based information are processed in parallel
in a constraint satisfaction network. Their
model assumes that stereotypes, traits, and
behaviors are represented as interconnected
nodes in a constraint satisfaction network.
They use this model to investigate a num-
ber of phenomena in impression formation.
For example, they show that stereotypes can
constrain the meaning of both behaviors and
traits as a result of the stereotypes’ patterns
of connectivity with alternative interpreta-
tions of the traits and behaviors. Conversely,
they also show that individuating informa-
tion can influence the interpretation of a
stereotype. Further, they demonstrate that
a stereotype will affect judgments of an in-
dividual’s traits when individuating informa-
tion is ambiguous, but not when the individ-
uating information is unambiguous. Overall,
they demonstrate that a parallel process,
constraint satisfaction model can success-
fully capture a wide range of data in im-
pression formation that had been previously
argued to be the result of a serial process.

Van Overwalle and Labiouse (2004) used
a recurrent network with delta-rule learn-
ing to simulate a number of findings in per-
son perception. However, although this net-
work has bidirectional weights, it is not a
constraint satisfaction system, as it only al-
lows one cycle of updating of internal ac-
tivations. This is not enough cycles for the
passage of activation to solve the constraints
imposed by the connections among the
nodes. The model attempts to capture var-
ious phenomena in terms of differences
in learning history and the role of error-
correcting learning. Among the phenomena
they seek to model are primacy and recency
effects in impression formation, assimilation
and contrast effects in priming, increased
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recall for trait-inconsistent information, and
asymmetric diagnosticity of ability- and
morality-related traits.

Hastie (1988) presented a model of im-
pression formation and person memory that
focused on simulating the impact on impres-
sions and memory of personality-relevant in-
formation that was congruent or incongru-
ent with an initial impression. Impressions
were represented as vectors of values on im-
pression dimensions (e.g., intelligent, socia-
ble), and impression formation was mod-
eled as a weighted average or anchoring
and adjustment process applied to sequen-
tially presented personality-relevant behav-
iors. Memory was modeled by represent-
ing behaviors as propositions that started
in working memory and that subsequently
moved to long-term memory. The proba-
bility of forming links among behaviors and
the impact of a behavior on an impression
increased with greater residence in working
memory, with residence time being a pos-
itive function of the discrepancy between
the current impression and the implications
of the item. Retrieval of items from long-
term memory proceeded by a search of the
associative memory so that items with more
links were more likely to be retrieved. Hastie
showed that his model could capture many
of the findings on the impact of incongru-
ent information on impressions and mem-
ory. For example, his model predicted that
incongruent behaviors that were relatively
infrequent were more likely to be recalled
than congruent behaviors and had a greater
impact on impressions.

Another topic in impression formation
that has received considerable research at-
tention is the impact of category accessibility
effects, whereby priming a category leads to
greater use of that category in forming an im-
pression from an individual’s behavior (e.g.,
Higgins, Bargh, & Lombardi, 1985; Higgins,
Rholes, & Jones, 1977; Srull & Wyer, 1979;
Wyer & Srull, 1986). Smith (1988) used
Hintzman’s (1988) exemplar-only memory
model to simulate several different aspects
of category accessibility effects. In Hintz-
man’s model, phenomena like categoriza-
tion and recognition are modeled by re-

trieval of exemplars (represented as a vec-
tor of binary features) from memory, rather
than in terms of abstractions or schemas. A
key assumption of the model is that when
exemplars are learned, each exemplar is sep-
arately stored in memory. Then, when the
individual is asked to make a categorization
judgment or to recall something, a probe is
entered into memory that activates related
exemplars. The strength of activation of ex-
emplars is a function of their similarity to
the probe.

Smith argued that priming effects can
be viewed as entering additional exemplars
into memory. He showed that Hintzman’s
model could simulate three different cate-
gory accessibility effects: (1) greater prim-
ing with more instances, (2) greater priming
by trait-related behaviors than by trait labels
alone, and (3) slower decay of priming when
there are more primes.

2.3. Group Perception and Stereotyping

Models that have addressed group percep-
tion and related phenomena have, on the
whole, focused on showing that the phe-
nomena are a natural result of the structure
of information in the environment and/or
learning processes, and do not require so-
phisticated schema or motivated processing
to produce (although motivation can be in-
volved). Initially, the attempts in this do-
main were based on analysis of the infor-
mation environment, with models by Smith
(1991) and Fiedler (1996) looking at phe-
nomena such as illusory correlation (per-
ception of a nonexistent relation between
minority group members and negative char-
acteristics) and the outgroup homogeneity
effect (the perception that outgroup mem-
bers are less variable on important attributes
than the ingroup). The basic argument was
that these phenomena could be understood
in terms of the distribution of information in
the environment and did not depend on the
assumptions of a process model for explana-
tion. Later, these models will be compared
with the more recent ones.

A family of fully recurrent auto-
associator models, based on McClelland and
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Rumelhart’s (1988) auto-associator, have
been used to explain various aspects of
group perception in terms of learning pro-
cesses. The earliest model (Smith & De-
Coster, 1998) argued that several seemingly
disparate phenomena all have a common un-
derlying mechanism. They show that their
forty-unit autoassociator, which represents
information in a distributed fashion and uses
delta-rule learning, makes inferences based
on the natural correlations that arise from
the learning experience. Once the network
has learned, it will fill in missing informa-
tion with stereotypical information for new
(unlearned) individuals and can also make
complex inferences based on these learned
schemas. Additionally, they replicated re-
cency and frequency-related accessibility ef-
fects, and made novel predictions about the
rapid recovery of schema information after
decay.

In a follow-up model, Queller & Smith
(2002) show that their auto-associator’s be-
havior, based on the constraint satisfaction
module of PDP++ (O’Reilly & Munakata,
2000), is consistent with empirical data
on several different models of stereotype
change. It predicts that counterstereotypic
information that is distributed across a num-
ber of individuals (rather than being clus-
tered in a few counterstereotypic individu-
als within a larger sample) results in gradual
change in the stereotype, which is consistent
with the “bookkeeping” model (this model
suggests that stereotype change should be
dispersed across all members of the group).
However, the model also predicts that when
the same amount of counterstereotypic in-
formation is clustered within a small num-
ber of individuals within a larger sample,
the result is subtyping, where the perceiver
differentiates a new subtype or category for
this small group of individuals and maintains
the original stereotype of the other individ-
uals. They show that these different kinds of
change are due to differences in the patterns
of correlations among the counterstereo-
typic features and the resulting pattern of
weights. When the counterstereotypic fea-
tures are clustered in a small number of in-
dividuals, the features are highly correlated
and develop strong interconnections and a

coherent subgroup. When the same features
are distributed among a larger number of
individuals, the features are not correlated
and no strong interconnections develop.
Thus, the subtyping process does not re-
quire anything beyond the learning process
(i.e., there is no need for a reasoning pro-
cess to explain away the counterstereotypic
information).

Van Rooy et al. (2003) used a semilo-
calist representation in an auto-associator
to examine the same general phenomena.
Their model used delta-rule learning with
one cycle of updating (although it was also
tested with multiple cycles and generally
gave the same results). In their model, sub-
typing is produced by the competition prop-
erty of delta-rule learning. Consistent with
the Queller and Smith (2002) model, they
also found that counterstereotypic informa-
tion that was dispersed among exemplars (as
opposed to being concentrated in one exem-
plar) helped to prevent subtyping.

Other important group impression phe-
nomena that have been the focus of con-
centrated modeling attention are illusory
correlations and the outgroup homogene-
ity effect (OHE). Illusory correlation is a
perceived (illusory) positive association be-
tween membership in a smaller group and an
infrequent behavior, despite the fact that the
larger group is proportionally just as likely to
exhibit the behavior. Smith (1991), using an
exemplar-based memory model by Hintz-
man (1988), and Fielder (1996) proposed
information aggregation models, showing
that illusory correlation could be a natural
product of information sampling and aggre-
gation with different sized groups. Sampling
and aggregating larger samples of informa-
tion lead to more precise and less variable
estimates of parameters. In comparison, the
Van Rooy et al. (2003) model claims that
this phenomenon is caused by differences
in weight strength due to differences in the
number of group members encountered.

The OHE is the perception of the
outgroup as having less person-to-person
(within-group) variability than one’s own
group. Linville, Fischer, and Salovey (1989)
developed an exemplar-based simulation of
the OHE (PDIST). In their model, group
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variability estimates are not calculated at en-
coding, but rather at the time of judgment,
using exemplars retrieved from memory.
When there are more exemplars in a group,
it probabilistically follows that the range of
values of group attributes will tend to be
larger, thus, variability estimates should be
larger for the ingroup (with which one typ-
ically has much more experience) than for
the outgroup.

The information-based models (Fiedler,
1996; Smith, 1991) attempt to show that
the OHE depends on noisy inputs masking
variability. The noise is more likely to be
averaged out for larger samples, as would be
the case with the more familiar ingroup.

Van Rooy et al. (2003), using an auto-
associator, suggest that the OHE is a natural
product of learning, as do Read and Urada
(2003) using a recurrent version of McClel-
land and Rumelhart’s (1988) autoassociator.
Both models essentially argue that learning
of the extremes of the distribution is better
for larger samples (typically the ingroup).
Read and Urada further conclude that “the
OHE follows from fundamental assump-
tions about how information is represented
in memory,” and depends upon the number
of members of the ingroup and outgroup en-
countered, without the additional assump-
tion that one has more information per in-
dividual for the ingroup members. They
emphasize, however, that their model can-
not account for all proposed (noncognitive)
mechanisms that bias the type of informa-
tion we get, such as secondhand exposure to
exemplars through the media.

Kashima and colleagues have taken a
unique approach within social psychology
with their tensor product model (TPM)
of group perception (Kashima, Woolcock,
& Kashima, 2000; Kashima, Woolcock, &
King, 1998). In this model, inputs are all
vectors of distributed representations for the
event, the group, the person, and the con-
text of an episode. These vectors are en-
coded and combined to form a tensor prod-
uct, which encodes the relations among the
vectors. Various judgments are based on op-
erations on this tensor product. They are
able to reproduce empirical results on group
impression formation and sequential expo-

sure to exemplars. One conclusion is that
stereotype-inconsistent information changes
the representation of the individual in mem-
ory. Their model shares with the previ-
ously discussed auto-associators the finding
that no attributional processes are needed
to explain the phenomena, but instead, that
the phenomena can be explained by infor-
mation distribution and basic learning pro-
cesses. This is perhaps the most significant
conclusion of this line of research.

2.4. Emotional Coherence

Thagard and colleagues (e.g., Sahdra &
Thagard, 2003; Thagard, 2003; Thagard &
Nerb, 2002) have also used an ECHO-like
constraint satisfaction model, HOTCO, to
capture the influence of emotions on reason-
ing and decision making. The general idea
is that an emotion or evaluation is repre-
sented as an additional node in an ECHO-
like coherence network that sends activation
to connected nodes. Thus, a highly activated
emotion or valence node will influence or
“bias” the activation of related hypotheses
and beliefs. In one example, Thagard (2003)
analyzed juror decision making in the O. J.
Simpson murder trial and showed how pre-
existing liking for O. J. among the jurors’
may have biased the jurors willingness to ac-
cept the defense’s account of the evidence
in the trial and their subsequent verdict.

Nerb and Spada (2001) presented a co-
herence model of cognition and emotion
that integrates assumptions from appraisal
models of emotion (e.g., Lazarus, 2001;
Ortony, Clore, & Collins, 1988; Roseman,
2001; Scherer, 2001) into a constraint satis-
faction network similar to ECHO (Thagard,
2000) and IMP (Kunda & Thagard, 1996).
They examine cognitions and emotions, and
their interaction in the context of making
decisions about environmental problems.

2.5. Face Perception

A recent area of interest in social psychol-
ogy is how perception of facial features and
emotional expressions affects the inferences
we draw about lasting personality traits. This
phenomenon has been proposed to account
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for popularity and voting outcomes in pres-
idential elections as well as more mundane
interactions we have with people every day.

Zebrowitz and colleagues (Zebrowitz
et al., 2003; Zebrowitz, Kikuchi, & Fellous,
2005) argue that many of these social per-
ception effects are driven by overgener-
alizations from evolutionarily adaptive re-
sponses to types of individuals such as
babies and those with anomalous faces.
Zebrowitz et al. (2003) used a neural net-
work with an input, hidden, and output
layer, and a backpropagation learning al-
gorithm, and trained it to classify a com-
plement of normal, anomalous, and infant
faces. They then showed that trait inferences
for test or generalization faces could be pre-
dicted by how they were classified by the
network. For example, ratings of adult faces
on sociable were predicted by the extent to
which they activated the baby output unit.
And higher activation of the anomaly out-
put unit by a test adult face predicted lower
ratings on attractiveness, healthy, and intel-
ligent.

In a subsequent study, Zebrowitz et al.
(2005) focused on reactions to emotional
expressions, arguing that these may be evo-
lutionarily adaptive generalizations from re-
sponses to baby and mature faces. Using the
same network architecture, they found that
impressions of emotion faces were partially
mediated by their degree of resemblance to
baby and mature faces. Anger faces, like ma-
ture faces, created impressions of high dom-
inance and low affiliation, whereas surprise
faces, like baby faces, led to impressions of
high affiliation and low dominance. The au-
thors emphasize that the success of these
models (which are based solely on the infor-
mation structure in the faces) in predicting
impressions, suggests that resorting to cul-
tural explanations for the associations be-
tween facial features and trait inferences is
not always necessary. These results, along
with several other models of unrelated phe-
nomena in social psychology, such as the
OHE and illusory correlations, show how
empirical effects can be reproduced relying
only on very basic properties of learning sys-
tems and information structure, and do not

require complex motivational or other pro-
cesses to arise.

2.6. Attitudes and Attitude Change

One of the earliest computational mod-
els in social psychology was Abelson and
Carroll’s (1965) “Goldwater Machine,”
which was an attempt to model the ideo-
logical belief systems and attitudes of a con-
servative (also see Abelson, 1963, 1973).
This line of work led to Abelson’s collabora-
tion with Roger Schank (Schank & Abelson,
1977) on scripts, plans, goals, beliefs, and
understanding, and the Yale artificial intel-
ligence approach. Unfortunately, this early
modeling work by Abelson was not followed
up by other social psychologists and seems
to have had little direct influence on com-
putational modeling in social psychology.

However, there has been a recent resur-
gence of modeling of attitudes, primar-
ily motivated by interest in cognitive con-
sistency. Theories of cognitive consistency
were in their heyday in the 1960s (see
Abelson et al., 1968), but interest then de-
clined dramatically. However, the advent
of computational modeling has added a
somewhat fresh perspective on this and re-
lated phenomena, such as attitude forma-
tion and change, and cognitive dissonance.
The classical formulations of cognitive con-
sistency theory (Abelson et al., 1968; Fes-
tinger, 1957) argue that attitudes and evalu-
ations are the result of a balancing act among
competing cognitions; for people to make
sense of the world, these cognitions must
end up being organized in such a way as
to mutually support each other, maintain-
ing consistency in one’s world view. For ex-
ample, as it does not make much sense to
think both that one needs to drive the latest
oversized sports utility vehicle and that we
should conserve natural resources and pro-
tect the environment; one of these beliefs
must be adjusted, or some other way of re-
ducing the disparity between them needs to
be found, for example, by introducing inter-
vening cognitions like “my one car doesn’t
make much difference when the problem is
a global one.”
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This sounds quite similar to process-
ing in coherence-type networks, such as
ECHO. Not surprisingly, cognitive consis-
tency has recently been reconceptualized
in terms of constraint satisfaction or co-
herence networks. Two variants of ECHO
have been used to simulate cognitive con-
sistency as parallel constraint satisfaction
networks. First, Spellman, Ullman, and
Holyoak (1993) asked students their opin-
ions on the Persian Gulf conflict of 1991
at two times, two weeks apart. They con-
structed ECHO models of students’ opin-
ions, where all concepts were only indirectly
related to each other through the overall
opinion node. The way the network settled
predicted students’ attitude changes over
the two-week period.

Read and Miller (1994) also used ECHO
to model a variety of balance and dissonance
situations. One addition they made is that
differences in the initial degree of belief in
a cognition were represented. This model
was able to describe how different modes
of inconsistency resolution could be imple-
mented, mainly by adding nodes that denied
or bolstered the ambivalent cognitions. The
mode of resolution that ultimately gets cho-
sen in this model is determined by the pat-
tern of coherence settling.

Shultz and Lepper (1996, 1998) devel-
oped their own constraint satisfaction model
to account specifically for cognitive disso-
nance. The model was designed to maximize
the coherence quantity, defined as:

C =
∑

i

∑
j

wi j aiaj .

In this equation, ai and aj are the activa-
tions of the two nodes that are being eval-
uated and wi j is the weight between the
two nodes. As in the preceding models, the
weights are bidirectional and fixed – the ac-
tivations change during the settling process.
They introduced an additional change resis-
tance parameter to represent how “change-
able” a particular node is, due to things like
attitude importance and embeddedness in a
web of beliefs. The simulations reproduced
the results in several well-established disso-

nance paradigms, and the model was also
able to reproduce annoyance effects, mood
effects, and locus of change effects found
empirically in the original studies that are
not predicted by classical dissonance theory
per se. Further lab studies (Shultz, Lévéille,
& Lepper, 1999) tested novel predictions of
this model, where it succeeded in predict-
ing the pattern of evaluation changes among
chosen and rejected wall posters by thirteen-
year olds.

Van Overwalle and colleagues (Van
Overwalle & Jordens, 2002; Van Over-
walle & Siebler, 2005) have noted that a
shortcoming of the previous models is that
they lack the ability to represent long-term
changes in attitudes, because weights are not
allowed to change. To attempt to remedy
this, Van Overwalle and Jordens (2002) rep-
resented attitudes in a feedforward neural
network with delta-rule learning, with in-
put nodes representing the features of the
environment and two output nodes: behav-
ior and affect. The average of the activa-
tion of the behavior and affect nodes are
treated as the measure of attitude. They
defined dissonance as “the discrepancy be-
tween expected and actual outcomes,” and
thus dissonance reduction, in their model,
is the adjustment of the connection weights
to the behavior and affect nodes; in other
words, they characterized cognitive disso-
nance as an error of prediction and disso-
nance reduction as error-correcting learning.
The model uses a training phase and then
a one-trial experimental phase, after which
weights are allowed to adjust. They modeled
the same experiments as Shultz and Lepper
(1996).

Although coherence-based models of dis-
sonance have not captured long-term atti-
tude change, it is not clear how Van Over-
walle and Jordens’ (2002) model actually
accounts for the experience of dissonance
or the attitude change that follows an ex-
perience of dissonance. Their model sim-
ply changes the strength of association be-
tween an attitude object and an affective
response, once the experimenter tells the
network what the target affect is. The net-
work does not provide any insight into how
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the affective response arises. For example,
let’s take their simulation of the forbid-
den toy paradigm. In one condition in this
paradigm, children receive a mild threat to
not play with an attractive toy and are then
left alone with the toy. These children are
much more likely to derogate the toy than
children who are watched after the mild
threat or than children who receive a se-
vere threat, regardless of whether they are
watched. The typical explanation of this re-
sult is that the child in the mild threat, no
surveillance condition, finds it dissonant that
she is not playing with this attractive toy,
even though there do not seem to be any
good reasons not to. To rationalize this, she
decides that the toy is not particularly at-
tractive.

To simulate this, Van Overwalle and Jor-
dens’ (2002) network first learns that the
presence of an attractive toy predicts both
playing and positive affect, whereas the
presence of a severe threat predicts not play-
ing with the toy and negative affect. Then
the network receives an experimental trial
in which there is an attractive toy and a mild
threat. Initial learning of weights is set up so
that a mild threat is not sufficient to inhibit
activation of the behavior and affect nodes.
Thus, the network predicts that the child
will play with the toy and will feel mildly
positive. Yet, empirically, we know that the
child in this condition does not play with
the toy.

What Van Overwalle and Jordens (2002)
do is to then tell the network that the child
did not play with the toy and that the child
felt negative affect, resulting in a discrep-
ancy between the prediction and the out-
come for the behavior and the affect. Delta-
rule learning leads to the weights from the
attractive toy to the play and affect nodes
becoming more negative. But note one very
important thing. This network does not infer
how the child felt. It is told how the child
supposedly felt. This is essential to the abil-
ity of this network to simulate dissonance
effects.

One virtue of the various constraint satis-
faction models is that they have something
to say about making the affective inference

in the first place. Van Overwalle and Jor-
dens’ (2002) model does not. Instead, it
simply shows that the network will learn to
associate the toy with negative affect, once
the experimenter has told the network that
the child feels bad. But because the experi-
menter has to tell the network how the indi-
vidual feels, it does not seem that this tells us
much about dissonance. There is already ex-
tensive evidence in other domains that peo-
ple will learn to associate cues to negative
emotions that are paired with them.

A constraint satisfaction network, in
which weights are updated after the net-
work settles (such as McClelland and
Rumelhart’s (1988) auto-associator, which
has been used in several simulations dis-
cussed previously), would seem to make
more theoretical sense. In the typical disso-
nance study, the individual is faced with two
or more inconsistent beliefs (e.g., “the toy is
attractive” and “I didn’t play with it, even
though there aren’t good reasons not to”).
One way to resolve this inconsistency is for
the belief “I didn’t play with this toy, even
though there aren’t good reasons not to” to
inhibit the belief “the toy is attractive” and
excite the alternate belief “the toy is dumb.”
After the network settles, weights could be
adjusted, with the result that subsequently
thinking about the toy would activate the
cognition “the toy is dumb.”

Subsequently, Van Overwalle and Siebler
(2005) presented a model aimed at explain-
ing other attitude-change phenomena. The
model is a recurrent network with delta-rule
learning and is based on an auto-associative
model originally presented by McClelland
and Rumelhart (1988). It attempts to ac-
count for various phenomena including sev-
eral heuristics and central versus peripheral
(e.g., systematic vs. heuristic) processing.
Although this network has bidirectional
weights, it does not function as a constraint
satisfaction network because the authors re-
strict the model to one cycle of updating
of internal activation and use a linear up-
dating function. Further, they make several
ad hoc adjustments to the original McClel-
land and Rumelhart (1988) auto-associator,
especially to its learning mechanisms. For
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example, to have McClelland and Rumel-
hart’s variation of delta-rule learning work,
Van Overwalle and Siebler treat the inter-
nal activation of a node as both the internal
(predicted) outcome and the external (ac-
tual) outcome.

The network represents the various
heuristics (including the consensus, exper-
tise, and ease of retrieval heuristics) as
weights between those cues and attitude va-
lence. The simulation to recreate the effect
of central versus peripheral processing uses a
researcher-controlled attention mechanism
and a learning phase to set up the initial as-
sociations. The model is able to account for
this processing distinction, closely related
to the Elaboration Likelihood Model (ELM;
Petty & Cacioppo, 1986) and Heuristic Sys-
tematic Model (Eagley & Chaiken, 1993) of
attitude change.

Other, non-constraint-satisfaction net-
works have been used to model attitude phe-
nomena. Eiser et al. (2003) used a feedfor-
ward network with an input, output, and
hidden layer to show how attitude persever-
ance naturally results from an uneven payoff
matrix and reinforcement learning. Using a
“good beans, bad beans” paradigm, their sim-
ulations showed how individuals naturally
avoided novel items to avoid possible nega-
tive outcomes, and in the process, preserved
their existing attitudes by not being exposed
to disconfirming information.

And Mosler et al.’s (2001) model of the
ELM used a complicated symbolic archi-
tecture, one requiring many control struc-
tures. Calculations are performed in many
subprocesses and involve diverse inputs,
such as personal relevance, distraction, and
source argument quality. This computa-
tional model was able to replicate many em-
pirical results and make many qualitative
predictions regarding the ELM, but at the
cost of being unable to account for other
attitude-relevant processes.

2.7. Personality

Computational modeling of personality has
been an active area and has a long history
(Colby, 1975; Loehlin, 1968; Tomkins &

Messick, 1963). Of the more recent mod-
els, Mischel and Shoda’s (1995) Cognitive-
Affective Processing System (CAPS) model
is a recurrent, localist network, which func-
tions as a constraint satisfaction system. It
has an input layer consisting of nodes rep-
resenting different situations (or situational
features), which are recurrently connected
to a set of nodes representing the cognitive-
affective units (CAUs). These CAUs are
then recurrently connected to behavior
nodes. The CAUs represent various beliefs,
goals, and emotions that an individual may
have. In the CAPS model, individual differ-
ences are represented by different patterns
of weights among the CAUs. In a series of
simulations, Mischel and Shoda have gen-
erated an array of different CAPS networks
with different randomly generated weights
and then exposed the different networks to
the same sequence of situations. They have
shown that these differently connected net-
works have distinctive behavioral signatures,
giving different behavioral responses to the
same situation.

Mischel and Shoda (1995) are trying to
deal with an apparent paradox in the person-
ality literature: There is clear evidence for in-
dividual differences in personality, yet there
is little evidence for strong general cross-
situational consistency in behavior. They
propose their CAPS model as a possible so-
lution to that paradox. They argue that peo-
ple have consistent behavioral signatures in
that individuals respond consistently to the
same situations, although different individu-
als will respond differently to different situa-
tions. In their various simulations, they show
that different patterns of connection of the
CAUs do lead to consistent behavioral sig-
natures for different individuals. However,
they make no attempt to try to capture ma-
jor differences in personality structure (e.g.,
the big five: extraversion, agreeableness, neu-
roticism, conscientiousness, and openness to ex-
perience).

More recently, Read and Miller (Read
& Miller, 2002; Read et al., 2008) have
used a multilayer, recurrent neural network
model, using the Leabra++ architecture in
PDP++ (O’Reilly & Munakata, 2000), to
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model personality structure and dynamics.
This model is designed to capture major
distinctions in personality structure, specifi-
cally what has sometimes been referred to as
the big three: extraversion, neuroticism, and
conscientiousness.

One of the major ideas driving Read and
Miller’s model is that personality traits are
goal-based structures; goals and motives are
central to the meaning of individual traits.
Essentially, personality can be understood
largely in terms of individual differences in
the behavior of underlying motivational sys-
tems. Thus, a central focus of this model
is to capture personality dynamics in terms
of the structure and behavior of motiva-
tional systems.

Read and Miller’s (2002) initial model
had an input layer with eight situational
features, with one-to-one recurrent links to
nodes in a goal layer (with nodes corre-
sponding to eight goals), and one-to-one re-
current links from the goal layer to the be-
havior layer (with eight behaviors). The goal
layer was divided into an Approach layer
and an Avoidance layer, to correspond to
a key motivational distinction between an
approach system, which governs sensitivity
to reward and loss of reward, and an avoid-
ance system, which governs sensitivity to the
possibility of punishment or threat (Gray,
1987). The sensitivity of the approach and
avoid layers to input was manipulated by a
gain parameter. In addition, an attempt was
made to capture basic aspects of conscien-
tiousness by using the degree of overall in-
hibition in the network. Overall inhibition
in this model functions to enhance the dif-
ference between the most highly activated
nodes and less activated nodes. This model
did not have learning: the authors set the
weights.

Read and Miller (2002) were able to
use the gain parameters for the approach
and avoid layers to successfully simulate
broad individual differences in extraversion
and neuroticism. They also showed that de-
gree of inhibition could capture what could
be termed as goal focus and thus could
model certain aspects of conscientious-
ness.

Read et al., (2006) have recently devel-
oped a more ambitious version of the Virtual
Personality model. It uses a semidistributed
representation of situational features in the
input layer (twenty-nine in all) that allows
them to specify a wide variety of specific
situations that can arise in two general con-
texts: work and parties. The input layer con-
nects, through a hidden layer, to the goal
layer, which is again divided into approach
(twelve goals) and avoid layers (eight goals).
The situational features, the goal layer, and
a resource layer (with eleven units) are then
connected through a hidden layer to the be-
havior layer, which has a wide variety (forty-
three) of different behaviors that can be en-
acted in work and party settings (e.g., give
orders, work extra hard, dance, drink alco-
hol, tell jokes, etc.).

In addition to being much more detailed
than the original virtual personality net-
work, this network learns. Weights develop
as a result of exposure to learning environ-
ments. Also, hidden layers are included so it
can learn conjunctive or nonlinear relation-
ships of cues to particular outcomes (e.g.,
situational features to goal nodes).

Various aspects of the network can be
manipulated to capture personality differ-
ences. First, the relative sensitivities of the
approach and avoid systems in the goal
layer can be manipulated to capture individ-
ual differences in sensitivity to reward and
threat, and thereby capture general differ-
ences in extraversion and neuroticism. This
is done by manipulating the relative reward
values of of approach and avoidance goals
during learning. For instance, greater reward
value of an approach goal during training
will subsequently make that goal more likely
to be highly activated when appropriate in-
puts are encountered.

Second, the bias inputs of individual goals
can be manipulated to capture individual
differences in the extent to which differ-
ent goals are chronically activated and are
likely to direct behavior. Third, the over-
all degree of inhibition within various layers
(especially goal and behavior) can be ma-
nipulated to enhance or reduce the differ-
ences in activation between the most highly
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activated concepts and less activated con-
cepts. This can be interpreted as influenc-
ing differences in “goal focus” and thus can
capture certain aspects of the broad trait of
conscientiousness.

Although it has not been done, it should
be possible to capture other major aspects of
personality by organizing the goals into fur-
ther subclusters. In the current model, all
the goals in a layer should have moderately
correlated impacts on behavior because they
are all influenced by a common gain or sen-
sitivity parameter. As an example of further
structure, the general approach layer could
be organized into major subclasses of human
goals. For example, Depue and Morrone-
Strupinsky (2005) have argued that the gen-
eral trait of extroversion can actually be
divided into two subcomponents that cor-
respond to partially independent neurobio-
logical systems and separate classes of goals.
One subcomponent corresponds to what is
typically viewed as the general trait of agree-
ableness and the other is typically viewed
as the general trait of extraversion. Agree-
ableness includes more collectivistic or rela-
tionally oriented sets of goals and motives,
whereas extraversion includes more individ-
ualistic or agentic goals and motives. This
analysis could be pushed further by assum-
ing that the trait of openness to experience
corresponds to a third subcluster of goals and
motives in the approach system. These goals
may have to do with play and fun (Panksepp,
1998, 2000) or with curiosity, a desire for
knowledge. The basic idea is that the results
of analyses of personality structure can be
captured by the organization of the moti-
vational systems in the Virtual Personality
model.

This attempt to simulate major personal-
ity distinctions is one major difference be-
tween this model and Mischel and Shoda’s
(1995) CAPS model of personality. In
Mischel and Shoda’s model there is little
structure to the cognitive affective units
(goals, beliefs, etc.) or their interrelation-
ships. And there is no attempt to relate the
structure of their model to the structure of
human personality, as exemplified in struc-
tural models of personality.

Recently Zachary et al. (2005a, 2005b)
presented a symbolic model that is based on
the conceptual distinctions of the Virtual
Personality model. This implementation is
intended for the construction of software
agents, with realistic personalities.

Other simulation work has examined
temporal stability in personality. Fraley has
developed a set of difference equations and
related simulations to represent alternative
models of both personality stability (Fraley
& Roberts, 2005) and stability of attach-
ment styles (Fraley, 2002; Fraley & Brum-
baugh, 2004). He compared what is essen-
tially an autoregressive function, in which
behavior is a function of the previous state
of the individual plus random variation,
with an equation in which there is an addi-
tional parameter that models the consistent
impact of a stable trait (related to Kenny
& Zautra’s (1995, 2001) trait-state-error
model). Fraley notes that over time, the
autoregressive model essentially becomes a
random walk model in which the initial im-
pact of an individual’s behavior on his or her
environment is eventually swamped by the
random variation. This model predicts that
over time, the stability coefficient for a trait
or for attachment styles approaches zero. In
contrast, for the model with the stable trait
(such as early attachment style or early tem-
perament differences), the simulated stabil-
ity coefficient approaches an asymptote that
is roughly equal to the value of the parame-
ter that describes the influence of the “trait”
on the individual’s behavior. Fraley argues
that this consistent influence acts as an an-
chor or constraint against the impact of ran-
dom variation. According to Fraley’s meta-
analytic results, the stability coefficient for
both neuroticism and attachment styles are
nonzero, even after twenty years, contra-
dicting the auto-regressive model, but con-
sistent with the trait model.

Probably the earliest work on simulating
personality was summarized in Tomkins and
Messick (1963). Subsequent work was pre-
sented by Loehlin (1968), who simulated
personality dynamics, Atkinson and Birch
(1978), who presented a numerical simu-
lation of the dynamics of the activation of
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motivational systems over the course of a
day, and Colby (1975, 1981), who simu-
lated a paranoid personality. More recently,
Sorrentino et al. (2003) have presented a
simulation of Sorrentino’s trait of uncer-
tainty orientation, which has some concep-
tual similarities to the earlier Atkinson and
Birch (1978) work.

2.8. Personality and Dyadic Interactions

The previous simulations focus on indi-
vidual behaviors. In other work, Shoda,
LeeTiernan, and Mischel (2002) have used
the CAPS constraint satisfaction architec-
ture to simulate dyadic interactions among
individuals with different personalities (for
other simulations of social interaction, see
Chapter 19 in this volume). In Shoda et al.’s
simulations, the behavioral output of one
member’s network is the input to the other
member’s network. When two individuals’
networks are linked in this way, the joined
networks exhibit new attractors that are not
characteristic of either of the individual net-
works. Thus, these simulations suggest that
the behavior of two individuals, when joined
in a dyad, are different from their behavior
in isolation, and it provides a mechanism for
that difference.

Nowak and Vallacher have done dynam-
ical systems simulations of a wide range of
different social and personality phenomena
(e.g., Nowak & Vallacher, 1998; Nowak,
Vallacher, & Zochowski, 2002). Only a sub-
set of that work is discussed here. In one
series of simulations, they used coupled lo-
gistic equations to investigate both the con-
ditions under which synchronization of be-
havior occurs in dyadic interactions and the
role of individual differences in the extent
to which behavior is affected by the char-
acteristics of the other with whom they are
interacting. In these coupled logistic equa-
tions, an individual’s behavior is a function
of both his or her state on the previous time-
step (x1(t)), as well as the preceding behav-
ior of his or her partner (x2(t)). The param-
eter r is a control parameter that determines
the extent to which the current behavior is
due to the previous state of the individual,

and the parameter α is the extent to which
the current behavior of the individual is in-
fluenced by the preceding behavior of his or
her partner. This is the degree of coupling
between the two individuals.

x1(t + 1) = [r1x1(t)(1− x1(t))

+αr2x2(t)(1− x2(t))]/[1+ α]

x2(t + 1) = [r2x2(t)(1− x2(t))

+αr1x1(t)(1− x1(t))]/[1+ α].

In a series of simulations, they found that
the degree of synchronization between the
members of the dyad was higher when
the degree of coupling, α, was higher and
when the control parameters r for the two
individuals were more similar. They also
found that synchronization between two in-
dividuals could occur, even with weak cou-
pling, when the control parameters (r ) were
similar. Interestingly, they found that with
moderate degrees of coupling, the two indi-
viduals tended to stabilize each other’s be-
havior. These simulations provide an inter-
esting way to think about how individuals in
interactions influence each other.

In further simulations, they argued that
individual differences could be partially cap-
tured by the location, depth, and breadth of
attractors for equilibrium values of a partic-
ular state of an individual. They show that
these factors affect the extent to which the
behavior of one member of a dyad is affected
by and becomes synchronized to the behav-
ior of the other member. For example, the
behavior of A is more likely to become syn-
chronized to the behavior of B when their
attractors are close together or when the at-
tractor for A is shallow. Further, the behav-
ior of A is less likely to become synchronized
to B when A has a deep attractor.

2.9. The Self

The self is a central concept in social psy-
chology, but its properties have remained
somewhat nebulous. It seems unlikely that
any one model would be able to satisfacto-
rily capture it, but researchers have begun to
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investigate aspects of it with different types
of models.

Greenwald and Banaji (1989) examined
whether an ordinary associative semantic
memory model could capture memory and
recall effects related to the self. Using an
existing general associative framework, they
found that no special adjustments were re-
quired to replicate their lab results (re-
call of self-generated names and subsequent
learned associations to objects vs. other-
generated names). They concluded that this
implies there is nothing extraordinary about
the structure of the self in memory.

Smith, Coats, and Walling (1999) in-
vestigated the self’s overlap with relation-
ship partners and ingroup members. Using
the Interactive Activation and Competition
model (McClelland & Rumelhart, 1981), a
localist connectionist model with nodes for
the self, others, and particular traits con-
nected by bidirectional links, they tested
response times as proxies for the activa-
tion flow between concepts in the cognitive
structure. They found the self is implicitly
accessed when the subject was asked about
its relationship partner. Additionally, they
concluded that the exact representation of
the self (i.e., the pattern of activation rele-
vant to the self-concept) varies with context.
In lay terms, the findings are consistent with
the notion that a romantic partner’s traits
(and presumably actions as well) really do
reflect on oneself.

Nowak et al.’s (2000) innovative ap-
proach to examining this topic was to use
cellular automata to represent different as-
pects of the self and to investigate how the
mind can self-organize the self-concept with
respect to a positive versus negative evalu-
ation. Cellular automata consist of sets of
simple processing elements that can take on
a limited number of values of a single vari-
able that can change dynamically as the re-
sult of influence from other elements (e.g.,
an attitude of an individual in a commu-
nity can change as a result of influence from
other individuals). Elements are typically ar-
ranged in simple spatial arrangements, such
as a grid (e.g., checkerboard), and on each
time-step they change their internal state

on the basis of an updating rule that takes
into account the state of communicating ele-
ments. Communication among the elements
is typically determined by their spatial ar-
rangement. For example, a cell on a grid may
communicate only with the four cells on its
sides, it may communicate with those on its
sides as well as on the directly adjacent diag-
onals, or it may use other kinds of commu-
nication rules. Various updating rules can be
used: One example is a majority rule, where
a unit may change its current “attitude” de-
pending on the “attitude” of the majority of
the other units with which it communicates.
Such cellular automata have interesting dy-
namic properties and have been used in var-
ious domains.

In Nowak et al.’s (2000) simulation, each
unit in the lattice was influenced by its adja-
cent neighbors, and this influence was mod-
ified by a centrality (in the self-concept)
parameter representing a particular aspect’s
resistance to change. The model did in-
deed self-organize, with the initially more
prevalent positively evaluated aspects gain-
ing even more units. The negative units
that did survive tended to be highly central
ones. Even more thought-provoking were
their simulations of what happened when
information was introduced to a preinte-
grated network. They found that high pres-
sure for integration (a tunable parameter
of the model) prevented external informa-
tion from influencing the network, yet un-
der lower pressure, external information ac-
tually facilitated integration of the network.
Further, when the influence of the informa-
tion was particularly strong, the random na-
ture of it overwhelmed the existing structure
of the network and reduced organization. Fi-
nally, the system was relatively “immune” to
contradictory information.

2.10. Social Influence

Researchers have used also cellular au-
tomata to model various aspects of social in-
fluence, the process by which we influence
and are influenced by others. The subject
of influence has ranged from attitudes and
group opinions to belief and enforcement
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of group norms. Latané and colleagues
(e.g., Latane, 1996; Latané, 2000; Latane,
Nowak, & Liu, 1994; Nowak, Szamrej, &
Latane, 1990) have focused on trying to
predict system order parameters under dif-
ferent circumstances. These parameters in-
clude: (1) polarization/consolidation – the
degree to which the proportion that adopts
the majority/minority opinion changes over
the course of interaction; (2) dynamism –
the likelihood of an individual changing his
or her position; and (3) clustering – the de-
gree of spatial organization in the distribu-
tion of positions held by individuals.

A critical step in these simulations is de-
termining the influence function: how an
individual is influenced by his or her neigh-
bors. The parameters that investigators have
chosen to focus on are the strength of atti-
tude/conviction in the influencee (who also
serves a dual role as an influencer), the per-
suasiveness of an influencer in changing the
influencee’s attitude, the supportiveness of
the influencer in defending the influencee’s
current attitude, the social distance between
influencer and influencee, and the num-
ber of people within the influence horizon
(which can also be affected by the geome-
tries of contact, e.g., full connectivity, where
everyone is connected to everyone else no
matter how extensive the network vs. a fam-
ily geometry, where individuals are limited
to contacting only their family members plus
a few selected friends). The investigators
suggest that different influence rules might
be applicable under different circumstances;
for example, when groups and issues are
well-defined, the influence horizon can in-
clude the whole population, but when issues
and groups are not well formed, a purely in-
cremental influence function is more appro-
priate (Latane et al., 1994). Once the pa-
rameters for the simulation are determined,
a random seed or other specified initial con-
ditions representing the number, location,
and spatial mixing parameter for the initial
attitudes is used to run a trial. The simula-
tion then iterates until an equilibrium solu-
tion is found.

The results from these simulations show
that the equilibrium (final) distributions are
highly dependent on small changes in initial

conditions. Reproducible patterns are found
throughout the simulations: Initial majori-
ties tend to get bigger, leaving clusters of
minorities with strong convictions (Latane,
1996; Latane et al., 1994; Nowak et al.,
1990). Subsequent lab experiments were
carried out with these simulations in mind:
Generally, the simulations reproduced the
lab results well, with the caveat that the
more strongly held the opinions/attitudes,
the less well the lab results were predicted
by the simulations (Latane & Burgeois,
2001).

Latane’s (2000) simulations of group
opinion change have shown results similar
to those previously discussed with an in-
fluence function, where an individual’s at-
titude is the average of his or her neighbors.
Clusters of similar attitudes develop, and
majorities tend to gain more control. This
model also implemented social comparison
processes as an additional source of influ-
ence. In this case, if a neighbor’s outcome
was better, an individual adopted that neigh-
bor’s effort level. Simulating several parallel
work groups, the results showed remark-
able within-group homogeneity, but large
between-group differences.

Centola, Willer, and Macy (2005) mod-
eled social influence in one particular con-
text: the enforcement of privately un-
popular social norms (also known as the
Emperor’s dilemma.) Their model suggests
that this can happen when the strength of
social influence exceeds the strength of con-
viction of the individuals. The process re-
quires a few true believers (individuals with
imperturbable convictions) to induce a cas-
cade of norm enforcement that happens
because the people with the weakest con-
victions adopt enforcement rather quickly,
which increases the influence further on the
remaining individuals until most everyone
enforces the unpopular norm. Note that this
effect only occurs in networks where only
local influence is allowed.

2.11. Dynamics of Human
Mating Strategies

Extensive research has shown that couples
are similar on almost any personal attribute
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that one can think of, including physical at-
tractiveness. An obvious hypothesis about
how similarity on physical attractiveness
comes about is that people choose part-
ners who are similar to them on physical
attractiveness. However, there is little ev-
idence for this. When given a choice, peo-
ple almost always choose the most attractive
partner available. For example, when col-
lege students are given a choice of partners
for a date, they will almost always choose
the most attractive partner available. So this
raises the question of how we can get attrac-
tiveness matching when people do not seem
to be choosing partners who are similar to
them on attractiveness.

Kalick and Hamilton (1986) ran a simu-
lation with a set of very simple agents to test
the possibility that in a population of indi-
viduals who choose the most attractive part-
ner, the result could still be attractiveness
matching. In one simulation, they gener-
ated a large number of “men” and “women”
who randomly varied on “attractiveness.”
Male and female participants were randomly
paired on a date and decided whether to ac-
cept their partner as a mate. The likelihood
of accepting the partner was a function of
the partner’s attractiveness. To form a “cou-
ple,” each member had to accept the other.
Because of these factors, two partners of the
highest level of attractiveness would be al-
most certain to accept each other, and two
partners of the lowest level would be ex-
tremely unlikely to do so. Once a couple was
formed, they were removed from the dating
pool, and a new set of pairings were made.
Kalick and Hamilton showed that over time,
matching on attractiveness moved to levels
comparable to those found with real cou-
ples. Thus, attractiveness matching did not
require choosing a similar mate, but instead
could result from people choosing the most
attractive mate available who would recip-
rocate.

Kenrick et al. (2003) used cellular au-
tomata to examine hypotheses about the
distribution of human mating strategies.
Work in evolutionary approaches has noted
that human males and females differ in the
amount of investment in their offspring.
Such differential investment is typically re-

lated to different mating strategies for males
and females in a species, with the sex that
makes the greater investment being more se-
lective and having a more restricted mating
strategy. However, it is not clear whether
men and women actually have such biolog-
ically based differences in mating strategies.
As Kenrick et al. note, mating strategies are
not just a function of the individual; they
are also a function of the strategies of their
potential mates and the surrounding popula-
tion. For example, a man who might prefer
an unrestricted mating strategy might fol-
low a restricted strategy if that is what most
available women desire.

In one set of simulations, individuals in
a standard checkerboard pattern made deci-
sions about their mating strategy on the ba-
sis of the mating strategies of their contigu-
ous possible partners. All individuals had
either a restricted or an unrestricted mat-
ing strategy and followed a decision rule
about whether to change their strategy as
a function of the proportion of surround-
ing individuals who followed a specific strat-
egy. Kenrick et al. (2003) then varied both
the initial distribution of mating strategies
among men and women, as well as the deci-
sion rule (proportion of surrounding others)
for changing a strategy.

In their initial simulations, although both
men and women needed more than a ma-
jority of the surrounding population to have
a different rule in order to change, men had
a lower threshold for switching from re-
stricted to unrestricted than for switching
from unrestricted to restricted. Women had
the reverse pattern: it was harder for them to
switch from restricted to unrestricted than
the reverse. With these sets of rules and over
a wide range of initial distributions of mating
strategies, most of the populations ended up
with more restricted members (both men
and women). In another simulation, they
found that if both sexes used male deci-
sion rules, the populations moved toward
more unrestricted distributions, whereas if
both sexes used female decision rules, the
populations moved toward more restricted
populations.

Conrey and Smith (2005) used a mul-
tiagent system to study the evolution of
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different mating choice rules. Research on
mating choice has shown that women tend
to end up with mates who have more re-
sources than they do, and men tend to end
up with mates who are younger than they
are. Conrey and Smith note that the typi-
cal approach in evolutionary psychology is
to identify a pattern of behavior such as this
and then assume that there is an evolved
mechanism or “module” that directly corre-
sponds to the behavior. Thus, evolutionary
psychologists assume that men and women
have evolved sexually dimorphic decision
rules: Men have an evolved preference for
younger mates, and women have an evolved
preference for men with resources. How-
ever, Conrey and Smith note that behavior
is the result of genes, environment, and their
interaction, which makes it possible that
there is no direct correspondence between
decision rules and behavior and that men
and women have the same decision rule.

They ran a series of simulations in which
numerous agents are born, enter reproduc-
tive age, have children (if they succeed in
getting a mate), and then die. Women invest
more resources in their offspring than men
do. Agents who do not maintain enough re-
sources die. Once agents reach reproductive
age, they make offers to potential mates. In-
dividuals make offers to the most desirable
available partners, given their decision rule.
And pairing off requires mutual agreement.
This is similar to a key assumption in Kalick
and Hamilton (1986).

In the first study, Conrey and Smith
(2005) simulate several different combina-
tions of decision rules for men and women.
All agents can have no decision rule, they
prefer the partner with the most resources,
they can prefer the partner who is youngest,
or they can prefer a partner with both. Per-
haps not surprisingly, populations in which
women want a mate with resources and men
want a youthful partner exhibit patterns of
mate choice that match what is empirically
observed.

However, they also find that a simula-
tion in which both men and women prefer
a partner with resources gives the same pat-
tern of mate choice. Thus, there does not
have to be a direct correspondence between

the decision rule and the pattern of mate
choice.

In a second study, they start with a popu-
lation with no decision rules, but in which it
is possible for a resource rule and a youth
rule to evolve by a process of mutation
and selection. They find that a pattern of
resource attention evolves quite quickly in
both sexes, whereas a pattern of sensitiv-
ity to youth never evolves. Yet, the result
is a population in which women end up
with men with resources and men end up
with women who are younger. Conrey and
Smith (2005) note that such a shared de-
cision rule can result in sex differences in
mate choice because of very different corre-
lations between age and resources for men
and women. In their simulations, the cor-
relation between age and resources is quite
high for men, but fairly modest for women.
Thus, sex differences in behavior do not re-
quire sex differences in underlying decision
rules. Environmental constraints can also
play a major role in the pattern of choices.

2.12. Group Discussion

Modeling of group discussion processes and
related decisions (including jury delibera-
tions) appears to have more immediate ap-
plications than most of the models in social
psychology, because many of the parame-
ters can be deliberately and fairly easily con-
trolled in a real context. The first attempts
at modeling group decisions were essentially
focused on predicting the probabilities of ju-
rors changing their opinions in the face of an
opposing faction. The DICE model (Penrod
& Hastie, 1980) and the SIS model (Stasser
& Davis, 1981) depended most critically on
total group size and faction size of the two
opposing viewpoints, with some variability
parameters to account for individual differ-
ences. They were able to fit a wide range
of experimental data with these parameters,
but glossed over the actual mechanics of the
discussion/deliberation process.

This next step was bridged with Stasser’s
(1988) DISCUSS model, which focused on
how the information exchange affected dis-
cussion outcomes. This model was a simula-
tion of a discussion as a series of events: who
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talks, what is said, the effect on members’ re-
call of all information, and ultimately their
preference. Discussion terminates when the
decision rule (unanimity, majority, etc.) is
satisfied. Importantly, each member val-
ues individual arguments slightly differently,
and an individual participation parameter
determines the distribution over members
of participation. Members’ preferences are
based on the combined weight of currently
salient information. This model was able to
reproduce empirical results from Stasser &
Titus (1985) on information exchange, but
the insights the simulation results provided
are perhaps more interesting. The results
showed that a search of the available infor-
mation biased by motivational factors was
not necessary to reproduce the results: Infor-
mation sampling based on the participation
distribution alone could account for the re-
sults. Notwithstanding, biased information
presentation (either advocacy or nonadvo-
cacy conditions) also produced differences
in the outcome. Also, the resolution was
critically dependent on the discussion be-
ing able to resolve differences in the evalua-
tion of individual pieces of evidence. In ad-
dition to Stasser’s information-based model,
a model by Larson (1997) based on infor-
mation sampling predicts that shared in-
formation gets introduced earlier and un-
shared information tends to get discussed
later. Together, these models are able to
explain a fair amount of the empirical re-
sults and processes within this area with-
out resorting to more complex interpersonal
accounts.

The SPEAK model (Stasser & Taylor,
1991) provided a more detailed account
of how speaker patterns affected discussion
processes, based on variations around dyadic
exchanges. The model includes “three ba-
sic processes: formation of speaking hierar-
chies within a group, intermittent fluctua-
tions in members’ tendencies to speak, and
competition among members for speaking
time (p. 683).” It used a sequential speak-
ing likelihood decay function to implement
the process structure. The model success-
fully reproduced four-person data with a
model fit with parameters derived from six-
person data. The model did not cover a

wider range of group sizes, and it does not
attempt to implement “individual charac-
teristics [that] mediate patterns of speak-
ing” (p. 683). The SPEAK model was sub-
sequently combined with the DISCUSS
model (Stasser & Vaughan, 1996). The re-
sults of these simulations showed the in-
teresting result that minorities who wanted
to overcome ill-informed majorities might
be most successful when they were forceful
about their viewpoint.

3. Conclusion

In looking back over this chapter, several
themes come through. One is that a large
number of central phenomena in social psy-
chology can be captured by a fairly simple
feedback or recurrent network with learn-
ing. Important findings on causal learning,
causal reasoning, individual and group im-
pression formation, and attitude change can
all be captured within the same basic ar-
chitecture. This suggests that we might be
close to being able to provide an integrated
theory or account of a wide range of social
psychological phenomena. It also suggests
that underlying the apparent high degree of
complexity of social and personality phe-
nomena may be a more fundamental sim-
plicity. Some of the complexity of social
psychological theory may be due to the cur-
rent lack of understanding of the underlying
principles. The success of a relatively sim-
ple model in providing an account for such a
wide range of phenomena suggests that once
we understand the basic underlying princi-
ples we will be able to integrate a wide range
of social psychology.

Another theme that comes through in
many of the models is the emphasis on self-
organization and coherence mechanisms,
the role of constraint satisfaction princi-
ples that seek to satisfy multiple, simulta-
neous constraints. As Read, Vanman, and
Miller (1997) indicated, this is not a new
trend, but goes back to the gestalt psy-
chological roots of much of social psychol-
ogy. Theories of cognitive consistency (e.g.,
cognitive dissonance, Festinger, 1957; bal-
ance, Heider, 1958), impression formation
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(Asch, 1946), personality and goal-directed
behavior (Lewin, 1935), and group dynam-
ics (Lewin, 1947a, 1947b), all central topics
in social psychology, were based on gestalt
principles. Gestalt psychology, with its em-
phasis on cognition as the result of interact-
ing fields of forces and holistic processing,
was essentially focused on constraint satis-
faction principles, although this term was
not used. Other authors (e.g., Rumelhart &
McClelland, 1986) have also noted the par-
allels between constraint satisfaction princi-
ples and the basic principles of gestalt psy-
chology.

Another interesting, although not sur-
prising, theme is that the type of compu-
tational model tends to be strongly related
to whether the investigator is interested in
intra-personal or inter-personal phenomena.
Connectionist models strongly tend to be
used to model intra-personal phenomena,
whereas cellular automata and multiagent
models are typically used for inter-personal
phenomena, such as social influence and de-
velopment of mating strategies.

Social and personality psychologists have
been interested in computational models
since the early days of computational mod-
eling, with work by Abelson on hot cogni-
tion (Abelson, 1963) and on ideology (Abel-
son, 1973; Abelson & Carroll, 1965) and
by Loehlin (1968) and Colby (1975, 1981)
on personality (see also Tomkins & Mes-
sick, 1963). However, it is only recently that
computational modeling has started to be-
come more widely used in the field. And
even now, computational modeling is much
rarer in social and personality psychology
than it is in cognitive psychology and cog-
nitive science. However, given the com-
plexity of social and personality dynamics
and the requirements for theories that can
adequately handle that complexity, there
should be an increasing focus on computa-
tional modeling.
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CHAPTER 19

Cognitive Social Simulation

1. Introduction

One feature of the current state of the social
and behavioral sciences is the lack of integra-
tion and communication between cognitive
and social disciplines. Each discipline con-
siders a particular aspect and ignores (more
or less) the rest. Consequently, they often
talk past each other instead of to each other.

For instance, over the years, the notions
of agent and agency have occupied a major
role in defining research in the social and
behavioral sciences. Computational models
of agents have been developed. In cognitive
science, they are often known as “cognitive
architectures,” that is, the overall, essential
structure and process of cognition in the
form of a broadly scoped, domain-generic
computational cognitive model. They are
often used for broad, cross-domain analy-
sis of cognition and behavior (Newell, 1990;
Sun, 2002). In particular, cognitive architec-
tures provide a new avenue for specifying a
range of cognitive processes together in tan-
gible ways, although traditionally, the focus
of research in cognitive science has been on

specific components of cognition.1 Compu-
tational cognitive modeling, especially with
cognitive architectures, has become an es-
sential area of research on cognition (Ander-
son & Lebiere, 1998; Sun, 2004). Such de-
velopments, however, need to be extended
to issues of multiagent interaction. By and
large, models of agents used in the social sci-
ences have been extremely simple, not even
remotely comparable to the work on cogni-
tive architectures.2

1 A cognitive architecture provides a concrete frame-
work for more detailed modeling of cognitive phe-
nomena through specifying essential structures, di-
visions of modules, relations among modules, and
a variety of other essential aspects (Sun, 2004).
As discussed in Chapter 1, they help to narrow
down possibilities, provide scaffolding structures,
and embody fundamental theoretical assumptions.
The value of cognitive architectures has been ar-
gued many times before; see, for example, Newell
(1990), Anderson and Lebiere (1998), Sun (2002,
2004), and so on. See also Chapter 6 in this volume.

2 However, there have been some promising devel-
opments in this regard. See, for example, a number
of recent articles in this area in the journal Cognitive
Systems Research or the book Cognition and Multi-
Agent Interaction (Sun, 2006a).
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Two approaches dominate the traditional
social sciences. The first approach may be
termed the “deductive” approach (Axelrod,
1997; Moss, 1999), exemplified by much
research in classical economics. It proceeds
with the construction of mathematical mod-
els of social phenomena, usually expressed
as a set of closed-form mathematical equa-
tions. Such models may be mathematically
elegant. Deduction may be used to find con-
sequences of assumptions in order to achieve
better understanding of relevant phenom-
ena. Their predictive power may also result
from the analysis of various states (equilib-
ria) through applying the equations.

The second approach may be termed the
“inductive” approach, exemplified by many
traditional approaches to sociology. With
such an approach, insights are obtained by
generating generalizations from (hopefully a
large number of ) observations. Insights are
usually qualitative and describe social phe-
nomena in terms of general categories and
characterizations of these general categories.

However, a new approach has emerged
relatively recently. It involves computa-
tional modeling and simulation of social
phenomena. It starts with a set of assump-
tions (in the forms of rules, mechanisms, or
processes). But unlike deduction, it does not
prove theorems. Instead, simulations lead
to data that can be analyzed inductively to
come up with interesting generalizations.
However, unlike typical induction in em-
pirical social sciences, simulation data come
from prespecified rules, mechanisms, and
processes, not from direct measurements of
social processes. With simulation data, both
inductive and deductive methods may be
applied: Induction can be used to find pat-
terns in data, and deduction can be used
to find consequences of assumptions (i.e.,
rules, mechanisms, and processes specified
for simulations). Thus, simulations are use-
ful as an aid to developing theories, in both
directions and in their combinations thereof
(Axelrod, 1997; Moss, 1999).

Within this third approach, a particu-
larly interesting development is the focus on
agent-based social simulations, that is, simu-

lations based on autonomous individual en-
tities. Naturally, such simulations focus on
the interaction among agents. From their in-
teractions, complex patterns may emerge.
Thus, the interactions among agents provide
explanations for corresponding social phe-
nomena (Gilbert, 1995). Agent-based social
simulations have seen tremendous growth
in the past decade. Researchers hoping to
go beyond the limitations of traditional ap-
proaches to the social sciences have increas-
ingly turned to agents for studying a wide
range of theoretical and practical issues
(Conte, Hegselmann, & Terna, 1997; Ep-
stein & Axtell, 1996; Gilbert & Conte, 1995;
Gilbert & Doran, 1994; Moss & Davidsson,
2001; Prietula, Carley, & Gasser, 1998).

Axelrod (1984) was one of the first to
use agent-based modeling and simulation in
his study of evolution of cooperation. In this
early work, computational simulations were
used to study strategic behavior in the iter-
ated prisoner’s dilemma game. Even today,
this work is still influencing research in var-
ious fields.

In the mid-1980s, a new area of research,
artificial life, emerged. The idea was to sim-
ulate life to understand basic principles of
life. This led to the application in social
simulation of many interesting ideas, such
as complexity, evolution, self-organization,
and emergence. These ideas have signifi-
cantly influenced social scientists in devel-
oping and conducting social simulations.

Recently, another topic area appeared,
dealing with the study of the formation
and the dynamics of social networks, that
is, social structures (made of individuals or
organizations) connected through social fa-
miliarities ranging from casual acquaintance
to close familial bonds. To understand the
spread of information as well as social be-
liefs, one has to consider the underlying so-
cial networks that influence those processes.

Issues addressed thus far by social simu-
lation have been diverse. They include, for
example, social beliefs, social norms, lan-
guage evolution, resource allocation, traffic
patterns, social cooperation, tribal customs,
culture formation, stock market dynamics,
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group interaction and dynamics, organiza-
tional decision making, organization design,
and countless others.

In all, agent-based social simulation is be-
coming an increasingly more important re-
search methodology in the social sciences.
It has become widely used to test theoreti-
cal models or to investigate their properties
when analytical solutions are not possible.
A simulation may even serve as a theory or
an explanation of a social phenomenon by
itself (Sun, 2005).

A particularly important advantage of so-
cial simulation is that it can provide sup-
port for “functionalist” explanations of so-
cial phenomena. For example, functionalists
in the social sciences often argued that some
specific forms of social structures were func-
tional for society. However, functionalist ex-
planations were viewed with suspicion in
the social sciences because of the difficulty in
verifying such explanations (Gilbert, 1995).
The problem with functionalism in the so-
cial sciences is that it involves explaining a
cause by its effect. Whereas it is customary
to explain an effect by its cause, it seems
post hoc to explain a cause by its effect. A
related problem is that it tends to ignore
historical processes in leading up to a spe-
cific social phenomenon, while focusing on
a specific moment in history. Social simula-
tion, however, can help to substantiate func-
tionalist explanations by remedying both of
these problems. First, social simulation fo-
cuses on processes, and thus it helps to pro-
vide some forms of historical perspectives
in explaining social phenomena. For exam-
ple, Cecconi and Parisi (1998) focused on
the evolution of survival strategies in tribal
societies. Similarly, Doran et al. (1994) pro-
vided explanations for the increasing com-
plexity of tribal societies in the Upper Pa-
leolithic period. Reynolds (1994) simulated
the Sunay ritual of the llama herders in the
Peruvian Andes and provided explanations
for the emergence of the ritual. Second, the
effect of a cause can be verified through ex-
perimentation with social simulation. Con-
sequently, functionalist explanations can be
better validated, and thus they become more
convincing with the use of social simulation.

However, most of the work in social sim-
ulation assumes rudimentary cognition on
the part of agents. There have been rela-
tively few attempts to accurately capture
human cognition (as argued in Sun, 2006a;
Thagard, 1992). Agent models have fre-
quently been custom tailored to the task at
hand, often amounting to little more than
a restricted set of highly domain-specific
rules. Although this approach may be ad-
equate for achieving the limited objectives
of some social simulations, it is overall un-
satisfactory. It not only limits the realism,
and hence applicability of social simula-
tion, but also precludes any possibility of
resolving the theoretical question of the
micro-macro link (Alexander et al., 1987;
Castelfranchi, 2001; Sawyer, 2003). At the
same time, researchers in cognitive science,
although studying individual cognition in
depth, have paid relatively little attention to
social phenomena (with some notable ex-
ceptions, of course). The separation of the
two fields can be seen (1) in the different
journals dedicated to the two fields (e.g.,
Journal of Artificial Society and Social Sim-
ulation and Computational and Mathemat-
ical Organization Theory for social simula-
tion, vs. Cognitive Science and Cognitive Sys-
tems Research for cognitive modeling); (2) in
the different conferences for these two dif-
ferent fields (e.g., the International Confer-
ence on Social Simulation vs. the International
Conference on Cognitive Modeling); (3) in the
different professional organizations (e.g., the
North American Association for Computa-
tional Social and Organizational Science and
the European Social Simulation Association
vs. the Cognitive Science Society); and (4) in
the scant overlap of authors in these two
fields. Moreover, most of the commonly
used social simulation tools (e.g., Swarm
and RePast) embody simplistic agent mod-
els, not even remotely comparable to what
has been developed within the field of cogni-
tive architectures (e.g., Anderson & Lebiere,
1998, and Sun, 2002; although there have
been simulation tools with more complex
agent models).

Nevertheless, there are reasons to believe
that investigation, modeling, and simulation
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of social phenomena need cognitive science
(Sun, 2001) because such endeavors need
a better understanding, and better mod-
els, of individual cognition, only on the ba-
sis of which it can develop better models
of aggregate processes through multiagent
interaction. Cognitive models may provide
better grounding for understanding multi-
agent interaction by incorporating realistic
constraints, capabilities, and tendencies of
individual agents in terms of their cogni-
tive processes (and maybe even in terms
of their physical embodiment) in their in-
teraction with their environments (which
include both physical and social environ-
ments). This point was argued at length in
Sun (2001). This point has also been made,
for example, in the context of cognitive real-
ism of game theory (Camerer, 1997; Kahan
& Rapaport, 1984), in the context of deeper
models for addressing human-computer in-
teraction (Gray & Altmann, 2001), or in the
context of understanding social networks
from a cognitive perspective (Krackhardt,
1987; Mason, Conrey, & Smith, in press).
Related to this, Mithen (1996), Zerubavel
(1997), Turner (2000), Rizzello and Tur-
vani (2000), Boyer and Ramble (2001),
Atran and Norenzayan (2004), Andersen,
Barker, and Chen (2006), Kim, Lodge, and
Tabor (2007), and others also explored
the cognitive basis of social, political, and
cultural processes and representations. Al-
though some cognitive details may ulti-
mately prove to be irrelevant, they cannot
be determined a priori, and thus modeling
may be useful in determining which aspects
of cognition can be safely abstracted away.

Conversely, cognitive science also needs
social simulation and the social sciences in
general. Cognitive science is very much in
need of new theoretical frameworks and
new conceptual tools, especially for analyz-
ing sociocultural aspects of cognition (e.g.,
Nisbett et al., 2001; Vygotsky, 1962) and
cognitive processes involved in multiagent
interaction (e.g., Andersen & Chen, 2002).
It needs computational models and theo-
ries from multiagent work (in artificial in-
telligence and in social simulation), and also
broader conceptual frameworks that can be

found in sociological and anthropological
work (as well as in social psychology to some
extent). In particular, cognitive modeling, as
a field, can be enriched through the incor-
poration of these disparate strands of ideas.

Although, generally speaking, computa-
tional modeling is often limited to within
a particular “level” at a time (inter-agent,
agent, intra-agent, etc.), this need not be the
case: As discussed earlier in Chapter 1, cross-
level analysis and modeling, such as com-
bining cognitive modeling and social simu-
lation, could be intellectually enlightening
and might even be essential to the progress
of this field (Sun & Naveh, 2004). These
“levels” do interact with each other (e.g.,
by constraining each other) and may not
be easily isolated and tackled alone. More-
over, their respective territories are often
intermingled, without clear-cut boundaries.
One may start with purely social descrip-
tions but then substitute cognitive princi-
ples and cognitive processing details for sim-
pler descriptions of agents (examples of such
substitution will be described later). Thus,
the differences and the separations among
“levels” should be viewed as rather fluid.

It should be noted that, within a multi-
“level” framework, Sun, Coward and Zen-
zen (2005) provided detailed arguments for
crossing and mixing levels: the social, the
psychological, and so on. Hence, the case for
the integration of social simulation with cog-
nitive modeling was presented there (which
opened the way for a more detailed dis-
cussion of integrating social simulation and
cognitive modeling in Sun, 2006a; see also
Helmhout, 2006). Sun et al. (2005) also ar-
gued for the role of computational mod-
eling and simulation in understanding the
social-cognitive interaction, especially the
role of complex computational social sim-
ulation with realistic cognitive models (i.e.,
cognitive social simulation), utilizing cog-
nitive architectures in particular. The ar-
gument based on complexity and expressive
power of computational models did the bulk
of the work in this regard (Sun et al., 2005).

In the remainder of this chapter, three
representative examples of cognitive social
simulation are presented. Then, a more
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general discussion of types, issues, and direc-
tions of cognitive social simulation follows.
Finally, a summary completes this chapter.

2. Examples of Cognitive Social
Simulation

Below, let us look into a few representative
examples of the kind of social simulation
that takes cognition of individual agents into
consideration seriously. These examples are
drawn from West and Lebiere (2001), West,
Lebiere, and Bothell (2006), Sun and Naveh
(2004), Naveh and Sun (2006), Sun and
Naveh (2007), and Clancey et al. (2006).
The reader is referred to Sun (2006a) for
further examples.

2.1. A Cognitive Simulation of Games

Game-theoretical interaction is an excel-
lent domain for researching multiagent in-
teractions. Although it is customary to use
game theory (von Neumann & Morgenstern,
1944) to calculate optimal strategies for var-
ious games, as described in West and Lebiere
(2001) and West et al. (2006), human play-
ers often do not play according to opti-
mal game theoretical strategies. According
to West and Lebiere (2001) and West et al.
(2006), human players can be understood
in terms of how they deviate from opti-
mal strategies. They explored this approach
for understanding human game-playing be-
havior and presented a different perspective
based on cognitive modeling.

They found that human players did not
use a fixed way of responding. Instead, they
attempted to adjust their responses to ex-
ploit perceived weaknesses in their oppo-
nents’ way of playing. West et al. (2006)
argued that humans had evolved to be such
players rather than the optimal players. Fur-
thermore, they argued that evolution had
evolved the human cognitive system to sup-
port a superior ability to operate as such a
player.

The use of cognitive architectures ad-
dresses the need to unify various subfields
of psychology by providing computational

accounts of the findings of specialized ar-
eas in an integrated architecture of cog-
nition (Sun, 2004; see also Chapter 6 in
this volume). Cognitive architectures spec-
ify, often in considerable computational de-
tail, the mechanisms underlying cognition
(Sun, 2004). One of them, ACT-R (Ander-
son & Lebiere, 1998), is a cognitive archi-
tecture that has accounted for hundreds of
phenomena from the cognitive psychology
and the human factors literature. In West
and Lebiere (2001) and West et al. (2006),
it was used to explain human game-playing
behavior.

Applying ACT-R to game playing, West
et al. (2006) created a cognitive model
of how people play games and then com-
pared it with the behavior of human players.
Although providing qualitative rather than
definitive answers, this approach has led to
interesting insights.

One issue is that the standard game the-
ory requires that players be able to select
moves randomly in accordance with preset
probabilities. However, research has repeat-
edly shown that people are very poor at
doing this (see, e.g., Wagenaar, 1972, for
a review), suggesting that the evolution-
ary success of humans is not based on this
ability. Instead of trying to learn advan-
tageous move probabilities, people try to
detect sequential dependencies in the oppo-
nent’s play and use this information to pre-
dict the opponent’s moves (West & Lebiere,
2001; West et al., 2006). This is consistent
with a large amount of psychological re-
search showing that when sequential depen-
dencies exist, people can detect and exploit
them (e.g., Anderson, 1960; Estes, 1972). It
also explains why people tend to do poorly
on tasks that are truly random – because they
persist in trying to predict the outcomes,
even though it leads to suboptimal results
(e.g., Gazzaniga, 1998; Ward, 1973).

West and Lebiere (2001) and West et al.
(2006) examined this process using ACT-R
designed to detect sequential dependencies
in the game of Paper, Rock, Scissors. The
inputs were the opponent’s moves at pre-
vious lags, and the outputs were the moves
the player would make on the current play.



P1: IBE

CUFX212-19 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 17:52

cognitive social simulation 535

As ACT-R gained experience in a task, the
parameter values were adjusted to reflect a
rational adaptation to the task.3

Using the ACT-R model, West et al.
(2006) found four interesting results (re-
garding the model): (1) the interaction be-
tween two agents of this type produced
chaos-like behavior, and this was the pri-
mary source of randomness; (2) the sequen-
tial dependencies that were produced by this
process were temporary and short lived; (3)
processing more lags created an advantage;
(4) treating ties as losses (i.e., punishing the
system for ties) created an advantage.

West et al. (2006) also tested human sub-
jects and found that they played similarly
to a lag two network that was punished
for ties. That is, people were able to pre-
dict their opponents’ moves by using infor-
mation from the previous two moves, and
people treated ties as losses. Although both
the ACT-R model and game theory pre-
dicted that people would play Paper, Rock,
Scissors with equal frequency, the ACT-R
model predicted that people would be able
to beat a lag one network that was punished
for ties and a lag two network that was not
punished for ties, whereas game theory pre-
dicted they would tie with these opponents.
The results showed that people were reliably
able to beat these opponents, demonstrating
that game theory could not account for all
the results.

The model described above was based di-
rectly on the ACT-R architecture and there-
fore represented a strong prediction about
the way people detected sequential depen-
dencies. The simulation results did not de-
pend on parameter tweaking. All parameters
relevant for this model were set at the de-
fault values found to work in other ACT-R
models. Simulations and testing with human
subjects confirmed that the model could ac-
count for the human performance in Paper,

3 Using this approach, characteristics of human
cognition previously thought of as shortcomings
could actually be viewed as optimal adaptations
to the environment. For example, forgetting pro-
vides a graceful way of addressing the fact that
the relevance of information decreases with time
(Andersion & Lebiere, 1998).

Rock, Scissors (West & Lebiere, 2001; West
et al., 2006). This was significant because
the aspects of the architecture that were
used were developed to model the human
declarative memory system, not the specific
ability to play games. It suggests that the
evolutionary processes that shaped declara-
tive memory may have been influenced by
competition (in the game theory sense), for
example, for resources and mating privi-
leges. It also indicates design efficiency, as
it suggests that humans use the same system
for competition as they do for learning facts
about the world.

West et al. (2006) argued, based on the
evolutionary success of humans, that the
way with which people played games likely
constituted a good general-purpose design.
To test this, the ACT-R model was entered
in the 1999 International RoShamBo Pro-
gramming Competition. Overall, the model
placed thirteenth out of fifty-five entries in
the round-robin competition (with scores
calculated based on margin of victory across
games, e.g., plus five for winning by five and
minus five for losing by five). In the open
event, where the ACT-R model faced all the
models, ACT-R placed fifteenth in terms of
margin of victory and ninth in terms of wins
and losses. That is, the ACT-R model, with
no modifications, was able to beat most of
the other models. This result demonstrated
the power of cognitively based social simu-
lation (Sun, 2006a).

2.2. A Cognitive Simulation
of Organizations

As described in Sun and Naveh (2004), a
simulation of simple organizations was con-
ducted based on the CLARION cognitive
architecture (see Chapter 6 in this volume),
which helped to shed light on the role of
cognition in organizations and the interac-
tion between cognitive factors and organi-
zational structures.

A typical task faced by organizations is
classification decision making. In a classifi-
cation task, agents gather information about
problems, classify them, and then make fur-
ther decisions based on the classification. In
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Table 19.1: Human and simulation data for the organizational
task from Carley et al. (1998)

Agent Team (B) Team (D) Hierarchy (B) Hierarchy (D)

Human 50.0 56.7 46.7 55.0
Radar-Soar 73.3 63.3 63.3 53.3
CORP-P-ELM 78.3 71.7 40.0 36.7
CORP-ELM 88.3 85.0 45.0 50.0
CORP-SOP 81.7 85.0 81.7 85.0

D indicates distributed information access; B indicates blocked information
access. All numbers are percent correct.

this case, the task is to determine whether a
blip on a screen is a hostile aircraft, a flock
of geese, or a civilian aircraft. It has been
used extensively before in studying organi-
zational design (e.g., Carley, Prietula, & Lin,
1998).

In each case, there is a single object in
the air space. The object has nine different
attributes, each of which can take on one
of three possible values (e.g., its speed can
be low, medium, or high). An organization
must determine the status of an observed
object: whether it is friendly, neutral, or hos-
tile. There are a total of 19,683 possible
objects, and 100 problems are chosen ran-
domly (without replacement) from this set.

No one single agent has access to all the
information necessary to make a choice. De-
cisions are made by integrating separate de-
cisions made by different agents, each of
which is based on a different subset of in-
formation.

In terms of organizational structures,
there are two major types of interest: (1)
teams, in which decision makers act au-
tonomously, individual decisions are treated
as votes, and the organization decision is the
majority decision; and (2) hierarchies, which
are characterized by agents organized in a
chain of command, such that information is
passed from subordinates to superiors, and
the decision of a superior is based solely on
the recommendations of his or her subordi-
nates. In this task, only a two-level hierarchy
with nine subordinates and one supervisor is
considered.

In addition, organizations are distin-
guished by the structure of information ac-
cessible to each agent. There are two types
of information access: (1) distributed access,
in which each agent sees a different subset of
three attributes (no two agents see the same
subset of three attributes); and (2) blocked
access, in which three agents see exactly the
same subset of attributes. In both cases, each
attribute is accessible to three agents.

The human experiments by Carley et al.
(1998) were done in a 2× 2 fashion (or-
ganization × information access). In addi-
tion, the human data from the experiments
were compared with the results of the four
agent-based models: CORP-SOP, CORP-
ELM, CORP-P-ELM, and Radar-Soar.4 The
human data and the simulation results from
this study (Carley et al. 1998) are shown in
Table 19.1.

The data showed that humans generally
performed better in team situations, espe-
cially when distributed information access
was in place. Moreover, distributed informa-
tion access was generally better than blocked

4 Among them, CORP-ELM produced the most
probable classification (based on an agent’s own ex-
perience), CORP-P-ELM stochastically produced
a classification in accordance with the estimate of
the probability of each classification (based on the
agent’s own experience), CORP-SOP followed the
organizationally prescribed standard operating pro-
cedure (which involved summing up the values of
the attributes available to an agent) and thus was not
adaptive, and Radar-Soar was a somewhat cognitive
model built in Soar, which was based on explicit,
elaborate search in problem spaces. See Carley et al.
(1998) for details of the models.
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Table 19.2: Simulation data for CLARION running for 3,000 cycles

Agent Team (B) Team (D) Hierarchy (B) Hierarchy (D)

Human 50.0 56.7 46.7 55.0
CLARION 53.2 59.3 45.0 49.4

The human data from Carley et al. (1998) are reproduced here for ease of
comparison. Performance for CLARION is computed as percent correct over
the last 1,000 cycles.

information access. The worst performance
occurred when hierarchical organizational
structure and blocked information access
were used in conjunction.

From the point of view of matching hu-
man performance, the agent models used
were simplistic. The “intelligence” level in
these models was rather low (including, to
a large extent, the Soar model, which essen-
tially encoded a set of simple rules). More-
over, learning in these simulations was rudi-
mentary: There was no complex learning
process as one might observe in humans.
With these shortcomings in mind, it seemed
worthwhile to undertake a simulation that
involved more comprehensive agent models
that more accurately captured human per-
formance. Moreover, with the use of more
cognitively realistic agent models, one might
investigate individually the importance of
different cognitive capacities and process de-
tails in affecting the overall organizational
performance. With cognitive architectures,
one could easily vary parameters that cor-
responded to different cognitive capacities
and test the resulting performance.

The CLARION cognitive architecture is
intended for capturing all the essential cog-
nitive processes (as broadly defined) within
an individual cognitive agent (Sun, 2002,
2003; Sun et al., 2005). CLARION consists
of a number of distinct subsystems, with a
dual representational structure in each sub-
system (implicit vs. explicit representati-
ons). Its subsystems include the action-cen-
tered subsystem, the non-action-centered
subsystem, the motivational subsystem, and
the meta-cognitive subsystem. The role of
the action-centered subsystem is to control

actions, regardless of whether the actions
are for external physical movements or in-
ternal mental operations. The role of the
non-action-centered subsystem is to main-
tain general knowledge, either implicit or
explicit. The role of the motivational subsys-
tem is to provide underlying motivations for
perception, action, and cognition, in terms
of providing impetus and feedback (e.g., in-
dicating whether outcomes are satisfactory
or not). The role of the meta-cognitive sub-
system is to monitor, direct, and modify the
operations of the action-centered subsystem
dynamically as well as the operations of all
the other subsystems. Each of these inter-
acting subsystems consists of two levels of
representation (i.e., a dual representational
structure): The top level encodes explicit
knowledge, and the bottom level encodes
implicit knowledge (this implicit-explicit
distinction has been amply argued for
before; see Reber, 1989; Seger, 1994; Sun,
2002). The explicit knowledge at the top
level is implemented with symbolic repre-
sentations, whereas the implicit knowledge
at the bottom level is implemented with
distributed connectionist representations.
Hence, it is a hybrid symbolic-connectionist
architecture (Sun, 2002, 2003). A variety
of parameters exist that control, for exam-
ple, learning rate, generalization threshold,
probability of using implicit versus explicit
processing (i.e., using the bottom level vs.
the top level), and so on (see Sun 2002,
2003, for details).

The results of the CLARION simula-
tions, with 3,000 training cycles for each
group, are shown in Table 19.2. As can
be seen, the results closely accord with the
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patterns of the human data, with teams
outperforming hierarchal structures and dis-
tributed access being superior to blocked ac-
cess. Also, as in humans, performance is not
grossly skewed toward one condition or the
other, unlike some of the simulation results
from Carley et al. (1998) shown earlier. The
match with the human data is far better than
the previous simulations, which shows, at
least in part, the advantage of cognitively
based social simulation (Sun, 2006a).

Next, there is the question of what hap-
pens when cognitive parameters are var-
ied. Addressing this question would allow
us to see the variability of results and thus
avoid overgeneralization. Because CLAR-
ION captures a wide range of cognitive pro-
cesses, its parameters are generic (rather
than task specific). Thus, one has the oppor-
tunity of studying social and organizational
issues in the context of a general theory of
cognition.

An ANOVA (analysis of variance) on the
results of the experiments confirmed the sig-
nificance of the effects of organization and
information access. Moreover, the interac-
tion of these two factors with length of train-
ing was also significant. These interactions
reflected the following trends: the superi-
ority of team and distributed information
access at the start of the learning process,
and either the disappearance or reversal of
these trends toward the end. The finding
from ANOVA showed that these trends
persisted robustly across a wide variety of
settings of cognitive parameters and did not
critically depend on any one setting of these
parameters.

The effect of probability of using implicit
versus explicit processing was likewise sig-
nificant. More interestingly, however, its in-
teraction with length of training was signif-
icant as well. Explicit rule learning was far
more useful at the early stages of learning,
when increased reliance on them tended to
boost performance, than toward the end of
the learning process. This is because explicit
rules are crisp guidelines that are based on
past success, and as such, they provide a
useful anchor at the uncertain early stages
of learning. However, by the end of the

learning process, they become no more re-
liable than highly trained networks. This
corresponds to findings in human cogni-
tion, where there are indications that rule-
based learning is more widely used in the
early stages of learning, but is later increas-
ingly supplanted by similarity-based pro-
cesses and skilled performance. Such trends
may partially explain why hierarchies did
not perform well initially: Because a hierar-
chy’s supervisor was burdened with a higher
input dimensionality, it took a longer time
to encode rules (which were nevertheless es-
sential at the early stages of learning).

Predictably, the effect of learning rate
was significant according to ANOVA. Those
groups with a higher learning rate outper-
formed the groups with a lower learning
rate. However, there was no significant in-
teraction between learning rate and organi-
zation or information access. This suggests
that quicker learners did not differentially
benefit, say, a hierarchy versus a team. By
the same token, the poorer performance of
slower learners could not be mitigated by
recourse to a particular combination of or-
ganization and information access.

ANOVA confirmed the significance of
the effect of generalization threshold. Gen-
eralization threshold determines how read-
ily an agent generalizes a successful rule. It
was better to have a higher rule generaliza-
tion threshold than a lower one (up to a
point). That is, if one restricts the gener-
alization of rules to those rules that have
proven relatively successful (by selecting a
fairly high generalization threshold), the re-
sult is a higher-quality rule set, which leads
to better performance in the long run.

This simulation showed that some cog-
nitive parameters (e.g., learning rate) had a
monolithic, across-the-board effect under all
conditions, whereas in other cases, complex
interactions of factors were at work. See Sun
and Naveh (2004) for the full details of the
analysis. This illustrates the importance of
limiting one’s social simulation conclusions
to the specific cognitive context in which
human data were obtained (in contrast to
the practice of some existing social simula-
tions).
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In sum, by using CLARION, Sun and
Naveh (2004) have been able to more ac-
curately capture organizational performance
data and, moreover, to formulate deeper ex-
planations for the results observed (see Sun
and Naveh, 2004, for details of this aspect).
In CLARION, one can vary parameters and
options that correspond to cognitive pro-
cesses and test their effects on collective
performance. In this way, CLARION may
be used to predict human performance in
social/organizational settings and, further-
more, to help to improve collective per-
formance by prescribing optimal or near-
optimal cognitive abilities for individuals
for specific collective tasks and/or organiza-
tional structures (Sun & Naveh, 2004).

2.3. A Cognitive Simulation
of Group Interaction

As described by Clancey et al. (2006), group
activities may be understood and captured
through cognitive modeling of individuals
involved. To integrate cognitive modeling
with social studies (which stress how rela-
tionships and informal practices drive be-
havior), Clancey et al. believe that it re-
quires a shift from modeling goals and tasks
to modeling behavioral patterns as agents are
engaged in purposeful activities. According
to Clancey et al. instead of exclusively de-
ducing actions from goals, behaviors are pri-
marily driven by broader patterns of chrono-
logical and spatially located activities (see
also Sun, 2002). In a way, conceptualiza-
tion of activities drives behavior, which in-
cludes how knowledge is called into play and
applied. How problems are discovered and
framed, what methods are called into play,
and who cares or has the authority to act
are constrained by norms, which are con-
ceived and enacted by individuals. Norms
are reinforced through their reproduction,
but also adapted and even purposefully
violated.

The goal of Clancey et al. (2006) was
to understand this social notion of activity
(Lave, 1988; Suchman, 1987) and to ground
it in a cognitive architecture. To illustrate
these ideas, they conducted a simulation of

the Flashline Mars Arctic Research Station,
in which a crew of six people lived and
worked. Here the focus is on one part – the
simulation of a planning meeting. How peo-
ple behave during the meeting (e.g., stand-
ing at the table) exemplifies the nature of
norms and is modeled at the individual agent
level. The simulation showed how phys-
iological constraints (e.g., hunger and fa-
tigue), facilities (e.g., the habitat’s layout),
and group decision making interacted. This
approach to the simulation focuses on mod-
eling the context in which behavior occurs
and how it unfolds over time through the in-
teraction of people, places, and tools. Such a
simulation model of practice is a useful com-
plement to task analysis and (knowledge-
based) modeling of reasoning.5

Often, a cognitive model is of an indi-
vidual’s knowledge and reasoning, organized
around problem-solving goals. In contrast,
an activity model is a kind of cognitive model
organized around activities (i.e., what peo-
ple do, when, and where), with conditional
actions called workframes (Clancey et al.,
2006), which specify subactivities or primi-
tive actions (e.g., moving and communicat-
ing). An activity model uses familiar cogni-
tive constructs, but relates and uses them in
a different way:

• Activities are conceptualizations of what
an agent is doing (e.g., participating in a
planning meeting).

• Activities are activated hierarchically in
parallel (e.g., while participating in a
planning meeting, an individual is also liv-
ing in the mars habitat, as well as being a
computer scientist).

• Workframes for each activity remain po-
tentially active, such that interruptions
may occur at higher levels to redirect at-
tention (as in a subsumption architecture;
Brooks, 1991).

• Perception is modeled by “detectables”
associated with workframe actions. Thus,
what an agent notices in the environment

5 It may also have potential practical applications for
work system design, operations management, and
training (Clancey et al., 2006).



P1: IBE

CUFX212-19 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 17:52

540 sun

and how it is interpreted may depend on
the agent’s current activity.

• The conditional part of a workframe
matches the agent’s beliefs. A belief is
not necessarily a conscious proposition.
Agents may infer new beliefs through for-
ward reasoning (called “thoughtframes”).
Agents may also receive new beliefs
through communication with another
agent or by reading them from objects
(e.g., documents, displays, etc.).

Thus, the simulation of the planning meet-
ing is a type of cognitive model, although
the model contains no examples of goal-
directed reasoning. Developing the model
in this way was an experiment to determine
to what extent purposeful, interactive be-
havior of a group could be simulated based
on conditional activity patterns.

Clancey et al. (2006) found that focus-
ing on the agents’ activities and interactions
with objects provided significant challenges.
They focused on postures (to understand
what constrained them and what they con-
veyed), coordination of multiagent activ-
ity (e.g., how individual agents transitioned
into a group activity), and biological motives
(e.g., hunger and fatigue). With this per-
spective, they uncovered interesting issues
that shed a different light on what cogni-
tion accomplished and how perception and
action were related through conceptualiza-
tion of activity, without modeling discourse,
planning, and goal-directed inference.

The topics of a planning meeting, such
as discussing the weather and reviewing the
habitat’s power or water systems, were mod-
eled as a sequence of events, with fixed
temporal durations. Even within such a re-
stricted framework, individual agents could
opportunistically change the topic (a subac-
tivity) of the meeting or carry out a given
subactivity in a way that changed what
other agents were doing. For example, if
there was a fire alarm, the meeting would
be interrupted, and the activity of dealing
with the fire would begin. This flexibility
resulted from the combination of detecta-
bles, thoughtframes, communications, in-
heritance of activities through group mem-

bership, and the mechanism for interrupting
and resuming activities (i.e., the subsump-
tion architecture).

Social analyses have suggested (e.g.,
Wenger, 1998) that activity conceptualiza-
tions involve dynamic blending of identities.
For example, crew members are always im-
provising their roles, as seen through their
prior conceptualizations (e.g., being a scien-
tist on an expedition, being a NASA repre-
sentative, and so on). In some ways, in the
model, the interleaving of actions in differ-
ent parallel activity conceptualizations cap-
tured this blending.

In the model, Clancey et al. (2006) in-
cluded biological drivers of behavior, such
as fatigue, hunger, and the need to use the
bathroom. The activity model revealed that
how people accomplished tasks within an
activity was affected by biological concerns
(e.g., interrupting work to put on a sweater).
Biological needs were modeled in a sim-
ple way. Each factor was represented by a
single parameter (physical energy, hunger,
urine in the bladder) that accumulated over
time and was reset by a compensating action
(rest, eating, elimination). Relatedly, activ-
ities such as eating were interleaved with
group activities (such as the planning meet-
ing), and how they were carried out re-
flected the group’s norms.

It was found that behavior might be de-
termined by many physiological, personal,
social, and environmental functions at the
same time, and these did not need to be
articulated by the person (Sun, 2006b). Al-
though a goal-based analysis tended to as-
cribe a single purpose to an action, a broad
analysis of a day-in-the-life of the crew
showed that all human activity was purpose-
ful, but not every activity accomplished a
task (i.e., the work of the crew), nor could
it be easily assigned to a single goal (i.e., a
conscious proposition). This followed espe-
cially from the fact that multiple activities
on different levels were affecting behavior
by inhibiting, enabling, or blending actions.

Obviously, when the crew discussed
what to do on a particular day, they were
clearly engaged in goal articulation and plan-
ning. However, what was revealing was how
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much else was occurring that was modu-
lated by perception of the environment and
each other, physiological needs, and rela-
tionships, and could be modeled in the sim-
ulation without reasoning about goals and
plans of action. Conventional goal/task anal-
ysis is a descriptive abstraction of human be-
havior imposed by an observer. Goal/task
analysis has implied that every action has a
direct goal as its cause. In contrast, the sim-
ulation represented a nesting of activities,
each of which had many implicit goal struc-
tures, so any behavior might make sense
from multiple perspectives. Clancey et al.
(2006) concluded that it was highly prob-
lematic (if not theoretically impossible) to
explain by goals the actions that had not
been deliberately planned. Instead, in the
activity model, the context in which the ac-
tion occurred was explored, and an attempt
was made to descriptively capture all move-
ments, sequences, and communications (cf.
Sun, 2002).

In short, by modeling how individual
agents carried out a group activity as
conditional actions organized into activity
conceptualizations, Clancey et al. (2006)
explored how collective (social) behavior
related to individual cognition (in a broad
sense, involving perception, motives, and ac-
tions). The simulation of a planning meet-
ing, with realistic timing, involved integrat-
ing diverse information (topography, agent
beliefs, posture, meeting structure, etc.).
Recognizing in this way how norms were
manifested, violated, adapted, and so on, in
a cognitively based way, may lead to better
and broader understanding of group interac-
tions.

3. Types, Issues, and Directions
of Cognitive Social Simulation

3.1. Dimensions of Cognitive
Social Simulation

Given the preceding examples of different
types of cognitive social simulation, let us
look into some possible dimensions for cat-
egorizing cognitive social simulation. We
have discussed embedding cognitive agents

in social simulation, and at the heart of this
approach lies the conceptions of how agents
should be modeled in simulations. There-
fore, we need to compare different ways of
representing agents in social simulation.

The first approach, the equation-based
approach, involves abstracting the agents
away altogether. Agents in such simulations
are not explicitly represented as part of the
model, and their role is only indirectly cap-
tured by equations. A second approach in-
volves representing agents as autonomous
computational entities. Such an approach
may lack the elegance of an equation-based
approach, but its greater accessibility allows
it to be evaluated by a wider range of re-
searchers. Moreover, using such agents en-
ables, in many cases, a more detailed repre-
sentation of target phenomena.

However, simulations vary widely in the
level of detail of their agents, ranging from
very simple models, such as those used
in some early simulations of the prisoner’s
dilemma (Axelrod, 1984) to more detailed
cognitive models, such as ACT-R (Ander-
son & Lebiere, 1998) or CLARION (Sun,
2002).

Agents in simulations can be further dis-
tinguished based on their computational
complexity (as expressed by computer sci-
entists by using “Big-O” and other simi-
lar measures). Such measures have impor-
tant implications with respect to a model’s
scalability, because they determine whether
its running time and memory requirements
vary linearly, polynomially, or exponentially
with the size of its input.

Simulations also differ in the degree of
rationality imputed to their agents. Some
simulations (for instance, in traditional eco-
nomics) assume perfectly rational agents,
whereas others consist of boundedly ratio-
nal agents that aim merely for satisficing so-
lutions, rather than optimal ones.

More importantly, simulations differ in
terms of their cognitive realism (and amount
of cognitive details). Social simulation mod-
els can be completely noncognitive by us-
ing, for example, a finite-state automaton
for modeling an individual agent (Axelrod,
1984). Social simulation models can also
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be completely “cognitive” by using well-
developed cognitive architectures, such as
CLARION (Schreiber, 2004; Sun, 2006b;
Sun & Naveh, 2004, 2007). In between,
there can be models that include more cog-
nitive details than a finite-state machine but
fewer details than a typical cognitive archi-
tecture (e.g., Burns & Roszkowska, 2006;
Carley & Newell, 1994; Clancey et al., 2006;
Goldspink, 2000).

The distinctions above lead us to a set
of dimensions for classifying simulations ac-
cording to their representation of agents.
These dimensions include, first, whether or
not a model is agent based; second, the
granularity, or detailedness, of the model;
third, the model’s computational complex-
ity; fourth, whether rationality is bounded
or unbounded in the model; and fifth, the
degree of cognitive realism in the model
(including its emotional, motivational, and
meta-cognitive aspects). In actuality, these
dimensions may be correlated to some ex-
tent, but they should be separately eval-
uated nevertheless, for us to gain a bet-
ter understanding of the relative position
of a model with regard to other exist-
ing or potential models. In particular, the
final dimension above is seldom used in
the evaluation of simulations, but it is im-
portant, for reasons mentioned earlier (see
also Naveh & Sun, 2006; Sun & Naveh,
2004).

By referring to this classificatory system,
one can arrive at sets of limitations com-
mon to certain classes of simulations. For in-
stance, using the dimensions discussed, one
can categorize the afore-described CLAR-
ION simulation of organizations (Sun &
Naveh, 2004) as an agent-based simulation,
reasonably detailed, computationally com-
plex, boundedly rational, and cognitively
realistic. This simulation therefore inher-
its the limitations associated with each of
these five characteristics. Thus, as a high-
granularity model, CLARION can make it
hard to disentangle the respective contri-
butions of different factors to the results
of simulations. Likewise, its relatively high
computational complexity can raise issues
of scalability. Bounded rationality may hin-

der the ability to generalize from the re-
sults of simulations (Ahlert, 2003). Finally,
the choice of a cognitively realistic agent
model may itself rest on particular ontolog-
ical conceptions of the target phenomenon,
and thus the CLARION cognitive architec-
ture may not be appropriate for all simula-
tions. For another instance, the ACT-R sim-
ulation described earlier (West & Lebiere,
2001; West et al., 2006) is also agent
based. However, it is slightly less detailed,
boundedly rational, and somewhat cogni-
tively realistic (although it does not cover
some cognitive factors; see Sun, 2006b). Its
computational complexity is also somewhat
high.

Some of the other, additional dimensions
that are also relevant here include: level of
noncognitive details (as opposed to level of
cognitive details), type of interactivity, num-
ber of agents involved in a simulation, and
so on. Let us look into these additional di-
mensions.

Evidently, the dimension of level of de-
tails (mentioned earlier) may be subdivided
into two subdimensions: level of cognitive
details and level of noncognitive details. The
dimension of cognitive realism mentioned
before essentially determines level of cogni-
tive details: High levels of cognitive realism
necessarily entail high levels of cognitive de-
tails (including emotional, motivational, and
metacognitive details; Sun, 2006b). How-
ever, level of noncognitive details can be
varied more independently. In terms of level
of noncognitive details, one may include in
a model only highly abstract social scenar-
ios, for example, as described by game the-
ory (e.g., West et al., 2006), or one may
include a lot more details of the scenarios,
as captured in ethnographical studies (e.g.,
Clancey et al., 2006).

In terms of interactivity, there can be the
following different types (among others): no
interactions; indirect interactions, such as
in simple game theoretical situations (e.g.,
West & Lebiere, 2001, West et al., 2006);
restricted interactions, such as in some or-
ganizational simulations (e.g., Carley et al.,
1998, Sun & Naveh, 2004); and direct in-
teractions, such as in some very detailed
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ethnographical simulations (e.g., Clancey
et al., 2006).

Number of agents involved in a simula-
tion is also a relevant dimension. The more
agents there are in a simulation, the more
difficult it is to conduct the simulation. This
factor affects choices in other dimensions:
For example, when a large number of agents
are required in a simulation, the level of cog-
nitive and noncognitive details may have to
be low somehow.

3.2. Issues in Cognitive Social Simulation

Next, let us examine a few important is-
sues in cognitive social simulation. First,
whether or not to use detailed cognitive
models in social simulation is a decision
that should be made on a case-by-case ba-
sis. There are many reasons for using or
not using cognitive models in social simu-
lation. The reasons for using detailed cogni-
tive models include: (1) the fact that cogni-
tive realism in social simulation may lead to
models that more accurately capture human
data; (2) the fact that with cognitive real-
ism, one will be able to formulate deeper
explanations for results observed by bas-
ing explanations on cognitive factors rather
than somewhat arbitrary assumptions; and
(3) the fact that with detailed cognitive
models, one can vary parameters that cor-
respond to cognitive processes and test their
effects on performance, and in this way, sim-
ulations may be used to predict performance
based on cognitive factors or to improve
performance by prescribing optimal (or
near-optimal) cognitive abilities for specific
tasks.

On the other hand, the reasons for not
using detailed cognitive models in social sim-
ulation include: (1) the fact that it is some-
times possible to describe causal relation-
ships at higher levels without referring to
relationships at lower levels (Goldstone &
Janssen, 2005); (2) the issue of complex-
ity, which can make it difficult to interpret
results of complex cognitively based social
simulations in terms of their precise con-
tributing factors; and (3) the fact that com-
plexity also leads to longer running times

and hence raises issues of scalability (as dis-
cussed earlier).

Another issue facing cognitive social sim-
ulation is the validation of simulation re-
sults, including the validation of cognitive
models as part of social simulation mod-
els. It is well known that validation of com-
plex simulation models is extremely diffi-
cult (Axtell, Axelrod, & Cohen, 1996; Moss,
2006; Pew & Mavor, 1998; Sun, 2005). Full
validation of models, especially when de-
tailed cognitive models (e.g., cognitive ar-
chitectures) are used, is clearly not possible
currently (due to, among other things, com-
plexity). However, in this regard, adopting
existing cognitive models as part of a cog-
nitive social simulation may be beneficial.
If one adopts a well-established cognitive
model (a cognitive architecture in particu-
lar), the prior validation of that cognitive
model, to whatever extent it may exist, may
be leveraged in validating the overall simula-
tion results. Therefore, there is a significant
advantage in adopting an existing cognitive
model, especially an existing cognitive ar-
chitecture (Anderson & Lebiere, 1998; Sun,
2002). However, even when existing cogni-
tive architectures are adopted, validation of
cognitive social simulation models is still a
difficult task, due to complexity and other
issues.

Yet another issue facing cognitive so-
cial simulation is the relationship between
simulation and theory: Can a simulation
constitute a theory of cognitive-social pro-
cesses? Or does it merely represent some ex-
perimentation in data generation (see Sun,
2005; van Fraasen, 2002)? One viewpoint
is that computational modeling and simu-
lation, including those based on cognitive
architectures, should not be taken as the-
ories. According to this view, a simulation
is a generator of data and phenomena: Al-
though simulation is important for build-
ing cognitive-social theories (e.g., through
testing theories), it is not a theory by it-
self (cf. Axtell et al., 1996; Gilbert, 1995).
However, there is a rather different posi-
tion based roughly on the idea that a model
may be a theory (Newell, 1990), which may
serve well as a meta-theoretical foundation
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for computational cognitive social simula-
tion (cf. van Fraasen, 2002). According to
this view, a computational simulation (and
the model thereof ) is a formal description of
a relevant phenomenon and may thus be a
theory of the phenomenon. The language of
a model is, by itself, a distinct symbol system
for formulating a theory (Newell, 1990). See
Chapter 1 in this volume for a further dis-
cussion of this issue (see also Sun, 2005).

3.3. Directions of Cognitive Social
Simulation

There are a number of interesting research
directions involving combining cognitive
modeling and social simulation that are cur-
rently being actively pursued. It is possible
that these research directions may lead to
some significant advances in understanding
social and cognitive processes and their in-
teractions.

Some work has been done in extend-
ing existing formal frameworks of agent in-
teraction in order to take into considera-
tion cognitive processes more realistically.
For instance, there have been various mod-
ifications of, and extensions to, game the-
ory in the direction of enhanced cognitive
realism so as to better address psycholog-
ical and/or sociological issues. West and
Lebiere (2001) and West et al. (2006) mod-
eled game-theoretical situations using a cog-
nitive architecture to supplement existing
formal descriptions. Burns and Roszkowska
(2006) extended standard game-theoretical
constructs significantly to include various so-
cial and cognitive factors in the description
of social interactions.

A variety of modeling work has been done
on group and/or organizational dynamics on
the basis of cognitive models, which may
be useful for understanding or even design-
ing organizational structures for improving
organizational performance in various situa-
tions. Carley and associates have worked ex-
tensively on this topic (see, e.g., Carley et al.,
1998). They occasionally applied rudimen-
tary cognitive models (such as simple mod-
els based on the Soar architecture) to orga-
nizational modeling. Sun and Naveh (2004)

applied a more sophisticated cognitive archi-
tecture to the simulation of organizational
decision making, which led to the better un-
derstanding of the significance of cognitive
factors in organizational decision making (as
described before). Clancey et al. (2006),
in contrast, conducted ethnographical stud-
ies of a crew on a simulated space mis-
sion and produced interesting simulations
of crew interaction (as described earlier in
detail).

There is work ongoing in robotics that
involves, in a sense, both social simulation
and cognitive modeling. For example, the
work by Mataric and associates (see Mataric,
2001; Shell & Mataric, 2006) is representa-
tive of this line of work. In their work, vari-
ous cognitive constructs have been deployed
and explored in an effort to generate use-
ful social behavior among a group of robots.
Such work, beside constituting interesting
cognitive social simulation, is also relevant
to building useful application systems.

There have also been evolutionary so-
cial simulation models on top of cognitive
modeling. Sun and Naveh (2007) described
an evolutionary simulation of social sur-
vival strategies on the basis of the earlier
work by Cecconi and Parisi (1998). Sun
and Naveh’s (2007) work used the CLAR-
ION cognitive architecture for modeling in-
dividual agents and an genetic algorithm for
modeling evolution. Social survival strate-
gies evolved through evolutionary changes
of individual cognition. Thus, in the work,
social phenomena were explained by cogni-
tive factors through an evolutionary process.
Kluver et al. (2003) also addressed issues rel-
evant to the evolution of cognitive processes
in social simulation (see also Kenrick, Li, &
Butner, 2003).

Finally, there is also ongoing work on
modeling emotion, motivation, and other
socially relevant aspects of cognition (broad-
ly defined), which may serve as founda-
tions for combining social simulation and
cognitive modeling. For example, Gratch,
Mao, and Marsella (2006) addressed specif-
ically the modeling of emotions in compu-
tational terms and used the resulting model
in realistic simulations of social interactions



P1: IBE

CUFX212-19 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 17:52

cognitive social simulation 545

(see also Thagard and Kroon, in press). In
contrast, the CLARION cognitive architec-
ture (see, e.g., Sun, 2003) included mo-
tivational processes as an integral part of
the cognitive architecture. It described, in
computational terms, various motivational
forces and their dynamic interactions in de-
termining behavior.

In all, many directions of research are be-
ing pursued in cognitive social simulation.
They may eventually lead to better, more
cognitively and socially realistic simulations
that address fundamental theoretical issues
and practical problems facing social scien-
tists. They may have significant theoretical
and practical implications in the future.

4. Conclusion

This chapter surveys the field of cognitive
social simulation, which is at the intersec-
tion of cognitive modeling and social simu-
lation. By combining cognitive models and
social simulation models, cognitive social
simulation is poised to address issues of the
interaction of cognition and sociality, in ad-
dition to advancing the state of the art in un-
derstanding cognitive and social processes.
Cognitive social simulation may even find
some practical applications (as in, e.g., Best
& Lebiere, 2006).

Overall, the field is at an early stage
of development, given the relatively recent
emergence of the two fields on which this
field is based: social simulation and cogni-
tive modeling (including cognitive architec-
tures). There are many research issues to ex-
plore and intellectual challenges to address.
Given the importance of its topic and the
novelty of its methodology, it is reasonable
to expect that this field will eventually come
to fruition in helping to better understand
both cognition and sociality, as well as their
interaction (Sun, 2006a).
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CHAPTER 20

Models of Scientific Explanation

1. Introduction

Explanation of why things happen is one
of humans’ most important cognitive oper-
ations. In everyday life, people are contin-
ually generating explanations of why other
people behave the way they do, why they
get sick, why computers or cars are not
working properly, and of many other puz-
zling occurrences. More systematically, sci-
entists develop theories to provide general
explanations of physical phenomena, such
as why objects fall to earth; chemical phe-
nomena, such as why elements combine;
biological phenomena, such as why species
evolve; medical phenomena, such as why or-
ganisms develop diseases; and psychological
phenomena, such as why people sometimes
make mental errors.

This chapter reviews computational
models of the cognitive processes that un-
derlie these kinds of explanations of why
events happen. It is not concerned with an-
other sense of explanation that just means
clarification, as when someone explains the
U.S. constitution. The focus will be on scien-
tific explanations, but more mundane exam-

ples will occasionally be used on the grounds
that the cognitive processes for explaining
why events happen are much the same in
everyday life and in science, although scien-
tific explanations tend to be more systematic
and rigorous than everyday ones. In addi-
tion to providing a concise review of pre-
vious computational models of explanation,
this chapter describes a new neural network
model that shows how explanations can be
performed by multimodal distributed repre-
sentations.

Before proceeding with accounts of par-
ticular computational models of explana-
tion, let us characterize more generally the
three major processes involved in expla-
nation and the four major theoretical ap-
proaches that have been taken in com-
putational models of it. The three major
processes are: providing an explanation from
available information, generating new hy-
potheses that provide explanations, and
evaluating competing explanations. The
four major theoretical approaches are: de-
ductive, using logic or rule-based sys-
tems; schematic, using explanation patterns
or analogies; probabilistic, using Bayesian
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networks; and neural, using networks of ar-
tificial neurons. For each of these theoretical
approaches, it is possible to characterize the
different ways in which the provision, gen-
eration, and evaluation of explanations are
understood computationally.

The processes of providing, generating,
and evaluating explanations can be illus-
trated with a simple medical example. Sup-
pose you arrive at your doctor’s office with
a high fever, headache, extreme fatigue, a
bad cough, and major muscle aches. Your
doctor will probably tell you that you have
been infected by the influenza virus, with an
explanation like:

People infected by the flu virus often have
the symptoms you describe.

You have been exposed to and infected
by the flu virus.

So, you have these symptoms.

If influenza is widespread in your commu-
nity and your doctor has been seeing many
patients with similar symptoms, it will not
require much reasoning to provide this ex-
planation by stating that the flu virus is the
likely cause of your symptoms.

Sometimes, however, a larger inferential
leap is required to provide an explanation.
If your symptoms also include a stiff neck
and confusion, your doctor may make the
less common and more serious diagnosis of
meningitis. This diagnosis requires generat-
ing the hypothesis that you have been ex-
posed to bacteria or viruses that have in-
fected the lining surrounding the brain. In
this case, the doctor is not simply apply-
ing knowledge already available to provide
an explanation, but generating a hypothe-
sis about you that makes it possible to pro-
vide an explanation. This hypothesis presup-
poses a history of medical research that led
to the identification of meningitis as a dis-
ease caused by particular kinds of bacteria
and viruses, research that required the gen-
eration of new general hypotheses that made
explanation of particular cases of the disease
possible.

In addition to providing and generating
explanations, scientists and ordinary people

sometimes need to evaluate competing ex-
planations. If your symptoms are ambigu-
ous, your doctor may be unsure whether
you have influenza or meningitis and there-
fore may consider them as competing ex-
planations of your symptoms. The doctor’s
task is then to figure out which hypothesis,
that you have influenza or meningitis, is the
best explanation of your disease. Similarly,
at a more general level, scientific researchers
had to consider alternative explanations of
the causes of meningitis and select the best
one. This selection presupposed the genera-
tion and provision of candidate explanations
and involved the additional cognitive pro-
cesses of comparing the candidates in order
to decide which was most plausible.

Provision, generation, and evaluation of
explanations can all be modeled compu-
tationally, but the forms these models
take depend on background theories about
what constitutes an explanation. One view,
prominent in both philosophy of science and
artificial intelligence, is that explanations are
deductive arguments. An explanation con-
sists of a deduction in which the explana-
tory target, to be explained, follows logi-
cally from the explaining set of propositions.
Here is a simple example:

Anyone with influenza has fever, aches,
and cough.

You have influenza.
So, you have fever, aches, and cough.

In this oversimplified case, it is plausible that
the explanatory target follows deductively
from the explaining propositions.

Often, however, the relation between ex-
plainers and explanatory targets is looser
than logical deduction, and an explana-
tion can be characterized as a causal
schema rather than a deductive argument.
A schema is a conceptual pattern that spec-
ifies a typical situation, as in the following
example:

Explanatory pattern: Typically, influenza
causes fever, aches, and cough.

Explanatory target: You have fever,
aches, and cough.
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Schema instantiation: Maybe you have
influenza.

In medical research, the explanatory pat-
tern is much more complex, as scientists
can provide a much richer description of
the genetic, biological, and immunological
causes of infection. Like deductive expla-
nations, schematic ones can be viewed as
providing causes, but with a more flexi-
ble relation between explainers and what is
explained.

Probability theory can also be used to pro-
vide a less rigid conception of explanation
than logical deducibility. A target can be
explained by specifying that it is probable
given the state of affairs described by the
explainers. In the flu case, the explanation
has this kind of structure:

The probability of having fever, aches,
and coughs given influenza is high.

So influenza explains why you have fever,
aches, and cough.

On this view, explanation is a matter of con-
ditional probability rather than logical de-
ducibility or schematic fit. Like deduction
and schema views, the probabilistic view
of explanation has inspired interesting com-
putational models, particularly ones involv-
ing Bayesian networks that will be described
later.

A fourth computational way of model-
ing explanation derives from artificial neu-
ral networks, which attempt to approximate
how brains use large groups of neurons, op-
erating in parallel to accomplish complex
cognitive tasks. The neural approach to ex-
planation is not in itself a theory of explana-
tion in the way that the deductive, schema,
and probabilistic views are, but it offers new
ways of thinking about the nature of the pro-
vision, generation, and evaluation of expla-
nations. This quick overview sets the stage
for the more detailed analysis of computa-
tional models of scientific explanation that
follows. For a concise review of philosoph-
ical theories of explanation, see Woodward
(2003); for more detail, see Kitcher and
Salmon (1989).

2. Deductive Models

The view that explanations are deductive ar-
guments has been prominent in the philoso-
phy of science. According to Hempel (1965,
p. 336), an explanation is an argument of the
form:

C1, C2, . . . ,Ck
L1, L2, . . . , Lr

E.

Here, Cs are sentences describing particu-
lar facts, Ls are general laws, and E is the
sentence explained by virtue of being a logi-
cal consequence of the other sentences. This
sort of explanation does occur in some areas
of science, such as physics, where laws stated
as mathematical formulas enable deductive
predictions.

Many computational models in artificial
intelligence have presupposed that explana-
tion is deductive, including ones found in
logic programming, truth maintenance sys-
tems, explanation-based learning, qualita-
tive reasoning, and in some approaches to
abduction (a form of inference that involves
the generation and evaluation of explana-
tory hypotheses); see, for example, Russell
and Norvig (2003), Bylander et al. (1991),
and Konolige (1992). These artificial intelli-
gence approaches are not intended as mod-
els of human cognition, but see Chapter 5
in this volume for a discussion of the use of
formal logic in cognitive modeling.

Deductive explanation also operates in
rule-based models, which have been pro-
posed for many kinds of human think-
ing (Anderson, 1983, 1993; Holland et al.,
1986; Newell, 1990; Newell & Simon, 1972;
see also Chapter 6 in this volume). A rule-
based system is a set of rules with an IF
part consisting of conditions (antecedents)
and a THEN part consisting of actions (con-
sequents). Rule-based systems have often
been used to model human problem solv-
ing in which people need to figure out how
to get from a starting state to a goal state
by applying a series of rules. This is a kind
of deduction in that the application of rules



P1: IBE

CUFX212-20 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 17:53

552 thagard and litt

in a series of if–then inferences amounts to
a series of applications of the rule of de-
ductive inference, modus ponens, which li-
censes inferences from p and if p then q to q.
Most rule-based systems, however, do not
always proceed just from starting states to
goal states, but can also work backward from
a goal state to find a series of rules that can
be used to get from the starting state to the
goal state.

Explanation can be understood as a spe-
cial kind of problem solving, in which the
goal state is a target to be explained. Rule-
based systems do not have the full logical
complexity to express the laws required for
Hempel’s model of explanation, but they
can perform a useful approximation. For in-
stance, the medical example used in the in-
troduction can be expressed by a rule like:

IF X has influenza, THEN X has fever,
cough, and aches.

Paul has influenza.

Paul has fever, cough, and aches.

Modus ponens provides the connection be-
tween the rule and what is to be ex-
plained. In more complex cases, the con-
nection would come from a sequence of
applications of modus ponens as multiple
rules get applied. In contrast to Hempel’s
account in which an explanation is a static
argument, rule-based explanation is usually
a dynamic process involving application of
multiple rules. For a concrete example of
a running program that accomplishes ex-
planations in this way, see the PI cognitive
model of Thagard (1988; code is available at
http://cogsci.uwaterloo.ca/). The main sci-
entific example to which PI has been applied
is the discovery of the wave theory of sound,
which occurs in the context of an attempt to
explain why sounds propagate and reflect.

Thus, rule-based systems can model the
provisions of explanations construed deduc-
tively, but what about the generation and
evaluation of explanations? A simple form of
abductive inference that generates hypothe-
ses can be modeled as a kind of backward
chaining. Forward chaining means running

rules forward in the deductive process that
proceeds from the starting state toward a
goal to be solved. Backward chaining oc-
curs when a system works backward from
a goal state to find rules that could produce
it from the starting state. Human problem
solving on tasks such as solving mathemat-
ics problems often involves a combination of
forward and backward reasoning, in which a
problem solver looks both at how the prob-
lem is described and the answer that is re-
quired, attempting to make them meet. At
the level of a single rule, backward chaining
has the form: goal G is to be accomplished;
there is the rule IF ATHEN G, that is, action
A would accomplish G; so set A as a new
subgoal to be accomplished. Analogously,
people can backchain to find a possible ex-
planation: fact F is to be explained; there is
a rule IF H THEN F , that is, hypothesis H
would explain F ; so hypothesize that H is
true. Thus, if you know that Paul has fever,
aches, and a cough, and the rule that IF X
has influenza, THEN X has fever, cough,
and aches, then you can run the rule back-
ward to produce the hypothesis that Paul
has influenza.

The computational model PI performs
this simple kind of hypothesis generation,
but it also can generate other kinds of
hypotheses (Thagard, 1988). For exam-
ple, from the observation that the orbit of
Uranus is perturbed, and the rule that IF
a planet has another planet near it THEN
its orbit is perturbed, PI infers that there is
some planet near Uranus; this is called ex-
istential abduction. PI also performs abduc-
tion to rules that constitute the wave theory
of sound: the attempt to explain why an ar-
bitrary sound propagates generates not only
the hypothesis that it consists of a wave but
the general theory that all sounds are waves.
PI also performs a kind of analogical abduc-
tion, a topic discussed in the next section on
schemas.

Abductive inference that generates ex-
planatory hypotheses is an inherently risky
form of reasoning because of the possibil-
ity of alternative explanations. Inferring that
Paul has influenza because it explains his
fever, aches, and cough is risky because
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other diseases, such as meningitis, can cause
the same symptoms. People should only ac-
cept an explanatory hypothesis if it is better
than its competitors, a form of inference that
philosophers call inference to the best expla-
nation (Harman, 1973; Lipton, 2004). The
PI cognitive model performs this kind of
inference by taking into account three cri-
teria for the best explanation: consilience,
which is a measure of how much a hypothe-
sis explains; simplicity, which is a measure of
how few additional assumptions a hypoth-
esis needs to carry out an explanation; and
analogy, which favors hypotheses whose ex-
planations are analogous to accepted ones.
A more psychologically elegant way of per-
forming inference to the best explanation,
the model ECHO, is described later in the
section on neural networks. Neither the PI
nor the ECHO way of evaluating compet-
ing explanations requires that explanations
be deductive.

In artificial intelligence, the term “abduc-
tion” is often used to describe inference to
the best explanation as well as the gene-
ration of hypotheses. In actual systems,
these two processes can be continuous, for
example in the PEIRCE tool for abduc-
tive inference described by Josephson and
Josephson (1994). This is primarily an engi-
neering tool rather than a cognitive model,
but is mentioned here as another approach
to generating and evaluating scientific expla-
nations, in particular, medical ones involving
interpretation of blood tests. The PEIRCE
system accomplishes the goal of generating
the best explanatory hypothesis by achiev-
ing three subgoals:

1. generation of a set of plausible hypo-
theses,

2. construction of a compound explana-
tion for all the findings, and

3. criticism and improvement of the com-
pound explanation.

PEIRCE employs computationally effec-
tive algorithms for each of these subgoals,
but does not attempt to do so in a way
that corresponds to how people accomplish
them.

3. Schema and Analogy Models

In ordinary life and in many areas of science
less mathematical than physics, the relation
between what is explained and what does
the explaining is usually looser than deduc-
tion. An alternative conception of this rela-
tion is provided by understanding an expla-
nation as the application of a causal schema,
which is a pattern that describes the rela-
tion between causes and effects. For exam-
ple, cognitive science uses a general explana-
tion schema that has the following structure
(Thagard, 2005):

Explanation target: Why do people have a
particular kind of intelligent behavior?

Explanatory pattern:
People have mental representations.
People have algorithmic processes that

operate on those representations.
The processes, applied to the representa-

tions, produce the behavior.

This schema provides explanations when
the terms shown in boldface are filled in
with specifics and subsumes schemas that
describe particular kinds of mental rep-
resentations, such as concepts, rules, and
neural networks. Philosophers of science
have discussed the importance of explana-
tion schemas or patterns (Kitcher, 1993;
Thagard, 1999).

A computational cognitive model of ex-
planation schemas was developed in the
SWALE project (Leake, 1992; Schank,
1986). This project modeled people’s at-
tempts to explain the unexpected 1984
death of a racehorse, Swale. Given an oc-
currence, the program SWALE attempts to
fit it into memory. If a problem arises in-
dicating an anomaly, then the program at-
tempts to find an explanation pattern stored
in memory. The explanation patterns are de-
rived from previous cases, such as other un-
expected deaths. If SWALE finds more than
one relevant explanation pattern, it evalu-
ates them to determine which is most rele-
vant to the intellectual goals of the person
seeking understanding. If the best explana-
tion pattern does not quite fit the case to
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be explained, it can be tweaked (adapted)
to provide a better fit, and the tweaked ver-
sion is stored in memory for future use. The
explanation patterns in SWALE’s database
included both general schemas, such as
exertion + heart defect causes fatal heart at-
tack, and particular examples, which are
used for case-based reasoning, a kind of
analogical thinking. Leake (1992) describes
how competing explanation patterns can be
evaluated according to various criteria, in-
cluding a reasoner’s pragmatic goals.

Explaining something by applying a gen-
eral schema involves the same processes as
explaining using analogies. In both cases,
reasoning proceeds as follows:

Identify the case to be explained.
Search memory for a matching schema or

case.
Adapt the found schema or case to pro-

vide an explanation of the case to be
explained.

In deductive explanation, there is a tight log-
ical relation between what is explained and
the sentences that imply it, but in schematic
or analogical explanation, there need only
be a roughly specified causal relation.

Falkenhainer (1990) describes a program,
PHINEAS, that provides analogical expla-
nations of scientific phenomena. The pro-
gram uses Forbus’s (1984) qualitative pro-
cess theory to represent and reason about
physical change and is provided with knowl-
edge about liquid flow. When presented
with other phenomena to be explained, such
as osmosis and heat flow, it can generate
new explanations analogically by computing
similarities in relational structure, using the
Structure Mapping Engine (Falkenhainer,
Forbus, & Gentner, 1989). PHINEAS oper-
ates in four stages: access, mapping/transfer,
qualitative simulation, and revision. For ex-
ample, it can generate an explanation of
the behavior of a hot brick in cold wa-
ter by analogy to what happens when liq-
uid flows between two containers. Another
computational model that generates analog-
ical explanations is the PI system (Thagard,
1988), which simulates the discovery of the

wave theory of sound by analogy to water
waves.

Thus, computational models of expla-
nation that rely on matching schematic or
analogical structures based on causal fit pro-
vide an alternative to models of deductive
explanation. These two approaches are not
competing theories of explanation, because
explanation can take different forms in
different areas of science. In areas such as
physics that are rich in mathematically ex-
pressed knowledge, deductive explanations
may be available. But in more qualitative
areas of science and everyday life, expla-
nations are usually less exact and may be
better modeled by application of causal
schemas or as a kind of analogical inference.

4. Probabilistic Models

Another, more quantitative way of estab-
lishing a looser relation than deduction be-
tween explainers and their targets is to use
probability theory. Salmon (1970) proposed
that the key to explanation is statistical rel-
evance, where a property B in a population
A is relevant to a property C if the proba-
bility of B given A and C is different from
the probability of B given A alone: P (B|A
&C) �= P (B|A). Salmon later moved away
from a statistical understanding of expla-
nation toward a causal mechanism account
(Salmon, 1984), but other philosophers and
artificial intelligence researchers have fo-
cused on probabilistic accounts of causality
and explanation. The core idea here is that
people explain why something happened by
citing the factors that made it more probable
than it would have been otherwise.

The main computational method for
modeling explanation probabilistically is
Bayesian networks, developed by Pearl
(1988, 2000) and other researchers in phi-
losophy and computer science (e.g., Gly-
mour, 2001; Neapolitain, 1990; Spirtes,
Glymour, & Scheines, 1993; see also Chap-
ter 3 in this volume). A Bayesian network is
a directed graph in which the nodes are sta-
tistical variables, the edges between them
represent conditional probabilities, and no
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cough fever aches

influenza

infection

Figure 20.1. Causal map of a disease. In a
Bayesian network, each node is a variable, and
the arrow indicates causality represented by
conditional probability.

cycles are allowed: you cannot have A influ-
encing B which influences A. Causal struc-
ture and probability are connected by the
Markov assumption, which says that a vari-
able A in a causal graph is independent of
all other variables that are not its effects,
conditional on its direct causes in the graph
(Glymour, 2003).

Bayesian networks are convenient ways
for representing causal relationships, as in
Figure 20.1. Powerful algorithms have been
developed for making probabilistic infer-
ences in Bayesian networks and for learn-
ing causal relationships in these networks.
Applications have included scientific exam-
ples, such as developing models in the so-
cial sciences (Spirtes et al., 1993). Bayesian
networks provide an excellent tool for com-
putational and normative philosophical ap-
plications, but the relevant question for this
chapter is how they might contribute to cog-
nitive modeling of scientific explanation.

The psychological plausibility of Bayesian
networks has been advocated by Glymour
(2001) and Gopnik et al. (2004). They show
the potential for using Bayesian networks to
explain a variety of kinds of reasoning and
learning studied by cognitive and develop-
mental psychologists. Gopnik et al. (2004)
argue that children’s causal learning and in-
ference may involve computations similar
to those for learning Bayesian networks and
for predicting with them. If they are right
about children, it would be plausible that

the causal inferences of scientists are also
well modeled by Bayesian networks. From
this perspective, explaining something con-
sists of instantiating it in a causal network
and using probabilistic inference to indicate
how it depends causally on other factors.
Generating an explanation consists of pro-
ducing a Bayesian network, and evaluating
competing explanations consists of calculat-
ing the comparative probability of different
causes.

Despite their computational and philo-
sophical power, there are reasons to doubt
the psychological relevance of Bayesian net-
works. Although it is plausible that peo-
ple’s mental representations contain some-
thing like rough causal maps depicted in
Figure 20.1, it is much less plausible that
these maps have all the properties of
Bayesian networks. First, there is abundant
experimental evidence that reasoning with
probabilities is not a natural part of peo-
ple’s inferential practice (Gilovich, Griffin,
& Kahneman, 2002; Kahneman, Slovic, &
Tversky, 1982). Computing with Bayesian
networks requires a very large number of
conditional probabilities that people not
working in statistics have had no chance to
acquire. Second, there is no reason to believe
that people have the sort of information
about independence that is required to sat-
isfy the Markov condition and to make infer-
ence in Bayesian networks computationally
tractable. Third, although it is natural to rep-
resent causal knowledge as directed graphs,
there are many scientific and everyday con-
texts in which such graphs should have cy-
cles because of feedback loops. For example,
marriage breakdown often occurs because of
escalating negative affect, in which the neg-
ative emotions of one partner produces be-
haviors that increase negative emotions of
the other, which then produces behavior
that increases the negative emotions of the
first partner (Gottman et al., 2003). Such
feedback loops are also common in bio-
chemical pathways needed to explain dis-
ease (Thagard, 2003). Fourth, probability by
itself is not adequate to capture people’s un-
derstanding of causality, as argued in the last
section of this chapter. Hence, it is not at all
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puzzlement or
surprise

search for
explanation

generation of
hypothesis

evaluation of
hypothesis

pleasure or
satisfaction

Figure 20.2. The process of abductive inference (Thagard, 2007).

obvious that Bayesian networks are the best
way to model explanation by human scien-
tists. Even in statistically rich fields, such as
the social sciences, scientists rely on an intu-
itive, nonprobabilistic sense of causality of
the sort discussed later.

5. Neural Network Models

The most important approach to cognitive
modeling not yet discussed employs arti-
ficial neural networks. Applying this ap-
proach to high-level reasoning faces many
challenges, particularly in representing the
complex kinds of information contained in
scientific hypotheses and causal relations.
Thagard (1989) provided a neural network
model of how competing scientific expla-
nations can be evaluated, but did so using
a localist network in which entire proposi-
tions are represented by single artificial neu-
rons and in which relations between propo-
sitions are represented by excitatory and
inhibitory links between the neurons. Al-
though this model provides an extensive ac-
count of explanation evaluation that is re-
viewed later, it reveals nothing about what
an explanation is or how explanations are
generated. Neural network modelers have
been concerned mostly with applications
to low-level psychological phenomena, such
as perception, categorization, and memory,
rather than high-level ones, such as problem
solving and inference (O’Reilly & Munakata,
2000). However, this section shows how a
neurologically complex model of explana-
tion and abductive inference can be con-
structed. For a review of neural network ap-

proaches to cognitive modeling, see Chap-
ter 2 in this volume.

One benefit of attempting neural analy-
ses of explanation is that it becomes pos-
sible to incorporate multimodal aspects of
cognitive processing that tend to be ignored
from deductive, schematic, and proba-
bilistic perspectives. Thagard (2007) de-
scribes how both explainers and explanation
targets are sometimes represented non-
verbally. In medicine, for example, doctors
and researchers may employ visual hypothe-
ses (say about the shape and location of a tu-
mor) to explain observations that can be rep-
resented using sight, touch, and smell as well
as words. Moreover, the process of abduc-
tive inference has emotional inputs and out-
puts, because it is usually initiated when an
observation is found to be surprising or puz-
zling, and it often results in a sense of plea-
sure or satisfaction when a satisfactory hy-
pothesis is used to generate an explanation.
Figure 20.2 provides an outline of this pro-
cess. Let us now look at an implementation
of a neural network model of this sketch.

The model of abduction described here
follows the Neural Engineering Framework
(NEF) outlined in Eliasmith and Anderson
(2003) and is implemented using the
MATLAB-based NEF simulation software
NESim. The NEF proposes three basic prin-
ciples of neural computation (Eliasmith &
Anderson, p. 15):

1. Neural representations are defined by a
combination of nonlinear encoding and
linear decoding.

2. Transformations of neural representa-
tions are linearly decoded functions of
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variables that are represented by a neu-
ral population.

3. Neural dynamics are characterized by
considering neural representations as
control theoretic state variables.

These principles are applied to a particular
neural system by identifying the intercon-
nectivity of its subsystems, neuron response
functions, neuron tuning curves, subsystem
functional relations, and overall system be-
havior. For cognitive modeling, the NEF is
useful because it provides a mathematically
rigorous way of building more realistic neu-
ral models of cognitive functions.

The NEF characterizes neural popula-
tions and activities in terms of mathemat-
ical representations and transformations.
The complexity of a representation is con-
strained by the dimensionality of the neu-
ral population that represents it. In rough
terms, a single dimension in such a repre-
sentation can correspond to one discrete “as-
pect” of that representation (e.g., speed and
direction are the dimensional components
of the vector quantity velocity). A hierarchy
of representational complexity thus follows
from neural activity defined in terms of one-
dimensional scalars; vectors, with a finite but
arbitrarily large number of dimensions; or
functions, which are essentially continuous
indexings of vector elements, thus ranging
over infinite dimensional spaces.

The NEF provides for arbitrary compu-
tations to be performed in biologically re-
alistic neural populations and has been suc-
cessfully applied to phenomena as diverse
as lamprey locomotion (Eliasmith & Ander-
son, 2003), path integration by rats (Con-
klin & Eliasmith, 2005), and the Wason
card selection task (Eliasmith, 2005). The
Wason task model, in particular, is struc-
tured very similarly to the model of abduc-
tive inference discussed here. Both employ
holographic reduced representations, a high-
dimensional form of distributed represen-
tation.

First developed by Plate (2003), holo-
graphic reduced representations (HRRs)
combine the neurological plausibility of dis-
tributed representations with the ability to

maintain complex, embedded structural re-
lations in a computationally efficient man-
ner. This ability is common in symbolic
models and is often singled out as defi-
cient in distributed connectionist frame-
works; for a comprehensive review of HRRs
in the context of the distributed versus sym-
bolic representation debate, see Eliasmith
and Thagard (2001). HRRs consist of high-
dimensional vectors combined via multi-
plicative operations and are similar to the
tensor products used by Smolensky (1990)
as the basis for a connectionist model of cog-
nition. But HRRs have the important advan-
tage of fixed dimensionality: the combination
of two n-dimensional HRRs produces an-
other n-dimensional HRR, rather than the
2n or even n2 dimensionality one would ob-
tain using tensor products. This avoids the
explosive computational resource require-
ments of tensor products to represent ar-
bitrary, complex structural relationships.

HRR representations are constructed
through the multiplicative circular convolu-
tion (denoted by ⊗) and are decoded by
the approximate inverse operation, circu-
lar correlation (denoted by #). The details
of these operations are given in the appen-
dices of Eliasmith & Thagard (2001), but
in general if C = A⊗ B is encoded, then
C # A≈ B and C # B ≈ A. The approximate
nature of the unbinding process introduces
a degree of noise, proportional to the com-
plexity of the HRR encoding in question
and in inverse proportion to the dimension-
ality of the HRR (Plate, 1994). As noise
tolerance is a requirement of any neuro-
logically plausible model, this loss of rep-
resentation information is acceptable, and
the “cleanup” method of recognizing en-
coded HRR vectors using the dot product
can be used to find the vector that best fits
what was decoded (Eliasmith & Thagard,
2001). Note that HRRs may also be com-
bined by simple superposition (i.e., addi-
tion): P = Q⊗ R+ X⊗ Y, where P # R ≈
Q, P # X ≈ Y, and so on. The operations re-
quired for convolution and correlation can
be implemented in a recurrent connection-
ist network (Plate, 1993) and, in particular,
under the NEF (Eliasmith, 2005).
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In brief, the new model of abductive in-
ference involves several large, high-dimen-
sional populations to represent the data
stored via HRRs and learned HRR transfor-
mations (the main output of the model), and
a smaller population representing emotional
valence information (abduction only re-
quires considering emotion scaling from sur-
prise to satisfactions and hence only needs a
single dimension represented by as few as
100 neurons to represent emotional chan-
ges). The model is initialized with a base
set of causal encodings consisting of 100-
dimensional HRRs combined in the form

antecedent⊗ a+ relation⊗ causes

+ consequent⊗ b,

as well as HRRs that represent the success-
ful explanation of a target x (expl ⊗ x). For
the purposes of this model, only six different
“filler” values were used, representing three
such causal rules (a causes b, c causes d, and
e causes f ). The populations used have be-
tween 2,000 and 3,200 neurons each and
are 100- or 200-dimensional, which is at
the lower-end of what is required for accu-
rate HRR cleanup (Plate, 1994). More rules
and filler values would require larger and
higher-dimensional neural populations, an
expansion that is unnecessary for a simple
demonstration of abduction using biologi-
cally plausible neurons.

Following detection of a surprising b,
which could be an event, proposition, or any
sensory or cognitive data that can be repre-
sented via neurons, the change in emotional
valence spurs activity in the output pop-
ulation toward generating a hypothesized
explanation. This process involves employ-
ing several neural populations (represent-
ing the memorized rules and HRR con-
volution/correlation operations) to find an
antecedent involved in a causal relationship
that has b as the consequent. In terms of
HRRs, this means producing (rule # an-
tecedent) for [(rule # relation ≈ causes) and
(rule # consequent ≈ b)]. This production
is accomplished in the 2,000-neuron, 100-
dimensional output population by means of

associative learning through recurrent con-
nectivity and connection weight updating
(Eliasmith, 2005). As activity in this pop-
ulation settles, an HRR cleanup operation is
performed to obtain the result of the learned
transformation. Specifically, some answer is
“chosen” if the cleanup result matches one
encoded value significantly more than any
of the others (i.e., is above some reasonable
threshold value).

After the successful generation of an ex-
planatory hypothesis, the emotional valence
signal is reversed from surprise (which drove
the search for an explanation) to what can be
considered pleasure or satisfaction derived
from having arrived at a plausible explana-
tion. This, in turn, induces the output pop-
ulation to produce a representation corre-
sponding to the successful dispatch of the
explanandum b: namely, the HRR explb =
expl⊗ b. On settling, it can thus be said that
the model has accepted the hypothesized
cause obtained in the previous stage as a
valid explanation for the target b. Settling
completes the abductive inference: Emo-
tional valence returns to a neutral level,
which suspends learning in the output popu-
lation and causes population firing to return
to basal levels of activity.

Figure 20.3 shows the result of perform-
ing the process of abductive inference in the
neural model, with activity in the output
population changing with respect to chang-
ing emotional valence and vice versa. The
output population activity is displayed by
dimension, rather than individual neuron,
because the 100-dimensional HRR output
of the neural ensemble as a whole is the
real characterization of what is being rep-
resented. The boxed sets of numbers repre-
sent the results of HRR cleanups on the out-
put population at different points in time;
if one value reasonably dominates over the
next few largest, it can be taken to be the
“true” HRR represented by the population
at that moment. In the first stage, the high
emotional valence leads to the search for an
antecedent of a causal rule for b, the sur-
prising explanandum. The result is an HRR
cleanup best fitting to a, which is indeed the
correct response. Reaching an answer with a
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Figure 20.3. Neural activity in output population for abduction. For clarity, only a small (evenly
spaced) selection of dimensional firing activities is displayed here (the full 2,000-neuron
population has 100 dimensions). Activities for two specific population dimensions are highlighted
by thickened dashed lines to demonstrate the neural activity changes in response to changing
emotional valence (shown as a thickened solid line).

reasonably high degree of certainty triggers
an emotional valence shift (from surprise to
satisfaction), which in turn causes the out-
put population to represent the fact that b
has been successfully explained, as repre-
sented by the HRR cleanup in the second
stage of the graph. Finally, the emotional
arousal shifts to a neutral state as abduction
is completed, and the population returns to
representing nothing particularly strongly in
the final stage.

The basic process of abduction outlined
previously (see Figure 20.2) maps very well
to the results obtained from the model. The
output population generates a valid hypoth-
esis when surprised (because “a causes b” is
the best memorized rule available to han-

dle surprising b), and reversal of emotional
valence corresponds to an acceptance of the
hypothesis and hence the successful expla-
nation of b.

In sum, the model of abduction outlined
here demonstrates how emotion can influ-
ence neural activity underlying a cognitive
process. Emotional valence acts as a con-
text gate that determines whether the out-
put neural ensemble must conduct a search
for some explanation for surprising input or
whether some generated hypothesis needs
to be evaluated as a suitable explanation for
the surprising input.

The neural network model just described
provides a mechanism for explanation, its
emotional input and output, and a simple
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kind of abduction. It also does a very sim-
ple sort of explanation evaluation in that
the causal rule that it selects from mem-
ory is chosen because it is a good match for
the problem at hand, namely explaining b.
Obviously, however, this model is too sim-
ple to account for the comparative evalua-
tion of explanatory theories as performed
by the cognitive model ECHO (Thagard,
1989, 1992, 2000). In ECHO, hypotheses
and pieces of evidence are represented by
simple artificial neurons called units, which
are connected by excitatory or inhibitory
links that correspond to constraints between
the propositions they represent. For exam-
ple, if a hypothesis explains a piece of evi-
dence, then there is a symmetric excitatory
link between the unit that represents the
hypothesis and the unit that represents the
evidence. If two hypotheses contradict each
other, then there is a symmetric inhibitory
link between the two units that represent
them. Units have activations that spread be-
tween them until the network reaches stable
activation levels, which typically takes 60 to
100 iterations. If a unit ends up with positive
activation, the proposition that it represents
is accepted, whereas if a unit ends up with
negative activation, the proposition that it
represents is rejected.

ECHO has been used to model numer-
ous cases in the history of science and has
also inspired experimental research in so-
cial and educational psychology (Read &
Marcus-Newhall, 1993; Schank & Ranney,
1991) It shows how a very high-level kind
of cognition, evaluating complex theories,
can be performed by simple neural network
performing parallel constraint satisfaction.
ECHO has a degree of psychological plau-
sibility, but for neurological plausibility it
pales in comparison to the NEF model of
abduction described earlier in this section.
The largest ECHO model uses only around
200 units to encode the same number of
propositions, whereas the NEF model uses
thousands of spiking neurons to encode a
few causal relations. Computationally, this
seems inefficient, but of course, the brain
has many billions of neurons that provide its
distributed representations.

How might one implement comparative
theory evaluation as performed by ECHO
within the NEF framework? Thagard and
Aubie (in press) use the NEF to encode
ECHO networks by generating a population
of thousands of neurons. Parallel constraint
satisfaction is performed by transformations
of neurons that carry out approximately the
same calculations that occur more directly in
ECHO’s localist neural networks. Hence, it
is now possible to model evaluation of com-
peting explanations using more biologically
realistic neural networks.

6. Causality

Like most other models of explanation,
these neural network models presuppose
some understanding of causality. In one
sense that is common in both science and
everyday life, to explain something involves
stating its cause. For example, when peo-
ple have influenza, the virus that infects
them is the cause of their symptoms, such
as fever. But what is a cause? Philosoph-
ical theories of explanation correlate with
competing theories of causality; for exam-
ple, the deductive view of explanation fits
well with the Humean understanding of
causality as constant conjunction. If all A
are B, then someone can understand how
being A can cause and explain being B. Un-
fortunately, universality is not a requisite
of either explanation or causality. Smoking
causes lung cancer, even though many smok-
ers never get lung cancer, and some people
with lung cancer never smoked. Schematic
models of explanation presuppose a primi-
tive concept of causation without being able
to say much about it. Probability theory may
look like a promising approach to causal-
ity in that causes make their effects more
probable than they would be otherwise, but
such increased probability may be acciden-
tal or the result of some common cause.
For example, the probability of someone
drowning is greater on a day when much
ice cream is consumed, but that is because
of the common cause that more people go
swimming on hot days. Sorting out causal
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probabilistic information from mislead-
ing correlations requires much information
about probability and independence that
people usually lack.

Thagard (2007) conjectured that it might
be possible to give a neural network account
of how organisms understand causality. Sup-
pose, in keeping with research on infants’
grasp of causality, that cause is a prever-
bal concept based on perception and motor
control (Baillargeon, Kotovsky, & Needham,
1995; Mandler, 2004). Consider an infant of
a few months old, lying on its back, swiping
at a mobile suspended over its head. The in-
fant has already acquired an image schema
of the following form:

perception of situation + motor behavior

→ perception of new situation.

Perhaps this schema is innate, but alter-
natively, it may have been acquired from
very early perceptual/motor experiences in
which the infant acted on the world and per-
ceived its changes. A simple instance of the
schema would be:

stationary object + hand hitting object

→ moving object.

The idea of a preverbal image schema for
causality is consistent with the views of
some philosophers that manipulability and
intervention are central features of causal-
ity (Woodward, 2004). The difference be-
tween A causing B and A merely being cor-
related with B is that manipulating A also
manipulates B in the former case but not
the latter. Conceptually, the concepts of ma-
nipulation and intervention seem to presup-
pose the concept of causation, because mak-
ing something happen is on the surface no
different from causing it to happen. How-
ever, although there is circularity at the ver-
bal level, psychologically, it is possible to
break out of the circle by supposing that
people have from infancy a neural encoding
of the causality image schema described ear-
lier. This nonverbal schema is the basis for
understanding the difference between one

event making another event happen and one
event just occurring after the other.

The causality image schema is naturally
implemented within the NEF used to con-
struct the model of abductive inference.
Neural populations are capable of encod-
ing both perceptions and motor behaviors,
and are also capable of encoding relations
between them. In the model of abductive
inference described in the last section, cause
(c, e) was represented by a neural popula-
tion that encodes an HRR vector that cap-
tures the relation between a vector repre-
senting c and a vector representing e, where
both of these can easily be nonverbal per-
ceptions and actions as well as verbal repre-
sentations. In the NEF model of abduction,
there is no real understanding of causality,
because the vector was generated automat-
ically. In contrast, it is reasonable to con-
jecture that people have neural populations
that encode the notion of causal connection
as the result of their very early preverbal ex-
perience with manipulating objects. Because
the connection is based on visual and kines-
thetic experiences, it cannot be adequately
formulated linguistically, but it provides the
intellectual basis for the more verbal and
mathematical characterizations of causality
that develop later.

If this account of causality is correct, then
a full cognitive model of explanation can-
not be purely verbal or probabilistic. Many
philosophers and cognitive scientists cur-
rently maintain that scientific explanation
of phenomena consists of providing mech-
anisms that produce them (e.g., Bechtel &
Abrahamsen, 2005; Sun, Coward, & Zen-
zen, 2005). A mechanism is a system of ob-
jects whose interactions regularly produce
changes. All of the computational models
described in this chapter are mechanistic,
although they differ in what they take to be
the parts and interactions that are central
to explaining human thinking; for the neu-
ral network approaches, the computational
mechanisms are also biological ones. But un-
derstanding of mechanism presupposes un-
derstanding of causality in that there must
be a relation between the interactions of
the parts that constitute production of the
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Table 20.1: Summary of approaches to computational modeling of explanation

Relation
Target of between target Mode of
explanation Explainers and explainers generation

Deductive Sentence Sentences Deduction Backward chaining

Schema Sentence Pattern of Sentences Fit Search for fit,
schema generation

Probabilistic Variable node Bayesian network Conditional
probability

Bayesian learning

Neural network Neural group:
multimodal
representation

Neural groups Gated activation,
connectivity

Search, associative
learning

relevant phenomena. Because scientific ex-
planation depends on the notion of causal-
ity, and because understanding of causality
is in part visual and kinesthetic, future com-
prehensive cognitive models of explanation
will need to incorporate neural network sim-
ulations of people’s nonverbal understand-
ing of causality.

7. Conclusion

This chapter has reviewed four major com-
putational approaches to understanding sci-
entific explanations: deductive, schematic,
probabilistic, and neural network. Table 20.1
summarizes the different approaches to pro-
viding and generating explanations. To some
extent, the approaches are complementary
rather than competitive, because explana-
tion can take different forms in different ar-
eas of science and everyday life. However,
at the root of scientific and everyday ex-
planation is an understanding of causality
represented nonverbally in human brains by
populations of neurons encoding how physi-
cal manipulations produce sensory changes.
Another advantage of taking a neural net-
work approach to explanation is that it
becomes possible to model how abduc-
tive inference, the generation of explanatory
hypotheses, is a process that is multimodal,
involving not only verbal representations but

also visual and emotional ones that consti-
tute inputs and outputs to reasoning.
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CHAPTER 21

Cognitive Modeling for Cognitive

Engineering

1. Introduction

Cognitive engineering is the application of
cognitive science theories to human factors
practice. As this description suggests, there
are strong symbioses between cognitive en-
gineering and cognitive science, but there
are also strong differences.

Symbiosis implies a mutual influence,
and the history of cognitive engineering sup-
ports this characterization in two key areas:
the development of cognitive theory and
the development of computational mod-
eling software. For theory development, a
stringent test of our understanding of cog-
nitive processes is whether we can apply
our knowledge to real-world problems. The
degree to which we succeed at this task
is the degree to which we have developed
robust and powerful theories. The degree
to which we fail at this task is the degree
to which more research and stronger theo-
ries are required (Gray, Schoelles, & Myers,
2004).

The development of the production-
system-based architectures most strongly as-
sociated with cognitive engineering (ACT-R

[Anderson, 1993], EPIC [Kieras & Meyer,
1997], and Soar [Newell, 1990]) was mo-
tivated by the desire to explore basic cog-
nitive processes. However, each has been
strongly influenced by a formalism for cog-
nitive task analysis that was developed ex-
plicitly for the application of cognitive sci-
ence to human-computer interaction (Card,
Moran, & Newell, 1980a, 1980b, 1983).
Indeed, it can be argued that the modern
form of ACT-R (Anderson et al., 2004)
and the development of EPIC (Kieras &
Meyer, 1997), with their modules that run
in parallel, owes a great intellectual debt to
the development of CPM-GOMS (Gray &
Boehm-Davis, 2000; John, 1988, 1993). It
is definitely the case that the potential of
these architectures for application has long
been recognized (Elkind et al., 1989; Pew,
2007; Pew & Mavor, 1998) and that much
recent development of these basic research
architectures has been funded at least partly
because of their potential in tutoring systems
(S. F. Chipman, personal communication,
April 2, 2007), human-computer interac-
tion (Chipman & Kieras, 2004; Freed et al.,
2003; Williams, 2000), or human-system
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integration (Gluck & Pew, 2005; Gray &
Pew, 2004).

On the other hand, the engineering en-
terprise of building systems that are in some
way directly relevant to real-world problems
is fundamentally different from the basic re-
search enterprise of developing or elaborat-
ing cognitive theory. Cognitive science and
cognitive engineering can be viewed as dif-
fering along five dimensions. Although these
differences do not imply a dichotomy, they
can be viewed as capturing some of the char-
acteristic differences of these two endeavors.

First is the nature of the problems picked.
As an applied discipline, the problems ad-
dressed by cognitive engineering are often
not picked by the researcher, but are defined
for the researcher in terms of safety, work-
load, design, operational need, or financial
impact.

Second is the amount of prior study of
the task and task domain. Many of our best
models of cognitive theory rest on years
of exploring a small number of experimen-
tal paradigms within a well-specific domain.
Great examples of this would be models
of reasoning (Johnson-Laird, 1993; Rips,
1994), models of category learning (Love,
Medin, & Gureckis, 2004; Nosofsky &
Palmeri, 1997; Shepard, Hovland, & Jenk-
ins, 1961), as well as models of memory re-
trieval (Anderson & Schooler, 1991; Hintz-
man, 2005). In contrast, many computa-
tional models for cognitive engineering tend
to be first-generation attempts in that little,
if any, prior empirical or modeling work ex-
ists. Two examples that are discussed in this
chapter are Byrne and Kirlik’s (2005) work
on modeling the taxiing behavior of com-
mercial airline pilots and Gluck’s work on
modeling uninhabited air vehicle operators
(Gluck, Ball, & Krusmark, 2007).

Third, many but not all computational
models for cognitive engineering entail
domain-specific expertise. This characteri-
zation applies to both the development of
tutoring systems for the training of novices
as well as to the modeling of expert perfor-
mance. It is definitely the case that much has
been learned about basic cognitive processes
by studying the acquisition or execution of
expertise (Chi, Feltovich, & Glaser, 1981).

It is also the case that there is a vast middle
ground of educational research in which the
distinction between basic versus domain-
specific work is often blurred (Anderson,
Conrad, & Corbett, 1989; Corbett & An-
derson, 1988; Singley & Anderson, 1989).
However, at the further extreme are the
attempts to model rare forms of expertise,
such as that possessed by Submarine Com-
manders (Ehret, Gray, & Kirschenbaum,
2000; Gray & Kirschenbaum, 2000; Gray,
Kirschenbaum, & Ehret, 1997; Kirschen-
baum & Gray, 2000), uninhabited air ve-
hicle (UAV) operators (Gluck et al., 2007),
or airline pilots (Byrne & Kirlik, 2005). Al-
though, arguably, insights and progress into
basic research issues have emerged from
these studies, it is undoubtedly true that the
motivation and funding to study and the par-
ticular expertise of such small populations1

stems from the need to solve very important
applied problems.

Fourth, computational modeling for cog-
nitive engineering operates in an arena
where the demand for answers is more im-
portant than the demand for understand-
ing. Newell warned us about such arenas
(Newell & Card, 1985); if another disci-
pline can reduce human errors, increase pro-
ductivity, and in general augment cognition,
then who cares if those advances rely on an
in-depth understanding of the human cog-
nitive architecture? The issue for cognitive
science is one of relevance.2

1 For example, the active duty population of subma-
rine commanders is estimated to be less than 100.

2 A reviewer for this chapter proposed astronomy as
an example in which public funding continues to
flow in the absence of any immediate relevance to
the human condition. It is not clear, however, that
this example actually makes that case. Indeed, the
evidence suggests just the opposite. Astronomy is
the smallest field that the National Science Foun-
dation tracks in its surveys of doctoral scientists and
engineers in the United States (Tsapogas, 2003).
Staying just within the NSF-defined category of
physical sciences, in 2003, there were 4,280 liv-
ing astronomers in the United States (including re-
tired, unemployed, and employed) compared with
69,460 chemists (excluding biochemistry), 20,220
earth scientists, and 40,440 physicists. Astronomers
are fond of pointing out that expensive space pro-
grams, such as the Shuttle, are not astronomy
and that the bulk of the money in expensive “big
science” programs, such as the Hubble telescope
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Fifth, whereas many of our best cogni-
tive science models focus on the distilled
essence of a cognitive functionality, such as
memory or categorization, cognitive engi-
neering models are called on to predict per-
formance in task environments that entail
many cognitive functionalities. Hence, the
particular challenge of computational mod-
eling for cognitive engineering is to model
not just the pieces but also the control of an
integrated cognitive system (Gray, 2007b).

These characteristic differences between
basic and applied computational cognitive
modeling are not meant as dichotomies, but
rather to illustrate the different sets of chal-
lenges faced by cognitive engineering. To
some degree, these challenges can be seen
as challenges for the basic science, especially
the need for cognitive engineering to model
the control of integrated cognitive systems
(the last item on my list). Unfortunately,
neither the list nor the efforts that instanti-
ate it are tidy.

The next section reviews the seminal
work of Card, Moran, and Newell (Card
et al., 1983) from the modern perspective.
We then jump to the 2000s to discuss the is-
sues and applications of cognitive engineer-
ing, first for the broad category of com-
plex systems and then for the classic area
of human-computer interaction, with a fo-
cus on human interaction with quantitative
information, that is, visual analytics.3 The
chapter ends with a summary and discussion
of cognitive engineering.

2. Initial Approaches to Cognitive
Modeling for Cognitive Engineering

Attempts to apply computational and math-
ematical modeling techniques to human fac-
tors issues have a long and detailed history.

and deep space probes, goes to engineering, not as-
tronomy.

3 Where visual analytics is defined as the visual
representation of quantitative data (Thomas &
Cook, 2005; Wong & Thomas, 2004). The human-
computer interaction interest in visual analytics lies
in the building of interfaces that support the search
and representation of massive quantities of quanti-
tative data.

Unfortunately, we cannot review that his-
tory here; however, we can do the next best
thing and point the reader to Pew’s (2007)
very personal history of human performance
modeling from the 1950s on. In this sec-
tion, we pick up the cognitive science side
of the story with Card et al.’s (1983) sem-
inal GOMS4 framework for applying the
information-processing approach to devel-
oping cognitive task analysis.5

Before the cognitive revolution and, ar-
guably, continuing today, most researchers
studying cognitive human behavior were
trained in experimental psychology. This
tradition focuses on teasing and torturing se-
crets from nature by tightly controlled stud-
ies in which small manipulations are made,
and humans perform many nearly identi-
cal trials. People with this background and
training often cannot conceive how some-
one could possibly study, let alone model,
something as complex as VCR programming
(Gray, 2000), driving (Salvucci, 2006), the
influence of the layout of a graph on per-
formance (Peebles & Cheng, 2003), infor-
mation search on the World Wide Web
(Blackmon, Kitajima, & Polson, 2005; Kaur
& Hornof, 2005; Pirolli, 2005), or air traffic
control issues (ATC) (Byrne & Kirlik, 2005).

Although the study of such issues is com-
plex and demanding, it is made possible by
an open secret long exploited by the human
factors community (Kirwan & Ainsworth,
1992) and long recognized by cognitive sci-
ence (see Simon, 1996, Chapter 8, “The
Architecture of Complexity,” and his dis-
cussion therein of “near decomposability”);
namely, that most any human behavior that
extends in time longer than a few minutes
can be conceived of as a hierarchical se-
ries of tasks, subtasks, and subsubtasks. The

4 A GOMS task analysis analyzes human behavior in
terms of its goals, the operators needed to accom-
plish the goals, sequences of operators and subgoals
that constitute methods for accomplishing a goal,
and selection rules for choosing a method when al-
ternative methods for accomplishing the same goal
exist.

5 Different approaches to the topic of cognitive en-
gineering and cognitive engineering models are pos-
sible and two excellent chapters that are very dif-
ferent from the current chapter have been authored
by Kieras (2007) and Byrne (2007a).



P1: IBE

CUFX212-21 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 17:54

568 gray

structure of this hierarchy is, for the most
part, determined by the nature of the task
and task environment and less so by the hu-
man operator. Rather than having to deal
with hours of behavior as one unit, the hu-
man factors analyst can break the behavior
down to the level required by the goals of
the analysis.

For the human factors professional, this
task analysis approach works well for design-
ing complex industrial operations in which
the lowest unit of analysis is the human op-
erator as well as designing procedures for
individual humans in which each low-level
task requires minutes or hours to perform
(Kirwan & Ainsworth, 1992; Shepherd,
1998, 2001). For the cognitive scientist in-
terested in interactive behavior, arguably,
the job is even easier. Although behaviors
may extend indefinitely in time, most in-
teractive behavior results from and results
in changes to the task environment. For the
pilot of an F-16, the driver of a car, or the
user of a VCR, the paradigm comes down to
(a) do something, (b) evaluate change in the
world, and (c) return to (a). Although inter-
active behavior is complex, the complexity
lies not in planning and executing a long se-
quence of behavior, but (a) evaluating the
current state of the task environment, (b)
deciding what can be done “now” that will
advance the user’s goals, given the current
state of the task environment, (c) evaluating
the strategies available to the human opera-
tor for accomplishing the current, momen-
tary goal, and (d) executing (c) to accom-
plish (b). The key to this interactive cycle is
the unit task.

2.1. The Unit Task as a Control Construct
for Human Interactive Behavior

Card, Moran, and Newell’s conceptual
breakthrough was that even tasks which
lasted only minutes were composed from
a series of smaller “unit tasks within which
behavior is highly integrated and between
which dependencies are minimal. This
quasi-independence of unit tasks means that
their effects are approximately additive”
(Card et al., 1983, p. 313). The “unit task
is fundamentally a control construct, not a

task construct” (Card et al., 1983, p. 386).
The unit task is not given by the task envi-
ronment, but results from the interaction of
the task structure with the control problems
faced by the user.

The prototypical example of a unit task
(from Chapter 11 in Card et al., 1983) is the
structure imposed by a typist on transcrip-
tion typing. The physical task environment
for transcription typing consists of the dic-
tated speech, a word processor, and a foot
pedal that controls how much of a record-
ing is played back. As speech is typically
much faster than skilled typing, the basic
problem faced by the typist is how much of
the recording to listen to before shutting it
off. The efficient typist listens while typing,
and the longer he or she listens, the greater
the lag between what they are hearing and
what they are typing. At some point, the
typist shuts off the recording and contin-
ues to type until he or she can remember
no more of the recording with certainty.
With some experience with the particular
speaker and maybe with the particular topic,
a skilled transcription typist will minimize
the amount of rewind and replay, and max-
imize the amount typed per unit task. This
chopping up of the physical task environ-
ment into unit tasks reflects a control process
that adjusts performance to the characteris-
tics of the task (the speed of dictation and
clarity of speech), the typist’s general typ-
ing skill (number of words per minute), and
the typist’s cognitive, perceptual, and motor
limits.

2.2. The Path from Unit Tasks through
Interactive Routines to Embodiment

A typical GOMS unit task is shown in
Table 21.1. This sample unit task is one
of approximately twenty needed to model
Lovett’s (Lovett & Anderson, 1996) build-
ing sticks task, a simple game whose ob-
jective is to match the length of a target
stick by building a new stick from pieces of
various sizes (a dry analogue to the better-
known water jug problem). This unit task
would be invoked to subtract length from
the built stick when it is larger than the
target stick. This example shows that each
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Table 21.1: Example unit task for the “building sticks task” using NGOMSL format
(Kieras, 1997)

Step Description Stmt time Op # Ops Op time Total time

Method for goal: Subtract stick<position> 0.1 0.1

Step 1 Point to stick<position> 0.1 P 1 1.1 1.2
Step 2 Mouse click stick<position> 0.1 BB 1 0.2 0.3
Step 3 Confirm: Stick is now black 0.1 M 1 1.2 1.3
Step 4 Point to inside of “your stick” 0.1 P 1 1.1 1.2
Step 6 Click mouse 0.1 BB 1 0.2 0.3
Step 7 Confirm: Change in stick size 0.1 M 1 1.2 1.3
Step 8 Return with goal accomplished 0.1 0.1

5.8

Stmt time = statement time; Op = operator; P = point operator, BB = button click; M = mental
operator, All times ore in second.

line or statement has an execution overhead
(Stmt Time) of 0.1 second. There are three
types of operators (Ops) used. P is a point
operator that is assumed to have a time of
1.1 seconds. BB is a button click (up and
down) with the duration of 0.2 sec. M is a
mental operator with the duration of 1.2 sec.
The entire method for accomplishing this
unit task lasts 5.8 sec.

As suggested by the table, the NGOMSL
format reduces all operators to one of a small
set. The duration of each operator is based
on empirical data, mathematical descrip-
tions of behavior such as Fitts’ Law or Hicks
Law, and so on. Much of what goes into an
NGOMSL analysis comes out of Card et al.’s
(1983, Chapter 2) Model Human Processor.
That chapter summarizes many important
regularities gleaned from experimental psy-
chology but cast into a form that could be
used by human factors analysts.

GOMS was intended as a tool for cogni-
tive engineering. Hence, whereas each line
of the NGOMSL analysis could be made
more precise and more tailored to, say, the
exact distance moved, a large motivation for
GOMS was to derive engineering-style ap-
proximations for predicting human behav-
ior. However, for some applied purposes,
the grain size of GOMS analyses in Table
21.1 is too gross. Indeed, to model transcrip-
tion typing, John (1996) had to develop a
version of GOMS that went below the grain
size of normal GOMS. John (1988) rep-

resented the dependencies between cogni-
tive, perceptual, and motor operations dur-
ing task performance (see Figure 21.1) in
an activity network formalism (Schweick-
ert, Fisher, & Proctor, 2003) that allowed
the computation of critical paths. This ver-
sion of GOMS is called CPM-GOMS, where
the CPM has a double meaning as both crit-
ical path method and cognitive, perceptual,
and motor operations.

The power of this representation received
a boost from its ability to predict perfor-
mance times in a very prominent field test
of two workstations for telephone toll and
assistance operators (TAOs; Gray, John, &
Atwood, 1993). Not only did CPM-GOMS
models predict the counterintuitive finding
that TAOs using a proposed new worksta-
tion would perform more slowly than those
who used the older workstations, but after
a field trial confirmed this prediction, the
models provided a diagnosis in terms of
the procedures imposed by workstations on
the TAO as to how and why newer, faster
technology could perform more slowly than
older technology.

2.3. The Legacy of Card, Moran,
and Newell

Representations have a power to make cer-
tain things obvious, and the GOMS and
CPM-GOMS representations did so in sev-
eral ways. First was the basic insight offered
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Predicted time:

530 ms

 

 

 

 

 

 

 

 

Figure 21.1. A CPM-GOMS model of an interactive routine. This
interactive routine could be instantiated as Step 1 and Step 4 in
Table 21.1. It shows the cognitive, perceptual, and motor operations
required to move a mouse to a predetermined location on a computer
screen. Total predicted time is 530 ms. The middle row shows
cognitive operators with a default execution time of 50 ms each.
Above that line are the perceptual operators, and below it are the
motor operators. The flow of operators is from left to right, with
connecting lines indicating dependencies. Within an operator type, the
dependencies are sequential. However, between operator types, the
dependencies may be parallel. The numbers above each operator
indicate the time, in milliseconds, for that operator to execute. Time is
accumulated from left to right along the critical path. The critical path
is indicated by bold lines connecting the shadowed boxes. Loc =
location; POG = point of gaze. See Gray and Boehm-Davis (2000) for
more detailed information.

by the unit task, namely, that functional
units of behavior resulted from an inter-
action between the task being performed,
detailed elements of the design of the task
environment, and limits of human cogni-
tive, perceptual, and motor operations. Sec-
ond, the notation of CPM-GOMS made
it very clear that all human behavior was
embodied behavior. Indeed, the mechanis-
tic representations of CPM-GOMS were
very compatible with the views of embodi-
ment expressed by modelers such as Ballard
(Ballard, Hayhoe, & Pelz, 1995; Ballard

et al., 1997; Ballard & Sprague, 2007) and
Kieras (Kieras & Meyer, 1997) and, at the
same time, completely side-stepped the ex-
treme, philosophical claims that are some-
times attached to this concept (Wilson,
2002). Third, whereas standard GOMS and
NGOMSL (Kieras, 1997) emphasized con-
trol of cognition, CPM-GOMS provided a
representation that showed that this control
was far from linear, but entailed a complex
interleaving of various parallel activities.

Whether as part of the Zeitgeist or as
a driving force, the 1990s saw many of
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the insights of CPM-GOMS become stan-
dard among modelers. Kieras and Myers
(1997) built a new cognitive architecture,
EPIC, by expanding Kieras’s parsimonious
production system (Bovair, Kieras, & Pol-
son, 1990; Kieras & Bovair, 1986) to include
separate modules for motor movement, eye
movements, and so on. ACT-R (Anderson,
1993) flirted with the addition of a module
for visual attention (Anderson, Matessa, &
Lebiere, 1997), experimented with a graft of
EPIC’s modules (Byrne & Anderson, 1998),
and completely restructured itself so that
all cognitive activity (not simply that which
required interactive behavior) entailed puts
and calls to a modular mind (Anderson et al.,
2004). During the same period, Ballard’s no-
tions of embodiment (Ballard et al., 1997)
took literal form in Walter – a virtual hu-
man who could follow a path while avoid-
ing obstacles, picking up trash, and stopping
to check traffic before he crossed the street
(Ballard & Sprague, 2007).

GOMS and the concept of the unit task
were conceived as tools to develop “an
engineering-style theory of how the user in-
teracts with the computer” (Newell & Card,
1985, p. 215) in an effort to “harden” the
science base for cognitive engineering. Dur-
ing the 1990s, the attention of the basic re-
search cognitive science community turned
to issues of control of cognition, exactly
those issues that were highlighted first by the
unit task and then by CPM-GOMS. Al-
though by no means complete, by the turn
of the twenty-first century, the theoretical
tools and modeling techniques were in place
to accelerate progress on the cognitive engi-
neering agenda.

3. Issues and Applications of
Computational Modeling for
Cognitive Engineering

To illustrate the differences between con-
temporary cognitive engineering and con-
temporary cognitive science, a very selective
review of two areas of recent research is pro-
vided. The first is the broad area of complex
systems. Work in this area has the typical

human factors character of one team of re-
searchers working on one applied problem.
The second area is the human-computer in-
teraction topic of visual analytics – how best
to design computer interfaces (where “inter-
face” includes “interactive procedures”) to
facilitate the search and understanding of
abstract data presented in visual form. Work
in this area resembles the type of distributed
research activity familiar to researchers in
areas such as visual attention, memory, or
categorization.

The position adopted in this section is
that the contribution of cognitive engineer-
ing is in solving applied problems and in
identifying gaps in the underlying cognitive
theory. To address this first point, more
time than the reader might expect is spent
on explaining the domain as well as explain-
ing the nature of the problem that is being
solved. To address the second point, details
of the model are not discussed. As most
cognitive engineering relies on modeling
techniques developed elsewhere, those in-
terested in these details may turn to the orig-
inal sources. Rather, the focus here will be
on identifying the special problems that the
modelers faced, theoretical mechanisms that
contributed to the success of the applied
model, and identifying the gaps in cognitive
theory that the applied model revealed.

3.1. Complex Systems

A major goal of cognitive engineering is to
design high-fidelity models of the demands
on human cognitive, perceptual, and action
resources during the operation of complex,
technological systems. The level of analysis
of cognitive engineering is much like that
of cognitive science. However, a character-
istic difference is that in the typical lab-
oratory study for, say, memory or visual
search, the task being studied is the main
task being performed. In contrast, cogni-
tive engineering tends not to focus on the
main task per se, but on a piece of the main
task. So in the arena of commercial aviation,
the focus is not on the successful operation
of an air traffic control system or even on
the take-off, flight, and successful landing
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of individual flights. Much more typically,
the focus would be on a small portion of
the flight, such as why pilots get lost while
taxiing to their gate after landing. Likewise,
for the case of driving a car on a crowded
highway, cognitive engineering is not con-
cerned with variables such as the number of
drivers on the road, miles driven, number
of accidents, and so on. Rather, cognitive
engineering would focus on basic questions
concerning how best to design instrument
panels and what sorts of guidelines should
be given to manufacturers regarding the de-
sign of in-vehicle systems, such as car radios,
navigation systems, and cell phones (Green,
1999, 2002).

3.1.1. the predator uninhabited

air vehicle

An important challenge for cognitive engi-
neering is the design of new systems, espe-
cially those that create new roles for human
operators. One such system is UAVs. UAVs
are increasingly used by the military and in-
telligence agencies in place of humanly pi-
loted aircraft for a variety of missions. There
is also some thought that in the foreseeable
future, UAVs may replace some portion of
human-piloted commercial aviation (Gluck
et al., 2005).

Remotely piloting a slow-moving aircraft
while searching for ground targets is a mis-
sion that is difficult for even experienced
Air Force pilots. A complete model that
could take off, perform missions, and re-
turn safely would entail the detailed inte-
gration of most, if not all, functional sub-
systems studied by cognitive scientists today
as well as raising challenging issues in the
control of integrated cognitive systems.
Such a complete system is beyond our cur-
rent state-of-the-art. However, partial sys-
tems can be useful in determining limits of
human performance and identifying strate-
gies that work. Such partial models have
been built by Gluck and colleagues (Gluck
et al., 2007) to study the challenges to the
human pilot in three routine UAV maneu-
vers. These researchers modeled two alter-
native sets of strategies and were able to
show that one set would not meet the per-

formance demands of the UAV, whereas
the other set would. Close analysis of hu-
man performance data suggested that the
best human pilots used the strategies incor-
porated into the best performing model.

Unlike tasks such as simple decision mak-
ing or categorization, a key challenge to the
modelers was obtaining access to an ade-
quate simulation of the pilot’s task environ-
ment, namely the aerodynamics of a UAV in
flight. The flight dynamics of a UAV are very
different from those of manned vehicles,
and understanding these dynamics presents
a challenge for even experienced Air Force
pilots. Given that the UAV is traveling at
such and such an altitude and speed, what
needs to be done to turn it right by 25 de-
grees while descending by 1,000 feet and
slowing by 50 mph within a given period of
time without stalling? Computing the effect
of such changes on UAV flight in such a dy-
namic task environment is not trivial and, in-
deed, is a significant aerodynamic engineer-
ing effort. An additional problem not faced
by basic theory cognitive science modelers is
that UAVs are artifacts that are being con-
stantly upgraded. Indeed, the most recent
UAVs have very different flight dynamics
than the UAV used by Gluck and associates
(2007). This interesting program of research
has slowed to a halt, as the flight character-
istics of the new UAVs are sufficiently dif-
ferent from the old UAVs to make cognitive
modeling impossible without a new aerody-
namic model.

3.1.2. runway incursions

Making a wrong turn while driving is frus-
trating. Making a wrong turn after landing
your passenger jet and trying to taxi to your
gate is a runway incursion, which is con-
sidered by air traffic control as “creating a
collision hazard with another aircraft tak-
ing off or landing or intending to take off
or land” (Byrne & Kirlik, 2005; Wald, 2006,
p. 137). Such errors are serious enough that
they are tabulated in a nationwide database
and were the focus of a National Aeronautics
& Space Administration (NASA) funded ef-
fort to find a systematic explanation for their
occurrence.
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Figure 21.2. Predicted selection probability for each turn heuristic by
decision-time horizon. (From Byrne & Kirlik, 2005).

The modeling effort by Byrne and Kirlik
(2005) had three key components; (1) inter-
views with pilots to elicit the knowledge and
strategies used to navigate from the runway
to gate; (2) an analysis of 284 routes from
landing to gate at nine major U.S. airports;
(3) an analysis of the time-horizon for mak-
ing a decision to turn an aircraft as a function
of intersection distance and aircraft dynam-
ics (when on the ground, large aircraft are
neither graceful nor easy to turn).

From their knowledge engineering effort,
the researchers obtained five heuristics that
pilots used to determine which direction to
turn at an intersection. The cognitive mod-
eling focused on strategy selection as a func-
tion of the time remaining before a deci-
sion had to be made and a turn initiated.
As in the UAV example, an important com-
ponent of the model was aircraft dynamics;
however, in the passenger jet case, it was
the dynamics of a lumbering 870,000-pound
passenger jet as it taxied on the ground to-
ward its gate, specifically, an algorithm “to
calculate the maximum speed with which
a turn of a given type could be negotiated”
(Byrne & Kirlik, 2005, p. 148). The model
was based on the ACT-R cognitive architec-
ture but run as a Monte Carlo simulation for

300 repetitions at each of 50 time-horizons.
The results predicted the selection probabil-
ity for each of five heuristics. The details of
the model and the heuristics are beyond the
scope of the current chapter, but a glance
at Figure 21.2 shows large differences be-
tween predicted strategy as a function of the
decision-time horizon.

The Byrne and Kirlik (2005) work fo-
cused on errors in decision making and
showed a good match to the data set of
real errors as well as to a better documented
set of errors collected from experienced air-
line pilots in a high-fidelity flight simula-
tor. Making an error while taxiing is a low-
probability event. The chance of a serious,
loss-of-life incident resulting from such an
error is an even lower probability event.
However, in an ATC system that supervises
thousands of takeoffs and landings each day,
even extremely low-probability events may
come to pass. The low actual probability
makes the empirical data difficult to collect
as the event is occurring.

When a terrible, low-probability event
does occur, all too often, the public and offi-
cial response is to find someone to blame – in
aviation, this usually means blaming the pi-
lot or the air traffic controller. Model-based
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analysis such as Byrne and Kirlik’s (2005)
does not eliminate the human responsibil-
ity from the accident equation, but it does
show that properties of the designed task
environment contribute to such accidents in
all-too-predictable ways. The simplest and
oldest way to augment human cognition is
by the design of the task environment. Byrne
and Kirlik’s analyses point to how this might
be done to reduce errors while taxiing.

3.1.3. driving and driving

while dialing

An especially notable attempt to model a
complex task is Salvucci’s program of re-
search to model driving (Salvucci, 2001,
2006; Salvucci & Gray, 2004; Salvucci &
Macuga, 2001). Driving is such an every-
day, mundane, expertise that it may be nec-
essary to step back and remind the reader of
its cognitive complexity:

The task of driving is in fact an ever-
changing set of basic tasks that must be in-
tegrated and interleaved. Michon (1985)
identifies three classes of task processes
for driving: operational processes that in-
volve manipulating control inputs for sta-
ble driving, tactical processes that govern
safe interactions with the environment and
other vehicles, and strategic processes for
higher-level reasoning and planning. Driv-
ing typically involves all three types of pro-
cesses working together to achieve safe, sta-
ble navigation – for instance, monitoring
a traffic light and controlling the vehicle
to stop and start, or deciding to make a
turn and controlling the vehicle through the
turn. Some tasks are not continual but in-
termittent, arising in specific situations – for
instance, parking a vehicle at a final des-
tination. In addition, driving may include
secondary tasks, perhaps related to the pri-
mary driving task (e.g., using a navigation
device), or perhaps mostly or entirely un-
related (e.g., tuning a radio or dialing a
cellular phone). (Salvucci, 2006, p. 363)

Salvucci’s modeling work has evolved over
the last several years. The most complete
report of his work is contained in the Hu-
man Factors article (Salvucci, 2006). In that
work, Salvucci presents the results of com-
paring the models with human behavior

on several dependent variables related to
lane keeping, curve negotiation, and lane
changing. The dependent variables include
performance-based measures, such as steer-
ing angle and lateral position, as well as eye
data measures thought to be closely related
to visual attention. Salvucci’s modeling is
done within the ACT-R architecture of cog-
nition. In all cases, his work benefits from
ACT-R’s ability to use the same simulation
software as used by his human subjects. This
means that the same type of log files are gen-
erated by models and humans, and the same
types of analyses can be easily applied.

Salvucci’s basic model of driving has been
integrated with models of dialing different
cell phones (Salvucci, 2001). The results
have practical implications in yielding clear
predictions for the differential effect of cell
phone design on driving performance. The
efforts to integrate models of two individual
tasks (driving and dialing) also have implica-
tions for the control of integrated cognitive
systems (Salvucci, 2005). This later work
nicely illustrates the importance of cognitive
engineering for identifying important gaps in
basic cognitive theory.

3.1.4. predicting skilled

performance from analyses

of novices

Verifying a task analysis of a complex system
is itself a complex task, with little guidance
and few shortcuts suggested by the litera-
ture (Kirwan & Ainsworth, 1992; Shepherd,
2001). In some sense, the knowledge con-
tained in the computational cognitive model
can be considered a verification of a task
analysis if the model is able to perform the
task at human levels of competence. Perhaps
a more stringent validation of a task analy-
sis is that, with experience at the task, the
knowledge taught to human novices suffices
to produce expert-level performance. Taat-
gen and Lee (2003) take up this challenge
with modest but noteworthy results.

The acquisition of skilled performance is
an enduring topic in both the basic and ap-
plied literature. Indeed, the dominant char-
acterization of skilled performance as pass-
ing through three phases (Fitts & Posner,
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1967) comes from a researcher, Paul Fitts,
who made contributions to both experimen-
tal psychology and human factors research.
Taatgen and Lee (2003) embrace Ander-
son’s (1982) characterizations of the im-
provement in performance between stages
as a shift from declarative to procedural
knowledge with practice. The model they
built was written in ACT-R and was seeded
with basic knowledge (how to click on but-
tons, where the various information items
were on the display and what they repre-
sented), as well as a declarative representa-
tion of the instructions to human subjects.

The vehicle they chose for their test is the
Kanfer-Ackerman air traffic controller (KA-
ATC) task (Ackerman & Kanfer, 1994);
a game-like simplification of the air traf-
fic controller’s task. The model used Taat-
gen’s production compilation enhancement
(Taatgen & Anderson, 2002) to ACT-R.
With experience, production compilation
converts declarative knowledge and very
general productions into task-specific pro-
ductions. Through production compilation,
many fewer production cycles are required
to perform the task, and many retrievals
from memory are replaced by incorporat-
ing specific declarative knowledge into the
specialized productions.

The Taatgen and Lee (2003) model in-
corporated the knowledge and declarative
representation of procedures that humans
would acquire through a thorough reading
of task instructions. All parameters used by
the model were the default ACT-R param-
eters. The model played the game for ten,
10-minute periods (trials). Model and hu-
man performance were compared at three
increasingly detailed levels of analysis; over-
all performance, unit task performance, and
key-stroke levels. Across all three levels of
comparison, the model mimicked the qual-
itative changes in human performance (as
shown by generally high r2 values). The ab-
solute match of the model to human data
(such as would be tested by RMSE compar-
isons, although these were not provided by
the authors) showed mixed results. In sev-
eral cases, the models were right on top of
the human data. For overall performance,

the models started out better than the hu-
mans, but began to match human perfor-
mance after the fifth 10-minute trial. For
two of the three unit tasks, the model pro-
vided a good match to human performance.
In the third unit task, the model was slower.
For the key-stroke data presented, the model
also was generally slower than the humans.

The authors attribute the differences in
model and human performance to several
factors. First, other analyses (John & Lalle-
ment, 1997; Schunn & Reder, 2001) have
established that different humans bring dif-
ferent strategies to bear on this task, whereas
the model only used one strategy. Further-
more, human performance as it speeds up
seems to exhibit more parallelism than does
model performance. These differences re-
flect limits of the current ACT-R architec-
ture that does not learn new strategies with
experience or by exploration and can only
deploy the strategies provided by the mod-
eler. On the other hand, the general quan-
titative fit of model to data is good, and the
qualitative fit captures the speed up in hu-
man performance with experience. In gen-
eral, the Taatgen and Lee (2003) work is
a successful demonstration of the ability of
cognitive engineering to predict expert pat-
terns of performance given a novice task
analysis and instructions.

3.1.5. summary: complex systems

The previous four cases are good exam-
ples of cognitive engineering applied to
complex systems. Although the applications
may seem modest, each of the computa-
tional cognitive models is built on an archi-
tecture, ACT-R, that was intended as a ve-
hicle for basic research, not applied. In this
usage, the ACT-R architecture becomes a
vehicle for applying basic research to applied
problems.

The question of “why ACT-R” arises. The
answer is straightforward and rests more on
the nature of cognitive engineering than on
ACT-R’s claims as an architecture of cogni-
tion (although this aspect certainly does not
hurt!). First, compared with connectionist
models, it is much easier to write ACT-R
models that interact with tasks that consist
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of multiple components that extend seri-
ally in time (e.g., such as piloting a UAV).
Second, compared with Soar, over the past
15 years, ACT-R (like EPIC) has changed
dramatically to incorporate many of the the-
oretical advances of cognitive science. Of
prime importance for modeling interactive
behavior has been ACT-R’s (like EPIC’s)
emphasis on modeling the interaction of
cognitive, perceptual, and motor operations.
Third, and probably foremost, the current
ACT-R software (ACT-R 6.0; see Anderson
et al., 2004) reflects over a decade of soft-
ware engineering. One result of this software
engineering is that it is now relatively easy
to incorporate new modules into ACT-R to
either supplement or replace existing mod-
ules. Fourth, in the last eight years (Byrne
& Anderson, 1998), a significant part of the
software engineering effort has been focused
on enabling ACT-R models to directly in-
teract with the same software task environ-
ments as human users. Fifth, a concomi-
tant of this software engineering has been a
decade-long effort to produce tutorial mate-
rials and conduct a series of summer schools
to train a wide variety of users in ACT-R.

Whatever the particular merits of ACT-
R, it is clear that the last two decades have
seen a significant expansion in the scope of
cognitive engineering. We have gone from
a focus on small, self-paced tasks, such as
text editing (Card et al., 1983), to larger and
much more dynamic tasks, such as piloting
UAVs and driving cars.

3.2. Visual Analytics: Human-Computer
Interaction during the Search and
Exploration of Massive Sets of
Qualitative Data

Visual analytics is a new label (Thomas
& Cook, 2005; Wong & Thomas, 2004)
for efforts to present abstract information
in visual form in both structured and un-
structured displays. Structured displays in-
clude the traditional bar charts and line
graphs (Wainer & Velleman, 2001), as well
as newer technologies that allow us to
dynamically create multiple, multidimen-
sional, complex representations of selected

subsets of vast data sets (for an excellent
sampling of recent innovative visualizations
for visual analytic displays, see the special
issue organized by Keim et al., 2006). The
most common example of unstructured dis-
plays is the World Wide Web. Although in-
dividual Web pages or Web sites may be
well structured, the Web as a whole is not.

Motivation for work in this area is high.
Knowledge may be power, but data is not
knowledge until it can be processed and pre-
sented so that a human can understand and
use it. Techniques for displaying data are
key to transforming data into knowledge.
These techniques need to support the hu-
man user in rapid, exploratory search and
in comprehending what is found. Unfortu-
nately, modern techniques for visualization
are not only prey to well-known usability
problems (Andre & Wickens, 1995) but can
introduce new and debilitating distortions.
For example, three-dimensional representa-
tions of terrain, favored by many new mili-
tary systems, make it extremely difficult to
accurately judge relative and absolute dis-
tances (Smallman & St. John, 2005). Identi-
fying and guarding against such alluring and
subtle distortions should be one of the goals
of cognitive engineering.

The following section begins with a brief
history of visual analytics as treated by cog-
nitive science. Next is a sampling of recent
work on structured displays. This sampling
is followed by a discussion of work on seek-
ing and extracting information from the un-
structured environment of the World Wide
Web.

3.2.1. a brief history

In large part, the history of visual analyt-
ics has been driven by two very different
communities; judgment and decision mak-
ing, and human-computer interaction.

3.2.1.1. Judgment and Decision-Making Be-
ginnings. In the 1980s, Payne, Bettman, and
Johnson (as summarized in their 1993 book)
acknowledged borrowing the construct of
elementary information processes (EIPs)
from Newell and Simon (1972) to quan-
tify the cognitive effort involved in various
judgment and decision-making strategies.
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By demonstrating that people would adopt
strategies that traded off decision-making
effectiveness (accuracy) for cognitive effi-
ciency (effort), this research had a large and
important influence on both the judgment
and decision-making as well as the cognitive
science communities (e.g., Anderson, 1990;
Anderson, 1991).

The EIPs construct provides a framework
for thinking about the cognition involved in
various decision strategies under a variety of
conditions by comparing the effectiveness
and efficiency of alternative strategies that
use partial information against that of a de-
cision strategy that uses complete informa-
tion. However, the EIP construct is limited
in that it is not embedded in a theory of the
control of cognition. For example, efficiency
is assessed by simply comparing the number
of EIPs used by alternative strategies with
the number used by the total information
strategy.

The original work ignored how the in-
formation was displayed and factors asso-
ciated with the cost of information ex-
traction, manipulation, and retention. This
emphasis began to change in the 1990s.
Researchers in the judgment and decision-
making tradition began to focus on the influ-
ence of the organization, form, and sequence
of information on strategy selection (e.g.,
Fennema & Kleinmuntz, 1995; Kleinmuntz
& Schkade, 1993; Schkade & Kleinmuntz,
1994). Other research looked at how indi-
vidual differences in working memory ca-
pacity interacted with interface design to af-
fect performance on decision-making tasks
(Lohse, 1997). At least one study investi-
gated how the cost of information access af-
fects strategy selection (Lohse & Johnson,
1996). Other studies looked at how the de-
sign of decision aids may have unintended
consequences for the decision strategies that
people adopt (Adelman et al., 1996; Ben-
basat & Todd, 1996; Rose & Wolfe, 2000;
Todd & Benbasat, 1994, 1999, 2000).

3.2.1.2. Human-Computer Interaction Be-
ginnings. The growth of research in cogni-
tive modeling of information search pro-
vides a case study on the role of technology
in scientific research. Although other work

Figure 21.3. Cost of knowledge characteristic
function (adapted from Card et al., 1994,
Figure 21.1). Notice that improvement (Curve
B, the dotted line) can come in one of two ways.
By keeping the time costs the same we can
access more documents (arrow A). By keeping
the number of documents the same we can
access them at a lower cost.

focused on the cognitive factor implications
of interface design (Gray et al., 1993; Lohse,
1993), few groups had access to the ad-
vanced technologies that were creating new
designs and new visualizations (see Card,
Mackinlay, & Shneiderman, 1999, for a
compendium of many of the key papers
from the 1980s and 1990s on this topic.).
In the early 1990s many advanced visu-
alizations were emerging from PARC and
the cognitive modeling group led by Card
took full advantage of these opportunities
(Card, Pirolli, & Mackinlay, 1994; Mackin-
lay, Robertson, & Card, 1991; Pirolli & Card,
1995; Russell et al., 1993).

An early project focused on the “cost
of knowledge” for extracting information
from dynamic, visual analytic displays (Card
et al., 1994). This effort framed the informa-
tion search problem in terms of the number
of documents that could be found within a
given time period. Different technologies al-
lowed different efficiencies, with “technolo-
gies” widely defined to include everything
from computer programs to stacks on the
desktop, to papers tucked away in filing cab-
inets (see Figure 21.3). The work identified
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several ways in which such searches could be
sped up, including alternative ways of orga-
nizing the documents, making more efficient
methods available to the user, and advances
in computer technologies (hardware and
networks) that would allow the same proce-
dures to be performed more quickly. These
analyses illustrated the effect that trade-offs
in system design issues, very broadly defined,
would have on human productivity.

3.2.2. reasoning from graphs

Understanding information presented in line
graphs may be the prototypical example of
reasoning from structured displays. At the
very least, it is a topic that has been well
studied for a number of years (many of the
key papers are listed in the bibliography pro-
vided by Gillan et al., 1998; Tufte, 1983).
However, people still have trouble extract-
ing information from graphs and, as anyone
who has had to perform this task might sus-
pect, researchers still have problems creating
graphs that make their data transparent to
their readers.

There are two basic decisions made in cre-
ating a data graph: (a) what to display and
(b) how to display it. Most discussions of
line graphs assume that the display incorpo-
rates the intended data and no more. If the
“what to display” assumption is correct, then
alternative displays of the same data would
be informationally equivalent (Larkin &
Simon, 1987; Peebles & Cheng, 2003) in
that no information could be inferred from
one that could not be inferred from another.
Of course, the assumption that the graph
designer has displayed no more and no less
information than needed can be problem-
atic. Displaying too little information means
that the “point” of the display can never be
taken. Displaying too much means that the
reader may be confused as to the point or
may extract information irrelevant to the
point.

If we assume that no more and no less in-
formation than is needed is being displayed,
then how to display it becomes an impor-
tant topic. Alternative representations may
be informationally equivalent without being
computationally equivalent. Computational

equivalence (Larkin & Simon, 1987) refers
to the number of operations, the resources
required by these operations (e.g., memory,
attention, perceptual-motor), or the time
required to extract information from the
graph. Informational equivalence is a func-
tion of the displays, whereas computational
equivalence is a function of the cognitive,
perceptual, and motor operations required
to extract equivalent information from the
displays.

Peebles and Cheng (2003) studied the
basic graph-reading task (see also, Lohse,
1997) of determining the value of one vari-
able that corresponds to the given value of
another variable (e.g., for the year in which
oil consumption was six, what was gas con-
sumption?). They created two information-
ally equivalent versions of each graph and
for each one asked three types of ques-
tions of each participant. Their intention
was two-fold. First, they wished to compare
human behavior in this task with the predic-
tions of their Graph-Based Reasoning model
(Peebles, Cheng, & Shadbolt, 1999). The
Graph-Based Reasoning predictions were
based on a task analysis, which assumes
that the eye movements made will follow
the optimal sequence required to achieve
the current informational goal. Second, they
wished to evaluate the value-added of build-
ing a computational cognitive model of em-
bodied cognition that incorporated detailed
assumptions regarding the use of memory,
visual attention, motor movement, and per-
ceptual operations. The model was built us-
ing ACT-R. An example of the data they col-
lected from their human subjects and their
model subjects is presented in Figure 21.4.

Peebles and Cheng (2003) found an in-
teraction between question type and graph
type. The efficiency with which questions
were answered varied across the two graph
types. The eye movement data revealed pat-
terns that could be interpreted as due to
perceptual and cognitive limitations of the
participants. The Graph-Based Reasoning
model did not predict these patterns; how-
ever, the ACT-R model did. Compared with
predictions from the Graph-Based Reason-
ing model, the ACT-R model required more
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Figure 21.4. Screen shots from Peebles and Cheng (2003) showing a human subject’s eye movement
path (left) and the ACT-R models visual attention path (right). Both scan paths are in pursuit of the
answer to a specific query. (For a discussion of the query and the layout of this particular graph, see
Peebles & Cheng, 2003.)

glances back to the question toward the end
of each trial. These glances varied with ques-
tion type and graph type, and reflect dif-
ferent demands made on memory for the
location of graph elements, the association
between symbol and variable, and the effect
of practice.

Traditional approaches to graph under-
standing have focused on two elements: the
visual properties of the graph and the re-
quirements of the task. The model built by
Peebles and Cheng (2003) incorporates a
third element, namely, the demands on em-
bodied cognition (cognitive, perceptual, and
motor operations). The interaction among
these three elements is complex. Compared
with the other tasks discussed in this chap-
ter, the familiarity of graph reading to the
readers of this chapter may make it seem a
cut-and-dried proposition. However mun-
dane the task may be, it is clearly a task
that even the most experienced of scien-
tists struggle with when reading the work
in their field. It may not be too far-fetched
to think that the day may be near when each
author could have a graph-reading program

that would provide real-time feedback as to
how much difficulty a novice (one unfamil-
iar with the terminology) and expert would
have in extracting different amounts of in-
formation from a display. If this comes to
pass, it would be through the application of
cognitive science theory for cognitive engi-
neering purposes.

3.2.3. cognitive engineering models

of surfing the web (and other

informational displays):

information search of massive

data sets in heterogeneously

designed spaces

A prime example of unstructured dis-
plays for representing and accessing mas-
sive amounts of quantitative data visually
is the World Wide Web. Although surf-
ing the Web represents a mundane exper-
tise (i.e., something that many people in the
population of readers do daily and are very
good at), understanding and predicting hu-
man Web search behavior presents a consid-
erable challenge to the theoretical mecha-
nisms of contemporary cognitive science. In
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particular, a full accounting of Web search
requires an understanding of information
scent, semantic relatedness, visual saliency,
general knowledge of page layouts and id-
ioms, and the control of integrated cognitive
systems.

3.2.3.1. Theory Development. Analogies
are important in making progress in science.
In the mid-1990s, researchers at PARC
(Russell, et al., 1993) hit on the analogy be-
tween people searching for information and
animals searching for food. This tie between
information search and animal foraging was
productive, due in large part to the exis-
tence of optimal foraging theory (Stephens
& Krebs, 1986), which cast animal forag-
ing behavior into an abstract, quantitative,
modeling framework that proved possible
to adapt and extend to human informa-
tion seeking (Pirolli & Card, 1999; Pirolli,
2007).

By this analogy, information scent is the
construct that relates the semantic related-
ness of the current information context to
the goals of the user’s search. The higher
the information scent, the more related the
current context is to the search goals and
the more likely the searcher would be to re-
main in the current information patch. The
searcher will likely remain in the current
patch for as long as the information scent
remains above some threshold. When the
information scent falls below this threshold,
the searcher will likely leave (Card et al.,
2001; Fu & Pirolli, 2007; Pirolli & Fu, 2003).
In Web terms, a query to a search engine
may return a link with a high information
scent to the user’s query. The user will click
on the link and begin to search the Web site.
As long as the information at that site has a
high semantic relatedness to the searched-
for information, the user will remain. How-
ever, if the information turns out to be less
useful than expected, the user will leave the
current site and attempt to find one with a
higher information scent.

The theory of information scent has
played a key role in developing the cognitive
engineering approach to information search
and retrieval. However, it is the first step,
not the last in building cognitive engineering

models of human information search. If our
goal is to design cognitively congruent in-
teractive procedures for searching informa-
tion displays, then nothing less than a cog-
nitive theory of embodied information search
is required. Some of the issues and cogni-
tive technologies for achieving this goal are
discussed in the following sections.

3.2.3.2. Semantic Relatedness Measures.
For the development of models of infor-
mation search, an all-but-prerequisite co-
development was that of statistical measures
of semantic relatedness (Harman, 1993;
Landauer & Dumais, 1997; Lemaire &
Denhiére, 2004; Turney, 2001). To appreci-
ate the development of these measures, con-
sider how the modeling of interactions with
semantic content would have been handled
without these measures.

For decades, the only means available of
estimating associative strength within exper-
imental psychology was to have participants
in psychology studies estimate the link be-
tween two items on, say, a seven-point scale.
By this method, obtaining reliable and valid
estimates of associative strength between,
say, each of 100 words would require human
judgments on 4,950 word pairs. As such,
human judgments are notoriously noisy; a
reliable and valid estimate of relatedness re-
quired large numbers of human subjects to
judge the associative relatedness of each pair
of words. At the end of all of this work,
there would be good estimates of related-
ness between each of the 100 words in the
list. Obviously, such methods of obtaining
word associations means that human search
among the unlimited diversity of the World
Wide Web would be all but impossible to
model and study.

Statistical measures of semantic similarity
parse large corpora (measured in the mil-
lions of documents) to develop families of
measures that purport to provide human-
like judgments of the relatedness of one
word to another or of an entire text to the
topic of a query. A review of these mea-
sures is beyond the scope of the current
chapter (see Lemaire & Denhiére, 2004,
for a cogent and succinct overview of sev-
eral of these measures.) However, it is clear



P1: IBE

CUFX212-21 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 17:54

cognitive modeling for cognitive engineering 581

Figure 21.5. Visual saliency map on right of Web page shown on left using Rosenholtz’ (1999)
measure of visual saliency. To produce the “map,” for each screen pixel, the score for each dimension
is translated to a 256-bit vector, averaged with the other two dimensions and mapped onto a 256-bit
gray-scale.

that the research in this area has gone from
demonstrating that various measures can be
generated that mimic human judgment to
examining the cognitive fidelity of these sta-
tistically derived judgments across a variety
of search tasks (Blackmon et al., 2005; Kaur
& Hornof, 2005; Veksler & Gray, 2006).
The current goals include understanding
the limits and best application of current
methods (Juvina et al., 2005; Lemaire &
Denhiére, 2004; Matveeva et al., 2005) and
developing new measures as needed.

3.2.3.3. Stimulus-Driven Factors in Visual
Search. The human visual system seems
hard-wired by evolution to allocate atten-
tion and resources to certain visual stimuli
(Wolfe, 1998), such as abrupt onsets or pat-
terns of motion against otherwise still back-
grounds (Ware & Bobrow, 2004). It also
seems the case that certain combinations of
stimulus characteristics are easier to allocate
visual attention to in some visual environ-
ments than in others. For example, searching
for a red L amid a field of green Ls is quite
easy. Searching for a red L amid a field of
green Ls and red Ts is much harder (Wolfe,
1998).

Recent work has made progress in devel-
oping statistical visual saliency measures (Itti
& Koch, 2001; Rao & Ballard, 1995; Rosen-
holtz, 2001; Verghese & McKee, 2004) that
are somewhat analogous to the statistical se-
mantic relatedness measures discussed ear-

lier. These measures allow the computation
of differences between elements of a visual
display along one or more visual dimensions.
For example, Figure 21.5 shows a visual
saliency map of a Web page using Rosen-
holtz’s (1999) measure of visual saliency.
This measure computes a similarity score for
each of three dimensions (color, orientation,
and contrast) between every element on the
screen and every other element.

It is certainly not the case that visual
saliency determines where the eye looks. If
this issue were in doubt, it has been laid
to rest by a variety of small, experimen-
tal psychology demonstrations (Henderson
et al., 2007; Underwood & Foulsham,
2006). However, contemporary theory as-
serts that eye movement location is de-
termined by activation at a saccade map
(Trappenberg et al., 2001) and that where
the activation builds up is influenced by
stimulus-driven as well as goal-directed fac-
tors (Godijn & Theeuwes, 2002; Pomplun,
2007). It seems clear that visual saliency has
an important role to play in the direction,
or misdirection, of visual attention during
information search. Given the visually dra-
matic nature of modern structured and un-
structured (e.g., the left side of Figure 21.5)
visual analytic displays, it is clear that visual
saliency is a factor that must be taken into
account in predicting the success and time
costs of information search.
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3.2.3.4. Knowledge-Driven Factors in Vi-
sual Search. Knowledge-driven factors are
those that influence visual search because
of explicitly adopted strategies (Everling &
Fischer, 1998; Godijn & Theeuwes, 2002),
adapting search to the statistical structure of
a specific search environment (Reder et al.,
2003), or general knowledge and experience
with the layout of visually presented infor-
mation (e.g., books have tables of content,
indexes, and chapters; chapters have intro-
ductions, subsections, and summaries; and
so on). It is clear that even unstructured
information spaces such as Web pages of-
ten enable knowledge-driven search. For ex-
ample, most Web pages have headers and
footers that contain navigation information
or information specific to the page or Web
site itself, that is, not content information.
Likewise, menus come in many forms, but
most of these forms are visually distinctive
and, when present, are often on the right,
the left, or toward the top of a Web page
(Rigutti & Gerbino, 2004). At present, we
know of no computational cognitive model
that factors such knowledge into its predic-
tions, although there are several in which
such factors are explicitly eliminated by the
modelers (Blackmon et al., 2005; Kaur &
Hornof, 2005).

3.2.4. summary: cognitive

engineering models for

human-information interaction

The purpose of building cognitive engineer-
ing models that can surf the Web, extract
information from line graphs, or make sense
of a complex visual display of qualitative
information is to optimize human perfor-
mance by identifying design elements or de-
cisions that may lead to stable but subop-
timal human performance (Fu, 2007; Fu &
Gray, 2004, 2006). Achieving this goal will
require advances in cognitive science the-
ories of semantic comprehension and visual
attention as well as in advances in our under-
standing of the composition and control of
integrated cognitive systems (Gray, 2007a).
The symbiosis between cognitive science
and cognitive engineering shows no sign of
abating.

4. Conclusions

This chapter began with a discussion of five
dimensions on which cognitive science and
cognitive engineering sometimes differ. First
discussed was the manner in which the prob-
lems were picked. As in the case of run-
way incursions (Byrne & Kirlik, 2005; Kir-
lik, 2007) or UAVs (Gluck et al., 2007), the
problem is often picked for the researcher,
and the research is unlikely to continue
without a larger organization that provides
substantive support in terms of equipment
and specialized expertise.

Second was the amount of prior empir-
ical data. Certainly, the models discussed
previously rest on a broad base of empiri-
cal data. However, the breadth of that base
meant that much of it, usually the part clos-
est to the task being modeled, was very shal-
low. Hence, the Peebles and Cheng (2003)
model rested on years of research on mem-
ory and visual attention as well as studies of
reading line graphs. However, theirs is the
first model that put these elements together
to predict graph reading. The shallowness of
this base was fully exposed in the discussion
of Visual Analytics, in which a common ev-
eryday task (i.e., surfing the Web) presents
a challenge to both applied and basic cogni-
tive science.

Third was the expertise factor. Key to
modeling the UAV, runway incursions, and
driving tasks was access to human experts.
This factor was not as important to the
graph-reading task and not at all applicable
to the ATC game, where the focus was on
understanding the transition from novice to
skilled performance. It is unclear how this
dimension of expertise will play itself out
in the domain of visual analytics. Certainly,
the strong reliance on statistical measures
of semantic relatedness suggest that much
mundane human expertise will have to be
assumed before progress on building cog-
nitive engineering models of visual analytic
performance can progress.

Fourth was a different sort of factor. The
areas in which cognitive engineering has
been applied are areas with strong demands
for answers. What are the implications for
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cognitive science if cognitive engineering
cannot meet those demands? If cognitive en-
gineering is “cognitive science theories ap-
plied to human factors practice,” then if
we cannot meet the demands for cognitive
engineering, a strong implication might be
that the cognitive science enterprise has lit-
tle relevance to our modern world. Pursuit
of knowledge for knowledge’s sake may be a
fine ideal, but the successful advancement of
physics and biology in the last century was
due less to knowledge for knowledge’s sake
and more to knowledge that was able to ad-
dress key concerns of our society. Compared
with disciplines such as philosophy and lin-
guistics, research in cognitive science is well
funded. The basic questions that cognitive
science addresses are no more compelling
than those in these other fields. What ac-
counts for our better funding is our promise
to society that advances in cognitive science
theory will result in tangible improvements.

Fifth was the view that cognitive en-
gineering dealt with integrated cognitive
systems and that such systems had been
largely ignored by a basic research commu-
nity that was content to dive deeply into
artificially isolated areas such as reasoning,
decision making, memory, and visual atten-
tion (Byrne, 2007b). Not only is the control
of integrated cognitive systems a challeng-
ing basic research question, the importance
of understanding the control of integrated
cognitive systems for cognitive engineering
purposes suggests that research on control
issues should become a high priority among
basic researchers as well as those agencies
that fund basic research.
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Lemaire, B., & Denhiére, G. (2004). Incremental
construction of an associative network from
a corpus. In K. D. Forbus, D. Gentner & T.
Regier (Eds.), 26th Annual Meeting of the Cog-
nitive Science Society, CogSci2004 (pp. 825–
830). Hillsdale, NJ: Lawrence Erlbaum.

Lohse, G. L. (1993). A cognitive model for
understanding graphical perception. Human-
Computer Interaction, 8(4), 353–388.

Lohse, G. L. (1997). The role of working mem-
ory on graphical information processing. Be-
haviour & Information Technology, 16(6), 297–
308.

Lohse, G. L., & Johnson, E. J. (1996). A compar-
ison of two process tracing methods for choice
tasks. Organizational Behavior and Human De-
cision Processes, 68(1), 28–43.

Love, B. C., Medin, D. L., & Gureckis, T. M.
(2004). SUSTAIN: A network model of cat-
egory learning. Psychological Review, 111(2),
309–332.

Lovett, M. C., & Anderson, J. R. (1996). His-
tory of success and current context in problem
solving: Combined influences on operator se-
lection. Cognitive Psychology, 31, 168–217.

Mackinlay, J. D., Robertson, G. G., & Card,
S. K. (1991). The perspective wall: detail and
context smoothly integrated. In S. P. Robert-
son, G. M. Olson & J. S. Olson (Eds.), Pro-
ceedings of the SIGCHI conference on Human
factors in computing systems: Reaching through
technology (pp. 173–176). New York: ACM
Press.

Matveeva, I., Levow, G., Farahat, A., & Royer,
C. (2005, September). Term representation
with generalized latent semantic analysis. Pa-
per presented at the 2005 Conference on Re-
cent Advances in Natural Language Process-
ing, Borovets, Bulgaria.

Newell, A. (1990). Unified theories of cognition.
Cambridge, MA: Harvard University Press.

Newell, A., & Card, S. K. (1985). The pros-
pects for psychological science in human-
computer interaction. Human-Computer Inter-
action, 1(3), 209–242.



P1: IBE

CUFX212-21 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 17:54

cognitive modeling for cognitive engineering 587

Newell, A., & Simon, H. A. (1972). Human prob-
lem solving. Englewood Cliffs, NJ: Prentice
Hall.

Nosofsky, R. M., & Palmeri, T. J. (1997).
An exemplar-based random walk model of
speeded classification. Psychological Review,
104(2), 266–300.

Payne, J. W., Bettman, J. R., & Johnson, E. J.
(1993). The adaptive decision maker. New
York: Cambridge University Press.

Peebles, D., & Cheng, P. C. H. (2003). Modeling
the effect of task and graphical representation
on response latency in a graph reading task.
Human Factors, 45(1), 28–46.

Peebles, D., Cheng, P. C.-H., & Shadbolt, N.
(1999). Multiple processes in graph-based
reasoning. In M. Hahn & S. C. Stoness (Eds.),
Twenty-First Annual Conference of the Cogni-
tive Science Society (pp. 531–536). Hillsdale,
NJ: Lawrence Erlbaum.

Pew, R. W. (2007). Some history of human per-
formance modeling. In W. D. Gray (Ed.), In-
tegrated models of cognitive systems. New York:
Oxford University Press.

Pew, R. W., & Mavor, A. S. (Eds.). (1998). Mod-
eling human and organizational behavior: Ap-
plication to military simulations. Washington,
DC: National Academy Press.

Pirolli, P. (2005). Rational analyses of informa-
tion foraging on the Web. Cognitive Science,
29(3), 343–373.

Pirolli, P., & Card, S. K. (1995). Information
foraging in information access environments.
In I. R. Katz, R. Mack, L. Marks, M. B.
Rosson & J. Nielsen (Eds.), Proceedings of the
SIGCHI conference on Human factors in com-
puting systems (pp. 51–58). New York: ACM
Press.

Pirolli, P., & Card, S. K. (1999). Information for-
aging. Psychological Review, 106(4), 643–675.

Pirolli, P., & Fu, W.-T. (2003). SNIF-ACT: A
model of information foraging on the World
Wide Web. Lecture Notes in Computer Science,
2702, 45–54.

Pomplun, M. (2007). Advancing area activation
towards a general model of eye movements in
visual search. In W. D. Gray (Ed.), Integrated
models of cognitive systems (pp. 120–131). New
York: Oxford University Press.

Rao, R. P. N., & Ballard, D. H. (1995). An active
vision architecture based on iconic represen-
tations. Artificial Intelligence, 78(1–2), 461–
505.

Reder, L. M., Weber, K., Shang, J., & Vanyukov,
P. M. (2003). The adaptive character of the
attentional system: Statistical sensitivity in a

target localization task. Journal of Experimen-
tal Psychology-Human Perception and Perfor-
mance, 29(3), 631–649.

Rigutti, S., & Gerbino, W. (2004). Navigating
within a web site: the WebStep model. In
M. C. Lovett, C. D. Schunn, C. Lebiere &
P. Munro (Eds.), Abstract presented at
the Sixth International Conference on Cog-
nitive Modeling, ICCM2004 (pp. 378–379).
Mahwah, NJ: Erlbaum.

Rips, L. J. (1994). The psychology of proof: Deduc-
tive reasoning in human thinking. Cambridge,
MA: The MIT Press.

Rose, J. M., & Wolfe, C. J. (2000). The effects
of system design alternatives on the acquisi-
tion of tax knowledge from a computerized
tax decision aid. Accounting Organizations and
Society, 25(3), 285–306.

Rosenholtz, R. (1999). A simple saliency model
predicts a number of motion popout phenom-
ena. Vision Research, 39, 3157–3163.

Rosenholtz, R. (2001). Search asymmetries?
What search asymmetries? Perception & Psy-
chophysics, 63(3), 476–489.

Russell, D. M., Stefik, M. J., Pirolli, P., & Card,
S. K. (1993). The cost structure of sensemaking.
Amsterdam, The Netherlands: ACM Press.

Salvucci, D. D. (2001). Predicting the effects of
in-car interface use on driver performance: An
integrated model approach. International Jour-
nal of Human-Computer Studies, 55(1), 85–
107.

Salvucci, D. D. (2005). A multitasking general
executive for compound continuous tasks.
Cognitive Science, 29(3), 457–492.

Salvucci, D. D. (2006). Modeling driver behav-
ior in a cognitive architecture. Human Factors,
48(2), 362–380.

Salvucci, D. D., & Gray, R. (2004). A two-point
visual control model of steering. Perception,
33(10), 1233–1248.

Salvucci, D. D., & Macuga, K. L. (2001). Pre-
dicting the effects of cell-phone dialing on
driver performance. In E. M. Altmann, A.
Cleeremans, C. D. Schunn & W. D. Gray
(Eds.), Fourth International Conference on Cog-
nitive Modeling (pp. 25–30). Mahwah, NJ:
Lawrence Erlbaum Associates.

Schkade, D. A., & Kleinmuntz, D. N. (1994). In-
formation displays and choice processes: Dif-
ferential effects of organization, form, and se-
quence. Organizational Behavior & Human
Decision Processes, 57(3), 319–337.

Schunn, C. D., & Reder, L. M. (2001). An-
other source of individual differences: Strat-
egy adaptivity to changing rates of success.



P1: IBE

CUFX212-21 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 17:54

588 gray

Journal of Experimental Psychology-General,
130(1), 59–76.

Schweickert, R., Fisher, D. L., & Proctor, R. W.
(2003). Steps toward building mathemati-
cal and computer models from cognitive task
analyses. Human Factors, 45(1), 77–103.

Shepard, R. N., Hovland, C. I., & Jenkins, H. M.
(1961). Learning and memorization of clas-
sifications. Psychological Monographs, 75(13),
42–42.

Shepherd, A. (1998). HTA as a framework for
task analysis. Ergonomics, 41(11), 1537–1552.

Shepherd, A. (2001). Hierarchical task analysis.
New York: Taylor & Francis.

Simon, H. A. (1996). The sciences of the artificial
(3rd ed.). Cambridge, MA: The MIT Press.

Singley, M. K., & Anderson, J. R. (1989). The
transfer of cognitive skill. Cambridge, MA: Har-
vard University Press.

Smallman, H. S., & St. John, M. (2005). Naı̂ve
realism: Misplaced faith in the utility of re-
alistic displays. Ergonomics in Design, 13(3),
6–13.

Stephens, D. W., & Krebs, J. R. (1986). Forag-
ing theory. Princeton, NJ: Princeton University
Press.

Taatgen, N. A., & Anderson, J. R. (2002). Why
do children learn to say “broke”? A model of
learning the past without feedback. Cognition,
86(2), 123–155.

Taatgen, N. A., & Lee, F. J. (2003). Produc-
tion composition: A simple mechanism to
model complex skill acquisition. Human Fac-
tors, 45(1), 61–76.

Thomas, J. J., & Cook, K. A. (Eds.). (2005). Il-
luminating the path: The research and develop-
ment agenda for visual analytics: Washington,
DC: IEEE Press.

Todd, P., & Benbasat, I. (1994). The influence
of decision aids on choice strategies – an
experimental-analysis of the role of cognitive
effort. Organizational Behavior and Human
Decision Processes, 60(1), 36–74.

Todd, P., & Benbasat, I. (1999). Evaluating the
impact of DSS, cognitive effort, and incentives
on strategy selection. Information Systems Re-
search, 10(4), 356–374.

Todd, P., & Benbasat, I. (2000). Inducing com-
pensatory information processing through de-
cision aids that facilitate effort reduction: An
experimental assessment. Journal of Behav-
ioral Decision Making, 13(1), 91–106.

Trappenberg, T. P., Dorris, M. C., Munoz, D. P.,
& Klein, R. M. (2001). A model of saccade ini-

tiation based on the competitive integration
of exogenous and endogenous signals in the
superior colliculus. Journal of Cognitive Neu-
roscience, 13(2), 256–271.

Tsapogas, J. (2003). Characteristics of doctoral sci-
entists and engineers in the United States (No.
NSF 06-320). Arlington, VA: National Sci-
ence Foundation.

Tufte, E. R. (1983). The visual display of quantita-
tive information. Chesire, CT: Graphics Press.

Turney, P. (2001). Mining the Web for Syn-
onyms: PMI-IR versus LSA on TOEFL. In
L. De Raedt & P. Flach (Eds.), Proceedings of
the Twelfth European Conference on Machine
Learning (ECML-2001) (pp. 491–502). New
York: Springer.

Underwood, G., & Foulsham, T. (2006). Vi-
sual saliency and semantic incongruency in-
fluence eye movements when inspecting pic-
tures. Quarterly Journal of Experimental Psy-
chology, 59(11), 1931–1949.

Veksler, V. D., & Gray, W. D. (2006). Test case
selection for evaluating measures of semantic
distance. In R. Sun (Ed.), Proceedings of the
28th Annual Meeting of the Cognitive Science
Society (pp. 2624). Austin, TX: Cognitive Sci-
ence Society.

Verghese, P., & McKee, S. P. (2004). Visual
search in clutter. Vision Research, 44(12),
1217–1225.

Wainer, H., & Velleman, P. F. (2001). Statis-
tical graphics: Mapping the pathways of sci-
ence. Annual Review of Psychology, 52, 305–
335.

Wald, M. L. (2006, November 3). F.A.A. finds
more errors on runways. New York Times.

Ware, C., & Bobrow, R. (2004). Motion to sup-
port rapid iteractive queries on node-link di-
agrams. ACM Transactions on Applied Percep-
tion, 1(1), 3–18.

Williams, K. E. (2000). An automated aid for
modeling human-computer interaction. In
J. M. Schraagen, S. F. Chipman, & V. L. Shalin
(Eds.), Cognitive task analysis (pp. 165–180).
Mahwah, NJ: Lawrence Erlbaum.

Wilson, M. (2002). Six views of embodied cog-
nition. Psychonomic Bulletin & Review, 9(4),
625–636.

Wolfe, J. M. (1998). Visual search. In H. Pashler
(Ed.), Attention (pp. 13–73). East Sussex, UK:
Psychology Press.

Wong, P. C., & Thomas, J. (2004). Visual analyt-
ics. IEEE Computer Graphics and Applications,
24(5), 20–21.



P1: IBE

CUFX212-22 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 17:55

CHAPTER 22

Models of Animal Learning and Their

Relations to Human Learning

1. Introduction

Since the earliest modern laboratory stud-
ies of animal learning by Pavlov, Thorndike,
and others, there has been a widespread
consensus about the theoretical importance
of associationism, the idea that bonds may
be formed among mental representations
of stimuli and responses such that presen-
tation of one stimulus may elicit activa-
tion of another or of a response. Pavlov,
for instance, proposed that the elemen-
tary form of learning he discovered, con-
ditioning, resulted from the acquisition of
a connection between the representations
of the conditioned stimulus (CS) and un-
conditioned stimulus (US) such that the CS
came to “substitute” for the US. In the study
of human as opposed to animal learning,
however, associationism has had a much
more difficult history. Indeed, only thirty
or so years ago, a standard textbook on hu-
man learning and memory (Crowder, 1976)
made no reference to this concept, nor did
it mention conditioning. At that time, cog-
nitive psychologists were more concerned

with the role of meaning in learning and
believed the associative framework to be
wholly inadequate to deal with it.

Since the 1970s, however, there has
been acceptance of the view that associative
learning does contribute significantly to hu-
man cognition, although its relationship to
more cognitive, meaning-based or inferen-
tial processes is still poorly understood. One
reason for this rapprochement has been the
opening up of a relatively new area of human
research, contingency learning, which pos-
sesses many characteristics that seem to in-
vite an associative view. In the present chap-
ter, this research field is reviewed against
the background of recent formal models of
animal learning. In addition to showing the
great usefulness of these models in explain-
ing human judgment and behavior, consid-
eration will also be given to some of the pow-
erful arguments that have gone in the oppo-
site direction, namely, the view that contin-
gency learning (and, for some researchers,
animal conditioning, too) can only be ad-
equately understood from a cognitive, not
an associationist, perspective. The ongoing
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590 lópez and shanks

confrontation between these approaches has
generated vigorous debate and a wealth of
new knowledge about human learning.

Although the basic features of animal
conditioning preparations (classical or in-
strumental) are familiar, a broader range of
procedures has been used to study contin-
gency learning. However, in many studies,
the basic task has involved asking partici-
pants to study a series of trials or cases, each
made up of a set of cues or features. On the
basis of these cues, the participant predicts
the trial outcome prior to receiving feed-
back about the true outcome. Finally, some
judgment is made about the cue-outcome
relationships (contingencies) or else res-
ponding is observed in test trials with new
combinations of cues. This general descrip-
tion encompasses (with numerous varia-
tions) a very substantial amount of research
including not only human causal and predic-
tive learning but also category learning and
multiple-cue probability learning. Here, of
course, only a tiny portion of the findings
from all this research will be reviewed.

A typical instantiation of this task
methodology would be a situation in which
the participant is asked to imagine that she
is an allergist trying to work out the causes
of allergic reactions in a hypothetical pa-
tient, Mr. X. On each trial, information is
provided about the foods (cues) that Mr.
X eats in a particular meal, and the par-
ticipant predicts which of several possible
types of allergic reaction (or no reaction)
will occur on that occasion. After receiv-
ing outcome feedback, the next trial is pre-
sented. Across several dozen trials in such
a task, the participant will quickly begin
to learn the food-allergy contingencies, and
such knowledge can be expressed either as
judgments on a simple rating scale or in-
ferred from responding to test trials. The
main question research has sought to ad-
dress is what is the function that maps
particular cue-outcome contingencies onto
participants’ responses. This deceptively
simple question goes to the heart of the
understanding of basic learning processes
which, in turn, arguably lie at the heart of
human adaptation and plasticity.

2. Associative Models of Predictive
Learning

2.1. The Rescorla-Wagner (1972) Model

The development of theoretical models of
predictive learning has been stimulated to
an enormous extent by demonstrations that
cues compete with each other to gain con-
trol over behavior (so-called cue interaction
effects). These phenomena emerge in exper-
iments in which the learner has to infer the
predictive value of a target cue from incom-
plete information. For example, in one of
these effects, blocking (originally shown in
the animal conditioning literature by Kamin,
1968), the participant has to evaluate the
predictive value of a target cue T when the
only information received concerning the di-
rect predictive value of this cue is through
trials in which it is paired with another cue,
X, and the outcome (i.e., TX+ trials where
+ is the outcome). The situation is uncer-
tain because there is no clear way to establish
which cue, T, X, or both, has true predictive
value in relation to the outcome. In a block-
ing situation, the uncertainty is partially re-
solved because participants are additionally
shown, via X+ trials, that cue X on its own is
consistently followed by the same outcome
(see Table 22.1). The typical resolution of
this uncertainty, the blocking effect, consists
in attributing low predictive value to target
cue T compared with a situation in which
X+ trials are not included (or are replaced
by trials with a completely different cue,
Y+). Thus, the solution involves attributing
little predictive value to cue T on the basis
that its presence or absence does not make
any difference concerning the outcome: Pro-
vided that cue X occurs, the outcome will
always occur regardless of whether cue
T is present (TX+ trials) or absent (X+
trials).

The theoretical interpretation of this type
of cue interaction effect prompted the de-
velopment of the Rescorla-Wagner model
(RW) in 1972. According to this theory, the
predictive value of a cue (i.e., in the orig-
inal animal learning terminology, the level
of conditioning evoked by the cue) is di-
rectly related to the magnitude of the mental
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Table 22.1: Design of blocking and higher-order retrospective
revaluation experiments

Stage 1 Stage 2 Test

Blocking X+ TX+ T
Blocking control TX+ T
Backward blocking TX+ X+ T
Recovery from overshadowing TX+ X− T

Stage 1 Stage 2 Stage 3 Test

Higher-order retrospective revaluation TX+ XY+ Y+ T
Control TX+ XY+ Y− T

bond that develops between the represen-
tations of the cue and the outcome in the
learner’s memory. The formation of these
associations depends on two principal fac-
tors that are applied on a trial-by-trial basis:

(a) the amount of processing that the
cognitive system allocates to the cue,
a constant factor (i.e., nonmodifiable
through experience) that depends on its
salience, that is, the relative intensity
of the cue compared with other cues;
and

(b) the amount of processing that is allo-
cated to the outcome, a factor that is,
at least in part, modifiable through ex-
perience. Specifically, the processing of
the outcome depends on how surprising
it is. This level of surprise depends, in
turn, on how predictable the outcome
is, given the cues present on that trial.
In addition, its processing also depends
on its fixed salience, as is the case for the
processing of the cue.

More formally, these two general principles
are incorporated into two basic equations
that regulate the formation of associative
links between cues and outcomes:

�Vi j = αiβ j (λ j −�V ) (22.1)

Vi j (t) = Vi j (t − 1)+�Vi j (t), (22.2)

where Vi j (t) (i.e., the associative strength
of cue i for outcome j on trial t) repre-

sents the degree to which cue i predicts out-
come j and �Vi j designates its variation on
the current trial; αi and β j are the saliences
of the cue and the outcome, respectively,
and both parameters are within the [0,1]
interval; λ j represents the maximum asso-
ciative strength that the outcome can sup-
port and represents the actual status of the
outcome in the current trial (i.e., λ j = 1 or
λ j = 0 when it is present or absent, respec-
tively); and �V represents the degree to
which the combination of cues present on
the trial predict the outcome. The core of
the model is the difference or error term,
λ j −�V, which is a formalization of the
second principle stated previously regarding
the variable amount of processing that the
cognitive system allocates to the outcome.
This error term represents the discrepancy
between the expectation of the outcome
(�V ) and its actual status on the current
trial (λ j ) or, in other words, the level of sur-
prise produced by that outcome. Equation
2, therefore, describes the incremental na-
ture of the associative strength accrued by a
cue across trials: The associative strength on
trial t, Vi j (t), is simply the sum of its asso-
ciative strength in trial t − 1, Vi j (t − 1), and
the variation produced on the current trial t,
�Vi j (t).

In terms of the theory, then, the low pre-
dictive value attributed to cue T in a block-
ing situation is caused by the low process-
ing devoted to the outcome on those trials
where the cue is present, which in turn pre-
vents the acquisition of any associative link
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between cue T and the outcome. This weak
processing in turn is due to the low degree of
surprise engendered by the outcome on tri-
als where cue T is present, as the outcome is
fully predicted by the accompanying cue X
as a consequence of the prior X+ trials. In
terms of Equation 1, the error term should
approach 0 as a result of 2 conditions: (a)
λ j = 1 on TX+ trials, and (b) following the
X+ trials, �V must also approach 1 because
cue X should have acquired all of the asso-
ciative strength that the outcome can sup-
port.

In a computational sense, the learning al-
gorithm postulated in the RW model (equiv-
alent to the delta rule frequently used in
connectionist modeling, given certain as-
sumptions; see Sutton & Barto, 1981) has
the capacity to extract, from the different
pairings between cues and outcomes that
constitute the learning input, normative sta-
tistical information that is crucial to com-
pute the true predictive value of a cue. The
asymptotic associative strength of a cue con-
verges into the normative �P contingency
measure (at least if certain conditions, such
as those involved in the blocking design, are
met; see Chapman & Robbins, 1990; Cheng,
1997, for formal demonstrations):

�P = P (O/C · K)− P (O/−C · K),

(22.3)

where the predictive value of a cue equals
the difference between the probability of
the outcome given the cue and the prob-
ability of the outcome in the cue’s absence,
provided that the status of potential alterna-
tive predictive cues, K, is controlled. Thus,
the asymptotic associative strength of the
cue represents a normative statistic (López,
Cobos et al., 1998; Shanks, 1995). In fact,
in the RW theory, this is the only knowl-
edge that is stored in the learner’s memory
regarding the predictive value of the cue:
Nothing about the history that led to the
current value is retained. As will be shown,
this probably constitutes an oversimplifica-
tion of what is acquired in predictive learn-
ing situations.

Despite its simplicity (e.g., the small
number of free parameters postulated and
the simplicity of the equations described
earlier), the RW model has demonstrated
a remarkable capacity to explain empirical
phenomena in animal and human predictive
learning. Focusing on human learning, phe-
nomena such as (1) the gradual acquisition
of predictive knowledge (i.e., acquisition
curves, Shanks, 1987); (2) cue interac-
tion effects like blocking, overshadowing,
and relative validity effects (Chapman &
Robbins, 1990; Shanks, 1985; Wasserman,
1990); (3) trial order effects (e.g., recency
effects; see López, Shanks et al., 1998);
(4) sensitivity of participants’ performance
to the programmed cue-outcome contin-
gency (Wasserman et al., 1993); and (5)
some examples of biased judgments in the
detection of noncontingency (e.g., density
bias; Shanks, 1987; Shanks, López et al.,
1996) are all empirical findings for which
the RW model offers a detailed explanation
(see Allan, 1993; Shanks, 1995; Shanks,
Holyoak, & Medin, 1996, for extensive re-
views of these phenomena).

However, although simplicity is a virtue
of any theory in science, it must not be
achieved at the cost of failing to provide a
comprehensive account. Thus, much of the
work dedicated to the development of new
associative models of predictive learning has
tried to solve some oversimplifications in-
trinsic to the original RW formulation. It
is fair to say that the RW model has be-
come a yardstick against which more recent
theoretical proposals are measured. In what
follows, some of these phenomena that go
beyond the scope of the RW model in the
human predictive learning literature will be
reviewed and will form a platform for con-
sidering more recent theoretical accounts
(see Miller, Barnet, & Grahame, 1995, for
a review of the model and its major weak-
nesses in the animal conditioning field).

2.2. Models That Learn about the
Predictive Values of Absent Cues

Recall that in a blocking situation, the par-
ticipant evaluates the predictive value of a
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target cue T from information that is to some
extent incomplete, TX+ trials (see previous
discussion). The uncertainty is resolved be-
cause the participant also learns that cue X,
on its own, is paired with the outcome on
X+ trials and, hence, can infer that cue T has
no true predictive value with respect to the
outcome: Its presence or absence makes no
difference. Notice that the RW theory’s ex-
planation of blocking crucially depends on
when exactly the X+ trials are provided.
In terms of the model, predictive learning
about cue T depends on the surprisingness
of the outcome on trials where that cue is
present. As mentioned earlier, cue T will not
acquire associative strength (i.e., blocking
will occur) if X+ trials precede TX+ trial,
as under these circumstances, the outcome
will be unsurprising on the TX+ trials due
to the presence of a good predictor, cue X.
However, if the TX+ trials precede the X+
trials (see Table 22.1), the outcome will be
to some degree surprising (at least, initially)
on trials where cue T is present, and conse-
quently, it will accrue associative strength or
predictive value. Subsequent X+ trials will
not affect the already acquired associative
strength of cue T, as those trials do not in-
volve T’s occurrence (i.e., its salience will
be 0), and thus, no blocking will take place.
Blocking, therefore, depends on trial order.
However, contrary to the model’s predic-
tions, blocking occurs regardless of the order
in which the X+ trials are presented, both in
animal and human learning. It is true (Miller
& Matute, 1996; Shanks, 1985) that it seems
to be of greater magnitude when X+ trials
precede TX+ trials (forward blocking) than
when they follow the TX+ trials (backward
blocking), but the reality of backward block-
ing is beyond dispute.

Other similar phenomena concerning
cue interaction effects have been reported
demonstrating revaluation of the predictive
value of absent cues, such as recovery from
overshadowing (Dickinson & Burke, 1996;
Kaufman & Bolles, 1981). In a recovery from
overshadowing situation (Table 22.1), the
uncertainty regarding the predictive value
of target cue T on TX+ trials is resolved
because participants are later provided with

X− trials (i.e., in which no outcome accom-
panies cue X). In this case, and unlike the
blocking situation, cue T demonstrates pos-
itive predictive value, as its presence does
matter for the occurrence of the outcome.
But, again, according to the RW model, no
new learning or revaluation should occur
regarding cue T on X− trials, as it is not
present (its salience is 0). Participants’ per-
formance, though, shows that the predictive
value attributed to cue T is revalued (i.e., in-
creased) compared with a situation in which
no X− trials are provided.

Thus, these two phenomena, backward
blocking and recovery from overshadowing,
suggest that individuals may retrospectively
revalue a predictive cue, even when that
cue is not present. Retrospective revalua-
tion effects reveal a fundamental limitation
of the original RW account of predictive
learning. Although these phenomena may
be initially viewed as implying logical infer-
ential reasoning on the part of the individ-
ual, they have prompted the development
of new associative models that are com-
patible with them and, importantly, new
predictions have been derived and tested
from these modified models. Later, addi-
tional empirical data will be considered that
represent a challenge for an associative ac-
count of retrospective revaluation effects.

Although the surprising occurrence of
backward blocking and other examples of
retrospective revaluation (De Houwer &
Beckers, 2002; Larkin, Aitken, & Dickinson,
1998; Melchers, Lachnit, & Shanks, 2004;
Williams, 1996) certainly adds weight to al-
ternative cognitive approaches, another way
to react to such findings is to ask whether
they can be observed in animal learning
and, if so, whether a better response might
not be to revise the associative theories.
Research has now documented fairly con-
vincingly the occurrence of retrospective
revaluation in animal conditioning (Balleine,
Espinet, & González, 2005; Denniston
et al., 2003; Shevill & Hall, 2004), and
this has been followed by modifications of
associative theories, some of them fairly
straightforward (Dickinson & Burke, 1996;
Ghirlanda, 2005), which allow them to
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generate retrospective changes in response
strength.

The first proposal of a modified RW
model comes from van Hamme and Wasser-
man (1994). This modification involves
changes in how the salience of a cue is de-
termined. According to the modified model,
even an absent cue may undergo changes in
its associative strength, as it is still processed
by the learning system. These changes, how-
ever, run in the opposite direction of those
experienced by present cues. More formally,
the salience of a cue is defined within the
[−1,1] rather than the [0,1] interval. Con-
sequently, if a presented cue were to gain
associative strength in a given trial (e.g.,
were paired with the outcome), then a
nonpresented cue would correspondingly
lose strength; and vice versa, if a presented
cue were to lose associative strength, then
the nonpresented cue would gain associa-
tive strength. However, an absent cue is only
processed on a trial (i.e., gains a negative
salience) if its presence is expected on that
trial. Thus, only cues that are both absent
and expected will be processed with a nega-
tive salience. This apparently minor change
in the rules that determine the salience of
a cue allows the retrospective revaluation
effects just described to be explained (see
Perales & Shanks, 2003, for its implications
regarding asymptotic predictions in the as-
sociative strength of a cue compared with
RW predictions). For example, in the back-
ward blocking effect, on X+ trials, the ab-
sence of target cue T will be processed be-
cause the presence of cue X will retrieve
a memory of this cue due to prior pair-
ings of T and X formed on TX+ trials.
The negative salience of cue T will ensure
that its associative strength will be dimin-
ished as the absence of cue T is paired with
the outcome in X+ trials (i.e., a backward
blocking effect on cue T). Wasserman and
Castro (2005) provide more details con-
cerning the predictions of van Hamme and
Wasserman’s (1994) modification of the
RW model.

A related proposal for an associative
model that learns about absent, though
expected, cues is Dickinson and Burke’s

(1996) modification of Wagner’s (1981)
Standard Operating Procedures (SOP)
model of animal Pavlovian conditioning. In
SOP, cues are represented by nodes in asso-
ciative memory, each composed of a num-
ber of elements. These elements can be in
any of three different activation states: an
inactive state, I, or two active states, A1 and
A2. The unpredicted presentation of a cue
or outcome activates a proportion of its ele-
ments in the corresponding node from I into
the A1 state. These active states are transient
so that, over time, the A1 state of these el-
ements decays into A2 and then back again
into I. Activating a node by an associative
connection, though, bypasses the A1 state
and leads to a direct transition of the ele-
ments of the node from I to the A2 state.
According to Wagner’s original formulation,
the associative strength of a cue will only
develop provided that its presentation is not
expected, that is, its elements are in the A1
active state. In Dickinson and Burke’s mod-
ified version, a cue may develop changes in
its associative strength even when it is not
present provided that it is expected, that
is, its elements are in the A2 active state.
According to this new version, if both the
elements of the cue and the outcome are
in the A2 state, excitatory learning will oc-
cur between them, whereas if the elements
of the cue are in the A2 state but those of
the outcome are in the A1 state (i.e., the
outcome is present), inhibitory learning will
develop. As in the original formulation of
Wagner (1981), it is assumed that the over-
all associative strength of a cue corresponds
to an aggregation across its excitatory and
inhibitory associations with the outcome.
The explanation of retrospective revalua-
tion follows straightforwardly. For example,
in the recovery from overshadowing effect
(Table 22.1), on X− trials, the elements of
target cue T will be in the A2 state due to
the T–X association formed on prior TX+
trials and so will be the elements of the out-
come node due to the prior X-outcome as-
sociation formed in TX+ trials. Thus, as T
and the outcome elements will be in the A2
state, an excitatory association will develop
between them, increasing the net associative
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strength of cue T compared with a con-
trol situation in which X− trials are not in-
cluded. Hence, the recovery from overshad-
owing effect will occur through learning that
takes place about an absent cue.

Fortunately, in addition to offering an
ad hoc explanation of retrospective revalu-
ation effects, both models also make new
predictions that have obtained empirical
support. For example, absent cues should
update their associative strength in the op-
posite direction compared with their updat-
ing when they are present. Wasserman and
Castro (2005) provide a review of evidence
supporting this prediction, whereas Dwyer
(2001) describes the conditions that induce
the opposite pattern, namely, mediated con-
ditioning. A second example is the critical
role that both models grant to the forma-
tion of associations between cues (“within-
compound” associations) in the explanation
of retrospective revaluation effects, as these
are the associations that cause a cue to be
expected and hence guarantee its process-
ing. Evidence shows that retrospective reval-
uation effects are indeed mediated by such
within compound associations (see Aitken,
Larkin, & Dickinson, 2001; Melchers et al.,
2004; Wasserman & Berglan, 1998).

Although van Hamme and Wasserman’s
(1994) model and Dickinson and Burke’s
(1996) modified version of SOP make dif-
ferent predictions concerning the specific
details of these retrospective revaluation ef-
fects, there is as yet no conclusive evidence
that distinguishes between them (see Aitken
& Dickinson, 2005; Wasserman & Castro,
2005). Moreover, these two associative ac-
counts are far from the only possible expla-
nations for retrospective revaluation effects
(see Le Pelley & McLaren, 2001; Melchers
et al., 2004, for further possibilities). How-
ever, they demonstrate fairly plainly that
learning about an absent cue is not neces-
sarily beyond the scope of an associative ac-
count and that there are specific models that
prove their empirical viability through rel-
atively basic associative learning principles.
Future evidence will clarify the relative mer-
its of these different accounts of retrospec-
tive revaluation.

2.3. Models That Learn about
the Predictive Values of
Configurations of Cues

All the models discussed so far assume that
the predictive value of a compound cue (i.e.,
a cue consisting of two or more cues as in
the TX trials described earlier) corresponds
to the aggregate or combination of the pre-
dictive values of its constituent elements.
However, there is evidence that individu-
als do not always treat the predictive value
of a compound cue just as the sum of its ele-
ments and that instead a compound cue may
acquire a predictive value that is to some
extent independent of the predictive value
of its constituents. Some of this evidence
comes from “negative patterning” discrimi-
nation learning in animal and human studies.
In this problem, individuals are able to solve
a discrimination in which A+, B+, and AB−
trials are intermixed and, as is evident, what
is learned about the predictive value of the
single cues A and B cannot be transferred
to its aggregate, AB. In another illustration,
Shanks et al. (1998) trained participants on
an A+, AB− discrimination prior to present-
ing several B+ trials. The initial trials should
have endowed B with an inhibitory or neg-
ative weight, which should then have been
replaced by a positive weight during the B+
trials. If the predictive value of a compound
is the sum of the values of its constituents,
presentation at test of the compound AB
should have evoked high levels of respond-
ing, as it is composed of two elements each
of which should have positive value. How-
ever, this was not what Shanks et al. ob-
served. Instead, participants were able to
retain intact across the B+ trials the infor-
mation that the AB compound predicted no
outcome. These and other results that vio-
late this aggregation principle have led some
theorists to propose configurational models
of learning which assume that whole con-
figurations of cues are able to acquire their
own independent associative strengths for
an outcome (e.g., Pearce, 1994).

According to Pearce’s (1994, 2002)
model, the predictive value of a compound
cue (or any cue, in general) involves (1) the
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associative strength acquired by the config-
ural node that has been recruited to repre-
sent it in memory, and (2) the associative
strength generalizing to it from other sim-
ilar cues. The degree of similarity between
any two cues is a linear function of the num-
ber of elements they share. As was the case
for the RW model, Pearce’s model assumes
that changes in the associative strength of
a cue in a given trial are determined by
the surprisingness of the outcome when that
cue is present. Thus, the greater the amount
of generalized associative strength a cue re-
ceives from other cues, the less its intrinsic
associative link to the outcome is changed as
the outcome is less surprising. Also, as in the
RW model, only cues that are present on a
trial may undergo changes in their associa-
tive strengths (hence, retrospective revalua-
tion effects are not dealt with by this model,
although the learning rules could be suitably
modified).

In addition to results involving configu-
ral processing of cues (e.g., Shanks et al.,
1998), Pearce’s model has been successfully
applied to a number of learning phenom-
ena, such as blocking (see Pearce, 1994,
for details). Other successful applications
that are problematic for the original RW
model (and for some standard connectionist
models; Lewandowsky & Li, 1995) include
the lack of catastrophic forgetting exhibited
by human learners, whereby new learning
does not seem to completely override pre-
vious learning. The particular solution to
this problem offered by Pearce’s model is
based on the assignment of exclusive config-
ural representations to each new pattern of
cues the system is exposed to (which pre-
serves old knowledge and prevents it from
being catastrophically interfered with) and
the generalization mechanism based on pat-
tern similarity (which ensures a certain level
of transfer between old and more recent
knowledge; see López, Shanks, et al., 1998,
for details on the predictions of Pearce’s
model regarding this effect).

Pearce and Bouton (2001) recently re-
viewed the relative merits of configural
and more traditional elemental approaches
in the field of animal learning. Regarding

human predictive learning, new evidence
shows an enormous flexibility in an indi-
vidual’s representational scheme for cues
(Melchers, Lachnit, & Shanks, in press;
Shanks, 2005). For example, Williams, Sag-
ness, and McPhee (1994) and, more re-
cently, Melchers et al. (2005; in a human
conditioning preparation) have shown that
depending on different pretraining treat-
ments, either an elemental or a configural
representation of cues may occur during a
later target training stage. A compound such
as TX may, under some circumstances, be
coded as the sum of its elements and, un-
der others, may be coded as being a con-
figuration whose associative value is unre-
lated to those of its elements. Thus, the
coding of cues does not seem to be fixed
(as assumed by all current associative ac-
counts, including Pearce’s model), but may
instead vary according to a range of factors.
For example, Melchers et al.’s (2005) par-
ticipants either received a pretraining dis-
crimination problem that encouraged an el-
emental solution (i.e., elemental coding of
the cues was sufficient to solve the prob-
lem) or a configural solution (i.e., configu-
ral coding was necessary) and evaluated the
influence of such pretraining treatments on
a later target discrimination problem that
required configural coding (e.g., the nega-
tive patterning problem described earlier).
In two experiments, it was found that partic-
ipants who had received elemental pretrain-
ing discriminations were hindered in solving
the later configural problem compared with
participants who had received configural
pretraining.

Much research has been devoted to the
possible selective role of the hippocampus
in configural coding. A claim with a long
history (Wickelgren, 1979) is that the hip-
pocampus is particularly involved in tasks
that require the formation of configural rep-
resentations. This idea was made most ex-
plicitly by Sutherland and Rudy (1989)
and is supported by a range of evidence,
mostly from animal conditioning studies,
to the effect that hippocampal lesions im-
pair the acquisition of certain configural or
nonlinear discriminations but do not impair
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acquisition of elemental or linear ones. For
instance, McDonald et al. (1997) found that
lesions in the hippocampus but not in the
fornix-fimbria (a major input-output path-
way for the hippocampus) in rats impaired
acquisition of a negative patterning discrim-
ination that cannot be solved elementally.
The current status of this hypothesis is ex-
tensively discussed by O’Reilly and Rudy
(2001).

Overall, the results in this section imply
that individuals can learn about the pre-
dictive value of a compound cue and that
this value may be relatively independent
of the predictive values of the compound’s
constituent elements. This is inconsistent
with the original summation assumption of
the RW model, but alternative associative
models (such as Pearce’s, 1994) are able
to capture these effects. However, recently
revealed experimental findings concerning
representational flexibility are at variance
with all current associative accounts, as it
has been shown that the coding of cues is
variable (either elemental or configural) de-
pending on factors such as the specific pre-
training treatments provided.

2.4. Models That Learn about
the Relevance of Cues

In previous models, if there is a single core
assumption that explains the process of ac-
quisition of associative strength, it concerns
the level of surprise that the outcome pro-
duces in a given trial: the so-called error
term. Remember that this error term is
modifiable through experience, whereas the
processing of the cue is a fixed parame-
ter (the cue’s salience). This principle of a
fixed amount of cue processing was soon
called into question in the animal condi-
tioning field. Data accumulated in Pavlo-
vian conditioning showing the limitations
of such a principle, and new models were
developed to specifically address this prob-
lem (see Le Pelley, 2004; Mackintosh, 1975;
Pearce & Hall, 1980; Wasserman & Miller,
1997, for reviews). In terms of these models,
the amount of processing that a cue receives
is not fixed but varies according to its predic-

tive value. These changes may be conceived
as changes in the level of associability of the
cue (captured by the parameter αi in Equa-
tion 1) and may be interpreted as showing
varying degrees of its susceptibility to form
new associative links with the same or dif-
ferent outcomes.

It is only more recently that related ev-
idence on associability changes has started
to accumulate in the field of human pre-
dictive learning. Kruschke and Blair (2000),
using the now familiar blocking design (both
in forward and backward versions), showed
that individuals actively learn to ignore the
target blocked cue T of the blocking design
(see Table 22.1) when this cue is made rele-
vant in a completely new predictive learning
task (i.e., when it is subsequently paired re-
liably with a different outcome). After train-
ing with X+ and TX+ trials and comparing
the predictive value of cue T with that of a
control cue in a condition in which X+ tri-
als did not occur, training with target cue T
continued, but now this cue was consistently
paired with a different outcome (equivalent
training was programmed for the control
cue). The key result was that the predictive
value of the control cue for the new out-
come was perceived as greater than that of
the target cue T. According to a traditional
associative account of blocking, the ability
of the target cue T to form new associations
with a different outcome should not have
been altered by the blocking procedure.
However, the results showed that its ability
to enter into new associations was attenu-
ated after having been part of either a for-
ward or a backward blocking training regime
(see Le Pelley & McLaren, 2003; Le Pel-
ley, Oakeshott, & McLaren, 2005, for results
that may be interpreted in a similar fashion).

These types of results have encouraged
the formulation of new mechanisms within
associative theory that incorporate princi-
pled variations in the processing of a cue
according to its predictive history. For ex-
ample, Kruschke’s (1996) ADIT model con-
ceives these variations in the processing of a
cue as variations in the amount of attention
allocated to it. On this approach, during ini-
tial X+ trials in a blocking design, cue X
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attracts attention as a result of being a good
predictor of the outcome. On the later TX+
trials, attention to cue T is reduced, as there
is a limit on the availability of attentional
resources. This reduced attentional alloca-
tion will diminish the expectation of the
outcome in the presence of T as attention
is directed to the cue that already has an as-
sociative link to the outcome, cue X. Conse-
quently, attention is shifted away from cue T
to cue X and will remain diminished for cue
T into the later training stage in which it is
again involved. Hence, the results obtained
by Kruschke and Blair (2000) will emerge.

Another recently discovered and rather
striking effect may also require an atten-
tional explanation. Consider a compound
stimulus AB, which is paired with an out-
come on AB+ trials. According to the
error-correction process embodied in Equa-
tion (1) and assuming that A and B have
equal saliences, then any changes to A and
B’s separate associative strengths should be
identical, as the error term is common to
all present cues. Now, imagine that A has
a prior history as an excitor (resulting from
A+ trials), whereas B’s history is that of an
inhibitor (resulting from BC+, B− trials).
Will it still be the case that, as the RW and
many other models predict, equal associa-
tive changes occur for A and B? Modeled on
an animal experiment by Rescorla (2000),
Le Pelley and McLaren (2004, 2005) re-
cently addressed this issue in human con-
tingency learning and found that the excitor
A gained more additional weight than the
inhibitor B from an AB+ trial. When the AB
compound was extinguished rather than re-
inforced (i.e., AB−), B underwent a greater
loss of excitatory strength (or, equivalently,
greater gain of inhibitory strength) than A.
Curiously, Rescorla found the exact oppo-
site in his animal experiments, with the in-
hibitor gaining more weight on AB+ trials
and the excitor more on AB− trials. Lastly,
Le Pelley and McLaren showed that ret-
rospective changes induced in a backward
blocking procedure were also different, de-
pending on prior history.

A plausible explanation for these results –
putting aside the divergence from the animal

data – is that the associability of the A and B
elements changed differentially during their
initial history. Consider the case where the
AB compound is reinforced (AB+). Having
previously been trained as an excitor, A’s as-
sociability for the outcome would have been
maintained at a high level, thus ensuring a
substantial weight change on the compound
trials. During its training as an inhibitor, in
contrast, B would have lost associability for
the outcome and not undergone a substan-
tial weight change on the AB+ trials. Le
Pelley and McLaren (2004, 2005) specu-
lated that different outcomes (including the
presence vs. absence of a given reinforcer)
might maintain independent saliences.
Thus, the patterns of differential associative
changes they observed would be accommo-
dated.

There are other associative explanations
of these associability effects (see, e.g., Le
Pelley, 2004), and it is still not clear how
these different accounts may be integrated
into a single formulation, if that is possible.
However, all of them emphasize the gen-
eral idea that the relevance of a cue (or the
amount of processing that the system allo-
cates to it) is subject to variations that de-
pend on its past predictive history.

2.5. Late Computation Models

The empirical phenomena reviewed thus far
are interpreted – according to associative
models – as the product of mental oper-
ations accomplished during the course of
learning. Although different in the specific
learning processes they postulate, all these
models have in common the assumption
that the behavioral response prompted by a
test cue directly reflects its predictive value
as computed during training in the form
of a unique associative strength attached to
that particular cue. Thus, these models may
be referred to as early computation mod-
els (see Estes, 1986, for this distinction in
the context of categorization models). How-
ever, there are other associative accounts
that envision a different way in which the
test cue prompts a behavioural response.
According to these models, at the time of
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testing, the learner is conceived to consult all
the relevant associations previously acquired
and performs whatever computations are re-
quired to combine these associations to pro-
duce a behavioral response to that particular
test cue. These are late computation models
(see Miller & Escobar, 2001, for the distinc-
tion between acquisition and performance-
based models). Consistent with Marr’s Prin-
ciple of Least Commitment (Marr, 1976),
under this view, the bulk of the information-
processing operations an intelligent system
performs is put off until the last possible
moment (i.e, the time of testing in this con-
text), avoiding doing anything that may later
have to be undone. That is, the organism
is not committed to a particular processing
strategy early on, but acts under a more con-
servative principle of trying not to impose
too many restrictions on the incoming in-
formation so that later demands, which are
unknown at present, may be satisfied (Cole,
Barnet, & Miller, 1995).

A prominent example of these late com-
putation models is the comparator theory
of Miller and colleagues (Miller & Matzel,
1988). This theory posits a specific rule
determining how the different associative
links formed during training are later re-
trieved from memory and combined to pro-
duce a response. Although the theory was
initially developed as an account of ani-
mal Pavlovian conditioning, it should come
as no surprise that it has been exten-
sively applied to human predictive learn-
ing, too (e.g., Matute, Arcediano, & Miller,
1996). The theory represents an alternative
way to interpret cue interaction effects like
blocking.

The comparator theory assumes that the
acquisition of associative links is determined
by pairings between the cue and the out-
come in temporal and spatial contiguity (see
Stout & Miller, 2007, for a computational
version of the theory). Thus, X+ trials will
induce the formation of an associative link
between these two events. In addition, on
TX+ trials, the contiguity-based process will
ensure the formation of T–X associations,
as well as an association between the target
cue T and the outcome (note that on pre-

vious early computation-based accounts of
blocking, no significant association was as-
sumed to be formed between the blocked
cue and the outcome), plus the strength-
ening of the previously formed X-outcome
association. Thus, when the predictive value
of target cue T is assessed, there are two dis-
tinct ways in which the memory of the out-
come can be retrieved: through what may
be called a direct route (the cue T-outcome
association), and through an indirect route
(the T–X association and, in turn, the X-
outcome association). The predictive value
of cue T (and the corresponding behavioral
response) is, in this theory, the result of
a process that compares the outcome acti-
vation due to the direct T-outcome route
and its activation due to the indirect X-
outcome route. In a blocking group, the
memory of the outcome is strongly acti-
vated by the indirect X-outcome route, so
the target cue T has a limited ability to sig-
nal the outcome beyond that degree of acti-
vation. In a control condition in which X+
trials are not included, the comparator pro-
cess yields a stronger activation of the out-
come due to the direct T-outcome route,
because the indirect X-outcome association
is weaker. Hence, the blocking effect is
explained.

In a recent extension of the theory (Den-
niston, Savastano, & Miller, 2001), the
comparator process idea is applied recur-
sively so that higher order comparator pro-
cesses also modulate the effectiveness of
the primary comparator process. Returning
to the blocking situation, in its extended
version, a comparator process also deter-
mines the effectiveness with which both the
T–X and the X-outcome associations will
modulate the expression of the target T-
outcome association (i.e., a direct and an
indirect route are envisaged for activating
both the memory of cue X and that of the
outcome).

An empirical phenomenon that illus-
trates the operation of this higher order
comparator process is so-called higher-order
retrospective revaluation, recently shown in
human predictive learning (see De Houwer
& Beckers, 2002; Melchers et al., 2004) and
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animal conditioning (Denniston et al., 2001,
2003). In these studies, for example, a tar-
get cue T is paired with cue X and the out-
come on TX+ trials (see Table 22.1). In ad-
dition, the same cue X is paired with cue Y
and the outcome on XY+ trials. Cue Y is
then presented on its own either accompa-
nied by the outcome in one condition (i.e.,
Y+ trials) or its absence in another condi-
tion (i.e., Y− trials). Similar to other retro-
spective revaluation effects considered ear-
lier, the predictive value of cue X is lower in
the condition where Y was associated with
the outcome than in the condition where it
was associated with its absence. Note that
in accordance with associative models that
learn about absent but expected cues, such
revaluation effects are expected due to the
X–Y within compound association. But in
addition to this, and crucially, the predic-
tive value of target cue T is also revalued so
that this cue is perceived as having a greater
predictive value in the condition where cue
Y was paired with the outcome than in the
condition where it was unpaired with it.
As cue T was never paired with cue Y, T–
Y within-compound associations should not
have been formed, and thus, nothing fur-
ther should have been learned about tar-
get cue T on trials where Y occurred on
its own. Consequently, early computation-
based models, even ones that account for
backward blocking (e.g., Dickinson & Burke,
1996; van Hamme & Wasserman, 1994),
should not expect any revaluation of the
predictive value of cue T because it was
absent and not expected during cue Y trial
types.

The extended comparator hypothesis,
though, provides an interpretation of this
further revaluation process on cue T. As in
the standard version of the theory, the pre-
dictive value of target cue T corresponds to
the output of the primary comparator pro-
cess (i.e., the cue’s associative strength rela-
tive to the ability of its comparator cue X
to retrieve the memory of the outcome).
But in the extended version, there is a fur-
ther comparator process that determines
this primary comparator process (i.e., the
higher-order comparator process). Accord-

ing to this, cue X’s associative strength for
the outcome is rendered more or less effec-
tive, as its comparator stimulus cue Y, in
turn, has a stronger or weaker association
with the outcome (depending on the con-
dition). Thus, after prior experience with
TX+ and XY+ trials, Y+ trials should make
the cue X-outcome association less effective
and thereby increase the predictive value of
cue T. Similarly, Y− trials should make the
X-outcome association more effective and
thereby decrease the predictive value of tar-
get cue T. Hence, varying the effectiveness
of the primary comparator stimulus X for
target cue T (through cue Y training trials)
will indirectly affect its predictive value in
the direction of the empirical results ob-
tained (see Denniston et al., 2001, for a
more detailed discussion).

Despite the ability of the extended ver-
sion of the comparator hypothesis to offer
an account of both first and higher-order
retrospective revaluation effects, the the-
ory is not without its problems. For exam-
ple, according to the explanation provided
earlier, blocking, both in its forward and
backward versions, critically depends on the
formation of within-compound associations
between the cues on compound cue trial
types. However, there is evidence that
whereas the formation of within-compound
associations plays a critical role in retrospec-
tive revaluation effects (e.g., the backward
version of the blocking effect), it does not
seem to play such a role in the correspond-
ing forward versions (see, e.g., Aitken et al.,
2001; Dickinson & Burke, 1996; Melchers
et al., 2004).

Because it can provide an explanation
of higher-order retrospective revaluation ef-
fects, which are not easy to reconcile with
other early computation-based associative
models (though see Melchers et al., 2004,
for an explanation in terms of an alterna-
tive hypothesis based on a memory rehearsal
mechanism), a complete explanation of pre-
dictive learning should probably contem-
plate the sort of elaborated memory retrieval
process envisaged by the comparator hy-
pothesis. However, the exact explanatory
scope of the specific proposal made by Miller
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and collaborators (Denniston et al., 2001)
remains to be precisely determined.

In this section, a variety of empirical
phenomena have been reviewed that char-
acterize human predictive learning. The
diversity of the models that have been
developed since the original formulation of
Rescorla and Wagner (1972) in response to
these phenomena has been reviewed. How-
ever, no single model accommodates the
entire range of empirical diversity. Differ-
ent models emphasize different aspects of
the learning mechanisms involved. For ex-
ample, there are models that include spe-
cific mechanisms for allowing revaluation of
the predictive weight of cues when those
cues are absent, whereas others assume that
learning takes place on entire configurations
of cues. Others conceive that the relevance
of a cue determines the amount of process-
ing that is allocated to it and, consequently,
will determine the degree of learning that
will accrue to that cue. The present sec-
tion has considered the explanatory value
that is gained when a retrieval process
across stored associations in memory is
assumed.

Despite all these differences between
models, there are also significant similari-
ties that lend support to the fundamental
principles of an associative account of hu-
man predictive learning. These principles
reflect a coherent picture of the process of
predictive learning, which views it as auto-
matic and bottom-up, not demanding cog-
nitively complex operations, and mediated
by knowledge concerning cue-outcome as-
sociations that is evoked in an automatic
fashion by a test target cue. In the next sec-
tion, new evidence will show that this as-
sociative approach is not without its lim-
its as a complete account of contingency
learning.

3. Challenges for Associative
Accounts of Predictive Learning

Many of the empirical phenomena that have
resisted explanation by extant associative
models depend on the learner’s sensitivity

to prior knowledge, that is, knowledge that
antecedes his or her brief encounter with
the experimental task but which neverthe-
less influences performance. This evidence
suggests that when individuals are faced
with predictive learning tasks, they retrieve
from memory prior knowledge that actively
guides learning (see Alloy & Tabachnik,
1984, for a review of the influence of prior
knowledge on contingency learning). It is
important to note that such influences are
typically obtained despite the best efforts
of the experimenter to minimize their im-
pact by using, for example, experimental
scenarios for which participants are unlikely
to possess specific cue-outcome knowledge
(e.g., the effect of a particular type of radi-
ation on mutation in a butterfly). However,
this engagement of prior knowledge is per-
haps hardly surprising, given the adaptive
pressure for accurate detection of predictive
relationships. There is no obvious advantage
to ignoring knowledge that the individual
understands is relevant to solving the task,
taking advantage of his or her own experi-
ence with related tasks.

The exact nature of this knowledge, what
its origin might be, or when exactly during
task processing it intervenes are all impor-
tant questions for which there are no clear
answers yet. However, one of the situations
in which these effects of prior knowledge has
been extensively studied involves (unsur-
prisingly) cue interaction, specifically, the
blocking effect. In the present section, this
evidence will be reviewed.

This research is easier to reconcile with
a much more complex, active, and cogni-
tively demanding role for the learner than is
assumed in associative models. For example,
individuals seem to give sense to the learning
input (cue-outcome pairings) by the active
search for a coherent “model” that to some
extent “explains” this learning input, unrav-
elling some of its abstract or structural prop-
erties. In this search, individuals seem to go
beyond the information provided by the in-
put and take into consideration their prior
knowledge. Under this view, the learner is
regarded much more as an “inferential rea-
soner” than as someone whose knowledge is
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automatically evoked by a target cue during
the test phase of the experimental task.

The evidence also shows that this con-
ception of the processes of predictive learn-
ing should not be viewed as being in strict
opposition to associative models, but rather
as complementary (see also, for example,
Sloman, 1996, or Sun, Slusarz & Terry,
2005, for a related perspective on other do-
mains of cognition). This is because the evi-
dence has also shown that there are specific
factors that modulate participants’ perfor-
mance, so that it conforms to one process or
the other. That is, although the use of prior
knowledge in predictive learning has been
revealed and challenges current associative
explanations, there is also evidence showing
that in some circumstances, this knowledge
may be inert, and processing becomes closer
to that envisaged by associative models.

3.1. Use of Prior Knowledge about the
Structure of Causal Relationships

Although the interest in this chapter has
been focused on human predictive learn-
ing in general, most of the evidence that
reveals an influence of prior knowledge is
based on a particular example of predictive
learning, namely, causal learning. In causal
learning scenarios, the cue and outcome are
provided, via the instructions, with particu-
lar causal roles. In most cases, then, the cues
are not only potentially predictive of the
outcome but also cause it (e.g., predictive
relationships are arranged between different
types of food that may be eaten – cues –
potentially causing allergic reactions in pa-
tients – outcomes). These results are rele-
vant for the present analysis, given that since
the work of Dickinson, Shanks, and Even-
den (1984), associative models have been
proposed as plausible accounts of causal
learning.

In what follows, evidence showing the
use of prior knowledge concerning struc-
tural properties of causal relationships is re-
viewed. Part of the interest in using this kind
of knowledge in the induction of causal re-
lationships is that it serves to impose re-

strictions on specific characteristics of the
learning input; thus, it may guide effective
learning of predictive relationships. In other
words, this knowledge may suggest that cer-
tain cue-outcome pairings or certain proper-
ties of the outcome are more probable than
others. These restrictions, though, should
not necessarily be understood as being in-
dependent of the specific content they refer
to; that is, they may not be universal or true
across all possible causal scenarios where the
cues and the outcomes of the task are de-
fined.

As an illustration, individuals may have
general knowledge (i.e., valid across multi-
ple cases of causal relationships experienced
previously) that causes follow a principle
of additivity when producing an effect. Ac-
cording to this principle, when two valid
causes of a certain effect co-occur, the re-
sulting effect should be of a greater mag-
nitude than when the causes are found in
isolation. Notice that this prior knowledge
or assumption may suffice to explain the fa-
miliar blocking effect. If participants know
that cue X is able to produce the effect on
X+ trials, and then are presented with TX+
trials (but the effect that occurs is no greater
in magnitude than that produced by X on its
own), they should discount target cue T as
a true cause of the effect, as its presence has
added nothing to the situation. In the con-
trol condition, no X+ trials are included, so
T cannot be discounted on the basis on TX+
trials only – it may have causal value. Thus,
the causal value of T should be greater in
the control condition, leading to the block-
ing effect. In agreement with the view that
participants use this sort of general causal
knowledge, Lovibond et al. (2003) recently
found that pretraining manipulations affect-
ing prior assumptions about the additivity
of causes (e.g., making the additivity prin-
ciple more or less credible to participants)
correspondingly affected the magnitude of
the blocking effect obtained.

Relatedly, other forms of prior knowl-
edge may modulate the magnitude of the
blocking effect found. For example, partic-
ipants have previous causal knowledge that
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if a given effect is produced at a ceiling level
by a given cause, X, then the addition of
another effective noninteracting cause, T,
should produce no difference. Hence, from
the point of view of causal induction, T is in-
distinguishable from a spurious cause. Con-
trarily, if the effect is produced at a submax-
imal level, the addition of cause T should
increase the level of the effect. Thus, from
the point of view of induction, there should
be a difference between adding T and adding
a spurious cause. According to this, the
blocking effect should increase if partici-
pants are informed that the effect is at a
submaximal level compared with a situa-
tion in which they are informed that the
effect is produced at its maximal level. This
is because, only in the former case, partic-
ipants receiving X+ trials can be sure that
target cue T does not play any role in pro-
ducing the outcome. This prediction has
been empirically confirmed by recent stud-
ies (De Houwer, Beckers, & Glautier, 2002;
see also Beckers et al., 2005, and Mitchell,
Lovibond, & Condoleon, 2005, for recent
evidence showing an independent modula-
tory effect of prior ideas about additivity
and ceiling effects on the magnitude of
blocking).

Because blocking has been a touchstone
of associative theory for several decades,
these findings are particularly striking, as
they suggest the intervention of rather dif-
ferent processes. Whereas blocking is nor-
mally thought of as arising from a process
of reinforcement driven by prediction error,
the studies of additivity and maximality are
seemingly more congenial with the interven-
tion of cognitive processes in which partic-
ipants try to figure out an underlying ratio-
nal explanation of predictive roles. There
have been some attempts (e.g., Livesey &
Boakes, 2004) to reconcile additivity pre-
training effects with associative theory by
considering the balance induced by the pre-
training between elemental and configural
processing. As discussed in Section 2.3, it
is well known that stimuli can sometimes
be treated as composed of independent ele-
ments and sometimes as configural “wholes.”

Indeed, people can be induced to code the
same stimulus either elementally or config-
urally (Shanks, 2005; Williams et al., 1994).
Thus, the possibility arises that additivity
pretraining has its effect via switching the
balance between elemental and configural
training. Specifically, if it tended to induce
a more elemental approach, then an en-
hancement of blocking would be expected,
as blocking requires treating the two cues
as separate elements. Indeed, Livesey and
Boakes (2004) showed that additivity in-
structions are rendered inadequate to gen-
erate blocking if the cues are presented in a
way that strongly encourages configural pro-
cessing. The fact, however, that additivity
training can enhance blocking, even when it
is given after the blocking trials (Beckers et
al., 2005), is a particularly powerful piece
of evidence for the inferential account, as it
would seem to rule out an explanation solely
in terms of elemental/configural processing,
although there may be some contribution
from this shift.

Another source of evidence of the influ-
ence of general causal knowledge on peo-
ple’s performance in causal learning situ-
ations comes from studies by Waldmann
and colleagues (Waldmann, 2000, 2001;
Waldmann & Hagmayer, 2001; Waldmann
& Holyoak, 1992; Waldmann & Walker,
2005). These show that participants may be
sensitive to the causal role that the instruc-
tions provide to cues and outcomes (i.e.,
whether they are causes or effects). This sen-
sitivity is relevant from a causal perspective.
Let us once again consider the interpretation
of TX+ trials. If cues and outcome are in-
terpreted as causes and effect, respectively,
then these trials indicate that two poten-
tial causes produce a single effect (in the
jargon of causal models, this is a common-
effect situation); but if the cues and the out-
come are interpreted as effects and cause,
respectively, then a single cause (the out-
come) is producing two different effects (the
cues; i.e., a common-cause situation). In
the common-effect situation, the predictive
value of cue T is unclear, as the true causal
value of the cue to produce the effect cannot
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be unambiguously determined: Cue X or
even both cues may well be necessary to pro-
duce the effect. In this situation, both causes
compete to gain predictive or causal value.
In the common-cause situation, on the other
hand, the predictive value of cue T should
not be affected by the presence of the other
effect, X, as both effects are systematically
produced by the cause. In fact, both effects
(T and X) seem to corroborate to diagnose
the presence of their single cause. Thus, cue
T is perfectly indicative of the presence of
the cause. Hence, whereas in the common-
effect situation, the true predictive value of
cue T remains undetermined or ambiguous,
in the common-cause situation, it reliably
indicates the presence of its cause. To the ex-
tent that participants’ performance is sensi-
tive to variations in the causal interpretation
of cues and outcomes, it should be sensitive
to this sort of general causal knowledge. Ac-
cording to this knowledge, causes, but not
effects, compete to gain causal or predictive
credit. Waldmann’s research suggests, at the
very least, that there are some circumstances
in which the cue-outcome interpretation of-
fered by the instructions dramatically af-
fects cue competition, even when the actual
trial sequence presented to participants is
identical (see also López, Cobos, & Caño,
2005). Such results therefore implicate
background knowledge in basic contingency
learning.

3.2. Rule Learning

Another line of evidence that seems to go
beyond an associative approach to predictive
learning comes from studies in which par-
ticipants apparently do not learn a pattern
of predictive relationships between specific
cues and outcomes, but instead gain knowl-
edge of the rules that govern those predic-
tive relationships and are able to transfer
such knowledge to a different set of cues
and outcomes. This suggests that individuals
are able to grasp structural knowledge that
is independent of the physical or perceptual
properties of the events.

Shanks and Darby (1998) offer an illus-
tration of this rule learning (see Winman

et al., 2005, for related evidence). In their
experiments, participants were able to mas-
ter the negative patterning discrimination
learning described earlier, in which a com-
pound cue and its constituent elements lead
to completely opposite outcomes (e.g., a
compound cue is paired with the absence
of the outcome, whereas its constituent ele-
ments predict the outcome: A+, B+, AB−).
The key demonstration of rule learning,
though, was shown in participants who were
able to transfer a newly learned abstract rule
of the sort “compound cues and their con-
stituent elements are associated with oppo-
site outcomes” to new sets of cues for which
they had had no specific experience. For
example, they could predict on the basis
of having observed a compound cue paired
with the absence of the outcome that its
constituent elements would be associated
with the outcome. Notice that this rule-
learning effect goes beyond even Pearce’s
(1994) configural model. To illustrate, con-
sider the situation in which a negative pat-
terning rule transfers to a new set of cues.
If cues X and Y are both paired with the
outcome, and participants behave accord-
ing to the rule (as in Shanks & Darby,
1998), the never-before-experienced com-
pound XY would induce expectation of the
absence of the outcome. However, in terms
of Pearce’s model, despite the configural XY
unit being able to maintain its own asso-
ciative strength, it is expected that learning
about its constituent elements will general-
ize to the compound cue due to their sim-
ilarity and, hence, some expectation of the
outcome would occur. Paradoxically, it may
be argued that Pearce’s configural model is
not configural enough to support this kind
of rule-learning effect.

4. The Search for Boundary
Conditions for Different Processes

Despite the challenging nature of the evi-
dence against an associative perspective as a
unique account of human predictive learn-
ing, there is also evidence that the influ-
ence of causal knowledge or rule learning
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is not necessarily pervasive (Cobos et al.,
2002; Matute et al., 1996; Price & Yates,
1995; Shanks & Darby, 1998; Shanks &
López, 1996; Winman et al., 2005). Thus,
it may be difficult to formulate an alterna-
tive account to associative models in terms
of controlled inferential reasoning processes
(De Houwer, Beckers, & Vandorpe, 2005;
Lovibond, 2003; Waldmann, 1996), which
offers a complete explanation for human
predictive learning. In addition, there is
also evidence that goes beyond the predic-
tions of such inferential reasoning accounts
and is more in line with associative mod-
els’ predictions (see, e.g., Le Pelley et al.,
2005), including recent functional magnetic
resonance imaging (fMRI) data that ap-
pear to favor the involvement of associa-
tive error-correction process in various pre-
dictive learning phenomena (Corlett et al.,
2004).

Therefore, a much more promising line
of research to further the understanding of
the processes involved would entail a spec-
ification of the circumstances under which
different operations (either associative, in-
ferential, or of any other form) are in-
volved in participants’ performance in pre-
dictive learning tasks. In fact, this strategy
has started to provide suggestive results es-
tablishing some of the boundary conditions
for the different processes.

For example, De Houwer and Beckers
(2003) and Waldmann and Walker (2005)
have shown that – as the inferential reason-
ing account predicts – asking participants
to perform a secondary task while carry-
ing out a predictive learning task may in-
terfere with their competence to use causal
knowledge and consequently induce them
to rely on default, more simple, less cogni-
tively demanding associative processes. An-
other factor that has been suggested as a
boundary condition is the complexity of the
task, measured, for example, in terms of the
number of cues and outcomes that need to
be memorized (see, e.g., Aitken & Dickin-
son, 2005; Le Pelley et al., 2005). In gen-
eral, experiments that reveal an influence of
prior knowledge on performance tend to use
fewer cues and outcomes (e.g., Waldmann,

2001) than those which do not (e.g., Cobos
et al., 2002). Relatedly, Tangen and Allan
(2004) have found that the number of tri-
als in the task may be another factor that
qualitatively influences participants’ perfor-
mance. In their results, as the number of tri-
als increased, responses were less sensitive
to prior causal knowledge, suggesting that
as responding becomes more habitual, it is
less influenced by top-down knowledge.

Another factor that may affect the bal-
ance between associative and inferential
processes is the credibility, plausibility, and
tangibility of the causal scenario in which
the cues and outcomes are embedded in
the task instructions (López et al., 2005;
Waldmann & Walker, 2005). Given the cog-
nitive effort required to deploy prior causal
knowledge in predictive learning, partici-
pants may refrain from accessing it unless
the causal scenario meets these require-
ments, and their performance, hence, will
be guided by more simple, default processes
like those described by associative models.

Other factors relating to individual dif-
ferences or even motivational factors have
been suggested as relevant issues for un-
derstanding these boundary conditions. For
example, Shanks and Darby (1998) and
Winman et al. (2005) demonstrated that
rule learning was correlated with perfor-
mance during the learning task. Specifically,
participants who demonstrated the great-
est accuracy during training also learned the
rules governing the cue-outcome relation-
ships in the training input better (Winman
et al., 2005, also documented age-related in-
dividual differences). López et al. (2005)
showed that there needs to be some ad-
ditional motivation for participants to per-
form in a way consistent with the use of
general and abstract causal knowledge (i.e.,
the causal role of cues and outcomes). For
example, the results from one of their ex-
periments showed that unless participants
were cued, through the instructions, to per-
ceive the relevance of the causal scenario,
they did not use prior causal knowledge and
relied on more simple associative processes
(see also Goedert & Spellman, 2005, for re-
lated effects of motivational factors and the
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complexity of participants’ performance).
Thus, these results seem to show that par-
ticipants do not always necessarily have the
ability or motivational resources to actively
engage in a more complex resolution of the
task at hand and, instead, rely on more sim-
ple associative processes.

At present, there are very interesting
questions that remain unanswered regarding
these delimiting factors, such as how they in-
teract, what other factors are relevant, what
their exact nature might be, and how they
relate to representative examples of predic-
tive learning in more natural settings. An-
other relevant question that future research
will have to address is whether distinct dis-
sociable processes are necessarily demanded
by the data or whether a unified account can
be envisaged. At present, more modestly,
these results question the viability of current
explanations of human predictive learning.

5. New Directions in Associative
Models of Predictive Learning

The bulk of the evidence that challenges
associative accounts of predictive learning
comes from studies revealing an influence
of prior knowledge on participants’ behav-
ior. It should be emphasized, though, that
the problem for an associative account is
not the use of prior knowledge per se.
For example, prior knowledge concerning
specific cue-outcome relationships may be
conceived as being previously acquired and
stored in terms of the cues’ associative links.
Rather, it is the nature of the knowledge
that has been shown to exert an influence
that is crucial. This knowledge is of a gen-
eral and abstract nature, relatively indepen-
dent of the specific physical properties of
cues and outcomes, and captures what may
be regarded as structural properties of the
learning input.

Thus, the challenging nature of these re-
sults reduces to the question of whether the
acquisition of such knowledge is beyond as-
sociative principles. A positive answer to this
question would severely restrict the scope
of associative accounts. A negative answer

would open up the prospect of an associa-
tive explanation of how this kind of knowl-
edge influences a learner’s performance. It
now seems clear that such a positive answer
is unlikely to be found in the simple sort of
associative analysis that has been considered
in this chapter. However, it may not neces-
sarily be beyond the scope of more complex
connectionist models (see other chapters in
this volume). Ever since the classic work of
Hinton (1991), these complex models, us-
ing sophisticated architectures and learning
algorithms, have demonstrated that the ab-
straction of general structural properties of
objects within a given domain and its trans-
fer to new situations may not be beyond
their scope. The extent to which the ac-
quisition of this more complex knowledge
suffices to offer an explanation for the chal-
lenging evidence reviewed here remains an
open question. In line with this perspective,
Rogers and McClelland (2004) have offered
a tentative proposal of the potential of a se-
quential recurrent network-based model to
explain the role of abstract, general causal
knowledge in individuals’ performance on
semantic memory tasks after experiencing
causal event sequences.
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Shanks, D. R. (2005). Past experience can
influence whether the whole is different from
the sum of its parts. Learning and Motivation,
36, 20–41.

Miller, R. R., Barnet, R. C., & Grahame, N. J.
(1995). Assessment of the Rescorla-Wagner
model. Psychological Bulletin, 117, 363–386.

Miller, R. R., & Escobar, M. (2001). Contrasting
acquisition-focused and performance-focused
models of acquired behavior. Current Direc-
tions in Psychological Science, 10, 141–145.

Miller, R. R., & Matute, H. (1996). Biological
significance in forward and backward block-
ing: Resolution of a discrepancy between ani-
mal conditioning and human causal judgment.
Journal of Experimental Psychology: General,
125, 370–386.

Miller, R. R., & Matzel, L. D. (1988). The com-
parator hypothesis: A response rule for the
expression of associations. In G. H. Bower
(Ed.), The psychology of learning and motiva-
tion (Vol. 22, pp. 51–92). San Diego, CA:
Academic Press.

Mitchell, C. J., Lovibond, P. F., & Condoleon,
M. (2005). Evidence for deductive reasoning
in blocking of causal judgments. Learning and
Motivation, 36, 77–87.

O’Reilly, R. C., & Rudy, J. W. (2001). Conjunc-
tive representations in learning and memory:
Principles of cortical and hippocampal func-
tion. Psychological Review, 108, 311–345.

Pearce, J. M. (1994). Similarity and discrimina-
tion: A selective review and a connection-
ist model. Psychological Review, 101, 587–
607.

Pearce, J. M. (2002). Evaluation and develop-
ment of a connectionist theory of configural
learning. Animal Learning & Behavior, 30, 73–
95.

Pearce, J. M., & Bouton, M. E. (2001). Theo-
ries of associative learning in animals. Annual
Review of Psychology, 52, 111–139.

Pearce, J. M., & Hall, G. (1980). A model for
Pavlovian conditioning: Variations in the ef-
fectiveness of conditioned but not of uncondi-
tioned stimuli. Psychological Review, 87, 532–
552.

Perales, J. C., & Shanks, D. R. (2003). Normative
and descriptive accounts of the influence of
power and contingency on causal judgment.
Quarterly Journal of Experimental Psychology,
56A, 977–1007.

Price, P. C., & Yates, J. F. (1995). Associative
and rule-based accounts of cue interaction in
contingency judgment. Journal of Experimen-
tal Psychology: Learning, Memory, and Cogni-
tion, 21, 1639–1655.

Rescorla, R. A. (2000). Associative changes in
excitors and inhibitors differ when they are
conditioned in compound. Journal of Experi-
mental Psychology: Animal Behavior Processes,
26, 428–438.

Rescorla, R. A., & Wagner, A. R. (1972). A the-
ory of Pavlovian conditioning: Variations in
the effectiveness of reinforcement and nonre-
inforcement. In A. H. Black & W. F. Prokasy
(Eds.), Classical conditioning II: Current the-
ory and research (pp. 64–99). New York:
Appleton-Century-Crofts.

Rogers, T. T., & McClelland, J. L. (2004). Se-
mantic cognition: A parallel distributed process-
ing approach. Cambridge, MA: MIT Press.

Savastano, H. I., Arcediano, F., Stout, S. C., &
Miller, R. R. (2003). Interaction between pre-
exposure and overshadowing: Further anal-
ysis of the extended comparator hypothesis.
Quarterly Journal of Experimental Psychology,
56B, 371–395.

Shanks, D. R. (1985). Forward and backward
blocking in human contingency judgement.
Quarterly Journal of Experimental Psychology,
37B, 1–21.

Shanks, D. R. (1987). Acquisition functions in
causality judgment. Learning and Motivation,
18, 147–166.

Shanks, D. R. (1995). The psychology of associative
learning. Cambridge, UK: Cambridge Univer-
sity Press.

Shanks, D. R. (2005). Connectionist models
of basic human learning processes. In G.
Houghton (Ed.), Connectionist models in cog-
nitive psychology (pp. 45–82). Hove, UK: Psy-
chology Press.

Shanks, D. R., Charles, D., Darby, R. J., & Azmi,
A. (1998). Configural processes in human as-
sociative learning. Journal of Experimental Psy-
chology: Learning, Memory, and Cognition, 24,
1353–1378.

Shanks, D. R., & Darby, R. J. (1998). Feature-
and rule-based generalization in human asso-
ciative learning. Journal of Experimental Psy-
chology: Animal Behavior Processes, 24, 405–
415.

Shanks, D. R., Holyoak, K. J., & Medin, D. L.
(Eds.). (1996). The psychology of learning and
motivation: Causal learning (Vol. 34). San
Diego, CA: Academic Press.



P1: IBE

CUFX212-22 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 17:55
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Shanks, D. R., López, F. J., Darby, R. J., & Dick-
inson, A. (1996). Distinguishing associative
and probabilistic contrast theories of human
contingency judgment. In D. R. Shanks, K. J.
Holyoak, & D. L. Medin (Eds.), The psychol-
ogy of learning and motivation: Causal learning
(Vol. 34, pp. 265–311). San Diego, CA: Aca-
demic Press.

Shevill, I., & Hall, G. (2004). Retrospective reval-
uation effects in the conditioned suppression
procedure. Quarterly Journal of Experimental
Psychology, 57B, 331–347.

Sloman, S. A. (1996). The empirical case for
two systems of reasoning. Psychological Bul-
letin, 119, 3–22.

Stout, S. C., & Miller, R. R. (2007). Sometimes-
competing retrieval (SOCR): A formalization
of the comparator hypothesis. Psychological
Review, 114, 759–783.

Sun, R., Slusarz, P., & Terry, C. (2005). The in-
teraction of the explicit and the implicit in
skill learning: A dual-process approach. Psy-
chological Review, 112, 159–192.

Sutherland, R. J., & Rudy, J. W. (1989). Con-
figural association theory: The role of the hip-
pocampal formation in learning, memory, and
amnesia. Psychobiology, 17, 129–144.

Sutton, R. S., & Barto, A. G. (1981). Toward a
modern theory of adaptive networks: Expec-
tation and prediction. Psychological Review,
88, 135–170.

Tangen, J. M., & Allan, L. G. (2004). Cue inter-
action and judgments of causality: Contribu-
tions of causal and associative processes. Mem-
ory & Cognition, 32, 107–124.

van Hamme, L. J., & Wasserman, E. A. (1994).
Cue competition in causality judgments: The
role of nonpresentation of compound stimulus
elements. Learning and Motivation, 25, 127–
151.

Wagner, A. R. (1981). SOP: A model of au-
tomatic memory processing in animal be-
haviour. In N. E. Spear & R. R. Miller
(Eds.), Information processing in animals: Mem-
ory mechanisms (pp. 5–47). Hillsdale, NJ:
Lawrence Erlbaum.

Waldmann, M. R. (1996). Knowledge-based
causal induction. In D. R. Shanks, K. J.
Holyoak, & D. L. Medin (Eds.), The psychol-
ogy of learning and motivation: Causal learning

(Vol. 34, pp. 47–88). San Diego, CA: Aca-
demic Press.

Waldmann, M. R. (2000). Competition among
causes but not effects in predictive and diag-
nostic learning. Journal of Experimental Psy-
chology: Learning, Memory, and Cognition, 26,
53–76.

Waldmann, M. R. (2001). Predictive versus diag-
nostic causal learning: Evidence from an over-
shadowing paradigm. Psychonomic Bulletin &
Review, 8, 600–608.

Waldmann, M. R., & Hagmayer, Y. (2001). Esti-
mating causal strength: The role of structural
knowledge and processing effort. Cognition,
82, 27–58.

Waldmann, M. R., & Holyoak, K. J. (1992). Pre-
dictive and diagnostic learning within causal
models: Asymmetries in cue competition.
Journal of Experimental Psychology: General,
121, 222–236.

Waldmann, M. R., & Walker, J. M. (2005). Com-
petence and performance in causal learning.
Learning & Behavior, 33, 211–229.

Wasserman, E. A. (1990). Detecting response-
outcome relations: Toward an understanding
of the causal texture of the environment. In
G. H. Bower (Ed.), The psychology of learn-
ing and motivation (Vol. 26, pp. 27–82). New
York: Academic Press.

Wasserman, E. A., & Berglan, L. R. (1998). Back-
ward blocking and recovery from overshad-
owing in human causal judgement: The role
of within-compound associations. Quarterly
Journal of Experimental Psychology, 51B, 121–
138.

Wasserman, E. A., & Castro, L. (2005). Sur-
prise and change: Variations in the strength
of present and absent cues in causal learning.
Learning & Behavior, 33, 131–146.

Wasserman, E. A., Elek, S. M., Chatlosh, D. L.,
& Baker, A. G. (1993). Rating causal rela-
tions: The role of probability in judgments of
response-outcome contingency. Journal of Ex-
perimental Psychology: Learning, Memory, and
Cognition, 19, 174–188.

Wasserman, E. A., & Miller, R. R. (1997). What’s
elementary about associative learning? Annual
Review of Psychology, 48, 573–607.

Wickelgren, W. A. (1979). Chunking and con-
solidation: A theoretical synthesis of semantic
networks, configuring in conditioning, S-R ve-
rsus cognitive learning, normal forgetting, the
amnesic syndrome, and the hippocampal ar-
ousal system. Psychological Review, 86, 44–60.



P1: IBE

CUFX212-22 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 17:55

models of animal and human learning 611

Williams, D. A. (1996). A comparative analy-
sis of negative contingency learning in hu-
mans and nonhumans. In D. R. Shanks, K. J.
Holyoak, & D. L. Medin (Eds.), The psychol-
ogy of learning and motivation: Causal learning
(Vol. 34, pp. 89–131). San Diego, CA: Aca-
demic Press.

Williams, D. A., Sagness, K. E., & McPhee, J.
E. (1994). Configural and elemental strategies

in predictive learning. Journal of Experimental
Psychology: Learning, Memory, and Cognition,
20, 694–709.

Winman, A., Wennerholm, P., Juslin, P., &
Shanks, D. R. (2005). Evidence for rule-based
processes in the inverse base-rate effect. Quar-
terly Journal of Experimental Psychology, 58A,
789–815.



P1: IBE

CUFX212-23 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 18:5

CHAPTER 23

Computational Modeling of Visual

Information Processing

1. Introduction

Vision is one of the most actively researched
subdomains of neuroscience. This is not sur-
prising, given that the visual sense provides
perhaps the most significant conduit for the
acquisition of information around the world.
Over 30% of the primate brain is devoted to
visual analysis. The interpretation of visual
images presents a host of interesting ques-
tions and excellent opportunities for the de-
velopment of novel computational models.

Visual processing can be conceptualized
as a series of inter-related stages. The early
stages serve as sophisticated pre-processors
of the visual image, highlighting some as-
pects of the input signal and suppressing
others. The later stages operate on this fil-
tered signal to perform tasks like recognizing
the objects in the visual array. Our under-
standing of exactly how the primate brain
accomplishes this processing is still relatively
limited. However, the experimental data
thus far have guided the development of
computational models, which in turn have
helped refine the experimental hypotheses.

Over the past several decades, numerous
computational models have been proposed
for various aspects of visual analysis. It is
difficult to summarize the rich literature in
computational modeling of vision in just one
chapter. What is discussed in this chapter
instead is a description of some fundamen-
tal issues related to computational modeling
that transcend specific problems and presen-
tation of a few specific proposals that span
early and late visual processes and their in-
teractions.

The enterprise of computational model-
ing of visual function received a significant
boost with the far-reaching ideas of David
Marr in the early 1980s (Marr, 1982). Al-
though some of Marr’s specific proposals
are now not considered entirely accurate, his
legacy is the formulation of the notion of lev-
els of analysis. He suggested that any model
of a particular aspect of visual processing can
be considered to have three distinct levels:

1. Computational theory level: What is
the information-processing problem the
model is trying to solve?

612
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2. Algorithmic level: What algorithm can,
in principle, solve the problem?

3. Implementation level: How can the al-
gorithm be implemented in neural hard-
ware?

Some researchers have criticized this pro-
posal as enforcing an unnatural separation
of the levels of analysis (see Chapter 1 in
this volume). The assessment of viability of
an algorithm for a certain vision task cannot
be entirely divorced from its eventual imple-
mentation constraints. For instance, an algo-
rithm that uses the Radon transform (which
computes the one-dimensional projections
of a two-dimensional image across several
orientations) to detect extended linear struc-
tures in images is less viable as a biological
model than one that uses local interactions
among a network of small edge detectors.
However, notwithstanding such caveats, it
is perhaps fair to say that this proposal has
helped catalyze and systematize the effort
of computational modeling over the past
two decades. Conceptualizing vision as an
information-processing task has allowed re-
searchers to think more abstractly about the
input-output mappings they are attempting
to accomplish. It has helped them under-
stand what information is needed to solve a
problem theoretically and then guided ex-
perimentation to examine the neural mech-
anisms responsible for analyzing such infor-
mation.

Regardless of what specific visual task a
model is designed for, it typically has to con-
tend with a few of the following ubiquitous
challenges:

1. The inputs are often highly impoverished.
Our eyes are notoriously prone to refrac-
tive and chromatic errors. Also, observing
objects at a distance reduces the effective
resolution of their images falling over the
retina. This, combined with atmospheric
haze, scotomas, blur induced by object or
self-motion, and a host of other factors, en-
sures that the image the visual system has to
work with is of rather poor quality. For in-
stance, a small half-toned newspaper image
of a car has very limited information about

luminance gradients across the car’s body.
Yet, we have no trouble using our shape
from shading processes to estimate the cur-
vature of the hood and even the glossiness of
the paint. For a model to mimic the human
visual system, it needs to be able to handle
such degraded images.

2. The problems are severely undercon-
strained. The process of projecting a three-
dimensional world onto a two-dimensional
imaging surface, along with the degrada-
tions mentioned previously, results in a
many-to-one mapping between objects and
images. Corresponding to any given two-
dimensional (2-D) image, there are infinitely
many three-dimensional (3-D) objects that
are projectionally consistent with it. Invert-
ing this mapping is, therefore, an undercon-
strained problem. In some circumstances,
one can acquire multiple images to reduce
this underconstrainedness, but often, there
is no way to entirely avoid it. How the hu-
man visual system overcomes this problem
has been one of the persistent open ques-
tions in the domain of computational vi-
sion. Much of the work has attempted to
identify and formalize the biases needed to
uniquely (or nearly so) invert the object-to-
image mapping. For instance, given a single
two-dimensional line drawing, one can try to
limit the search for likely three-dimensional
objects that gave rise to it by using biases
toward symmetry.

3. The “answer” needs to be computed rapidly.
The human visual system is designed to al-
low us to interact with a highly dynamic
world. We can catch fast-moving balls and
get out of the way of speeding cars. To aid
survival, the visual system simply does not
have the luxury of long compute times. Any
plausible computational model of a visual
process must necessarily respect this con-
straint. Algorithms requiring hundreds or
thousands of iterations are effectively ruled
out. Of course, given the speed of com-
putational hardware today, executing a few
thousand iterations in a fraction of a second
is not a tall order. However, it is worth re-
membering that neurons, the computational
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units of the nervous system, are rather slug-
gish and are capped at about 200 Hz in
terms of their maximal spike firing rates. For
a downstream neuron to estimate their fir-
ing rate, an integration time of a few mil-
liseconds appears necessary. Each neuronal
transmission, therefore, is a slow process and
places strong constraints on the number of
such serial steps the overall computation can
have.

4. Many aspects of vision are subject to cog-
nitive influences. The sensory signal only
partly determines our eventual percept. Our
prior knowledge, expectations, attention,
and emotional states all contribute to this
process. A computational model that did not
take these “higher-level” influences into ac-
count will likely not be a comprehensive or
accurate account of the biological process.
Even a task as simple as detecting contours
in an image, which one might think of as an
early vision problem, solvable by convolv-
ing the image with Gabor filters, can be af-
fected by prior knowledge of the kinds of
objects expected to be seen in the input. For
instance, in looking at a facial image, most
observers can readily detect the contour sep-
arating the jaw and chin from the neck. In
reality, however, most facial images have lit-
tle or no luminance gradient at that location.
Somehow, our prior familiarity with faces
allows us to enhance, or even “hallucinate,”
contours where we expect them to be. A big
challenge for computational models is to in-
corporate such cognitive influences in their
operation.

This chapter illustrates some of these
problems, and tentative computational re-
sponses, in the specific domain of object
recognition. This allows presentation of con-
crete examples of models, rather than talk-
ing in generalities. Object recognition, as a
problem domain, is well suited to serve an
illustrative function. It provides striking in-
stances of the problems described earlier.
A person’s face, for instance, subtends less
than a third of a degree of visual angle from
a distance of a hundred feet. The effective
resolution of the resulting image (given the

discrete sampling of the photoreceptor mo-
saic) is quite modest. However, we typically
have no problem recognizing people at these
distances. The many-to-one mapping men-
tioned previously shows up in a particularly
difficult form in the context of recognition.
Not only is any single image consistent with
an infinite number of real-world objects, a
recognition system also needs to treat many
different images, which correspond to dif-
ferent appearances of an object, as denot-
ing the same entity. The time constraints on
recognition are also stringent. We need to,
and often are able to, recognize objects and
people at a glance. Recognition responses are
evident in the brain less than 150 ms after
stimulus presentation. Given the neuronal
latencies described earlier, this leaves very
little time for iterative loops in the compu-
tation. Finally, our recognition performance
is highly prone to high-level influences.
Priming enhances recognition accuracy and
speed. We are better able to tolerate image
degradations in images of objects that we
are more familiar with. Additionally, recog-
nition serves as an important prerequisite
for bringing to bear high-level influences on
other visual tasks. For instance, influencing
the shape-from-shading computation for the
small half-toned image of the car mentioned
earlier requires that we know that the object
depicted is a car.

To contextualize the discussion, let us
start by considering the overall framework
of visual processing, as illustrated in Fig-
ure 23.1. Very roughly, it can be partitioned
into two stages – an “early” stage concerned
with image representation in terms of a ba-
sic vocabulary of filters and a “late” stage
concerned with recognition. To span this
processing framework, three computational
models are described:

1. Models of early visual processing that
suggest why neurons in the initial stages
of the visual pathway have the particu-
lar filter properties that they do.

2. Models that link early vision with recog-
nition.

3. A model of how recognition might in-
fluence early vision.
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Figure 23.1. Visual processing can be
approximated as a cascade of processing stages,
ranging from generalized image filtering to
object recognition. In this chapter, we consider
computational models of these stages and also of
feedback influences from later to early stages.

Although far from comprehensive, these
proposals provide illustrations of how ex-
perimentation and modeling can aid each
other.

2. Modeling Early Visual Processing

To characterize the relationship between
early visual areas and downstream recog-
nition processes, the discussion must begin
with the current understanding of what is
being computed in early vision and why. Put
another way, what is the basic vocabulary of
features used to encode images in cortex?
Further, what visual tasks is this vocabulary
is suited to?

The pioneering electrophysiological work
of Hubel and Wiesel provided a first look
at what features neurons in early visual ar-
eas are sensitive to (Hubel & Wiesel, 1959).
The nature of these cells’ preferred stimuli
was very surprising at the time, as the tuning
of these neurons is quite different from the
properties of earlier visual areas. Unlike cells
in the lateral geniculate nucleus (LGN), sta-
tionary spots of light are usually not enough
to produce a strong response in a V1 cell.
Instead, oriented bars (often with a pre-
ferred direction of movement) elicit strong
responses. Cells can also be categorized as
“simple” or “complex” depending on their

willingness to generalize over contrast po-
larity and edge position. Figure 23.2a shows
response curves from four V1 neurons. As
is evident, the response is maximal for a
specific orientation of the visual stimulus (a
bar) and decays rapidly as the orientation
is changed. Hubel and Wiesel (1962) pro-
posed a simple linear model for construct-
ing oriented receptive fields in V1 from the
unoriented fields of the lateral geniculate
nucleus (Figure 23.2b). More recent simul-
taneous recordings from the LGN and V1
have suggested that this model might in-
deed be correct to a large extent (Alonso,
Usrey, & Reid, 2001; Kara et al., 2002;
Usrey, Alonso, & Reid, 2000; Jones &
Palmer, 1987).

For computational purposes, many re-
searchers have summarized the physiolog-
ical studies of early vision in felines and pri-
mates primarily in terms of edge extraction.
Descriptive models of early visual receptive
fields usually take the form of Gabor patches
or wavelets, both of which provide a means
of representing image structure in terms of
local oriented edges at multiple scales.

But why should early vision choose this
encoding scheme as opposed to any other?
A compelling explanation that has been ex-
plored extensively is that the features com-
puted by early visual areas permit optimal
redundancy reduction. It has been argued
that an important goal of any sensory sys-
tem is to formulate a representation that
takes advantage of latent structures in the
input to obtain an efficient code for incom-
ing stimuli (Atick, 1992; Attneave, 1954;
Barlow, 1961). Natural scenes are highly
structured, having a characteristic power
spectrum of approximately 1/f (Field,
1987). It is thus reasonable to ask about the
form of the features that compose an effi-
cient code for vision.

Various methods of redundancy reduc-
tion have been applied to libraries of nat-
ural image patches in order to answer this
question, including principal components
analysis, independent components analy-
sis, and “sparsification” of outputs (Bell &
Sejnowski, 1997; Hancock, Baddeley, &
Smith, 1992; Olshausen & Field, 1996;
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Figure 23.2. (a) Orientation tuning curves of V1 neurons (Adapted from
Watkins & Berkley, 1974). (b) A simple model proposed by Hubel and
Wiesel to account for orientation tuning in V1. Linearly aligned sets of
unoriented receptive fields of the LGN neurons are posited as the
substrate for the orientation-tuned receptive fields of V1 neurons.
(Adapted from Hubel & Wiesel, 1962.)

Olshausen, & Field, 1997). These methods
make different assumptions about the sta-
tistical realization of an efficient code, but
generally agree that Gabor or wavelet-like
features emerge as a robust solution to visual
redundancy reduction. The approximate
convergence between these computational
results and the physiological findings de-
scribed earlier have led to a wealth of studies
attempting to forge a stronger link between
visual cortex and the reduction of statistical
redundancy. Color, stereo, and motion se-
lectivity in early visual areas have all recently
been modeled with some success using
redundancy reduction techniques (Hoyer
& Hyvaarinen, 2000; Olshausen, 2003),
indicating that the link between compu-
tational theory and physiology is relatively
robust.

There are, however, a great many as-
pects of V1 function that are likely not
captured by the current methods of car-
rying out redundancy reduction. Although
computational modelers are generally con-
tent to consider multiscale representations

of oriented luminance-defined edges as “bi-
ologically plausible,” there remains much to
be understood regarding early visual func-
tion. For example, the distribution of pre-
ferred frequencies usually present in compu-
tational solutions does not seem to capture
the full spectrum of observed receptive
fields in primate V1 (Ringach, 2002).

It is unclear why this should be so, but
a prime reason for this discrepancy may
be that current redundancy reduction tech-
niques typically model neurons as purely lin-
ear systems, whereas it is known that real
neurons exhibit strong nonlinear behavior.
Assumptions such as this that grossly sim-
plify the physiological properties of early vi-
sual areas make it possible that redundancy
reduction as currently formulated only ex-
plains a small portion of visual function in
primary visual cortex. (For an excellent re-
view of this topic, see Olshausen & Field,
2005.) Real visual neurons with classical and
“nonclassical” receptive fields and horizontal
connections between neighboring cells may
carry out computations far richer than the
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linear weighting of image pixels assumed by
many.

Despite an ongoing debate over how well
simple Gabor or wavelet models of V1 re-
ceptive fields accurately characterize visual
processing, the modeling community has
embraced such features as a useful first step
in a wide range of computational tasks. For
object and face recognition, representing im-
ages with a multiscale “pyramid” of oriented
edge information (Freeman & Adelson,
1991) or information closely related to this
has become a standard pre-processing step
for many successful algorithms (Riesenhu-
ber & Poggio, 1999, Wiskott et al., 1997).
Although there may be more complex pro-
cessing going on in visual cortex, oriented
edges provide a versatile feature vocabulary
that is supported to some extent by com-
putational and biological principles. In the
next section, a model of recognition based
on the use of this feature vocabulary is
discussed.

3. Modeling Recognition Based on
the Outputs of Early Visual Stages

3.1. Overview

In Marr’s (1982) original conceptualization
of visual processing, recognition was situ-
ated at the very top of the hierarchy and
operated on the outputs of “midlevel” mod-
ules. These included modules for estimating
3-D shape based on texture gradients,
stereo, and shape from shading, among oth-
ers. The matching was to be executed be-
tween the 3-D shape information extracted
from the current input and that extracted
from previous exposures. The use of 3-D
information, in principle, imbued the model
with an ability to recognize objects despite
significant variations in the viewpoint; be-
cause 3-D shape estimation was unaffected
by the direction of observation, the result-
ing recognition performance was expected
to be viewpoint independent. However, sev-
eral years of work revealed significant prob-
lems with this proposal.

Real-world images were found to be too
noisy and degraded to permit accurate 3-D

shape recovery. More fundamentally, even
if the practical difficulties of 3-D shape esti-
mation could be set aside, the model’s recog-
nition performance did not accurately mir-
ror human performance. A growing body of
results has shown that humans are not view-
point independent in their recognition abili-
ties. Performance is best from the previously
experienced vantage points and falls off sig-
nificantly as the viewpoint changes. The pro-
posal by Marr did not reflect this aspect of
human recognition. This shortcoming led to
modifications of the original scheme.

A particularly influential proposal from
Biederman (1987) alleviated the require-
ment of 3-D reconstruction. This idea, re-
ferred to as “recognition by components,”
(RBC) suggested that objects are repre-
sented as collections of simple volumet-
ric primitives (“geons”) and their qualita-
tive spatial relationships. Most significantly,
the geon decomposition could, in princi-
ple, be accomplished using only 2-D image
cues. Biederman’s ideas have had great im-
pact on the field. Artifactual objects, such
as cups and tablelamps, do indeed lend
themselves to decomposition into geon-like
parts, and human recognition performance
is modulated by the observability of these
parts, just as the RBC scheme would sug-
gest. However, some researchers worry that
geon decompositions are difficult to accom-
plish for many natural objects. Even for sim-
pler objects, image imperfections make it
difficult to reliably identify the constituent
geons.

Another proposal that arose in response
to the shortcomings of the viewpoint in-
dependent recognition scheme is that of
image-based recognition. The basic idea is
straightforward: Instead of constructing so-
phisticated intermediate representations, try
to match the currently seen images against a
database of previously seen ones. This idea
underlies some of the most successful recog-
nition models today. Two are discussed in
the following paragraphs.

Wiskott et al. (1997) proposed a scheme
based on “Gabor jets.” In effect, multiple
points in any given image were filtered
using banks of Gabors of different scales
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(a stack of differently sized and oriented
Gabor filters is referred to as a Gabor jet).
The collected vector of responses served
as the representation of an image. Image
matching was thus reduced to a problem
of comparing Gabor jet vectors. The ele-
ments of a vector could be differentially
weighted depending on whether high or low
spatial frequencies were to be given more
significance. The Gabor-jet model of recog-
nition yielded good performance on real-
world recognition tasks, such as face recog-
nition, and was also roughly consistent with
known physiology.

More recently, Reisenhuber and Poggio
(1999) proposed a hierarchical model of
recognition that builds on the earlier sug-
gestions by Hubel and Wiesel (1959) of in-
creasing feature complexity along the visual
pathway. The model is structured as a se-
ries of stages wherein each stage pools the
outputs of the previous one using a max
operator (thus picking out the strongest in-
put, rather than averaging across them). The
early stages of the model perform simple
feature detection via oriented filtering, and
later stages achieve sensitivity to complex
patterns through a cascade of neural pooling
steps. Recent simulations have shown that
this biologically plausible model is able to
perform well on complex image-sets (Serre
et al., 2007).

It is perhaps not entirely obvious how a
model, like the two mentioned previously,
that relies largely on simple filtering and
pooling can achieve reasonable recognition
performance across images that are highly
variable in appearance. For instance, a face
illuminated from the left is very different at
the pixel level from a face illuminated from
the right. How can a visual system generalize
across such illumination variations? Filtering
by fine edge-detectors in V1 has proved not
to be too helpful for solving this problem.
Although such filtering does de-emphasize
in the low-spatial frequencies caused by illu-
mination, the fine edge-maps are still found
to be highly variable, belying the hopes of
invariance. A recognition system they are
embedded in consequently would be highly
brittle and unsuited to the variabilities of

the real world. Does this mean that early
filtering is inadequate to support robust
recognition?

To explore this question, an illustrative
model of face detection can be used. Even
though the performance of this model is
superseded by others in the literature, it
serves a useful expository purpose due to
its simplicity. Interestingly, the model gains
its generalization abilities by discarding de-
tailed spatial and photometric information
in favor of a more “qualitative” code. Fur-
ther details about this model may be found
in Sinha (2002) and Sadr et al. (2002).

3.2. A “Qualitative” Model of Recognition

The starting point of this model lies in re-
examining the response properties of neu-
rons in the early stages of the visual path-
way. These response properties constrain
the kinds of measurements that can plau-
sibly be included in a representation scheme
for recognition. The conventional view of
the V1 neurons, as described in the preced-
ing section, is that they encode detailed spa-
tial and photometric information. It turns
out, however, that in contrast to this dogma,
many neurons have receptive fields that
cover a significant extent of visual space.
In this sense, they encode the coarse, low-
resolution structure of the image (compar-
ing large regions) rather than extracting fine
edges from image details. Additionally, as
shown in Figure 23.3, many neurons have
rapidly saturating contrast response func-
tions (Albrecht & Hamilton, 1989; Anzai
et al., 1995; DeAngelis, Ohzawa, & Free-
man, 1993a, 1993b). Their tendency to
reach ceiling level responses at low contrast
values render these neurons sensitive pri-
marily to ordinal, rather than metric, rela-
tions (hence, they can justifiably be called
qualitative in their responses).

The model described here uses an ideal-
ization of such units as the basic vocabulary
of its representation scheme. In this scheme,
objects are encoded as sets of qualitative (or-
dinal) relations across large image regions.
This very simple idea seems well suited
to handling the photometric appearance
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Figure 23.3. Response curves of four striate cells
illustrating their rapid saturation as a function of
edge contrast. Given their limited dynamic
range, these neurons can be approximated as
ordinal comparators of region luminance.
(Adapted from Albrecht & Hamilton, 1989.)

variations that real-world objects exhibit.
Let us examine the specific case of face de-
tection as an illustration of how qualitative
encoding can permit recognition despite sig-
nificant appearance variations.

The three images in Figure 23.4 appear
very different from each other. Variations
in illumination, even without any view-
point variations (as would be expected in

Figure 23.4. Three-dimensional objects imaged under varying illumination conditions can yield
images that are very different at the pixel level, as shown here for the case of a human face.

the imaging setup of Figure 23.4) signifi-
cantly alter the individual brightness of dif-
ferent parts of the face, such as the eyes,
cheeks, and forehead. Therefore, absolute
image brightness distributions are unlikely
to be adequate for classifying all of these im-
ages as depicting the same underlying object.
Even the contrast magnitudes across differ-
ent parts of the face change greatly under
different lighting conditions.

Although the absolute luminance and
contrast magnitude information is highly
variable across these images, some stable or-
dinal measurements can be identified. Con-
sider Figure 23.5. It shows several pairs
of average luminance values over localized
patches for each of the three images in-
cluded in Figure 23.4. Certain regularities
are apparent. For instance, the average lu-
minance of the left eye is always less than
that of the forehead, regardless of the light-
ing conditions. The relative magnitudes of
the two luminance values may change, but
the sign of the inequality does not. In other
words, the ordinal relationship between the
average luminance of the left-eye-forehead
pair is invariant under lighting changes. Fig-
ure 23.6 shows several other such pair-wise
invariances. It seems, therefore that local or-
dinal relations may encode stable facial at-
tributes across different illumination con-
ditions. By putting all of these pair-wise
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Figure 23.5. The absolute brightnesses and even their relative magnitudes change under
different lighting conditions, but several pair-wise ordinal relationships are invariant.
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Figure 23.6. Preserving absolute brightnesses of image regions is neither necessary nor sufficient for
recognition. The patches in (a) and (b) have very different brightnesses, yet they are perceived as
depicting the same object. The patches in (a) and (c), however, are perceived very differently, even
though they have identical absolute brightnesses. The direction of brightness contrast appears to have
greater perceptual significance. (Mooney image courtesy of Patrick Cavanagh, Harvard University.)

invariances together, we obtain a larger com-
posite invariant (Figure 23.7). This invariant
is called a ratio-template, given that it is com-
prised of a set of binarized ratios of image lu-
minance. It is worth noting that dispensing
with precise measurements of image lumi-
nance not only leads to immunity to illumi-
nation variations, but also renders the ratio-
template robust in the face of sensor noise.
It also reconciles the design of the invari-
ant with known perceptual limitations – the
human visual system is far better at making
relative brightness judgments than absolute
ones (Figure 23.6).

The ratio-template is not a strict invariant
in that special cases in which it breaks exist.
One such situation arises when the face is
strongly illuminated from below. However,
for almost all “normal” lighting conditions
(light sources at or above the level of the
head), the ratio-template serves as a robust
invariant. An additional advantage to using
ordinal relations is their natural robustness
to sensor noise due to the fact that they
use coarse image structure, whereas sensor
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r3r2
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r6
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Figure 23.7. A ratio-template is a conjugation
of several pair-wise invariants. This is a
representation of the invariant ordinal structure
of luminance on a human face under widely
varying illumination conditions.
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noise typically affects high spatial frequen-
cies. Thus, it seems that local ordinal rep-
resentations may be well suited for devis-
ing compact representations, robust against
large photometric variations, for at least
some classes of objects.

How a ratio-template may be used for
face detection is discussed in the following
section.

3.2.1. the match metric

Having decided on the structure of the ratio-
template (which, in essence, is one model
for a face under different illumination set-
ups), let us now consider the problem of
matching it against a given image fragment
to determine whether or not that part of
the image contains a face. The first step in-
volves averaging the image intensities over
the regions laid down in the ratio-template’s
design and then determining the prescribed
pair-wise ratios. The next step is to deter-
mine whether the ratios measured in the
image match the corresponding ones in the
ratio-template. An intuitive way to think of
this problem is to view it as an instance
of the general graph matching problem.
The patches over which the image inten-
sities are averaged constitute the nodes of
the graph and the inter-patch ratios consti-
tute the edges. A directed edge exists be-
tween two nodes if the ratio-template has
been designed to include the brightness ratio
between the corresponding image patches.
The direction of the edge is such that it
points from the node corresponding to the
brighter region to the node corresponding
to the darker one. Each corresponding pair
of edges in the two graphs is examined to
determine whether the two edges have the
same direction. If they do, a predetermined
positive contribution is made to the over-
all match metric and a negative one oth-
erwise. The magnitude of the contribution
is proportional to the “significance” of the
ratio. A ratio’s significance, in turn, is de-
pendent on its robustness. For instance, the
eye-forehead ratio may be considered more
significant than the nose-tip-cheek ratio be-
cause the latter is more susceptible to being
affected by such factors as facial hair and

is therefore less robust. The contributions
to be associated with different ratios can be
learned automatically from training exam-
ples. After all corresponding pairs of edges
have been examined, the magnitude of the
overall match metric can be used under a
simple threshold-based scheme to declare
whether or not the given image fragment
contains a face. Alternatively, the vector in-
dicating which graph edges match can be the
input to a statistical classifier.

3.2.2. first-order analysis

It may seem that by discarding the bright-
ness ratio magnitude information, we run
the risk of rendering the ratio-template too
permissive in terms of the patterns that it
will accept as faces; several false positives
would be expected to result. In this section,
we present a simple analysis showing that
the probability of false positives is actually
quite small. We proceed by computing how
likely it is for an arbitrary distribution of im-
age brightnesses to match a ratio-template.
In the following treatment, the graph rep-
resentation of the spatial distribution of
brightnesses in the image and the template
is used.

Suppose that the ratio-template is repre-
sented as a graph with n nodes and e directed
edges. Further suppose that if all the edges
in this graph were to be replaced by undi-
rected edges, it would have c simple cycles.
We need to compute the cardinality of the
set of all valid graphs defined on n nodes
with e edges connecting the same pairs of
nodes as in the template graph. A graph is
“valid” if it represents a physically possible
spatial distribution of intensities. A directed
graph with a cycle, for instance, is invalid be-
cause it violates the principle of transitivity
of intensities. Each of the e edges connecting
two nodes (say, A and B) can take on one of
three directions:

1. if A has higher intensity value than B,
the edge is directed from A to B; or

2. if B has higher intensity value than A,
the edge is directed from B to A; or

3. if A and B have the same intensity val-
ues, the edge is undirected.
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Figure 23.8. A cycle set of m edges yields 2(2m − 1) invalid
graphs. A cycle set of four edges, for instance, yields thirty
invalid graphs, fifteen of which are shown in the figure (the
other fifteen can be obtained by reversing the arrow
directions). Each of these graphs leads to impossible
relationships between intensity values (say, a and b) of the
form a > b & b > a or a > b & a = b.

The total number of graphs on n nodes and
e edges, therefore, is 3e . This number, how-
ever, includes several invalid graphs. A set
of m edges that constitute a simple cycle
when undirected, introduce 2(2m − 1) in-
valid graphs, as illustrated in Figure 23.8.
For c such sets, the total number of invalid
graphs are∑

i

= 1 to c 2(2mi − 1)

where mi is the number of edges in the “cycle
set” i . Therefore, the total number of valid
graphs on n nodes, e edges, and c cycles is

3e −
∑

i

= 1 to c 2(2mi − 1).

Of all these graphs, only one is accept-
able as representing a human face. For most
practical ratio-template parameters, the to-
tal number of valid graphs is quite large, and
the likelihood of an arbitrary distribution
of image brightnesses accidentally being the
same as that for a face is very small. For in-
stance, for e = 10 and two cycle sets of sizes
six and three, the number of valid graphs
is nearly 59,000. If all the correspond-
ing intensity distributions are equally likely,

the probability of a false positive is only
1.69 ∗10−5.

3.2.3. implementation issues

As stated in the introductory section, for
a model of visual processing to be consis-
tent with human performance, the com-
putation it embodies has to be sufficiently
straightforward to be executed rapidly. The
ratio-template approach meets this criterion
well. It requires the computation of aver-
age intensities over image regions of differ-
ent sizes. An efficient implementation can
be obtained by adopting a multiresolution
framework. In such a framework, the input
image is repeatedly filtered and subsampled
to create different levels of the image pyra-
mid. The process of determining the aver-
age value for any image patch is reduced
to picking out the appropriate pixel value
from the bank of pre-computed pyramid
levels, leading to a tremendous saving in
computation. The appropriate scale of op-
eration for a given ratio-template depends
on the chosen spatial parameters, such as
the patch sizes and the distances between
them. By varying these parameters system-
atically, the face detection operation can be
performed at multiple scales. Such a pa-
rameter variation is easily accomplished in a
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Figure 23.9. Testing the face-detection scheme on real images. The program places a small white
square at the center of, or a rectangle around, each face it detects. The results demonstrate the
scheme’s robustness in detecting varying identity, facial hair, skin tone, eyeglasses, and scale.

multiresolution implementation. By tapping
different sets of the levels constituting the
image pyramid, the presence of faces of dif-
ferent sizes can be determined. Therefore,
the total amount of computational overhead
involved in handling multiple scales is not
excessive. The use of different pyramid lev-
els is akin to using different sized Gabor fil-
ters in the multiresolution model of V1 de-
scribed earlier.

3.2.4. tests

Figure 23.9 shows some of the results ob-
tained on real images by using a ratio-
template for face detection. Whenever it
detects a face, the program pinpoints the lo-
cation of the center of the head with a little
white patch or a rectangle. The results are
encouraging, with a correct detection rate of
about 80% and very few false positives. The
“errors” can likely be reduced even further
by appropriately setting the threshold of ac-
ceptance. The results demonstrate the effi-
cacy of the ratio-template as a face detector
capable of handling changes in illumination,
face identity, scale, facial expressions, skin
tone, and degradations in image resolution.

The use of a qualitative face signature,
a ratio-template, as a candidate scheme for
detecting faces under significant illumina-
tion variations has been described. One can
think of this specific scheme as an instance
of a more general object recognition strat-
egy that uses qualitative object signatures.
Such a strategy would be attractive for the
significant invariance to imaging conditions
that it can potentially confer. However, it
also has a potential drawback. Intuitively,
it seems that the “coarseness” of the mea-
surements it uses would limit the usefulness
of qualitative signatures at tasks requiring
fine discriminations. How might one obtain
precise model indexing using qualitative in-
variants that are, by definition, comprised
of imprecise measurements? Depicting this
problem schematically, Figure 23.10a shows
a collection of object models positioned in
a space defined by three attribute axes.
To precisely index into this model set,
one of two approaches can be adopted: ei-
ther be absolutely right in measuring at
least one attribute value (Figure 23.10b),
or be “approximately right” in measuring
all three attributes (Figure 23.10e). Being
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Figure 23.10. (a) A schematic depiction of a collection of object models
positioned in a space defined by three attribute axes. To precisely index into this
model set, one of two approaches can be adapted: either be absolutely right in
measuring at least one attribute value (b), or be “approximately right” in
measuring all three attributes (e). Being approximately right in just one or two
attributes is not expected to yield unique indexing (c) and (d).

approximately right in just one or two at-
tributes is not expected to yield unique in-
dexing (Figures 23.10c and 23.10d).

The qualitative invariant approach con-
structs unique signatures for objects us-
ing several approximate measurements. The
ratio-template is a case in point. It achieves
its fine discriminability between face and
nonface images by compositing several very
imprecise binary comparisons of image
brightnesses. In several real-world situa-
tions, there might in fact be no alterna-
tive to using approximate measurements.
This could be either because precise in-
variants just might not exist or because of
noise in the measurement process itself. The
only recourse in these situations would be
to exploit several attribute dimensions and
be “approximately good” in measuring all
of them. This is what qualitative invari-

ants are designed to do. The “recognition
by qualitative invariants” approach is emi-
nently suited to a complex visual world such
as ours. Most objects vary along several at-
tribute dimensions, such as shape, color, tex-
ture, and motion, to name a few. The qual-
itative invariant approach can exploit this
complexity by constructing unique object
signatures from approximate measurements
along all of these dimensions. Evidence for
the generality of this approach is provided
by the success of similar schemes at recog-
nizing a diversity of objects and scenes, in-
cluding natural landscapes, people, and cars
(Lipson, Grimson, & Sinha, 1997; Oren
et al., 1997).

A related observation is that the ratio-
template representation is an image-based
“holistic” encoding of object structure. Be-
cause each ordinal relation by itself is too
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coarse to provide a good discriminant func-
tion to distinguish between members and
nonmembers of an object-class, many of
the relations need to be considered together
(implicitly processing object structure holis-
tically) to obtain the desired performance.
At least in the context of face detection,
this holistic strategy appears to be supported
by our recent studies of concept acquisition
by children learning to see after treatment
for congenital blindness (Bouvrie & Sinha,
in press).

To summarize, the qualitative scheme
for recognition does not require extensive
pre-processing of the input image. It di-
rectly makes use of the outputs of “early”
visual features and dispenses with the need
for computations, such as 3-D shape recov-
ery. This is significant because of the highly
error-prone nature of these computations, as
mentioned earlier. However, the difficulty
in extracting these attributes is in contrast
to our subjective experience. Given an im-
age, we can typically generate a clean line-
drawing (in essence, an edge-map) for it or
estimate what the 3-D structure of the con-
stituent objects is likely to be. How can we
reconcile the poor performance of purely
low-level visual mechanisms with the high-
quality of our eventual percepts?

The idea explored next provides one so-
lution. Simply stated, it proposes using the
recognition of an object to facilitate the pro-
cessing of its visual attributes, such as edge
structure and 3-D shape. In the next sec-
tion, whether recognition-dependent top-
down influences on early vision can be mod-
eled is addressed. This effectively brings the
exposition of the modeling of visual process-
ing full circle.

4. Modeling the Influence of
Recognition on Early Vision

4.1. Overview

Before discussing a particular computational
model for incorporating recognition-based
influences in early perception, let us con-
sider in conceptual terms what such a model
has to do. The model’s overall task is to esti-

mate perceptual attributes of an object in an
image based on previously acquired knowl-
edge about that object or, more generally, its
class. This task can be subdivided into four
parts:

1. The model has to recognize objects in
images.

2. The model has to access previously
learned knowledge (such as 3-D shape
or location of depth discontinuities) as-
sociated with the recognized object.
This requirement involves a method
for representing object/class-specific
knowledge.

3. If the model’s “knowledge base” does
not have information corresponding to
the specific object in the image, it (the
model) has to be able to synthesize such
information on the basis of class-specific
knowledge.

4. Having generated perceptual attributes
corresponding to the object in a top-
down fashion, the model has to com-
bine it with information about the same
attributes estimated by the bottom-up
processes.

It is evident that this list includes some
very challenging tasks. For instance, we
currently do not possess a general-purpose
strategy for object recognition, nor do we
know how top-down estimates are com-
bined with bottom-up data under differ-
ent circumstances. Clearly, a comprehen-
sive model for all of these tasks is at present
beyond our reach. However, proposals for
restricted problem domains may be feasi-
ble. Indeed, several models for incorporat-
ing top-down influences in perception have
been developed recently (Borenstein & Ull-
man, 2002; Cavanagh, 1991; Itti, 2006;
Jones et al., 1997; Mumford, 1992; Ullman,
1995; Warren & Rayner, 2004). As in the
previous section, one simple model to illus-
trate the general ideas is provided. The Jones
et al. (1997) model has a simple architec-
ture and is the one that will be presented
here. It builds on proposals for recognition
described in the previous section and focuses
on items 2 and 3 from the previous list.
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Figure 23.11. Twelve of the 100 prototype faces that were set in pixelwise correspondence and then
used for a flexible model of human faces. (Adapted from Jones et al., 1997.)

4.2. Jones et al.’s Model for
Incorporating Learned High-Level
Influences in Early Perception

Jones et al.’s (1997) computational strat-
egy for incorporating high-level influences
in perception uses the concept of “flexible
models” introduced by Vetter, Jones, and
Poggio (Jones & Poggio, 1995; Poggio &
Vetter, 1992). A flexible model is the affine
closure of the linear space spanned by the
shape and the texture vectors associated
with a set of prototypical images (Fig-
ure 23.11). Pixelwise correspondences be-
tween a reference image and the other pro-
totype images are obtained using an optical
flow algorithm. Once the correspondences
are computed, an image is represented as a
“shape vector” and a “texture vector.” The
shape vector specifies how the 2-D shape
of the example differs from a reference im-
age and corresponds to the flow field be-

tween the two images. Analogously, the tex-
ture vector specifies how the texture differs
from the reference texture. The term “tex-
ture” is used to mean simply the pixel inten-
sities (gray level or color values) of the im-
age. The flexible model for an object class
is then a linear combination of the example
shape and texture vectors. The matching of
the model to a novel image consists of op-
timizing the linear coefficients of the shape
and texture components.

Once estimated, the parameters of the
flexible model can be used for effectively
learning a simple visual task, like 3-D shape
recovery, in the following way. Assume
that a good 3-D shape estimate is available
for each of the prototypical gray-level im-
ages (obtained initially in a bottom-up fash-
ion perhaps via haptic inputs or binocular
stereo). Then, given the image of a novel
face, the approach is to estimate the param-
eters of the best-fitting gray-level flexible
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Figure 23.12. An illustration of how the top-down strategy can be used to generate virtual
views of 3-D objects – here, two human heads: (a) input images, (b) computed virtual
frontal views, and (c) the real frontal views.

model and to plug the same parameter val-
ues in a second flexible model built from
the protoypical 3-D shape estimates. This
approach can be regarded as learning from
a set of examples of the mapping between a
gray-level face image and its 3-D shape.

To demonstrate their ideas, Jones et al.
(1997) implemented a slightly different ver-
sion of the shape recovery task. Instead of
explicit shape estimation (depth recovery
for each point on the object), the authors
focused on the task of implicit shape recov-
ery in the form of novel view-estimation.
The view-estimation problem is an implicit
shape recovery task because even though it is
tied to the 3-D shape of an object, it does not
require an explicit computation of the 3-D
structure. This problem arises in recognition
tasks in which an object, for which only one
example image is available, has to be recog-
nized from a novel view. Jones et al., and
Vetter and Poggio (1996) before them con-
sidered this problem for linear object classes.
An object belongs to a linear class if its

3-D structure can be exactly described as
a linear combination of the 3-D structure of
a small number of prototypes. A new “vir-
tual” view of an object that belongs to a lin-
ear class can be generated exactly from a
single example view, represented as a 2-D
shape vector, provided appropriate proto-
typical views of other objects in the same
class are available (under orthographic pro-
jection). In this way, new views of a specific
face with a different pose can be estimated
and synthesized from a single view (the pro-
cedure is exact for linear classes; empirically,
faces seem to be close to a linear class so that
the procedure previously described provides
a good approximation for pose and expres-
sion). Again, this procedure can be formu-
lated in terms of the learning metaphor in
which a learning box is trained with input-
output pairs of prototypical views represent-
ing each prototype in the initial and in the
desired pose. Then, for a new input image,
the system synthesizes a virtual view in the
desired pose (Figure 23.12).
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The model is not limited to the task of
implicit 3-D shape recovery. Explicit esti-
mation of 3-D structure from a single im-
age would proceed in a very similar way if
the image and the 3-D structure of a suffi-
cient number of prototypical objects of the
same class are available. In Jones et al.’s
(1997) learning box metaphor, the system,
trained with pairs of prototype images as in-
puts (represented as 2-D shape vectors) and
their 3-D shape as output, would effectively
compute shape for novel images of the same
class.

In discussing the generality of their
model, Jones et al. (1997) suggested that a
similar approach may be extended to other
supposedly early perceptual tasks, such as
edge-detection, color constancy, and motion
analysis. In these cases, the desired infor-
mation about edge-locations, color, or mo-
tion will need to be provided in a learning-
from-examples scheme based on the use of
a class-specific flexible model. To substan-
tiate their claim of generality, Jones et al.
considered the problem of edge-detection at
length. Following is a brief summary of their
approach and results on this task.

Jones et al. (1997) started with the
premise that an edge-map corresponding to
a gray-level image should ideally capture all
the “relevant” edges of the object in a way
similar to an artist’s line-drawing. As many
years of work on edge-detection have shown
(for a review, see Haralick, 1980; Marr &
Hildreth, 1980), the problem is difficult, in
part because physical edges – meant as dis-
continuity in 3-D structure and albedo that
convey information about the object’s shape
and identity – do not always generate inten-
sity edges in the image. Conversely, inten-
sity edges are often due to shading, there-
fore depending on illumination, and do not
reflect invariant properties of the object.
Several years ago, the Turing Institute circu-
lated a photograph of a face and asked fel-
low scientists to mark “edges” in the image.
Some of the edges that were found by the
subjects of these informal experiments did
not correspond to any change in intensity in
the picture; they corresponded to locations
where the subjects knew that the 3-D shape

had a discontinuity, for instance, the chin
boundary. The traditional approach to edge-
detection – to use a general purpose edge-
detector, such as a directional derivative fol-
lowed by a nonlinear operation – is bound
to fail in the task of producing a good line
drawing, even if coupled with algorithms
that attempt to fill edge gaps, using gen-
eral principles such as good continuation,
and collinearity. A quite different approach,
and the one adopted by Jones et al., is to
exploit specific knowledge about faces in or-
der to compute the line-drawing. This ap-
proach runs contrary to the traditional wis-
dom in computer vision, because it almost
assumes that object recognition is used for
edge-detection – almost a complete subver-
sion of the usual paradigm. A possible im-
plementation of this approach is based on a
learning metaphor. Consider a set of proto-
typical (gray-level) face images and the cor-
responding line drawings, drawn by an artist.
The task is to learn from these examples the
mapping that associates to a gray-level image
of a face its “ideal” line drawing. Computa-
tionally, this task is analogous to the prob-
lem of view-prediction that was described
earlier.

Jones et al. (1997) implemented an even
simpler version of the scheme. They as-
sumed that the ideal line-drawing corre-
sponding to the average prototype is avail-
able from an artist, as shown in Figure 23.13.
The matching of the flexible model obtained
from the prototypes (some of which are
shown in Figure 23.13) to a novel gray-level
image provided a shape vector that was a
linear combination of the prototypes and
that effectively prescribed how to warp the
average shape of the gray-level prototype
in order to match the shape of the novel
gray-level image. Because the line-drawings
were supported on a subset of the pixels of
the corresponding gray-level images, the line
drawings associated with novel images could
be straightforwardly obtained by warping
the line drawing associated with the refer-
ence prototype by using the estimated shape
vector. Figure 23.14 shows a few examples
of novel images (not contained in the set
of Jones et al.’s prototypical examples set)
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Figure 23.13. The reference face (a) and its corresponding line-drawing
created by an artist (b).

Figure 23.14. Examples of ideal edges found by Jones et al.’s algorithm. The left column (a) shows
the input novel images. The middle column (b) shows the line-drawings estimated automatically by
the algorithm, which matches the flexible models to the novel images and then appropriately
modifies the ideal edges of the reference image. For comparison, the right column (c) shows the edges
found by a bottom-up edge-detector (Canny, 1986). Note that the ideal edges emphasize the
perceptually significant features of the face much better than the Canny edges.

630
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Figure 23.15. (a–d) Example of ideal edges (b) found for a partially occluded input face (a). The
image (c) shows these edges overlaid on the unoccluded input face; (d) shows the Canny edge map for
comparison. (e–h) An example of an image with nonintrinsic edges, such as those due to shadows (e).
Jones et al.’s method for finding ideal edges effectively ignores the spurious edges (f). The accuracy of
these edges can be assessed from the image in (g) showing the edges overlaid on the image; (h)
highlights the susceptibility of bottom-up edge-extraction approaches to spurious image artifacts.

and the line-drawing estimated from each
of them by Jones et al.’s “ideal edge detec-
tor.” To contrast this approach to a low-level
gradient-based approach, Figure 23.14 also
shows the edges found for each face im-
age by a Canny (1986) edge-detector. Fig-
ure 23.15 shows the ideal edge estimated for
a partially occluded input image as well as
for one with extraneous edges. As is evident
from the examples, Jones et al.’s algorithm
can detect and complete edges that do not
correspond to any intensity gradients in the
image. The power of the algorithm derives
from the high-level knowledge about faces,
learned from the set of prototypical images.

In summary, the scheme proposed by
Jones et al. (1997) is an example of a class of
algorithms that can be used to learn visual
tasks in a top-down manner, specific to ob-
ject classes. From the point of view of a neu-
roscientist, these demonstrations are plausi-
bility proofs that a simple learning process
can successfully incorporate object-specific
knowledge and thereby learn to perform
seemingly “low-level” visual tasks in a top-

down manner. Visual perception in humans
may rely on similar processes to a greater
extent than commonly assumed.

The encouraging performance of this
model supports the conjecture that, at
least in some cases, our visual system may
solve low-level vision problems by exploit-
ing prior information specific to the task and
to the type of visual input. Furthermore, the
visual system may learn algorithms specific
to a class of objects by associating in each
“prototypical” example an ideal output to
the input view. The ideal outputs may be
available through other sensory modalities,
sequences of images in time or even explicit
instruction. The notion of what constitutes
an ideal output corresponding to a certain
class of inputs may change and evolve over
time as the learning process encounters new
examples. This second part of the conjec-
ture predicts that human subjects should be
able to learn to associate arbitrary outputs to
input images and to generalize from these
learned associations. Recent psychophysi-
cal evidence strongly supports this predic-
tion (Sinha & Poggio, 1996). It does not
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necessarily follow from Jones et al.’s (1997)
work that learning follows the linear com-
bination algorithm that they used in their
plausibility demonstration. Further experi-
mental work is required to determine which
learning schemes are actually used by the
visual system.

5. Conclusion

In this chapter, some of the challenges inher-
ent in the computational modeling of vision
were reviewed. The primary ones include
poor input quality, severe underconstrained-
ness of the problems, the necessity of rapid
computation of results, and the need for
incorporating high-level or cognitive influ-
ences in the computations. These challenges
via specific models that together span the
range of visual processing have been illus-
trated, from early image filtering to recog-
nition and then back again, in the form of
recognition-based top-down influences. The
model for face detection via ordinal relation-
ships exemplifies how impairments in image
quality can be handled via the use of mul-
tiple measurements that together constitute
a robust representation of the object. This is
likely to turn out to be a general operating
principle in the domain of computational
vision. It is unlikely, in most circumstances,
that a model will be able to rely on just a
unitary measurement; noise and poor im-
age quality tend to rule out that strategy.
What seems more workable is the use of
multiple coarse measurements that in con-
cert provide precise performance. A similar
idea underlies the increasingly popular ap-
proach of boosting (for reviews, see Meir &
Rätsch, 2003; Shapire, 2003), wherein good
classification performance is obtained via a
combination of multiple weak classifiers.

The Jones et al. (1997) model is a sim-
ple demonstration of the gains in perfor-
mance that can be obtained by incorporating
prior knowledge into seemingly low-level
vision tasks. For a long time, the domain
of computational vision struggled with de-
veloping purely data-driven models of var-
ious tasks, such as segmentation, stereo-
correspondence, and shape from shading.

Increasingly, experimental results are sug-
gesting that to achieve the kind of robust-
ness that the human visual system exhibits
on these tasks, guidance from prior experi-
ence might hold an important key. A trend
that we can expect to become more popu-
lar in the coming years is the development
of models that do not partition vision into
early and late stages, but rather strive for a
seamless integration between them.

Through the illustrative examples of this
chapter, some of the big questions that com-
putational neuroscientists are probing and
some representative approaches they are
taking in their modeling efforts have been
presented. It is hoped that these examples
highlight the strong synergy that exists be-
tween empirical and theoretical approaches
to studying brain function.
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CHAPTER 24

Models of Motor Control

1. Introduction

The motor system is a complex machine.
Even as we carry out the most mundane
of operations, such as bringing food to our
mouths, our brains must solve difficult prob-
lems, problems that robotic engineers have
a hard time solving. Indeed, for quite some
time, the neuroscience of motor behav-
ior has avoided dealing with complexity
by focusing on highly constrained behav-
iors, such as the one-dimensional flexion-
extension motions of a limb about a single
joint. Starting from the 1980s and perhaps
under the influence of robotics research, sci-
entists have become more aware of the im-
portance of understanding natural behav-
iors: how they are planned, learned, and
controlled. One of the earliest challenges
came from the observation that the con-
trol of a multijoint limb, such as the human
arm, cannot be implemented by combin-
ing single-joint controllers due to dynami-
cal interactions between degrees of freedom;
for example, the movements of the elbow
generate torques that must be compensated
at the shoulder and vice versa. This rela-

tively simple observation suffices to cast se-
rious doubts over the applicability to natu-
ral behavior of earlier models of motor con-
trol based on the investigation of single-joint
movements.

At least three general classes of theo-
ries in motor control have emerged in the
last three decades. One such class is often
referred to as the dynamical systems view
(Kugler & Turvey, 1987; Lansner, Kotaleski,
& Grillner, 1998; Saltzman & Kelso, 1987;
Scott Kelso, 1995); it emphasizes the role
of skeletal mechanics combined with neu-
ral processes in shaping time-dependent be-
haviors, such as cyclic kinematic patterns
of locomotion. Another class is equilibrium
point control models (Bizzi et al., 1984;
Bizzi et al., 1992; Feldman, 1966; Feldman,
1986; Hogan, 1985; Latash, 1998), which
highlight the existence of static attractors
resulting from the interaction of neural
feedback and muscle viscoelastic properties.
The third class is optimization-based mod-
els (Hogan, 1984; Todorov & Jordan, 2002;
Uno, Kawato, & Suzuki, 1989), suggesting
that behavior emerges from the selection
of control policies that maximize a gain or

635
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minimize a cost function. This chapter de-
scribes a theoretical framework that con-
tains elements from each of these three ap-
proaches.

A fecund concept in motor control arose
in the context of investigating reflexes
(Sherrington, 1910); a reflex is a stereotyped
action that deterministically follows a sen-
sory input. The study of reflexes in com-
bination with the engineering concept of
feedback control led to early models of vol-
untary movements (Merton, 1972). In feed-
back control, the nervous system generates
forces that tend to eliminate the sensed er-
ror between desired and actual states. This
very simple concept is quite powerful, as
its implementation does not involve com-
plex operations. The plausibility of feed-
back control is supported by the presence
of sensing organs, such as muscle spindles
and the fusimotor system, that appear to
supply the neural controller with state-error
information. However, feedback control
systems tend to exhibit severe instability
problems in the presence of large delays
(Hogan et al., 1987; Ogata, 1997). The de-
lays associated with neural information pro-
cessing of proprioceptive feedback are in-
deed quite large by common engineering
standards: conventional estimates suggest
30 ms for the transmission delay in spinal
reflex loops and about 100 ms for transcor-
tical loops. These would be unacceptable
values for the stable control of a robotic arm.

An alternative approach to the control of
multijoint limbs was based on the compu-
tational idea of look-up tables. In a look-
up table, the control signals that are needed
to generate a movement are not computed
explicitly from knowledge of the limb dy-
namics. Instead, patterns of neural activa-
tions are stored as they are produced, in
conjunction with the movement that they
cause, in an associative memory bank. Sub-
sequently, when a movement is required,
the desired movement is used as an address
for retrieving the corresponding neural ac-
tivations. Marr (1969) and Albus (1971)
proposed this as a computational model
of cerebellar motor control. Subsequently,
Marr (1982) himself criticized this approach

based on its inability to capture and express
the wide variety of movements that charac-
terize natural behaviors. The failure of look-
up models is due a combinatorial explosion
arising from the structure of multijoint kine-
matics: The number of movement patterns
that need to be stored grows exponentially
with the number of degrees of freedom.

This chapter focuses on the computa-
tional models of motor control that have
emerged from addressing the failures of ear-
lier feedback and look-up models. These
current views of motor control are charac-
terized by an awareness of the geometrical
complexity of natural behavior and of the
coordinate transformations involved in the
production of movements.

The discussion begins with a review of the
geometrical framework of coordinate trans-
formations involved in the mapping of mo-
tor plans into control signals. The key con-
cept developed throughout this chapter is
that the mechanical properties of the mus-
culoskeletal system provide a basis for sim-
plifying the computational demands of this
transformation. The complexity arising from
the large number of available muscles and
joints underlies the great mobility of bi-
ological organisms. This abundance allows
us to carry out any action in a variety of
possible ways; this multiplicity of options
is thus associated with computational prob-
lems of “redundancy” and, most notably, the
ill-posed problem of associating a unique
motor command with a desired plan of ac-
tion. This ill-posed inverse mapping prob-
lem is related to the more general issue of
developing a consistent internal representa-
tion of the Euclidean geometry of the envi-
ronment in which the organism moves.

The following sections describe how the
mechanics of the musculoskeletal system of-
fer a natural framework for solving the com-
putational problems of redundancy while
preserving all the flexibility that redundancy
affords. In this theoretical framework, mus-
culoskeletal mechanics provides a basis for
representing motor control signals through
a combination of modules called, in analogy
with linguistics, motor primitives. The trans-
formation of a movement plan into control
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signals can then be described mathemat-
ically as a form of function approxima-
tion, thus bringing an extensive repertoire
of powerful analytical tools into the study
of motor control.

The discussion includes a review of some
of the neurobiological evidence for the exis-
tence of such motor primitives and of com-
bination rules based on the simple vecto-
rial summation of the forces generated by
specific groups of muscles. The computa-
tional value of motor primitives is not lim-
ited to the ability to generate a wide reper-
toire of movements, but also includes the
ability of adapting the motor control signals
to changes in mechanical properties of both
the body and the external environment. The
formalism of function approximation, when
combined with probabilistic analysis, pro-
vides the means toward a conceptual frame-
work for understanding motor control as
based on internal representations of the con-
trolled dynamics. The need for probabilistic
analysis is due to the presence of noise and
uncertainty in the environment as well as in
the control system. Bayesian statistics pro-
vide tools for describing the adaptive devel-
opment of internal representations that map
a desired movement into a motor command
and, conversely, for estimating the state of
motion of the body given a known motor
command. The presentation ends with a dis-
cussion of neural network architectures ca-
pable of implementing various aspects of the
computational tasks associated with the use
of motor primitives arising from the me-
chanics of the motor system.

It is worth stressing that the general do-
main of motor behavior is very broad and
includes activities as diverse as reaching,
walking, swallowing, speaking, manipulat-
ing objects, and playing musical instru-
ments. This review focuses on a subset of
these activities, mostly concerning the ac-
tions of moving multiarticular limbs and
reaching for external targets. Although the
computational problems associated with
this particular class of actions are broad and
complex, they constitute by no means a ex-
haustive description of the amazingly rich
repertoire of biological motor behaviors.

2. Cordinate Systems for
Motor Control

The geometrical nature of the operations
that the brain must carry out in the recog-
nition of objects and in the execution of
movements is a central issue in neural infor-
mation processing. In particular, some criti-
cal operations in the generation and control
of movements can be formulated as coor-
dinate transformations. Sensory information
about the state of motion of the body comes
from a variety of signal sources, each being
concerned with particular mechanical vari-
ables. For example, skeletal muscles are en-
dowed with sensors that measure the muscle
strain and its rate of change (Nichols, 2002).
Muscles are also endowed, at their junc-
tion with tendons, with Golgi tendon organs
(Jami, 1992) that sense variations in muscle
force. Other receptors are sensitive to the
displacement of the joints, to pain, to tem-
perature, and so forth. Signals from other
sensory modalities, such as the eyes and the
vestibular organs, provide information about
the position of the body and its parts with
respect to the environment. In contrast to
this variety of sensory signals, the structures
that generate movements are quite specific.
The neural signals that control muscle con-
tractions are generated by the motoneurons,
which are located inside the grey matter of
the spinal cord. Muscles are partitioned into
groups of fibers – called motor units – that
receive common innervation from a single
motoneuron. The force generated by a mus-
cle is graded by a distribution of neural activ-
ities over the motoneurons that innervate its
motor units. Each motor unit contracts and
generates tension; as motor units are con-
nected both in parallel and in series within
a muscle, either tensions (parallel) or strains
(series) are combined additively.

The quantitative description of motor
and sensory signals requires the use of a co-
ordinate system. Although there are several
possible coordinate systems for describing
different signals, these coordinate systems
fall quite naturally into three classes: ac-
tuator coordinates, generalized coordinates,
and endpoint coordinates.
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2.1. Endpoint Coordinates

Endpoint coordinates are appropriate for de-
scribing motor behavior of an organism as
placed within the environment. An appro-
priate choice of such coordinates will re-
flect and incorporate the symmetries that
characterize the external environment. Per-
haps the most striking of these is the Eu-
clidean symmetry: the invariance of distance
between points under rotations and transla-
tions is an intrinsic symmetry of the environ-
ment within which organisms move. The di-
mensionality of endpoint space is generally
rather low. Because the state of a moving
rigid body is fully described by six coordi-
nates (three translational and three angu-
lar), the force applied to the body is a six-
dimensional force/torque vector. In a target
reaching task, the position of a point tar-
get relative to the body is given by three
coordinates (e.g., the Cartesian coordinates
with respect to a frame fixed in the body).
Human hand movements tend to be sponta-
neously organized in endpoint coordinates:
The kinematics of reaching is generally a
smooth trajectory, that is, a straight line
with bell-shaped velocity profile, when de-
scribed in the coordinates of the hand (Flash
& Hogan, 1985; Morasso, 1981; Soechting
& Lacquaniti, 1981; Figure 24.1). This is re-
markable because the kinematics of a multi-
jointed limb defines a curved manifold that
does not match the symmetries of Euclidean
space. For instance, a given angular excur-
sion of the shoulder and elbow causes a
net displacement of the hand that varies
in amplitude and direction depending on
its starting position; however, the length of
a segment in Euclidean geometry does not
depend on the location or the orientation
of the segment. Similar observations have
been made in different species. For example,
Gutfreund et al. (1998) investigated reach-
ing movements of the octopus and found
that a stereotyped tentacle motion, charac-
terized by a bending wave traveling along
the tentacle, leads to a simple movement
of the bending point, which travels in a ra-
dial, nearly rectilinear direction toward the
target. This bending motion does not appear

to be produced as a passive whip, but rather
as a continuously propagating wave of mus-
cle activity that insures a repeatable veloc-
ity profile and a quasi-planar motion of the
tentacle.

2.2. Actuator Coordinates

Information about the position of the arm in
space can be conveyed by specifying a collec-
tion of muscle lengths, l = (l1, l2, . . . , lm). In
this representation, each muscle is regarded
as a coordinate, leading to a number of
muscle coordinates that clearly exceeds the
number of independent coordinates needed
for specifying the position of the arm. In this
coordinate system, a force is a collection of
muscle tensions, f = ( f1, f2, . . . , fm). Such
actuator coordinates (Holdefer & Miller,
2002) afford the most direct representation
for the motor output of the central nervous
system. The final output stage (or “final com-
mon path”; [Sherrington, 1906]) of the mo-
tor system is provided by the motoneurons
in the spinal cord, whose activities deter-
mine the state of contraction of the mus-
cles. The latter is measured by the receptors
in the muscle spindles, which deliver this
information to the nervous system via the
dorsal root ganglia.

Although each muscle is operated by a
distinct set of neural signals, actuator coor-
dinates do not constitute a system of me-
chanically independent variables: One can-
not set arbitrary values to all li without
eventually violating a kinematic constraint.
To determine the position of the arm from
its representation in actuator coordinates,
the nervous system must perform some form
of analysis such as least squares estimation,
as is typically the case for overdetermined
systems.

Different approaches to the study of
motor control may employ different levels
of detail in the description of physiolog-
ical processes, leading to actuator models
with different dimensionality. For example,
some approaches focus on simplified mod-
els in which a single joint is operated by
a pair of muscles acting as reciprocal (ag-
onist/antagonist) actuators. If the observed
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Figure 24.1. Spatial control of hand movements. (A) Plan view of a seated subject grasping
the handle of a position transducer manipulandum. A horizontal semicircular plate located
above the handle carries six visual targets (T1 through T6); the panel obstructs vision of the
hand. (B) A series of digitized handle paths (sampling rate 100 Hz) performed by one
subject in different parts of the movement space. Arrows show the direction of some of the
hand movements. (C, D, E) Kinematic data for three selected movements whose paths are
shown in (B). The correspondence is indicated by lowercase letters in (B); for example, data
under (C) are for path c in (B); e: elbow joint angle, s: shoulder joint angle, both measured as
indicated in (A). (Modified from Morasso, 1982).

motions involve several degrees of freedom
and multiple muscle groups, the dimension-
ality of the actuator space will increase, typ-
ically by one order of magnitude. At the
most detailed level of analysis, individual
motor units may be considered as actuator
elements. In this case, the dimensionality of

the actuator space can reach hundreds of
thousands.

2.3. Generalized Coordinates

A different way of describing body motions
is to specify the value of the joint angles
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that define the orientation of each skeletal
segment either with respect to fixed axes
in space or with respect to the neighbor-
ing segments. Joint angles are a particular
instance of generalized coordinates. General-
ized coordinates are a set of independent
variables suitable for describing the dynam-
ics of a mechanical system (Goldstein, 1980;
Jose & Saletan, 1998). Dynamics refers to a
description of how the state of motion of a
limb evolves under the influence of the mus-
cle forces, of the passive mechanical prop-
erties of the moving limb, and of the forces
generated by the environment with which
the limb comes in contact. Mathematically,
dynamics are expressed by differential equa-
tions that relate these forces and the current
state of motion of a limb – its position and
velocity – to the rate of change of veloc-
ity, that is, the limb’s acceleration. In dis-
crete time, a dynamics equation allows one
to derive the next state of motion given the
current state and the applied forces. A typ-
ical problem in engineering is to find the
forces that must be applied to the mechan-
ical joints of a robotic arm so as to gener-
ate a desired trajectory. The solution to this
problem requires representing the dynam-
ics equation of the arm and calculating the
applied force from the desired position, ve-
locity, and acceleration of each joint.

The concept of state is critically impor-
tant in a dynamical formulation. The state
of a mechanical system is the smallest set
of variables that suffices to describe the fu-
ture evolution of a system, given its current
value and the applied forces. This definition
is quite general and many different specifica-
tions of state variables are usually possible.
The laws of Newtonian mechanics establish
that the acceleration of a point mass is given
by the applied force divided by the mass. If
one knows the current position and velocity
of the point mass, and the forces that will
be applied to it from this moment on, the
application of Newton’s law determines the
value of all future positions and velocities.
Thus, the state of a point mass is fully spec-
ified by its position and velocity. These two
variables can be specified in different coor-
dinates: Cartesian, cylindrical, spherical, and

so forth. Coordinates are typically chosen so
as to further simplify the dynamical descrip-
tion, based on the symmetries of the forces
that are applied to the system.

The idea that the state of a system is spec-
ified by its position and velocity is generally
applicable to all mechanical systems, but
specific applications require a careful defi-
nition of what is meant by “position” and
“force.” This extension to generalized coordi-
nates and generalized forces was introduced
shortly after Newton’s early definition of
force for simple point mass systems, and it
involves the incorporation of constraints be-
tween the constituents of a composite sys-
tem. For example, the position of a rigid rod
pivoting at one of its ends can be fully spec-
ified by the angle formed between the rod
and any fixed direction in space, such as the
vertical direction of gravity. In this exam-
ple, knowing the length of the rod, the po-
sition of its fixed end, and only one angular
variable suffices to specify the instantaneous
position of all points in the rod. This angle
is therefore a generalized coordinate for the
rod system, because the specification of its
value defines the rod’s configuration.

An example that involves the internal
structure of a composite mechanical system
is provided by the planar two-joint manip-
ulandum shown in Figure 24.1A; in this
case, the configuration is defined by the
two angles, s for shoulder and e for elbow,
formed by rigid segments at the two mobile
joints. In the extension of Newtonian me-
chanics provided by Lagrange (Goldstein,
1980), the state of a system is specified by
the value of its configurational variables and
their first temporal derivative. This redefi-
nition of the concepts of state as involving
generalized definitions of position and ve-
locity also carries with it a redefinition of
the concept of force. The generalized force
applied to a system causes a change of the
system’s state as described by its general-
ized coordinates. For the planar scenario il-
lustrated in Figure 24.1A, the generalized
force is given by the moments (or torques)
applied to the joint angles by both the sub-
ject pushing on the handle of the manipulan-
dum and by the motors acting directly on the
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manipulandum joints. It is important to note
that the generalized coordinates and the
generalized force share a common geomet-
rical description. If the generalized coordi-
nates are linear, then the generalized forces
are ordinary forces causing linear accelera-
tions. If the generalized coordinates are an-
gular, then the generalized forces are angular
“torques” causing rotational accelerations.

The kinematics of the body are often ap-
proximated by a tree of rigid links, intercon-
nected by joints with one to three rotational
degrees of freedom; the corresponding gen-
eralized forces are thus the torques gener-
ated at each joint by both the muscles and
the external environment. The dynamics of
the body, or of its parts, are then described
by systems of coupled differential equations
relating the generalized coordinates to their
first and second time derivatives and to the
generalized forces.

In vector notation, the dynamics equa-
tions for a multijoint limb can be written
as:

I (q)q̈ +G(q, q̇)+ E(q, q̇, q̈, t)

= C(q, q̇, u(t)), (24.1)

where q = (q1, q2, . . . , qn) describes the
configuration of the limb though its n joint-
angle coordinates q̇ and q̈ are respectively
the first (velocity) and second (acceleration)
time derivatives of q, I is an n× n matrix of
inertia (that depends on the configuration),
G(q, q̇) is a vector of centripetal and Corio-
lis torques (Sciavicco & Siciliano, 2000), and
E(q, q̇, q̈, t) is a vector of external torques,
which depends, in general, on the state of
motion of the limb, its acceleration, and
also, possibly, time. In a more compact nota-
tion, Coriolis and inertial forces are lumped
in a single function D(q, q̇, q̈) representing
the passive dynamics of the limb, and Equa-
tion 24.1 becomes:

D(q, q̇, q̈)+ E(q, q̇, q̈, t) = C(q, q̇, u(t)).

(24.2)

The left side of Equations 24.1 and 24.2 rep-
resents the torque due to inertial properties

and to the action of the environment (part
of which may be considered “noise”). The
term C(·) on the right side represents the net
torque generated by the muscles. The time-
dependent function u(t) is a vector of con-
trol variables representing, for example, a set
of neural signals directed to the motoneu-
rons or the desired limb position at time t.
An additional term, to be added to the right
side of Equations 24.1 and 24.2, could rep-
resent the noise associated with u(t).

3. The Problem of Kinematic
Redundancy

A distinctive feature of biological control
systems is what appears to be an overabun-
dance of controlled components and of de-
grees of freedom (Bernstein, 1967). The
term “kinematic redundancy” describes this
prevalence. The presence of kinematic re-
dundancy in biological limbs is in striking
contrast to the traditional design of robotic
systems, where the number of control actu-
ators and degrees of freedom matches the
dimension of the space associated with the
task. As six coordinates are needed to po-
sition a rigid tool in space, a robotic arm
with six degrees of freedom is in principle
capable of placing such a tool in an arbi-
trary pose at an arbitrary position. However,
advanced robotics technologies have recog-
nized the value of design that allows for “ex-
tra” degrees of freedom in favor of greater
versatility and dexterity (Brady et al., 1982;
Leeser & Townsend, 1997; Mussa-Ivaldi &
Hogan, 1991). Ultimately, the term redun-
dancy could be considered as a misnomer
because it does not acknowledge that the di-
mension associated with a task may well ex-
ceed the dimension of the kinematics space.
For example, Hogan (1985) has pointed out
the important role played by what appear to
be extra degrees of freedom that modulate
the impedance of the endpoint of a limb in
the face of an expected impact.

The importance of redundancy as a
means for providing alternative (or “equiv-
alent”) ways to achieve a goal in the
face of variable operating conditions was
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Figure 24.2. Coordinate systems and their transformations. (A) The functions L
and M describe well-posed coordinate transformations. Forces are transformed back
onto generalized coordinates through well-posed dual transformations based on
Jacobians of partial first derivatives. (B) Motor primitives described as force fields
in endpoint coordinates provide a basis for the approximation of generalized forces
through superposition. The activation of forces in actuator coordinates specifies the
selection coefficients that implement the linear combination (see text).

recognized a century ago by Bernstein
(1967), who described the computational
problems arising from the presence of an
imbalance between the number of degrees
of freedom and the demands of a task. The
computational problem is illustrated in Fig-
ure 24.2A, representing the maps of force
and position in a serial limb, such as the
arm. On the right side of the diagram are
representations of state and force variables
in endpoint coordinates. These variables are
observed at the interface with the environ-
ment, for example, the position of the fin-
gertip and the contact force at this point. On
the left side of the diagram are representa-
tions of state and force variables in actuator
coordinates. Note that the force generated
by the muscular system results from a func-
tion that maps the state of motion of the
muscles – collectively indicated by the two
vectors l , l̇ of muscle lengths and their rates
of change – and the muscle control signals

u(t) into a vector f of muscle tensions. This
map into muscle tensions is in general non-
linear and noninvertible. The generalized
coordinates, typically joint angle variables,
are an intermediate representation between
actuator and endpoint coordinates. The di-
rections of the arrows in Figure 24.2A corre-
spond to the directions in which kinematic
and force transformations are well-posed.
For example, joint angles map into endpoint
position via a direct kinematics function L
and into muscle length via a function M.
Both functions are generally noninvertible,
although for different reasons. The map L is
noninvertible because a given endpoint posi-
tion can be obtained through a large number
of joint configurations that define a so called
null space. The term “null space” refers to di-
rections of variability in the space of gener-
alized coordinates that result in no change of
the endpoint location. In more formal terms,
if A is a matrix acting on a vector space x,
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the null space of A is the set of all vectors
x that satisfy Ax = 0. The map M is non-
invertible because an arbitrary set of mus-
cle lengths may not be realizable, as it may
have no corresponding image in configura-
tion space. Although the kinematic maps L
and M refer to coordinate transformations,
forces transform in a dual, reciprocal way,
through the Jacobian derivatives ∂L and ∂M
of the corresponding kinematic functions.
Note the reversed direction of the corre-
sponding arrows. The Jacobian of a map,
such as a coordinate transformation, is a lin-
ear operator containing the partial deriva-
tives of the output variables taken with re-
spect to the input variables.

4. Motor Planning and the
Representation of Euclidean Space

The remarkable ability of the visual system
to capture the Euclidean invariance of object
size and shape with respect to rigid trans-
lations and rotations has been extensively
studied (Hatfield, 2003; Shepard, 2001).
For example, (Shepard, 2001) proposed that
the Euclidean metric of object space is im-
plicitly learned and represented internally.
In contrast to the long-standing interest in
the visual perception and representation of
space, little is known about how the funda-
mental geometrical properties of space are
represented in the motor system, where nei-
ther sensory nor muscle command signals
are characterized by Euclidean invariance.
However, we are evidently able to formu-
late and execute motor plans, such as “move
the hand 10 cm to the right”, despite the fact
that this simple act requires widely varying
muscle activations and segmental coordina-
tion, depending on the starting position of
the hand. Our ability to generate straight
motions of our hands in different directions
and from different starting points, without
apparent effort, is a simple demonstration of
our motor system’s de facto ability to cap-
ture the Euclidean properties of the space in
which we move.

In a recent study, Mosier et al. (2005)
investigated how movement representations

are reorganized by the central nervous sys-
tem to capture the Euclidean properties of
the space within which actions take place.
In these experiments, subjects wore a data
glove that allowed for the measurement of
twenty-two signals related to hand and fin-
ger postures. A highly redundant linear map-
ping was used to transform these twenty-
two signals into two coordinates defining the
location of a cursor on a computer moni-
tor (Figure 24.3). The study resulted in four
main findings: (1) after about one hour of
training with visual feedback of the final
error but not of the ongoing cursor mo-
tion, subjects learned to map cursor loca-
tions into hand and finger configurations;
(2) extended practice led to more rectilin-
ear cursor movement, a trend that was fa-
cilitated by training under continuous vi-
sual feedback of cursor motions; (3) with
practice, subjects reduced variability of both
cursor and hand movements; and (4) the re-
duction of errors and the increase in linear-
ity generalized beyond the set of movements
used for training. Taken together, these find-
ings suggested that subjects not only learned
to produce novel coordinated movements
to control the placement of the cursor, but
that they also developed a representation of
the two-dimensional space (the plane of the
monitor) onto which hand movements were
mapped. The emergence of this represen-
tation is evidenced by the practice-induced
tendency to generate controlled trajectories
that were both shorter and less variable.
The construction of this representation ap-
pears to involve the subjects’ ability to par-
tition the degrees of freedom of the hand
into combinations that contributed to cur-
sor movements and null space combinations
that did not generate any cursor movement.

5. Transforming Plans into Actions

The diagram in Figure 24.2A illustrates the
computational challenge associated with the
redundancy of the musculoskeletal appara-
tus, which manifests itself in the noninvert-
ibility of the transformations between actu-
ator, generalized, and endpoint coordinates.
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Figure 24.3. Reorganization of hand movements. Subjects were asked to control the
movement of a cursor by changing the configuration of hand and fingers. The hand was
instrumented with a data glove. Hand configuration controlled the position of a cursor on the
screen via a smooth and linear map from a twenty-two dimensional vector of glove signals to
the two coordinates of the monitor. Circular targets were presented, and subjects were asked
to make a rapid movement to the target, stop, and then correct. Movements were executed
under one of two training protocols: in the No-Vision (NV) protocol, the cursor was
suppressed during the reaching movements. The cursor was only presented at the end of
reaching to allow for a correction (not analyzed). In the Vision (V) protocol, the cursor was
always visible. Subjects in the P2 group were trained and tested under the NV protocol.
Subjects in the P3 group were trained under the V protocol and tested under the NV
protocol. Data analysis was carried out only for test trials allowing comparison of how
subjects executed reaching movements without visual guidance after having trained without
(P2) and with (P3) visual guidance. Top left: The linear map from glove signals to screen
coordinates was set up by asking the subjects to hold their hand in four “standard gestures”
corresponding to the corners of a rectangular region on the monitor. Top right: Two sets of
cursor trajectories obtained on Day 1 and on Day 4 of training from the same subject. Bottom
left: Subjects in both P2 and P3 groups learned the reaching task with similar results. The two
curves show the average reaching error measured in each of four sessions on consecutive
days. The vertical bars are 99% confidence intervals. Bottom right: Under both training
conditions, subjects tend to produce increasingly straighter cursor motions, as evidenced by
the decreasing trend in “aspect ratio,” the ratio of lateral deviation to movement extent.
Subjects trained with vision generated significantly straighter trajectories than subjects
trained without vision of cursor motion. (Modified from Mosier et al., 2005).
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Based on this diagram, it is not evident how
a movement plan such as a desired motion
of the endpoint can be mapped by the ner-
vous system into a corresponding set of com-
mands for the muscles. An answer to this
problem may be offered by the impedance
properties of the muscular apparatus (Hill,
1938; Hogan, 1985; Huxley, 1957; Mussa-
Ivaldi, Hogan, & Bizzi, 1985; Rack & West-
bury, 1969). The spring-like and viscous
properties of the muscles provide a compu-
tational “bridge” between motion and force
variables, as illustrated in Figure 24.2B. Al-
though the transformation from a desired
motion to a set of control signals u(t) may
be ill defined, a plan of action may be im-
plemented as an approximation of a de-
sired force field by an appropriate tuning of
viscoelastic actuators (Mussa-Ivaldi, 1997;
Mussa-Ivaldi & Bizzi, 2000). The force field
f generated by the combined viscoelastic
behavior of the muscles under a pattern of
control signals u(t) is given by a function
f (l , l̇ , u(t)). This force field can be expressed
in terms of generalized coordinates through
the Jacobian derivative of the map M, result-
ing in a computational structure that does
not involve any ill-posed inverse mapping:

Q= ϕ f (q, q̇, u(t))

= ∂M(q)T f (l(q), l̇(q), u(t)). (24.3)

The planning of a desired behavior can in
turn be expressed as a force field F that
maps a state of the endpoint (for example,
a heading direction) into a corrective force
F (x, ẋ, t). This is a way to represent what
some researchers would call a “policy” (Sut-
ton & Barto, 1998), a prescribed action in
response to an observed state. This policy
can be represented as a force field in terms
of generalized coordinates through the Ja-
cobian derivative of the map L, resulting
also in this case in a computational structure
that does not involve any ill-posed inverse
mapping:

Q= ψF (q, q̇, t)

= ∂L(q)T F (x(q), ẋ(q), t). (24.4)

Therefore, the biological implementation
of a planned policy can be seen as the ap-
proximation

ϕ f (q, q̇, u(t)) ≈ ψF (q, q̇, t), (24.5)

to be achieved through the appropriate
choice of u(t). As an example of the appli-
cation of this rather abstract computational
structure, how this approximation may be
implemented by the neural structures of the
spinal cord is discussed in the following sec-
tion.

6. The Organization of Muscle
Synergies in the Spinal Cord

The spinal cord is the final output stage of
the central nervous system. Every muscle is
innervated by motoneurons located in the
ventral portion of the spinal grey matter.
This system of motoneurons is comparable
to a switchboard in which each motoneuron
drives a specific group of muscle fibers, a
motor unit. But there is more than a switch-
board in the spinal cord. In addition to the
motoneurons, the spinal grey matter con-
tains a large population of nerve cells, the
interneurons, whose functions are not yet
fully understood.

Spinal interneurons may form connec-
tions with motoneurons that innervate sev-
eral different muscles. In a series of ex-
periments (Bizzi, Mussa-Ivaldi, & Giszter,
1991; Giszter, Mussa-Ivaldi, & Bizzi, 1993;
Lemay & Grill, 1999; Mussa-Ivaldi, Giszter,
& Bizzi, 1990; Tresch & Bizzi, 1999), the
activity induced by chemical and electrical
stimulation of the spinal interneurons of the
frog was found to spread to several groups
of motoneurons. This distribution of activity
was not random, but imposed a specific bal-
ance of muscle contractions. The mechani-
cal outcome of the evoked synergistic con-
traction of multiple muscles was captured
by a force field (Figure 24.4). The activa-
tion of a group of muscles generated a force
that was recorded by a sensor at the end-
point of the limb. This force vector changed
in amplitude and direction depending on the
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A) B)

C) D) 
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Figure 24.4. Force fields induced by microstimulation of the spinal cord in spinalized frogs.
(A) The hind limb was placed at several locations on the horizontal plane, as indicated by the
dots. At each location, a stimulus was applied at a fixed site in the lumbar spinal cord. The
ensuing force was measured by a six-axes force transducer. (B) Peak force vectors recorded at
nine of the locations shown in (A). The workspace of the hind limb was partitioned into a set
of eight non-overlapping triangles for which each vertex is a tested point. The force vectors
recorded on the three vertices of each triangle are used to estimate, by linear interpolation,
the forces in the interior of the triangle. (D) Interpolated force field. (Modified from Bizzi
et al., 1991).

position of the limb. The resulting force field
converged toward a location in the reach-
able space of the limb – a stable equilibrium
point. At this location, the force vanished,
and a small displacement of the endpoint in
any direction induced a restoring force. The
analysis of the force field induced by stim-
ulation of the spinal interneurons revealed
that such activation leads to the generation
of a stable posture.

In these experiments, the stimulating
electrodes were placed in different loci of
the lumbar spinal cord. The conclusion of
these studies is that there were at least four
areas from which distinct types of conver-

gent force fields were elicited. This is a strik-
ingly small number of distinct force fields,
given the very large number of combinations
that could in principle be generated by the
set of leg muscles.

Perhaps the most interesting aspect of
these investigations was the discovery that
the fields induced by the focal activation
of the cord follow a principle of vectorial
summation (Mussa-Ivaldi, Giszter, & Bizzi,
1994): When two separate sites in the spinal
cord were simultaneously active, the result-
ing force field was the vector sum of the
force fields induced by the separate activa-
tion of each site. This discovery led to a
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novel hypothesis for explaining movement
and posture, based on the combination of a
few basic elements. The few distinct force
fields encoded by the connectivity of the
spinal cord may be viewed as representing
motor primitives from which a vast num-
ber of movements can be formed through
superposition, through impulses conveyed
via supraspinal pathways. According to this
view, the supraspinal signals would estab-
lish the level of activation with which each
motor primitive contributes to the super-
position.

In this discussion, the concept of primitive
is defined quite generally as an elementary
control function emerging from the com-
bination of neural activity and muscle me-
chanics. The term “elementary” is not in-
tended to mean “simple”, but rather “ba-
sic” or “fundamental”, in the same sense
that is typically attributed to the compo-
nents of a set of basis functions. The mi-
crostimulation experiments suggest that the
circuitry in the spinal cord – and perhaps
also in other areas of the nervous system –
is organized in independent units, or mod-
ules, implementing individual motor prim-
itives. Whereas each module generates a
specific field, more complex behaviors are
produced by superposition of the fields as-
sociated with concurrently active modules.
Thus, one may regard these primitive force
fields as independent elements, forming a
basis for an internal model of limb dynamics.
In particular, the experimentally observed
vector summation suggests that under de-
scending supraspinal commands, the fields
expressed by the spinal cord may form a
broad repertoire:

� =
CS(q, q̇, t | {c f }) =

∑
f

c f ϕ f (q, q̇, t)

 .

(24.6)

Each element of the set � is generated by
descending commands that select a group
of primitives through the weighting coef-
ficients c f . In this view, the neural con-
trol system may approximate a target field
ψF (q, q̇, t) (Equation 24.5) by finding the

element of � that is closest to this target
field.

Field approximation has been directly ap-
plied to the generation of a desired trajectory
qD(t) in generalized coordinates (Mussa-
Ivaldi, 1997, 2002). In this case, the at-
tempt to generate the appropriate controller
amounts to finding values for the parame-
ters c f so as to minimize the difference be-
tween forces generated by the passive dy-
namics and those generated by the control
field along the desired trajectory. If the resid-
ual error could be reduced to zero, the corre-
sponding controller would exactly produce
the desired trajectory. If there is a nonzero
residual, then the problem of obtaining ac-
ceptable approximations becomes a ques-
tion of local stability. Residual forces may
be regarded as a perturbation of the dynam-
ics, and one needs to insure that this per-
turbation does not lead to a motion that di-
verges from the desired trajectory. A study
by Lohmiller and Slotine (1998) showed
that the combination of control modules is
stable if their associated dynamics are “con-
tracting,” a condition germane to exponen-
tial stability.

7. Motor Primitives and Field
Approximation

Consistent with the finding of vector sum-
mation, the net force field C induced by a
pattern of K motor commands may be rep-
resented as a linear combination over the
corresponding K primitive force fields, la-
beled by an index irunning from 1 to K:

K∑
i=1

ciϕi (q, q̇, t). (24.7)

In this expression, each spinal force is a
field that depends on the state of motion
of the limb, (q, q̇) and on time t. The de-
scending commands (c1, c2, . . . , cK) modu-
late the degree with which each spinal field
(ϕ1, ϕ2, . . . , ϕK) participates in the combina-
tion. These commands select the modules
by determining how much each one con-
tributes to the net control policy. The linear
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Figure 24.5. Control by field approximation.
The desired trajectory is represented
schematically in blue. The black arrows indicate
the dynamic forces D needed to generate the
desired trajectory. The green vectors are the
forces generated by a linear combination of
force fields. The red bars are the errors to be
minimized.

combination of Equation 24.7 generates the
torque, the generalized force that drives the
limb inertia. Substituting it for the right-
hand side of Equation 24.2 results in:

D(q, q̇, q̈)+ E(q, q̇, q̈, t) =
K∑

i=1

ciϕi (q, q̇, t).

(24.8)

For simplicity, let us start by analyzing the
implications of Equation 24.8 in the case
where the controlled limb is not affected by
external forces, that is, E = 0. In this case,
a least squares approximation (Figure 24.5)
can efficiently determine the optimal set of
coefficients (c1, c2, . . . , cK) for a desired tra-
jectory qD(t):

ci =
K∑

j=1

[�]−1
i, j � j (24.9)

with
�l ,m =

∫
ϕ l (qD(t), q̇D(t), t) •

ϕ m (qD(t), q̇D(t), t) dt
� j = ∫

ϕ j (qD(t), q̇D(t), t)•
D(qD(t), q̇D(t), q̈D(t)) dt

(24.10)

where the symbol • indicates the ordinary
inner product.

While spinal force fields offer a practi-
cal way to generate movement, they also
provide the central nervous system with a
mechanism for movement representation.
The possible movements of a limb can be
considered as “points” in an abstract geo-
metrical space in which the fields {ϕi } pro-
vide a basis such as that provided by Carte-
sian axes, and the selection parameters {ci}
that generate a particular movement may be
regarded as generalized projections of this
movement along the {ϕi } axes.

8. A Computational Approach
to Adaptive Learning

If the arm dynamics change while the mod-
ules remain unchanged, then the represen-
tation of the movement must change ac-
cordingly. Suppose that a desired trajectory,
qD(t), is represented by a selection vector,
c = (c1 , c2 , . . . , cK), for a limb not affected
by external forces, that is, E = 0. If the limb
dynamics are suddenly modified by an ex-
ternal force, E(q, q̇, q̈, t), then the full form
of Equation 24.8 must be considered:

D(q, q̇, q̈)+ E(q, q̇, q̈, t) =
K∑

i=1

ciϕi (q, q̇, t).

The solution to this equation will be a trajec-
tory q̃(t), generally different from the origi-
nal qD(t) for E = 0. To recover the desired
trajectory, the selection vector needs to be
changed from c to a new vector c ′ = c + e,
where the correction vector e satisfies

E(qD(t), q̇D(t), q̈D(t), t)

=
K∑

i=1

eiϕi (qD(t), q̇D(t), t). (24.11)

The modified coefficients c ′ = c + e offer a
new representation of the desired trajectory
qD(t); the change reflects an alteration of the
dynamic conditions within which the trajec-
tory is to be executed. This computational
procedure for forming a new representation
and for recovering the original trajectory is
consistent with the empirical observation of
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after-effects in force-field adaptation (Shad-
mehr & Mussa-Ivaldi, 1994). If the force
field is removed after the new representa-
tion is formed, the dynamics become

D(q, q̇, q̈) =
K∑

i=1

(ci + ei ) ϕi (q, q̇, t),

(24.12)

which can be rewritten as:

D(q, q̇, q̈)−
K∑

i=1

ei ϕi (q, q̇, t)

=
K∑

i=1

ciϕi (q, q̇, t). (24.13)

Therefore, removing the load while main-
taining the new representation will result in
a trajectory that corresponds approximately
to applying the opposite load with the old
representation, in agreement with observed
after effects.

The modification of motion representa-
tion through the selection coefficients thus
provides a useful mechanism for rapidly ad-
justing to changes in limb dynamics. It is
of interest to ask whether these represen-
tations need to be recalculated in response
to every dynamical change or whether pre-
viously existing representations can be re-
stored. From a computational point of view,
whenever a dynamical change becomes per-
manent – as when due to growth or dam-
age – it would be convenient for the cen-
tral nervous system to have the ability to
restore the previously learned motor skills
(i.e., the previously learned movement rep-
resentations) without the need to relearn
them. It is possible for the adaptive system
described here to do this by modifying the
force fields expressed by the individual mod-
ules. A specific mechanism follows from ex-
pressing the coefficients e = (e1, e2, . . . , eK)
as a linear transformation of the original co-
efficients c = (c1 , c2 , . . . , cK):

e = Wc. (24.14)

This is a simple coordinate transformation
applied to the change e in selection vector;

a linear associative network can implement
it. A few steps of algebra lead to

D(q, q̇, q̈)+ E(q, q̇, q̈)

=
K∑

i=1

c ′iϕi (q, q̇, t) =
K∑

i=1

(ci + ei )ϕi (q, q̇, t)

=
K∑

i=1

ci ϕ̄i (q, q̇, t) (24.15)

where the old fields φi have been replaced
by the new fields

ϕ̄i =
K∑

l=1

(δl i + Wli )ϕl δl i =
{

1 if l = i
0 otherwise .

(24.16)

This coordinate transformation is then made
permanent through a change in the mod-
ules that represent individual force fields.
By means of such coordinate transforma-
tion, one obtains the important result that
the movement representation – that is, the
selection vector c – can be maintained in-
variant after a change in limb dynamics.

9. Forward and Inverse Models
as a Basis for Adaptive Behavior

The ability to generate a variety of complex
behaviors cannot be attained by just stor-
ing the vector c of control signals for each
action and recalling these selection coeffi-
cients when subsequently needed (Albus,
1971; Marr, 1969). Simple considerations
about the geometrical space of meaning-
ful behaviors are sufficient to establish that
this approach would be inadequate (Bizzi
& Mussa-Ivaldi, 1998). To achieve its typ-
ical competence, the motor system must
take advantage of experience for going be-
yond experience itself by constructing inter-
nal representations of the controlled dynam-
ics, such as, for example, the projections of
D onto the fields {ϕi }, as in Equation 24.8
for E = 0. These representations need to
allow the nervous system to generate new
behaviors and to handle situations that have



P1: IBE

CUFX212-24 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 18:6

650 mussa-ivaldi and solla

not yet been encountered. The term “inter-
nal model”, used to indicate the collection
of available internal representations, implies
the ability to perform two distinct mathe-
matical transformations: (1) the transforma-
tion from a motor command to the conse-
quent behavior, and (2) the transformation
from a desired behavior to the correspond-
ing motor command (Bizzi & Mussa-Ivaldi,
1998; Flanagan & Wing, 1997; Jordan &
Rumelhart, 1992; Kawato & Wolpert, 1998;
McIntyre, Bertholz, & Lacquaniti, 1998;
Shadmehr & Mussa-Ivaldi 1994). A model
of the first kind is called a “forward model”.
Forward models provide the controller with
the means not only to predict the expected
outcome of a command, but also to estimate
the current state of the limb in the presence
of feedback delays (Hogan et al., 1987; Mi-
all & Wolpert, 1996). Conversely, a repre-
sentation of the transformation from desired
actions to motor commands (as in Equa-
tions 24.9 and 24.10) is called an “inverse
model”. Studies by Kawato, Wolpert, and
Miall (Wolpert & Kawato, 1998; Wolpert,
Miall, & Kawato, 1998) have led to the pro-
posal that neural structures within the cere-
bellum perform sensory-motor operations
equivalent to a combination of multiple
forward and inverse models. Strong evi-
dence for the biological and behavioral rele-
vance of internal models has been provided
by numerous experiments (Hore, Ritchi,
& Watts, 1999; Sabes, Jordan, & Wolpert,
1998). Some of these experiments involved
the adaptation of arm movements to a per-
turbing force field generated by a manipu-
landum. The major findings of these stud-
ies are as follows (see Figure 24.6): (1)
when exposed to a complex but determin-
istic field of velocity-dependent forces, arm
movements are at first distorted, but the ini-
tial kinematics are recovered after repeated
practice; (2) if, after adaptation, the field is
suddenly removed, after-effects are clearly
visible as mirror images of the initial per-
turbations, as described by Equation 24.13
(Shadmehr & Mussa-Ivaldi, 1994); (3) adap-
tation is achieved by the central nervous
system through the formation of a local
map that associates the states (positions and

velocities) visited during the training pe-
riod with the corresponding forces (Conditt,
Gandolfo, & Mussa-Ivaldi, 1997; Conditt &
Mussa-Ivaldi, 1999); (4) this map, which is
the internal model of the field, undergoes
a process of consolidation after adaptation
(Brashers-Krug, Shadmehr, & Bizzi, 1996).

To generate the appropriate command
for a desired movement of the arm, an in-
verse model must take into account that
multijoint inertia depends on limb position
and velocity. Therefore, an inverse model
must be informed about the current state of
motion of the limb. This information may
come in one of two ways: (1) from the input
to the inverse model that specifies where the
limb should be, or (2) from a prediction of
the current state based on delayed sensory
feedback and on the past history of motor
commands. Bhushan and Shadmehr (1999)
have found compelling evidence for the sec-
ond way. Their experimental results are con-
sistent with the hypothesis that we learn to
compensate changes in limb dynamics by a
process that involves the combined adapta-
tion of a forward and an inverse model of
the limb.

10. Adaptation to State- and
Time-Dependent Forces

The earliest studies on adaptation to force
fields (Shadmehr & Mussa-Ivaldi, 1994)
demonstrated the presence of after-effects
when the perturbing forces were suddenly
removed (Figure 24.6). This finding was
consistent with the hypothesis that subjects
formed a prediction of the external forces
that they would encounter during the move-
ment and that they used this prediction to
compensate the disturbing force with an op-
posite force. However, the presence of after-
effects is not sufficient to demonstrate that
subjects formed a proper representation of
the force field. The force field applied in
these experiments was established by the
manipulandum through the application of
forces that depended on the velocity of the
hand. These forces are expressed in endpoint
coordinates, because they are applied at the
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Figure 24.6. Force-field adaptation experiment. (A) Subjects hold the end-effector of a
two-joint planar robot and execute reaching movements to a set of targets. (B) The robot
can generate a force that depends on the measured velocity of the end-effector. (C) Typical
hand trajectories generated by a subject in the absence of a force field. (D, E, F, G) Average
+/− standard deviation of hand trajectories during the training period in the presence of a
force field (B). The panels represent performance during four consecutive sets of 250
reaches. (H) After-effects of adaptation. These trajectories were obtained at the end of the
training period by exposing the subject to random trials in which the field was unexpectedly
removed. Note that the shape of these trajectories is approximately the mirror image of the
trajectories in (D). (Modified from Shadmehr & Mussa-Ivaldi, 1994.)

interface between the limb and the planar
manipulandum. Therefore, the applied field
has the structure of a state-dependent force
vector

F = E(ẋ), (24.17)

where ẋ is the two-dimensional vector that
describes the instantaneous velocity of the
hand. Learning the force field means form-
ing an internal representation of this depen-
dence.

An alternative mechanism would be to
generate a “motor tape”, that is, a represen-
tation of the time-varying forces as the hand
moves through the environment:

F = Ê(t) = E(ẋ(t)). (24.18)

If this were the case, the perturbing force
would be compensated as a function of time,
not as a function of hand velocity. How-
ever, this “erroneous” or incomplete repre-
sentation would still cause an after-effect
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to appear when the field is suddenly re-
moved. To discriminate between a correct
model of the force as a function of hand
state and an inadequate representation of
the force as a function of time, subjects need
to be trained over a set of trajectories and
then tested over trajectories that employ the
same velocities but in a different tempo-
ral order. This test could not be success-
fully performed by subjects who have de-
veloped a time-based representation of the
task. This experiment was carried out by
Conditt et al. (1997), who trained subjects
to execute reaching movements against a
velocity-dependent field. After training, the
same subjects were asked to execute circu-
lar movements in the same region of space.
The circular movements lasted about two
seconds, whereas the reaching movements
lasted typically less than one second. The
observed generalization was complete, and
it was impossible to statistically distinguish
the performance of these subjects from the
performance of control subjects who were
both trained and tested on the same circu-
lar movements. This finding is sufficient to
rule out motor tape learning and provides
strong evidence in favor of the formation of
a correct state-dependent representation of
the perturbing forces.

It is legitimate to suppose that we do in-
deed adapt to forces that are systematically
encountered in the environment and that
this adaptation involves developing a correct
representation of these forces, whether they
are a function of state or function of time.
The experiments of Conditt et al. (1997)
established that subjects do correctly rep-
resent the velocity-dependent forces gener-
ated by the manipulandum. The next ob-
vious question was whether subjects would
also develop correct representations of time-
dependent forces that do not depend on
the position or velocity of the hand. When
such an experiment was carried out, it was
found, surprisingly, that subjects were not
able to form the correct representation of
time-dependent forces (Conditt & Mussa-
Ivaldi, 1999; Karniel & Mussa-Ivaldi, 2003).
The paradigm of these experiments was
similar to the paradigm for the velocity-

dependent force fields. Subjects were now
trained to make reaching movements against
a force that depended on time. At the end
of training, they had learned to compensate
the time-dependent forces, and they pro-
duced a clear after-effect if the forces were
abruptly removed. However, when the sub-
jects were subsequently asked to execute
circular movements in the same region of
space, they failed to compensate the time-
varying forces. The same subjects were able
to execute correct circular movements only
if the time-dependent force was replaced by
a field that depended on the velocity and
the position of the hand and that produced
the same forces as the time-dependent
perturbation over the training movements.
Taken together, these findings suggest that
the adaptive controller of arm movements
is able to form representations of state-
dependent dynamics but not of time-depen-
dent forces.

10.1. State Space Models of
Motor Learning

The process of learning requires practice.
In this respect, the formation of an inter-
nal model can be described as the temporal
evolution of a dynamical system. This is the
point of view taken by Thoroughman and
Shadmehr (2000) and by Scheidt, Dingwell,
and Mussa-Ivaldi (2001). Thoroughman and
Shadmehr proposed to describe the adapta-
tion to a force field as the temporal evolution
of a system whose internal state is charac-
terized by a hidden, unobservable variable
z. The system produces an observable out-
put to which a “performance error” y can
be associated. An input signal p describes
the applied perturbation through binary val-
ues that indicate the presence (p = −1) or
absence (p = +1) of the applied field. The
proposed state-space model is quite simple,
as it involves only linear first-order dynam-
ics over discrete time-steps counted by the
index n:

zn+1 = azn + bpn

yn = zn + dpn
(24.19)
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Figure 24.7. Unlearning effects captured by a
state-space model. Plot of the time course of
error in reaches along a specific direction.
Circles indicate errors, measured as maximum
lateral deviations from a straight line reach, for
each subsequent reach during training. The field
was suppressed at random trials (“catch trials”)
during this experiment. The field suppression
during a catch trial caused an after-effect,
indicated by a large negative spike in the error.
Following this negative spike, the error returned
to a level higher than its value immediately
preceding the catch trial. Thus, catch trials cause
unlearning. This effect is captured by state-space
models of learning both in a scalar (black line)
and in a vector (red line) form. (Modified from
Thoroughman & Shadmehr, 2000).

In spite of its simplicity, the model proved
adequate to capture a number of observed
features of the learning process. One such
feature is the time course of adaptation, as
captured by the deviation of each movement
from a straight line; this deviation was taken
to be the observable error y. Thorough-
man and Shadmehr (2000) noticed that fol-
lowing each “catch trial” – a trial in which
the force field is unexpectedly removed –
the experimental data indicated a brief but
distinguishable unlearning period. The time
course of this effect was adequately captured
by the state-space model (Figure 24.7). An-
other important feature of this model is ex-
pressed by the value of the parameter b,
which represents the effect on the current
state (and therefore on the current error)
of having experienced a force in the pre-
vious state. By estimating from the empir-
ical error data the dependence of b on the

direction of the previous movement, Thor-
oughman and Shadmehr were able to de-
rive “tuning curves”, which demonstrate a
destructive interference from previously ex-
perienced forces when there is a large differ-
ence between the current and the previous
direction of movement.

An intriguing feature of this state-space
model is its low order as a dynamical sys-
tem. All that seems to matter is the expe-
rience that the learner has acquired in the
previous repetition of the task. This conclu-
sion is supported by observations of Scheidt
et al. (2001), who exposed a group of sub-
jects to randomly varying force fields. On
each trial, subjects were exposed to velocity-
dependent forces perpendicular to the di-
rection of motion. The amplitude of the
force was related to movement speed by a
gain factor B. The actual value of this fac-
tor was randomly drawn on each trial from
a Gaussian distribution. With practice, the
best performance of the subjects (minimal
error) was achieved for the mean value of
the perturbing gain factor (Figure 24.8A and
24.8B). Most remarkably, the same result
was observed when the random gain fac-
tor was drawn from a bimodal distribution
(Figure 24.8C and 24.8D). This is appar-
ently paradoxical, because in the bimodal
case the mean value of the gain factor B is
never experienced. The situation is reminis-
cent of the Buridan ass, who died of starva-
tion because he could not choose between
two identical stacks of hay placed in oppo-
site directions. However, paradoxical as it
may seem, a strategy based on the estimated
mean value of the gain factor B is optimal
in the sense of minimizing the mean square
error.

These experimental observations indicate
the existence of an underlying linear mech-
anism that guides the learning process. This
suggests the possibility of using a simple lin-
ear time series – an autoregressive model
with external input (Ljung, 1999) – to de-
scribe the learning behavior:

yi =
L∑

j=1

aj yi− j +
M∑

k=0

bk Bi−k. (24.20)
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Figure 24.8. Adaptation to random force fields. Subjects were asked to move the hand
against a velocity-dependent force field, whose gain varied randomly from trial to trial. For
one group of subjects, the gain was drawn from a Gaussian probability distribution (A). The
scatter plot of movement error versus field gain (B) exhibits a nearly linear relation
(r = 0.82). Note that the zero crossing is near the mean value of the gain: The subjects have
learned the mean value of the random field. For a second group of subjects, the gain was
drawn from a bimodal distribution (C). The scatter plot of movement error versus field gain
(D) shows a linear trend (r = 0.85), and the zero crossing is again in the vicinity of the mean
value of the gain. This is remarkable because subjects have learned to compensate the mean
perturbation, which in this case was never encountered during learning. (Modified from
Scheidt et al., 2001).

In this model, yn and Bn are, respectively,
the error (deviation from linearity) and the
input (field gain) at the nth trial. An esti-
mation of the time windows L and M of
the autoregressive process showed that the
error at the current trial is only affected by
the current input and by the immediately
preceding input and error. The previous ex-
pression can then be rewritten as

yi = a1 yi−1 + b0 Bi + b1 Bi−1. (24.21)

A simple transformation establishes the equ-
ivalence between this L = M = 1 model and

the formulation of Thoroughman and Shad-
mehr (2000), shown in Equation 24.19.

11. Noise and Uncertainty

The representation of motor plans and of
actuator commands as force fields is di-
rectly related to the control of movements
in uncertain and noisy environments. This
is perhaps one of the most distinctive fea-
tures of biological controllers. Unlike most
robots, biological systems have evolved to
interact with environments that change in
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unpredictable ways. In addition, muscles
and sense organs are abundant but noisy and
subject to variations in their transduction
properties (van Beers, Baraduc, & Wolpert,
2002). Under these conditions, adaptability
appears to be more valuable and achievable
than precision. Indeed, the force-field ap-
proximation (Equation 24.8) does not in-
sure the precise execution of a planned mo-
tion qD(t). The approximating field pro-
vides, at most, a prescription for driving the
system in the face of external perturbations.
Perhaps the most critical feature of this ap-
proach is that it ensures the stability of the
resulting behavior. Biological organisms are
not as precise as many machines, but they
typically tolerate errors and recover from
them much better.

The external environment is not the only
source of noise. The analysis of motor unit
activities (Matthews, 1996) indicates that
the variance of these signals is tightly cou-
pled to their amplitude. Harris and Wolpert
(1998) have proposed that the smoothness
of natural motions observed in different be-
haviors (e.g., arm and eye movements) may
be accounted for by assuming that the bi-
ological controller minimizes the final er-
ror while being subject to signal-dependent
noise. This proposal is based on the idea
that violations of smoothness, such as a large
swing in a trajectory, are associated with
large-amplitude control signals. Given that
the signal variance accumulates additively
along a movement, the net expected out-
come of a jerky motion is a larger variance
at the final point. Similar considerations are
consistent with a more general framework
recently proposed by Todorov and Jordan
(2002), who observed that in the presence
of redundancy, one may identify within the
space of control signals a lower-dimensional
“task-relevant” manifold. This manifold con-
tains the combinations of motor commands
that have a direct impact on the achieve-
ment of the established goal. Because of re-
dundancy, at each point of this manifold
there is a null space of control signals that
do not affect the execution of the task. For
example, when we place the index finger on
a letter key, we may do so through infinitely

many different arm configurations; it is these
irrelevant combinations that are associated
with control signals in the null space. A com-
mon observation across a variety of behav-
iors is that variability tends to be higher in
the task-irrelevant dimensions. Todorov and
Jordan (2002) consider this to be a direct
consequence of optimal feedback control. In
this formulation, the control system aims at
minimizing the expected final error in the
presence of signal-dependent noise. While
the outcomes of the optimization may de-
pend on the specific distribution of variabil-
ity among the many actuators, the simula-
tions presented by these authors indicate a
general tendency of the control system to
displace the variance into the task-irrelevant
dimensions, so as to achieve a higher degree
of precision in the task-relevant dimensions.
This view of the biological control system
brings about two important (although yet
to be proven valid) concepts: (1) that the
control system is not concerned with the ex-
plicit planning of trajectories but rather with
the attainment of final goals with the least
amount of variance, and (2) that the space
spanned by the task-irrelevant dimensions
plays the role of a “variance buffer”, where
the noise generated by the control signals
may be concentrated so as to attain a more
consistent performance in the relevant space
as defined by the task.

Although this is a promising approach
with interesting implications for the design
of biomimetic controllers, the evidence for
the explicit planning of trajectories remains
rather strong. In some cases, the regularity of
trajectories in endpoint coordinates is hard
to be accounted for by mechanisms – such
as the minimization of the effects of signal-
dependent noise – that depend on the ge-
ometrical, mechanical, and control proper-
ties of the musculoskeletal system and of the
neural controller.

The probabilistic framework of Bayes’
theory provides a conceptual tool for con-
necting the formation of internal models
with their stability in the face of variable
environments. It is generally reasonable to
assume that the perturbations caused by the
environment and the fluctuations associated
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with a biological controller are not strictly
deterministic. The uncertainty due to both
the variability of the external world and the
imperfect detection of its features would
lead to internal models that are essentially
probabilistic and thus represented as prob-
ability distributions over the possible values
of a dynamical variable, such as the ampli-
tude or direction of a perturbing force. Issues
related to the ability of neural populations to
both represent and manipulate probability
distributions are the subject of active cur-
rent research (Jazayeri & Movshon, 2006;
Ma et al., 2006).

12. Bayesian Framework for
Motor Learning

In the development of forward and inverse
models for motor control, the central ner-
vous system has to deal with the intrinsic
variability of the external environment as
well as noise in the detection of sensory in-
puts and the execution of motor commands.
This scenario naturally leads to internal rep-
resentations that are probabilistic in nature.
A Bayesian approach then provides a power-
ful tool for the optimal estimation of policies
(in the case of the inverse map) or states (in
the case of the forward map). The Bayesian
formulation discussed in this section results
in an inference problem that is not necessar-
ily easier to solve than the original control
problem. However, it is posed in a compu-
tational language that is intrinsically proba-
bilistic and thus quite natural to the work-
ings of a central nervous system that relies
on noisy inputs and noisy processors.

To examine the implications of vari-
ability, let us first consider motion in the
absence of external forces (i.e., E = 0 in
Equation 24.8). A given sequence of mo-
tor commands u(t), if repeated many times,
will not lead to a unique trajectory but
to outcomes that are best described as a
probability distribution over the state vari-
ables (q(t), q̇(t)). The conditional probabil-
ity distribution P (q, q̇ |u) provides a sta-
tistical description of the expected trajec-
tories given the control signal u(t), as re-

quired of the forward model. A probabilis-
tic forward model provides a tool for sta-
tistical state estimation; the ability to do
so is crucial to compensate for the de-
lays involved in the processing of sensory
feedback.

Bayes theorem provides a simple relation
for inverting conditional probability distri-
butions (Bolstad, 2004):

P (u | q, q̇) = P (q, q̇ |u)P (u)
P (q, q̇)

. (24.22)

This simple inversion formula expresses the
conditional probability distribution that un-
derlies the inverse model as a product of
the conditional probability P (q, q̇ |u) asso-
ciated with the forward model and a prior
distribution P (u) that describes the avail-
able repertoire of motor commands, as es-
tablished by previous experience. This prior
can be used to bias the posterior distri-
bution toward a particular class of control
signals and to restrict the posterior distri-
bution to the set of signals that are im-
plementable by the biological controller.
The denominator is a normalization factor
obtained by summing the numerator over
all possible motor commands; it guarantees
that the right side of Equation 24.22 is
a well-defined probability distribution over
possible motor control signals u. A spe-
cific inverse map is obtained by choos-
ing, for a desired trajectory (qD(t), q̇D(t)),
the motor command û that maximizes
P (u | qD(t), q̇D(t)). In the Bayesian frame-
work, this optimization corresponds to the
maximum-a-posteriori (MAP) estimate of u
(DeGroot, 1970). This selection of an op-
timal policy through the maximization of a
posterior distribution over possible control
signals given the goal state (qD(t), q̇D(t)) is
similar to the approach of planning by prob-
abilistic inference proposed by Attias (2003)
for the case of discrete states and actions.
Both formulations rely on the Bayesian in-
version of Equation 24.22, and neither in-
cludes the effect of environmental influ-
ences that can affect the state.

The Bayesian formulation also provides a
tool for incorporating the effect of external
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forces that modify the dynamics (i.e., E �= 0
in Equation 24.8). In this case, a probabilis-
tic characterization of the forward model
requires knowledge of the full conditional
distribution P (q, q̇ |u, E). A simplified for-
mulation suffices if the external forces cor-
respond to a discrete number of possibilities
{Ei } with prior probabilities {pi = P (Ei )};
this prior encodes information about the rel-
ative frequency of the various external en-
vironments, and it could also be formulated
so as to incorporate information about the
structured manner, if any, in which the en-
vironment changes over time.

In this discrete case, the Bayesian frame-
work can be implemented through a modu-
lar architecture in which multiple forward
models P (q, q̇ |u, Ei ) operate in parallel
(Wolpert & Kawato, 1998). Each forward
model provides a statistical description of
the effect of a motor command u(t) within
a specific environment Ei . The current dis-
tribution of probabilities {pi } over the var-
ious models of the environment leads to
the selection of the most likely forward
model P (q, q̇ |u, E∗

i ), where E∗
i is the en-

vironment for which pi is maximal. The
corresponding inverse conditional proba-
bility P (u | q, q̇, E∗

i ), defined as in Equa-
tion 24.23, guides the selection of an op-
timal motor command û(t) for the de-
sired trajectory (qD(t), q̇D(t)) in the envi-
ronment E∗

i , currently estimated to be the
most likely one. The resulting trajectory
(q̃(t), ˙̃q(t)) can be used to evaluate the like-
lihood of every model; the likelihood is the
probability P (q̃(t), ˙̃q(t) |u, Ei ) of the ob-
served trajectory (q̃(t), ˙̃q(t)) in the envi-
ronment Ei given the control signal u(t).
Within the computational variables acces-
sible to the central nervous system, these
likelihoods can be evaluated by comparing
the optimal trajectory predicted by each
forward model P (q, q̇ |u, Ei ) to the actual
trajectory (q̃(t), ˙̃q(t)). The resulting differ-
ence is inversely related to the likelihood:
The better the agreement between pre-
dicted and observed trajectories, the more
likely the model Ei (Wolpert & Ghahra-
mani, 2000). The probability of each model
can then be re-evaluated by combining the

prior and the likelihood according to Bayes
rule:

P (Ei | q̃(t), ˙̃q(t), u)

= P (q̃(t), ˙̃q(t) |u, Ei )P (Ei |u)
P (q̃(t), ˙̃q(t) |u)

. (24.23)

The denominator is again a normalization
constant, obtained in this case by summing
over all environments {Ei }. The updated
probabilities P (Ei | q(t), q̇(t), u) give a new
ranking of the likely environments; a new
winner E∗

i is chosen so as to maximize the
posterior P (Ei | q(t), q̇(t), u). It is the in-
verse conditional probability P (u | q, q̇, E∗

i )
associated with this newly selected model
that now determines the optimal motor
command û(t) to obtain a desired trajec-
tory (qD(t), q̇D(t)) (Wolpert & Ghahramani,
2000). The online implementation of this
iterative Bayesian approach would lead to
a continuous update of motor commands
so as to reflect the current characteriza-
tion of the environment; this is an adap-
tive inverse model based on the recursive
use of probabilistic forward and inverse
models.

An open question that might be
amenable to Bayesian analysis is that of the
formation of the forward conditional prob-
abilities P (q, q̇ |u, Ei ). The existing ones
need to be maintained, but also updated
to reflect changes in the intrinsic dynamical
properties of limbs, and novel forward con-
ditional probabilities need to be developed
as subjects confront novel environments. A
tantalizing possibility is that a Bayesian de-
scription of the acquisition of such prob-
abilistic maps could be formulated in the
context of characterization of the environ-
ment through the superposition of primitive
fields, as in Equation 24.11.

13. Architectures for Neural
Computation

The problem of motor control, as reviewed
in preceding sections, requires a variety of
computational tasks to be implemented by
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neural ensembles. A large body of research
in artificial neural networks has established
some principles that relate network connec-
tivity to computational functionality. Here,
we review neural network models whose ar-
chitecture is particularly well suited for the
implementation of computational tasks rel-
evant to motor control. For a related discus-
sion, see Chapter 2 in this volume.

Force field vectors, whose amplitude and
direction depend on the position of a limb
as described by its endpoint coordinates x,
have been mapped out in experiments based
on microstimulation of spinal interneurons
in the frog (Bizzi et al., 1991; Giszter et al.,
1993). The resulting force fields exhibit an
interesting property: They converge toward
a stable equilibrium point within the two-
dimensional space of attainable limb posi-
tions. To the extent that these force fields
have zero curl, a condition met in related ex-
periments on human subjects (Mussa-Ivaldi
et al., 1985), it is possible to construct a
scalar potential function U(x) such that the
observed force field is given by the gradient
∇U(x) . The existence of a single stable equi-
librium point for the force field corresponds
to the existence of a unique minimum for
the potential function U(x). This observa-
tion, together with the dissipative nature of
limb dynamics, suggest that the scalar poten-
tial U(x) plays the role of an energy function
that describes the dynamics of an attractor
neural network (Amit, 1989). The existence
of a relatively small number of distinct force
fields associated with a large set of muscle
elements could thus be modeled through an
equivalently small number of attractor neu-
ral networks, each one of them constructed
so as to reproduce the flow of the corre-
sponding force field. The energy function as-
sociated with each one of these networks is
the scalar function U(x), whose local gradi-
ent maps a force field such as the one shown
in Figure 24.4D. Movements generated as a
combination of these few force-field primi-
tives can be represented through a mixture
of experts network (Jacobs et al., 1988), con-
structed as a linear superposition of individ-
ual modules. To implement the desired su-
perposition, the modules would be attractor

neural networks associated with the force-
field primitives (Wolpert & Ghahramani,
2000).

The implementation of a desired trajec-
tory x(t) in the endpoint coordinate repre-
sentation requires a map from the state of
the endpoint, as described by (x, ẋ), into a
force F (x, ẋ, t) that may also depend explic-
itly on time. This map from a state into an
action can be easily captured in the frame-
work of a layered neural network (Bishop,
1996). Training a layered neural network
to implement the desired map from states
into actions requires a training set, which
can be acquired in the context of imitative
learning (Atkeson & Schaal, 1997). The de-
tailed observation of policies implemented
so as to achieve a desired trajectory, in
conjunction with the determination of end-
point state variables, could provide the data
needed to train a layered neural network us-
ing standard algorithms for supervised learn-
ing (Bishop, 1996). Further training, based
on generating actual trajectories and com-
paring them to desired trajectories so as to
obtain an error signal, will be necessary to
provide the layered network with some de-
gree of robustness against noise and/or un-
certainty in the input (sensory information
on current state) or the output (actuated
policy).

Of particular importance for the accu-
rate execution of movements is the use of
a control function u(t) (see Equation 24.1),
which can take the form of activation sig-
nals to motoneurons (in the language of
actuator coordinates) or of a desired limb
position (in the language of endpoint co-
ordinates). The motion described by Equa-
tion 24.1 can be interpreted as an iterative
map in a 2n-dimensional tangent bundle
(Jose & Saletan, 1998): This is the man-
ifold spanned by the generalized coordi-
nates q = (q1, q2, . . . , qn) and the general-
ized velocities q̇ = (q̇1, q̇2, . . . , q̇n). When
complemented with n equations of the form
q̇i = dqi/dt, 1 ≤ i ≤ n, the n equations for
q̈i (compactly expressed in vector form in
Equation 24.1) define unique trajectories in
the (q, q̇) manifold of state variables. The
state (q, q̇) of the system at time (t + dt)
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is uniquely and completely determined by
the state at time t and by the control
signal u(t).

The appropriate neural network archi-
tecture to represent the action of the con-
trol signal on the (q, q̇) manifold – that is
to implement a forward model – is inter-
mediate to the fully recurrent architecture
of attractor neural networks and the purely
feedforward architecture of layered neural
networks. We specifically refer here to net-
works such as those described by Jordan and
Elman (Elman, 1990; Jordan & Rosenbaum,
1989), which consist of a two-layered feed-
forward network whose intermediate layer
receives as input not only the external input,
but also a copy of its own state at the pre-
ceding time-step. This additional input pro-
vides mechanisms for implementing lateral
connections that result in dynamical recur-
rence within the intermediate layer. For the
control problem of interest here, the inter-
mediate layer would encode the state (q, q̇)
of the system at time (t + dt), as a func-
tion of its two inputs: the control signal and
the state at time t. The connections from
the intermediate layer to the output layer
can be adjusted so as to implement the map
L from generalized to endpoint coordinates
(Figure 24.2). A comparison between actual
and desired endpoint trajectories would gen-
erate an error signal to be fed back into the
network for adjusting the connections that
describe the effect of the control signal on
the state and on the output of the system.

This brief discussion suggests that the
computational demands of the execution
and control of movements incorporates
many facets, whose description in terms of
neural computation involves different net-
work models, ranging from fully recurrent
to purely feedforward architectures and in-
cluding hybrid models between these ex-
tremes. The choice of a suitable architec-
ture in an artificial emulation of a neural
system depends on the emphasis and the
specific formulation of the problem, be it in
the format of generating appropriate policies
for endpoint coordinates or of characterizing
the effects of control signals on the dynamics
as described in generalized coordinates.

14. Conclusions

Current models of motor control emphasize
the need to address the transformations that
relate coordinates appropriate for the de-
scription of the external environment, the
system of actuator signals and corresponding
muscle activations, and the system of joint
angles that describe the state of the skele-
tal system. A systematic investigation of the
relations between these three different coor-
dinate systems provides a framework for an-
alyzing the redundancy of a musculoskele-
tal system controlled by a number of signals
that far exceeds the number of independent
degrees of freedom involved in the execu-
tion of specific motor tasks.

Carefully designed experiments reviewed
in this chapter have revealed the emergence
and consolidation of internal representations
of extrinsic coordinates that describe the en-
vironment in which movements take place.
When subjected to specific patterns of per-
turbations to the intrinsic dynamics of the
limbs, additional representations of state-
dependent forces are also easily acquired.
The inability to generalize after adaptation
to time-dependent forces that do not exhibit
a reproducible dependence on state vari-
ables suggests that the adaptive controller
fails to create an internal representation of
time-dependent forces.

Two types of internal models are neces-
sary for the successful implementation of
desired movements: forward models able to
predict the motor outcome of control sig-
nals, and inverse models able to identify the
motor signals needed to produce a desired
motor outcome. Forward models are com-
paratively easy to acquire, as the observation
of discrepancies between the predicted and
the actual movement triggered by repeated
applications of specific control signals pro-
vides an error signal that can be used to it-
eratively train and improve forward models.
The acquisition of inverse models is gener-
ally a more difficult task, due to the lack of
a training signal in the form of an error that
can be cast as a specific suggested change in
motor control signals. A conceptual appli-
cation of Bayesian statistics suggests that a
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probabilistic description, imposed by the
intrinsic variability of the external environ-
ment as well as noise in the detection of
sensory inputs and the execution of mo-
tor commands, might provide a mecha-
nism for obtaining inverse models through
a Bayesian inversion of the corresponding
forward models.

Another powerful tool for the identifica-
tion of control policies which are appropri-
ate for the execution of desired movements
follows from a particular formulation of the
control problem. Specifically, we refer to the
problem of choosing control signals that best
approximate the required generalized forces
to be generated by the muscular appara-
tus, and expressed as a field over the state
space of the moving limb. This formulation
is particularly well suited for the description
of movements in terms of muscle synergies
or motor primitives that provide a basis for
the generation of a wide repertoire of move-
ments. An open question for future research
is the connection between this formulation
and probabilistic descriptions.
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Part IV

Concluding Remarks

�

This part contains chapters that provide some historical and theoretical perspectives, as well
as speculations, on computational psychology. They explore a range of issues relevant to
computational cognitive modeling, and provide some evaluations and assessments.
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CHAPTER 25

An Evaluation of Computational Modeling in

Cognitive Science

1. Introduction

Computer modeling of specific psycholog-
ical processes began over fifty years ago,
with work on draughts playing, logical
problem solving, and learning/conditioning
(Boden, 2006: 6.iii, 10.i.c–e, 12.ii). Some
of this work involved what is now called
GOFAI, or good old-fashioned artificial in-
telligence (AI) (Haugeland, 1985: 112), and
some involved what is now called connec-
tionist AI (see Chapter 1 in this volume).
In addition, cyberneticians were modeling
very general principles believed to underlie
intelligent behavior. Their physical simula-
tions included robots representing reflex and
adaptive behavior, self-organizing “homeo-
static” machines, and chemical solutions un-
dergoing dynamical change (Boden, 2006:
4.v.e, 4.viii). There was no ill-tempered ri-
valry between symbolists and connection-
ists then, as there would be later. The high
points – or the low points, perhaps – of such
passionate rivalry appeared on both sides of
this intellectual divide.

The first prominent attack was Marvin
Minsky and Seymour Papert’s (1969) cri-

tique of perceptrons, an early form of con-
nectionism (Rosenblatt, 1958). This caused
something of a scandal at the time and is
often blamed – to some extent, unjustly
(Boden, 2006: 12.iii.e) – for the twenty-year
connectionist “winter,” in which virtually
all the Defense Advanced Research Projects
Agency (DARPA) funds for AI were de-
voted to symbolic approaches.

Some ten years after Minsky and Papert,
Douglas Hofstadter (1979, 1983/1985)
published a fundamental critique of sym-
bolism, which aroused significant excite-
ment, even in the media. In particular, he
criticized the static nature of concepts as
viewed by traditional AI, arguing instead
that they are constantly changing, or “fluid.”
Hofstadter’s attack on classical AI was soon
echoed by the newly popular research on
PDP, or parallel distributed processing, net-
works (McClelland, Rumelhart, & PDP
Group, 1986; Rumelhart, McClelland, &
PDP Group 1986). But the old “enemy”
counterattacked: In response to the PDP
challenge, an uncompromising defense of
symbolism was mounted by Jerry Fodor and
Zenon Pylyshyn (1988). As for Minsky and
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Papert, they defiantly reissued their book –
with a new Prologue and Epilogue – refus-
ing to back down from their original position
(Minsky & Papert, 1988).

The connectionist/symbolist divide was
not the only one to cause people’s tem-
pers to rise. A more recent source of con-
troversy was the (continuing) debate over
situated cognition and robotics. The situa-
tionists stressed instant reactivity and em-
bodiment, and played down the role of rep-
resentations (Agre & Chapman, 1987, 1991;
Brooks, 1991a, 1991b). Their opponents ar-
gued that representations and planning are
essential for the higher mental processes, at
least (Kirsh, 1991; Vera & Simon, 1993).
(Ironically, one of the first to stress the re-
active nature of much animal, and human,
behavior had been the high-priest of sym-
bolism himself, Simon [1969]).

This explicitly anti-Cartesian approach
often drew from the phenomenological
philosophers Martin Heidegger and Mau-
rice Merleau-Ponty, as well as the later
Wittgenstein (Clark, 1997; Wheeler, 2005).
Indeed, these writers had inspired one
of the earliest, and most venomous, at-
tacks on AI and cognitive science (Drey-
fus, 1965, 1972). Given the fact that phe-
nomenological (“Continental”) approaches
have gained ground even among analytically
trained philosophers over the last twenty
years (McDowell, 1994), there are many
people today who feel that Hubert Drey-
fus had been right all along (e.g., Haugeland
1996). Predictably, however, many others
disagree.

Much of the interest – and certainly much
of the excitement – in the past forty years
of research on cognitive modeling has been
in the see-sawing dialectics of these two de-
bates. But in the very earliest days, the de-
bates had hardly begun. When they did sur-
face, they were carried out with less passion
and far less rhetorical invective. For at that
time, the few afficionados shared a faith
that all their pioneering activities were part
of the same intellectual endeavor (Blake &
Uttley, 1959; Feigenbaum & Feldman,
1963). This endeavor, later termed cogni-
tive science, was a form of psychology (and

neuroscience, linguistics, anthropology, and
philosophy of mind) whose substantive the-
oretical concepts would be drawn from cy-
bernetics and AI (Boden, 2006: 1.i–ii).

However, sharing a faith and expressing
it persuasively are two different things. The
nascent cognitive science needed a man-
ifesto, to spread the ideas of the people
already starting to think along these lines
and to awaken others to the exciting pos-
sibilities that lay in the future. That mani-
festo, Plans and the Structure of Behavior, ap-
peared in 1960. Written by George Miller,
Eugene Galanter, and Karl Pribram (hence-
forth, MGP), it offered an intriguing, not to
say intoxicating, picture of a future compu-
tational psychology.

It promised formal rigor. Psychological
theories would be expressed as AI-inspired
plans made up of TOTE-units (test, oper-
ate, test, exit). It also promised comprehen-
siveness. All psychological phenomena were
included: animal and human; normal and
pathological; cognitive and motivational/
emotional; instinctive and learned; percep-
tion, language, problem solving, and mem-
ory were covered or anyway briefly men-
tioned. In those behaviorist-dominated days,
MGP’s book made the blood race in its read-
ers’ veins.

The manifesto had glaring faults, visi-
ble even without the benefit of hindsight.
It was unavoidably simplistic, for its au-
thors had only half a dozen interesting
computer models to draw on, plus Noam
Chomsky’s (1957) formal-generative the-
ory of language. It was strongly biased to-
ward symbolic AI, although connectionism
was mentioned in the footnotes; the rea-
son was that serial order, hierarchical be-
havior, and propositional inference were
then better modeled by GOFAI, as they
still are today (see following discussion). Al-
though the concept of informational feed-
back was prominent, the cyberneticists’ con-
cern with dynamical self-organization was
ignored. The book was careless in various
ways. For instance, MGP’s concept of “Im-
age” was said by them to be very important,
but was hardly discussed. And, last but not
least, it was hugely overoptimistic.
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Nevertheless, it was a work of vision. It
enthused countless people to start thinking
about the mind in a new manner. A good
way of assessing today’s computational psy-
chology, then, is to compare it with MGP’s
hopes: How much have they been achieved,
and how far are we on the road to their
achievement?

Before addressing those questions di-
rectly, an important point must be made.
A computational psychology is one whose
theoretical concepts are drawn from cyber-
netics and AI. Similarly, computational an-
thropology and neuroscience focus on the
information processing that is carried out in
cultures or brains (Boden, 2006: chapters 8
and 14). So cognitive scientists do not use
computers merely as tools to do their sums
(as other scientists, including many noncom-
putational psychologists, often do), but also
as inspiration about the nature of mental
processes. However, whereas they all rely
on computational ideas – interpreted very
broadly here to include symbolic, connec-
tionist, situationist, and/or dynamical ap-
proaches – they do not all get involved in
computer modeling.

Sometimes, this is merely a matter of per-
sonal choice. Some computational psychol-
ogists lack the skills and/or resources that are
required to build computer models. In such
cases, other researchers may attempt to im-
plement the new theory. Often, however,
the lack of implementation is due to the for-
bidding complexity of the phenomena be-
ing considered. Computational theories of
hypnosis, for example, or of the structure of
the mind as a whole, are not expressed as
functioning computer models (although, as
shown in Section 3, some limited aspects of
them may be fruitfully modeled).

Accordingly, nonmodeled computational
theories as well as programmed simula-
tions and robots will be discussed. After
all, the theoretical concepts concerned are
not based on mere speculative hand-waving:
they are grounded in the theorists’ expe-
rience with working AI systems. What is
more, MGP themselves, despite all their
brash optimism, were not suggesting that
personality or paranoia would one day be

modeled in detail. Rather, they were argu-
ing that computational concepts could en-
able us to see how such phenomena are even
possible. As discussed in Section 4, the de-
mystification of puzzling possibilities is what
science in general is about.

2. The Cognitive Aspects of
Cognitive Science

The widely accepted name for this field is a
misnomer: Cognitive science is not the sci-
ence of cognition. Or rather, it is not the
science of cognition alone.

In the beginning, indeed, a number of
computer simulations were focussed on so-
cial and/or emotional matters (Colby, 1964,
1967; Tomkins & Messick, 1963). But the
difficulties in modeling multigoal and/or in-
teracting systems were too great. In addition,
experimental psychology, largely inspired by
information theory, was making important
advances in the study of cognition: specif-
ically, perception, attention, and concept
formation (Broadbent, 1952a, 1952b, 1958;
Bruner, Goodnow, & Austin, 1956). In neu-
ropsychology, Donald Hebb’s (1949) excit-
ing ideas about cell assemblies were more
readily applied to concepts and memory
than to motivation and psychopathology,
which he discussed only briefly. And the
early AI scientists were more interested in
modeling cognitive matters: logic, problem
solving, game playing, learning, vision, or
language (including translation). As a result,
the early advances – and most of the later
advances, too – concerned cognition.

Among the most significant work, which
inspired MGP and whose influence still per-
sists, was that of Allen Newell and Her-
bert Simon (Newell, Shaw, & Simon, 1957,
1958, 1959). These men provided examples
of heuristic programming, wherein essen-
tially fallible rules of thumb can be used
to guide the system through the search
space (itself a novel and hugely important,
concept). They showed how means-end
analysis can be used to generate hierarchi-
cally structured plans for problem solving.
And Simon’s stress on “bounded” rationality



P1: IBE

CUFX212-25 CUFX212-Sun 978 0 521 85741 3 April 2, 2008 18:14

670 boden

was especially important for psychologists.
(For a recent, and very different, account of
bounded rationality, see Gigerenzer, 2004;
Gigerenzer & Goldstein, 1996).

Planning became the focus of a huge
amount of research in AI and computa-
tional psychology. Increasing flexibility re-
sulted: for instance, self-monitoring and cor-
rection, expressing plans at various levels of
abstraction, and enabling the last-minute de-
tails to be decided during execution (Bo-
den, 1977/1987: chapter 12). In addition,
the flexibility exemplified by rapid reac-
tion to interrupts was modeled by Newell
and Simon using their new methodology
of production systems (1972). Here, goals
and plans were represented not by explicit
top-down hierarchies but by a host of im-
plicitly related if-then rules. This work was
even more closely grounded in psychological
experiments (and theories about the brain)
than their earlier models had been and led to
a wide range of production-system models
of thought and motor behavior – from arith-
metic, to typing, to seriation. Today, techno-
logically motivated AI plans may comprise
tens of thousands of steps (Russell & Norvig,
2003: viii, chapters 11–12).

Another advance seeks to defuse the first
of the two often-vitriolic debates identified
in Section 1. For although GOFAI and con-
nectionist approaches are often presented as
mutually exclusive, there are some interest-
ing hybrid systems. In psychology, for in-
stance, GOFAI plans have been combined
with connectionist pattern-recognition and
associative memory in computer models of
human action and clinical apraxias (Norman
& Shallice, 1980). Similarly, deliberative
planning is being combined with reac-
tive (“situated”) behavior in modern robots
(Sahota & Mackworth, 1994). Indeed, there
is now a very wide range of hybrid sys-
tems, in both psychological and technologi-
cal AI (Sun, 2001; Sun & Bookman, 1994).
In other words, MGP’s notion of plans as
hierarchies of TOTE-units has been greatly
advanced, with the hierarchy often being
implicit and the “test” often being carried
out by reactive and/or connectionist mech-
anisms.

The appeal of hybrid systems is that
they can combine the advantages of both
symbolic and connectionist approaches, for
these two methodologies have broadly com-
plementary strengths and weaknesses. As
remarked earlier, serial order, hierarchical
behavior, and propositional inference are
better modeled by GOFAI. Indeed, much
of the more recent connectionist research
has attempted to provide (the first two
of) these strengths to PDP systems (e.g.,
Elman, 1990, 1993; for other examples,
see Boden, 2006: 12.viii–ix). In addition,
symbolic models can offer precision (but
many, though not all, “crash” in the pres-
ence of noise), whereas PDP offers multiple
constraint satisfaction and graceful degrada-
tion (but is ill-suited to precise calculation
wherein 2+ 2 really does equal 4 and not
3.999 or probably 4).

Vision, too, was a key research area for
computational modeling, not least because
experimental psychologists had already
learned a lot about it. The work on “scene
analysis” in the 1960s and 1970s used top-
down processing to interpret line-drawings
of simple geometrical objects (Boden, 1977/
1987: chapters 8–9). This fitted well with
then-current ideas about the psychology of
perception (Bruner, 1957), and some as-
pects of human vision were successfully ex-
plained in this way (Gregory, 1966, 1967).

In general, however, that approach was
unrealistic. For example, if the computer in-
put was a gray-scale image from a camera
(as opposed to a line-drawing), it would be
converted into a line-drawing by some line-
finding program. Gibsonian psychologists
complained that a huge amount of poten-
tial information was being lost in this way,
and David Marr (among others) suggested
that this could be captured by bottom-up
connectionist processes designed/evolved to
exploit the physics of the situation (Marr,
1976, 1982; Marr & Hildreth, 1980). (Marr
went on to criticize top-down AI in general
and what he saw as the theoretically unmo-
tivated “explanations” offered by psycholo-
gists such as Newell and Simon; Marr, 1977.
To simulate, he insisted, was not necessarily
to explain.)
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Work on low-level vision, including en-
active vision (wherein much of the informa-
tion comes as a result of the viewer’s own
movements, whether of eyes and/or body),
has given rich returns over the past quarter-
century (Hogg, 1996). But top-down mod-
els have been overly neglected. The recog-
nition of indefinitely various objects, which
must involve top-down processing exploit-
ing learned categories, is still an unsolved
problem. However, the complexity of vi-
sual processing, including the use of tempo-
rary representations at a number of levels,
is now better appreciated. Indeed, compu-
tational work of this type has been cited as
part inspiration for neuroscientific accounts
of “dual-process” vision (Sloman, 1978:
chapter 9, 1989; Goodale & Milner 1992;
Milner & Goodale, 1993).

Language, which MGP (thanks to Chom-
sky) had seen as a prime target for their
approach, has figured prominently in com-
putational psychology. Both Chomsky’s
(1957) formalist discussion of grammar and
Terry Winograd’s (1972) GOFAI model of
parsing influenced people to ask computa-
tional questions about psychology in general
and about language use and development
in particular (e.g., Miller & Johnson-Laird,
1976). But neither work was sufficiently
tractable to be used as a base for com-
puter models in later psycholinguistic re-
search. (One exception was a model of
parsing grounded in Chomskyan grammar,
which attempted to explain “garden-path”
sentences in terms of a limited working-
memory buffer; Marcus, 1979.) Other types
of modeling (such as augmented transition
networks [ATNs]; Woods, 1973) and other
theories of grammar were preferred.

All aspects of language use are now be-
ing studied in computational terms. With
respect to syntax, many models have uti-
lized a theory that is more computationally
efficient than Chomskyan grammar (Gazdar
et al., 1985). With respect to semantics, psy-
chological models (and experiments) have
been based in work ranging from conceptual
dependencies (Schank, 1973), to the the-
ory of scripts (Bransford & Johnson, 1972;
Schank & Abelson 1977), to highly for-

mal model-theoretic logic (Johnson-Laird,
1983). The use of language (and imagery)
in problem solving has been explored in
the theory of “mental models” (Johnson-
Laird, 1983). More recently, both situation
semantics and blending theory have offered
cognitive versions of linguistics and ana-
logical thinking that are deeply informed
by the computational approach (Barsalou,
1999; Fauconnier & Turner, 2002). And
with respect to pragmatics, computational-
ists have studied (for instance) speech-acts,
focus, and plan-recognition in conversation
(Cohen, Morgan, & Pollack, 1990; Cohen &
Perrault, 1979; Grosz, 1977).

Machine translation has made significant
advances, but has become increasingly sta-
tistical and corpus-based: it is an exercise in
technological AI rather than computational
psychology. Reference to machine transla-
tion reminds us that language, with its many
ambiguities and rich associative subtleties,
has long been regarded as the Achilles’ heel
of AI. But if perfect use/translation of ele-
gant natural language is in practice (or even
in principle) impossible for an AI system,
it does not follow that useful language pro-
cessing is impossible, too.

Still less does it follow that psychologists
cannot learn anything about natural lan-
guage by using a computational approach.
What is more, important lessons about psy-
chology in general may be learned in this
way.

For instance, a connectionist program
simulating the development of the past
tense was seen by its authors as a challenge
to psychological theories based on nativism
and/or formalist rule realism (Rumelhart &
McClelland, 1986). This network learned to
produce the past tense of verbs in something
apparently like how children do, including
the temporary overregularization of irreg-
ulars (e.g., “goed” instead of “went”) that
Chomskyans had explained in terms of in-
nate rules. This received (and still receives)
attack and defense from Chomskyans and
non-Chomskyans, respectively, including
attention from developmentalists concerned
with the growth of representational trajec-
tories in general (Clark & Karmiloff-Smith,
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1993; Pinker & Prince, 1988; Plunkett &
Marchman, 1993). The verdict is not clear-
cut, for further similarities and also differ-
ences have been found when comparing net-
work and child. Nevertheless, this is a good
example of the use of computational models
not only to throw light on specific psycho-
logical phenomena but also to explore foun-
dational issues in theoretical psychology.

The computationally inspired, but non-
programmed, theories of linguistic commu-
nication include blending theory, mentioned
earlier. But perhaps the best example is
Daniel Sperber and Deirdre Wilson’s wide-
ranging work on relevance (1986). This uses
ideas about the efficiency of information
processing to explain how we manage to
interpret verbal communications, including
those that seem to “break the rules” in var-
ious ways. There is no question of captur-
ing the full extent of Sperber and Wilson’s
theory in a computer model: Language un-
derstanding is far too complex for that. But
“toy” examples can be modeled. Moreover,
their theoretical insights were grounded in
their generally computational approach. In
other words, even if individual examples
of relevance-recognition cannot usually be
modeled, their psychological possibility can
be computationally understood (see Sec-
tion 6).

Problem solving, vision, and language are
obvious candidates for a cognitive psychol-
ogy, whether computational or not. But
MGP had set their sights even higher, to
include, for example, hypnosis and halluci-
nation (MGP 1960: 103f., 108–112). Re-
cently, these phenomena, too, have been
theorized by cognitive scientists.

For example, Zoltan Dienes and Josef
Perner (in press) have explained hypnosis in
terms of “cold control,” wherein inference
and behavior are directed by executive con-
trol but without conscious awareness. Con-
scious awareness, in their theory, involves
higher-order thoughts (HOTs) that are re-
flexively accessible to (and reportable by)
the person concerned. These authors outline
computational mechanisms whereby hyp-
nosis of varying types can occur, due to the
suppression of HOTs of intention. In do-

ing so, they explain many puzzling facts ob-
served by experimentalists over the years
(such as the greater difficulty of inducing
positive, as opposed to negative, hallucina-
tions).

The most important topic about which
MGP had little or nothing to say was devel-
opment (see Chapter 16 in this volume).
And indeed, for many years, most cogni-
tive scientists ignored development as such.
Most assimilated it to learning, as in the past-
tense learner. A few used ideas from devel-
opmental psychology without considering
their specifically developmental aspects, as
Alan Kay, when designing human-computer
interfaces, borrowed Jerome Bruner’s classi-
fication of “cognitive technologies” and Jean
Piaget’s stress on construction and learning-
by-doing (Boden, 2006: 13.v). A few Piage-
tians tried to model stage development (e.g.,
Young, 1976). But even they failed to take
Piaget’s core concept of epigenesis fully on
board.

By the end of the century, that had
changed. Epigenesis was now a word to con-
jure with even in robotics, never mind devel-
opmental psychology (see http://www.
epigenetic-robotics.org and Chapter 16 in
this volume). Forty years of “Piagetian” re-
search in psychology (Elman et al., 1996;
Karmiloff-Smith, 1979, 1986) and neuro-
science (Changeux, 1985; Johnson, 1993)
had led to theories, and computer models,
in which epigenesis was a key feature. In-
stead of pre-programmed and sudden stage
changes, development was conceptualized
as a progression of detailed changes due in
part to successive environmental influences.
The simplistic nature-nurture controversy
was rejected, as it had been by Piaget him-
self. Instead, the concept of innateness was
enriched and redefined. This theoretical ad-
vance involved both (connectionist) com-
puter modeling and the interdisciplinary in-
tegration of empirical research: an example
of cognitive science at its best.

Researchers who took epigenesis seri-
ously were naturally sceptical about mod-
ularity theories. The picture of the mind
as a set of functionally isolated, inher-
ited, and domain-specific modules had been
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suggested by Chomsky, championed by
Jerry Fodor, and supported by evolution-
ary psychologists in general (Boden, 2006:
7.vi.d–e and i). Fodor (1983), in particu-
lar, expressed this twentieth-century version
of “faculty psychology” in computational
terms. The epigeneticists just mentioned,
and especially Annette Karmiloff-Smith
(1992), argued that the modularity appar-
ent in the adult develops gradually, both be-
fore and after birth, from a source (i.e., a
brain) that is much more plastic than ortho-
dox modularity theorists had claimed.

To say (as just mentioned) that Fodor
(1983) pictured the mind as a set of mod-
ules is not quite accurate. For he also posited
“higher mental processes” – of inference, as-
sociation, interpretation, and creative think-
ing – which lead us to accept an idiosyncratic
collection of beliefs (and desires, intentions,
hopes). These thought processes, he said,
are domain-general and highly interactive:
Were that not so, most poems (for instance)
simply could not be written, and most every-
day conversations could not happen, either.

However, his view was that such mat-
ters (unlike the functioning of modules) are
wholly beyond the reach of a computational
psychology. Because any two concepts can
be combined in an intelligible image or be-
lief, it follows that predicting (or even ex-
plaining post hoc) just why someone arrived
at this belief rather than that one is impos-
sible, in the general case. And since, accord-
ing to him, computational psychology is the
only psychology we’ve got, indeed the only
psychology it is even worth wanting, there
is no hope of our ever having a scientific ex-
planation of beliefs or of the propositional
attitudes in general. In short, modules are as
good as it gets: The psychology of cognition
is a much less wide-ranging enterprise than
we had thought.

Whether Fodor was right depends on
one’s philosophical views about scientific
explanation, whether computational or not.
Must it involve detailed predictions of spe-
cific events (such as accepting a new belief
or interpeting an analogy)? Or is it enough
that it shows how certain general classes of
events, some of which may be prima facie

very puzzling, are possible (and why cer-
tain other imaginable events are impossi-
ble)? This question will be discussed again
in Section 6.

3. Emotions and Motivation

It is part of the human condition that we
have many different, sometimes incompat-
ible, motives and desires and that we are
subject to a range of emotions that seem
to interfere with rational problem solving.
These banalities were touched on by MGP
and discussed by several others at the outset
of computational psychology (e.g., Simon,
1967). But such matters could then be mod-
eled only to a very limited degree. It was dif-
ficult enough to write programs dealing with
one goal (and its attendant subgoals), never
mind more. And it was challenging enough
to deal with problems of a well-understood
(“logical”) kind, in a relatively tractable (“ra-
tional”) way.

In that context, conflicting motives and
disturbing emotions seemed to be compu-
tational luxuries that no sensible program-
mer could afford. Simon himself, in his (and
Newell’s) huge book of 1972, mentioned
emotions only in passing. This is largely why
cognitive science is widely (though mistak-
enly) thought be the science only of cogni-
tion.

However, these matters could not be ig-
nored forever. There were two reasons for
this. First, emotions and motivation exist,
so they should be featured in any com-
prehensive psychological approach. Second,
they are intimately connected with cognitive
phenomena, such as language and problem
solving, so much so that a fully adequate
model of cognition would not be a model
of cognition alone. Indeed, both computa-
tionalists and neuroscientists have pointed
out that in multimotive creatures such as
ourselves, “pure” problem solving could not
occur without emotional prioritizing.

The neuroscientists based this conclusion
on clinical evidence. For example, the brain-
damaged patient “Elliot” was, in effect, ut-
terly incompetent, despite his intellect being
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unimpaired (Damasio, 1994). Asked to per-
form an individual subtask, he could do so
easily. He could even work out all the rele-
vant plans for the task as a whole and fore-
see the tests that (according to MGP) would
be required in executing them. He could
compare the possible consequences of dif-
ferent actions, construct contingency plans,
and take moral principles and social conven-
tions into account while doing so. What he
could not do was choose sensibly between
alternative goals or stick with a plan once he
had chosen it, or assess other people’s mo-
tives and personality effectively. His clini-
cian felt that his deficit was not cognitive,
but emotional. For he was unable to decide
that one goal was more desirable than an-
other (and showed no emotional reaction
even to the most dreadful events happening
in stories or real life): hence his inability to
embark on a plan of action and/or to perse-
vere with it if he did so.

Some cognitive scientists had long used
principled computational arguments to ar-
rive at a similar conclusion, namely, that ra-
tionality depends on emotion, which is not
to deny that emotional response can some-
times make us act irrationally. By the end
of the century, emotion had become a hot
topic in AI and other areas of cognitive sci-
ence, including the philosophy of mind (e.g.,
Evans, 2001; Evans & Druse, 2004). Even
technological AI researchers were model-
ing emotional interrupts and prioritizing
(Picard, 1997).

Among the most deeply thought out
research on emotion was a longstand-
ing theory, and a more recent computer
model, developed by Aaron Sloman’s group
(Wright & Sloman, 1997; Wright, Sloman,
& Beaudoin, 1996). Their program simu-
lates the behavioral effects of several theo-
retically distinct varieties of anxiety. It rep-
resents a nursemaid dealing with several
hungry, active babies, with an open door
leading onto a water-filled ditch. She has
seven different motives (which include feed-
ing a baby if she believes it to be hungry,
building a protective fence, and putting a
baby behind the fence if it is nearing the
ditch) and is subject to continual perceptual

and emotional interrupts, which prompt ap-
propriate changes of plan. Different types
of anxiety arise because she has to distin-
guish between important and trivial goals
and decide on urgency and postponement.
(Feeding a baby is important but not highly
urgent, whereas preventing it from falling
into a ditch is both.) Because she cannot
deal with everything at once, nor pursue all
her motives at once, she must schedule her
limited resources effectively, which is what
emotion, according to Sloman, is basically
about (see Section 4).

Such research is a huge advance on the
models of emotion that were written over
thirty years ago. These simulated the dis-
tortions of belief that are characteristic of
neurosis and paranoia (Colby, 1964, 1975),
and the effects of various (Freudian) types
of anxiety on speech (Clippinger, 1977).
Even though the virtual nursemaid does not
form verbal beliefs, the role of anxiety in
her mental economy is captured with some
subtlety – and is grounded in an ambitious
theory of mental architecture in general (see
Section 4).

It is widely believed not only that cog-
nitive science does not deal with emotions,
but also that, in principle, it could not. In
part, this belief springs from the notion that
emotions are feelings and that computation
cannot explain (and computers cannot expe-
rience) feelings. Whether conscious qualia
(such as feelings) can be computationally
explained is touched on in Section 5. Here,
it must be said that emotions are not just
feelings, but also scheduling mechanisms
that have evolved to enable rational action
in conflict-ridden minds – mechanisms, as
we’ve seen, that can be computationally un-
derstood.

In part, however, the widespread belief
that emotions – and their close cousins,
moods – are beyond the reach of a com-
putational psychology rests on the fact that
they appear to depend less on connections
than on chemistry. In other words, the neu-
roscientists tell us that chemical endorphins,
and perhaps also rapidly diffusing small
molecules such as nitric oxide, underlie
very general psychological changes, such as
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alterations in mood. Because computation
(so this objection goes) can model only spe-
cific decisions or neural connections, it is
fundamentally ill suited to represent moods.

This objection has recently been coun-
tered by the development of computa-
tional systems called GasNets (Philippides,
Husbands, & O’Shea, 1998; Philippides
et al., 2005). In a nutshell, these are neural
networks wherein the behavior of an indi-
vidual unit can vary according to the location
and concentration of (simulated) rapidly dif-
fusing chemicals. The behavior of the system
as a whole differs in distinct chemical cir-
cumstances, even though the neural connec-
tivities do not change. GasNets are very dif-
ferent from GOFAI systems and even from
orthodox neural networks, not to mention
abstract models defined in terms of Turing-
computation (see Section 6). As a result,
they are able to simulate mental phenom-
ena that seem intuitively to lie outside the
range of a computational psychology.

GasNets and the virtual nursemaid
reflect, respectively, the differing phe-
nomenology of moods and emotions. Anxi-
ety, for example, is normally directed onto
a specific intentional object: that this baby
will go hungry or that one will fall into
the ditch. Admittedly, free-floating anxiety
does seem to occur, but it is atypical. Moods
(such as elation or depression), on the other
hand, have no particular object but affect
everything we do while in their grip. That,
perhaps, is just what one would expect if
their neurological base is some widely dif-
fusing chemical, as opposed to the activation
of a specific neural circuit or cell-assembly.
Whether these speculative remarks are cor-
rect or not, however, the point is that these
computer models show the potential scope
of computational explanation to be much
wider than most people assume.

4. Full-Fledged Humanity

Sloman’s work on anxiety is just a small
part of a much wider project, namely, his
attempt to sketch the computational archi-
tecture of the mind – and possible minds

(Sloman, 1978, 1993, 2000). A similar pro-
ject is underway at Massachusetts Institute
of Technology, thanks to Minsky (2006).

Other examples of architectural research
include ACT-R (Anderson, 1983, 1996),
SOAR (Laird et al., 1987; Rosenbloom,
Laird, & Newell, 1993), and CLARION
(Sun, 2006; Sun, Peterson, & Merrill, 1999).
These systems are both more and less am-
bitious than the other two just discussed.
“More” because they are largely/fully imple-
mented. “Less” because the range of psycho-
logical phenomena they model is narrower
than those discussed by Minsky and Sloman
(although CLARION, unlike the others,
models social interactions: see Chapter 19
in this volume). In a nutshell, they are
much more concerned with cognition than
emotion and with effective problem solv-
ing rather than irrationality or psychopathol-
ogy. In that sense, they are less relevant
to “full-fledged humanity,” however impres-
sive they may be as implemented problem-
solving systems.

Minsky and Sloman each see the mind
as a “society” or “ecology” of agents or sub-
systems, both evolved and learned (Minsky,
1985; Sloman, 2003). Their overall designs,
if successful, should not only illuminate the
relation between cognition, motivation, and
emotion, but also show how various types
of essentially human psychology (and psy-
chopathology) are possible.

For instance, consider the many debilitat-
ing effects of grief after bereavement (tear-
fulness, distractibility, lack of concentration,
pangs of guilt, feelings of “meaninglessness”)
and the need for many months to engage
in mourning. These phenomena are familiar
to psychiatrists and psychotherapists, and,
indeed, to most ordinary people. But be-
ing familiar is not the same as being the-
oretically intelligible. Why (and how) does
grief affect us in such a variety of different
ways? Why is so much time required for ef-
fective mourning? And what is “effective”
mourning, anyway? These questions have
been addressed in a highly illuminating way
by Sloman, in the context of his architec-
tural theory (Wright, Sloman, & Beaudoin,
1966). (If this seems counterintuitive, it is
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worth noting that the journal editor who
published his article on grief is a psychia-
trist, well acquainted with the ravages of this
phenomenon from clinical practice.)

There is no question, in the foreseeable
future, of implementing Sloman’s (2003) or
Minsky’s (1985) systems as a whole. Im-
proved versions of the nursemaid program,
and equally limited models of other dimen-
sions of their discussions, are about as much
as we can hope for. A skeptic might in-
fer, therefore, that these ambitious mind-
mapping projects are mere hand-waving.

Compared with a fully functioning com-
puter model, they are. However, one must
recognize that the concepts used, and the
hypotheses suggested, by both Sloman and
Minsky are based on many years of experi-
ence with working AI systems, not to men-
tion many years of thinking about architec-
tural problems. They have been tried and
tested separately countless times, in a host
of AI models. The question is whether their
integration, as sketched by these two writ-
ers, is plausible.

Success would involve more than com-
putational plausibility, of course. It also re-
quires consistency with the empirical evi-
dence provided by psychology. So if one
could show that the data about hypnosis
(for example) or grief simply cannot be fit-
ted within a particular architectural story,
then that story would have to be modified.
No matter how many improvements were
made, of course, no implementation could
in practice match the richness of a human
mind (see Section 6). That drawback may
be excused, however: If physicists are al-
lowed to use inclined planes, psychologists
also should be allowed to simplify their the-
oretical problems. Only if some psycholog-
ical phenomena remain utterly untouched
by the inclined-planes approach can it be
criticized as a matter of principle.

It is often argued that consciousness is one
such phenomenon that could not ever be il-
luminated or explained by a computational
approach. In rebutting this view, one does
not have to endorse the possibility of “ma-
chine consciousness,” although some com-
putationalists do (e.g., Aleksander, 2000),

and several conferences on “machine con-
sciousness” have been held in recent years.
One does not even have to endorse the de-
nial of qualia, although, again, some cogni-
tive scientists do (Dennett, 1991: chapter
12). One need only point out that “con-
scious” and “consciousness” are terms cover-
ing a mixed bag of psychological phenomena
(Zelazo, Moscovitch, & Thompson, in
press). These range from attention, to de-
liberate thinking, to self-reflection, even in-
cluding the nonreciprocal co-consciousness
typical of “multiple personality.” Each of
these has been hugely illuminated by com-
putational approaches (Boden, 2006: 6.i.c–
d, 6.iii, 7.i.h, and 7.iv). Indeed, these topics
are what, in fact, the conferences on ma-
chine consciousness are mostly about.

In short, even if – and it is a philo-
sophically controversial “if” – computational
psychology cannot explain the existence of
qualia, it can explain many other aspects of
consciousness. (What is more, if it cannot
do this, then neurophysiology cannot do it,
either. Brain scans are not the solution, for
correlation is not the same as explanation
(Boden, 2006: x–xi.).)

One important aspect of human beings
that is acknowledged – and explained – by
theories of computational architecture such
as these is freedom. To make a long story
short (see Boden, 2006: 7.i.g), freedom is a
flexibility of action that is not due to any
fundamental indeterminacy, but is possible
only because of the cognitive and motiva-
tional complexity of adult human minds.
Various cognitive scientists argued this in
the early days (e.g., Boden, 1972: 327–333;
Minsky, 1965; Sloman, 1974). Now, with
our increased understanding of the compu-
tational complexities concerned, the argu-
ment can be made more fully (e.g., Arbib
& Hesse, 1986: 93–99; Dennett, 1984;
Minsky, 1985).

5. Social Interaction

Implicit in MGP’s manifesto was the notion
that cognitive science could cover social, as
well as individual, psychology. And, indeed,
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some of the early computational theories
dealt with this theme. A prime example,
systematizing the possible interactions be-
tween two people in different roles, was
offered by the social psychologist Robert
Abelson (1973). However, the topic was
soon dropped (except in some models of
conversation, e.g., Grosz, 1977; Cohen &
Perrault, 1979), as it became clear that mod-
eling even one purposive system was diffi-
cult enough. In the 1990s, however, interest
in social interaction and distributed cogni-
tion burgeoned.

Distributed representation had already
surfaced as PDP connectionism, wherein
networks composed of many different units
achieve a satisfactory result by means of mu-
tual communications between those units.
This is a form of distributed cognition in
that no single unit has access to all of the
relevant data and no single unit can repre-
sent (“know”) the overall result. But PDP
methodology was mostly used to model pat-
tern recognition and learning (one highly
controversial result was the network that
learned to produce the past tense; see Sec-
tion 2). It was hardly ever used to model
social phenomena, because individual PDP
units are too simple to be comparable to so-
cial beings.

One apparent exception is the work of
the anthropologist Edwin Hutchins (1995).
He uses communicating networks of PDP
networks to study the collective problem
solving that is involved in navigating a ship.
The huge amount, and diversity, of knowl-
edge required is distributed among the var-
ious crew members (and also in the nature,
and spatial placement, of the instruments on
board). Not even the captain knows it all.
Moreover, the computer modeling showed
that different patterns of communication
between the crew members would lead to
different types of success and failure. In
some cases, then, failure was due not to hu-
man error on the part of a particular indi-
vidual, but to an unfortunate choice – or an
accepted tradition – of communicative strat-
egy. However, this is a study of (distributed)
cognition, not of social phenomena, as
such.

The main root of the growing interest
in distributed social cognition is technolog-
ical AI’s late-century concern with “agents”
(Sun, 2006). This term was introduced into
AI in the very early days by Oliver Self-
ridge (1959). He himself used it to cover
both very simple reactive “demons” and (po-
tentially) more complex, mindlike, subsys-
tems. Since then, the term has increasingly
been used to denote the latter (Boden, 2006:
13.iii.d).

Today’s AI agents, then, include the
members of groups of interacting robots,
and, in particular, software agents cooper-
ating within complex computer programs.
Mindlike “softbots” are designed to enter
into communications and negotiations of
various types. Their activities include rec-
ognizing, representing, and aiding the goals
and plans of other agents (including the hu-
man user); making deals, voting, and bar-
gaining; asking and answering questions; and
offering unsolicited but appropriate infor-
mation to other agents (or, again, the human
user).

It could fairly be said, however, that such
agents – like the participants in most com-
puter models, and many psychological the-
ories (such as Abelson’s, 1973), of social
interaction – are conceptualized as solitary
individuals who can affect and communicate
with other individuals who happen to be
around but whose nature is potentially solip-
sistic. There is no suggestion that they, or
human beings, either, are essentially social.

The tension between individualistic and
social views of the person, or self, is an old
one. The key question is whether individual
selves constitute society or whether they are
largely constituted (not just influenced) by
it. Opposing views are fiercely debated not
only in political philosophy (e.g., Popper,
1957) but also in social science, including,
of course, social psychology (Hollis, 1977;
Mead, 1934).

Some recent modeling work by Ezequiel
Di Paolo (1998, 1999) has specifically coun-
tered the individualistic viewpoint. In a nut-
shell, Di Paolo showed that cooperation
need not depend (as Abelson, 1973, for in-
stance, had assumed) on shared goals, nor on
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the attribution of intentions to the “partner.”
He showed, too, that communication need
not be thought of (as is usual in cognitive
science and in the multiagent systems men-
tioned earlier) as the transfer of information
from the mind of one agent who has it to
the mind of another agent, who does not. In
one version of his model, for instance, the
agents evolved cooperative activity without
having internal representations of the task
or of each other; the reward could not be
gained by a sole agent, but was achieved only
by a sequence of alternating actions of both
agents.

Di Paolo (1998, 1999) is not the first
to model cooperation and coordination be-
tween agents lacking representations of each
others’ intentions and plans (e.g., Goldberg
& Mataric, 1999; Sun & Qi, 2000). But he
explicitly draws an unorthodox philosophi-
cal moral, arguing that his work casts serious
doubts on mainstream AI and cognitive sci-
ence (Di Paolo, 1999: chapter 10). On the
one hand, it does not rely on the internal
state within the agents, so it goes against
the representationalist assumptions of most
cognitive scientists (including most connec-
tionists). On the other hand, it goes against
the individualistic bias of the field. Often,
critics who complain that cognitive science
is overly individualistic mean merely that
the field, especially AI and computational
psychology, has only very rarely considered
social systems – these being understood as
groups of two or more interacting (but po-
tentially solitary) individuals. Di Paolo, by
contrast, argues that an “individual” human
being is in fact essentially social, so that or-
thodox cognitive science is not simply overly
narrow in practice but radically inadequate
in principle.

This fundamental debate cannot be re-
solved here; as discussed earlier, it has ex-
ercised social and political philosophers for
over a century. For present purposes, the
point is that although computer modeling
has not yet paid much attention to social
processes, it is not in principle impossible
to do so. Indeed, Di Paolo’s (1998, 1999)
work shows that cooperation and communi-
cation between agents can be modeled even

when they are conceptualized in an essen-
tially “nonindividualistic” way.

6. Conclusion

Computational psychology has a long way
to go. There are many unanswered ques-
tions, plus some we do not even know just
how to pose. One of those is the nature
of computation. Alan Turing’s definition is
still the clearest, but it is not best suited to
describe the practice of working AI scien-
tists (Sloman, 2002). A number of people
have suggested alternatives (e.g., Copeland,
2002; Smith, 1996; Scheutz, 2002).

This relates to a common criticism of
computer-based approaches to the mind/
brain. Critics often point out that crude
analogies have repeatedly been drawn from
contemporary technology, each of which
has bitten the dust as knowledge has ad-
vanced (within living memory, steam en-
gines, telegraphs, and jukeboxes). Why
should not computers eventually bite the
dust, too?

The short answer (distilled from Chris-
ley, 1999) is that computer science, here,
is comparable to physics. Physicalists do not
insist that everything can be explained (even
in principle) by today’s physics, but that ev-
erything is in principle explicable by what-
ever the best theory of physics turns out
to be. Similarly, cognitive scientists believe
that the mind/brain, which certainly can-
not be fully understood in terms of today’s
computational concepts, is in principle in-
telligible in terms of whatever turns out to
be the best theory of what computers can
do. “What computers can do” has already
been enriched way beyond MGP’s imagin-
ings. Very likely, it will be enriched beyond
our current imaginings in the future.

A second common objection is that it is
absurd to suggest that the subtle idiosyncra-
cies of human lives could be represented,
still less predicted, in a computer program.
The very idea is felt to be insidiously dehu-
manizing. But whoever said that they could?
Certainly not MGP. Even those (noncom-
putational) psychologists who specialize in
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individual differences or in clinical psy-
chotherapy do not claim to be able to pre-
dict or explain every detail of individual
minds. When such prediction/explanation
does take place, it is usually based on hu-
man intuition/empathy rather than scientific
theory (another long-standing opposition in
psychology; Meehl, 1954).

Indeed, science in general is not primar-
ily about prediction. Rather, it is about the
identification and explanation of abstract
structural possibilities – and impossibilities
(Sloman, 1978: chapters 2–3; see also Bo-
den, 2006: 7.iii.d). Correlational “laws” and
event-predictions are sometimes available
(as in most areas of physics), but they are
a special case.

This, then, is the answer to Fodor’s
(1983) pessimism about the scope of com-
putational psychology (see Section 2). He
was right to say that we will never be able
to predict every passing thought of a given
individual. The human mind – as compu-
tational studies have helped us to realize –
is far too rich for that. Nevertheless, to un-
derstand how mental phenomena are even
possible is a genuine scientific advance.

The key problem faced by MGP was to
show how such phenomena are possible.
(As they put it, how to interpret the hy-
phen between the S and the R.) They waved
their hands shamelessly in sketching their
answer. But the overview of cognitive sci-
ence given in this chapter should suffice to
show that significant progress has been made
since then.
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CHAPTER 26

Putting the Pieces Together Again

1. Introduction

Instead of attempting to sum up the achieve-
ments of the field, this chapter complements
the review of requirements for work on in-
tegrated systems in Chapter 1, by present-
ing a personal view of some of the major
unsolved problems and obstacles to solving
them. In principle, this book should soon be
out of date as a result of worldwide growth
in research on cognitive systems. However,
it is relatively easy to identify long-term am-
bitions in vague terms, for example the aim
of modeling human flexibility, human learn-
ing, human cognitive development, human
language understanding, or human creativ-
ity; but taking steps to achieve those goals is
fraught with difficulties. So progress in mod-
eling human and animal cognition is very
slow despite many impressive narrow-focus
successes, including those reported in earlier
chapters.

An attempt is made to explain why
progress in producing realistic models of
human and animal competences is slow,
namely, (1) the great difficulty of the prob-
lems; (2) failure to understand the breadth,

depth and diversity of the problems; (3) the
fragmentation of the research community;
and (4) social and institutional pressures
against risky multidisciplinary, long-term re-
search. Advances in computing power, the-
ory, and techniques will not suffice to over-
come these difficulties. Partial remedies will
be offered, namely identifying some of the
unrecognized problems and suggesting how
to plan research on the basis of “backward-
chaining” from long-term goals, in ways that
may, perhaps, help warring factions to col-
laborate and provide new ways to select tar-
gets and assess progress.

1.1. The Scope of Cognitive Modeling

Although artificial intelligence (AI) and cog-
nitive science have different aims, AI has
always had two overlapping, mutually sup-
porting strands, namely science (concerned
with understanding what is and is not possi-
ble in natural and artificial intelligent sys-
tems) and engineering (concerned mainly
with producing new useful kinds of ma-
chines). “Cognitive science” and “cognitive
modeling” overlap significantly with the
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science strand of AI (as documented in
great detail by Boden, 2006). However, the
majority of AI researchers have a strong
engineering orientation. In contrast, those
who were responsible for many of the key
ideas in AI were all interested in AI pri-
marily as a contribution to the general
“science of mind”, including, for example,
Turing (1950), McCarthy (2004), Minsky
(2006), Simon (1997), and Newell (1990).
Some people wish to restrict cognitive sci-
ence to a subset of AI as science, namely
the study of “natural” systems. Many are
even more narrow and study only human
cognition. Such restrictions reduce opportu-
nities to understand how systems produced
by evolution relate to the space of possible
behaving systems – as if physicists restricted
their studies to naturally occurring physical
entities (e.g., plants and planets) while ig-
noring physical phenomena in artefacts like
prisms, plasma lamps, and power stations.
So, a full understanding of how minds work,
deep enough to support realistic modeling,
requires a broad multidisciplinary approach
combining neuroscience, psychiatry, devel-
opmental psychology, linguistics, animal
behavior studies (including insects and mi-
crobes), biology, computer science, mathe-
matics, robotics, linguistics, and philosophy.
It may also require physics and chemistry for
reasons explained later. We need all those
disciplines in order to understand the va-
riety of possible ways of combining differ-
ent kinds of competence within an inte-
grated, embodied, organism-like agent, able
to learn and develop as ants, antelopes, and
humans do.

We cannot expect everyone working on
highly focused research problems to switch
immediately to long-term research on in-
tegrated biologically inspired systems com-
bining multiple competences. But more re-
searchers should think about these issues.
In particular, we should inspire some of
the brightest young researchers to do so,
despite all the institutional and financial
pressures to focus on narrow, more prac-
tical, goals and despite the deep intellec-
tual difficulties discussed in the following
sections.

1.2. Levels of Analysis and Explanation

Different kinds of commonality link natu-
ral and artificial systems, some concerned
with physical mechanisms, some with high-
level (virtual machine) design features, and
some with task requirements. Organisms
use many different physical mechanisms
in their sensors, effectors, and internal
information-processing systems. Not all of
them have brains or nervous systems, al-
though all acquire and use information from
the environment in controlling behavior,
for example determining direction of move-
ment in microbes, of growth of shoots or
roots, or orientation of leaves in plants. Like-
wise, artificial behaving systems differ in
processor design and materials used, and at
present use totally different physical mech-
anisms from those used in organisms, al-
though those differences may be reduced in
future.

Progress will depend not only on analysis
of the variety of physical substrates and their
trade-offs, but also investigation of types of
form of representation, types of algorithm,
types of dynamical system, and types of ar-
chitectural decomposition – independently
of how they are implemented in physical
substrates. Many researchers ignore details
in the hope of capturing important features
of biological systems. For instance, people
developing neural net models tend to ig-
nore the roles of the many chemicals in-
volved in biological information-processing,
such as neurotransmitters and hormones.
It could turn out that such omissions seri-
ously undermine the long-term significance
of their models, so more needs to be under-
stood about the roles of physical and chemi-
cal information-processing in organisms (cf.
Chapter 13 in this volume).

In addition to research on underlying
mechanisms, and research on high-level vir-
tual machine specifications, there is also a
type of research that involves identifying the
diverse requirements that the mechanisms
and designs need to satisfy. This is some-
times called “task analysis”, although organ-
isms do not merely perform one type of
task. Tasks that cognitive scientists need to
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analyze are more like the collection of re-
quirements for travel to remote planets,
compounded with use of diverse bodily
forms in diverse environments. Require-
ments for a whole organism include a speci-
fication of the niche, or sequence of niches,
in which it evolved or developed.

2. Difficulties and How to Address
Them

Previous chapters have said much about
explanatory mechanisms and architectures.
Most of this chapter is about requirements
(i.e., niches) and how to learn about them:
a much harder task than many suppose.
Contributing to a field like this requires
several years of multidisciplinary postgrad-
uate study in order to understand the
problems. Unfortunately, both institutional
features of current academic research envi-
ronments and intrinsic features of the re-
search problems make this difficult.

2.1. Institutional Obstacles

Severe institutional and financial deterrents
obstruct multidisciplinary research, even
when lip service is paid to the idea. It is
especially risky for untenured researchers
worried about getting research grants and
building up publication lists – achieved more
easily in work that focuses only on minor
extensions or new applications of old tech-
niques. That pressure prevents researchers
from taking time to acquire the multidis-
ciplinary knowledge required to investigate
integrated systems (whole animals, whole
robots) and makes them choose less risky
research strategies. It also produces factions
working on different subproblems who com-
pete for funds, students, and attention, in-
stead of collaborating, and whose teach-
ing produces only partly educated students
who believe myths such as that symbolic
AI “failed”, or, at the other extreme, that
neural mechanisms are merely aspects of
implementation. Although many funding
agencies promote research that integrates
subfields and disciplines (Hendler, 2005),

because of the career risks, research on in-
tegrated multifunctional (“whole-animal”)
systems remains impossible for younger re-
searchers. (That is in addition to the in-
trinsic difficulties described in Section 2.2.)
Reducing institutional pressures causing in-
dividuals to focus narrowly will require the
academic community to teach politicians
and managers that assessment by measur-
able results is no way to foster deep, high-
calibre research or teaching. Sections 7 and 8
present a new research framework that may
help to integrate future research communi-
ties, although that will require exceptionally
able researchers.

2.2. Intrinsic Difficulties
in Making Progress

Many researchers have identified detailed
obstacles to progress. Some very high-level
obstacles, however, appear not to have re-
ceived much attention. The first difficulty
arises because rival researchers argue about
whose algorithm, architecture, or form of
representation is best, instead of studying
the structure of the space of alternatives and
the trade-offs involving those options. There
usually is no “best” alternative.

A related difficulty comes from studying
only normal adult human capabilities in a
specific community, ignoring not only the
deep genetic heritage humans share with
many other animals, but also the variations
in human capabilities across ages, cultures,
and personality types, and the varied con-
sequences of brain damage or deterioration.
Many of the facts that need to be explained
are not even noticed.

Research planning is hard because iden-
tifying good ways to make progress toward
very distant goals is hard when we do not
yet have a clear vision of the intermediate
research stages that can lead to those goals.
A partial solution is suggested in Section 9.2.

Many further difficulties arise from lim-
itations of our conceptual tools: After less
than a century of intense investigation
of mechanizable varieties of information-
processing, what we still understand about
forms of representation, about mechanisms
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for processing information, and about de-
signs for architectures, is only a tiny frag-
ment of what evolution produced over
billions of years. Limitations of current
materials science and mechatronic engineer-
ing capabilities may also have deep implica-
tions regarding still unknown requirements
for varieties of information processing un-
derlying animal intelligence, for example
sharing of functions between hardware and
software as described by Berthoz (2000).

3. Failing to See Problems:
Ontological Blindness

Funding and institutional problems, and in-
adequacies of our concepts and tools have
been listed as brakes on progress. A deeper
hindrance is the difficulty of identifying
what needs to be explained or modeled,
often arising from “ontological blindness”
discussed by Sloman and Chrisley (2005).
Any information-user must use an ontol-
ogy, which to a first approximation is the
set of types of entities the user can refer to.
Gaps or spurious types in the ontology can
cause researchers to mis-identify what or-
ganisms are doing. So they fail to identify the
various subfunctions that need to be mod-
eled. Section 4 illustrates this in connection
with modeling human vision, although the
points are also applicable to other animals
and other aspects of cognition.

Another common mis-identification
concerns varieties of learning. It is of-
ten assumed that humans, and therefore
human-like robots, necessarily start with
very limited innate knowledge about the
environment and have to use very general,
knowledge-free forms of learning. This
assumption ignores the fact that most
organisms start with almost all the knowl-
edge and competence they will require,
because of their need to be independent
from birth or hatching (like deer that walk
to their mother’s nipple and run with the
herd very soon after birth). If evolution
can produce so much information in the
genome, for some species, why does it
apparently produce helpless and ignorant

infants in altricial species, for example
humans and hunting mammals. Chappell
and Sloman (2007) propose that such
animals start with deep meta-competences
using generic information about the envi-
ronment, including information about how
to use the body to explore and learn about
the details of a 3-D environment. This is
an old idea as regards language learning
(Chomsky, 1965), but language learning
could be just a special case of the use of
partly innately specified meta-competences
that generate both new competences and
new meta-competences through active
investigation of the environment.

Other misrepresentations of the require-
ments for human-like systems include the
assumption that intelligent agents must use a
sense-think-act cycle. For example, the web
page of a leading AI department states: “An
intelligent agent should also learn to im-
prove its performance over time, as it re-
peatedly performs this sense-think-act cy-
cle”, which ignores the fact that in humans
and most other animals many kinds of infor-
mation processing proceed in parallel, for
example simultaneously walking, planning
where to walk, enjoying the view and listen-
ing to what a companion is saying, concur-
rently with many bodily control functions.
Different misrepresentations of require-
ments come from paying close attention to
implementation details and concluding that
all intelligence is to be explained in terms
of the dynamics of sensori-motor control
loops, ignoring the fact that many humans
can listen to and understand a story, or look
at and appreciate a complex scene with-
out producing any relevant motor responses,
and some can even prove theorems in their
heads about transfinite ordinals, or plan a
musical composition without producing any
sounds.

4. What Are the Functions of Vision?

Marr (1982) suggested that the function of
vision was to provide information about geo-
metrical and physical properties of the envi-
ronment, for example shape, size, location,
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motion, and color of objects. Many readers
thought this obviously correct. However, in
1979, Gibson had pointed out that there
are far more subtle functions of perception,
namely providing information about “affor-
dances” that are abstract properties of the
environment related to possible actions and
goals of the perceiver. This was generalized
in Sloman (1982, 1989) by drawing atten-
tion to human abilities to learn to see states
of mind and to read writing, music, and var-
ious other formal notations.

On the first view, vision is the same for a
lion and a lamb surveying the same terrain,
whereas the biological requirements and ac-
tion capabilities are so different in hunting
and grazing mammals that they need to per-
ceive very different affordances, for which
they have different genetically determined
or learned visual mechanisms and capabili-
ties. Requirements for catching and eating
meat are very different from requirements
for grazing: Vegetable matter does not at-
tempt to escape, and grass does not require
peeling or breaking open. Similar differences
exist between birds that build nests from
twigs and those that build nests using only
mud, or between birds that fly and birds that
do not, birds that dive for fish and birds that
catch insects, and so on, suggesting that what
is seen by two different animals looking at a
scene can differ as much as what is seen by
people who know different languages look-
ing a page showing texts written in different
languages.

4.1. The Importance of Mobile Hands

More subtle differences in requirements for
vision depend on having hands that can
move and manipulate objects. Animals that
can manipulate things only using a mouth
or beak will have very strong correlations
between grasping actions and patterns of op-
tical flow, because of the rigid link between
eyes and mouth or beak, whereas animals
with mobile hands or claws must be able
to represent actions that move things with-
out changing the viewpoint. Independently
movable hands can perform essentially sim-
ilar grasping actions producing vastly differ-

ent visual feedback, so using only sensori-
motor relationships will make it difficult to
represent what is common to many ways of
grasping, namely:

Two (or more) surfaces facing each other
move together in 3-D space until they are
in contact with opposite sides of some other
object that can then be lifted, rotated, or
moved horizontally.

An “exosomatic” ontology, referring to
changing relationships in the external envi-
ronment, is required for this, rather than a
“somatic” ontology, referring only to chang-
ing sensory and motor signals. An exoso-
matic ontology makes it much simpler to
transfer facts learned about grasping in one
situation to grasping in another.

If grasping is represented amodally in
terms of changing relations between 3-D
surfaces, with changing causal conse-
quences, then how the process is repre-
sented is independent of how it is sensed or
what motor signals are required to produce
it. Not representing the process in terms
of “sensori-motor contingencies” has use-
ful consequences. One is that information
about the occurrence of such processes can
be stored compactly if what needs to be re-
membered is that grasping defined as a pro-
cess in 3-D space occurred, not how it was
done or what sensor or motor signals were
produced during the process. That allows
generalisations to be learned at a high-level
of abstraction, applicable to wide ranges of
cases, such as grasping with the left hand,
with the right hand, with both hands, or
with teeth. Such amodal generalisations in-
clude such facts as: (a) a tightly grasped ob-
ject undergoes the same translation and ro-
tation as the two grasping surfaces, (b) the
grasped object may fall if the pressure ap-
plied by the two surfaces is reduced, (c)
when a grasped object is released it accel-
erates downwards, and (d) grasping changes
the shape of non-rigid objects.

An amodal ontology allows what an in-
dividual learns by grasping to be trans-
ferred to grasping done by another individ-
ual, and vice versa. So actions done by others
can be predicted, failures understood, and
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preventive measures taken (e.g., when a
predator threatens, or a child is about to
fail to reach a goal). Moreover, processes
that are observed but produced by nobody
(e.g., an apple falling) can suggest goals to
be achieved. So-called mirror neurons might
best be construed in terms of use of an on-
tology that abstracts from sensori-motor de-
tails. Perhaps “abstraction neurons” would
have been a better label. Actor-independent
representations of certain actions can allow
parents to perceive “vicarious affordances”
for offspring or predators, enabling them
to use causal reasoning to help or protect
offspring and to obstruct or avoid preda-
tors. This makes possible the “scaffolding”
of learners by parents and teachers discussed
by developmental psychologists. As noted
in Chappell and Sloman (2007), there are
hunting birds and mammals that give their
young practice in dealing with prey, in a
manner that suggests that they understand
what their offspring need to do. Grasping
is merely an example: Use of landmarks,
observed in ants and wasps, may be an-
other. Use of amodal, exosomatic represen-
tations of processes involved in actions is
not a feature of all animal vision: but it
is certainly a human competence. The ex-
tent to which other animals have it requires
research.

All this imposes strong constraints on
models of visual cognition that aim for
completeness. Other constraints include the
need to explain how visual servoing works,
where precise, continuous motion is con-
stantly monitored and modulated in sensori-
motor feedback and feedforward loops.

This distinction between the use of vi-
sion in “online” control of fine details of
actions and its use in acquiring more ab-
stract reusable information applicable to
many different situations, using dorsal and
ventral pathways respectively, has, in recent
years, been wrongly described as a difference
in perception of “what” versus “where” or
“what” versus “how”. The mistake was cor-
rected in Goodale and Milner (1992), albeit
using a misleading contrast between percep-
tion and action, as opposed to two percep-
tual (visual) functions.

An “objective” (exosomatic, amodal) on-
tology can also be used to represent a hand
moving to grasp an object that is not in view
because the eyes have moved to get a view
of something else, or the grasped object is
obscured by something. Absence of sensori-
motor details also allows representations to
be useful in planning or predicting future
actions where what motor and sensory sig-
nals will be involved can be left unspecified,
because that can vary according to detailed
circumstances at the time of action. Without
use of amodal abstractions, the combinato-
rial complexity of the process of searching
for a plan or prediction or explanation would
be far greater.

Grasping is, of course, just one example.
All this still leaves unexplained how a vi-
sual system manages to derive amodal de-
scriptions of 3-D structures and processes
from sensory input, but research on that
is in progress in AI, psychology, and neu-
roscience (e.g., Hayworth & Biederman,
2006).

Ontological blindness to these possibili-
ties leads some researchers to suppose that
vision is merely (or mostly) object recogni-
tion, or that vision uses only image-based
or more generally sensori-motor represen-
tations. There is now a vast amount of re-
search on models of sensori-motor learning,
using architectures that cannot do anything
else (e.g., Lungarella & Sporns, 2006). Such
models cannot explain most of the uses of
vision.

4.2. Seeing Processes, Affordances,
and Empty Spaces

Most vision researchers (including this au-
thor for many years) have concentrated on
perception of static scenes, blind to the fact
that perception occurs in an environment
that is in motion much of the time, with
constantly changing viewpoints as animals
move. So a major function of a vision is
to provide information about which pro-
cesses are occurring, not just about struc-
tures and relationships. In that case, viewing
static scenes is a special case of perceiving
processes in which nothing much happens.
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So perhaps the primary form of repre-
sentation for visual information should be
representations of processes extended in
time and space, whereas many researchers
(an exception being Grush, 2004), assume
that vision produces information about
objects, properties, and relationships. Of
course, that is part of what needs to be ex-
plained, but only part. If vision uses repre-
sentations of processes including affordances
concerned with what can and cannot happen
or be done the representations must be rich
in conditional information about processes.

One test for whether a vision system per-
ceives affordances is how it sees empty 3-D
or 2-D spaces. If all the functions of a vi-
sual system are concerned with perception
of objects, then empty space cannot be seen,
whereas humans can see an empty space
as full of potential for various kinds of oc-
currences, depending on where the space is,
how big it is, how close we are to it, what
other things are in the vicinity, and what our
current capabilities and concerns are. A bird
holding a twig to be added to its partially
built nest needs to see places where that twig
would be useful, and a route by which it can
be inserted. Someone like Picasso can see
potential in a blank surface that most people
cannot. Harold Cohen’s AARON program,
described in Boden (1990) and accessible at
http://www.kurzweilcyberart.com, also has
some grasp of 2-D affordances and how they
change as a painting grows. A mathemati-
cian wondering how to calculate the area of
a circle may see the potential for inscrib-
ing and circumscribing an unending succes-
sion of regular polygons with ever-increasing
numbers of sides just inside and just outside
the circle – one of many cases of mathemat-
ical use of the visual ability to represent pro-
cesses. Other cases can be found in Sloman
(1978) and Anderson, Meyer, and Olivier
(2001).

So, vision researchers who focus only the
task of extracting from the optic array infor-
mation about things that exist in the scene,
exhibit ontological blindness insofar as they
ignore the role of vision in seeing what does
not yet exist but could exist, that is, the posi-
tive and negative affordances. Many also ig-

nore the importance of seeing ongoing pro-
cesses in which both structures and affor-
dances are changed.

4.3. Seeing Without Recognizing Objects

A vast amount of vision research is con-
cerned with recognition. But that fails to
address seeing without recognizing objects,
which involves acquiring information about
spatial structure, relationships, affordances,
and processes. Perception of structure in-
volves recognition, not of whole objects,
but of image and scene fragments, such as
occluding edges, bumps, dents in surfaces,
partially visible edges, changing curvature,
and specularities. Perception of spatial struc-
tures and relations can be the basis of recog-
nition, and may sometimes be facilitated
by recognition. But systems designed only
for recognition of “whole” objects must fail
when confronted with new things! Nearly
thirty years ago, Barrow and Tenenbaum
(1978) drew attention to aspects of per-
ception of shape properties and spatial re-
lations of 3-D surface fragments that seem
to be independent of object recognition, for
example seeing the shape of the portion
of the surface where a cup’s handle meets
the bowl, or seeing how the 3-D orienta-
tion of parts of the rim of a cup or jug
vary around the rim, including the pour-
ing lip if there is one. Range-finders have
been used to obtain 3-D structure, but usu-
ally the aim of such work is to produce only
the kind of mathematically precise 3-D in-
formation that suffices for generating im-
ages of the scene from multiple viewpoints,
rather than the kind of “qualitative” informa-
tion about surface shape and structure that
supports perception of affordances. Várady,
Martin, and Cox (1997) provide a useful
survey.

Many animals appear to be able to see and
make use of surface structure and shapes of
fragments of objects they do not necessarily
recognize (e.g., consider a carnivore’s task
in tearing open and eating its prey). Like-
wise, when Jackie Chappell presented para-
keets with cardboard “polyflaps” (Sloman,
2006a), they played with, manipulated, and
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chewed them, despite never having seen
them previously.

Infants spend much time developing
competences related to various aspects of
shape perception, including competences
such as pushing, pulling, picking up, putting
down, throwing, inserting, stacking, bend-
ing, twisting, breaking, assembling, disas-
sembling, opening, and shutting, much of
which precedes learning to talk, and often
does not require the whole objects to be
classified or recognized.

A good theory might explain ways in
which brain damage can differentially affect
abilities to see various kinds of surface fea-
tures and affordances without removing the
ability to see, as illustrated by prosopagnosia,
an affliction in which the ability to recognize
faces is lost.

In summary, there are deep and general
forms of perception and learning that we
need to understand in order to understand
important aspects of vision on which many
other competences build, in humans and
other animals, including spatial and causal
reasoning capabilities.

4.4. Many Developmental Routes to
Related Cognitive Competences

We should not assume that human visual
competence (or any cognitive competence)
depends on having a specific bodily form,
such as having hands that can manipulate
things. Babies born without arms, as oc-
curred in the thalidomide tragedy in the
1960s, can grow up into intelligent adults.
This may depend on a powerful mixture
of genetic endowments shared with normal
humans, including a kind of vicarious learn-
ing capability used when watching others
do things we cannot do ourselves, using an
exosomatic ontology, as discussed in Sec-
tion 4.1. Perhaps a shared evolutionary her-
itage provides the ability to develop a core
set of amodal forms of representation that
enables severely disabled children to learn
about structures, processes, and affordances
through watching others do things they can-
not do. This ability to learn about, perceive,

and make use of vicarious affordances un-
dermines some claims about cognition as in-
timately tied up with embodiment. It is ar-
guable that having a human mind depends
more on having had embodied ancestors
than on being embodied.

4.5. The Role of Perception
in Ontology Extension

At any particular time, an animal or child
will have developed an ontology that is used
in percepts, predictions, and plans, all of
which represent entities, relationships, pro-
cesses, and affordances in the environment.
But things can go wrong: plans can fail and
predictions can turn out false. The infant
who takes a cut-out picture of an animal out
of its recess and then later tries to replace
it can fail, being surprised when it doesn’t
fit the recess. Such failures could trigger
“debugging” processes that sometimes lead
the child to extend the high-level ontol-
ogy, possibly using low-level sensory fea-
tures that were previously disregarded. For
example the child may somehow extend his
or her ontology to include the concept of
the boundary of a flat object and the con-
cept of two boundaries being aligned. After
that change, the failure to get the puzzle
piece into its recess may be overcome by
performing additional actions to align the
two boundaries. For this, the ontology will
need to include processes like sliding, rotat-
ing, and coming into alignment.

Some toys are cleverly designed to re-
quire a less complex ontology. For stack-
ing cups that are symmetrical, boundaries
need not be aligned during insertion. Mak-
ing cups conical allows small bases to be
inserted into larger openings, reducing the
need for precision in placing. Careful obser-
vation of actions of infants and toddlers at
various stages of development reveals sub-
tle ways in which they encounter difficul-
ties that seem to be based on not yet hav-
ing a rich enough ontology that they later
extend – perhaps driven by detecting dif-
ferences between actions previously seen as
similar, or by modifying preconditions or
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consequences of actions to include re-
lationships previously not representable.
An eleven-month-old child is described in
Sloman, Chappell, and CoSyTeam (2006)
who was able to feed himself yogurt from a
tub using a spoon to transfer the yogurt to
his mouth, but failed to transfer yogurt to
his leg because he merely placed the bowl
of the spoon on his leg, apparently not re-
alizing that it needed to be rotated. There
are probably hundreds, or even thousands,
of such processes of self-debugging leading
to ontology extension in the first few years of
a human child. Those extensions depend on
types of objects (including types of food and
clothing) in the environment, whose proper-
ties and behaviors can vary enormously from
one part of the world to another and some-
times change as a result of cultural devel-
opment. For example, many children born
recently have acquired an ontology appro-
priate for interacting with a computer using
a mouse, which none of their ancestors en-
countered. Some of the transitions in which
new competences are acquired were stud-
ied by Piaget many years ago (1954), but
the time may be ripe for renewed systematic
study facilitated by the ability to use video
recordings so that many different people
can examine the same episode. Researchers
with expertise in designing robots should
have richer ontologies with which to per-
ceive and think about what infants do, or fail
to do.

5. Representational Capabilities

In order to explain how a child extends an
ontology we need to know what representa-
tions are used. What sort of representation
does a child or chimp have of a three dimen-
sional curved surface such as various parts
of a spoon? How are the causal capabilities
represented? There are many mathematical
ways of representing shapes, for instance us-
ing differential equations, or using very large
vectors of point features. But those repre-
sentations may not be adequate for cognitive
purposes if they are too difficult to derive

from the available sensory information (e.g.,
because of noise, low resolution of the parts
of the visual field, or lack of suitable algo-
rithms). The mathematical representations
may also be unsuited to the derivation of
affordances, and hard to use in planning or
in controlling actions. Explaining cognitive
competences in dealing with a 3-D environ-
ment may require new forms of representa-
tion that capture spatial structure in a man-
ner that abstracts from the precise details
that would be represented in differential
equations and collections of point features,
and are better tailored to facilitating action
selection and control. It is likely that evolu-
tion “discovered” many more forms of rep-
resentation and corresponding mechanisms
than human mathematicians, scientists, and
engineers have so far thought of.

Besides the difficulty of specifying the
forms of representation used, there is the
problem of explaining how they are imple-
mented in brain mechanisms. My impres-
sion is that despite vast advances in detailed
tracing of neuronal connections, the study
of chemical brain process, and the recent
development of more and more fine-grained
brain imaging devices, there is still very little
understanding of how the mechanisms so far
discovered are capable of supporting most of
the cognitive functions we believe humans
and other animals are capable of. For ex-
ample, standard neural models assume that
all structures and processes can be repre-
sented in the contents of large vectors of
values of sensory and motor signals, possibly
at different levels of abstraction. We seem
to need different sorts of computations, in-
volving different information structures, in
order to make progress in modeling cogni-
tive processes. Some of the requirements are
identified in Trehub (1991) and some hypo-
thetical neural mechanisms proposed. But it
is not clear whether they can meet all the
requirements.

Research on these topics is extremely dif-
ficult. Perhaps that explains why the tasks
identified by Barrow and Tenenbaum (men-
tioned in Section 4.3) have largely been for-
gotten, while most vision researchers work
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on other tasks that do not involve detailed
understanding of spatial structure and af-
fordances. Great progress has been made in
developing mechanisms with narrow com-
petences, like object recognition or classi-
fication, object tracking, trajectory predic-
tion, pushing or grasping simple objects
(e.g., Saxena, Driemeyer, Kearns, Osondu,
& Ng, 2006) and path traversal – all of which
are worthy research topics, of course, but
form only a relatively small subset of func-
tions of vision. Other functions, not dis-
cussed here, include the role of vision in fine-
grained control of actions (visual servoing),
posture-control, perceiving varieties of mo-
tion, developing many kinds of athletic ca-
pabilities using vision, parking a car or other
vehicle, perceiving causal relationships, un-
derstanding the operation of a machine, per-
ceiving social interactions, aesthetic appre-
ciation of natural and artificial scenes and
objects, communication, learning to read
text first laboriously then later fluently,
sight-reading music, and many more.

Some distinct visual capabilities can be
exercised in parallel, for example when
walking on difficult terrain while enjoying
the view, or judging how to hit a moving
tennis ball while seeing what the opponent
is doing. This probably depends on the con-
current operation of mechanisms that per-
form fast and fluent well-learned tasks re-
actively and mechanisms that have more
abstract and flexible deliberative capabilities
(Sloman, 2006b).

It might be fruitful to set up a multi-
disciplinary project to expand our ontology
for thinking about vision, including a com-
prehensive taxonomy of functions of vision,
along with requirements for mechanisms,
forms of representation, types of learning,
and architectures to support such functions,
especially under the constraint of having
only one or two eyes that have to be used to
serve multiple concurrently active processes
that perform different tasks while sharing
lower-level resources. Similar things could
be done for other major cognitive functions.
Such projects will benefit from the scenario-
driven research described in Section 7.

5.1. Is Language for Communication?

Similar kinds of ontological blindness can
afflict students of language. A common as-
sumption is that the sole function of lan-
guage is communication: meanings are as-
sumed to exist and language is used to
convey them. But many are blind to the
deeper problem of how it is possible for a
person, animal or machine to have mean-
ings to communicate. Thoughts, percepts,
memories, suppositions, desires, puzzles,
and intentions all have semantic content,
and can therefore exist only where there is
something that encodes or expresses their
content.

Many animals clearly perceive things,
want things, try to do things, and learn
things, despite not having human language
capabilities. Similarly, very young children
have intentions, desires, information gained
from the environment, and things they
want to communicate before they have
learned how to communicate in language
(cf. Halliday, 1975). They can be very cre-
ative: before having learned to say “Look
here”, a child may move an adult’s head to
face something requiring attention.

Moreover, other animals can be attentive,
afraid, puzzled, surprised, or repeatedly try-
ing to do something, all of which involve
states with semantic content. A dog that
brings a stick to be thrown for it to catch
need not have in its head a translation of the
English sentence “Please throw this so that I
can catch it”, for it may not use the same on-
tology as we do nor the same mode of com-
position of meanings, nor the same varieties
of speech-act. All we can be sure of is that
they must have some internal states, pro-
cesses, or structures that express or encode
semantic content, and that allow the specific
content to have consequences for internal
and external behavior, even if the seman-
tic content is not in a propositional form, or
expressible in a language like English.

Many scientists now use “language” in a
general sense referring to anything that ex-
presses semantic content, whether for one-
self or another agent, especially if it allows
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both structural variability and compositional
semantics, providing the ability to cope with
novel information items of varying com-
plexity (Sloman, 2006b). Sloman and Chap-
pell (2007) use “g[generalised]-language” to
refer to such forms of representation, in-
cluding propositional and analogical repre-
sentations (Sloman, 1971). So the previ-
ous paragraph implies that many animals
and prelinguistic children use g-languages.
G-languages capable of expressing mean-
ings with complex structures must there-
fore have evolved before communicative
languages (Sloman, 1979), for use within in-
dividual animals, rather than for communi-
cation between animals. From this viewpoint,
the functions of language include perceiv-
ing, thinking, wanting, intending, reasoning,
planning, learning, deciding, and not just
communication. (Unlike Fodor, 1975, we
are not claiming that individuals use a fixed
innate language into which they translate ev-
erything else.)

This leaves open what those inner lan-
guages are like. Despite the claims of Brooks
(1991), intelligent systems must use repre-
sentations, at least in the widely-used sense
of “representation” that refers to something
that provides, stores, or conveys usable in-
formation for some user. The requirements
for g-languages are met by the forms of rep-
resentation used in computational work on
high-level vision, reasoning, planning, learn-
ing, problem solving, and are also met by
external human languages; including both
structural variability and compositional se-
mantics, allowing fragments of information
to be combined in different ways to form
more complex information items that can
then be combined with further informa-
tion. Such representations can be used to
express facts, hypotheses, conjectures, pre-
dictions, explanations, questions, problems,
goals, and plans.

Not all mechanisms and architectures
are capable of meeting the requirements:
structural variability, for example, rules out
forms of meaning that are expressed only in
fixed size vectors with atomic components,
such as are often used as inputs and out-
puts of neural nets. Although no human can

actually cope with unbounded complexity,
we can argue, echoing Chomsky’s (1965)
distinction between competence and perfor-
mance, that humans have virtual machines
with unbounded complexity but their im-
plementations in physical machines impose
limits. This is also true of most programming
formalisms (Scheutz, 2002; Sloman, 2002).

We need more investigation of both the
variety of requirements for forms of repre-
sentation and the variety of possible repre-
sentations, instead of assuming that known
forms will suffice. We also need to stop as-
suming that human languages and linguis-
tic meanings are sui generis and ask whether
they are outgrowths of rich forms of syntac-
tic and semantic competence provided by
internal g-languages in other animals and in
prelinguistic children. This is not to deny
that external languages (including pictorial
and other forms of communication) allowed
rapid acceleration of both learning in in-
dividuals and cultural evolution that are
unique to humans. In particular, individuals
who have learned to use a human language
for external communication are able to en-
rich the semantic contents expressed inter-
nally for their own purposes, for example
in categorizing their thoughts as confused,
their desires as selfish, or their knowledge as
incomplete. (Cultural learning is discussed
further in Section 6.2.)

5.2. Varieties of Complexity: Scaling Up
and Scaling Out

Another common kind of ontological blind-
ness involves varieties of complexity. Early
AI researchers discovered that combinato-
rial explosions threatened progress. If the
solution to a problem involves n actions and
for every action there are k options, then
there are kn possible action sequences, a
number that grows exponentially with n.
Because this quickly makes problems in-
tractable, a common demand is that mod-
els should “scale up”, namely, continue to
perform with reasonable space and time re-
quirements as the complexity of the task
increases. But another kind of complexity
requirement often goes unnoticed, which
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requires what we call “scaling out”. Vision
and language illustrate this: Particular ca-
pabilities often depend on and contribute
to other capabilities with which they can
be combined. We have seen how impover-
ished theories of vision result from missing
the role of vision in satisfying requirements
for action and thought. Similarly, work on
language that focuses entirely on linguistic
phenomena, such as phonemics, morphol-
ogy, syntax, and semantics, may fail to ad-
dress such problems as:

• how language is used for non-
communicative purposes (e.g., thinking,
reasoning, having goals, desires, inten-
tions, and puzzles);

• how it relates to and builds on capabili-
ties that exist in young children or other
animals that cannot use language;

• how it relates to forms of representations
and mechanisms that evolved prior to hu-
man language; and

• how the process of learning a language
relates to the evolutionary and develop-
mental precursors of language.

A requirement for a model of how language
or vision works, how plans are made and
executed, how mathematical or other rea-
soning works, and how learning works, is
that the proposed mechanisms should be able
to form a usefully functioning part of an inte-
grated complete agent combining many other
capabilities in different ways at different times.

That “scaling out” requirement looks ob-
vious once stated, but its implications for the
various components of the system are not
obvious, and are often ignored. The kinds
of combination required can vary. In sim-
ple models, submodules are given tasks or
other input, and run for a while (as “black
boxes”), then produce results that can be
used by other modules, like Fodor’s (1983)
modules. Many proposed architectures as-
sume that sort of structure: they are rep-
resented by diagrams with arrows showing
unidirectional flow of information between
modules. As mentioned in Section 3, some
designers assume that there is a sense-think-
act cycle, in which a chunk of input comes in

via the senses, is processed by sending pack-
ets of derived information through various
modules (some of which may be changed
as a result) until some external behavior is
produced, and then the cycle repeats, as in
the TOTE (Test-Operate-Test-Exit) units
of Miller, Galanter, and Pribram (1960), and
many more recent designs.

This is clearly wrong. A deeper integra-
tion is required: different competences can
interact while they are running in parallel
and before specific tasks are complete. For
humans, many other animals, and robots
with complex bodies and multiple sensors
acting in a fast changing environment, the
sense-think-act model fails to account for the
variety of extended, concurrent, interacting
processes that are capable of mutual sup-
port and mutual modulation. (Cf. chapter 6
in Sloman, 1978.)

For instance, while looking for an object,
if you hear someone say “Further to the left”,
what you hear can interact with how you see
and help you recognize what you were look-
ing for. Someone looking at the well-known
puzzle picture of a dappled dalmation may
become able to see the animal on hearing
“It’s a dog”. Likewise, while you are trying
to work out what someone means by saying
“Put the bigger box on the shelf with more
room, after making space for it” you may no-
tice three shelves one of which is less clut-
tered than the others, and work out which
shelf is being referred to and what might be
meant by “making space for it” in the light of
the perceived size of the bigger box. Some
of these interactions were demonstrated sev-
eral decades ago (Winograd, 1972). Oth-
ers are explored in the work of Grice (e.g.,
Grice, 1975). The interactions need not be
produced by first fully analyzing the sen-
tence, deciding it is ambiguous, then setting
up and acting on a goal to find more infor-
mation to disambiguate it. What you see can
help the interpretation of a heard sentence
even before it is complete.

There are well-documented examples of
close interaction between vision and spo-
ken language comprehension, including the
“McGurk effect” (McGurk & MacDonald,
1976) in which the same recorded utterance
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is heard to include different words when
played with videos of speakers making dif-
ferent mouth movements. Interactions can
also occur between active and currently sus-
pended processes: Something you see or
think of while doing one task may give
you an idea about how to finish another
task on which you are stuck, a common
phenomenon in scientific and mathematical
discovery.

That sort of interaction can even cause
the current task to be dropped, with atten-
tion switching to a much more important,
previously suspended task. “Anytime” plan-
ners, which can take account of time pres-
sures and deliver partial results on request,
are another well-studied example. There is
growing interest in “incremental” processing
in natural language, which may help to sup-
port such deep interactions between linguis-
tic and non-linguistic capabilities. A work-
shop held in 2004 on incremental parsing
has this Web site: http://homepages.inf.ed.
ac.uk/keller/acl04 workshop/.

Yet another example is combining ex-
pert chess competence with knowledge of
capabilities of a young opponent to produce
chess moves and verbal comments suited to
helping the youngster learn. Much teaching
requires that sort of mixing of competences:
another example of the ability to scale out.

The ability to “scale up” has received
far more attention from cognitive modelers,
who often try to design mechanisms that are
able to cope with increasingly complex in-
puts without being defeated by a combina-
torial explosion. But that is not a require-
ment for modeling human competence:
humans do not scale up!

5.3. Humans Scale Out, Not Up

There are many human capabilities that
are nowhere near being matched by cur-
rent machines, yet all of them seem to be
complexity-limited, a point related to what
Donald Michie (1991) called “the human
window”. Moreover, there are already many
specialized forms of competence where ma-
chines far outperform most, or all, hu-
mans. Such models scale up, but not out:

They have only very narrowly focused com-
petence. Suitably programmed computers
can do complex numerical calculations that
would defeat all or most humans, but that
does not enable those machines to explain
what a number is or why it is useful to
be able to do arithmetic. Chess programs,
like Deep Blue, that use brute force mecha-
nisms, can beat the vast majority of humans,
but cannot teach a child to play chess, help
a beginner think about his mistakes, modify
its play so as to encourage a weaker player
by losing sometimes, explain why it did not
capture a piece, explain what its strategy is,
or discuss the similarities and differences be-
tween playing chess and building something
out of meccano.

Is any artificial chess system capable of
being puzzled as to why its opponent did not
make an obviously strong move? What are
the requirements for being puzzled? Com-
pare being surprised. Some of the represen-
tational and architectural requirements for
such states are discussed in Sloman, Chris-
ley, and Scheutz (2005).

Occurrences of different competences in-
teracting are part of our everyday life, but
we may be blind to them when planning
our research. Solving the problems of deep
integration of cognitive systems with mul-
tiple functions may turn out to be much
more difficult than anyone anticipates. For
example, it is at least conceivable that some
powerful forms of information-processing
were discovered and used long ago by bi-
ological evolution that have not yet been
understood by human scientists and en-
gineers. Investigation of this issue is in-
cluded in one of the U.K. Computing Re-
search grand challenges on new forms of
computation, summarized at this Web site:
http://www.cs.york.ac.uk/nature/gc7/.

6. Are Humans Unique?

One of the curious facts about this ques-
tion is that even among scientists who are
supposed to be dispassionate seekers af-
ter knowledge there are both passionate
claims that humans are unique, for example,
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because of their use of language, their self-
consciousness, their ability to produce and
appreciate art, their ability to share goals, or
some other characteristics, and also equally
passionate claims (some of them from cham-
pions of animal rights) that the continuity
of evolution implies that we are not unique,
merely slightly different from other animals,
such as chimpanzees or foxes. It seems that
both kinds of passion come from an un-
scientific commitment, for example to re-
ligious (or “romantic”?) reasons for wanting
to think of humans as unique, or from a con-
cern for animal welfare that uses Darwinian
theory as a basis for claims that the similar-
ity of other animals to humans gives them
similar rights. The debate is misguided be-
cause the correct answer is obviously “Yes
and No”:

• Yes: Humans are unique because there
are things humans do that no other
(known) animals can do, such as prove
theorems about infinite structures, com-
pose poems, utter communications us-
ing subjunctive conditionals, send peo-
ple and machines to the moon and outer
space, or make tools to make tools to
make tools to make tools . . . to make
things we use for their own sake.

• No: Humans are not unique because
there are huge numbers of facts about
their bodies, their behavior, their needs,
their modes of reproduction and develop-
ment, and how they process information,
that are also facts about other animals.

This is a shallow response, however, because
there is so much we do not yet know about
how humans and other animals work, and
what the similarities and differences actually
are, and what the implications of those dif-
ferences are. We still understand relatively
little about how most animals work, partly
because we do not have clear and accu-
rate knowledge about what their capabili-
ties, especially their information-processing
capabilities, actually are, and partly because
many of the mechanisms and architectures
supporting such capabilities are still un-
known. Instead of wasting effort on spuri-

ous debates, we should try to deepen our
understanding of the facts.

If we had a deep theory of the variety
of types of information-processing architec-
tures in nature and what capabilities they
do and do not support, and if we knew
which animals have which sorts, then such
emotion-charged debates might give way to
reasoned analysis and collection of relevant
evidence to settle questions, or acknowledg-
ment that many questions use concepts that
are partly indeterminate (e.g., “cluster con-
cepts”) so that there are no answers. Similar
comments can be made about the question
whether a fetus is conscious or feels pain,
whether various kinds of animals suffer, etc.
Consequently the correct descriptions of fu-
ture machines will be equally problematic.

6.1. Altricial and Precocial Skills
in Animals and Robots

Many people are unaware of the great dif-
ferences between

(a) the vast majority of species that seem
to have their main competences deter-
mined genetically, for example grazing
mammals that can run with the herd
shortly after birth, and birds such as
chickens that can peck for food soon
after hatching, and

(b) the small subset of species that are
born helpless, physiologically under-
developed, and apparently cognitively
incompetent, yet end up as adults with
capabilities (e.g., nest-building in trees,
hunting other mammals, use of hands
to pick berries, and various kinds of tool
use) that appear to be far more cogni-
tively complex than those achieved by
the former group.

The former species are labelled “precocial”
species by biologists, and the latter “altri-
cial”. However, there is a spectrum of cases
with different mixtures of precocial skills
(genetically determined, preconfigured),
and altricial skills (“meta-configured” com-
petences generated by the individual and
the environment through play, exploration,
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and learning, using powerful meta-level
bootstrapping mechanisms). The nature/
nurture trade-offs between different
design options are not well under-
stood although a preliminary analysis
was offered in Sloman and Chappell
(2005) and refined in Chappell and
Sloman (2007) and Sloman and Chap-
pell (2007). That analysis suggests that
just as there is a spectrum of combinations
of preconfigured (precocial) and meta-
configured (altricial) skills in biological
organisms, so will there also be such a
spectrum in future robots, including robots
developed as models of human cognition.
Robots placed in environments where com-
plex and unpredictable changes can occur
over time will, like altricial animals, need
to be able to bootstrap meta-configured
competences their designers know nothing
about, even though they start with a large
collection of preconfigured skills, like
precocial species. Where most of the envi-
ronment is predictable in advance, a fully
precocial design may function well, but it
will not be a model of human, primate, or
corvid cognition.

Some altricial species, especially humans,
learn both very rapidly and in a wide range
of environments, to cope with those envi-
ronments. As a result, some young children
have competences none of their ancestors
had. In contrast, skills of precocial species
(e.g., deer, chickens) are shaped only in
minor ways by the environment in which
they live, and altered mainly by slow, labo-
rious training (e.g., circus training), unlike
the spontaneous and rapid learning through
play, in primates and some other species.
At present the mechanisms supporting the
latter learning are not well understood, and
there are no learning mechanisms or self-
constructing architectures under investiga-
tion that can account for this, although an
idea suggested over twenty years ago by
Oliver Selfridge is presented in Sloman and
Chappell (2005).

Philipona, O’Regan, and Nadal (2003)
present a type of learning-by-doing through
finding invariants in sensori-motor patterns.
This may explain some ontological exten-

sions, but does not account for the human-
like exosomatic, amodal ontology discussed
in Section 4. Another important process
may be selection of actions and percepts
as “interesting” (Colton, Bundy, & Walsh,
2000). This requires architectural support
for varieties of purely cognitive motivation
as opposed to motivation based on physical
and reproductive needs. We need to look
closely at a variety of phenomena found in
the animal world, including recent work on
animal tool-making and use (e.g., Chappell
& Kacelnik, 2002 and Chappell & Kacel-
nik, 2004). Related discussions and empiri-
cal data can be found in Cummins and Cum-
mins (2005), Csibra and Gergely (2006)
and Tomasello, Carpenter, Call, Behne, and
Moll (2005). Perhaps future work on altri-
cial robots will enable us to rewrite Piaget’s
(1954) theories.

6.2. Meta-semantic Competence

Another feature important in humans and
possibly some other animals is meta-
semantic competence: the ability not merely
to perceive, think about, or have inten-
tions involving physical things, such as rocks,
trees, routes, food, and the bodies of animals
(including one’s own), but also to have se-
mantic states that represent entities, states,
and processes that themselves have seman-
tic content, such as one’s own thoughts, in-
tentions, or planning strategies, or those of
others. The label “meta-management” for
an architectural layer with meta-semantic
competence applied to the system itself was
coined by Luc Beaudoin in his PhD thesis
(1994). (The word “reflective” is sometimes
used, but also often has other meanings –
one of many examples of confused terminol-
ogy in the study of architectures.) Closely re-
lated ideas have been developed by Minsky
(2006) and Singh (2005), focusing mainly
on attempts to model human competence.
Sloman and Chrisley (2003) relate this to
the concept of having qualia.

It seems that humans are not alone
in having meta-semantic competence, but
the richness of their meta-semantic com-
petence, whether directed inwardly or out-
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wardly is unmatched. We still do not know
what sorts of forms of representation, mech-
anisms, and architectures support this, or
how far they are genetically determined
and how far a product of the environment,
based, for example, on cultural learning.
Late development does not rule out genetic
determination, as should be clear from de-
velopments in puberty.

There is much discussion in many disci-
plines (e.g., philosophy, sociology, anthro-
pology, psychology, ethology) of the ability
of one individual to think about other in-
telligent individuals, to communicate with
them, and to engage with them in various
kinds of shared activities. There are deep
problems concerned with referential opacity
that need to be solved by such theories. For
instance, normal modes of reasoning break
down because things referred to in beliefs,
desires, intentions, etc. need not exist. You
cannot kick or eat something that does not
exist, but you can think about it, talk about
it or run away from it. Moreover, a stone
or tree cannot be correct or mistaken – it
just exists – but a thought or belief can
be true or false. Developmental psycholo-
gists study growth of understanding of these
matters in children, but do not explain the
mechanisms. Perhaps roboticists will one
day. Multidisciplinary research is needed to
investigate when meta-semantic capabilities
evolved, why they evolved, how much they
depend on learning as opposed to being pre-
configured or meta-configured, how they are
influenced by a culture, and what their be-
havioral consequences are. There are very
few discussions of architectural and repre-
sentational requirements for an organism
or machine to represent, refer to, or rea-
son about, semantic contents. Exceptions in-
clude McCarthy (1995) and Minsky (2006).
Further work is needed for progress on inte-
grated cognitive systems that scale out.

7. Using Detailed Scenarios
to Sharpen Vision

One way to reduce ontological blindness to
some of the functions of natural cognition, is

to formulate design goals in terms of very de-
tailed scenarios, an idea being taken up in the
euCognition network’s Research Roadmap
project. If scenarios are described in minute
detail, for example, using imaginary “film-
scripts” for future demonstrations of human-
like robots, then close attention to individual
steps in the scenario can generate questions
of the form: “How could it do that?” that
might not be noticed if a competence is de-
scribed at too general a level. Moreover, we
must not focus only on scenarios involving
useful “adult” robots. A three-year-old child
who is well able to hold a pencil and make
spirals and other things on a sheet of paper
may be unable to copy a square drawn on
the paper despite being able to trace a square
and to join up dots forming the corners of
a square. This could inspire a scenario in
which a robot learns to perceive and produce
pictures of various sorts on a blank sheet. By
trying to design a robot that starts with the
abilities and limitations of the three-year-
old, and later extends its abilities, we may
hope to gain new insights into hidden com-
plexities in the original copying task. (Inci-
dentally, this is one of many examples where
the core issues could be studied using a sim-
ulated robot: the cognitive development is
not dependent on physical embodiment.)

7.1. Sample Competences to be Modeled

As mentioned in Section 4.5, a young child
may be able to lift cut-out pictures of vari-
ous animals (e.g., a cat, a cow, an elephant)
from a sheet of plywood, but be unable to
replace them in their recesses until concepts
like “boundary” and “alignment” have been
added to his or her ontology. We can extend
the example by analyzing a sequence of in-
termediate competences, each of which can
be achieved without going on to the next
step:

• being able to lift a picture from its recess
(using its attached knob),

• being able to put down a picture,
• being able lift a picture from its recess

and put it somewhere else,
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• being able to lift a picture from the table
and put it on the plywood sheet,

• being able to put the picture down in the
general location of its recess,

• being able to see that the picture is not
yet in its recess,

• being able to randomly move and rotate
the picture until the picture drops into its
recess,

• seeing that the explanation of the pic-
ture’s not going into its recess is that its
boundary is not aligned with the bound-
ary of the recess,

• being able to use the perceived mismatch
between the boundaries, to slide and ro-
tate the picture till it drops into the re-
cess,

• being able to say which picture should go
into which recess,

• being able to explain why the non-aligned
picture will not fit into its recess, and

• being able to help a younger child under-
stand how to get the pictures back into
their recesses.

This partially ordered collection of compe-
tences leaves out much of the fine detail
in the progression, but indicates possible
stages about which we can ask: What mech-
anisms, forms of representation, algorithms,
or architectures. can account for this compe-
tence? What needs to be added to the child’s
ontology at each stage to enable competence
to improve (e.g., boundary of a shape, align-
ment and misalignment of two boundaries)?
What mechanisms can account for the de-
velopment of the competence from precur-
sor competences? What mechanisms can en-
able successor competences to develop from
this competence? What sort of architecture
can combine all these competences and the
required forms of representation?

We should not assume that there is some
uniform learning mechanism that is involved
at all stages. Nor should we assume that all
required forms of learning are present from
the start: Some kinds of learning may them-
selves be learned. We need to distinguish
kinds of meta-competence and ask which
are learned, and how they are learned. The

last example, the ability to help a younger
child, has many precursor competences not
in the list, that would need to be unpacked as
part of a detailed analysis, including meta-
semantic competences, such as being able
to see and think about another individual as
having goals, as perceiving objects, as per-
forming intentional actions, as making mis-
takes, or as not knowing something.

7.2. Fine-Grained Scenarios
are Important

The need for “fine grain” in scenario spec-
ifications is not always appreciated. Merely
specifying that a robot will help infirm hu-
mans in their own homes does not gener-
ate as many questions as specifying that the
robot will be able to see wine glasses on a
table after a meal and put the used ones into
a dishwasher without breaking them. How
will it tell which have been used? Compare
the differences between red and white wine.
Will it also be able to do that for coffee cups?
How will it control its movements in picking
up the glasses? What difference does the de-
sign of its hand make? For example, does the
task require force feedback? Will it pick up
only one thing at a time or more than one in
the same hand? How will it avoid bumping a
glass against other objects in a partly loaded
dishwasher? Under what conditions will it
make a mistake and break a glass, and why?
Can it improve its competence by practice,
and if so, how will that happen, and what
sorts of improvement will occur? Will it be
able to modify its behavior appropriately if
the lights are dimmed, or if its vision be-
comes blurred through camera damage, or
if part of its hand is not functioning? Will
it be able to explain why it picked up only
two glasses at a time and not more? Can it
explain how it would have changed its be-
havior if the glasses had been twice as big,
or if they had had wine left in them?

Each question leads to bifurcations in the
possible scenarios to be addressed, depend-
ing on whether the answer is “yes” or “no”.
If this attention to detail seems tedious, we
need to remember that we are attempting to
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understand results of many millions of years
of evolution.

7.3. Behavior Specifications
Are Not Enough

Merely specifying a form of behavior to
be demonstrated does not specify research
goals, for, at one extreme, it may be that
the behavior is largely pre-programmed by
genetic mechanisms in an animal or by ex-
plicit programming in a robot (as in pre-
cocial species), or, at another extreme, it
may be a result of a process of learning and
development that is capable of producing
a wide variety of end results depending on
the environment in which it occurs (as in so-
called altricial species). The scenario-based
methodology avoids arguments over “best”
target scenarios or “best” designs, allowing
both extremes and also a variety of interme-
diate cases to be studied, so that we learn the
detailed requirements for various combina-
tions of competences, and their trade-offs.

Another way of generating task require-
ments is to bring people from different dis-
ciplines together to discuss one another’s
problems and results. A theory of ontologi-
cal and representational development crying
out for new research in computational mod-
els is presented in Karmiloff-Smith (1994).
Compare the analysis of learning to count,
in chapter 8 of Sloman (1978). Cognitive
robotics researchers should attend to discov-
eries of psychologists, students of animal be-
havior, neuroscientists, and clinicians who
identify failures of competence arising out
of various kinds of brain damage or deteri-
oration. Examples of “ritual behaviors” pro-
viding hints about the architecture are pre-
sented in Boyer and Lienard (2006).

8. Resolving Fruitless Disputes
by Methodological “Lifting”

Many choices have to be made when de-
signing explanatory models, including se-
lecting forms of representation, algorithms,
architectures, kinds of information to be
used, types of hardware, design and testing
procedures, programming languages, devel-
opment environments, and other software
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tools, and, in recent years, debating whether
robots can or cannot, should or should not
have emotions: See (Arbib & Fellous, 2005;
Simon, 1967; Sloman & Croucher, 1981).
Too often the disagreements become point-
less squabbles about which design option
is right or best. They are pointless if the
terms used are ill-defined, or if there is
no best option, only a collection of trade-
offs, as argued in the online presentation on
whether intelligence requires emotions at
this Web site: http://www.cs.bham.ac.uk/
research/cogaff/talks/#cafe04.

8.1. Analyze Before You Choose

Instead of continuing these debates, we can
shift the questions to a higher level, encour-
aging former opponents to become collab-
orators in a deeper project. Instead of de-
bating whether neural or symbolic forms of
representations should be used, we can in-
stead explore the space of possible forms
of representation, trying to understand the
dimensions in which the formalisms dif-
fer, while trying to understand what the
individual types are and are not good for,
what mechanisms they require, and how
they differ in relation to a range of meta-
requirements such as speed, accuracy, relia-
bility, extendability, and generality. Usually,
the answers are not obvious, so if the options
and trade-offs can be made clear by research
addressing such “meta-level” questions, then
future researchers can choose options wisely
on the basis of detailed task requirements,
instead of following fashions or prejudice.
When we understand the trade-offs fully we
shall be in a much better position to do em-
pirical and theoretic research to support var-
ious design choices.

An example is Minsky’s “causal diversity”
depiction of trade-offs between symbolic
and neural mechanisms (Minsky, 1992).
His much older paper (Minsky, 1963)
also includes many relevant observations
about trade-offs between design alterna-
tives. Another influential meta-level paper
(McCarthy & Hayes, 1969) produced a first
draft list of criteria for adequacy of forms of

representation, namely, metaphysical ade-
quacy, epistemological adequacy, and heu-
ristic adequacy (to which, e.g., learnabil-
ity and evolvability in various environments
could be added). That paper’s emphasis on
logic provoked a charge of narrowness in
Sloman (1971), and a response in Hayes
(1984). A recent development of this thread
is a PhD thesis on proofs using continuous
diagrams Winterstein (2005). Some steps
toward a more general overview of the space
of possible forms of representation are in
Sloman (1993, 1996). However, the analy-
sis of varieties of information processing in
biological systems still has a long way to go.

Many discussions of representations and
mechanisms fail to take account of require-
ments for an integrated agent with a com-
plex body embedded in a partially un-
known and continuously changing richly
structured environment. Such an agent will
typically have concurrently active processes
concerned with managing the state of the
body, including controlling ongoing actions
and continuously sensing the environment,
in parallel with other internal processes,
such as reminiscing, deliberating, thinking
about what someone is saying, and planning
a response, as well as aesthetic and emo-
tional responses. Work on requirements for
complete architectures in systems interact-
ing with a rich dynamic environment has
begun to address this complexity, but is still
in its infancy. Gaps in our knowledge are
easily revealed by analysis of requirements
for detailed scenarios. For example, require-
ments for a robot to see its hand grasping
and moving a complex object in the prox-
imity of other complex objects include rep-
resenting “multi-strand processes”, in which
different relationships between parts of dif-
ferent objects change concurrently, some
continuously (e.g., getting closer) and some
discretely (e.g., coming into contact, and
changing affordances).

8.2. The Need to Survey Spaces
of Possibilities

Meta-level analysis of a space of possibil-
ities (e.g., for forms of representation, for
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mechanisms, for architectures) should help
to end fruitless debates over such questions
as to whether representations are needed
in intelligent systems, or which sorts of
representations are best. Some debates are
inherently muddled because what one fac-
tion offers as an alternative to using repre-
sentations another will describe as merely
using a different sort of representation. If
we have a deep understanding of the struc-
ture of the space of possibilities containing
the proposed alternatives, and their trade-
offs, then how we label the options is of
lesser consequence. Agreeing on labels may
sometimes arise from agreement on what
variety of things we are labelling. (Com-
pare the importance of the periodic table of
the elements in the history of the physical
sciences.)

The current state of teaching regarding
whether to use symbolic forms of repre-
sentation, or artificial neural nets and nu-
merical/statistical formalisms and methods
causes harm. Learners often simply pick
up the prejudices of their teachers, and, in
some cases, do not even learn about the
existence of alternatives to the approach
they are taught. This became very clear
when we were attempting to select candi-
dates for a robotics research position: sev-
eral applicants with MSc or PhD degrees
in AI/Robotics had never encountered a
symbolic parser, problem solver, or plan-
ning system. (An excellent introduction to
AI planning mechanisms is Ghallab, Nau,
and Traverso [2004].) Similarly, although
there have been many proposed architec-
tures, some of them surveyed in Langley
and Laird (2006), students who learn about
a particular sort of architecture may never
learn about very different alternatives. A
generation of researchers trained with blink-
ered vision will not achieve the major ad-
vances in such a difficult field, even if dif-
ferent subgroups have different blinkers. To
summarize:

• Before choosing the best X, try to under-
stand the space of possible Xs.

• Often there is no best X, but a collection
of trade-offs.

• Instead of trying to determine precise
boundaries between Xs and non-Xs, it
is often more fruitful to investigate vari-
eties of X-like things, the dimensions in
which they vary, and the trade-offs: often
the X/non-X distinction evaporates and
is replaced by a rich taxonomy of cases.

8.3. Toward an Ontology for Types
of Architectures

Over the last two decades, there has been
a shift of emphasis in research on com-
putational models from investigations of
algorithms and representations for specific
tasks, to the study of architectures com-
bining many components performing dif-
ferent tasks. Various specific architectures
have been proposed, some of them surveyed
in Langley and Laird (2006). That survey
illustrates how unfortunate definitions can
blinker vision, for it defines an architecture as
something that cannot change, thereby ex-
cluding research into whether infants start
with a limited architecture extended under
the influence of the environment (Chappell
& Sloman, 2007; Petters, 2006).

The research community has so far not
developed an agreed analysis of require-
ments for different sorts of architectures
nor an adequate ontology for describing
and comparing alternatives. Moreover, the
existing terminology that is widely used
for labelling components, for example as
“reactive”, “deliberative”, “reflective”, “af-
fective”, “symbolic”, “sub-symbolic”, is not
based on well-defined, clearly specified cat-
egories. For example, some will label as de-
liberative any system in which sensory inputs
can activate rival responses, one of which is
selected by a competitive process; whereas
Sloman (2006b) calls that proto-deliberative,
following AI tradition in reserving the la-
bel deliberative for mechanisms that search
for and manipulate representations of vari-
able structure and complexity, using com-
positional semantics. A richer meta-level
ontology for types of architectures would
allow a variety of intermediate cases. Some
researchers use the label “reactive” to ex-
clude internal state change, whereas oth-
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ers allow reactive systems to learn and have
changing goals, as long as they lack de-
liberative mechanisms for constructing and
comparing hypothetical alternatives. As in-
dicated in Section 6.2, the word “reflective”
is also used with different meanings when
describing architectures or components of
architectures. Papers in the Cognition and
Affect project (http://www.cs.bham.ac.uk/
research/cogaff/) present the CogAff schema
as a first draft attempt to provide a more
principled ontology for possible architec-
tures, which will need to be related to niche
space, the space of possible sets of require-
ments.

Researchers wishing to move beyond the
present terminological mess can assume that
biological evolution produced many inter-
mediate cases not yet understood, some oc-
curring during early stages of human infant
and child development, although observing
processes in virtual machines that bootstrap
themselves is a task fraught with difficul-
ties (Sloman & Chappell, 2005). We need
to understand intermediate cases that oc-
curred in nature if we are to match designs
for working models to the variety produced
by evolution, whether for scientific or for
practical purposes. A better ontology for ar-
chitectures may also help us develop bet-
ter tools to support cognitive modeling (cf.
Ritter, 2002; Kramer & Scheutz, 2007).

9. Assessing Scientific Progress

A psychologist once commented that when-
ever he heard researchers giving seminars
on computational models, they talked about
what they were going to do, and occasion-
ally what they had done, but rarely about
what they had discovered. Can the cognitive
modeling research community map out in-
tended advances in knowledge – as opposed
to merely forming plans for doing things,
however worthwhile? A partial answer was
given in Sections 7 and 8: There is scientific
work to be done producing systematic meta-
level theories about varieties of forms of
representation, mechanisms, architectures,
functions, and requirements that define the

spaces from which we can choose compo-
nents of designs and explanatory theories.
That can provide a framework for further
work on substantive questions about how
human vision works, or how crows build
nests, or how children learn language, or
how capabilities found in nature may be
replicated or improved on in artificial sys-
tems. For scientific purposes, merely build-
ing systems that work is of limited value,
if we do not understand how they work and
why they are better or worse than other pos-
sible designs, etc., or better in some contexts
and worse in others.

Much funded applied research is defined
in terms of specific practical goals, for exam-
ple, producing a system that will do some-
thing that no machine has done before,
whether it be attending a conference and
giving a talk (Simmons et al., 2003), per-
forming well at soccer (http://www.
robocup.org), helping with rescue opera-
tions after a disaster (http://www.
rescuesystem.org), helping with domestic
chores (http://www.ai.rug.nl/robocupath-
ome), or identifying potential terrorists
at airports. In addition to identifying spe-
cific, somewhat arbitrary, target systems,
however interesting and important, we
should attempt to identify a structured
set of scientific goals that advance our
knowledge and understanding, as opposed to
merely advancing our practical capabilities
(however important that may be). We
cannot expect there to be anything as
simple and clear as Hilbert’s list of unsolved
mathematical problems in a field as com-
plex and diverse as the study of intelligence,
which will probably never have the clarity
and rigour of mathematics at the start of
the twentieth century, because cognitive
science encompasses the study of all forms
of cognition, including future products of
evolution and human-machine integration.
But we can attempt to identify important
questions that need to be answered.

9.1. Organizing Questions

Just as mathematicians showed that answer-
ing some questions will enable others to be
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answered, or at least simplified, so should
cognitive modelers try to identify relations
between unsolved problems. For example,
if we can describe in detail some of the
competences displayed by young children at
different stages of development in different
cultures, and if we analyze in detail the
architectural and representational require-
ments for those competences, that will give
us insight into the variety of developmen-
tal paths available to humans. That in turn
may give us clues regarding the mechanisms
that are capable of generating such patterns
of learning and development. In particular,
instead of doing only research with a nar-
row focus, such as language learning, visual
learning, or development of motor control,
we can look at typical interactions between
these kinds of learning and other things such
as varieties of play, growth of ontologies,
kinds of enjoyment, kinds of social interac-
tion, and kinds of self-understanding.

This may help us overcome the difficulty
of identifying what needs to be explained,
referred to as “ontological blindness” in Sec-
tion 3. It can also address a further difficulty,
namely that different subcommunities dis-
agree as to what is important or interest-
ing, partly because they are in competition
for limited funds, or simply because of lim-
itations in what they have learned. So in-
stead of trying only to propose specific sci-
entific goals, over which there is likely to
be strong disagreement regarding priorities,
perhaps researchers can agree on a princi-
pled methodology for generating and analyz-
ing relations between structured collections
of goals that can provide milestones and cri-
teria for success, allowing new goals to be set
as we continue to apply the method. One
such method is based on the use of detailed
scenarios described in Section 7.

9.2. Scenario-Based Backward
Chaining Research

Suppose we describe in great detail a vari-
ety of scenarios involving various kinds of
human-like or animal-like behavior whose
achievement is far beyond the current state
of the art. The dishwasher-loading, and

picture-puzzle scenarios in Section 7 are
examples, but we could produce hundreds
more, relating to everyday competences of
humans of different ages and sorts as well as
other animals. If we then analyze require-
ments for producing the detailed behaviors,
this may enable us to generate “precursor
scenarios” for those scenarios, and precur-
sors for the precursors, where a precursor
to a distant scenario at least prima facie in-
volves competences that are likely to play a
role in that scenario.

9.3. Assessing (Measuring?) Progress

By carefully analyzing long-term and inter-
mediate goals, and working backward from
them, we can expect to identify a partially
ordered set of scenarios. Those scenarios can
be annotated with hypotheses to be tested
regarding kinds of knowledge, kinds of learn-
ing, forms of representation, mechanisms,
and architectures that may enable the sce-
narios to be achieved. That will define mile-
stones for measuring progress. The “mea-
sure” will not be a number, but a location
in a partially ordered collection of initially
unexplained capabilities. Of course, as the
research proceeds, the collection of scenar-
ios, the presupposition/precursor links, and
the hypothesized components of adequate
models and explanations will change.

Sometimes rival hypotheses will be pro-
posed, and that will help to sharpen some of
the research goals associated with the sce-
narios, by suggesting variants of the scenar-
ios, or constraints on implementation. That
should lead to tests that can show which hy-
pothesis is better, or whether each is better
only for a subset of cases. Sometimes one
hypothesis will eventually turn out to be
better at defining a long-term “progressive”
research program in the sense of Lakatos
(1980).

We can also work forwards from the cur-
rent state of the art, identifying new compe-
tences selected on the basis of their appar-
ent relevance to the more remote scenarios,
but we are likely to make better short-term
choices after we have sketched at least some
of the terrain a long way ahead: otherwise
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more attractive short term goals will be se-
lected.

9.4. Replacing Rivalry with
Collaboration

We can separate two kinds of meta-level
tasks involved in planning research:

• the task of describing and analyzing re-
search problems, their relationships to
other problems, the evidence required
to determine whether they have been
solved, the methods that might be rel-
evant to solving them, and the possible
consequences of solving them; and

• the prioritizing, justification, or selection of
research problems: deciding what is im-
portant and should be funded.

People can collaborate and reach agreement
on the former while disagreeing about the
latter. The process of collaborating on the
first should lead researchers to be less in-
tensely committed to answers to the second
question: Questions about what is impor-
tant are not usually themselves important in
the grand scheme of advancing knowledge.
(The philosopher J. L. Austin is rumored to
have silenced an objector by saying “Truth
is more important than importance”.)

Understanding the science better will en-
able us to discuss the benefits of different
ways of allocating scarce research resources.
Work on clarifying and analyzing a prob-
lem can contribute to a decision to post-
pone research on the problem, by revealing
a hard prior problem, or by clarifying the rel-
ative costs and benefits of different options.
Meta-level theoretical work revealing good
routes to intermediate goals can be a signifi-
cant contribution to knowledge about a hard
problem, especially analysis of which mech-
anisms, formalisms, architectures, or knowl-
edge systems, will or will not be sufficient to
support particular types of scenarios (com-
pare the role of complexity theory in soft-
ware engineering).

By making construction, analysis and or-
dering of possible scenarios, along with anal-
ysis of corresponding design options and

trade-offs, an explicit community-wide task
(like the Human Genome project), we sep-
arate the task of identifying research prob-
lems and their relationships, a task that
can be done collaboratively, from projects
aiming to solve the problems or aiming to
test specific rival hypotheses, which may
be done competitively. This can also re-
duce the tendency for research groups or
subcommunities to specify their own eval-
uation criteria independently of what oth-
ers are doing, a symptom of an immature
and fragmented science. This can also pro-
vide a means of evaluating research propos-
als. Computational modeling researchers of-
ten propose to do what previous researchers
had proposed to do, but failed to do, pro-
voking the question: Why should the new
proposals be taken seriously? New propos-
als are too often “forward-chaining” propos-
als regarding how known techniques, for-
malisms, and architectures, will be used
to solve hard problems: a well-tried recipe
for failure. Perhaps, if more research is se-
lected on the basis of detailed “backward-
chaining” analysis of long-term task require-
ments for integrated systems, a major change
in the fortunes of research projects will
follow.

10. Conclusion

Previous chapters have mainly focused on
achievements. This one has reviewed some
gaps that still need to be filled, outlin-
ing some ways of accelerating progress to-
ward the development of models that are
more human-like, using deeper and more
comprehensive theories of human and ani-
mal cognitive competences and their devel-
opment. There are many gaps and much
work still to be done. For instance, most
of what can be done by one to two-year-
old toddlers is far beyond anything we can
now model. We also cannot yet model find-
ing something funny or aesthetically pleasing,
neither of which is a matter of producing any
behavior.

Perhaps this partial overview will help
provoke researchers to address new prob-
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lems, such as how scaling out happens, and
new ways of thinking about the long-term
challenge of integrating multiple compe-
tences. Perhaps documents like this will pro-
voke some very bright young researchers to
strike out in new directions that in future
years will be seen to have transformed the
research landscape, leading to deep new sci-
entific understanding and many new appli-
cations that are now far beyond the state of
the art. This will require overcoming serious
institutional impediments to such develop-
ments. It may also require the invention of
new forms of computation.1
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