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Preface

Here is all the invisible world, caught, defined and calculated.

In these books the Devil stands stripped of all his brute disguises.

Here are all your familiar spirits—your incubi and succubi;

your witches that go by land, by air, and by sea;

your wizards of the night and of the day.
—Arthur Miller, The Crucible

My students often seem to regard statistics as only slightly removed from sorcery

and witchcraft. Hence I begin with the words uttered by Reverend Hale in Arthur

Miller’s (1954) classic play. Like Hale’s books, this one also promises to demystify

the arcane—in this case, regression analysis.

Regression models, in some form or another, are ubiquitous in social data analy-

sis. Although classic linear regression assumes a continuous dependent variable, later

incarnations of the technique allowed the response to take on a variety of more

limited forms: binary, multinomial, truncated, censored, strictly integer, and others.

Increasingly, regression texts are incorporating some limited-dependent-variable

techniques—typically, binary response models—along with classic linear regression

in their coverage. However, other than in econometrics texts, it is rare to find regres-

sion models for the full spectrum of continuous and limited response variables treated

in one volume. This monograph aims to provide just such a treatment.

In particular, the first six chapters of the book parallel the coverage of the typ-

ical monograph on linear regression: an introduction to regression modeling

(Chapter 1), simple linear regression (Chapter 2), multiple linear regression

(Chapter 3), regression with categorical predictors (Chapter 4), regression with

nonlinear effects (Chapter 5), and finally, a consideration of advanced topics such

as generalized least squares, omitted-variable bias, influence diagnostics, collinear-

ity diagnostics, and alternatives to ordinary least squares for heavily collinear data

(Chapter 6). The second half, however, considers models for dependent variables

that are limited in one way or another. Examples of such data are event counts, cat-

egorical responses, truncated responses, or censored responses. The topic coverage

in the second half of the book is therefore: binary response models (Chapter 7),

multinomial response models (Chapter 8), censored and truncated regression

(Chapter 9), regression models for count data (Chapter 10), an introduction to survival

xv



analysis (Chapter 11), and multistate, multiepisode, and interval-censored survival

models (Chapter 12).

The book is intended both as a reference for data analysts working primarily with

social data and as a graduate-level text for students in the social and behavioral sci-

ences. As a text it is most suited to a two-course sequence in regression. As an exam-

ple, I normally employ the material in Chapters 1 through 7 for a doctoral-level

course on regression analysis. This course focuses primarily on linear regression but

includes an introduction to binary response models. In a more advanced course on

regression with limited dependent variables, I use Chapters 2 through 4 to review the

multiple linear regression model, and then use Chapters 7 through 12 for the heart

of the course. On the other hand, a survey of regressionlike models using the gener-

alized linear model as the guiding framework might conceivably employ Chapters 1

through 5, and then 7 through 10. Other chapter combinations are also possible.

This book is not intended to be one’s first exposure to regression. It is assumed

that the reader has had a thorough introduction to probability theory, statistical infer-

ence, and applied bivariate statistics, along with an introduction to correlation and

regression. Having covered the material in, say, Agresti and Finlay (1997) or Knoke

et al. (2002), for example, would be good preparation for the current monograph.

The basics of probability and statistical inference are nevertheless reviewed in the

appendix to Chapter 1 in case the reader needs to refresh his or her understanding of

these topics. It is also assumed that the reader has a solid grasp of college-level alge-

bra. Beyond these requirements, no specialized mathematical or statistical skills are

required. Some differential calculus is employed here and there in the exposition,

and a smattering of matrix algebra appears—primarily in Chapter 6. Those unfamil-

iar with these topics will find a fairly thorough discussion of them in Appendix A.

This collection of math tutorials also discusses basic algebra, summation notation,

functions, and covariance algebra. These tutorials are self-contained sections that

can be referred to as necessary during the course of reading through the book.

The book’s emphasis tends to be on the estimation, interpretation, and evaluation

of theoretically driven models in the social sciences. Due to the variety of regression

models considered, coverage of specific techniques (e.g., linear regression) is neces-

sarily more selective than found in books devoted entirely to one type of model. In

particular, I have avoided discussion of exploratory model-building techniques, such

as stepwise regression, along with the extensive examination of model residuals.

Readers interested in these topics can find ample coverage in other works. Instead, the

focus is on the substantive and statistical plausibility of models, the correct interpre-

tation of model parameters, the global evaluation of model adequacy, and a variety of

inferential procedures of interest to those working with social data. As maximum

likelihood estimation is central to the models considered in Chapters 7 through 12, in

the second half of the book considerable emphasis is placed on the expression for the

likelihood function. This allows the reader to see how models are estimated, since

once the function is written, algorithms for parameter estimation are readily available.

My writing style is the product of an attempt to marry rigor with accessibility.

Rigor comes in the form of mathematical development in places where it is necessary

for conveying a deeper level of understanding. Accessibility is achieved (hopefully)
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by providing enough steps so that the math is clear, and by explaining the steps “in

English” whenever possible. It is also hoped that the reader with more modest math

skills will invest a little time and energy in the math tutorials in Appendix A. These

are designed to give the reader the tools needed to at least follow the mathematical

expositions in the text. As someone who developed mathematics skills rather late in

life, I appreciate the trepidation with which some readers approach mathematical

explication. Nonetheless, a complete understanding of this material is not possible

without some math. Ideally, the returns to the reader in terms of statistical compre-

hension will be worth the effort.

A number of resources are available to help readers assimilate the material in the

book. First, there are approximately 275 end-of-chapter exercises in Chapters 2

through 12, plus another 63 in Appendix A. The Instructor’s Manual that accompa-

nies the book contains complete solutions to all the exercises. Additionally, 10

datasets are available so that readers can practice the techniques taught herein using

their favorite regression software. The datasets are incorporated into several of the

end-of-chapter exercises. The datasets can be downloaded through the Wiley Web

site, as discussed in Chapter 1 (see the section “Datasets Used in This Volume” in

Chapter 1 for further information).
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C H A P T E R 1

Introduction to Regression Modeling

The last several decades in the social sciences have been characterized by the increas-

ing use of mathematical models of social behavior. The ready availability of quanti-

tative data on social phenomena, generated by large-scale social surveys, is certainly

a contributing factor in this development. Although models for social data vary

widely in complexity and sophistication, most can be considered to be variants of the

technique known as linear regression. Classic linear regression, however, was predi-

cated on the notion that the outcome variable being modeled was continuous in

nature. Many outcomes of interest, on the other hand, are limited in their measure-

ment in some way or another. In this monograph, I define a limited response variable

to be any outcome that is not continuous—or approximately continuous—throughout

its logical range. Such measures include a continuous response that is truncated or

censored, one that is categorical, and one that represents a count of some phenome-

non. Also included under this definition are measures of survival time in a given state,

as this type of response is also typically characterized by restrictions imposed by cen-

soring and/or truncation. Linear regression has been extended over the years to the

modeling of limited dependent variables, via the generalized linear model, discussed

below. The purpose of this book, therefore, is to present an integrated treatment of

regression modeling that weaves seamlessly through the various metrics that the

response variable can take. By collecting a variety of seemingly disparate techniques

under the regression umbrella, this book will hopefully render these methods easier

to assimilate.

CHAPTER OVERVIEW

In this chapter I introduce the concept of a statistical model: in particular, a linear

regression model. It turns out that linear regression models are special cases of what

1
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is referred to as the generalized linear model (Gill, 2001; McCullagh and Nelder,

1989; Nelder and Wedderburn, 1972), which subsumes all the models discussed in

this book. The important components of such a model are therefore sketched out in

this chapter to foreshadow what is to follow in subsequent chapters. I then outline

three major components of model evaluation, which are considered throughout the

book for assessing model adequacy. Next, I consider the role of regression models

in causal inference. Whether or not acknowledged explicitly, regression modeling in

the social and behavioral sciences is frequently designed to illustrate causal dynam-

ics. I therefore devote some space to a discussion of recent developments in, and

controversies pertaining to, the use of regression models for causal inference. The

chapter concludes with a description of the data sets used for this volume, some of

which the reader may download to practice the techniques taught herein. Finally, the

chapter appendix contains a review of important statistical principles relied on

throughout the volume.

MATHEMATICAL AND STATISTICAL MODELS

In the social and behavioral sciences, a model is often a set of one or more equations

describing the processes that generated the observations on one or more response

variables. I use the term generated here in a causal sense, since that is what is typi-

cally implied in researchers’ models, as well as the language used to describe them.

(I shall have more to say about causal language shortly.) When coupled with a set of

assumptions about the manner in which observations were sampled from a larger

population, it becomes a statistical model. Like many “models” of real-world phe-

nomena, such models are not to be taken too literally. As others have observed, “All

models are wrong. Some are useful” [attributed to George Box in Gill (2001, p. 3)].

Nonetheless, to the extent that a model provides a broad outline of the dynamics

underlying behavioral phenomena, it can be useful for advancing knowledge.

Linear Regression Models

A linear regression model is an equation in which a random response, or outcome,

variable Y, is posited to be a linear function of a set of input, or explanatory vari-

ables, denoted X1, X2, . . . . (These labels are, of course, purely arbitrary. The out-

come could just as well be denoted W, U, or η, and the explanatory variables—also

called regressors—could be labeled V, Z, or ξ.) To give this discussion substantive

flesh from the start, suppose that the “population” of interest is the population of all

persons over 18 years of age in the United States in 1998. Suppose further that Y is

a continuous measure of attitude toward abortion, with a higher score indicating a

more liberal, or unrestrictive, attitude. And let’s say that X1 is marital status, where

“married” is coded 1, and “any other status” is coded 0. (Called dummy variables

these types of variables are explored in detail in Chapter 4.) Additionally, say that X2

is education, coded from 0 for “no formal schooling” to 20 for “four or more years
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of graduate study.” A regression model for attitude toward abortion for the ith obser-

vation sampled from the population based on these two regressors takes the form

Yi �β0 �β1Xi1 �β2Xi2 � εi. (1.1)

This is a linear equation, in the sense that Y is defined to be a weighted sum of con-

stants times explanatory variables (see Sections I and II of Appendix A for definitions

of functions, linear functions, and weighted sums). But—you might object—there’s

no variable multiplied by β0 and no constant multiplying εi. Well, both are actually

present. The “variable” corresponding to β0 is X0, which equals 1 for all cases. This

factor is, therefore, easily omitted from the equation. The constant multiplier of εi is

simply assumed to be 1. Hence, this multiplier can also be omitted. The β’s—β0, β1,

β2—are the parameters of the equation: They are assumed to take on constant values

for each person in the population. The last term, ε, is an equation disturbance, or error

term. It is a random variable that represents all factors affecting Y other than X1 and

X2. Both the parameters and ε are unobserved in any given sample. That is, even

though we can observe the values of Y and the X’s for any sample of n cases from the

population, we cannot observe either the parameters or the error term. These factors,

however, can be estimated with the sample data. In fact, the major purpose of regres-

sion modeling is to estimate the β’s and to use these to describe the relationship

between Y and the X’s in the population, as well as to make predictions about the

value of Y for cases with particular combinations of values of the X’s.

Model (1.1) is for individual observations. The model for the expected value, or

mean, or arithmetic average, of Y in the population, conditional on the X’s, is instead

simply

E(Yi � Xi1, Xi2) �µi �β0�β1Xi1�β2Xi2. (1.2)

The β’s quantify the manner in which the mean of Y is related to the explanatory

variables in the model. In particular, β1 indicates the expected, or average, difference

in Y in the population for those who are 1 unit apart in marital status—that is, for

marrieds versus everybody else in our substantive example. β2 indicates the expected

difference in Y in the population for those who have a year’s difference in formal

schooling. So, for example, in the prediction of one’s attitude toward abortion, if β1

is �1.5 and β2 is 2.3, these would be interpreted as follows: Married persons’ atti-

tude toward abortion, on average, is 1.5 units lower than others’, holding education

constant. (The precise meaning of “holding other variables constant” will be taken

up in subsequent chapters.) Those with a year’s more formal schooling, on average,

are 2.3 units higher on attitude toward abortion than others, holding marital status

constant. Furthermore, if β0 is 7.5, a married person with a college degree is esti-

mated to have mean abortion attitude equal to 7.5 � 1.5(1) � 2.3(16) � 42.8.

This “model” of attitude toward abortion is certainly an oversimplification of the set

of factors associated with such attitudes. But it is parsimonious, and its adequacy in

accounting for variation in attitude toward abortion can be evaluated (more about this
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later). To estimate the β’s with sample data employing the most common technique—

ordinary least squares (OLS)—we make some additional assumptions about the equa-

tion errors. First, we assume that they are uncorrelated with one another. That is, there

is no tendency for a large error for the first observation, say, to presage a larger or

smaller error for the second observation than would occur by chance. If sampling is

random and the data are cross-sectional rather than longitudinal, this assumption is

usually pretty safe. Second, we assume that they have a mean of zero at each covari-

ate pattern, or combination of predictor values. As an example, being married and hav-

ing 16 years of education is one covariate pattern; being other-than-married with 12

years of education is another covariate pattern; and so on. Hence, this assumption is

that the mean of the errors at any covariate pattern is zero. Finally, we assume that the

variance of the error terms is the same at each covariate pattern. Given a random sam-

ple of n persons from the population, along with their measures on Y, X1, and X2, we

can proceed with an estimation of this equation and employ it to further our under-

standing of abortion attitudes.

Generalized Linear Model

A linear regression model is a special case of the generalized linear model (GLM).

A generalized linear model is a linear model for a transformed mean of a response

variable whose probability distribution is a member of the exponential family

(Agresti, 2002). What does this mean? Well, for starters, let’s apply this definition to

the regression model delineated in equation (1.2) and corresponding assumptions

above. The quantity µi in equation (1.2) is referred to as the conditional mean of the

response variable. It is the mean of the Yi conditional on a particular covariate pat-

tern. (The εi are, moreover, more properly called the conditional errors—the errors,

at each covariate pattern, in predicting the individual Yi using the conditional mean.)

The model is therefore a model for the mean of the response variable. It is also for

the transformed mean of Y, although the transformation employed here is the iden-

tity transformation, which is “transparent” to us. That is, if g(µi) indicates a trans-

formation of the mean using the function g(�), then g(µi) in the classic regression

model is just µi. Also, in the classic regression model, it is assumed that the errors

are normally distributed. (This assumption is not essential if n is large, however.)

Because Y is a linear combination of the regressors plus the error term, and assum-

ing that the regressor values are fixed, or held constant, over repeated sampling, Y is

also normally distributed. The normal distribution is a member of the exponential

family of probability distributions.

Essentially, there are three components that specify a generalized linear model. First,

the random component identifies the response variable, Y, its mean, µ, and its proba-

bility distribution. Second, the systematic component specifies a set of explanatory vari-

ables used in a linear function to predict the transformed mean of the response variable.

The systematic component, referred to as the linear predictor (Agresti, 2002), has the

form �K

k�0
βk Xik for the ith case, where the X’s are the explanatory variables and the β’s

are the parameters representing the variables’ “effects” on the mean of the response. In

the example of attitude toward abortion, �K

k�0
βk Xik is just β0 �β1Xi1 � β2Xi2. Third,
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the link function, g(µ), specifies the transformation function for the mean of Y, which

the model equates to the systematic component.

The linear regression model is especially simple because the response variable is

continuous—at least theoretically—and the link function is the identity link. That is,

g(µ) �µ, and hence the regression model is µi � E(Yi) � �K

k�0
βkXik, as we saw in

equation (1.2). An important characteristic about this equation is that the left- and

right-hand sides are equally unrestricted. That is, if Y is continuous, its theoretical

range is from minus to plus infinity, which implies a similar range for µ. The right-

hand side is also free to take on any values in that range, since there are no restric-

tions on either the parameters or the values of the predictors. However, later in this

book we consider other regressionlike models in which the response variable is either

binary, nonnegative discrete, or otherwise limited in its range. The link function is

therefore designed to ensure that the response is converted into an unrestricted form,

to match the unrestricted nature of the linear predictor. Let’s consider how the GLM

framework extends to those situations.

First, we need to describe the exponential family of density functions. (Readers

unfamiliar with the concept of a density function may want to review that material

in the chapter appendix.) A density is a member of the exponential family if it can

be written in the form

f(y �µ) � a(µ) b(y)eyg(µ), (1.3)

where, as before, µ is the mean of Y, a(µ) is a function involving only µ, and per-

haps constants, and b(y) is a function involving only Y, and perhaps constants

(Agresti, 2002). Once the density is written in this form, the link function that

equates the mean of Y to the linear combination of explanatory variables is g(µ). As

an example, suppose that the response variable, Y, is binary, taking on values 1 if a

person has had sexual intercourse any time in the preceding month, and 0 other-

wise. Suppose further that we are interested in modeling having had sexual inter-

course in the preceding month as a function of several predictors, such as marital

status, education, age, religiosity, and so on. Such a response variable is said to

have the Bernoulli distribution with parameter π, and its density function (see the

chapter appendix) is

f(y �π) �πy (1 �π)1�y.

For binary Y, E(Y) �π, so π is the mean of the response in this case. Now, since

πy(1 �π)1 � y
�πy(1 �π)(1 �π)�y

�πy
�
(1

1

�

�

π

π

)y
�

� (1 �π)��1�

π

π
��

y

� (1 �π)ey ln[π /(1�π)]
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we see that the Bernoulli density is a member of the exponential family, with a(µ) �

(1 �π), b(y) � 1, and g(µ) � ln[π /(1 �π)]. Thus, ln[π /(1 �π)] is the link function

for this model, and the model for the transformed mean becomes

ln �
1�

πi

πi

� ��
K

k�0

βk Xik.

This type of model is called a logistic regression model. Notice that since π ranges

from 0 to 1, π /(1 �π) ranges from 0 to infinity, and therefore ln[πi /(1 �πi)] ranges

from minus to plus infinity. The left-hand side of this model is thus an unrestricted

response, just as in the case of linear regression.

As a second example, suppose that the response on sexual frequency really is

recorded in terms of the number of separate acts of sexual intercourse that the per-

son has engaged in during the preceding month. This type of outcome is referred to

as a count variable, since it represents a count of events. It is a discrete variable

whose distribution is likely to be very right-skewed. We may want to utilize this

information to inform the regression. One appropriate density for this type of vari-

able is the Poisson density. Hence, if Y takes on values 0, 1, 2, . . . and µ� 0, the

Poisson density is

f(y �µ) � �
e�

y

µ

!

µy

�.

To see that this is a member of the exponential family, we rewrite this density as

�
e�

y

µ

!

µy

� � e�µ
�
y

1

!
�ey lnµ,

where a(µ) � e�µ, b(y) � 1/y!, and g(µ) � lnµ. Therefore, lnµ is the link function,

and the model for the transformed mean becomes

lnµ ��
K

k�0

βk Xik.

This model is referred to as a Poisson regression model. Here, in that µ ranges from

0 to infinity, ln µ ranges from minus to plus infinity. Once again, the left-hand side

of the model is an unrestricted response.

The advantage to the GLM approach is that the link function connects the lin-

ear predictor, �K

k�0
βk Xik, to the mean of the response variable rather than to the

response variable itself, so that the outcome can now take on a variety of nonnor-

mal forms. As Gill (2001, p. 31) states: “The link function connects the stochastic

[i.e., random] component which describes some response variable from a wide

variety of forms to all of the standard normal theory supporting the systematic

component through the mean function, g(µ) . . . .” Once we assume a particular

density function for Y, we can then employ maximum likelihood estimation (see

the chapter appendix for an explanation of the maximum likelihood technique) to

estimate the parameters of the model. For the classic linear regression model with
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normally distributed errors (and thus a normally distributed response), maximum

likelihood (ML) and ordinary least squares (OLS) estimation are equivalent (OLS

estimation is covered in Chapter 2).

Model Evaluation

Models in the social sciences are useful only to the extent that they effectively encap-

sulate real-world processes. In this section we therefore consider ways of evaluating

model adequacy. The assessment of a model encompasses three major evaluative

dimensions. The first dimension is empirical consistency, or as many call it, good-

ness of fit. A model is empirically consistent if the response variable behaves the way

the model says that it should. In other words, a model is empirically consistent to the

extent that the response variable behaves in accordance with model assumptions and

follows the pattern dictated by the model’s structure. Moreover, if the model’s pre-

dictions for Y match the actual Y values quite closely, the model is empirically con-

sistent. The second dimension is discriminatory power, which is the extent to which

the structural part of the model is able to separate, or discriminate, different cases’

scores on the response from one another. Since separation, or dispersion, constitutes

variability in the response, discriminatory power is typically assessed by examining

how much of the variability in the response is due to the structural part of the model.

The third dimension is authenticity, also called model-reality consistency by Bollen

(1989). A model is authentic to the extent that it mirrors the true processes that gen-

erated the response.

To illustrate the differences in these dimensions, I draw on a particular variant of

regression modeling called a path model, essentially a model for a causal system in

which one or more response variables is a function of a set of predictors. A path

model is an example of what is referred to as a covariance structure model or struc-

tural equation model [see DeMaris (2002a) or Long (1983) for an introduction to

such models]. In this type of model, the goal is to account for the correlations (or

covariances) among the variables in the system, using the structural coefficients of

the model. For example, suppose that we have three continuous, standardized vari-

ables measured for a random sample of married adult respondents: Z1 is the the

degree of physical aggression in the respondent’s marriage in the past year, Z2 is the

frequency of verbal disagreements in the respondent’s marriage in the past year, and

Z3 is the frequency of verbal disagreements in the respondent’s parents’ marriage

when the respondent was a teenager. The sample correlations among these variables

are corr(Z1,Z2) � .45, corr(Z1,Z3) � .6125, and corr(Z2,Z3) � .2756. In path analysis,

these correlations are the observations that are to be accounted for by the model.

A path model can be specified using either a diagram or a series of equations.

Using the latter approach, suppose that a researcher arrives at the following OLS

sample estimates for a simple path model for Z1, Z2, and Z3:

Z2 � .45(Z1) � e2,

Z3 � .5(Z1) � .25(Z2) � e3.
(1.4)
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The model suggests that the frequency of verbal disagreements in the respondent’s

marriage in the past year is a function of the degree of physical aggression in the

respondent’s marriage in the past year, plus a random error term (e2). It also main-

tains that the frequency of verbal disagreements in the respondent’s parents’ mar-

riage when the respondent was a teenager is a function of the degree of physical

aggression in the respondent’s marriage in the past year and the frequency of verbal

disagreements in the respondent’s marriage in the past year, plus a random error term

(e3). (Okay, this doesn’t make much substantive sense, but that will be the point, as

the reader can see below.) It can (and, in fact, will) be shown that the sample corre-

lations among Z1, Z2, and Z3 are functions of the model’s estimated parameters. The

total number of “observations” in path analysis consists of the number of nonredun-

dant correlations among the variables in the system. In the present example, that

number is three. There are also three parameters in the system: the three coefficients.

Whenever the number of correlations is the same as the number of parameters in the

system of equations, the model is saturated, or just-identified. In this case, the struc-

tural parameters will reproduce perfectly the correlations among the variables. When

there are fewer parameters than correlations to explain, the model is overidentified.

In that case, the model is a more parsimonious description of the correlations. The

model will no longer perfectly reproduce the correlations. But we can assess how

closely the model’s parameters will reproduce the correlations in order to gauge its

performance in “fitting” the data.

Let’s see how the correlations can be shown to be functions of the structural

parameters of the model. (Those unfamiliar with covariance algebra may want to

read Section III of Appendix A before continuing.) First, note that since the variables

are standardized, their covariances are also their correlations. Thus, corr(Z1,Z2) �

cov(Z1,Z2) � cov(Z1, .45Z1� e2) � .45 Cov(Z1,Z1) � cov(Z1,e2) � .45 (since the

covariance of a variable with itself is its variance, which for standardized variables

equals 1, and the covariance between OLS residuals and regressors in the same equa-

tion is zero). Moreover, corr(Z1,Z3) � cov(Z1, .5Z1 � .25Z2� e3) � .5v(Z1) � .25

cov(Z1,Z2) � .6125; and corr(Z2,Z3) � cov(.45Z1� e2, .5Z1 � .25Z2� e3) � .45(.5)

v(Z1) � .45(.25) cov(Z1,Z2) � .2756. (Note that OLS residuals in different equations

are uncorrelated with each other.) We see that the correlations are reproduced exactly

from the model parameters, because the model is saturated.

The structural coefficients also allow us to determine how much the model

accounts for variation in the response variables. The part of the variance of a

response variable that is accounted for by the model can be determined by consider-

ing the overall variance of each response. Recalling that the variance of a standard-

ized variable is 1, the variance in Z2 can be decomposed into the proportion due to

the structural part of the model and the proportion due to error. Thus, we have

1 � v(Z2) � cov(Z2,Z2) � cov(.45Z1 � e2, .45Z1� e2) � .452 v(Z1) � v(e2) � .2025 �

v(e2). That is, 20.25% of the variation in Z2 is due to the structural (as opposed to

the random) part of the model. Similarly, 1 � v(Z3) � cov(.5Z1� .25Z2� e3, .5Z1�

.25Z2 � e3) � (.5)(.5) v(Z1) � (.5)(.25) cov(Z1,Z2) � (.5)(.25) cov(Z1,Z2) � (.25)(.25)

v(Z2) � v(e3) � .52
� (2)(.5)(.25)(.45) � .252

� v(e3) � .425 � v(e3). Here we see that

42.5% of the variation in Z3 is due to the model.
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At this point, let’s consider the three aspects of model evaluation. First, notice 

that the model is perfectly empirically consistent, since the data—the correlations—

“behave” exactly the way the model says they should; they are predicted perfectly by

the model. Discriminatory power, on the other hand, is only moderate; at most, 42.5%

of the variation in any response variable is accounted for by the model. Another way

of saying this is that we experience, at most, only a 42.5% improvement in the dis-

crimination of scores on the response variable when using—as opposed to ignoring—

the model, in predicting the responses. Finally, however, the model is completely

inauthentic, in a causal sense. To begin, the frequency of verbal disagreements in the

respondent’s parents’ marriage when respondents were teenagers cannot possibly be

caused by the subsequent tenor of respondents’ marriages. Additionally, physical

aggression tends to be preceded by verbal conflict rather than the converse. It is there-

fore unreasonable to suggest that it is physical aggression that leads to verbal conflict.

If anything, the occurrence of physical aggression should suppress the frequency of

subsequent verbal altercations, since partners would be fearful of a reoccurrence of

violence. From the foregoing it should be clear that empirical consistency, discrimi-

natory power, and authenticity are three separate although related criteria by which

models can be evaluated.

REGRESSION MODELS AND CAUSAL INFERENCE

Regression modeling of nonexperimental data for the purpose of making causal

inferences is ubiquitous in the social sciences. Sample regression coefficients are

typically thought of as estimates of the causal impacts of explanatory variables on

the outcome. Even though researchers may not acknowledge this explicitly, their use

of such language as impact or effect to describe a coefficient value often suggests a

causal interpretation. This practice is fraught with controversy [see, e.g., McKim and

Turner (1997) as well as the November 1998 and August 2001 issues of Sociological

Methods & Research for recent debates on this topic in sociology]. In this section of

the chapter I explore the controversy and provide some recommendations.

What Is a Cause?

Philosophers and others have debated the definition of cause for centuries without

ever coming to complete agreement on it. However, current common use of the term

implies that the application of a cause to some element changes its state or trajec-

tory, compared to what that would be without application of the cause. Beyond this

basic idea, however, there appear to be two primary “models” of causality in opera-

tion among social scientists. The regression or structural equation modeling per-

spective is that a variable X is a cause of Y if, all else equal, a change in X is followed

by a change in Y (Bollen, 1989). The implicit assumption is that a cause is synony-

mous with an intervention, which, when applied, changes the nature of the outcome,

on average. With nonexperimental data, the intervention has been executed by

nature. Nonetheless, the implication is that if X is truly a cause of Y, changing its
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value should change Y for the cases involved, compared to what its value would be

were X left unchanged. Should this reasoning be applied to equation (1.1), β2 would

be described as individuals’ average change in attitude toward abortion were we to

increase their schooling by one year.

A somewhat different perspective is encompassed by what is referred to as the

potential response model of causality (Pearl, 1998), attributed to Rubin (1974), and

therefore also referred to as the Rubin model. This viewpoint entails a counterfac-

tual, or contrary-to-fact, requirement for causality: X is a cause of Y if the value of Y

is different in the presence of X from what it would have been in the absence of X (or

under a different value for X ). Although this sounds quite similar to the notion of

intervention articulated above, there are some subtle differences. First, let’s consider

the potential response model more formally. Suppose that X represents a treatment

with two values: t for the treatment itself and c for the absence of treatment. Define

Yt as the score on a response, Y, for the ith case if the case had been exposed to t, and

Yc as the response for the same case if that case had instead been exposed to c. Then

the true causal effect of X on Y for the ith case is Yt � Yc. Notice that this definition

of cause is counterfactual, since the ith case can be “freshly” exposed to either t or

c but not to both. Repeated application of c followed by t is not considered equiva-

lent. Similarly, the average causal effect for some population of cases is the average

of all true causal effects for all cases. That is, the average causal effect is E(Yt � Yc)

over the population of cases. Neither the true causal effect nor the average causal

effect can ever be observed, in practice. Notice the difference between this model

and the intervention approach to causality discussed above. An intervention is an

observable operation. What’s more, it is indifferent to the case’s prior history: We

can change the case’s value from c to t and observe what happens, on average, to Y.

The potential response model, in contrast, defines causality in a way that is impos-

sible to observe, since the values Yt and Yc presume that the case’s history has been

magically “erased” in each case before a particular level of X is applied.

Nonetheless, according to the potential response model, the average causal effect

can be estimated in an unbiased fashion if there is random assignment to the cause.

Unfortunately, this pretty much rules out making causal inferences from nonexperi-

mental data. However, others acknowledge the possibility of making the assumption

of “conditional random assignment” to the cause in observational data, provided that

this assumption is theoretically tenable (Sobel, 1998). Still, hard-core adherents to

the potential response framework would deny the causal status of most of the inter-

esting variables in the social sciences because they are not capable of being assigned

randomly. Holland and Rubin, for example, have made up a motto that expresses this

quite succinctly: “No causation without manipulation” (Holland, 1986, p. 959). In

other words, only “treatments” that can be assigned randomly to any case at will are

considered candidates for exhibiting causal effects. All other attributes of cases, such

as gender and race, cannot be causes from this perspective. I agree with others (e.g.,

Bollen, 1989) who take exception to this restrictive conception of causality, despite

the intuitive appeal of counterfactual reasoning. Regardless of whether it can be ran-

domly assigned, any attribute that exposes one to differential treatment by one’s

environment ought to be considered causal.
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When Does a Regression Coefficient Have a Causal Interpretation?

Assuming that we could agree on the definition of a cause, perhaps a more pressing

question is: When can a regression coefficient be given a causal interpretation? With

nonexperimental data, of course, random assignment to the cause is not possible. In

lieu of this, several scholars insist that a fundamental requirement for a causal inter-

pretation to be given to the sample estimate of β in Y �βX � ε is that Cov(X,ε) � 0,

or that the equation disturbance, ε, is uncorrelated with the causal variable. This has

been referred to variously as the pseudoisolation assumption (Bollen 1989), the

causal assumption (Clogg and Haritou, 1997), or the orthogonality condition (Pearl,

1998). Let us see why this important condition is necessary to causal inferences.

Suppose, indeed, that you wish to estimate the model Y �βX � ε using sample data

and you believe that the association of X with Y is causal, that is, X causes Y.

Suppose, however, that, in truth, a latent variable, ξ, affects both X and Y. Hence, the

true model is X � γ1ξ�υ, with Cov(ξ,υ) � 0, and Y �βX � γ2ξ� ε�, where

Cov(X,ε�) � Cov(ξ,ε�) � 0. [We assume that all variables are centered (i.e., deviated

from their means), obviating the need for intercept terms.] Notice, then, that ε is

really equal to γ2ξ� ε�. Also, note that Cov(X,ξ) � Cov(ξ, γ1ξ�υ) � γ1 V(ξ). Thus,

Cov(X,ε) � Cov(X, γ2ξ� ε�) � γ2 Cov(X,ξ) � γ1γ2 V(ξ). So if Cov(X,ε) is zero, this

ensures that one or all of γ1, γ2, and V(ξ) equal zero; and this means either that ξ is

a constant for every case, in which case it has no real influence on X or Y, or that ξ

has no influence on X, or that ξ has no influence on Y. In any of these cases, b from

the sample regression is a consistent estimator of β (see the chapter appendix for a

discussion of consistency). Otherwise, the sample estimator of β is

b ��
cov

v(

(

X

X

)

,Y)
�

and the probability limit of b is

plim b ��
pli

p

m

lim

co

v

v

(

(

X

X,

)

Y )
� (by the Slutsky theorem), which ��

Cov

σ

(X
2
x

,Y)
�

(since sample estimators of variance and covariance—denoted by lowercase “cov”

and “v”—are consistent for their population counterparts—denoted by uppercase

“Cov” and “V”), where σ2
x denotes the population variance of X and

�
Cov

σ

(X
2
x

,Y)
� �

��
βσ2

x�γ2
σ

C
2
x

ov(X, ξ)
�

�β��
γ2γ

σ
1

2

V

x

(ξ)
�.

Cov(X,βX � γ2 ξ� ε�)
���

σ2
x
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Hence, b is consistent for β� γ2γ1 V(ξ)/σ2
x, which is, in general, not the same as β.

In fact, if β in the true model is really zero, the value of b may mistakenly attribute

the impact of ξ on X, represented by γ1, and the impact of ξ on Y, represented by γ2,

to a causal effect of X on Y. For this reason, the orthogonality condition is necessary

for attributing a causal interpretation to b.

Unfortunately, to assume that the orthogonality condition holds is a great leap of

faith. Clogg and Haritou (1997) point out that there is no statistical technique, using

the data under scrutiny, for determining whether or not the orthogonality condition

obtains. So in practice, researchers often add one or more control variables to the

model, inferring that the estimate of X’s effect in the model with the “proper vari-

ables” controlled is unbiased for the “causal effect.” In the words of Clogg and

Haritou (1997, p. 84): “Partial regression coefficients or analogous quantities are

assumed to be the same as causal effects when the right controls (additional predic-

tors) are included in the model.” However, adding variables that are not causes of Y

to the equation can lead to a failure of the orthogonality condition in the expanded

model. This can then result in what Clogg and Haritou (1997) call included-variable

bias. That is, the estimate of X’s effect in the expanded model is biased for the causal

effect, due to inclusion of an extraneous variable.

Let’s see how this works. Suppose that the true causal model for Y is Y �βX � ε

and that the orthogonality condition, Cov(X,ε) � 0, holds. But you estimate Y �βX �

γZ �υ, where Z is a “predictor” of Y but not a causal influence (e.g., as weight is a

predictor of height). For this equation to be valid for causal inference, the necessary

causal assumption is Cov(X,υ) � Cov(Z,υ) � 0. Now ε is actually γZ �υ (the distur-

bance always contains all predictors of Y that are left out of the current equation). So,

since Cov(X,ε) � 0, we have that Cov(X, γZ �υ) � γCov(X,Z) � Cov(X,υ) � 0, or

that Cov(X,υ) � �γCov(X,Z). Provided that neither γ nor Cov(X,Z) is zero, the

orthogonality condition fails for the estimated model. Hence, the estimate of β from

that model is biased for the true causal effect.

Recommendations

In light of the foregoing considerations, one might ask whether we should abandon

causal language altogether when dealing with nonexperimental data, as has been sug-

gested by some scholars (e.g., Sobel, 1998). Freedman (1997a,b) is especially critical

of drawing causal inferences from observational data, since all that can be “discov-

ered,” regardless of the statistical candlepower used, is association. Causation has to

be assumed into the structure from the beginning. Or, as Freedman (1997b, p. 182)

says: “If you want to pull a [causal] rabbit out of the hat, you have to put a rabbit into

the hat.” In my view, this point is well taken; but it does not preclude using regression

for causal inference. What it means, instead, is that prior knowledge of the causal sta-

tus of one’s regressors is a prerequisite for endowing regression coefficients with a

causal interpretation, as acknowledged by Pearl (1998). That is, concluding that, say,

β� 0 in the equation Y �βX � ε doesn’t demonstrate that X is a cause of Y. But if X

is a cause of Y, we should find that β is nonzero in this equation, assuming that all rel-

evant confounds have been controlled. That is, a nonzero β is at least consistent with
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a causal effect of X on Y. It remains for us to marshal theoretical and/or additional

empirical—preferably experimental—grounds for attributing to X causal status in its

association with Y. In other words, I think it is quite reasonable to talk of regression

parameters as “effects” of explanatory variables on the response, provided that there

is a flavor of tentativeness to such language.

Perhaps the proper attitude toward causal inference using regression is best

expressed in the following quotes. Clogg and Haritou (1997) recommended that

researchers routinely run several regressions that include the focus variable plus all

possible combinations of potential confounds and assess the stability of the focus

variable’s effect across all regressions. They then say (p. 110): “The causal questions

that social researchers ask are important ones that we ought to try to answer. If they

can only be answered in the context of nonexperimental data, then a method that

conveys the uncertainty inherent in the enterprise ought to be sought. We believe that

the uncertainty in causal assumptions, not the uncertainty in statistical assumptions

and certainly not sampling error, is the most important fact of this enterprise.”

Sobel’s (1998, p. 346) advice is in the same vein: “[s]ociologists might follow the

example of epidemiologists. Here, when an association is found in an observational

study that might plausibly suggest causation, the findings are treated as preliminary

and tentative. The next step, when possible, is to conduct the randomized study that

will more definitively answer the causal question of interest.”

In sum, causal modeling via regression, using nonexperimental data, can be a use-

ful enterprise provided we bear in mind that several strong assumptions are required

to sustain it. First, regardless of the sophistication of our methods, statistical tech-

niques only allow us to examine associations among variables. Thus, the most con-

servative approach to interpreting β in Y �βX � ε is to say that β represents the

expected difference in Y for those who are 1 unit apart in X. To say that β reflects the

expected change in Y were we to increase X by 1 unit imparts a uniquely causal inter-

pretation to the X–Y association revealed by the regression. Whether such an inter-

pretation is justified requires additional information, in the form of theory and/or

experimental work. At the least, we must assume that Cov(X,ε) is zero. This means

that no other variable, observed or unobserved, confounds the relationship between X

and Y, as in the case of ξ above. As no empirical means exists for checking on this

assumption, it is an act of faith. At most we will be able to argue that our findings are

consistent with a causal effect of X on Y. But only the triangulation of various bits of

evidence from many sources, over time, can establish this relation with any authority.

DATASETS USED IN THIS VOLUME

Several datasets are used for examples and exercises throughout the book. Ten of the

datasets—those needed for the exercises—can be downloaded from the FTP site 

for this book at http://www.wiley.com. The datasets are in the form of raw data files,

easily readable by statistical software programs such as SAS, SPSS, and STATA. Also

included at the site are full codebooks in MS Word, listing all variable names and their

descriptive labels as well as their order on the data records. Two of the datasets 
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(students and GSS98, described below) contain missing values that must be imputed

by the reader, as instructed in the exercises. All dataset names below in bold face type

indicate data that are available for downloading. The following are brief descriptions

of the datasets (names of all downloadable data files and associated codebooks are

given in parentheses).

National Survey of Families and Households Datasets

The National Survey of Families and Households (NSFH) is a two-wave panel study

of a national probability sample of households in the coterminous United States con-

ducted between 1987 and 1994. Wave 1 of the NSFH, completed in 1988, inter-

viewed 13,007 respondents aged 19 and over living in households in the United

States. Certain targeted groups were oversampled: cohabitors, recently married cou-

ples, minorities, step-parent families, and one-parent families. For respondents who

were cohabiting or married, a shorter, self-administered questionnaire was also given

to the partner. The NSFH collected considerable demographic and family informa-

tion as well as data on more sensitive couple topics such as the quality of the rela-

tionship and the manner of handling disagreements, including physical aggression.

The survey is described in more detail in Sweet et al. (1988). In wave 2, completed

in 1994, interviews were conducted with all 10,005 surviving members of the orig-

inal sample and with the current spouse or cohabiting partner of the primary respon-

dent. Question sets from the first wave were largely duplicated in the second. The six

datasets described below are subsets of this survey.

Couples Dataset (couples.dat; couples.doc). This is a 6% random sample of all mar-

ried and cohabiting couples from wave 1, with an n of 416 couples. The variables

reflect various characteristics of the relationship from both partners’ perspectives, as

well as items tapping depressive symptomatology of the primary respondent.

Kids Dataset (kids.dat; kids.doc). This consists of a sample of 357 parents and their

adult offspring from both waves of the NSFH. Information is contained on couples

who were married or cohabiting, with a child between the ages of 12 and 18 in the

household in 1987–1988, whose child was also interviewed in 1992–1994. Only

cases in which the child had experienced sexual intercourse by 1992–1994 and in

which the child had answered the items on sexual permissiveness and sexual behav-

ior were included. Variables reflect attitudes, values, and other characteristics of the

parents measured in wave 1, as well as sexual attitudes and behavior reported by

their adult offspring in wave 2. Further detail is provided in DeMaris (2002a).

Union Disruption Dataset (disrupt.dat; disrupt.doc). These data consist of 1230

married and cohabiting couples in unions of no more than three years’ duration at

wave 1 who were followed up in wave 2. Primary interest was in the prediction of

union disruption by wave 2, based on various characteristics of the relationship

reported in wave 1, including intimate violence. This is a subset of the data used for

the larger study reported in DeMaris (2000).
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Cohabiting Transitions Dataset (cohabtx.dat; cohabtx.doc). This dataset consists

of 411 cohabiting couples in wave 1, followed up in wave 2. It was used to examine

the predictors of transition to separation or marriage, as opposed to remaining in the

unmarried cohabiting state, by wave 2. Wave 1 characteristics of couples used as pre-

dictors of transitions were similar to those for the union disruption dataset. The full

study is reported in DeMaris (2001).

Wave 1 Couples Dataset. These are the 7273 married and cohabiting couples in

wave 1 who constitute the original pool of couples from which the longitudinal vio-

lence dataset (described below) was culled. Several characteristics of the relation-

ship were measured in wave 1, with a focus on couple disagreements.

Violence Dataset. These data represent 4095 couples in wave 1 who were still intact

in wave 2 and who provided information on patterns of intimate violence at both

time periods. The response of interest is the couple violence profile, a three-category

classification of violence patterns. Predictors are characteristics of the relationship

as reported in wave 1. The full study is reported in DeMaris et al. (2003).

Datasets from the NVAWS

NVAWS is short for the national survey on Violence and Threats of Violence Against

Women and Men in the United States, 1994–1996, collected by Tjaden and

Thoennes (1999). The target population for the NVAWS included men and women

from all 50 states and the District of Columbia, and includes 8000 men and 8000

women who were 18 years of age and older in 1994. Datasets employed in this book

utilize only the women’s data. Variables contain information about four types of vic-

timization experienced over the life course: physical assault, sexual assault, stalking,

and threats, as well as the mental health sequelae of such experiences. Three datasets

are subsets of this survey.

Victims Dataset. This consists of the 1779 women who reported being victimized at

least once by physical or sexual assault, stalking, or intimidation.

Current-Partner Victims Dataset. This is the subset of 331 women from the victims

dataset who report being victimized by a current intimate partner.

Minority Women Dataset. These 1343 women are the minority subset of the origi-

nal 8000 women in the NVAWS.

Other Datasets

Students Dataset (students.dat; students.doc). This is a sample of 235 students tak-

ing introductory statistics at Bowling Green State University (BGSU) from the author

between the years 1990 and 1999. Variables include student characteristics collected
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in the first class session as well as the scores on the first two exams, given, respec-

tively, in the sixth and tenth weeks of the course.

GSS98 Dataset (gensoc.dat; gensoc.doc). These data consist of the 2832 respon-

dents from the 1998 General Social Survey. The GSS is conducted roughly bienni-

ally by the National Opinion Research Center. It is based on a multistage probability

sample that is representative of all noninstitutionalized English-speaking persons 18

years of age and older living in the household population of the United States.

Variables in the dataset represent selected demographic and attitudinal or opinion

items deemed by the author to be of interest.

Faculty Salary Dataset (faculty.dat; faculty.doc). This consists of 725 faculty

members employed at both the main and Firelands campuses of BGSU during the

academic year 1993–1994. Data represent faculty salaries and factors deemed to

predict variation in salaries, such as rank and years of seniority. The primary purpose

of the study was to discover whether there was any evidence of gender inequity in

salary allocation at the institution. Reports of the full studies utilizing these data can

be found in Balzer et al. (1996) and Boudreau et al. (1997).

Introductory Sociology Dataset (introsoc.dat; introsoc.doc). These data were

taken from all nine sections of introductory sociology offered at BGSU during the

1999 spring semester. The study involved four waves of data collection during the

course of the semester. The total sample size is 751 students, but due to absenteeism

at one or another data collection point, sample sizes vary in each wave. The focus of

the study was an examination of the factors predicting academic performance, par-

ticularly self-esteem. Variables consist of measures such as prior and current aca-

demic performance, indexes of self-esteem and test anxiety, and related academic

factors. Results of the study can be found in Bradley (2000).

Unemployment Transitions Dataset ( jobs.dat; jobs.doc). These data are in the form

of 620 unemployment spells for 283 Brazilian immigrants residing in the United

States and Canada in 1990–1991. The purpose of the study was to test predictions

from job search theory regarding the duration in, and rate of exit out of, unemploy-

ment for an immigrant population. The predictors consist largely of demographic,

familial, and human capital variables. The full study is reported in Goza and

DeMaris (2003).

Inmates Dataset (inmates.dat; inmates.doc). This dataset, collected by the Ohio

Department of Rehabilitation, consists of information on 1485 male inmates admit-

ted to the Ohio Department of Rehabilitation and Correction during September and

October 1985. Variables reflect demographic and criminal history information for

each inmate as well as individual lifestyle data and correctional-institution informa-

tion regarding rule infractions during incarceration. The full study is reported in

Clark (2001).
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APPENDIX: STATISTICAL REVIEW

Overview

In this appendix I review basic statistical concepts and notation necessary to an under-

standing of the material in subsequent chapters. I assume that the reader has been

exposed to most of this material at a previous time. However, those who are unfamil-

iar with probability and distribution theory, expectation, variance, covariance, corre-

lation, sampling distributions, parameter estimation, and tests of hypotheses will

probably want to read this appendix before proceeding with the rest of the book.

Variables and Their Measurement

The raw material of statistics consists of data. Data are essentially measurements for

one or more variables, taken on one or more cases, from some population of cases of

interest. Let’s flesh this idea out a little more. We assume that there is a larger popu-

lation of cases in which the researcher has an interest. The population is simply the

collection of cases that the researcher is trying to make general statements about, or

“generalize to.” Cases in the social and behavioral sciences are typically people, but

do not have to be. They are the individual units of observation in one’s study. These

can be individuals or organizations, just as they can be incidents or events. What we

typically obtain in sampling cases from the population are attributes or characteristics

of the cases, usually expressed as numerical values. These are our measurements on

the cases. The attributes are called variables, and each variable typically exhibits

some variability in realized values across the n cases in our sample. When the value

of a variable for a given case cannot be predicted ahead of time, we refer to that vari-

able as a random variable. For example, suppose that I randomly sample a person

from the U.S. population and code his or her gender as 1 for male and 0 for female.

Then the person’s gender is a random variable—I don’t know ahead of time what

value it will take. If, on the other hand, I divide the population into males and females

ahead of time and sample first from the males and second from the females, gender

is no longer a random variable. In this case, we say that gender is fixed—its value is

set ahead of time by the researcher prior to sampling, and there is no mystery about

what each case’s gender is. This distinction is important in regression modeling when

we describe the regressors as random variables versus fixed effects.

Variables are distinguished by two major criteria in statistics, both having to do

with the specificity of their measurement. The first distinction pertains to level of

measurement. There are four commonly conceived levels: nominal, ordinal, interval,

and ratio. Nominal variables are those whose values indicate only qualitative

differences in the attribute of interest; they carry no information as to rank order on

the attribute. For example, religious affiliation coded 1 for “Protestant,” 2 for

“Catholic,” 3 for “Jewish,” and 4 for “other denomination” is a nominal variable. All

that can be said about cases with two different values on this attribute is that they are,

well, different. Other than that, the numerical codes 1, 2, 3, and 4 convey no quanti-

tative differences on the dimension of religious affiliation.
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The values of ordinal variables, on the other hand, represent not only qualitative

differences but also relative rank order on the attribute. Religiosity, for example,

coded 1 for “not at all religious,” 2 for “slightly religious,” 3 for “moderately reli-

gious,” and 4 for “very religious,” is an ordinal variable. Given two people with

different religiosity scores, say 3 versus 4, we can say that the second person is

“more religious” than the first. How much more religious, however, cannot be

specified precisely.

Interval variables represent an even more precise level of measurement. The val-

ues of interval variables are distinguished by the fact that they convey the exact

amount of the attribute in question. Annual income in dollars, for example, is an

interval variable. Further, given two people with different values of income, say

$45,529.52 and $51,388.03, we can say not only that their incomes are qualitatively

different and that the second person is higher in income but can also specify pre-

cisely how much difference there is in their incomes: $5858.51, to be exact. Notice,

however, that if we collapse income categories into ranges, the variable loses its

interval-level specificity and becomes ordinal. For example, suppose that we have

income categories defined in $10,000 ranges and coded from 1 for [0–10,000) to 11

for [100,000 or more). Further, suppose that individual A is in category 5 [40,000–

50,000) and individual B is in category 6 [50,000–60,000). Certainly, we can say

that B has a higher income than A. But it is no longer possible to specify precisely

how much higher B’s income is.

Ratio variables are interval-level variables with a meaningful zero point. In this

case, it makes sense to speak of the ratio of two values. Income is also an example

of a ratio variable. If A makes $50,000 a year and B makes $100,000, B makes twice

as much income as A.

The other major criterion for distinguishing variables is whether they are discrete

or continuous. This distinction is central to the characterization of their probability

distributions (see below). Technically, a discrete variable is one with a countable

number of values. This is a technical concept which essentially means that the val-

ues have a one-to-one relationship with the collection of positive integers. Since

there are an infinite number of positive integers, discrete variables could conceivably

have an infinite number of values. In practice, discrete variables take on only a rela-

tively few values. For example, the number of children ever borne by U.S. women is

a discrete variable, taking on values 0, 1, 2, and so on, up to some maximum value

delimited by biological possibility, say 25 or so. Nominal variables are always dis-

crete, as are ordinal variables, since rank order can always be put in a one-to-one cor-

respondence with positive integers.

Continuous variables are those with an uncountable number of values. These

variables can, technically, take on any value in the real numbers, delimited only by

their logical range. Realistically, measurement limitations prevent us from ever actu-

ally observing continuous variables in practice. For example, the weight of humans

in pounds could conceivably take on any of an uncountably infinite number of val-

ues in the range [0–1000]. But limitations in instruments for weight measurement

mean that we probably cannot discern weight differences smaller than, say, .001

pound between two people. No matter. We will find it expedient to treat variables as
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continuous if they are at least ordinal in nature, if they have a sufficient number of

values, and if their probability distributions are not too skewed. Otherwise, they will

be treated as discrete. For this book, therefore, the discrete–continuous distinction is

the one that is most important.

Probability and Distribution Theory

In sampling cases from a population, we speak of the probability of observing a

particular value for a given variable, for the ith individual, where i equals 1, 2, . . . ,

n. The technical definition of probability is quite arcane (see, e.g., Chung, 1974;

Hoel et al., 1971). Intuitively, however, the probability of some outcome refers to

the relative frequency of its occurrence over an infinite repetition of the conditions

that made its observation possible. For example, if we toss an honest coin, the prob-

ability of observing a head is .5. This means that if we were to toss that coin an

infinite number of times, 50% of the outcomes would be heads. Since we will never

be able to conduct an infinite repetition of any experiment, probabilities are figured 

by a simple rule. For any event, E, the probability of event E, or P(E), is defined as

follows:

P(E) �

Hence, in the coin example, there is only one way to get a head, but there are two

possible outcomes of a coin toss: a head or a tail. The probability of a head is there-

fore �
1
2

�� .5.

Although in this book we will not be concerned with probability problems per se,

a few probability rules are important. First, for any event A, if P(A) is the probabil-

ity that A occurs, then 1 � P(A) is the probability that it doesn’t occur (or that any-

thing else occurs that isn’t A). Further, consider any two events, A and B. Then the

event (A and B), also denoted (A∩B), refers to an event that is both A and B simul-

taneously, while the event (A or B), also denoted (A∪B), refers to the event that at

least one of A or B occurs. For example, if A is “being married” and B is “having a

child,” (A and B) is “being married with a child,” while (A or B) is satisfied by any

of these three events: being married but childless, having a child outside marriage,

or being married with a child. The conditional probability of an event is the proba-

bility of an event under the restriction that some condition holds first. The condi-

tional probability of some event B, given that event A holds, is denoted P(B � A). For

example, the conditional probability of B given A, from above, is the conditional

probability of having a child given that the person is married. Two events are inde-

pendent if P(B) � P(B � A), and dependent otherwise. For example, the events “being

married” and “having a child” are independent if the probability of having a child is

unchanged by whether or not a subject is known to be married. In all likelihood,

these events are not independent, since the probability of having a child when one is

married is probably higher than the probability of having a child in general, called

the unconditional probability of having a child. If A and B are independent events,

number of ways that E can occur
����
total number of observable outcomes

APPENDIX: STATISTICAL REVIEW 19



P(A and B) � P(A)P(B). This generalizes to: If events Ai are independent, for i � 1,

2, . . . , n, then P(A1 and A2 and � � � and An) � P(A1)P(A2) � � � P(An).

Probability Distributions. More important for the current work are probability dis-

tributions. (Readers with a limited math background may want to review Appendix A,

Section I, before proceeding with this section.) A probability distribution for a ran-

dom variable X is an enumeration of all possible values of X, along with the proba-

bility associated with each value, should one collect one observation on X from the

population. Actually, this is too simple. In truth, we need to distinguish between the

distribution and density functions for the variable X. The distribution function for X,

denoted F(x), tells us P(X 
 x) for any value x of X. That is, the distribution function

tells us the probability of observing any value up to and including x, when we make

a single observation on X from the population. (I follow the statistical convention here

of using X to denote the variable generally and x to denote a specific value of the vari-

able, e.g., 3.2, 5.93, etc.)

What the density function tells us, on the other hand, depends on whether X is dis-

crete or continuous. If discrete, the density of x, denoted f(x), gives us the probabil-

ity of getting the specific value x of X when we sample one value of X from the

population. Figure 1.1 depicts a simple discrete density function for a variable X.
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There are two values of the variable: x1 and x2. The heights of the bars indicate the

probabilities of observing each value, where P(x1) � .4 and P(x2) � .6. If X is con-

tinuous, on the other hand, then f(x) gives us the density associated with the specific

value x of X when we sample one value of X from the population. The density is not

a probability, although it is closely related to one. Rather, it is the function’s value

when the function is evaluated at the point x. In that the function describes a curve

over the X-axis, the density is the point on the curve immediately above point x.

Figure 1.2 depicts a typical continuous density function. If X is truly continuous,

P(X � x) � 0. That is, there is zero probability of observing any particular value of

X, although there is some nonzero probability of observing X to fall within some

specific range of values. Thus, with continuous variables, we speak of P(a � X � b)

rather than P(X � a), where a and b are specific values of X. The connection of the

density to a probability lies in the fact that P(a � X � b) is the area under the curve

f(x) between the X-values of a and b. The higher the curve over a and b [i.e., the

greater the density over the interval (a,b)], the greater the area under the curve and

thus the greater the corresponding probability.

Discrete Density and Distribution Functions. Several discrete density functions will

be important in this volume. One example is the Bernoulli density. Suppose that for

any adult sampled from the population, we record whether he or she has ever been
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mugged. We call this variable X, with values 1 for “ever mugged” and 0 for “never

mugged.” Let us, further, denote the probability of being mugged, in general, as π.

This means that the probability of not having been mugged is 1 �π. Then the density

function for X can be written f(x) �πx(1 �π)1�x. This gives us the probabilities asso-

ciated with the two possible values of X, since f(1) �π1(1 �π)1�1
�π, and

f(0) �π0(1 �π)1 � 0
� 1 �π. We refer to this function as the Bernoulli density with

parameter π. Variables with a Bernoulli density have mean equal to π and variance

equal to π(1 �π). Once the parameter’s value is known, the probability of any value

of X is determined automatically. The Bernoulli distribution function, F(x), is partic-

ularly simple, since F(0) � P(X 
 0) � P(X � 0) � 1 �π and F(1) � P(X 
 1) � 1.0.

Another example of a discrete density is the Poisson. Its parameter will be denoted

by θ (theta), where θ� 0. For a discrete variable X taking on the values 0, 1, 2, . . . ,

the Poisson density is

f(x) � �
e�

x

θ

!

θ x

�.

Here, again, once θ is known, the probability of any value of X is determined by the

function. For example, if θ is 2.2, the probability of observing an X of 5 is

f(5) ��
e�2.2

5

�

!

2.25

�� .0476.

The Poisson distribution function that gives us P(X 
 x) is just the sum of the prob-

abilities for values 0, 1, 2, . . . , x. Hence the distribution function can be written

F(x) ��
x

j�0

�
e�

j

θ

!

θ j

�

A variable that is Poisson distributed has mean and variance both equal to θ. For dis-

crete density functions, in general, the sum of the probabilities associated with all

possible values of the variable is 1.0. This is easy to verify with the Bernoulli, since

π� (1 �π) � 1.0.

Continuous Density and Distribution Functions. Continuous density functions give

the densities associated with continuous variables. One of the simplest, for illustration,

is the exponential density, with parameter λ (lambda). For X � 0 and λ� 0, the density

is f(x) �λe�λx and its distribution function is F(x) � 1 � e�λx. Figure 1.3 depicts the

exponential density with λ� 2.2. So if λ� 2.2, say, then f(4) � 2.2e�2.2(4) 
� .00033. As

mentioned above, .00033 is not the probability of observing a value of 4. Rather, it is

the point on the curve f(x) �λe�λx directly above the value of 4 on the X-axis. On the

other hand, F(4) � 1 � e�2.2(4)
� .99985 is the probability that X is less than 4. [For con-

tinuous variables, P(X � 4) and P(X 
 4) are the same, since P(X � 4) � 0.] Here we see

that 4 is an unusually high value for this distribution, since we are almost certain to

observe values less than 4 if we sample from this distribution. Exponentially distributed

variables have mean equal to 1/λ and variance equal to 1/λ2.

A couple of remarks are in order at this point. First, the total area under the curve

of a continuous density function is scaled so that it always equals 1.0, as indicated
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in Figure 1.2. This is the continuous-variable equivalent of the probabilities sum-

ming to 1.0 for a discrete variable. Second, to find the probability that X is between

the values a and b in its range, we find the area under the curve between a and b.1

(In Figure 1.2, this is shown as the second shaded area under the curve.) Given the

distribution function, this is quite simple, since the area between a and b under any

density function f(x) is F(b) � F(a). For example, what is the probability that X is

between 2 and 4 for our exponentially distributed variable above? The answer is

P(2 
 X 
 4) � F(4) � F(2) � 1 � e�2.2(4)
� (1 � e�2.2(2)) � .01213.

Third, the exponential distribution function is called a closed-form function, since

it can be evaluated by means of an algebraic formula. Not all distribution functions

(or density functions, for that matter) are so easily evaluated, as we will see in the

next example.

One of the most important densities in all of statistics is the normal density. Its

graph, shown in Figure 1.4 for X � 0, is bell-shaped and is familiar to anyone who

has ever taken a statistics class. Perhaps not as familiar is the density function itself.

Its formula is

f(x) ��
σ�

1

2�π�
� exp�� �

1

2
� ��x �

σ

µ
��

2

�,
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where µ and σ are the parameters of the distribution and π is the geometric constant,

whose value is approximately 3.14159. Normally distributed variables have mean

equal to µ and variance equal to σ2. Many real-world continuous variables are approx-

imately normally distributed. Its importance, however, arises from its theoretical

significance. It turns out that the sampling distributions of effect estimators (i.e.,

regression coefficients) in regression models are usually asymptotically2 normal,

enabling statistical inference via t or z tests. To find the density for the value of a nor-

mally distributed variable, we must first specify µ and σ. For example, suppose that

µ is 3 and σ is 1.5. Then the density associated with an X-value of 4.9 is

f(4.9) ��
1.5�2�(

1

3�.1�4�1�5�9�)�
� exp�� �

1

2
� ��4.9

1.

�

5

3
��

2

�� .1192.

The distribution function for the normal distribution is not closed form. That is,

although we can easily evaluate the density at any value x for a normally distributed

variable, finding F(x) requires finding the area to the left of x under the curve (as

indicated in the figure). The distribution function, F(x), is

F(x) �	x

�∞

�
σ�

1

2�π�
� exp�� �

1

2
� ��

t�

σ

µ
��

2

� dt
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This expression, read

“the integral of �
σ�

1

2�π�
� exp�� �

1

2
� ��

t�

σ

µ
��

2

� from negative infinity to x,”

indicates the area under the normal curve to the left of x. As there is no closed-form

solution to this integral, it must be approximated using numerical techniques.

An especially important normal distribution is the standard normal distribution,

which has a mean of zero and a standard deviation of 1. Given the parameters µ and

σ, any normally distributed variable X can be made to have the standard normal distri-

bution simply by converting X to standard-score form via the formula Z � (X �µ)/σ.

The density and distribution functions for the standard normal distribution have a spe-

cial notation: φ(z) for the density function and Φ(z) for the distribution function. The

functions are

φ(z) � �
�

1

2�π�
� e(�1/ 2)z2

Φ(z) �	z

∞

�
�

1

2�π�
� e(�1/ 2)t2dt.

Because areas under the standard normal density curve have been computed and

tabled, it is a simple matter to find P(a � X � b) for any normally distributed variable,

X. We simply convert the problem into a comparable problem involving areas under

the standard normal curve. For example, suppose that X is normally distributed with

mean 3 and standard deviation 1.5. If we sample one observation from this distribu-

tion, what is the probability that its value will be between 4.9 and 5.5? Now if we

were to standardize all of the X-values by subtracting 3 and dividing by 1.5, the result-

ing variable, Z, would have the standard normal distribution. The values 4.9 and 5.5,

also converted to Z-scores, would be (4.9 � 3)/1.5 � 1.27 and (5.5 � 3)/1.5 � 1.67.

Thus, the problem becomes: What is the probability of a standard normal variable

being between the values of 1.27 and 1.67? As in the example of the exponential dis-

tribution above, P(1.27 � X � 1.67) � F(1.67) � F(1.27), or, using the special nota-

tion for the standard normal distribution function, Φ(1.67) �Φ(1.27). Using a

standard normal table, we have Φ(1.67) � .9525, while Φ(1.27) � .898. The answer

is, therefore, .9525 � .898 � .0545.

Expectation, Variance, Covariance, and Correlation. Several characteristics of the

distributions of variables in the population are important in statistical analyses. I dis-

cuss four in this section: expectation, variance, covariance, and correlation.

Expectation. The expected value of X, denoted E(X), is the mean of X in the popu-

lation. For a discrete variable, X,

E(X) ��
x

x f (x).
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That is, the population mean consists of a weighted sum (see Section II.D in Appendix

A for an explanation of weighted sums) of the X-values, where the weights are the den-

sities, or probabilities, associated with each value. For a continuous variable, X,

E(X) �	
x

x f (x) dx.

In this case, the mean is the integral of x times f(x) over the range of X-values. This

is simply the continuous counterpart to the definition of E(X) for discrete variables.

In either case, E(X) is just the population mean, or arithmetic average, of X.

Variance. The variance of X, denoted V(X), is defined as V(X) � E[X � E(X)]2. The

variance is the mean-squared deviation of X from its expected value and indicates

how spread out the X-values are around their mean. The standard deviation, denoted

SD(X), is the square root of the variance and is loosely interpreted as the average dis-

tance from the mean of the values in the distribution.

Covariance. The definition of covariance is given elsewhere (see Section III.A of

Appendix A) but will be repeated here. The covariance of any two variables, X and

Y, is Cov(X,Y) � E(X �µx)(Y �µy), where µx� E(X) and µy� E(Y ). The covariance

is the average cross-product of X, deviated from its mean, times Y, deviated from its

mean. The covariance measures the extent to which two variables vary together.

Positive covariances suggest that higher values of X are associated with higher val-

ues of Y. Negative covariances, on the other hand, indicate that higher values of X

are associated with lower values of Y.

Correlation. As a descriptive measure of joint variation, the covariance is inade-

quate, since its value depends on the units of measurement of X and Y. A better

descriptive measure is the correlation coefficient, denoted ρxy. Its formula is

ρxy ��
�

C

V�
o

(

v

X�
(X

)V�
,Y

(

)

Y� )�
�.

The correlation is a “standardized” covariance, constructed so as to fall in the interval

[�1,1], with an absolute value of 1 indicating perfect correlation and a value of zero

indicating no correlation. Another way to view the correlation is that it is the covari-

ance between two standardized variables. Covariance and correlation are designed to

detect linear association. Hence, either may be zero if two variables vary together in a

systematic but nonlinear fashion.

Sampling and Sampling Distributions. Most of the science of statistics is concerned

with making inferences about a population based on studying only a small subset of

the population, the sample. Samples come in two major “flavors”: probability and

nonprobability. Probability samples are those in which each member of the popula-

tion has some known a priori probability of being selected into the sample.

Nonprobability samples, as the name suggests, are those in which the probability of

given population members being selected into the sample cannot be specified ahead
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of time. Inferential statistics is based solely on probability sampling. It is the only

type of sampling that lends itself to theoretical specification of the sampling distribu-

tions of statistics (discussed below), which form the basis of statistical inference. The

simplest type of probability sample is the simple random sample, in which each mem-

ber of the population has the same chance of being selected into the sample. If n cases

are to be selected from a population of size N, each population member has a proba-

bility of selection of n/N.

Sample statistics such as the sample mean and variance of a variable (y� and s2,

respectively) or a sample regression coefficient (b) indicating the effect of a predictor

on an outcome are estimates of corresponding population parameters. Let θ denote

any population parameter, and θ̂ the sample estimator of that parameter. In making

inferences about θ based on the observed value of θ̂, we need to understand the nature

of the relationship between the two. The sampling distribution of a statistic is critical

to this enterprise: It is a probability distribution for a sample statistic. That is, it is an

enumeration of all possible values of θ̂, together with their associated probabilities of

occurrence, that would be obtained through an infinite repetition of collecting sam-

ples of size n from that population and recomputing θ̂. Although we collect only one

sample and compute one value of θ̂ in practice, it is important to understand that the

full distribution of θ̂ could be generated for any statistic via repeated sampling. The

importance of this distribution is that it indicates the probability that θ̂ is within a

specified “distance” from θ. It therefore places bounds on the degree to which we are

in error in using θ̂ as an estimate of θ or in using θ̂ to test a hypothesis about θ.

Table 1A.1 presents a very simple illustration of the sampling distributions for 

the sample mean, y�, and the sample variance, s2. As is evident in the table, the “pop-

ulation” consists of only five observations: A, B, C, D, and E. (The population is 

artificially small to keep the number of different samples manageable.) For each

observation, a value is recorded for the variable Y. The mean of Y, or µ, for this 

population is 3 (as is easily verified), and the variance of Y, or σ2, is 2. [This is also

easily verified, keeping in mind that for the population, the variance of Y is σ2
�

�(Y �µ)2/N, where N is the population size.] If we draw samples from this popula-

tion of n � 3, without replacement, there are 10 different possible samples that can be

drawn. These are shown in the table along with the Y-values of the sample members

and the sample mean and variance for each sample. The RF columns indicate the rel-

ative frequency of occurrence of each value of the sample mean and variance, respec-

tively. These columns represent the sampling distributions of each statistic, since they

indicate the probabilities associated with each different value of the sample statistics.

For the sample mean, it is clear that when drawing a sample of size 3 from this

population, certain values of y�—such as 3.33, 3, and 2.67—are twice as likely as

other values. Similarly, the most likely value for σ2 is 2.33. We can also compute the

average of the 10 sample means, denoted E(y�). We find that it is 3, the same as the

population mean of Y. This is no accident, since it is always true that E(y�) �µ. This

means that the sample mean is an unbiased estimator of the population mean—its

average value equals the population parameter. The average sample variance, or

E(s2), is 2.5, which in this case is not equal to the population variance of 2. However,

under ordinary sampling conditions with infinite (or approximately infinite) popula-

tions, it is the case that E(s2) �σ2. With finite populations we must apply a finite
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population correction to the sample variance to make it an unbiased estimator of σ2.

That correction is (N � 1)/N. Thus,

E��N N

� 1
�s2�� �

N

N

� 1
� E(s2) �σ2.

In this example, we see that

E ��N N

� 1
�s2�� E ��5 �

5

1
�s2�� �

4

5
� E(s2) � �

4

5
� (2.5) � 2 �σ2.

Sampling from a Population vs. Sampling to a Population. Probability sampling

from a target population allows inferences from the sample back to that target popu-

lation. As we will see below, this is because probability sampling allows us to spec-

ify the sampling distributions of sample statistics and their relation to population

parameters. What inferences can be made with nonprobability samples? Some would

suggest that no inferences are possible. Nevertheless, as the reader is fully aware,

researchers use nonprobability samples to make population inferences all the time.

Data are frequently taken from convenience samples of students or members of vol-

untary organizations, analyses are performed, and results are discussed in terms of

statistical significance or nonsignificance. Or, experimenters randomly assign volun-

teers to treatment and control groups and then outline which group differences are
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Table 1A.1 Sampling Distribution for the Sample Mean and Sample Variance, Based

on Repeated Sampling of Size n �� 3 from a Population with Five Cases

Population Elements

Case Y

A 2

B 3

C 1

D 5

E 4

Sampling Distribution (for n � 3)

Sample Members Y y� RF s2 RF

1 A,B,C 2,3,1 2 .1 1 .3

2 A,B,D 2,3,5 3.33 .2 2.33 .4

3 A,B,E 2,3,4 3 .2 1 .3

4 A,C,D 2,1,5 2.67 .2 4.33 .2

5 A,C,E 2,1,4 2.33 .1 2.33 .4

6 A,D,E 2,5,4 3.67 .1 2.33 .4

7 B,C,D 3,1,5 3 .2 4 .1

8 B,C,E 3,1,4 2.67 .2 2.33 .4

9 B,D,E 3,5,4 4 .1 1 .3

10 C,D,E 1,5,4 3.33 .2 4.33 .2



“significant.” In either case, inferences are being made to some larger population of

cases. The most conservative position would be that such “inferences” are meaning-

less since the data were not drawn in a probabilistic fashion from a known popula-

tion. However, it is unlikely that any given sample, however haphazardly selected, is

not representative of a larger group of cases. The question is: What larger group?

Some idea of the population represented by a nonprobability sample can be

inferred from the concept of repeated sampling. For example, suppose that I wish to

do an opinion survey about an important issue on my campus. To collect a sample,

I go to the university library when it opens on Saturday morning and sample the first

30 students who come in. Clearly, this is not a probability sample from the popula-

tion of students at the university, since only certain students patronize the library,

especially on Saturday morning. Moreover, even if we identify the population of stu-

dents who ever patronize the library on Saturday, this sample has not been selected

randomly from that population. However, suppose that we repeat this sampling tech-

nique next Saturday, and the Saturday after that, and so on, indefinitely. Ultimately,

this approach would generate a “population” of cases consisting of all unique stu-

dents encompassed by the collection of all such samples. The first (and typically,

only) sample we take could then be considered a random sample from this popula-

tion. I refer to this scenario as sampling to a population rather than sampling from a

population. This, of course, is a hypothetical population whose complexion could

only be hinted at from the sociodemographic makeup of the sample. Nevertheless, it

does represent a larger group to whom results from nonprobability samples might be

generalized and for whom statistically “significant” results might apply.

Parameter Estimation and Statistical Inference

Sample statistics such as y�, s2, or b are estimates of corresponding population param-

eters. In this section I discuss the desirable properties of estimators and common

techniques for constructing estimators. I also consider inferential procedures for

parameters, such as interval estimation and hypothesis tests. (Readers unfamiliar

with differential calculus may want to review Section IV of Appendix A before con-

tinuing with this section.)

Least Squares. There are a number of techniques for constructing sample estima-

tors of parameters, but one of the most commonly used is the technique of least

squares. The least squares estimator of a parameter θ is that number, θ̂, that results

in the smallest amount of prediction error when θ̂ is used in predicting the individ-

ual data values—the X’s. Prediction error is measured by the squared distance of θ̂

[or g(θ̂), a function involving θ̂] from the data values (thus the appellation “least

squares”). Hence, the least squares estimator of θ is the θ̂ that minimizes �(x � θ̂)2

(or, more generally, �[x � g(θ̂)]2). To illustrate, suppose that we draw a random sam-

ple from a normally distributed population of X-values whose population mean is µ.

To estimate µ, we reason as follows. The best estimate should be the single number

that is “closest” to the collection of sample X’s. We use as our measure of closeness

the squared distance from that number to each X-value. Thus, we take as our esti-

mator of µ the value µ̂ that minimizes �n

i�1 
(xi � µ̂)

2. The solution, from calculus,
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involves finding the value of µ̂that makes the first derivative of this sum, with respect

to µ̂, equal to zero:

�
d

d

µ̂
� ��(x � µ̂)2�� �2�(x � µ̂).

�2�(x � µ̂) � 0

if

�(x � µ̂) � 0

or

�x ��µ̂� 0

or

�x � nµ̂

or

µ̂� �
�
n
x
�.

Thus, the least squares estimator of the population mean is the sample mean, X�.

Maximum Likelihood. Another estimation technique is the one that we will employ

for many of the models presented in this book. In estimation via maximum likeli-

hood, we take θ̂ as the value of θ, among all possible values of θ, that would have

rendered the sample data most likely to be observed. To illustrate this technique, I

employ the following example. Suppose that X, a positive continuous variable, has

an exponential distribution, with parameter λ, where λ� 0. The density function for

the ith case is therefore f(xi) �λe�λxi. If we sample n observations randomly from

this population, the joint density function for the n observations on X is the product

of the n individual density functions. This follows from the fact that the observations

are independent, and the rule (see above) that the probability of independent events

is the product of their individual probabilities (densities generally follow the same

probability rules as probabilities). So if we let the vector x represent the collection

of particular X-values observed in our sample, the joint density of x is

f(x) �

n

i�1

λe�λxi.

Given the value of λ, the joint density of x allows us to calculate the density associ-

ated with any particular collection of X-values. On the other hand, given a particular

collection of X-values, f(x) is actually a function of λ. Viewed from this perspective,

we can ask: Which value of λ makes f(x) as large as possible and therefore makes
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the data most likely to have been observed? The function is then referred to as the

likelihood function for the parameter, given the data, and denoted L(λ � x). The value

of lambda that maximizes it is called the maximum likelihood estimate of λ and

denoted λ̂ .

Now it turns out that whatever maximizes the likelihood function also maximizes

the log of the likelihood function. As the log-likelihood, denoted ln L(λ � x) or �(λ � x),

is more mathematically tractable than the likelihood, we seek to maximize this quan-

tity. That is, we maximize

�(λ � x) � ln�

n

i�1

λe� λxi�� ln�λne�λ�x� � n lnλ�λ�x.

To find the λ that maximizes this quantity, we compute the first derivative of this

function with respect to λ and then solve for the λ that makes it equal to zero. Thus,

�
d

d

λ
� (�(λ � x)) � �

d

d

λ
� �n lnλ�λ�x�� �

λ

n
� ��x

and

�
λ

n
���x � 0 whenever �

λ

n
� ��x

or

λ� �
�
n

x
�.

Thus, n/�x is the maximum likelihood estimate (MLE) for λ. Now by the invariance

property of MLEs (Bickel and Doksum, 1977), if θ̂ is the MLE for θ, then g(θ̂) is the

MLE for g(θ), for any function g(�). In that the mean of an exponentially distributed

variable is 1/λ, the MLE for the mean of X in these data is

Ê (X) � �
λ̂

1

.
�� �

n�
1

� x
� � �

�
n

x
� � x�.

Here we see that the sample mean of the X’s, x�, is the maximum likelihood estima-

tor of the population mean for exponentially distributed data.

Asymptotic Properties of MLEs. Maximum likelihood estimators have several

asymptotic, or large-sample, properties that make them especially desirable estimators

(Bollen, 1989). First, they are asymptotically unbiased. What does this mean? The bias

of an estimator θ̂ for a parameter θ, denoted B(θ̂), is B(θ̂) � E(θ̂) �θ. An estimator θ̂

is unbiased for θ if E(θ̂) �θ. That is, an estimator is unbiased for a parameter if its

average value, taken over its sampling distribution, equals the parameter. MLEs have
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this property asymptotically; that is, as n tends to infinity, E(θ̂) converges to θ. Second,

they are consistent. Consistency is a very important property of estimators. We say that

θ̂ is consistent for θ if and only if limn→∞ P(� θ̂�θ � �ε) �1 for every ε� 0. This for-

mulation says that a consistent estimator is one for which the probability that it is arbi-

trarily close to the parameter converges to 1 as the sample size increases without

bound. Intuitively, this means that the sampling distribution of θ̂ becomes more and

more concentrated over θ as n increases, so that ultimately, as n tends to infinity, the

sampling distribution is entirely concentrated in a “spike” centered directly over the

parameter. Consistent estimators are not necessarily unbiased in small samples, but 

the analyst is assured that as he or she uses a larger and larger sample, the estimator is

getting closer and closer in value to the parameter of interest. Also, if θ̂ is consistent

for θ, we say that the probability limit, or plim, of θ̂ is θ (Greene, 2003). An important

theorem connected to the probability limit is the Slutsky theorem: For a continuous

function g(θ̂) that is not a function of n, plim g(θ̂) = g(plim θ̂) = g(θ), for θ̂a consistent

estimator of θ (Greene, 2003). As an example, suppose that µ is the population mean

of a continuous variable, Y, and we wish to estimate ln µ. In that x� is consistent for µ,

our consistent estimator of ln µ is ln x�, since plim (ln x�) � ln (plim x�) � ln µ. Third,

MLEs are asymptotically efficient, which means that for large samples they achieve the

smallest sampling variance among consistent estimators. Finally, they are asymptoti-

cally normal. This means that as n tends to infinity, their sampling distributions

become more and more normal, enabling statistical inferences using the standard nor-

mal distribution.

Sampling Distributions of Estimators. We have seen a simple example above of

sampling distributions for the sample mean and sample variance. These were gener-

ated by simple enumeration, since the population was artificially small. In practice,

populations are infinite, or nearly so, and enumerating all possible samples is not

feasible. However, various limit theorems in statistics can be drawn on to specify the

sampling distributions of many sample statistics under certain conditions. For exam-

ple, the central limit theorem (CLT) holds that a weighted sum of random variables

is normally distributed as n tends to infinity, regardless of the distributions of the

original variables (Hoel et al., 1971). That is, the CLT maintains that if Xi for i � 1,

2, . . . , n are independent, identically distributed random variables each having mean

µ and variance σ2, and wi, i � 1, 2, . . . , n, constitute a set of constants, the sum

Sn � �n

i�1
wiXi converges in distribution to a normal distribution as n tends to infinity,

regardless of the distribution of the Xi. Moreover, E(Sn) �µ�n

i�1
wi and V(Sn) �

σ2�n

i�1
wi

2. As an example of the application of this theorem, consider the distribu-

tion of X�, the sample mean of the Xi, where E(Xi) �µ and V(Xi) �σ2. Now X� �

�n

i�1
Xi /n, which is in the form �n

i�1
wiXi, where wi � 1/n for all i. For large n (which

in this case means an n of about 30 or more; see Agresti and Finlay, 1997), accord-

ing to the CLT, X� is approximately normally distributed, with mean equal to

µ�
n

i�1

wi �µ�
n

i�1

�
1
n

� �µ�
n
n

� �µ.
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Therefore, X� is an unbiased estimator of µ. Moreover,

V(X�) �σ2�
n

i�1

wi
2
�σ2�

n

i�1

�
n

1
2� �σ2

�
n

n
2� � �
σ

n

2

�.

Thus, the standard deviation, or standard error, of the sample mean is σ/�n�.

Knowing the shape and parameters (e.g., the mean and variance) of the sampling

distribution of a statistic enables inferences to be made about the corresponding

population parameter. Statisticians conduct two major types of inferences: interval

estimation and hypothesis testing.

Interval Estimation. The sample mean, X�, is a point estimate of the population

parameter, µ. However, we would not expect X� to actually equal µ. In fact, given

that X� is a continuous variable in large samples (since it has a continuous density—

the normal), we know that P(X��µ) � 0. On the other hand, we can use the sam-

pling distribution of X� to construct an interval of numbers within which we can be

highly confident that µ falls. For example, a 95% confidence interval for µ is an

interval of numbers of the form (a,b) that we are 95% confident contains the true

value of µ. This means that if we were to engage in repeated sampling of size n

from the population of X-values and construct this interval based on each sample,

95% of all such intervals would contain µ. The formula for the 95% large-sample

confidence interval for µ is

X�  1.96 �
�

s

n�
�,

where s is the sample standard deviation of X. This formula has the following

justification. Assuming a random sample of n � 30 from the population of X-values,

we know by the CLT that X� is normally distributed with mean µ and standard devi-

ation σ/�n�. This means that the variable Z � (X��µ) /(σ/�n�) has the standard nor-

mal distribution. We also know that for any variable Z with a standard normal

distribution, P(�1.96 � Z � 1.96) � .95. Putting these two facts together, we have

that

P ��1.96 ��
σ

X�
�
�

�
µ

n�
�� 1.96�� .95.

Notice that we have an inequality inside the probability statement. At this point, a

brief word is appropriate regarding inequalities. Adding or subtracting the same

number from all sides of an inequality does not change the inequality. Moreover,

multiplying or dividing by the same positive number does not change the inequality.

However, multiplying or dividing by a negative number reverses the inequality. With

these principles in mind, we manipulate the inequality inside the probability state-

ment above so as to isolate µ in the center of the inequality:

P ��1.96 ��
σ

X�
�
�

�
µ

n�
�� 1.96�� .95
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implies that

P ��1.96 �
�
σ

n�
� � X� �µ� 1.96 �

�
σ

n�
��� .95

or

P�1.96 �
�
σ

n�
� �µ� X� � �1.96 �

�
σ

n�
��� .95

or

P�X� � 1.96 �
�
σ

n�
� �µ� X� � 1.96 �

�
σ

n�
��� .95,

or, reorienting the expression,

P�X� � 1.96 �
�
σ

n�
� �µ� X� � 1.96 �

�
σ

n�
��� .95.

Thus, employing the CLT we have arrived at a formula for creating an interval of

numbers that we can be 95% confident contains the true value of µ. In that s is a con-

sistent estimator of σ, we substitute s for σ in this formula when computing the inter-

val using a large sample.

Hypothesis Tests. Although confidence intervals are extremely informative, social

and behavioral scientists tend to rely more on hypothesis testing to make inferences

about population parameters. A hypothesis is a tentative statement about the value

of one or more population parameters. In fact, we typically pose two competing

hypotheses. The research or alternative hypothesis is the one the researcher usually

believes to be true. We marshal evidence in favor of the research hypothesis by

showing that the sample evidence is inconsistent with a contrary hypothesis, the null

hypothesis. Together, the null and research hypotheses are mutually exclusive state-

ments that cover the entire parameter space. For example, suppose we believe that

the population mean of a continuous variable X is greater than 5. To test this idea,

we pose the opposite: that the population mean is, at most, equal to 5. If we can show

that the empirical (i.e., sample) evidence is inconsistent with this opposite position,

we tend to accept the research hypothesis. Formally, the hypotheses are as follows.

The null hypothesis is H0: µ
 5; the research hypothesis is H1: µ� 5. Notice that

the hypotheses are mutually exclusive as well as exhaustive: They subsume all pos-

sible values that the parameter can take.

There are two ways to proceed with a test. The first is to decide in advance how

willing we are to make an incorrect decision against H0 when it is, in fact, true.

Suppose that we are willing to take a 5% chance of being wrong when we reject H0.

This .05 probability of being wrong is called the alpha level for the test, denoted α.

It is the probability of rejecting H0 when it is true for a particular test. This would be

an incorrect decision and is called a type I error. Suppose, further, that we have taken
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a random sample of 100 observations on X and have the following sample statistics:

x�� 5.8, s � 4. Now since our sample is large, we know (from the CLT) that the sam-

pling distribution of X� is approximately normal and centered over µ and has a

standard deviation of approximately 4/�1�0�0�, which equals .4. We therefore reason

as follows. We want a rejection rule for H0 such that P(reject H0 � H0 true) is only .05.

If H0 is true, then µ is, at most, 5. This value is the null-hypothesized value of µ,

denoted µ0. Let’s suppose that H0 is true and that µ is, in fact, 5. Then X� has a nor-

mal distribution centered over 5, with a standard deviation of .4. We will want to

reject H0 based on the distance of our sample mean from this value. In particular, if

our sample mean is too far above this value to be likely, given H0, we reject H0 as

implausible. We choose a critical value of X�, denoted X�cv, as our benchmark, so that

we reject H0 if X� � X�cv. Since we want to take only a 5% chance of being wrong, we

want to choose a critical value of the sample mean such that P(X�� X�cv � H0

true) � .05. That is, we want

P��X�s�
�

�
µ

n�
0

� ��
X�
s
c

�
v

�
�

n�
µ0

��� P�Z ��
X�
s
c

�
v

�
�

n�
µ0

���.05.

Since P(Z � 1.645) � .05, this implies that (X�cv� 5)/.4 must equal 1.645, or that X�cv

must equal 5 � 1.645(.4) � 5.658. Hence, X�cv� 5.658, and we reject H0 if X� � 5.658,

knowing that in doing so, there is only a 5% chance of rejecting an H0 that is true.

The second way to proceed with the test is much simpler. We simply ask: What

is the probability of getting sample evidence at least as unfavorable to H0 as we have

obtained if H0 were actually true? This probability, called the p-value for the test,

represents the smallest α level at which H0 could be rejected for a given test. The 

p-value is therefore

P(sample evidence at least as unfavorable to H0 as obtained � H0 true)

� P(X� � 5.8 � H0 true)

� P��X� .

�

4

5
� � �

5.8

.4

� 5
��

� P(Z � 2) � .0228.

We then compare the p-value to the α level. If p 
α, we reject H0 and accept H1. If

not, we fail to reject H0. In this case, if α is set at .05, then .0228 � .05, so we reject

H0 and conclude that the mean is greater than 5. By reporting the actual p-value

instead of simply whether H0 is rejected, however, we indicate the strength of the

evidence against H0. In the current case, the evidence against H0 is sufficient to reject

it but is not particularly strong. However, if p were, say, .001, the chances of getting

the current sample mean, if H0 is true, would only be 1 in 1000, constituting sub-

stantially stronger evidence against the null.
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Power of Hypothesis Tests. When H0 is rejected, it is because the sample evidence is

considered very unlikely to occur were H0 true. However, if we do not reject H0,

should we “accept” it as true? The answer is no. Generally, we do not accept H0

despite failing to reject it. The primary reason for this is that failing to reject H0 is

more a statement about our ability to detect departures from the null-hypothesized

value of the parameter (i.e., µ0) than about the true state of nature. That is, H0 may be

false, but our test may not have enough power to detect it. The power of a test is the

probability that we will reject H0 using the test when H0 is false. As an example, con-

sider the fictitious sampling problem just discussed. Suppose that we had gotten a

sample mean of 5.4 instead of 5.8. Then the p-value for the test would have been

p � P(X� � 5.4 � H0 true)

� P�Z ��
5.4

.4

� 5
��

� P(Z � 1) � .1587.

Employing conventional α levels, such as .05 or even .1, would still result in a failure

to reject H0. However, what if µ is really 5.2? Then, of course, the true sampling dis-

tribution of X� is still normal with a standard deviation of .4, but it is centered over 5.2

instead of 5. However, we are operating under the assumption that µ is 5 (hypothesis

tests are always conducted under the assumption that H0 is true); hence our critical

value of X� is still 5.658. Let’s consider, then, the probability of making a correct deci-

sion (i.e., reject H0) in this case, using α� .05:

P(correct decision �µ� 5.2) � P(decision is to reject H0 �µ� 5.2)

� P(X� � 5.658 �µ� 5.2)

� P�Z ��
5.658

.4

� 5.2
��� P(Z � 1.145) � .1261.

Thus, the power of the test under this condition is only .1261. That is, there is only

about a 13% chance of detecting that the null hypothesis is false in this case. If, on

the other hand, µ were really 6.2, the probability of correctly rejecting H0 would be

P(X� � 5.658 �µ� 6.2) � P�Z ��
5.658

.4

� 6.2
��

� P(Z � �1.355) � .9123.

In this case, there is a greater than 90% chance that we will detect that H0 is false.

As these extremes show, because we have no idea what the true value of the param-

eter is, it would be unwise to accept H0 as true simply because we have failed to

reject it.

36 INTRODUCTION TO REGRESSION MODELING



More Complex Hypotheses. Hypotheses are always statements about the values of

one or more population parameters. Although this definition sounds restrictive, it’s

not. Even complex hypotheses can be distilled down to statements about parameter

values. For example, suppose I hypothesize that open disagreements in marriage

have a stronger positive effect on depressive symptomatology to the extent that indi-

viduals are less happily married. How do we boil this down into a statement about

a parameter? As we will see in Chapter 3, this hypothesis can be tested with the fol-

lowing regression model. If Y is a depressive symptomatology score, X1 is open dis-

agreement, and X2 is marital happiness, all continuous variables measured for a

sample of n cases, we can estimate the following regression model: E(Y) �β0�

β1X1�β2X2�β3X1X2, where X1X2 is the product of X1 with X2. It turns out that our

research hypothesis can be restated in terms of one model parameter, β3. In particu-

lar, the research hypothesis is β3 � 0.

NOTES

1. Finding the area, A, under a curve, f(x), involves the use of integral calculus.

The process of integration is, intuitively, as follows. To find the area under f(x)

between a and b, we divide the area into n equal-sized rectangles which are con-

tained completely within the area between f(x) and the X-axis. These are called

inscribed rectangles. The area of a rectangle is the base of the rectangle times

its height. The bases of each rectangle are the same: (b � a)/n. The height is the

point at which the rectangle first touches the curve from beneath. If the X-value

corresponding to that point is denoted x*, the height of the rectangle at that

point is f(x*). Hence, f(x*) times (b � a)/n is the area of each inscribed rectan-

gle. To approximate the area under the curve, we sum up all of the rectangles

under f(x) from a to b. Although this approximation is quite crude, we can get

a better approximation by increasing n and repeating the procedure. This cre-

ates a more fine-grained subdivision of the area in question into narrower rec-

tangles, which fill in more of the gaps under the curve. Once again, we compute

the sum of the rectangles to refine our estimate of the area. If we repeat this pro-

cedure with ever-larger values of n, the resulting sum of the rectangles eventu-

ally converges to the area in question, as n tends to infinity.

2. Asymptotically refers to the behavior of a sample statistic as the sample size

tends to infinity. Asymptotic results usually provide very good guidelines for

what we can expect when n is large. How “large” n has to be for asymptotic

results to be approximately correct must be established on a case-by-case

basis, via simulation.
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C H A P T E R 2

Simple Linear Regression

CHAPTER OVERVIEW

This chapter explicates the simple linear regression (SLR) model and its application to

social data analysis. I begin by discussing some real-data examples of linear relationships

between a dependent variable, Y, and an explanatory variable, X. It turns out that many

relationships between two continuous variables are approximately linear in nature, ren-

dering linear regression an ideal approach to analysis, at least as a beginning. I then intro-

duce the model formally and discuss its interpretation as well as the assumptions required

for estimation via ordinary least squares (OLS). This is followed by an explanation of

estimation using OLS, the most commonly used estimation technique. I then consider

several theoretical properties of the slope estimate necessary for inferences about the

relationship of X with Y. The chapter concludes with a discussion of model evaluation.

In particular, I consider various means of checking regression assumptions as well as

assessing the discriminatory power and empirical consistency of one’s model. This chap-

ter contains a fair amount of formal development of properties of the model. The reason

for this is that such developments readily generalize to the case of multiple regression but

are much simpler to do with only one predictor. This obviates the need to resort to matrix

algebra, as would be the case with several predictors in the model. Nevertheless, readers

with a limited math background will find it very helpful to review Sections I.P, II, and IV

of Appendix A in tandem with reading this chapter. There you will find a tutorial on func-

tions—in particular, linear functions—as well as tutorials on summation notation and

derivatives. These skills will enhance your assimilation of the material in this chapter.

LINEAR RELATIONSHIPS

Recall the introductory statistics data described in Chapter 1. One of the questions

frequently asked of an instructor in introductory statistics is: “How good does my
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math background have to be to do well in the class?” One answer to the question

might be to examine how well math proficiency “predicts” or “explains” student

performance on the first exam. Intuitively, given that statistics is a form of applied

mathematics, one expects that students with stronger math skills should perform

better on the first exam than those whose skills are weaker. Two approximately con-

tinuous variables have been recorded for 213 students who took the first exam. The

first is their score on a math diagnostic quiz administered to all students on the first

day of class. The quiz consists of 45 questions, with the score being the number of

items answered correctly. Therefore, the score range is 0 to 45. This quiz roughly

gauges a student’s proficiency in math and is considered the explanatory variable,

X, in this example. (The explanatory variable is also referred to as the predictor,

the regressor, the independent variable, or the covariate.) The response variable

(also called the outcome, the criterion, or the dependent variable) is the score on

the first exam, which is administered during the sixth week of class. Its range is 0

to 102.

Figure 2.1 is a scatterplot of the (x,y) points for the 213 students, where X is

math diagnostic score and Y is score on exam 1. There is a fairly clear linear

upward trend in the scatter of points. Those with relatively low scores on the diag-

nostic (the minimum score was 28) tend to have relatively low scores on exam 1.
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Figure 2.1 Scatterplot of Y (score on the first exam) against X (score on the math diagnostic) for 213

students in introductory statistics.



As the diagnostic takes on higher values, the scatter of points migrates upward.

Those scoring in the middle 40s on the diagnostic, for example, have the highest

exam performance, on average. This upward trend is nicely represented by the

fitted line drawn through the center of the points. For now, the interpretation of

this line is that it is the best-fitting straight line through the scatter of points were

we to attempt to fit a straight line through them. (The meaning of best fitting is

explained in more detail below.)

As another example we consider the couples dataset. Partners’ attitudes about gen-

der roles can sometimes be a source of friction for a couple, particularly when it

comes to sharing housework or other necessary tasks. Family sociologists have there-

fore studied the factors that affect whether partners’ attitudes are more traditional as

opposed to more modern. One such factor, of course, is education. One would expect

that couples with more years of schooling would tend to have more modern, or egal-

itarian, attitudes toward gender roles compared to others. A series of items asked in

the NSFH allows us to tap gender-role attitudes. Four were included in the couples

dataset and were asked of each partner of the couple. An example item asked for the

extent of agreement with the statement: “It’s much better for everyone if the man

earns the main living and the woman takes care of the home and family.” Response

choices ranged from “strongly agree,” coded 1, to “strongly disagree,” coded 5. The

other items were all similarly coded so that the high value represented the most mod-

ern, or egalitarian, response. To create a couple modernism score, I summed all eight

items for both partners. The resulting scale ranged from 8 to 40, with the highest score

representing couples with the most egalitarian attitude. Figure 2.2 shows a scatterplot

of Y � couple gender-role modernism plotted against male partner’s years of school-

ing completed (X) for the 416 couples in the dataset. The linear trend is again evident

in the scatter of points, as highlighted by the fitted line.

As a third example, I draw on the GSS98 dataset. Among the questions asked of

1515 adult respondents in this survey was one about sexual activity. In particular,

the question was: “About how often did you have sex during the last 12 months?”

Response choices were coded 0 for “not at all,” 1 for “once or twice,” 2 for “about once

a month,” 3 for “2 or 3 times a month,” 4 for “about once a week,” 5 for “2 or 3 times

a week,” and 6 for “more than 3 times a week.” Although this variable is not truly con-

tinuous, it is ordinal, and has enough levels—five or more is enough—to be treated as

“approximately” continuous. This approximation is especially tenable if n is large, as

it is for these data, and if the distribution of the variable is not too skewed. Regarding

the latter condition, the percent of people giving each response—0, 1, 2, 3, 4, 5, 6—

is 22.2, 7.5, 11.3,15.4, 18.3, 19.7, and 5.4, respectively. This represents an acceptable

level of skew.

What predicts sexual activity? Several obvious determinants come to mind, such

as age and health. But what about frequenting bars? There are several reasons why

those who frequent bars might be more sexually active than others. Some reasons

have to do with the selectivity of bar clientele and do not implicate bars as a cause of

sexual activity per se. For example, sexually active couples often go to bars or night-

clubs first before engaging in intimate activity. Also, those who go to bars more often

are most likely younger and possibly looking for sexual partners to begin with.
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Hence, it would not be surprising that bar clientele would tend to be more sexually

active than others. On the other hand, frequenting bars might also play a causal role

in enhancing sexual activity. First, regardless of whether one is looking for a sexual

partner, bars tend to enhance one’s opportunities for meeting potential sex partners.

“Singles” bars are especially likely to draw a clientele that is in the “market” for sex,

enhancing one’s potential pool of willing partners. Then, too, the atmosphere of bars

is especially conducive to romantic and/or sexual arousal. Alcohol is being freely con-

sumed, the lights are usually dimmed, and erotic music is often playing in the back-

ground. For any of the foregoing reasons, I would expect a positive relationship

between going to bars and having sex. Fortunately, it’s easy to explore this hypothe-

sis, since the GSS also asked respondents: “How often do you go to a bar or tavern?”

with responses ranging from 1 for “never” to 7 for “almost every day.” An examina-

tion of the distribution of this variable reveals that it is somewhat more skewed than

sexual frequency (e.g., 49.2% of respondents never go to bars) but still at an accept-

able level of skew for regression.

A scatterplot of Y � frequency of having sex in the past year against X � frequency

of going to bars is shown in Figure 2.3. This scatterplot is somewhat deceptive. At first

glance there is no visible linear trend. However the best-fitting line through these

points does, indeed, have a slight upward slope, going from left to right. This indicates
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Figure 2.2 Scatterplot of Y (couple modernism score) against X (male’s years of schooling) for 416 cou-

ples from the National Survey of Families and Households, 1987–1988.



that there is a positive relationship between X and Y. We will see (below) that this pos-

itive trend is also statistically significant.

SIMPLE LINEAR REGRESSION MODEL

The idea behind regression is quite simple. Again using the relationship in Figure 2.1

as a substantive referent, we imagine that a linear relationship between, say, math

diagnostic score and score on the first exam characterizes the population from which

the student sample was drawn. (In that this sample was not randomly drawn from any

population, we have to imagine a hypothetical population of introductory statistics

students that might be generated via repeated sampling.) That is, a straight line char-

acterizes the relationship between math diagnostic score and first exam performance

in the population, much as the fitted line in Figure 2.1 characterizes the relationship

between these variables in the sample. Our task is, essentially, to find that line. The

line is of the form β0 � β1X, where β0 is the Y-intercept of the line and β1 is the slope

of the line. That is, we want to estimate the parameters (β0 and β1) of that line, rep-

resenting the “regression” of Y on X, and use them to further understand the relation-

ship between the variables. The simple linear regression model is therefore nothing

more than the equation for this line, plus a few additional assumptions.
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Regression Assumptions

In particular, we assume (1) that the Yi for i � 1, 2, . . . , n represent n independently

sampled observations on a response variable, Y. We further assume (2) that Y for

each observation has been “generated” (say, by nature) by a linear function applied

to that case’s value on an explanatory variable, X. The model for the ith observation

on Y is therefore

Yi � β0 � β1Xi � εi. (2.1)

It is assumed (3) that both Y and X are continuous variables. This is not to be taken

too literally. As indicated above, regression is acceptable as long as Y and X are

approximately continuous. A rule of thumb for approximately continuous to hold is

that the variable should be at least ordinal and have at least five different levels, pro-

vided that n is large and that the distribution of the variable is not too skewed. In fact,

X can also be dichotomous. This type of predictor, called a dummy variable, is intro-

duced in Chapter 4 (as well as in Exercises 2.26 to 2.28). Moreover, Y can be

dichotomous, although some problems emerge when using linear regression in such

a case (more on this in Chapter 7). It is assumed (4) that X is fixed over repeated

sampling. That is, the assumption is that observations on Y are sampled from sub-

populations with values of X that are known ahead of time (later we will see that this

assumption can be relaxed under certain conditions). It is also assumed (5) that X is

measured with only negligible error (Myers, 1986).

The εi’s, called the equation errors or disturbances, represent all influences on Y

other than X. If Y were an exact linear function of X, that is, if Yi were exactly equal to

β0 � β1Xi , called the structural part of the model, and all points lay right on the regres-

sion line, there would be no error term. However, this would represent a deterministic

relationship between Y and X. That is, Y would be determined completely by X, such

that increasing X by 1 unit would automatically increase Y by β1 units. Such relation-

ships are rarely—no, never—observed in the social sciences. Instead, social data tend

to be characterized by probabilistic relationships in which increasing X increases the

likelihood that Y will increase (or decrease, if β1 � 0) (Lieberson, 1997), but doesn’t

guarantee it. The error term represents this random or stochastic component of the

model. Manipulating equation (2.1), we see that εi � Yi � (β0 � β1Xi). That is, the

errors represent the departures of Y-values from the line β0 � β1Xi. Typically, for any

particular value xi of Xi, there will be several different Yi values among the observations

with that xi. Hence, there will be several different εi at any particular value of X.

The errors are also subject to some assumptions. It is assumed (6) that at each

value of X, the mean of the errors is zero. The assumption is that the positive and neg-

ative errors tend to balance each other out, so that overall, the mean of the errors at

any given X is zero. Additionally, it is assumed (7) that the errors all have the same

variance at each X-value; this variance is denoted by σ2. It is also assumed (8) that the

errors are uncorrelated with each other. If the observations have been sampled inde-

pendently and the data are cross-sectional, this is typically the case. Finally, it is

assumed (9) that the errors are normally distributed in the population. The proper way
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to think about the regression assumptions is not: “Okay, let’s assume that . . .” and

then proceed with a regression analysis. Rather, the proper perspective is: “If the fol-

lowing assumptions hold, it makes sense to estimate a linear regression model.”

Below I discuss ways of assessing whether these assumptions are reasonable.

Interpreting the Regression Equation

Taking expectations of both sides of equation (2.1), we have

E(Yi) � E(β0 � β1Xi � εi)

� E(β0 � β1Xi) � E(εi)

� β0 � β1Xi � 0

� β0 � β1Xi. (2.2)

(Note that the β’s and Xi are constants at any particular Xi, and the mean of a con-

stant is just that constant.) In other words, according to the model E(Yi), the mean of

the Yi (more properly, the conditional mean of the Yi, since this mean is conditional

on the value of X) is a linear function of the Xi. That is, the mean of the Yi at any

given Xi is simply a point on the regression line. Hence, using regression modeling

assumes, at the outset, that the means of the dependent variable at each X-value lie

on a straight line. To understand how to interpret β0 and β1, we manipulate equation

(2.2) so as to isolate either parameter. For example, if Xi � 0, we have

E(Yi � Xi � 0) � β0 � β1(0) � β0.

Hence, β0, the intercept, is the mean of Y when X equals zero. To isolate β1, we con-

sider the difference in the mean of Y for observations that are 1 unit apart on X. That

is, we compute the difference E(Yi � xi � 1) � E(Yi � xi). Notice that this is the differ-

ence in E(Y) for a unit difference in X, regardless of the level of X at which that unit

difference occurs. We have

E(Yi � xi � 1) � E(Yi � xi) � β0 � β1(xi � 1) � [β0 � β1xi]

� β0 � β1xi � β1 � β0 � β1xi � β1.

In other words, β1 represents the difference in the mean of Y in the population for

those who are a unit apart on X. If X is presumed to have a causal effect on Y, β1

might be interpreted as the expected change in Y for a unit increase in X. In either

case, I will refer to E(Yi � xi � 1) � E(Yi � xi) as the unit impact of X in the model. The

unit impact of X in any regression model—whether linear or not—can always be

found by computing E(Yi � xi � 1) – E(Yi � xi) according to the model.

The interpretation of β1 can also be elucidated by taking the first derivative of

E(Yi) with respect to X:


d

d

Xi

[E(Yi)] � 
d

d

Xi

[β0 + β1Xi] � β1.
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Thus, we see that β1 is also the first derivative of E(Yi) with respect to Xi. Recall

(from Section IV of Appendix A) that the first derivative, also called the slope of

E(Yi) with respect to Xi, represents the instantaneous rate of change in E(Yi) with an

increase in Xi at point xi. It also represents the slope of the line tangent to the curve

relating Y to X at point x. Because the curve in this case is really a straight line, the

slope of the tangent line is just the slope of the regression line itself (there is no tan-

gent line in this case, since it is impossible for a line to touch a straight line at only

one point). Hence, the instantaneous rate of change in E(Y) with increase in X is the

same as the change in E(Y) per unit increase in X. In other words, in regression mod-

els in which E(Y) is a linear function of X, the first derivative and the unit impact are

identical quantities. This is no longer the case for models in which E(Y) is modeled

as a nonlinear function of X (discussed in subsequent chapters).

ESTIMATION USING SAMPLE DATA

Estimation of the regression equation and associated parameters using sample data is

most often accomplished by employing ordinary least squares estimation (OLS). The

assumptions enumerated above are largely assumptions required for unbiased estima-

tion of the regression parameters using OLS. Let’s review the assumptions. They are:

1. Y is a linear function of X; that is, Yi � β0 � β1Xi � εi for i � 1, 2, . . . , n.

2. The observations are sampled independently.

3. X and Y are approximately continuous variables.

4. The X-values are fixed over repeated sampling and measured with only negli-

gible error.

5. E(εi) � 0 at each xi.

6. V(εi) � σ2 at each xi.

7. Cov(εi,εj) � 0 for i � j (i.e., the errors are uncorrelated with each other). (Note

that this is usually equivalent to assumption 2.)

8. The errors are normally distributed.

Assumption 5 also ensures the orthogonality condition that Cov(Xi,εi) � 0. The

reason for this is straightforward. If there were a linear relationship between εi and

Xi, reflected by a nonzero covariance, it would take the form E(εi) � γ0� γ1Xi. That

is, the mean of the errors would be a linear function of X. If the mean of the errors

is the same (in particular, it is zero) at each X, this implies that there is no linear rela-

tionship between the error and X. This, in turn, implies that Cov(Xi,εi) is zero.

Rationale for OLS

To develop the rationale for OLS, we consider the following example. Table 2.1

presents fictitious data for five currently married persons; X is the number of years

married and Y is a continuous measure of marital happiness. A scatterplot of these
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(x,y) values is shown in Figure 2.4. There appears to be somewhat of a positive lin-

ear trend in the points, such that those married longer are, on average, more happily

married. Assuming that there is a linear relationship between X and Y in the popula-

tion, how do we go about estimating the population regression line representing this

relationship? Well, suppose that we start with a visual approximation of the line that

best fits the points. One possibility is the lightly drawn line in the figure, which

touches the rightmost data point. The equation for this line is ŷ � 3 � .25x ( ŷ is

shown as “y�” in the figure). Here, ŷ, called the fitted, or predicted, value of Y,

denotes the sample estimate of E(Y ) (I have dropped the i subscript here for econ-

omy of expression). The sample regression equation is therefore Y � 3 � .25x � e,

where e, called a residual, is our sample estimate of the equation error for a partic-

ular case. Notice that ei � yi � ŷi is the difference between observed and fitted Y-

values for the ith case. That is, e is the vertical distance from the point to the regres-

sion line for the ith data point. For example, the residual for the second observation

is shown as e2� in Figure 2.4. Table 2.1 shows the five fitted values of Y using the

visual approximation (VA) approach, along with the residuals for each case.
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Table 2.1 Visual Approximation versus Ordinary Least Squares Regression Lines Fit

to Fictitious Data on Marital Happiness (Y) and Number of Years Married (X) for Five

Persons

Years Marital

Person Married Happiness ŷVA eVA ŷOLS eOLS

1 1 5 3.25 1.75 3.58 1.42

2 3 2 3.75 �1.75 3.96 �1.96

3 4 6 4.00 2.00 4.15 1.85

4 9 3 5.25 �2.25 5.10 �2.10

5 20 8 8.00 .00 7.19 .81

�e �.25 .02

�e2 15.1875 14.3466

Calculation of OLS Estimates

Case X Y (X � X� ) (Y � Y� ) [(X � X� )(Y � Y� )] (X � X� )2

1 1 5 �6.4 .2 �1.28 40.96

2 3 2 �4.4 �2.8 12.32 19.36

3 4 6 �3.4 1.2 �4.08 11.56

4 9 3 1.6 �1.8 �2.88 2.56

5 20 8 12.6 3.2 40.32 158.76

Sum 44.4 233.2

b1 � �
2

4

3

4

3

.4

.2
� � .1904

b0 � 4.8 � .1904(7.4) � 3.3911



Measuring Prediction Error. How well does this line fit the data? One way to tell is

to examine the total prediction error made in using this equation to predict Y. Our first

impulse might simply be to sum the e’s for the five cases to assess total error.

However, that doesn’t work well, since large positive errors and large negative errors

tend to cancel each other out. We might therefore end up with a small total error even

with a poorly fitting line. Instead, the errors are first squared and then summed. The

resulting quantity is called (fittingly) the sum of squared errors and denoted SSE:

SSE ��
n

i�1

ei
2 ��

n

i�1

( yi � ŷi)
2.

The idea behind ordinary least squares is to choose as our estimate of the population

regression line that sample line that minimizes SSE (hence the resulting b0 and b1 are

called the ordinary least squares estimates). The least squares line for these data is

shown as the darker, thicker line in Figure 2.4 and is also the fitted line drawn

through the point scatters in Figures 2.1 to 2.3. The least squares equation is Y �

3.39 � .19x � e. The residual for the fourth observation, based on the least squares

line, is shown as e4 in Figure 2.4. Table 2.1 also shows the fitted values and residu-

als based on the OLS regression equation. Notice that SSEOLS, at 14.3466, is smaller

than SSEVA, which is 15.1875. In fact, the SSE based on the OLS estimates of b0 and
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Figure 2.4 Scatterplot of Y (marital happiness) against X (number of years married) for five fictitious

married persons.



b1 is guaranteed to be smaller than SSE based on any other estimates. How is this

condition satisfied?

Mathematics of OLS

Finding the b0 and b1 that minimize SSE is a minimization problem in two variables,

which is readily solved using the techniques of differential calculus. First, we rewrite

SSE to highlight the fact that it is a function of b0 and b1:

SSE ��
n

i �1

(yi � ŷi)
2 ��

n

i�1

[yi � (b0 � b1xi)]2.

To find the b0 and b1 that minimize this function using calculus, we take the first

derivative of SSE with respect to, first, b0 and then b1. We then set each of these

expressions to zero and solve the resulting simultaneous equations for the b0 and b1

that satisfy the pair of equations. (Okay, this sounds complicated, but bear with me

here. Of course, it will help immensely if you have read and absorbed Section IV of

Appendix A before proceeding.) By a theorem in calculus, if SSE has a maximum or

minimum at some value of (b0,b1), it occurs where these first derivatives equal zero

(Anton, 1984).

Taking the first derivative of SSE with respect to b0 gives us

�
∂
∂
b0
���

n

i�1

( yi � b0 � b1xi)
2� � �2�

n

i�1

( yi � b0 � b1xi),

which equals zero when

�
n

i�1

(yi � b0 � b1xi) � 0

or when

�
n

i�1

yi � nb0 � b1�
n

i�1

xi � 0

or when

nb0 ��
n

i�1

yi � b1�
n

i�1

xi.

Dividing both sides by n, we have

b0 � y�� b1x�. (2.3)

So we have the solution for b0, but of course it requires the solution for b1 to com-

pute. Therefore, we solve for b1. Again we first take the derivative of SSE with respect

to b1:

�
∂

∂

b1

���
n

i�1

( yi � b0 � b1xi)
2� � �2�

n

i�1

xi(yi � b0 � b1xi),
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which equals zero when

�
n

i�1

xi( yi � b0 � b1xi) � 0

or when

�
n

i�1

xiyi � b0�
n

i�1

xi � b1�
n

i�1

x
i
2 � 0.

At this point we can substitute the solution for b0 from equation (2.3) for b0, and after

some mildly tedious algebra, we arrive at

b1 � . (2.4)

Dividing both numerator and denominator of the right-hand side of equation (2.4) by

n � 1, we see that the slope can also be expressed as

b1 ��
cov

s

(
2
x

x,y)
�.

The equations �n

i�1
(yi � b0 � b1xi) � 0 and �n

i�1
xi(yi � b0 � b1xi) � 0 are called

the normal equations. Once we have found the values of b0 and b1 that satisfy these

equations, we must then show that plugging these particular values into

SSE ��
n

i�1

(yi � ŷi)
2 ��

n

i�1

(yi � b0 � b1xi)
2

produces a minimum value for this function. Formally, by the second partials test

(Anton, 1984), this can be shown using second partial derivatives of the function

f � �n

i�1
(yi � b0 � b1xi)

2. In particular, let fb0, b0
represent the second partial deriva-

tive of f with respect to b0, fb1, b1
represent the second partial derivative of f with

respect to b1, and fb0, b1
represent the mixed second partial derivative of f with respect

to b0, followed by b1. Then, by the second partials test, if the expression D �

( fb0,b0
)( fb1, b1

) �f 2
b0,b1

is greater than zero and fb0,b0
is greater than zero when these

expressions are evaluated at a particular value of b0 and b1, then f has a minimum at

those particular values of b0 and b1. In fact, fb0,b0
evaluated at the value in expression

(2.3) is 2n, fb1, b1
evaluated at the value in expression (2.4) is 2�x2, and  fb0, b1

evalu-

ated at expressions (2.3) and (2.4) is 2�x. Hence,

D � 2n�2�x2� � �2�x�2

� 4n��(x � x�)2�,

which is greater than zero, as is fb0, b0
. Therefore, the OLS solutions to the normal

equations are, in fact, the values that minimize SSE.

Intuitively, we can arrive at the same conclusion by simply regarding the function

f � �n

i�1
(yi � b0 � b1xi)

2. If there is an extreme value of this function, it has to be a

minimum, since the maximum value is unbounded. That is, there is no finite maximum

since we can make f as large as we wish simply by choosing b0, b1 values—and,

�n

i�1
(xi�x�)(yi�y�)

�n

i�1
(xi�x�)2
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therefore a line—that is as far from the points as we want to make it. By the princi-

ples of calculus, the solutions to the normal equations show us the b0 and b1 that lead

to a critical value of the function. That critical value, by this reasoning, must there-

fore be a minimum.

The bottom panel of Table 2.1 illustrates the OLS computations for b0 and b1 for

our fictitious data. As shown, b0, the estimate of the equation intercept, is 3.3911. This

implies that the average happiness level for newlyweds (i.e., those with zero years

married) is 3.3911. The intercept is not typically very meaningful whenever zero is

outside the range of observed X-values, as it is here. In fact, zero may not be a mean-

ingful value for many explanatory variables, rendering the intercept uninterpretable

much of the time. The estimate of the equation slope, b1, is .1904. This suggests that

those who are a year apart in marital duration are about .1904, or approximately two-

tenths of a unit, apart in marital happiness, on average. Or, in somewhat stronger

causal language, each additional year of marriage would be expected to increase mar-

ital happiness, on average, by about two-tenths of a point. Using the estimated equa-

tion, we can generate predicted marital happiness scores based on the number of years

that a person has been married. Hence, for someone married, say, 15 years, the pre-

dicted, or fitted, value of marital happiness is ŷ� 3.3911 � .1904(15) � 6.2471.

According to the model, this value is the estimated mean of marital happiness for all

those who have been married for 15 years. It is generally safe to generate predicted

scores on Y for X-values within the range observed in one’s sample. However, we

would not want to try to predict Y for values outside that range—say, for someone

married 25 years in the current example. The reason for this is that the relationship

may or may not be linear beyond the range observed; hence the model may no longer

hold for more extreme levels of X.

OLS Estimates for the Examples. OLS estimates of the regression equations for the

regression of exam performance on math diagnostic score, the regression of couple

modernism on male’s education, and the regression of sexual frequency on going to

bars are shown in Tables 2.2, 2.3, and 2.4, respectively. (Shown also are several other

statistics discussed below.)

50 SIMPLE LINEAR REGRESSION

Table 2.2 Parameter Estimates from the Regression of Y � Score on the First

Exam on X � Math Diagnostic Score for 213 Students in Introductory Statistics

Explanatory Variable b σ̂b t bs p

Constant �35.494 12.840 �2.764 .006

Math diagnostic score 2.749 .313 8.788 .518 � .001

Model Summary Measure Value

F 77.236

R2 .268

R2
adj .265

σ̂2 213.756



Exam Scores. The slope for the regression of exam performance on math diagnostic

score is 2.749. This implies that those who are 1 unit apart on the diagnostic are, on

average, about 2�
3
4

� points apart on exam performance. Moreover, someone with a perfect

score of 45 on the diagnostic is expected to get a grade of ŷ� �35.494 � 2.749(45) �

88.2 on the first exam. Notice the uninterpretability of the intercept in this case, since it

is impossible to have a negative score on the exam. Moreover, as the lowest observed

score on the diagnostic was 28, trying to predict exam scores for those with diagnostic

scores of zero—albeit a plausible value for the diagnostic—would be extrapolating

beyond the range of observed X-values for these data. In all likelihood, the relationship

between exam performance and diagnostic score becomes nonlinear at lower diagnos-

tic scores, since zero on the exam is a “floor” below which no one can go.

Couple Modernism. From Table 2.3 we see that the estimated intercept for the regres-

sion of couple modernism on male’s years of schooling is 24.274. In this case, the

intercept is somewhat meaningful, since there is a case in which the male has zero

years of schooling. In this instance, the predicted score for couple modernism is

24.274. Given that there is only one observation in which the male has zero years of
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Table 2.3 Parameter Estimates from the Regression of Y � Couple

Modernism Score on X � Male’s Years of Schooling for 416 Couples 

from the National Survey of Families and Households, 1987–1988

Explanatory Variable b σ̂b t bs p

Constant 24.274 .490 49.522 �.001

Male’s years of schooling .210 .038 5.586 .265 �.001

Model Summary Measure Value

F 31.204

R2 .070

R2
adj .068

σ̂2 5.751

Table 2.4 Parameter Estimates from the Regression of Y � Frequency of

Having Sex in Past Year on X � Frequency of Going to Bars for 1515

Respondents from the General Social Survey, 1998

Explanatory Variable b σ̂b t bs p

Constant 2.252 .086 26.206 �.001

Frequency of going to bars .224 .029 7.708 .194 �.001

Model Summary Measure Value

F 59.417

R2 .038

R2
adj .037

σ̂2 3.696



schooling, however, the prediction of couple modernism at this level is probably not

very robust. On the other hand, for males with four years of college—an X-value with

several observations on Y—the predicted modernism score is 24.274 � .21(16) �

27.634, a more robust estimate. The slope estimate of .21 suggests that each additional

year of schooling for the male partner is expected to increase the couple’s level of mod-

ernism by about two-tenths of a point.

Frequency of Sex. The estimates for the regression of frequency of sex on going to

bars (Table 2.4) suggest that those who are 1 unit apart in frequenting bars are about

.224 unit apart on sexual frequency during the previous year, on average. As neither

Y nor X in this case is measured in a meaningful metric, the value of this slope is not

very intuitive. Perhaps it suffices just to notice that there is, indeed, a positive rela-

tionship between going to bars and having sex. Notice, again, that the intercept is not

particularly meaningful, since zero is not a possible value for the independent vari-

able. Those who go to bars almost every day are predicted to have a sexual frequency

during the past year, on average, of 2.252 � .224(7) � 3.82. This corresponds roughly

to having sex about once per week.

Estimating σσ2 and ρρ2. Two other quantities connected to the linear regression model

are of interest to estimate. The first is σ2, the variance of the error terms at each X-

value. The second is denoted ρ2 (pronounced “rho-squared”) and is called the

coefficient of determination of the regression equation. The latter is the primary index

of discriminatory power for a regression model. To develop estimators of these quan-

tities, let’s consider partitioning the variability in Y, based on the assumption that it is

a linear function of X in the population. Hence, if Y � β0� β1X � ε (again, omitting

the i subscript for simplicity), then

V(Y) � V(β0 � β1X � ε) � Cov[(β0 � β1X) � ε, (β0 � β1X) � ε]

� Cov(β0 � β1X, β0� β1X) � Cov(β0 � β1X, ε)

� Cov(ε, β0 � β1X) � Cov(ε,ε)

� V(β0� β1X) � V(ε),

since Cov(X,ε) � 0 by assumption [and, of course, Cov(β0,ε) � 0, since the covari-

ance of a constant with a variable is always zero]. What this shows is that the vari-

ability in Y can be neatly partitioned into two parts. The first, V(β0� β1X), is the

variability of the regression line itself, or the variance of the set of points that forms

that line. This is the variance that is due to the linear function involving X, or the

variance of the structural part of the model. The second, V(ε), is the variance around

that line, and reflects the variability in Y due to the stochastic part of the model—all

of the presumably random influences on Y other than its linear relationship with X.

Now if we divide both sides of the equation V(Y) � V(β0 � β1X) � V(ε) by V(Y),

we have

�
V

V

(

(

Y

Y

)

)
� � 1 ��

V(β
V
0�

(Y

β
)
1X)

� � �
V

V

(

(

Y

ε)

)
� � ρ2 � �

V

σ
(Y

2

)
�. (2.5)

52 SIMPLE LINEAR REGRESSION



Equation (2.5) shows that the total variability in Y consists of two proportions: ρ2

(which can also be written as 1 � σ2/V(Y )) is the proportion of variability in Y

accounted for by the linear regression on X (i.e., by the structural part of the model)

and σ2/V(Y ) is the proportion accounted for by error. Thus, ρ2 reflects our ability to

account for variation in Y using a linear function of X, and as such, is our ideal meas-

ure of discriminatory power for linear regression. The value of ρ2 ranges from 0, for

the case in which X has absolutely no ability to account for Y, to 1.0, for the case in

which Y is perfectly determined by X (i.e., all the points lie exactly on the regression

line and there is no error). Typically, ρ2 will range somewhere between these two

extremes.

Decomposition of Variability in the Sample. The variability in Y among the sample

observations can be decomposed in a similar manner. Here, however, the variability

in Y is expressed in terms of the sum of squares in Y, or �n

i�1
(yi � y� )2. This expres-

sion is the same as the numerator of the sample variance of Y and is referred to as the

total sum of squares in Y, denoted TSS. It can be decomposed as follows:

�
n

i�1

(yi � y� )2 ��
n

i�1

(yi � ŷi � ŷi � y� )2.

Now, a word about this first step. You’ll notice that I’ve added and subtracted ŷi from

the term inside the parentheses of TSS. This is a well-known mathematical “trick,” if

you will, that is equivalent to adding zero to an expression. Naturally, adding zero

doesn’t change anything. Now notice, however, what this facilitates. Continuing yields

��
n

i�1

[( ŷi � y�) � (yi � ŷi)]
2

��
n

i�1

[( ŷi � y�)2 � (yi � ŷi)
2 � 2( ŷi � y�)(yi � ŷi)]

��
n

i�1

( ŷi � y�)2 ��
n

i�1

(yi � ŷi)
2 � 2�

n

i�1

( ŷi � y�)(yi � ŷi).

The last term in this expression is zero. Why? Well, first this expression can be

written

2�
n

i�1

( ŷi � y�)( yi � ŷi) � 2�
n

i�1

[ ŷi (yi � ŷi) � y�( yi � ŷi)]

� 2�
n

i�1

ŷi(yi � ŷi) � 2y��
n

i�1

(yi � ŷi)

� 2�
n

i�1

(b0 � b1xi)( yi � ŷi) � 2y��
n

i�1

(yi � ŷi)

� 2b0�
n

i�1

(yi � ŷi) � 2b1�
n

i�1

xi( yi � ŷi) � 2y��
n

i�1

(yi � ŷi). (2.6)
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At this point, recall the normal equations �n

i�1
(yi � b0 � b1xi) � 0 and �n

i�1
xi(yi �

b0 � b1xi) � 0, or �n

i�1
( yi � ŷi) � 0 and �n

i�1
xi ( yi � ŷi) � 0. In that the OLS b0 and

b1 solve these equations, they also make both equations true. Therefore, since

�n

i�1
( yi � ŷi) � 0 and �n

i�1
xi( yi � ŷi) � 0, expression (2.6) is also zero. Thus, we

have the following decomposition of the total sum of squares in Y:

�
n

i�1

(yi � y� )2 ��
n

i�1

( ŷi � y�)2 ��
n

i�1

(yi � ŷi)
2 (2.7)

That is, TSS is the sum of two independent, or orthogonal, sums of squares. The first,

�n

i�1
( ŷi � y� )2, is called the regression sum of squares and denoted RSS. This is the

squared deviation of the regression line, represented by ŷi, around the overall sample

mean of Y. This is the contribution of the linear relationship with X to the variability in

Y. The second sum of squares is the sum of squared errors, or SSE. This is the squared

deviation of the individual Y scores around the regression line. This is the component

of variability in Y that is not accounted for by Y’s linear relationship with X.

Dividing both sides of equation (2.7) by �n

i�1
(yi � y� )2, we have

� 1 � � (2.8)

or

1 � �
R

TS

S

S

S
� � �

S

T

S

S

E

S
�.

Hence, the decomposition of the variability in the sample Y-values mirrors the decom-

position of the variability in Y in the population. Equation (2.8) shows that the sample

variability in Y consists of two proportions, analogous to the proportions in equation

(2.5). Our estimate of ρ2 is therefore RSS/SSE, or 1 � (SSE/TSS), and is denoted r2

(pronounced “r-squared”). Like its population counterpart ρ2, r2 ranges from 0 to 1.

Also, our unbiased estimator of σ2 is σ̂2� SSE/(n � 2) and is typically denoted MSE

for mean-squared error. This estimate is shown at the bottom of Tables 2.2 to 2.4.

Interpreting r2. Let’s consider the sample coefficient of determination, r2, in more

detail, as it is relied on heavily as a measure of how well the model performs. (r2 is

often referred to as a measure of model fit. However, assessing fit, or empirical con-

sistency, is better accomplished via other approaches considered below.) The r2 can be

considered a proportional reduction in error measure, indicating the degree to which

we improve our prediction of Y when using, as opposed to ignoring, the regression

model. To see this, we reason as follows. First, we try to predict the individual Y scores

while ignoring the model, assessing prediction error via squared deviation from the

predicted value. Our best prediction, lacking any other information, is achieved by

using the sample mean of Y as the predicted value for every case. Our total error is then

TSS. Then, we try to predict Y using the regression model. Our total error is now SSE.

�n

i�1
(yi�ŷi)

2

��
�n

i�1
(yi�y�)2

�
n

i�1
( ŷi�y�)2

��
�

n

i�1
(yi�y�)2

�n

i�1
(yi�y�)2

��
�n

i�1
(yi�y�)2
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The difference in the amount of error made in using, versus ignoring, the regression

model is TSS – SSE. As a proportion of the original amount of error, it is

�
TSS

T

�

SS

SSE
� � 1 � �

S

T

S

S

E

S
� � r2.

Another way to view r2 is to consider how it reflects the extent to which the linear

function of X (i.e., the regression) explains the variation in Y. Figure 2.5 reveals this

aspect of r2. Depicted is a perfect linear relationship between Y and X, since Y is

exactly determined by the line 1 � 2X. The r2 in this case is 1.0, since there is no error

in predicting Y using the regression line. Suppose for the moment that we ignore X and

simply examine the unconditional variation in Y. This is represented by the horizontal

lines that map the Y values from the line 1 � 2X back to the Y axis. The Y values range

from 1 to 21, exhibiting considerable variation. However, the reason for this variation

is that Y is determined completely by its linear relationship with X. That is, the reason

Y varies is that X varies from 0 to 10, and Y—being determined completely by X—

varies accordingly. The conditional variation in Y given X is zero. That is, given any

value x of X, Y is exactly 1 � 2x, and there is no variability in Y at this x value. Here it

is clear that the variation in Y is caused or explained totally by the regression on X,

since Y exhibits no variance once X is held constant at any particular value. Even

ESTIMATION USING SAMPLE DATA 55

Figure 2.5 Regression of Y on X producing an r2 of 1.0, showing how the regression completely

“explains” the variation in Y.



though r2 is virtually never equal to 1.0, the closer it is to 1.0, the more the variation

in Y is explained by the regression.

Adjusted r 2. Although r2 provides a convenient comparative tool for assessing the rel-

ative discriminatory power of different models for Y, it has a tendency to overestimate

the population ρ2 (Stevens, 1986). If estimation of this parameter is one’s goal, a better

estimator of ρ2 is the adjusted r2 or r2
adj. Its formula is

r2
adj � 1 � �

σ
s

ˆ
2
Y

2

� ,

or 1 minus the ratio of MSE to the sample variance of Y. Notice that this is the pre-

cise sample analog of 1 � σ2/V(Y). In fact, r2
adj is a consistent estimator of r2 because

plim(r2
adj) � plim �1 � �

σ
s

ˆ
2
Y

2

��� plim(1) ��
p

p

l

l

i

i

m

m

(

(

σ
s

ˆ
2
Y

2

)

)
� (by the Slutsky theorem)

� 1 � �
V

σ
(Y

2

)
�� ρ2,

since the MSE and sample variance of Y are consistent for their respective popula-

tion parameters. (Recall that the plim, consistency, and Slutsky’s theorem were all

discussed in the Chapter 1 appendix.)

Tables 2.2 to 2.4 show values of r2 and r2
adj for the regressions of exam 1 on math

diagnostic score, couple modernism on male’s schooling, and frequency of sex on

going to bars. The values of r2 and r2
adj for the same response are quite close. This

will typically be the case in large samples, especially with only one regressor in the

model. (I shall have more to say about the properties of r2
adj when we get to multiple

regression models.) As is evident, the discriminatory power of the model for exam

scores is fairly impressive, at least from a social science standpoint. Fully 26.8% of

the variance in exam scores is accounted for by math diagnostic scores alone.

Another interpretation of this value is that we would improve our ability to predict

exam scores by 26.8% when using, as opposed to ignoring, its linear relationship to

math diagnostic scores. The prediction of couple modernism using male’s schooling

is considerably less powerful. Only about 7% of the variance in couple modernism

is accounted for by this predictor. And the predictive efficacy of frequenting bars as

a determinant (or correlate) of having sex is less impressive still: A mere 3.8% of the

variation in sexual frequency in the past year is explained by going to bars.

Limitations of r 2. The discriminatory power of one’s model is certainly an important

consideration to data analysts. However, we should be careful not to put too much

weight on this dimension of regression. First, a high r2 does not necessarily imply a cor-

rectly specified model. That is, high discriminatory power does not automatically imply

authenticity. Second, high r2 values are fairly easy to achieve if the regressor is con-

ceptually close to the response. For example, a regression of someone’s depressive
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symptomatology on his or her self-esteem is likely to produce an impressive r2. But

both attributes are typically tapped with paper-and-pencil scales that are affected by cur-

rent mood. So, those who tend to be depressed are most likely also “down on them-

selves,” suggesting that their self-esteem rating will also be diminished. Rather than this

suggesting that self-esteem has high discriminatory power in predicting depression, or

vice versa, a high r2 value might only be indicating that people are consistent in answer-

ing mood-related items. Third, some criteria just lend themselves to better prediction

than others. Exam scores of students in statistics, for example, can probably be nicely

explained by college GPA, math aptitude, attitude toward the subject matter, and the

number of other classes students are also taking. On the other hand, imagine trying to

predict marital happiness. Certainly, there are a number of social factors that would be

expected to affect this attribute: number of years married, number and ages of children,

income level of the household, and so on. But ultimately, happiness is a fairly elusive

feeling that may also have a large random component. One day we’re happier with our

spouse, one day we’re not as happy with him or her, and some days we’re just not sure.

To expect a high r2 value in predicting this type of variable is probably unrealistic unless

one employs predictors such as satisfaction with communication in the marriage, which

are themselves conceptually close to the response. In that case we might wonder

whether we are really learning anything about the response variable, after all. In sum,

the importance placed on r2—and on discriminatory power, in general—depends on the

researcher’s goal. If the model is to be used for accurate prediction of responses for new

observations, a high r2 value is especially desirable. But if the central aim is to under-

stand the nature of the “effect” of a regressor on the response in order to test theoreti-

cally driven hypotheses, discriminatory power may well be of secondary importance.

Correlation Coefficient and Standardized Slope. The r2 is also the square of r, the

Pearson correlation coefficient discussed in Section III.C of Appendix A. The corre-

lation coefficient is calculated as

r ��
c

�
ov

s

(
2
X�
x

s

,y
2
Y�
)

� � .

The correlation coefficient ranges from �1.0 to � 1.0 and is a measure of linear asso-

ciation between X and Y. When Y is a perfect linear function of X (i.e. all of the points

lie exactly on the regression line), r is 1.0 in absolute value (this is proved in Section

III.C of Appendix A). The correlation coefficient is also the standardized slope in sim-

ple linear regression. This terminology stems from the fact that if we standardize X

and Y and then regress Y on X, the slope will be the correlation coefficient and the

intercept will be zero (see also Exercises 2.17 and 2.18, where you’re asked to verify

this principle). The sample regression equation in standardized form is Zy � bs
1Zx �

es, where bs
1 is the standardized slope, or r. The standardized slope can be recovered

from the unstandardized slope, b1, via the formula

bs
1 � b1 �

s
s

x

y
�.

�n

i�1
(xi � x�)(yi � y�)

����

�	��n

i�
�

1
(�xi���x�)�2
�	��n

i�
�

1
(�yi���y�)�2
�
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The standardized slope has a rather cumbersome interpretation: it is the expected

change in Y, in standard deviation units, for a 1-standard-deviation increase in X. Why?

Well, if b1 is the expected change in Y for each unit increase in X, b1sx is the expected

change in Y for each 1-standard-deviation increase in X. Dividing again by sy,

b1sx/sy � b1(sx/sy) is the expected change in Y for each 1-standard-deviation increase in

X, but now it is in terms of the number of standard deviations in Y. Standardized slopes

for our three substantive regression examples are shown in Tables 2.2 to 2.4. They

range in value from .518 for the regression of exam scores down to .194 for the regres-

sion of sexual frequency. No standardized value is shown for the intercept, since the

intercept in the standardized equation is always zero.

INFERENCES IN SIMPLE LINEAR REGRESSION

In this section I discuss inferences connected with the simple linear regression model.

In particular, I discuss three equivalent tests for the significance of the sample slope,

as well as a test for the sample intercept. I also consider confidence intervals for the

values of the population slope and intercept. Moreover, to justify inferences about the

slope, I derive its expectation and variance, and its distribution, under general

assumptions about the equation errors.

Tests about the Population Slope

Once we have estimated the parameters of the regression equation, the next question

is: Is there a linear relationship between Y and X in the population? There is, pro-

vided that the value of the population slope is not zero. Hence, we wish to test the

null hypothesis that β1 equals zero against the alternative that β1 is not zero. To do

this, we need to find the sampling distribution of b1, the sample estimator of the

slope. It turns out that if n is sufficiently large, b1 is normally distributed with mean

equal to β1 and variance equal to σ 2/�n
i �1(xi � x�)2, regardless of the distribution of

ε. (In small samples it is necessary that ε be normally distributed with mean equal to

zero and variance equal to σ2 in order for b1 to have the same distributional proper-

ties.) Given these properties, a t—or in large samples, z—test for H0: β1 � 0 against

H1: β1 � 0 is t � b1/σ̂b1
, where σ̂b1

� �σ̂�2/���n
i �� 1�(x�i ��x��)2� is the estimated standard

deviation, or standard error, of the sample slope. Under the null hypothesis that the

population slope is zero, this statistic has a t distribution with n � 2 degrees of freedom

(or, equivalently, a z distribution) in large samples. As an example, the t test for the

slope of the regression of exam 1 score on math diagnostic score is t � 2.749/.313 �

8.788. This t has a p-value less than .001 under the null hypothesis that the corre-

sponding population slope is zero. In fact, t tests for all of the sample slopes in

Tables 2.2 to 2.4 suggest significant linear relationships in the population. That is,

we can reject the null hypothesis of zero population slope in each case and conclude

that there are significant positive linear relationships between math diagnostic score

and exam 1 score, between male’s schooling and couple modernism, and between

going to bars and having sex.
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Justification. How does one derive the distribution of b1? First, we rewrite the for-

mula for b1 to show that it is a weighted sum of the yi:

b1 �

�

� �

� .

[The last step in this sequence is justified by exercise (1) in Section II.E of Appen-

dix A.] Now, if we let sxx � �n
i �1(xi � x�)2, we can write each person’s weight as wi �

(xi � x�)/sxx, and we can write b1 as b1 � �n
i �1wiyi. This shows that b1 is a weighted

sum of the yi. At this point we make use of the CLT, outlined in the Chapter 1 appen-

dix, which states that a weighted sum of independent and identically distributed ran-

dom variables is distributed approximately normal in large samples, with mean equal

to µ�n
i �1wi and variance equal to σ2�n

i �1w
2
i, where µ and σ2 are the mean and vari-

ance, respectively, of the random variables. In this case, the random variables, Yi, are

not exactly identically distributed, since although they all have the same variance of

σ2, their means are a function of X. In particular E(Yi) � β0 � β1Xi. No matter, how-

ever. This just means that the mean of the weighted sum is written as  �n
i �1µiwi

instead of µ�n
i �1wi, where µi � β0 � β1Xi. At any rate, by the CLT, b1 is normally dis-

tributed with mean

E(b1) ��
n

i�1

µiwi ��
n

i�1

(β0 � β1xi)�
xi

s

�

xx

x��

� �s
1
xx
� �

n

i�1

[β0(xi � x�) � β1xi(xi � x�)]

� �s
1
xx
�β0�

n

i�1

(xi � x�) � �
s

1

xx

�β1�
n

i�1

(x2
i � xix�)

� �s
1
xx
�β1��

n

i�1

x2
i � x��

n

i�1

xi�

� �s
1
xx
�β1� �

n

i�1

x2
i � nx�2�,

�n

i�1
(xi�x�)yi

�n

i�1
(xi�x�)2

y��n

i�1
(xi�x�)

�n

i�1
(xi�x�)2
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(xi�x�)yi
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and recalling from Appendix A that

�
n

i�1

x2
i � nx�2 ��

n

i�1

(xi � x�)2 � sxx,

we have that

E(b1) � �
s

1

xx

�β1sxx � β1.

It is therefore clear that b1 is an unbiased estimator of β1. Moreover, the variance of

b1 is

V(b1) � σ2�
n

i�1

w2
i� σ2 ��

�n

i�1
(

σ
xi

2

�x�)2�,

which agrees with the result stated above. The point of this demonstration is that in

large samples, the sample slope is normally distributed regardless of the distribution

of the errors. This allows us to make inferences about the population slope using its

sample counterpart, without the requirement of normally distributed errors. As men-

tioned previously, however, the normality of errors is a requirement in small sam-

ples. Provided that the errors are normally distributed, Y is also normally distributed.

Hence the sample slope—shown above to be a weighted sum of the Y’s—would then

be normally distributed for any sample size.

Equivalent Tests for the Slope. Two other tests are available that are mathemati-

cally equivalent to the t test for the slope. The first is the t test for the correlation

coefficient. The test statistic is

t ��
�(1� �� r�2

r

)�/(�n��� 2�)�
�.

This test also has n � 2 degrees of freedom under the null hypothesis that the popu-

lation slope is zero—or, equivalently, that the population correlation, ρ, between X

and Y, is zero. In fact, this is exactly the same statistic as the test for the slope. For

example, the coefficient for the correlation of exam score with math diagnostic score

is .518. Testing this value, we get

t � � 8.797,

which, within rounding error, is the same value as that reported for the t test of the

slope in Table 2.2 (both values round to 8.8).

The other test is an F test. This has the form F � RSS/MSE. Under the null

hypothesis of zero population slope, this statistic follows the F distribution with 1

and n � 2 degrees of freedom. Again, for the regression of exam scores, the test is

F � 16509.689/213.756 � 77.236, a highly significant result. In fact, this test statis-

tic is also mathematically equivalent to the t test for the slope, as in simple linear

regression, F � t2. For example, the square root of 77.236 is 8.788, which agrees

with the t test for the slope as reported in Table 2.2.

.518
���
�(1���.5�1�8�)/�(2�1�3���2�)�

�n

i�1
(xi�x�)2

s2
xx
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Testing the Intercept

As it is also a weighted combination of the Yi (Neter et al., 1985), the sample esti-

mate, b0, of the equation intercept is also normally distributed in large samples (or

with any sample size provided that ε is normal). Its expected value is β0, which means

that it is also unbiased for the population parameter. Its variance is (Neter et al., 1985)

V(b0) � .

Tests about the population intercept are almost never of interest, especially when zero

is not a meaningful value for X. Nonetheless, a t test of H0: β0 � 0 against H1: β0 � 0

takes the form t � b0/σ̂ b
0
, where σ̂ b

0
���

M�S�E

n
��

s
�

xx

n

i���1x�i
2

�� is the estimated standard

error of the sample intercept. Under the null hypothesis that the population intercept

is zero, this statistic has a tn � 2 (or equivalently, a z) distribution in large samples.

As is evident in Table 2.2, the t-test statistic for the intercept is �35.494/

12.840 � �2.764. Hence we would reject the null hypothesis that the population

intercept is zero at a p-value of .006. As indicated above, however, this test is not par-

ticularly meaningful, due to the potential nonlinearity of the relationship at diagnos-

tic scores of zero.

Confidence Intervals for ββ0 and ββ1

The dominant vehicle for inferences in the social sciences appears to be the hypothesis

test. Yet we may, as well, be interested in trying to pin down the value of population

parameters as closely as possible. For this purpose, we can form confidence intervals

for values of β0 or β1. For example, a 95% confidence interval for β1 is b1 	 t(.025,n � 2)

(σ̂b1
), where t(.025,n�2) is the 97.5th percentile of the t distribution corresponding to n � 2

degrees of freedom. In the regression of exam scores, n � 2 � 211 and t(.025,211) is 1.97.

For this regression, a confidence interval for the slope is 2.749 	 1.97(.313) � (2.132,

3.366). Similarly, a 95% confidence interval for β0 is b0 	 t(.025,n � 2)(σ̂b0
). For the regres-

sion of exam 1, the interval is �35.494 	 1.97(12.840) � (�60.789, �10.199). Only

the interval for the slope is particularly meaningful. It implies that we can be 95%

confident that those who are a unit higher on the math diagnostic score perform, on

average, between 2.13 and 3.37 points higher on the first exam in statistics compared to

others.

Additional Examples

Additional examples of simple linear regressions are shown in Table 2.5. Here, I

present the regression of having sex on going to bars separately by gender and

then separately by marital status. The reason for estimating the regression

separately within different subgroups of the population (male vs. female, or

σ2 �n

i�1
xi

2

nsxx
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married vs. unmarried) is that it is reasonable to expect that frequenting bars

would have a stronger or weaker association with having sex, depending on the

subgroup.

For example, one might expect going to bars to have a stronger effect on sexual

activity for women than for men. Why? Given that men are still expected to be the

initiators of social contact in mixed-sex environments, the mere presence of women

at bars is likely to garner more potential “suitors” for women than it is for men. That

is, women can remain quite passive and still be approached by men at bars, whereas

the passive male is less likely to end up with female companionship during the

course of an evening. Also, given the rather sexualized atmosphere of many bars,

such a venue may be especially selective of sexually willing females but not espe-

cially selective with respect to males. At any rate, I expect going to bars to bear a

stronger association with sexual activity for women. This appears to be borne out

by the results. Although the effect of going to bars on sexual frequency is significant

for both genders, it is substantially larger for women, with a value of .254, com-

pared to .155 for men.

In a similar vein, I expect the effect of going to bars to be stronger for the unmar-

ried than for the married. Married people tend to have more regular sex than do the

unmarried since they already have a presumably willing sex partner in their spouse.

Going to bars should not, therefore, make as much difference in their sexual activity

level as it might for single persons. Consistent with this notion, the effect of going

to bars on sexual frequency is more than twice as great for the unmarried than for

the married (slopes for the married and unmarried are .167 and .379, respectively).

The reader should notice that I’m comparing unstandardized rather than stan-

dardized slopes when comparing the impact of the same predictor on the same

response across subpopulations. This is not just coincidental. For comparing across

subpopulations in this manner, one should always use the unstandardized slope. The
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Table 2.5 Parameter Estimates from the Regression of Y � Frequency of Having Sex

in the Past Year on X � Frequency of Going to Bars for 1515 Respondents in the 1998

GSS, Separately by Gender and Marital Status

Explanatory Variable b σ̂b t p R2

A. Males

Constant 2.682 .131 20.403 �.001

Frequency of going to bars .155 .041 3.824 �.001 .022

B. Females

Constant 2.001 .113 17.645 �.001

Frequency of going to bars .254 .042 6.078 �.001 .041

C. Married

Constant 3.053 .100 30.494 �.001

Frequency of going to bars .167 .040 4.215 �.001 .024

D. Unmarried

Constant 1.185 .128 9.280 �.001

Frequency of going to bars .379 .039 9.807 �.001 .110



reason for this is that the standardized slope is a function not only of the unstan-

dardized slope but also of the standard deviations of X and Y in each subpopulation.

Therefore, the standardized slopes can be different for different subgroups solely

because of differences in the distributions of X and Y in each group rather than

because the effect of X is different in each group. Comparing the unstandardized

slopes avoids this problem.

Once we have discovered that the effect of going to bars on having sex is different

in samples from different subpopulations, a natural question is: Do these sample

differences reflect real differences in the effect of X in the subpopulations themselves?

We must be careful not to assume automatically that different slope estimates from

different subsamples imply different effects in the corresponding subpopulations.

What is needed is a statistical test to tell whether, say, the effect of going to bars is

weaker for men than it is for women. That is, if β1m is the effect for males and β1f is

the effect for females, we need a test for H0: β1m � β1f against H1: β1m � β1f. This is a

test for what is referred to as statistical interaction. If the effect of X depends on the

level of another explanatory variable—in this case, gender—we say that gender and

X interact in their effect on Y. We take up the issue of statistical interaction in regres-

sion in Chapter 3 and discuss such a test at that time.

ASSESSING EMPIRICAL CONSISTENCY OF THE MODEL

Above I discussed how we can assess the discriminatory power of a regression

model using either r2 or r2
adj. What about empirical consistency? This issue is some-

what more complex. An empirically consistent model should conform to the model

assumptions as well as accurately forecast the behavior of the response variable. In

this section I discuss some informal and formal techniques for evaluating this dimen-

sion of regression.

Conforming to Assumptions

Recall that the equation disturbances, the εi’s, are subject to some critical assump-

tions. First, in small samples, they should be normally distributed. In large samples

this assumption is not as important. Second, they should have a mean of zero at each

x. Third, they should have constant variance at each x. As our best estimates of the

εi’s, the sample residuals can be used to check the first and third of these assump-

tions. For example, the normality-of-errors assumption for the regression of exam

scores in Table 2.2 was evaluated using SAS by saving the residuals from the regres-

sion and then requesting a test of normality via PROC UNIVARIATE. The test sta-

tistic, which was devised by Shapiro and Wilk (1965), had a p-value below .0001,

resulting in rejection of the null hypothesis of normality. However, in that the sam-

ple size is relatively large, nonnormal errors are not of great concern here.

The constant variance assumption can be checked visually by plotting the residu-

als against X. Such a plot for the residuals from the regression of exam scores is

shown in Figure 2.6. What we are looking for is a scatter of points of approximately
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constant width spread about the line e � 0—the dark line shown in the figure. The

point scatter seems roughly to have this appearance. Nonconstant variance typically

shows up as a point scatter in the shape of a wedge, in which the variance of ei appears

either to decrease or to increase with increasing X. As an example, Figure 2.7 shows

a plot of residuals against X for the regression of couples’ coital frequency in the last

month on male partner’s age from the couples dataset. Coital frequency is the aver-

age of the male’s and female’s report of how many times the couple “had sex” in the

past month. As is evident here, the width of the band of points appears to taper down

considerably with increasing age. In fact, a statistical test suggests that we should

reject the null hypothesis of constant variance for these disturbances. The test is dis-

cussed in Chapter 6.

The assumption that the mean of the errors at each X is zero—the orthogonality

condition—cannot be checked using the residuals. The reason for this is that it is an

artifact of OLS estimation that the mean of the residuals is always zero, and moreover,

that the covariance of the residuals with X is always zero. This is easy to show. Recall

once again the normal equations �n
i �1( yi � ŷ i) � 0 and �n

i �1xi( yi � ŷ i) � 0. Now,

e���
�n

i

n
�1

ei

�� � �
0
n

��0.
�n

i�1
( yi � ŷ i)

n
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Figure 2.6 Plot of e (residuals) against X (math diagnostic score) from OLS regression of score on

exam 1 on math diagnostic score for 213 students in introductory statistics.



Also, the covariance of the residuals with X is

cov(xi,ei) �

�

� �

� �
0

n

�

�

0

1
� � 0.

The orthogonality condition must be taken on faith. However, the best assurance of

its veracity is to include in one’s model any other determinants of Y that are also cor-

related with X. How to model Y as a function of multiple regressors is taken up in

Chapter 3.

Nonlinearities. Plots of residuals against X are also useful for revealing potential

nonlinearities in the relationship between Y and X. This would be suggested by

�n

i � 1xi(yi � ŷ i) � x��n

i � 1(yi � ŷ i)
����

n � 1

�n

i�1
xiei�x��n

i�1
ei

n�1

�n

i�1
(xi�x�)ei

n�1

�n

i�1
(xi�x�)(ei�e�)

n�1
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Figure 2.7 Plot of residuals against male partner’s age from OLS regression of couple’s coital frequency

in past month on male partner’s age for 416 couples from the NSFH.



a point scatter with a nonlinear shape around the line e � 0. No such pattern is evi-

dent in the point scatter in Figure 2.6.

Outliers. The diagnosis of unusual observations is taken up in detail in Chapter 6,

but I also consider it briefly here. Although not officially an assumption of regres-

sion, it is ideal if the data are also free of outliers. These are observations that are

noticeably “out of step” with the trend shown by the majority of the points. An out-

lier typically shows up as an unusually large (in absolute value) residual. Outliers are

essentially observations that are not fit well by the model. At the least, we would like

to identify them. They may show up in an ordinary residual plot, but a better strat-

egy is to plot the standardized residuals against X.

Standardized Residuals. A residual is standardized by subtracting its mean and

dividing by its standard deviation. For this purpose we recall that the mean of the

residuals is zero and that the estimated standard deviation of the equation errors is σ̂.

The standardized residual is therefore ze � (e � 0)/σ̂� e/σ̂. Figure 2.8 presents a plot

of the standardized residuals against X for the regression of exam 1 performance on

math diagnostic scores. If the equation errors were normally distributed, we might
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Figure 2.8 Plot of ze (standardized residuals) against X (math diagnostic score) from OLS regression of

score on exam 1 on math diagnostic score for 213 students in introductory statistics.



want to consider as outliers residuals that are 	2 standard deviations or more on

either side of the zero line. However, given that the errors may not be normally dis-

tributed, we should be more cautious. Neter et al. (1985) suggest four or more stan-

dard deviations as the benchmark for extreme residuals. Regarding Figure 2.8, it does

not appear that any particular observations meet this criterion. Most of the ze are well

within this limit, with only two observations approaching it. Above all, however, none

of the points appears dramatically out of step with the rest of the point scatter. (On the

other hand, the observation with the largest magnitude ze, in the lower middle of

the plot, is somewhat of an outlier, as will be pointed out in Chapter 6.)

Formal Test of Empirical Consistency

A lack-of-fit test proposed by Neter et al. (1985) can be employed to formally test

the empirical consistency of the model. In this section I discuss the test and then

employ it to test the empirical consistency of the simple linear regression for exam

scores in Table 2.2. This test assumes normality of the equation errors, in addition to

zero mean and constant variance. The test, according to the authors, is for “ascer-

taining whether or not a linear regression function is a good fit for the data” (Neter

et al., 1985, p. 123). The test generally requires repeated observations at each value

of X, which is not a problem in the current example.

The test is based on a decomposition of SSE into pure error and lack-of-fit com-

ponents. The first component, the pure error sum of squares, or SSPE, is the total

variability of the Y-scores around their respective group means at each x. That is,

suppose that there are c different X-values. In the regression of exam scores, for

example, there are c � 16 different math diagnostic scores, ranging from 28 to 45.

Let xj denote the jth X-value and nj denote the number of observations with X � xj.

Also, let yij denote the ith observation whose X-value is xj, and let y�j stand for the

mean of all of the yij whose X-value is xj. Then the sum of squares of Y-values about

their mean at a particular xj is �nj
i � 1(yij � y�j)

2. Note that if there is only one observa-

tion at a particular xj, then yij � y�j, implying that yij � y�j � 0. Thus, observations with

unique values of X do not contribute any information to SSPE.

The total such variability across all of the X-values is

SSPE ��
c

j�1
�
nj

i�1

(yij � y�j)
2. (2.9)

The pure error mean square (MSPE) is SSPE divided by its degrees of freedom,

which is n � c. Hence,

MSPE � �
S

n

S

�

PE

c
�.

It turns out that MSPE is an unbiased estimator of the error variance, σ2, regardless

of the nature of the function relating X to Y. For this reason, it is dubbed an estimate

of “pure error.”
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The second component of SSE is the lack-of-fit sum of squares (SSLF). Further

denoting, by ŷj, the sample-regression fitted value at X � xj, SSLF is

SSLF ��
c

j�1

nj(y�j � ŷ j)
2.

This is essentially a weighted (by the nj) sum of squared deviations of the y�j from the

regression line. The greater the deviation of the y�j from the regression line, the more

evidence that a linear regression does not characterize the conditional mean of Y,

given X (Neter et al., 1985). Conveniently, SSLF can also be calculated as SSE –

SSPE. The degrees of freedom associated with SSLF is c � 2. Hence, the lack-of-fit

mean square (MSLF), is

MSLF � �
S

c

S

�

LF

2
�.

The test statistic for testing for a lack of fit is

F ��
M

M

S

S

P

LF

E
�.

Under the null hypothesis that a linear regression model fits the data, or that the data

are empirically consistent with a linear regression, F has the F distribution with c � 2

and n � c degrees of freedom.

Implementing the Test. The lack-of-fit test is not currently implemented for the lin-

ear regression model in mainstream software—say in SPSS or SAS. However, it can

be obtained in SAS, since this software implements the test for a response surface

model via the program PROC RSREG. For a regression with one predictor, X, the

response surface model is simply a model that adds X2 as another regressor. At any

rate, RSREG calculates and prints SSPE for this quadratic model. Nevertheless, SSPE

is the same as in equation (2.9), since SSPE is always just the deviation of the Yi around

their group means at each x. For the regression of exam performance on math diag-

nostic scores, we have the following: SSE is 45102.50265 and SSPE is 2044.573675.

Therefore, SSLF � SSE � SSPE � 45102.50265 � 2044.573675 � 43057.928975.

As noted previously, n � 213 and c � 16. MSPE is thus 2044.573675/197 � 10.3785,

and MSLF � 43057.928975/14 � 3075.5664. The lack-of-fit test is therefore F �

3075.5664/10.3785 � 296.34. With 14 and 197 degrees of freedom, the result is highly

significant ( p � .00001). I should therefore reject the hypothesis that the data are

empirically consistent with the model.

How troublesome is this finding? It should be noted, first, that in the quadratic

model, it is only the linear effect that is significant. That is, the X2 term is very

nonsignificant, suggesting that there is no simple departure from linearity evident in

the regression. Moreover, the scatterplot in Figure 2.1 and the residual plots in

Figures 2.6 and 2.8 all seem to suggest that a linear regression adequately describes

the relationship between exam performance and math diagnostic score. It is possible,
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particularly with larger sample sizes, that haphazard departures from linearity may

result in the rejection of empirical consistency. Yet without a clear nonlinear trend

that could be modeled, preserving the linear regression approach may be the best

strategy, from the standpoint of parsimony. In sum, I accept the linear regression

model as appropriate for the data in this example, despite having to reject the hypoth-

esis of empirical consistency via a formal test.

Discriminatory Power vs. Empirical Consistency. As another illustration of the dis-

tinction between discriminatory power and empirical consistency, I conducted a

regression simulation. First, I drew a sample of 200 observations from a true linear

regression model in which Y was generated by the linear equation 3.2 � 1X � ε, where

ε was normally distributed with mean zero and variance equal to 22. Estimation of the

simple linear regression equation with the 200 sample observations produced an r2 of

.21. The F statistic for testing empirical consistency was .2437. With 8 and 190 degrees

of freedom, its p-value was .982. Obviously, the F test for lack of fit here suggests a

good-fitting model. Note, however, that discriminatory power is modest, at best. Next

I drew a sample of 200 observations from a model in which Y was generated as a

nonlinear—in particular, a quadratic—function of X. Specifically, the equation generat-

ing Y was 1.2 � 1X � .5X2 � ε. Again, ε was a random observation from a normal dis-

tribution with mean zero. This time, however, the variance of ε was only 1.0. I then used

the 200 sample observations to estimate a simple linear regression equation. That is, I

estimated Y � β0 � β1X � ε, a clearly misspecified model. The test for lack of fit in this

case resulted in an F value of 339.389, a highly significant result (at p � .00001).

Clearly, by a formal test, the linear model is rejected as empirically inconsistent. The

r2 for the linear regression, however, was a whopping .96! The point of this exercise is

that contrary to popular conception, r2 is not a measure of “fit” of the model to the data.

It is a measure of discriminatory power. It’s possible, as shown in these examples, for

good-fitting models to have only modest r2 values and for bad-fitting models to have

very high discriminatory power. [See also Korn and Simon (1991) for another illustra-

tion of the distinction between these two components of model evaluation.]

Authenticity. The authenticity of a model is much more difficult to assess than is

either discriminatory power or empirical consistency. Here we ask: Does the model

truly reflect the real-world process that generated the data? This question usually does

not have a statistical answer. We must rely on theoretical reasoning and/or evidence

from experimental studies to buttress the veracity of our proposed causal link between

X and Y. On the other hand, we can evaluate whether additional variables are respon-

sible for the observed X–Y association, rendering the original causal model inauthen-

tic. For example, I have attempted above to argue, theoretically, for the reasonableness

of math diagnostic score as a cause of exam performance, for years of schooling as a

cause of couple modernism, and for frequenting bars as a cause of sexual frequency.

Objections to the authenticity of all of these models can be tendered. With respect to

exam performance, it is certainly possible that academic ability per se is the driving

force that affects performance on both the math diagnostic and the exam. In this case,

the relationship between diagnostic score and exam performance, being due to a third,
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causally antecedent variable, would be spurious. Couple modernism may be deter-

mined strictly by the female’s years of schooling. Its association with male’s years of

schooling, rather than reflecting a causal link, may simply be an artifact of the sub-

stantial correlation between each spouse’s educational level. Finally, sexual activity

and going to bars may be associated purely by virtue of the fact that younger people

engage in both activities with greater frequency, rendering the correlation between sex

and bar going, once again, spurious. Fortunately, each of these alternative explanations

for the observed linear associations can be examined given that measures of the addi-

tional variables are available in the data sets. In Chapter 3 I introduce multiple linear

regression, which allows us to examine the relationship between X and Y while con-

trolling for additional factors. I can then assess each of these alternative hypotheses.

For now, I leave these alternative models for the three outcomes as potential competi-

tors for the models underlying the data.

STOCHASTIC REGRESSORS

The assumption of nonstochastic regressors, that is, regressor values that are fixed over

repeated sampling, is quite restrictive. Generally, only in experiments does the

researcher have the power to fix the different levels of X at particular values. With non-

experimental data, such as are gathered via surveys of, say, the general population,

what are actually sampled are random observations of (x,y) pairs. In this case, both Y

and X are random, or stochastic, variables. In this situation, it is unreasonable to expect

the X-values to remain constant over repeated sampling. The reason for this is that each

sample may contain a somewhat different random sampling of X-values. Nevertheless,

according to Neter et al. (1985), all results articulated earlier, pertaining to estimation,

testing, and prediction, employing the model with fixed X, also apply under random X

if the following two conditions hold: (1) “The conditional distributions of the Yi, given

Xi, are normal and independent, with conditional means β0 � β1xi and conditional vari-

ance σ2”; and (2) “The Xi are independent random variables, whose probability distri-

bution g(Xi) does not involve the parameters β0, β1, σ2” (Neter et al., 1985, p. 84).

Regardless of whether these conditions hold, the fixed-X assumption is unnecessary

if we are willing to make our results conditional on the sample values observed for

the independent variable. This means that they are valid only for the particular set of 

X-values that we have observed in our sample. According to Wooldridge (2000), con-

ditioning on the sample values of the independent variable is equivalent to treating the

xi as fixed over repeated sampling. Such conditioning then implies automatically that

the disturbances are independent of X, which is the primary requirement for the valid-

ity of our model-based inferences.

ESTIMATION OF ββ0 AND ββ1 VIA MAXIMUM LIKELIHOOD

In this final section of the chapter, I show how to arrive at estimates of β0 and β1

using maximum likelihood rather than OLS estimation. I do this to provide some

consistency in coverage of model estimation, since all models in this book other than
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the linear regression model typically rely on maximum likelihood as the estimation

method.

In the appendix to Chapter 1, I discussed maximum likelihood estimation and

provided a relatively simple illustration of the technique. Recall that the key mathe-

matical expression is the log of the likelihood function for the parameters, given the

data. To arrive at this, maximum likelihood estimation begins with an assumption

about the density function of the observed response variable. In this case, we assume

that the equation disturbances have a normal distribution with mean zero and vari-

ance σ2 at each xi. Given that the X’s are fixed and that the conditional mean of yi is

β0 � β1xi, this means that the yi are normal with mean equal to β0 � β1xi and condi-

tional variance equal to σ2. Hence, the density function for each yi is

f(yi � xi,β0,β1) ��
�2�

1

π�σ� 2�
� exp�� �

1

2
���yi � (β0

σ
� β1xi)
��

2

�,

which means that the joint density function for the vector y of sample responses,

given the vector x of regressor values, is

f(y � x, 
0,
1)��
n

i�1
�
�2�

1

π�σ�2�
� exp�� �

1

2
���yi � β0

σ
� β1xi��

2

�.

Given the data observed, this becomes a function only of the parameters; hence we

change its symbol to L(β0,β1 � y,x), indicating that it is the likelihood function for the

parameters, given the data, equal to

L(β0,β1 � y,x) � (2πσ 2)� n/ 2exp��
2

�

σ
1
2��

n

i�1

(yi � β0 � β1xi)
2�.

Denoting the log of this function by �(β0, β1 � y,x), we have

�(β0,β1 � y,x) � � �
n

2
�ln 2πσ 2 � �

2σ
1

2� �
n

i�1

(yi � β0 � β1xi)
2. (2.10)

Recall from the earlier discussion of least squares estimation that finding the values

of variables that minimize or maximize a function involves setting the first deriva-

tives of the function, with respect to each of the variables, to zero and then solving

the resulting simultaneous equations. In this case, with the variables b0 and b1 sub-

stituted for the parameters, we have

�
∂
∂
b0

�[�(β0,β1 � y,x)] � �
σ
1

2��
n

i�1

(yi � b0 � b1xi)

and

�
∂
∂
b1

�[�(β0,β1 � y,x)] � �
σ
1

2��
n

i�1

xi(yi � b0 � b1xi).
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Now, these expressions are zero whenever

�
n

i�1

(yi � b0 � b1xi) � 0 and �
n

i�1

xi(yi � b0 � b1xi) � 0.

Notice that these are just the normal equations that were solved to find the least

squares estimates. This shows that the OLS estimates, b0 and b1, are also the maxi-

mum likelihood estimates if the Yi are normally distributed. Moreover, it is easy to

convince ourselves that this solution, in fact, maximizes the log likelihood. Recall the

argument supporting b0 and b1 as minimizing SSE. Now notice that �(β0, β1 � y,x) is

generally a negative value, so to maximize it we have to find the values that make it

least negative. Obviously, this occurs whenever SSE is minimized. In this case, the

second negative expression on the right-hand side of equation (2.10), which is a

function of SSE, reaches its least negative value, and therefore �(β0, β1 � y,x) attains

its maximum.

EXERCISES

2.1 Using the computer, regress EXAM1 on COLGPA in the students dataset.

Missing imputation: substitute the value 3.0827835 for missing data on COL-

GPA. Then:

(a) Interpret the values of b0 and b1.

(b) Give the values of σ̂b0
and σ̂b1

.

(c) Give the F-value and its significance level.

(d) Give the values of r2 and r2
adj.

(e) Give the estimate of σ2.

(f) Give the predicted population mean of Y for those with a college GPA of

3.0.

(g) Give a 95% confidence interval for β1.

2.2 Using the computer, regress STATMOOD on SCORE in the students dataset.

Missing imputation: Substitute the value 40.9358974 for missing data on

SCORE. Then:

(a) Interpret the values of b0 and b1.

(b) Give the values of σ̂b0
and σ̂b1

.

(c) Give the F-value and its significance level.

(d) Give the values of r2 and r2
adj.

(e) Give the estimate of σ2.

(f) Give the predicted population mean of Y for those with a math diagnostic

score of 43.

(g) Give a 95% confidence interval for β1.

2.3 Consider the regression of coital frequency on male age for our 416 couples.

How reasonable is the orthogonality assumption? That is, are there any
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compelling theoretical reasons why you would expect the disturbances to be

correlated with male age in the population?

2.4 Regard the following (x,y) values for 19 observations:

(a) Construct a scatterplot of Y against X.

(b) Estimate the regression of Y on X and draw the regression line on the plot.

(c) Omit the last observation (i.e., the point 10,18) and reestimate the regres-

sion on just the first 18 observations.

(d) How does the regression change, and what seems to account for the change?

2.5 Prove, for simple linear regression, that the point x�, y� is on the regression line.

2.6 A centered variable, Xc, is defined as Xc � X � X�. Do the following:

(a) Prove that centering X leaves the slope unchanged in SLR.

(b) Prove that centering X makes the intercept equal to y� in SLR.

(c) Interpret the intercept estimate in the centered-X model. Can you see an

advantage to centering X in simple linear regression?

(d) Suppose that we center both X and Y; that is, let Yc � Y � Y� and Xc � X � X�.

Now, for the regression of Yc on Xc, show that the slope is again unchanged

but that the intercept is now zero.

2.7 Using the computer, verify the properties associated with centering both Y and

X, using the regression of COITFREQ on FEMAGE in the couples dataset.

2.8 A random sample of six students was drawn from a large university to deter-

mine if depression is related to GPA. Depression was measured with the

Center for Epidemiologic Studies Depression Scale (CESD). This particular

short version of the scale ranges from 0 to 84, with higher scores indicating

more depressive symptomatology. The researchers think that students with

lower GPAs suffer more from depression because they are more worried

about their future job or graduate school prospects. Summary statistics are:

• Mean (GPA) � 3.

• Mean(CESD) � 50.

• Std Dev(GPA) � .894.

• Std Dev(CESD) � 28.284.

• cov(GPA,CESD) � � 20.

X Y X Y X Y X Y

1 .5 2 1.7 4 1.3 10 1

1 1 3 .4 4 2 10 2.5

1 1.5 3 1.2 5 .6 10 4

2 .6 3 5 5 2 10 18

2 1 4 .7 5 2.2
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(a) Give the regression equation for predicting CESD from GPA.

(b) Give the correlation coefficient for the correlation of CESD with GPA.

(c) If GPA for the first student is 2.0, give the CESD predicted for this stu-

dent, based on the sample regression.

2.9 Regard the following data:

Student SAT GPA Student SAT GPA Student SAT GPA

1 4.8 2.4 5 3.8 2.7 9 7.2 3.4

2 6.6 3.5 6 5.2 2.4 10 6.0 3.2

3 5.9 3.0 7 6.6 3.0

4 7.4 3.8 8 5.0 2.8

To determine which incoming students should receive scholarships, a univer-

sity admissions officer decided to study the relationship between a student’s

score on the SAT verbal test (taken in the final year of high school) and the

student’s college GPA at the end of the sophomore year. Ten student records

for juniors at the university were examined. The data are shown above. The

SAT scores have been divided by 100. The officer reasoned that if SAT scores

are strongly related to GPA, an incoming student’s SAT score gives a good

indication of how well he or she will do in college.

(a) How strong is the relationship between GPA and SAT?

(b) Is this relationship significant?

(c) What is the prediction equation for predicting GPA from SAT?

(d) Using this equation, what is the predicted GPA for the first student?

(e) What is the residual for the first student?

2.10 The cities dataset consists of data compiled by the author on a random sam-

ple of 60 of the largest U.S. cities as of 1980. Several characteristics of these

cities, based on 1980 census data, were measured, including:

• Homicide rate: number of homicide victims per 100,000 population.

• Cost-of-living index: the average market value of houses divided by average

household income.

• City growth rate: percent increase in population from 1970 to 1980.

• Population size: the number of inhabitants of the city, in thousands of persons.

• Reading quotient: the total number of volumes, plus daily volume circula-

tion, across all libraries in the city, divided by population size.

A simple linear regression of the cost-of-living index on the city growth rate

produces the following sample statistics for 60 cities:

• r � .18453.

• SSE � 34.8798.

• RSS � 1.2296.
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• b0 � 2.2299.

• b1 � .0085.

• σ̂b1
� .0059.

(a) What percent of variation in the cost-of-living index is accounted for by

the growth rate?

(b) Give the sample estimate of the error (disturbance) variance.

(c) Compute the three different test statistics for testing whether the popula-

tion slope is zero, and show that they are all the same value, within round-

ing error. What is the conclusion for this test?

(d) Interpret the values of b0 and b1.

(e) Give the value of r2
adj.

2.11 For the cities dataset, let Y � homicide rate and X � reading quotient. Then

for 54 cities we have:

• �x � 384.7.

• �y � 409.3.

• �x 2 � 3069.29.

• �y 2 � 4564.81.

• �x y � 2663.45.

• �(y � ŷ)2 � 1268.58 for the regression of Y on X.

(a) Find the OLS prediction equation for the linear regression of Y on X.

(b) Find the correlation between Y and X.

(c) Interpret the values of b0 and b1 in terms of the variables involved.

(d) Test whether or not there is a significant linear relationship between Y and X.

(e) What proportion of the variation in the homicide rate of a city is explained

by its reading quotient here?

(f) What is the estimated average homicide rate for all cities in the popula-

tion having a reading quotient of 7.1241?

2.12 Prove that for any given sample of X and Y values, the OLS estimates b0 and

b1 produce the largest r2 among all possible estimates for the linear regression

of Y on X.

2.13 Using the computer, regress COLGPA on STUDYHRS in the students dataset

and save the residuals. Then use software (e.g., SAS, SPSS) to test whether

the errors are normally distributed in the population. Missing imputation:

Follow the instructions for Exercise 2.1.

2.14 For the cities dataset, a regression of the homicide rate on the 1980 popula-

tion size for 60 cities produces the following statistics:

• Mean (homicide rate) � 7.471.

• Mean (1980 population size) � 759.618.
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• Std Dev (homicide rate) � 5.151.

• Std Dev (1980 population size) � 1473.737.

• r2
adj � .2190.

• SSE � 1202.000.

(a) Give the OLS estimates of b0 and b1 for this regression. (Hint: Derive r

from r2
adj by noting that r2

adj � 1 � [(n � 1)/(n � 2)](SSE /TSS). Then use r

to compute b1.)

(b) Give the F statistic for testing whether H0: β1 � 0. Is it significant?

2.15 Regard the following data:

Estimate the simple linear regression of Y on X. In particular:

(a) Give the sample regression equation.

(b) Estimate the variance of the disturbances.

(c) Evaluate the discriminatory power of the model.

(d) Evaluate the empirical consistency of the model by performing the lack-

of-fit test.

(e) Give r2
adj.

2.16 For the 416 couples in the couples dataset, the regression of coital frequency

in the past month on the male partner’s age produces the following statistic:

RSS � 1996.46395. Given that the sample variance of coital frequency is

37.1435 and the sample variance of male age is 215.50965, do the following:

(a) Find the absolute value of the correlation between coital frequency and

male age.

(b) Find the absolute value of the slope of the regression of coital frequency

on male age.

(c) Give the value of the standard error of the slope.

(d) Perform a test of H0: β1 � 0 against H1: β1 � 0 using the t test for the slope.

2.17 Let Zy � (y � y�) /sy and Zx � (x � x�)/sx. Prove that an OLS regression of Zy on

Zx results in an intercept estimate of zero and a slope estimate that is the cor-

relation between X and Y.

2.18 Using the computer, verify that the regression of Zy on Zx gives b0 � 0 and

b1 � r, using the example of the regression of COITFREQ on FEMAGE in

the couples dataset.

Obs. X Y Obs. X Y

1 1 2 6 6 3

2 1 4 7 6 6

3 3 1.5 8 10 2

4 3 2 9 10 4

5 3 5 10 10 6.25
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2.19 Prove that for n � 3, r2
adj is always smaller than r2. (Hint: Write out the formula

for r2
adj from Exercise 2.14. Then subtract and add SSE/TSS from this formula

and factor appropriately.)

2.20 Regard the following (x,y) values for 10 observations:

Do the following:

(a) Estimate the simple linear regression of Y on X.

(b) Show that high discriminatory power can coexist with empirical incon-

sistency by comparing the r2 for this regression with the results of the

lack-of-fit test.

2.21 Changing metrics: If b0 and b1 are the intercept and slope, respectively, for the

regression of Y on X, prove that the regression of c1Y on c2X, where c1 and c2

are any two arbitrary constants, results in a sample intercept, b�0, equal to c1b0,

and a sample slope, b�1, equal to (c1/c2)b1.

2.22 Using the computer, change the metrics of COLGPA and STUDYHRS in

the students dataset as follows. Let MCOLGPA � 100(COLGPA) and

MSTUDHRS � STUDYHRS/24. Then verify the principles of Exercise 2.21

by regressing MCOLGPA on MSTUDHRS and comparing the coefficients to

those from the regression of COLGPA on STUDYHRS. Missing imputation:

Follow the instructions for Exercise 2.1.

2.23 Using the computer, regress EXAM1 on STATMOOD in the students dataset

and save the residuals. Then correlate the residuals with STATMOOD, EXAM1,

COLGPA, and SCORE. Also, correlate ŷ with STATMOOD, the residuals, and

EXAM1. Explain the value of each of these correlations. Missing imputation:

Substitute 3.0827835 for missing values on COLGPA and 40.9358974 for miss-

ing values on SCORE.

2.24 Rescaling: If b0 and b1 are the intercept and slope, respectively, for the regres-

sion of Y on X, prove that the regression of Y � c1 on X � c2 results in a sam-

ple intercept, b*
0, equal to b0 � c1�b1c2, and a sample slope, b*

1, equal to b1.

Then let c1 � �y� and c2 � �x�, and show that this principle subsumes Exercise

2.6(d) as a special case.

2.25 Recall the decomposition of the population variance of Y, assuming that

Y � β0�β1X � ε: V(Y) � V(β0 � β1X � ε) � V(β0 � β1X) � V(ε).

X Y X Y X Y

1 1.5 5 7.5 9 8

1 1.75 5 7.75 9 8.25

3 4.5 7 8

3 4.75 7 8.25
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Note that this equals β2
1V(X) � V(ε). Show an analogous decomposition for

the sample variance of Y based on the fact that Y � b0 � b1X � e.

2.26 Dichotomous independent variables can be used in regression if they are

dummy-coded. This involves assigning a 1 to everyone in the category of

interest (the interest category) and a 0 to everyone who is in the other cate-

gory on X (the contrast category, or omitted group, or reference group). Show

that in the population, the regression of a continuous variable Y on a dummy

variable X results in β0 being the conditional mean of Y for those in the group

coded 0 on X, and β0 � β1 being the conditional mean of Y for those in the

group coded 1 on X (i.e., the interest category).

2.27 Prove that the sample regression of a continuous Y on a dummy variable, X, has

b0 equal to the mean of Y for the contrast category, and b1 equal to the mean of

Y for the interest category minus the mean of Y for the contrast category.

(Hint: Let:

• y�0 � mean of Y for those in the contrast category

• y�1 � mean of Y for those in the interest category

• π̂� proportion of the sample in the interest category

• n1 � number of sample cases in the interest category

• n0 � number of sample cases in the contrast category

and note that:

• π̂��x/n

• �x � nπ̂� n1

• y�� (π̂)y�1 � (1 � π̂)y�0

• �x y� �(y � x � 1), that is, the sum of Y for those in the interest category)

2.28 Using the computer, verify the properties associated with the dummy coding

of X. That is, show that b0 � ( y�� x � 0) and b1 � ( y�� x � 1) � (y�� x � 0). As the

example, use the regression of CONFLICT on PRESCHDN in the couples

dataset.
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C H A P T E R 3

Introduction to Multiple Regression

CHAPTER OVERVIEW

In this chapter I introduce the multiple linear regression (MULR) model, building on

the theoretical foundations established in Chapter 2. I begin with an artificial exam-

ple that illustrates the primary advantages of multiple regression over simple linear

regression (SLR). A fundamental concept, statistical control for another regressor, is

then explicated in some detail. I then formally develop the model and its assumptions,

and discuss estimation via ordinary least squares as well as inferential tests in MULR.

I then explain the problem of omitted-variable bias and define the three major types

of bias that can occur when key regressors are omitted from the model: confounding,

suppression, and reversal. I also consider the phenomenon of mediation by omitted

variables, which, although not a form of bias, is central to causal modeling. Next I

discuss statistical interaction and the related issue of comparing models across dis-

crete groups of cases. Finally, I return to the issue of assessing empirical consistency

and evaluate a MULR model for scores on the first exam for 214 students in intro-

ductory statistics.

EMPLOYING MULTIPLE PREDICTORS

Advantages and Rationale for MULR

Suppose that we have several potential predictors, X1, X2, . . . , XK, for a given

response variable, Y. Certainly, we could assess the impact of each Xk on Y via a series

of SLRs. In fact, if the X’s are all orthogonal—that is, mutually uncorrelated—the

impact, bk, of a given Xk will be no different in an SLR of Y on Xk than in a MULR

of Y on Xk and all other K � 1 predictors. Moreover, R2 from the multiple regression
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would simply be the sum of all the individual r2’s from the K different SLRs of Y on

each Xk. However, unless the data were gathered under controlled conditions (e.g., via

an experiment), the regressors in social data analysis will rarely be orthogonal. Most

of the time they are correlated—sometimes highly so.

With this in mind, there are four primary advantages of MULR over SLR. First, by

including several regressors in the same model, we can counteract omitted-variable

bias in the coefficient for any given Xk. Such bias would be present were we to omit

a regressor that is correlated with both Xk and a determinant of Y. Second, we can

examine the discriminatory power achieved when employing the collection of regres-

sors simultaneously to model Y. When the X’s are correlated, R2 is no longer the sim-

ple sum of r2’s from the SLRs of Y on each Xk. R
2 can be either smaller or larger than

that sum. The first two advantages are germane only when regressors are correlated.

However, the next two advantages apply even if the regressors are all mutually

orthogonal. The third advantage of MULR is its ability to model relationships

between Y and Xk that are nonlinear, or to model statistical interaction among two or

more regressors. Although interaction is discussed below, a consideration of nonlin-

ear relationships between the X’s and Y is postponed until Chapter 5. The final advan-

tage is that in employing MULR, we are able to obtain a much more precise estimate

of the disturbance variance than is the case with SLR. By “precise” I mean an esti-

mate that is as free as possible from systematic influences and that comes as close as

possible to representing purely random error. The importance of this, as we shall see,

is that it makes tests of individual slope coefficients much more sensitive to real

regressor effects than would otherwise be the case.

Example

Figure 3.1 presents a scatterplot of Y against X for 26 cases, along with the OLS fitted

line for the linear regression of Y on X. It appears that there is a strong linear impact

of X on Y, with a slope of 1.438 that is highly significant ( p � .0001). For this regres-

sion, the r2 is .835, and the estimate of the error variance is 3.003. However, the plot

is somewhat deceptive in suggesting that X has such a strong impact on Y. In truth,

this relationship is driven largely by a third, omitted variable, Z. Z is strongly related

to both Y (rzy � .943) and X (rzx � .891). If Z is a cause of both Y and X, or even if Z

is a cause of Y but only a correlate of X, the SLR of Y on X leads us to overestimate

the true impact of X on Y, perhaps by a considerable amount. What is needed here is

to control for Z and then reassess the impact of X on Y.

Controlling for a Third Variable

What is meant in this instance by controlling for Z or holding Z constant? I begin

with a mechanical analogy. Figure 3.2 illustrates a three-variable system involving

X, Y, and Z. Actually, there are four variables—counting ε, the disturbance—but only

three that are observed. Suppose that this system is the true model for Y. Further,

imagine that the circles enveloping X, Y, Z, and ε are gears, and the arrows and
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curved lines connecting these variables are drive shafts. Running the SLR of Y on X

alone is tantamount to hiding the shaft, γ, that runs from Z to Y. When you turn the

X gear, the Y gear also turns—maybe quite a bit—because X is also connected to Z,

and Z also turns Y. However, since the shaft from Z to Y is hidden, we are misled into

thinking that X’s power to move Y is all realized through the shaft β. What we really

want to know, of course, is how much X turns Y, if at all, just on its own. In such
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Figure 3.1 Scatterplot of (x,y) values, along with OLS regression line, depicting the linear relationship

between Y and X for 26 cases.
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Figure 3.2 Regression model for Y showing confounding of X–Y relationship due to a third variable, Z.



a system, one simple solution, of course, is simply to disconnect γ. Then when we

turn X, if Y also turns, we know that this is strictly due to β, not to the other con-

nection through Z. What this solution accomplishes is to stop Z from turning along

with X, so that if turning X turns Y, this can only be due to β. The analogy to vari-

ables and their relationships is made by equating “turning” with variation. We want

to know whether varying X also induces Y to vary, and we don’t want X’s effect to

be confounded with Z’s effect on Y. Hence, we must stop Z from varying along with

X in order to isolate X’s effect on Y.

The principle of holding Z constant and observing how much Y varies with X

alone is illustrated, in the current example, in Figures 3.3 to 3.5. The variable Z,

measured for all 26 cases, takes on three values: 1, 2, and 3. Figure 3.3 shows a plot

of Y against X for all cases whose Z-value is 1. Notice that we are literally holding

Z constant in this plot, since all cases have the same value of Z (i.e., Z is no longer

varying here). Also notice that the slope of the regression of Y on X for just these

cases is now much shallower than before, with a value of only .444, about a third of

its previous value achieved when Z was ignored. Figure 3.4 similarly shows a plot of

Y against X for cases whose Z-value is 2. The slope of the regression here is .595.

Finally, Figure 3.5 shows Y plotted against X for those with Z-values of 3. The slope

of the regression in this case is .544.
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Figure 3.3 Scatterplot of (x,y) values, along with OLS regression line, depicting the linear relationship

between Y and X for the 10 cases with Z-values equal to 1.



Figure 3.4 Scatterplot of (x,y) values, along with OLS regression line, depicting the linear relationship

between Y and X for the nine cases with Z-values equal to 2.

Figure 3.5 Scatterplot of (x,y) values, along with OLS regression line, depicting the linear relationship

between Y and X for the seven cases with Z-values equal to 3.



A simple summary of X’s impact on Y when controlling for Z might be obtained

by averaging the three individual X–Y slopes from each level of Z, since their values

are quite similar. This is not exactly the formula used to calculate the effect of X in

the multiple regression of Y on X and Z (see Exercise 3.17 for the correct formula),

but it is a good heuristic approximation. The average of the three slopes is .528.

Hence, we could say that holding Z constant, each unit increase in X is expected to

increase Y by about .528 unit, on average. This is substantially smaller than the slope

of X’s effect on Y when Z is not controlled, which was 1.438. Clearly, failing to con-

trol for Z results in an overestimate of the impact of X. Statistically, controlling for

Z is accomplished by including it, along with X, in the equation for Y and estimat-

ing the MULR model. In the MULR, the slope for X is actually .564 instead of .528;

nonetheless, the reduction in value compared to 1.438 is clear. Additionally, the esti-

mate of the disturbance variance in the MULR is 1.614, or about half that in the

SLR. The error variance in the SLR was obviously inflated by not removing the sys-

tematic variance accounted for in Y by Z. Finally, R2 in the MULR is .915, compared

to .835 in the SLR. In that X and Z are highly correlated, the R2 in the MULR is much

less than the sum of the individual r2’s explained by X and Z in isolation (.835 and

.889, respectively).

A final and more formal way of understanding the meaning of statistical control

is as follows. Suppose that we regress X on Z and arrive at the estimated equation:

X � c � d Z � u. Now, notice that u � X � (c � dZ ). That is, u is the part of X that is

not a linear function of Z. Recall from Chapter 2 that u is also uncorrelated with Z.

Then suppose that we perform the SLR of Y on u and get Y � a � b u � e. Then b

from this SLR is exactly the same as the slope of X in the MULR of Y on X and Z.

Here we see that control, once again, is achieved by preventing Z from varying

along with X. In this case, it is evident that such control is achieved by using a form

of X from which the linear association with Z has been removed. Since that form of

X is now orthogonal to Z, b represents the impact of X on Y while preventing Z from

varying along with X, or holding Z constant. (Exercise 3.8 asks you to verify this

principle using the computer to analyze a four-variable model from the students

dataset.)

MULR Model

Now that we understand the need and rationale for MULR, it is time to present the

model and assumptions for estimation via OLS. The MULR model for the ith

response, Yi, is

Yi � β0 � β1Xi1 � β2Xi2 � . . . � βKXiK� εi. (3.1)

Or, the model for the conditional mean of Y, given the X’s, is

E(Yi � Xi1, Xi2, . . . ,XiK) � β0� β1Xi1 � β2Xi2 � . . . � βKXiK,
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or, in more compact notation,

E(Yi) ��
k

βkXik, (3.2)

where the index k ranges from 0 to K, and X0 equals 1 for all cases. [From here on,

for economy of presentation, I denote the conditional mean in the regression model

as E(Yi) instead of E(Yi � Xi1, Xi2, . . ., XiK).] The right-hand side of equation (3.2)

called the linear predictor, represents the structural part of the model. As in SLR,

the conditional mean is assumed to be a linear function of the equation parameters—

the β’s. Now, however, the points (x1, x2, . . . , xK, y) no longer lie on a straight line.

Rather, they lie on a hyperplane in (K � 1)-dimensional space. A particular combi-

nation of values, x1, x2, . . . , xK, for the X’s is called a covariate pattern (Hosmer

and Lemeshow, 2000). E(Yi) is therefore the mean of the Yi’s for all cases with the

same covariate pattern. As before, the equation disturbances, the εi’s, represent the

departure of the individual Yi’s at any given covariate pattern from their mean,

E(Yi).

The other two quantities that are of importance in MULR are σ2 and P2 (rho-

squared). As before, σ2 is V(ε), the variance of the equation errors, which is assumed

to be constant at each covariate pattern. Because the variance in Y at each covariate

pattern is assumed to be due to random error alone, σ2 is also the conditional vari-

ance of Y. P2 is the coefficient of determination for the MULR model, and as in SLR,

is the primary index of the model’s discriminatory power. P2 can be understood, once

again, by expressing the variance of Y in terms of the model:

V(Yi) � V��
k

βkXik � εi� � V��
k

βkXik� � V(εi).

Dividing through by V(Yi), we have

1 ��
V(�

V(

k

Y

β

i

k

)

Xik)
�� �

V

V

(

(

Y

εi

i

)

)
�,

or

1 � P2
� �

V

σ

(Y

2

i)
�.

P2 is therefore the proportion of the variance in Y that is due to variation in the lin-

ear predictor—that is, to the structural part of the model.

Interpretation of the Betas. The interpretation of the betas is, as in SLR, facilitated

by manipulating equation (3.2) so as to isolate β0 and then each βk. By setting all of

the X’s to zero, we see that β0 is the expected value of Y when all of the X’s equal zero.

The interpretation of any βk, say β1, can be seen by considering increasing X1 by 1 unit
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while holding all other X’s constant at specific values. If we let x�1 represent all of the

X’s other than X1, the change in the mean of Y is

E(Y � x1 � 1,x�1) � E(Y � x1,x�1)

� β0� β1(x1 � 1) � β2X2 � . . . � βKXK � (β0 � β1x1 � β2X2 � . . . � βKXK)

� β1(x1� 1 � x1) � β1.

Here it is clear that β1 represents the change in the mean of Y for a unit increase in

X1, controlling for the other regressors in the model. Or, in language with fewer causal

connotations, β1 is the expected difference in Y for those who are 1 unit apart on X1,

controlling for the other regressors in the model. As in SLR, β1 (and βk generally) is

both the unit impact of X1 (or Xk) on E(Y ) as well as the first partial derivative of E(Y )

with respect to X1 (or Xk).

Assumptions of the Model. The assumptions of MULR relevant to estimation via

OLS mirror those for SLR with perhaps a couple of exceptions:

1. The relationship between Y and the X’s is linear in the parameters; that is,

Yi � β0 � β1Xi1 � β2Xi2 � . . . � βKXiK � εi for i � 1, 2, . . . , n.

What does this mean? It means that the parameters enter the equation in a lin-

ear fashion or that the equation is a weighted sum of the parameters, where

the weights are now the X’s. An example of an equation that is nonlinear

in the parameters is Yi � β0Xi1

β1
Xi2

β2εi. Here, since β1 and β2 enter as exponents

of the X’s, the right-hand side of this equation clearly cannot be described as

a weighted sum of the β’s. On the other hand, this equation is easily made

into one that is linear in the parameters by taking the log of both sides: ln Yi �

ln β0 � β1 ln Xi1 � β2 ln Xi2 � ln εi. In contrast, there is no simple way to

linearize the equation Yi � β0 � Xi1

β1
� Xi2

β2
� εi.

2. The observations are sampled independently.

3. Y is approximately interval level, or binary (although the ideal procedures

when Y is binary are probit or logistic regression, described in Chapter 7). The

X’s are approximately interval-level, or dummy variables. Dummy variables

are binary-coded X’s that are used to represent qualitative predictors or pre-

dictors that are to be treated as qualitative (more about this in Chapter 4).

4. The X’s are fixed over repeated sampling. As in the case of SLR, this require-

ment can be waived if we are willing to make our results conditional on the

observed sample values of the X’s.

5. E(εi) � 0 at each covariate pattern. This is the orthogonality condition.

6. V(εi) � σ2 at each covariate pattern.

7. Cov(εi,εj) � 0 for i � j, or the errors are uncorrelated with each other. Again,

this is equivalent to assumption 2 if the data are cross-sectional.
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8. The errors are normally distributed.

9. None of the Xk is a perfect linear combination, or weighted sum, of the other X’s

in the model. That is, if we regress each Xk on all of the other X’s in the model,

no such MULR would produce an R2 of 1.0. Should we find an R2 of 1.0 for the

regression of one or more X’s on the remaining X’s, we say that there is an exact

collinearity among the X’s; that is, at least one of the X’s is completely deter-

mined by the others. Under this condition, the equation parameters are no longer

identified, and there is no unique OLS solution to the normal equations. This is

almost never a problem, although once in a while the unsuspecting analyst will

try to use X’s that are exactly collinear in a regression. One situation that pro-

duces this condition is when one tries to model an M-category qualitative vari-

able using all M dummy variables that can be formed from the categories. I

postpone discussion of dummies until Chapter 4. Another scenario resulting in

perfect collinearity occurs when someone tries to enter, say, age at marriage,

marital duration, and current age—all in years of age—into a model. In that

current age � age at marriage � marital duration, these variables are exactly

collinear. If this happens, it is immediately obvious from software output. There

are no regression results, and an error message appears warning the analyst that

the “XTX matrix” is “singular” or “has no inverse.” (In Chapter 6, where I dis-

cuss the matrix representation of the regression model, these concepts will be

clearer.) Although perfect collinearity is rare, a somewhat more common prob-

lem occurs under conditions of near-collinearity among the X’s. This occurs

when the regression of a given Xk on the other X’s produces an R2 close to 1.0,

say .98. This situation is termed multicollinearity. Unlike the case of exact

collinearity, it does not violate an assumption of regression. The normal equa-

tions can still be solved and parameter estimates produced. However, the

estimates and their standard errors may be quite “flawed.” The symptoms, con-

sequences, diagnosis, and remedies for multicollinearity are taken up briefly

below, and with substantially greater rigor in Chapter 6.

Estimation via OLS. Estimation of the MULR model proceeds in a fashion similar

to estimation of the SLR model. The idea, once again, is to find the b0, b1, b2, . . . ,

bK that minimize SSE, where

SSE ��
n

i�1

(yi � ŷi)
2
��

n

i�1
�yi � ��

k

bkxi k��
2

For any given sample of data values, this expression is clearly only a function of the

bk’s. To find the bk’s that minimize it, we take the first partial derivative of SSE with

respect to each of the bk’s and set each resulting expression to zero. This produces a

set of simultaneous equations representing the multivariate version of the normal

equations. These are then solved to find the OLS estimates of the bk’s (the solution,

in matrix form, is shown in Chapter 6).

As in SLR, we are also interested in estimating σ2 and P2. In MULR, as in SLR,

the estimate of σ2 is SSE divided by its degrees of freedom, which is n � K � 1.
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Thus,

σ̂ 2
� MSE ��

n �

S

K

SE

� 1
�.

R2, the estimate of P2, has the same basic formula in MULR as in SLR:

R2
� 1 � �

S

T

S

S

E

S
�.

In MULR, R2 is the proportion of variation in Y that is accounted for by the collec-

tion of X’s in the model, as represented by the linear predictor. R2 is also the squared

correlation of Y with its model-fitted value. That is,

R2
� [corr(y,ŷ)]2.

Example. Table 3.1 shows the results of three different regression analyses of stu-

dents’ scores on the first exam in introductory statistics, for 214 students. The first

model is just an SLR of exam1 score on the math diagnostic score and is essentially

a replication of the analysis in Table 2.2. The second model adds college GPA as a

predictor of exam scores, whereas the third model adds attitude toward statistics (a

continuous variable ranging from �10 to 20, with higher values indicating a more

positive attitude), class hours in the current semester (number of class hours the
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Table 3.1 Regression Models for Score on the First Exam for 214 Students 

in Introductory Statistics

Model 1 Model 2 Model 3

Regressor b bs b bs b bs

Intercept �35.521** .000 �57.923*** .000 �65.199*** .000

Math diagnostic 2.749*** .517 2.275*** .428 2.052*** .386

score

College GPA 13.526*** .398 13.659*** .402

Attitude toward .376* .122

statistics

Class hours in the .819* .115

current semester

Number of previous 1.580 .094

math courses

RSS 16509.326 25803.823 27762.947

MSE 212.919 169.878 162.909

F 77.538*** 75.948*** 34.084***

R2 .268 .419 .450

R2
adj .264 .413 .437

* p � .05. ** p � .01. *** p � .001.



student is currently taking), and number of previous math courses (the number of

previous college-level math courses taken by the student).

Recall that when discussing the authenticity of the first model in Chapter 2, I sug-

gested academic ability as the real reason for the association of math diagnostic per-

formance with exam scores. Should this be the case, we would expect that with

academic ability held constant, diagnostic scores would no longer have any impact on

exam performance. That is, if academic ability is Z in Figure 3.2 and diagnostic score

is X, this hypothesis suggests that there is no connection from X to Y, but rather, it is

the connection from X to Z and from Z to Y that causes Y to vary when X varies.

(Instead of a curved line connecting X with Z, we now imagine a directed arrow from

Z to X, since Z is considered to cause X as well as Y. The mathematics will be the same,

as shown below in the section on omitted-variable bias.) The measure of academic

ability I choose in this case is college GPA, since it reflects the student’s performance

across all classes taken prior to the current semester and is therefore a proxy for aca-

demic ability.

The first model shows that exam performance is, on average, 2.749 points higher

for each point higher that a student scores on the diagnostic. Model 2, with college

GPA added, shows that this effect is reduced somewhat but is still significant. (Whether

this reduction itself is significant is assessed below.) Net of academic ability, exam per-

formance is still, on average, 2.275 points higher for each point higher a student scores

on the diagnostic. It appears that academic ability does not explain all of the associa-

tion of diagnostic scores with exam scores, contrary to the hypothesis. College GPA

also has a substantial effect on exam performance. Holding the diagnostic score con-

stant, students who are a unit higher in GPA are estimated to be, on average, about 13.5

points higher on the exam. The model with two predictors explains about 41% of the

variance in exam scores. Adding college GPA apparently enhances the proportion of

explained variation by .419 � .268 � .151. This increment to R2 resulting from the

addition of college GPA is referred to as the squared semipartial correlation coefficient

between exam performance and college GPA, controlling for diagnostic score. The

semipartial correlation coefficient between college GPA and exam performance, con-

trolling for diagnostic score, is the square root of this quantity, or .389. Although the

increment to R2 is a meaningful quantity, the semipartial correlation coefficient is not

particularly useful. A more useful correlation coefficient that takes into account other

model predictors is the partial correlation coefficient, explained below. Our estimate

of σ2 for model 2 is MSE, which is 169.878.

The third model adds the last three predictors. This model explains 45% of the

variance in exam scores. Of the three added predictors, two are significant: attitude

toward statistics and class hours in the current semester. Each unit increase in attitude

is worth about a third of a point increase in exam performance, on average. Each addi-

tional hour of classes taken during the semester is worth about eight-tenths of an addi-

tional point on the exam, on average. This last finding is somewhat counterintuitive,

in that those with a greater class burden have less time to devote to any one class.

Perhaps these students are especially motivated to succeed, or perhaps these students

have few other obligations, such as jobs or families, which allows them to devote more

time to studies. The intercept in all three models is clearly uninterpretable, since the
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only predictor that can take on a value of zero is number of previous math courses.

The model might be useful for forecasting exam scores for prospective students, since

its discriminatory power is moderately strong. Suppose that a prospective student

scores 43 on the diagnostic, has a 3.2 GPA, has a 12 on attitude toward statistics, is

taking 15 hours in the current semester, and has had one previous math course. Then

his or her predicted score on the first exam would be ŷ� �65.199 � 2.052(43) �

13.659(3.2) � .376(12) � .819(15) � 1.58(1) � 85. 1228.

Discriminatory Power, Revisited. Although R2 is used to tap discriminatory power, it

is an upwardly biased estimator of P2. This is evident in the fact that (Stevens, 1986)

E(R2 � P2
� 0) � �

n �

K

1
�.

That is, even if P2 equals zero in the population, a regression model with, say, 49 pre-

dictors and 50 cases will show an R2 of 1.0, regardless of the real utility of the explana-

tory variables in explaining Y. A better estimator of P2 is the adjusted R2, whose

formula, as given in Chapter 2, is

R2
adj � 1 � �

σ

s

ˆ
2
y

2

�.

R2
adj is typically smaller in magnitude than R2, adjusting for the latter’s tendency to

“overshoot” P2. For model 3 in Table 3.1, for example, R2 is .45 whereas R2
adj is .437.

Additionally, R2 has the rather unpleasant property that it can never decrease

when variables are added to a model, no matter how useless they are in explaining

Y. This could entice one to add ever more variables to a model in order to increase

its discriminatory power. The drawback to this strategy is that we end up with a

model that maximizes R2 in a given sample but has little replicability across samples.

Another advantage to R2
adj is that it reflects whether or not “junk” is being added to

a regression model. Rewriting R2
adj as

R2
adj � 1 ��

SS

T

E

S

/

S

(n

/ (

�

n �

K

1

�

)

1)
� � 1��

n �

n �

K�

1

1
� �

S

T

S

S

E

S
�,

we see that as K increases—that is, as we add more and more predictors to the model—

the factor (n � 1)/(n � K � 1) also increases. Now TSS is constant for any given set

of Y values. So for R2
adj to increase as we add predictors, SSE must be reduced corre-

spondingly. That is, each predictor must be removing systematic variation from the

error term in order for us to experience an increase in R2
adj. Hence, R2

adj is a more

effective barometer for gauging whether an additional variable should be entered into

a model than is R2.

Standardized Coefficients and Elasticities. Frequently, we wish to gauge the rela-

tive importance of explanatory variables in a given model. The unstandardized

coefficients, that is, the bk’s, are not suited to this purpose, since their magnitude
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depends on the metrics of both Xk and Y. A better choice is the standardized partial

regression coefficient, denoted bs
k in this volume. The formula for bs

k is

bs
k � bk�

s

s
x

y

k
�.

That is, the standardized coefficient is equal to the unstandardized coefficient times

the ratio of the standard deviation of Xk to the standard deviation of Y. This stan-

dardization removes the dependence of bk on the units of measurement of Xk and Y.

Its interpretation, however, is cumbersome: It represents the estimated standard-

deviation difference in Y expected for a standard-deviation increase in Xk, net of

other model predictors. Why? Well, if bk is the change in the mean of Y for a unit

increase in Xk, then bksxk is the change for a 1-standard-deviation increase in Xk.

Dividing this by sy gives us the change in the mean of Y expressed in standard devi-

ations of Y, which is, of course, bs
k. Typically, we are not interested in interpreting bs

k

but rather, in comparing the magnitudes of the bs
k’s. For example, in model 2 the bk’s

suggest that college GPA has a substantially stronger effect on exam performance

than that of math diagnostic score. However, the bs
k’s paint a different picture, sug-

gesting that math diagnostic score has a stronger impact than college GPA. In the last

model, on the other hand, the picture changes again. In the presence of the other

model predictors, college GPA has the strongest effect on exam performance, fol-

lowed by math diagnostic score, attitude toward statistics, class hours in the current

semester, and number of previous math courses.

Although the bs
k’s are useful for gauging the relative importance of predictors in

a given model, they have drawbacks with respect to other model comparisons.

Because they are a function of the sample standard deviations of the predictors and

of the response, they should not be used to compare coefficients across samples. For

example, they should not be used to compare the effects of predictors in, say, two

different populations, based on samples from each population. The reason for this

is that the effect of a given predictor, as assessed by the unstandardized coefficient,

might be the same in each population. But the standard deviations of the predictor

and/or the response might be different in each population, resulting in different

standardized coefficients. The same reasoning suggests that we should not use the

bs
k’s to compare coefficients in different samples from the same population—say,

taken in different time periods. In these cases, the bk’s are preferable for making

comparisons.

A unitless measure that can be used for comparing the relative importance of

regressor effects both within and across samples is the variable’s elasticity, denoted

Ek for the kth variable (Pindyck and Rubinfeld, 1981). This statistic is less suscepti-

ble to sampling variability than is the standardized coefficient. For the kth predictor,

the population elasticity is calculated as

Ek � βk �
x�
y�
k
�.

EMPLOYING MULTIPLE PREDICTORS 91



The elasticity is the percentage change in Y that could be expected from a 1%

increase in Xk (Hanushek and Jackson, 1977). To see how this interpretation arises,

consider the change in the mean of Y for a 1% increase in Xk, holding the other X’s

constant:

E(Y � xk � .01xk, x�k) � E(Y � xk, x�k)

� β0 � β1X1 � . . . � βk(xk � .01xk) � . . . � βKXK

� (β0 � β1X1 � . . . � βkxk � . . . � βKXK)

� .01βkxk.

Dividing by Y gives us .01βkxk/Y, which is the proportionate change in E(Y )—as a pro-

portion of Y—for a .01 increase in X. Finally, multiplying by 100 results in βk(xk /Y),

which is then the percent change in E(Y ) resulting from a percent increase in Xk. This

change depends on the levels of both Xk and Y, but it is customary to evaluate it at the

means of both variables. For model 3 in Table 3.1, the elasticities are 1.091 for the

diagnostic score, .549 for college GPA, .024 for attitude toward statistics, .158 for

class hours, and .026 for the number of previous math courses. According to the elas-

ticities, math diagnostic score clearly has the strongest impact. Each 1% increase in

the diagnostic score is expected to increase exam performance by 1.09%.

Inferences in MULR

Several inferential tests are available to test different types of hypotheses about vari-

able effects in MULR. The first test we might want to consider is a test for the model

as a whole. Here we ask the question: Is the model of any utility in accounting for

variation in Y? We can think of the null hypothesis as H0: P2
� 0, and the research

hypothesis as H1: P2
� 0. That is, if the model is of any utility in explaining Y, there

is some nonzero proportion of variance in Y in the population that is explained by

the regression. Another way of stating these hypotheses is as follows: H0: β1 �

β2 � . . . � βK � 0 versus H1: at least one βk � 0. Actually, this is a narrow represen-

tation of the hypotheses. A more global expression of the hypotheses is: H0: all pos-

sible linear combinations of the βk’s � 0 versus H1: at least one linear combination

of the βk’s � 0 (Graybill, 1976). The connection between these two (latter) state-

ments of H0 and H1 is that β1, β2, . . . , βK each represents linear combinations, or

weighted sums, of the βk’s. To see that, say, β1 is a weighted sum of the βk’s, we sim-

ply write β1 as 1(β1) � 0(β2) � . . . � 0(βK). Here it is evident that the first weight is

1 and all the rest of the weights equal zero. The F statistic, which is used to test the

null hypothesis in all three cases here, is actually a test of the third null hypothesis.

The reason for highlighting this is that occasionally, the null hypothesis will be

rejected and none of the individual coefficients turns out to be significant. One rea-

son for this is that it is some other linear combination of the coefficients that is

nonzero, but perhaps not a combination that makes any intuitive sense. (Another rea-

son for this phenomenon is that multicollinearity is present among the X’s; multi-

collinearity is considered below.)
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At any rate, the test statistic for all of these incarnations of H0 is the F statistic,

where

F ��
SSE

R

/n

S

�

S/K

K� 1
� � �

M

M

S

S

R

E
�

and MSR denotes mean-squared regression, or the regression sum of squares divided

by its degrees of freedom, K. Under the null hypothesis—that is, if the null hypothesis

is true—this statistic has the F distribution with K and n � K � 1 degrees of freedom.

Table 3.1 displays RSS, MSE, and F for all three models. All F tests are highly

significant, suggesting that each model is of some utility in predicting exam scores.

If the F test is significant, it is then important to determine which βk’s are not equal

to zero. The individual test for any given coefficient is a t test, where

t � �
σ

b

ˆb

k

k

�

has the t distribution with n � K � 1 degrees of freedom under the null hypothesis

that βk � 0. All coefficients in all models with the exception of the effect of number

of previous math courses, in model 3, are significant. As in simple linear regression,

we may prefer to form confidence intervals for the regression coefficients. A 95%

confidence interval for βk is bk � t(.025,n�K�1)σ̂bk.

Nested F. Often, it is of interest to test whether a nested model is significantly

different from its parent model. A model, B, is nested inside a parent model, A, if the

parameters of B can be generated by placing constraints on the parameters in A. The

most common constraint is to set one or more parameters in A to zero. For example,

model 2 is nested inside model 3 because the parameters in model 2 can be gener-

ated from those in model 3 by setting the β’s for attitude toward statistics, class

hours in the current semester, and number of previous math courses, in model 3, all

to zero. We can therefore test whether a significant loss in fit is experienced when

setting these parameters to zero, or, alternatively, whether a significant improvement

in fit is experienced when adding these three parameters. In reality, we are testing

H0: β3 � β4 � β5 � 0 versus H1: at least one of β3, β4, β5 � 0. That is, the test is a test

of the validity of the constraints in H0. In general form, the nested F-test statistic is

F �
,

where ∆df is the number of constraints imposed on model A to derive model B, or

the difference in the number of parameters estimated in each model. An alternative

but equivalent form of the test statistic is

F � ,
(R2

A � R2
B)/∆df

���
(1 � R2

A)/(n � K � 1)

(RSSA � RSSB)/∆df
���

MSEA
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where K is the total number of regressors in the parent model. In the current example,

K � 5 and ∆df � 3, since we have constrained three parameters in model 3 to zero to

arrive at model 2. If H0 is true—that is, the constraints are valid—this statistic has the

F distribution with ∆df and n � K � 1 degrees of freedom. In the current example, the

test statistic is

F � � 4.009.

With 3 and 208 degrees of freedom, the attained significance level is .0083. At con-

ventional significance levels (e.g., .05 or .01), we would reject H0 and conclude that at

least one of the constrained parameters is nonzero. Individual t tests suggest that two

of the parameters are nonzero: the effect of attitude toward statistics and the effect of

class hours in the current semester. If only one parameter is hypothesized to be zero,

say βk, the nested F is just the square of the t test for the significance of bk in the model

containing that parameter estimate.

Nesting: Another Example. There are other means of constraining parameters that

do not involve setting them to zero. As an example, Table 3.2 presents two different

regression models for couple modernism, based on the 416 intimate couples in the

couples dataset. Model 1 shows the results of regressing couple modernism on male

(27762.947 � 25803.823)/3
����

162.909
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Table 3.2 Regression Models for Couple Modernism for 416 Intimate Couples,

Showing Nesting to Test Equality of Coefficients

Model 1 Model 2

Regressor b bs b bs

Intercept 23.368*** .000 23.481*** .000

Male’s schooling .110* .139 .160*** .335

Female’s schooling .211*** .237 .160*** .335

Male’s church attendance �.136* �.147 �.067** �.131

Female’s church attendance .020 .021 �.067** �.131

Male’s income �.015 �.097 .004 .030

Female’s income .048*** .189 .004 .030

RSS 473.121 348.285

MSE 5.104 5.370

F 15.450*** 21.621***

R2 .185 .136

R2
adj .173 .130

Partial variance–covariance matrix for model 1

Male’s Schooling Female’s Schooling

Male’s schooling .001990 �.001004

Female’s schooling �.001004 .002340

* p � .05. ** p � .01. *** p � .001.



and female partner’s schooling (years of schooling completed), church attendance

(interval-level predictor ranging from 1 � “never” to 9 � “more than once a week”)

and income (in thousands of dollars). Recall the discussion of the authenticity of a

SLR of modernism in Chapter 2. There I suggested that the effect of male’s school-

ing might be only an artifact of its association with female’s schooling. In that case,

male’s schooling might not have any independent effect on modernism, and the rela-

tionship between these two variables would be spurious. In model 1 in Table 3.2 we

see that controlling for female’s schooling, male’s schooling still has a significant

effect on modernism, albeit substantially reduced compared to its effect in the SLR

(see Table 2.3). However, we might now ask whether male’s schooling and female’s

schooling have equal effects on couple modernism. In fact, we might wonder whether

there is any difference in the impact of males’ versus females’ schooling, church atten-

dance, or income on couple modernism.

The effects in model 1 seem to suggest that there is. The effect for female’s school-

ing is close to twice as large as the effect for male’s schooling. Church attendance has

opposite effects for males and females, although only male’s church attendance is sig-

nificant. Similarly, male and female incomes have opposite effects, with only female’s

income significant. Nevertheless, sample coefficients can be different from each

other due entirely to sampling error, even were there no difference between males’ and

females’ effects in the population. We can use a nested F test to test whether the impact

of males’ and females’ characteristics is the same. The parent model is model 1, which

can be represented in the population as

E(Y) � β0 � δ1X1 � δ2X2 � γ1X3 � γ2X4 � λ1X5 � λ2X6, (3.3)

where Y is couple modernism, X1 is male’s schooling, X2 is female’s schooling, X3 is

male’s church attendance, X4 is female’s church attendance, X5 is male’s income, and

X6 is female’s income. The null hypothesis that we want to test is that the parameters

for males’ and females’ characteristics are equal. That is, we test H0: δ1 � δ2 � δ,

γ1 � γ2 � γ, λ1 � λ2 � λ against H1: at least one pair of parameters is not equal. Under

the null hypotheses, the model becomes

E(Y) � β0 � δX1 � δX2 � γX3 � γX4 � λX5 � λX6

� β0 � δ(X1 � X2) � γ(X3 � X4) � λ(X5 � X6). (3.4)

Notice that equation (3.4) is now nested inside equation (3.3) because of the

constraints in H0. There are three constraints being imposed here. The nature of each

constraint is that a given parameter is being set equal in value to another parameter.

Therefore, H0 is tested by performing a nested F test to compare these two models.

Notice also that model (3.4) can be estimated by summing male and female scores

on each of the variables representing schooling, church attendance, and income, and

entering these three sums as the regressors in the model. These results are shown in

model 2 in Table 3.2. The coefficient for the sum of male and female schooling,

.160, is shown as the common coefficient for male and female schooling in the
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model. The other coefficients are similarly portrayed. The test statistic for H0 is then

F � � 8.153.

Under the null hypothesis, this statistic has the F distribution with 3 and 409 degrees

of freedom and a significance level of p � .001. Apparently, we should reject H0 and

conclude that at least one pair of coefficients is not equal.

Testing Coefficient Differences. Differences between particular pairs of coefficients

can be tested with individual t tests. The estimated difference between the jth and kth

coefficients is bj � bk. To find the standard error of this difference, we first find its

variance. Using covariance algebra, we have

V(bj � bk) � Cov(bj � bk, bj � bk)

� Cov(bj,bj) � Cov(bj,bk) � Cov(bk,bj) � Cov(bk,bk)

� V(bj) � V(bk) � 2Cov(bj,bk). (3.5)

This variance can be estimated by requesting the variance–covariance matrix of param-

eter estimates as part of one’s regression output. The entries in this matrix make sense

if one considers the possibility of repeatedly taking random samples of the same size

(i.e., 416) from the population of intimate couples, running model 1 each time, and

recording the estimates from each run. The diagonal entries of the matrix represent the

estimated variances of the coefficients across all of the samples, and the off-diagonal

entries represent the estimated covariances between each pair of coefficients. The rele-

vant terms from this matrix can then be substituted into (3.5).

The bottom panel of Table 3.2 shows the relevant part of that matrix for testing

whether male and female schooling have equal effects on couple modernism, based on

estimating model 1. The variance of the difference in coefficients for male versus female

schooling is

v(d1 � d2) � .00199 � .00234 � 2(�.00104) � .006338.

The standard error is the square root of this quantity, .0796. The test statistic for the

equality of these coefficients is then

t ��
.11

.

0

07

�

96

.211
� � �1.269.

Under the null hypothesis that the coefficients for schooling are equal, this statistic

has the t distribution with 409 degrees of freedom. With p � .1, we would fail to

reject the null hypothesis. Apparently, there is not enough evidence to conclude that

female schooling has a different effect on modernism than male schooling in the pop-

ulation of intimate couples. The other pairs of coefficients in model 1 could be tested

in a similar fashion were we so inclined.

(473.121 � 348.285)/3
���

5.104
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Testing Coefficient Changes. Researchers are frequently interested in whether the

effect of a given variable changes after other variables are held constant. For example,

let us return to the analyses in Table 3.1. We might hypothesize that in the population,

part of the impact of math diagnostic score on exam score is accounted for by the asso-

ciation of college GPA with both of these variables. We notice that the effect of math

diagnostic score is indeed reduced when college GPA is added to the model for exam

score, which appears to support the hypothesis. But the observed coefficient change in

the math diagnostic effect across models might be due only to chance. The question is:

Is there a significant reduction in the coefficient for math diagnostic score when col-

lege GPA is added to the model? What is needed is a test for the difference in the effect

of math diagnostic score between models 1 and 2. The testing approach is complicated

by the fact that the coefficients in the initial model (model 1) are not independent of

the same coefficients after variables have been added (Clogg et al., 1995).

The test proposed by Clogg et al. (1995), which accounts for the dependence

of the coefficients, is as follows. We suppose that the baseline model with p param-

eters is

Y � α ��β*
pXp � ε, (3.6)

whereas the full model with q added parameters is

Y � α ��βpXp ��γqZq � υ. (3.7)

Now, let δk � β*
k � βk be the difference in the kth parameter after the additional

variables—the Z’s—have been added. The sample estimate of δk is dk � b*
k � bk, the

difference between the corresponding sample coefficients. We test H0: δk � 0 against

H1: δk � 0 using the test statistic

t � �
σ

d

ˆd

k

k

�,

which is distributed as a t random variable with n � ( p � q) � 1 degrees of freedom

under H0. The estimated variance of dk is

σ̂2
dk

� s2
bk

� s2
bk*

�
σ

σ

ˆ

ˆ

2
	

2
ε

�,

where s2
bk

is the sample variance of bk in model (3.7), s2
bk*

is the sample variance of

b*
k in model (3.6), and the MSE’s from the models are used to estimate their respec-

tive error variances. The sample variance of the coefficient for diagnostic score in

model 1 is .097455, while the sample variance for the same coefficient in model 2 is

.081867. In the current case, then, we have σ̂2
dk

for math diagnostic score as

σ̂2
dk

� .081867 � .097455��12
6

1

9

2

.

.

8

9

7

1

8

9
�� � .004.
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The standard error of the coefficient difference is therefore .0632, and the test statistic is

t ��
2.74

.

9

0

�

63

2

2

.275
� � 7.5.

With 211 degrees of freedom, this result is highly significant at p � .00001. We con-

clude that college GPA accounts for some of the effect of math diagnostic score on

exam score. One final comment about tests involving nested models is in order:

Models are nested only if the sample size remains the same in each model. If the n’s

change as variables are added or constraints are imposed, nesting no longer holds.

Omitted-Variable Bias

Earlier I alluded to the problem of omitted-variable bias. In this section I elaborate

on the problem. The estimate of a given coefficient is biased whenever a regressor is

omitted from the model that is a determinant of Y and is also correlated with the pre-

dictor(s) of interest. The nature of the bias depends on both the correlation between

the included and omitted regressors and the effect of the omitted regressor on the

response. Figure 3.6 presents models exhibiting three different types of omitted-

variable bias, which I refer to as confounding, spuriousness, and mediation. Without

loss of generality, I assume that all variables have means of zero, obviating the need

for an equation intercept in any model. In each case the focus variable is X, the omit-

ted variable is Z, and the response is Y. Also, in each case the parameter that we are

trying to estimate without bias is β. I employ simple models involving only three

variables to avoid excessively tedious mathematics. In Chapter 6 I revisit this issue

with a more complex model. As scalar algebra becomes unwieldy with more than

three variables in the model, I employ matrix algebra for that explication.

Panel (a) of Figure 3.6 illustrates the confounding scenario, in which the effect of

X on Y is confounded with Z. That is, part of X’s effect on Y is realized via X’s con-

nection (correlation) with Z. In this case, we are unwilling to specify the nature of

the causal relationship between Z and X. Or, perhaps Z and X are not causally related

but simply correlated for reasons that remain unanalyzed. Hence, Z is depicted as

falling into the same causal sequence as X by my showing Z even with X in the

figure. The correlation between Z and X is symbolized by ρ, where

ρ ��
Co

σ

v

x

(

σ

X

z

,Z )
�,

which implies that Cov(X,Z) � ρσxσz. The model depicted is the true model for X,

Y, and Z. Mathematically, it is Y � βX � γZ � ε, with Cov(X,ε) � Cov(Z,ε) � 0.

Instead, suppose that we estimate the model Y � βX � ε
, where ε
 � γZ � ε is now

no longer uncorrelated with X, since X and Z are correlated. Thus, the orthogonality

condition no longer holds. What are the consequences? Recall from Chapter 2 that

the OLS estimate of b in this SLR can be written

b ��
cov(

s

X
2
x

,Y)
�.
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Now we ask: What parameter is b consistent for? To answer this, we find plim b:

plim b � plim��cov(

s

X
2
x

,Y)
�� ��

plim

p

(c

li

o

m

v(

s

X
2
x

,Y))
� (by the Slutsky theorem)

��
Cov

σ

(X
2
x

,Y)
�
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Figure 3.6 Three-variable models exhibiting varieties of omitted-variable bias.



(because the sample variance and covariance are consistent estimators of their respec-

tive population parameters)

� ��
βσ2

x � γ

σ

C
2
x

ov(X,Z )
�

� β ��
γρ

σ

σ
2
x

xσz
� � β � γρ �

σ

σ

x

z
�. (3.8)

This result shows that b is consistent for β � γρ(σz /σx) rather than β. The bias in the

estimation of β is the term γρ(σz /σx). The nature of the bias depends on β, the true

effect of X on Y, γ, the nature of the impact of Z on Y, and ρ, the nature of the correla-

tion between X and Z. (Since σz /σx is always positive, it has no effect on the direction

of the bias.) If the sign of the product γρ is the same as the sign of β, we will overes-

timate the magnitude of X’s impact on Y when Z is excluded from the model. But if γρ
is opposite in sign to β, the effect of X is suppressed, or underestimated, when Z is

excluded. If γρ is opposite in sign to β and its magnitude is greater than β’s, the effect

of X is reversed when Z is excluded. This last phenomenon is also known as Simpson’s

paradox (Agresti, 2002).

Panel (b) illustrates spuriousness, in which the effect of X on Y is partially (or com-

pletely) spurious, due to Z. That is, part or all of X’s “effect” on Y is due to the fact that

Z causes both X and Y. In that Z is causally prior to both X and Y, Z is pictured as the

leftmost variable in the diagram. Once again, the true model for Y is Y � βX � γZ � ε,

with Cov(X,ε) � Cov(Z,ε) � Cov(Z,υ) � Cov(υ,ε) � 0. The model for X is X � λZ � υ.

As before, if we estimate the model Y � βX � ε
, where ε
 � γ Z � ε, we find that ε
 is

no longer orthogonal to X, since X is correlated with Z by virtue of Z’s effect on X.

Moreover, for the OLS estimate of β we have

b ��
cov(

s

X
2
x

,Y)
�

and by virtue of the same mathematics, plim b is, again,

β � γρ �
σ

σ

x

z
�,

and the remarks about the nature of the bias are the same as before. In this case, plim b

can be rewritten by taking advantage of a reexpression of ρ. Recall that in SLR, the

correlation coefficient is the standardized slope, which equals the unstandardized

slope times the ratio of the standard deviation of X to the standard deviation of Y. In

panel (b), Z plays the role of X, while X plays the role of Y in this calculation. With λ
as the unstandardized slope, we have

ρ � λ�
σ

σ

x

z
�,

Cov(X,βX � γZ � ε)
���

σ2
x
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and therefore,

β � γρ �
σ

σ

x

z
� � β � γ �λ�

σ

σ

x

z
���

σ

σ

x

z
�

� β � γλ�
σ

σ
2
x

2
z

�.

Here it is evident that the bias in b as an estimate of β is a function of the effect of

Z on X and the effect of Z on Y.

Panel (c) illustrates mediation. We say that the impact of X on Y is mediated by Z if

Z is partly or completely the mechanism by which X’s effect on Y is realized. In this

case, X causes Z, and Z, in turn, causes Y. Hence, Z is pictured as lying between X and

Y in the figure. As before, the true model for Y is Y � βX � γZ � ε, with Cov(X,ε) �

Cov(Z,ε) � Cov(X,ω) � Cov(ω,ε) � 0. The model for Z is now Z � δX � ω. Suppose,

once again, that we estimate the model Y � βX � ε
, where ε
 � γZ � ε. We find that

ε
 is no longer orthogonal to X, since X is correlated with Z by virtue of X’s effect on

Z. By virtue of the, by now, very familiar mathematics of consistency, plim b is, again,

β � γρ �
σ

σ

x

z
�.

Once again, plim b can be rewritten by taking advantage of a reexpression of ρ. In that

ρ � δ�
σ

σ
x

z

�,

we have that

β � γρ �
σ

σ

x

z
� � β � γ �δ�

σ

σ
x

z

���
σ

σ

x

z
�

� β � γδ.

This last expression suggests that the bias in b as an estimate of β is due to the prod-

uct of X’s effect on Z with Z’s effect on Y. In path analysis, this is called the indirect

effect of X on Y via Z, while β itself is called the direct effect of X on Y. The total

effect of X on Y is the sum of direct and indirect effects, or β � γδ [see, e.g., Bollen

(1989) for a thorough discussion of path analysis]. From this perspective, mediation

is arguably not a form of bias, simply a conflation of the indirect and direct effects

of one variable on another into one omnibus effect.

Example: Deciphering Omitted-Variable Bias. Recall the positive association

between frequenting bars and having sex that was documented in Chapter 2. In the

discussion of model authenticity in that chapter I also suggested that this association

might be spurious, due to the fact that younger people go to bars more frequently and

are also more sexually active. Let me now expand that argument. I propose that part

of the reason for the positive association between frequenting bars and having sex is

due to three background factors that affect both phenomena: age, religiosity, and
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health. That is, I suggest that younger people, those who are less religious, and those

in better health are more likely both to frequent bars and to have sex. To the extent

that this is the case, the relationship between frequenting bars and having sex is spu-

rious. However, if frequenting bars also exerts a causal influence on sexual activity,

as was the argument in Chapter 2, it should still have a significant effect on sexual

activity even net of these three background factors. Moreover, I made the argument

in Chapter 2 that one means by which frequenting bars might enhance sexual activity

is by widening one’s pool of potential sex partners. If this is the case, the number of

sex partners should mediate the remaining impact of frequenting bars on sexual activ-

ity. Figure 3.7 presents the conceptual model representing these hypothesized rela-

tionships. Notice that all of the compound “paths” of the form γλ (for spuriousness)

or γδ (for mediation) linking frequenting bars with having sex via age, religiosity,

health, or number of sex partners are positive. This suggests that the effect of fre-

quenting bars should diminish once these other variables are controlled.

Table 3.3 presents three regression models for having sex, which allow us to evalu-

ate the model in Figure 3.7. The first model is the SLR for having sex as a function of

frequenting bars, and is similar to the results in Table 2.4 except that all analyses in

Table 3.3 are based on 2,320 respondents. We see that the effect of frequenting bars is

significant and positive, with a value of .224. Model 2 adds age (in years), religiosity

(continuous predictor that is the sum of five standardized measures; higher scores indi-

cate those who are more religious), and self-assessed health (ranging from 1 � “poor”

to 4 � “excellent”). The effect of frequenting bars, although still significant, has been

reduced by a proportion of (.224 � .058)/.224 � .74, or about 74%, once the back-

ground factors are held constant. This suggests that about 74% of the “effect” of fre-

quenting bars on having sex is noncausal and due to the antecedents of both variables.

Nevertheless, frequenting bars still has a nonzero effect on having sex (the sample

coefficient is .058). Model 3 adds the respondent’s number of sex partners in the past
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five years (censored count variable ranging from 0 � “no partners” to 8 � “more than

100 partners”) as a potential mediator of the impact of frequenting bars on having sex.

We see now that the effect of frequenting bars is diminished to approximately zero

in this last model (the coefficient is .001). This suggests that the remaining effect of

frequenting bars on having sex may be causal, since it appears to be mediated or

“explained” by one’s number of sex partners, which was hypothesized to be enhanced

by frequenting bars.

At this point a word of caution is in order in regard to the model’s authenticity.

Although the causal priority of age, religiosity, and health over frequenting bars is a

reasonable assumption, it is not so clear that frequenting bars is causally prior to

number of sex partners. The difficulty is the retrospective time frame associated with

each variable. Frequenting bars was measured with the question “How often do you

go to a bar or tavern,” while number of sex partners refers to the last five years.

Temporally speaking, therefore, it could be argued that number of sex partners is prior

to frequenting bars. On the other hand, it is theoretically reasonable that frequenting

bars enhances one’s number of sex partners. But it is not particularly reasonable that

one’s number of sex partners should determine how often one goes to bars. In fact, if

anything, those with more sex partners might go to bars less often, since they already

have what many bar patrons are looking for. This would imply a negative relationship

between frequenting bars and number of sex partners, which is contrary to the results.

Since the positive effect of frequenting bars is reduced when number of sex partners

is added, and since number of sex partners is positively related to having sex, the path

from frequenting bars to number of sex partners must be positive. At any rate, I argue,

based on these theoretical considerations, that frequenting bars is causally prior to

number of sex partners. Finally, to ascertain whether number of sex partners indeed

mediates the remaining effect of frequenting bars on having sex, we must test whether
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Table 3.3 Regression Models for Frequency of Having Sex for 2320 Respondents

from the General Social Survey

Model 1 Model 2 Model 3

Regressor b bs b bs b bs

Intercept 2.270*** .000 3.984*** .000 3.225*** .000

Frequenting bars .224*** .157 .058* .042 .001 .001

Age �.047*** �.401 �.038*** �.326

Religiosity �.009 �.011 .008 .010

Self-assessed health .249*** .103 .265*** .110

No. partners in past .276*** .218

5 years

RSS 218.446 1815.340 2152.511

MSE 3.747 3.062 2.918

F 58.301*** 148.220*** 147.558***

R2 .025 .204 .242

R2
adj .024 .203 .240

* p � .05. ** p � .01. *** p � .001.



the reduction in the impact of frequenting bars from model 2 to model 3 is significant.

Here, again, we draw on the test proposed by Clogg et al. (1995), which was intro-

duced earlier. As the result is highly significant (t � 10.76; p � .00001), I conclude

that part of the impact of frequenting bars on having sex is due to the influence of fre-

quenting bars on one’s pool of potential sex partners.

Modeling Interaction Effects

Recall, in the analyses in Figures 3.3 to 3.5, that the slope of the regression of Y on

X was approximately the same at each level of Z. Therefore, it made sense to report

the “average” of these three slopes as the effect of X on Y when holding Z constant.

But what if the effect of X depends on the level of Z? In this case, it no longer makes

sense to speak of the impact of X controlling for Z, since there may be many different

impacts of X depending on which level of Z is being considered. When the slope of

the regression of Y on X changes significantly across levels of Z, we say that X and

Z interact in their effects on Y. Or, we say that the impact of X on Y is moderated by

or conditioned on the level of Z, and Z is referred to as a moderator variable. In this

section of the chapter I discuss the modeling of interaction effects. I also discuss a

related notion, the idea that the model as a whole might differ across groups of cases.

Interaction Model. When X and Z interact in their effects on Y, this is captured by

including a cross-product term—representing the product of X with Z—as an addi-

tional regressor in the model. The model is

E(Y) � β0 � β1X � β2Z � γXZ.

Since the partial slope of the regression with respect to X is the parameter that multi-

plies X in the model, let’s factor this equation to isolate the common multipliers of X:

E(Y ) � β0 � β2Z � (β1� γZ)X. (3.9)

Equation (3.9) shows how the cross-product term captures the interaction effect: The

impact of X—its partial slope—is now a function of the level of Z. In fact, the partial

slope of X, denoted psx, is a simple linear regression model of the form psx � β1 � γZ.

That is, psx increases (if γ is positive) or decreases (if γ is negative) linearly with

increases in Z. Interaction effects are symmetric. We could also factor the equation so

as to isolate the common multipliers of Z. We would then find that the partial slope

for Z is β2 � γX. In other words, the impact of Z is a simple linear function of X, too.

This type of interaction effect, in which the effect of X (Z ) varies in a simple linear

fashion with the level of Z (X), is the one most commonly modeled. However, non-

linear interaction effects can also be modeled, as demonstrated in Chapter 5.

The interaction effect modeled in equation (3.9) is called a first-order interaction

effect. This means that the effect of X varies only according to the values of one other

variable. If the effect of X varies according to the combination of values of two other

variables, we have a second-order interaction effect, which is much more complicated.
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A second-order interaction effect among, say, X, Z, and W in their effects on Y would

be modeled by including the following predictors in the model: X, Z, W, XZ, XW, ZW,

and XZW. The equation would then be

E(Y) � β0 � β1X � β2Z � β3W � β4ZW � γXZ � λXW � δXZW

Factoring the common multipliers of X, we have

E(Y) � β0 � β2Z � β3W � β4ZW � (β1 � γZ � λW � δZW )X

Now the partial slope for X is β1 � γZ � λW � δZW. This is an interaction model

in the variables Z and W. Thus, the model suggests that the impact of X on Y is a

function of the interaction of Z with W; or, the extent to which Z moderates the

impact of X on Y itself depends on the level of W. It should be apparent that higher-

order interactions become increasingly unwieldy to understand, let alone model. As

one rarely encounters the modeling of interactions any higher than first-order [see

MacDonald and DeMaris (2002) for an exception, however], they will not be con-

sidered further here [but for a lucid discussion of higher-order interaction effects, see

Aiken and West (1991)]. The partial slope of X in the first-order interaction model

has a unit-impact interpretation, just like the effect of X in the no-interaction, or main

effects, model. It reflects the expected change in Y for a unit increase in X (in

Exercise 3.19 I ask you to prove this). It is also the first partial derivative of equation

(3.9) with respect to X.

Ordinal versus Disordinal Interaction. Let’s consider some examples of interaction

models. Suppose that the equation is E(Y) � 5 � .2X � 1.5Z � .05XZ, where X ranges

from 0 to 10 and Z ranges from 0 to 5. Then the partial slope for X is .2 � .05Z. Thus,

when Z is 0, the partial slope for X is .2. When Z is 2.5, the partial slope for X is

.2 � .05(2.5) � .325. When Z is 5, the partial slope for X is .2 � .05(5) � .45. In this

case, X always has a positive effect on Y, but the magnitude of the effect is stronger at

higher values of Z. This type of interaction is called an ordinal interaction (Kerlinger,

1986): The effect of X changes in magnitude, but not direction, with changing values

of Z. But suppose that the equation is E(Y) � 5 � .2X � 1.5Z � .1XZ, with X and Z

being the same as before. In this equation, the partial slope for X is .2 � .1Z. Now,

when Z is 0, the partial slope for X is .2. However, when Z is 2, the partial slope for X

is .2 � .1(2) � 0; and when Z is 5, the partial slope for X is .2 � .1(5) � �.3. In this

case, the effect of X changes direction over values of Z, resulting in a disordinal inter-

action (Kerlinger, 1986). Note that the only real way to ascertain whether the interac-

tion is ordinal or disordinal within the observed range of the moderator variable is to

calculate some sample values of psx over different values of Z, and see whether psx

changes sign across these values. (Technically, the terms ordinal and disordinal refer

to whether the slopes for the regression of Y on X cross when plotted according to

different values of Z. However, even if the lines do not cross within the observed range

of Z, I refer to the interaction as disordinal if the slope changes from positive to nega-

tive, or vice versa, over values of Z.)
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Centering, Revisited. In Exercise 2.6 I introduced the term centered variable, refer-

ring to a variable that is deviated from its mean. Centered variables are particularly

useful in interaction models. Consider equation (3.9) again. Suppose that zero is not

a legitimate value for Z. Then the t test for b1—the main effect of X—is not particu-

larly meaningful since it refers to the effect of X when Z is zero. Similarly, the test for

b2 refers to the effect of Z when X is zero, which, again, may not be a meaningful

value for X. However, if Z and X have first been centered, and the cross-product XZ is

constructed using the centered variables, the main effects of X and Z are always mean-

ingful. The reason for this is that a centered variable, say Zc
� Z � Z�, has a mean of

zero. Therefore, the main effect of X, β1, in the centered-variable interaction model is

the effect of X when Zc is zero or when Z is at its mean. The same interpretation

applies to the main effect of Z if X is also centered: It is the effect of Z when X is at

its mean. Hence, centering in interaction models renders the main effects of the inter-

acting variables interpretable. Another advantage of centering variables involved in

interactions has to do with the problem of multicollinearity (discussed below). Recall

that multicollinearity arises because one variable is highly correlated with another

variable or with a linear combination of the other variables. Cross-product terms of

the form XZ are highly correlated with their component variables—X and Z—and

therefore introduce collinearity problems into the model. It turns out that centering

variables before creating cross-product terms brings about a substantial reduction in

this collinearity [see Aiken and West (1991) for the mathematics behind this].

Example. Table 3.4 presents a MULR analysis of faculty salary for 725 faculty

members at Bowling Green State University (BGSU) for the academic year 1993–

1994. The dependent variable is the nine-month salary in dollars. The independent

variables are the number of years of prior experience ( job experience prior to start-

ing at BGSU), the number of years at the university, the number of years in rank, and

a continuous variable tapping the marketability of one’s discipline. This marketabil-

ity factor is the ratio of average academic-year salary of full-time faculty in a partic-

ular discipline to average academic-year salary of all full-time faculty. The variables

years at the university and years in rank are both centered. Model 1 is the main effects,

or additive model, the model without any interaction effects. All variables except

years in rank have significant effects on salary. The directions of effects suggest that

years of prior experience, years at the university, and marketability of the discipline

are all positively associated with salary. Although the marketability variable appears

to have the largest unstandardized effect, the standardized coefficients suggest that

years at the university has the strongest impact on salary.

Model 2 investigates the interaction of years at the university with years in rank in

their effects on salary. Therefore, model 2 adds to the main effects model the cross-

product of centered years at the university with centered years in rank. The coefficient

for the interaction effect is significant at p � .05, suggesting that the impact of years

at the university is a function of years in rank. To ascertain the nature of the interac-

tion, we examine the partial slope for years at the university. Its value is (1008.267 �

15.481 years in rank). In that the main effect of years at the university is significant,

we see that years at the university has a significant positive effect on salary for those
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who are average in the number of years in rank. In particular, for these faculty, each

year longer that they have been at the university is estimated to be worth $1008.27

additional salary, on average. However, this effect grows slightly weaker the longer

someone has been in rank. For example, for someone who is 1 standard deviation, 7.043

years, above mean years in rank, the effect of years at the university is 1008.267 �

15.481(7.043) � 899.234. Thus, for someone this long in rank, each additional year

at the university is only worth an additional $899.23 of salary. The most likely expla-

nation of this effect is that years in rank is an inverse proxy for productivity. That is,

the most productive faculty tend to be promoted sooner, all else equal. Therefore, a

greater number of years in rank tends to be associated with lower productivity. Finding

that years at the university has a weaker effect the longer one has been in rank sug-

gests that seniority has a weaker effect on salary for the relatively less productive.

As mentioned, the fact that the main effect of years at the university is significant

suggests that this factor is significant for those who are average in years in rank.

Suppose that we wish to know whether years at the university is significant among all

those who are 1 standard deviation above mean years in rank. At this point, some

clarification is in order. In the sample regression equation, ŷ� b0 � b1X � b2Z � gXZ,

a significant coefficient, g, for the cross-product XZ, does not imply that the impact of

X is significant at a particular level of Z. In fact, the effect of X may not be significant

at any level of Z, even though g is significant. The significance of g means only that
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Table 3.4 Regression Models for Faculty Salary for 725 Faculty Members, Showing

First-Order Interaction of Years at the University with Years in Rank

Model 1 Model 2

Regressor b bs b bs

Intercept 12219.000*** .000 13241.000*** .000

Years of prior 924.893*** .317 906.418*** .311

experience

Years at the 1072.730*** .759 1008.267*** .713

universitya

Years in ranka
�121.466 �.061 37.996 .019

Marketability of 35001.000*** .372 34948*** .372

discipline

Years at the �15.481* �.074

university �

years in rankb

RSS 84691222609.000 85141325670.000

MSE 79234093.911 78718281.718

F 267.218*** 216.319***

R2 .598 .601

R2
adj .595 .598

a Centered variable.
b Cross-product of centered variables.

* p � .05. ** p � .01. *** p � .001.



we can reject the null hypothesis that γ � 0. In that γ captures the variation in psx over

levels of Z, rejection of this null hypothesis only suggests that psx varies with Z,

not that psx is different from zero at any particular level of Z. To answer the latter

question, we must test the significance of b1 � gZ at a given level, z, of Z. The test

statistic is

t ��
b

σ̂
1

b

�

1�

g

g

z

z

�,

where σ̂b1� gz is the estimated standard error of b1 � gz. Under H0: β1 � γ z � 0, this sta-

tistic has the t distribution with n � K � 1 degrees of freedom. The standard error is

just the square root of the variance of b1� gz. The expression for the variance of b1� gz

can be found using covariance algebra. Assuming that Z is fixed over repeated sam-

pling, we have

V(b1 � gz) � Cov(b1 � gz, b1 � gz)

� Cov(b1,b1) � zCov(b1,g) � zCov(b1,g) � z2Cov(g,g)

� V(b1) � 2zCov(b1,g) � z2V(g). (3.10)

In model 2, let X be years at the university, Z be years in rank, b1 be the main effect

of years at the university, and g be the coefficient for the interaction of years at the

university with years in rank. From the variance–covariance matrix of parameter

estimates for model 2 (not shown), the relevant estimates are 5145.182 for V(b1),

41.913 for V(g), and 174.527 for Cov(b1,g). At one standard deviation (7.043 years)

above mean years in rank, the estimated variance of psx is therefore 5145.182 �

2(7.043)(174.527) � 7.0432(41.93) � 9682.615. The estimated standard error of psx

is the square root of this, 98.4. The test statistic for the significance of years at the

university at this level of years in rank is therefore

t ��
89

9

9

8

.2

.4

34
� � 9.139.

With 719 degrees of freedom, this is a highly significant result ( p � .00001).

Problems with Cross-Product Terms. In addition to the collinearity created by

cross-product terms, two other difficulties can arise when investigating interaction

effects. First, researchers examining interaction effects using nonexperimental data

may often find these terms to be nonsignificant. Or, if significant, they may turn out

to account for very little variance in the criterion. McClelland and Judd (1993) dis-

cuss the reasons for this. They point out that it is the residual variation in XZ—the

unique variance not shared with the other predictors in the model—that determines

the statistical power of the test for addition of the XZ term. Moreover, the residual

variance of XZ is determined entirely by the joint distribution of X and Z. The more

correlated X is with Z, the greater the power for detecting interaction effects. What

is needed, in particular, is an “optimal” distribution of X and Z in which “extreme
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values of X co-occur with similarly extreme values of Z” (McClelland and Judd,

1993, p. 384). Controlled experimentation allows the researcher to arrange X and Z

so that this type of distribution occurs. However, with nonexperimental data, there is

no guarantee that the joint distribution of X and Z will be optimal. McClelland and

Judd (1993) therefore advise nonexperimental data analysts to temper their expecta-

tions regarding the sizes of interaction effects in their analyses, and to regard more

modest effects as equally important. This should be the case especially when inter-

actions are guided by strong theory.

The other difficulty is that nonlinearitiy in the relationship between a regressor and

the criterion can frequently be confused with an interaction effect. In particular, when

the relationship between X and Y is quadratic in nature—the true model has Y as a

function of X and X2 (Chapter 5 considers such models at length)—such an effect

may masquerade as an interaction. The reason for this is that the reliability of X2 is

lower than the reliability of XZ when X and Z are highly correlated (McCallum and

Mar, 1995). Since unreliability attenuates true effects, it is likely that spurious mod-

erator effects will override real quadratic effects in the data when the true model is

quadratic. McCallum and Mar (1995) demonstrate this phenomenon using extensive

simulations. They advise that the best strategy is to have a compelling theoretical or

substantive rationale for preferring one type of model over the other. In a similar vein,

Ganzach (1997) argues that researchers investigating interaction effects of the form

XZ should always include X2 and Z2 in the model, and vice versa. He demonstrates

using empirical examples that if this strategy is not followed, the nature of interaction

or quadratic effects found in the sample will often be biased. Again, the best strategy

is to have a sound theoretical rationale before investigating any such more complex

effects in the data.

Multicollinearity. I indicated above that the creation of cross-product terms—or

quadratic terms, for that matter—induces collinearity problems. Collinearity that

results from the creation of special terms to capture interaction or nonlinear effects

is known as nonessential ill-conditioning. Collinearity due to high correlations

among naturally occurring variables, on the other hand, is referred to as essential ill-

conditioning (Aiken and West, 1991). In either case, multicollinearity can pose prob-

lems in data analysis that the researcher needs to be aware of. The two major

consequences that interfere with good parameter estimation are (1) the variances of

parameter estimates become greatly inflated, causing wide fluctuations in the values

of estimates from sample to sample; and (2) the magnitudes of parameter estimates

are substantially inflated, making it appear that variables have much stronger effects

than they really have. There are some well-known symptoms associated with

collinearity, which the researcher should learn to recognize. One symptom is a very

significant F test or high R2 value in combination with the finding that no individual

coefficients are significant. However, as noted above, this may also be due to the fact

that some complex linear combination of the parameters is what is driving the F or R2

results. Other symptoms are parameter estimates that are unreasonably large in mag-

nitude or have counterintuitive signs, standard error estimates that are especially

large, or standardized coefficients that are outside the range of [�1, �1].
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The best single diagnostic for detecting multicollinearity is the variance inflation

factor for the kth coefficient, denoted VIFk. This measure is defined as

VIFk ��
1 � R

1
2
Xk

� x�k

�, (3.11)

where R2
Xk

� x�k is the R2 for the regression of Xk on all other X’s in the model. The

denominator of equation (3.11), called the kth variable’s tolerance, represents the pro-

portion of variation in Xk not shared with all other X’s. Tolerances smaller than .1, or

equivalently, VIF’s greater than about 10 suggest that collinearity is beginning to be a

problem in one’s analysis (Myers, 1986). This is also somewhat dependent on sample

size, with larger samples better able than smaller ones to tolerate collinearity. As an

example, the VIF’s for model 2 in Table 3.4 range from 1.007 for marketability of dis-

cipline to 5.822 for years in rank. What can be done about collinearity? One remedy for

nonessential collinearity is to center variables before creating cross-products or poly-

nomial terms, as indicated above. This reduces the estimated standard errors for all

terms except the highest-order cross-product or polynomial term (Aiken and West,

1991). For collinearity among naturally occurring variables, there are some simple

options. First, if two variables are very highly correlated, consider dropping one of them

from the model. If most of the variance of one variable is shared with the other, not

much more information is gained by including the second one in the model. Or if two

or more items are highly correlated because they are measuring the same underlying

construct, consider incorporating them into a single scale. Another remedy when X and

Z are highly correlated is to substitute ln X and ln Z for X and Z in the model since the

nonlinear transformation of the natural log reduces the degree of correlation (which

only taps linear association). More elaborate remedies are discussed in Chapter 6.

Comparing Models across Groups. A variant on the interaction theme is the situation

in which the model as a whole might be different for different groups. For example, does

the same salary model characterize both male and female faculty? One could argue that

they should not, for either of two reasons. First, in the United States, women have his-

torically been paid less for doing the same work. One might therefore expect that such

factors as the number of years at the university or marketability of the discipline may

not have as strong an effect on salary for women as they do for men. This would be the

gender bias hypothesis. On the other hand, given the concern with gender equity in pay

that has characterized the American workplace over the past 25 years or so, one might

expect the opposite. That is, women may be more highly rewarded for seniority or for

marketability of discipline than men are, to make up for past injustices. This would be

the reverse discrimination hypothesis. Table 3.5 explores this issue by presenting salary

model 2 from Table 3.4 separately for male and female faculty.

There are some notable differences. To begin, the intercepts are different, with the

male intercept being about $2500 higher than the female intercept. The intercepts are

not entirely interpretable because zero is not a plausible value for marketability of the

discipline. Nevertheless, this difference suggests that for those with no prior experience,

who are average in years at the university and years in rank, and who are in a discipline

with zero marketability, males make $2500 more than females. Additionally, years of
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experience and marketability of discipline have stronger effects on salary among males,

as suggested by the gender bias hypothesis, whereas years at the university has a

stronger effect among females, as suggested by the reverse discrimination hypothesis.

Also, the interaction of years at the university with years in rank is only significant for

females. [No substantive implications should be drawn from this analysis, since it

excludes several key factors in the determination of salary. For a complete assessment

of potential gender discrimination in salary at BGSU, see Balzer et al. (1996) or

Boudreau et al. (1997).]

To assess whether the models are truly different for each group, we can perform

a Chow test (Chow, 1960). If we let p equal K � 1, the number of parameters in the

model, c denote the model estimated for the combined sample (i.e., model 2 in Table

3.4), and m and f denote models for males and females, respectively, the test statis-

tic has the form

F � .

Under the null hypothesis that the same model applies to each group, this statistic

has the F distribution with p and n � 2p degrees of freedom. Now, SSE for the

combined analysis is 56598444555. Hence, for the current problem we have

F � � 10.703.
[56598444555 � (40991619682 � 10930510277)]/6
������

(40991619682 � 10930510277)/(725 � 12)

[SSEc � (SSEm � SSEf)]/p
���

(SSEm � SSEf)/(n � 2p)
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Table 3.5 Regression Models for Faculty Salary for 511 Male Faculty Members and

214 Female Faculty Members

Male Model Female Model

Regressor b bs b bs

Intercept 17402.000*** .000 14954.000*** .000

Years of prior 

experience 1020.899*** .370 370.365** .156

Years at the 

universitya 929.251*** .674 1100.884*** .896

Years in ranka 93.937 .049 �245.221 �.142

Marketability of 33303.000*** .367 26883.000*** .346

discipline

Years at the �14.936 �.068 �22.298* �.164

university �

years in rankb

SSE 40991619682.000 10930510277.000

F 135.154*** 45.185***

R2 .572 .521

a Centered variable using separate means by gender.
b Cross-product of centered variables.

* p � .05. ** p � .01. *** p � .001.



With 6 and 713 degrees of freedom, this result is quite significant ( p � .00001).

Apparently, the dynamics of salary determination work differently for males than

they do for females.

EVALUATING EMPIRICAL CONSISTENCY

In this final section of the chapter, I discuss ways of evaluating the empirical con-

sistency of the MULR model. As an example, I evaluate the full model (model 3) of

exam scores for 214 students, which was presented in Table 3.1. Recall that in chap-

ter 2 I presented a formal test for empirical consistency for SLR: Neter et al.’s (1985)

lack-of-fit test. This test was based on the ratio of MSLF, the mean of the sum of

squares for lack of fit, to MSPE, the mean of the sum of squares for pure error. The

same test applies in MULR, except that SSPE is based on the sum of squared devi-

ations of the individual Y-values around the group mean of the Y’s at each covariate

pattern in the data. As before, SSLF � SSE � SSPE. The test again employs an F sta-

tistic of the form

F��
M

M

S

S

L

PE

F
�.

The degrees of freedom for this statistic are now n � c and c � p, where p � K � 1 is

the number of parameters in the model and c is the number of different covariate pat-

terns in the data. SSPE can still be recovered in SAS using PROC RSREG. However, a

problem in MULR with continuous independent variables is that there will usually be

as many different covariate patterns as there are cases. In this event, SSPE is necessar-

ily zero, and the test is of no utility. This is, in fact, the case for model 3 in Table 3.1.

There are 214 cases and 214 different covariate patterns in the data. (The number of

different covariate patterns can easily be counted by counting the number of different

predicted values there are in the data, since each different covariate pattern results in a

unique predicted value.)

Examination of Residuals

Lacking a formal test of empirical consistency, we can always resort to more infor-

mal methods. One such technique employed in Chapter 2 was an examination of

the raw and standardized residuals for potential outliers, nonconstant variance, or

nonlinearities. Figure 3.8 shows a plot of the raw residuals against ŷ for model 3.

The plot appears to have the desired shape, a band of points spread evenly around

the line e� 0. There does not appear to be any noticeable nonlinearity in the rela-

tionship between e and ŷ, nor does the trend in the points suggest any dramatic

variation in the variance of the residuals across ŷ-values. For the detection of out-

liers, it is better to plot the standardized residuals against ŷ. Figure 3.9 shows such

a plot. The plot looks pretty much the same except that the values of ze are much

smaller than those of e. Outliers would be indicated by standardized residuals

greater than about 4 in absolute value. There is perhaps one such data point in the
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middle lower part of the plot, although its value is right around �4. Were we con-

cerned about this data point, it could be investigated further. However, perhaps

more important, no single observation stands out as being dramatically different

than the others.

Partial Regression Leverage Plots

In Chapter 2 we examined scatterplots of Y against a single X to ensure that the X – Y

relationship was linear. In MULR the assumption is that the relationship between Y

and each Xk is linear at fixed levels of the other predictors. This assumption is obvi-

ous from the regression equation itself. Assume, for the moment, that all X’s other

than Xk are fixed at the values x1, x2, . . . , xk�1, xk�1, xk�2, . . . , xK. Then the MULR

equation is

E(Y) � β0 � β1x1 � β2x2 � . . . � βk�1xx�1 � βkXk � . . . � βKxK

� β0 � β1x1 � β2x2 � . . . � βk�1xk�1 � βk�1xk�1 � . . . � βKxK � βkXk

� α
 � βkXk,
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Figure 3.8 Plot of residuals against fitted values for the regression of score on the first exam on math

diagnostic score, college GPA, attitude toward statistics, class hours in the current semester, and number

of previous math courses.



where

α
 � β0 � β1x1 � β2x2 � . . . � βk�1xk�1 � βk�1xk�1 � . . . � βKxK.

This shows that at fixed levels of all other regressors, Y is a simple linear function of

Xk. If this is not the case, the appropriate model should contain either transforma-

tions of Xk that make the relationship linear, or additional terms to model the non-

linearity (Chapter 5 takes up these issues in greater detail).

One way to examine whether the relationship between Y and each Xk is linear,

controlling for all other regressors, is to look at the partial regression leverage plots,

or partial plots, of Y with each X in the model. These are scatterplots of Y against

each Xk, where the influence of all other regressors has been partialed out of each

variable. Partialing out all other regressors involves removing the linear association

between the given variable and all other regressors. How is this accomplished?

Suppose that we wish to look at the partial plot for X1, controlling for X2, X3, . . . ,

XK. First, we regress Y on X2, X3, . . . , XK and save the residuals. Call these ey � x�1,

representing the residuals for the regression of Y on all X’s except (minus) X1. Then

regress X1 on X2, X3, . . . , XK. Save these residuals and call them, correspondingly,
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Figure 3.9 Plot of standardized residuals against fitted values for the regression of score on the first

exam on math diagnostic score, college GPA, attitude toward statistics, class hours in the current semes-

ter, and number of previous math courses.



ex1 � x�1. Then a scatterplot of ey � x�1 against ex1 � x�1 is the partial plot for X1. In that

OLS residuals are always uncorrelated with all regressors in the same equation,

ey � x�1 and ex1 � x�1 represent versions of Y and X1, respectively, that are uncorrelated

with all other model regressors. The same procedure is used to generate plots for the

other K � 1 regressors.

Figures 3.10 to 3.14 present the partial plots for the regression of exam score in

introductory statistics. The plots are for model 3 in Table 3.1. Shown, in order, are

the plots for math diagnostic score, college GPA, attitude toward statistics, class

hours in the current semester, and number of previous math courses. The fitted line

on each plot is the OLS line for the simple linear regression of each ey � x�k on

each exk � x�k. None of the relationships depicted in the plots suggest noticeable non-

linear associations between ey � x�k and exk � x�k. This confirms the acceptability of

modeling each of the predictors as having a linear relationship to exam scores. Also,

note that the simple correlation between ey � x�k and exk � x�k is called the partial cor-

relation coefficient between Y and Xk, controlling for all other regressors, and is

denoted prk in this book. This represents the correlation between Y and Xk after

removing from each variable the linear association with all other regressors in the

model. The squared partial correlation, or pr 2
k , can be used as a measure of the

EVALUATING EMPIRICAL CONSISTENCY 115

Figure 3.10 Partial regression leverage plot of residualized exam 1 score (ey-x1) on residualized score

on the math diagnostic (ex1).



Figure 3.11 Partial regression leverage plot of residualized exam 1 score (ey-x2) on residualized col-

lege GPA (ex2).

Figure 3.12 Partial regression leverage plot of residualized exam 1 score (ey-x3) on residualized atti-

tude toward statistics score (ex3).



Figure 3.13 Partial regression leverage plot of residualized exam 1 score (ey-x4) on residualized num-

ber of current semester hours (ex4).

Figure 3.14 Partial regression leverage plot of residualized exam 1 score (ey-x5) on residualized num-

ber of previous math courses (ex5).



unique variance in Y accounted for by Xk after the influence of all other variables has

been removed (McClelland and Judd, 1993).

Using this measure of effect size—the size of the effect of a given regressor on

Y—the most unique variance in exam scores is accounted for by college GPA. Its

squared partial correlation with exam score is .21. The second largest effect size is

for math diagnostic score, with a squared partial correlation of .196. The least

influential factor, net of the others, is the number of previous math courses taken.

This variable accounts for only 1.4% of unique variance in exam scores. Unlike the

standardized regression coefficient, which can fall outside the range [�1,1] in the

presence of strong collinearity among the X’s, the partial correlation coefficient is

confined within this range under all conditions. A simple (although not trivial to

prove) formula for pr2
k is (from Greene, 2003)

pr2
k ��

t2
k �

t2
k

dfE
�,

where tk is the t test for Xk in the corresponding MULR model, and dfE is the error

degrees of freedom from this regression, which is n � K � 1, assuming a total of K

regressors in the model. Using this formula, we assign to prk the sign of the

coefficient for Xk in the MULR. As an example of this calculation, the t-value for

math diagnostic score (variable 1) in model 3 in Table 3.1 is 7.127. The squared

partial correlation of exam score with math diagnostic score, controlling for college

GPA, attitude toward statistics, class hours in the current semester, and number of

previous math courses is then equal to

pr 2
1 ��

7.12

7

7

.1
2

2

�

72

208
� � .196.

EXERCISES

3.1 In the sample regression equation ŷ � b0 � b1X1 � b2X2, show how holding X2

constant at the respective values 3, 6, and 9 changes the intercept for the

regression of Y on X1, but not the slope.

3.2 In the sample regression equation ŷ � b0 � b1X1 � b2X2 � gX1X2, show how

holding X2 constant at the respective values 3, 6, and 9 changes the intercept

and slope for the regression of Y on X1.

3.3 The squared partial correlation between Y and X2, controlling for X1, is pr2
2 �

(R2
Y � X1X2

� R2
Y �X1

)/(1 � R2
Y �X1

). That is, pr2
2 is the additional variation in Y accounted

for by X2, over and above the variance accounted for by X1, as a proportion

of the variance unaccounted for by X1.

(a) Using this formula for pr2
2, find the partial correlation between college

GPA and exam 1 score, while controlling for math diagnostic score, for

the 214 students represented in Table 3.1.
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(b) Also, find the same partial correlation using Greene’s (2003) formula if

the t statistic for the effect of college GPA in model 2 is 7.397.

3.4 The regression of CMODERN (couple modernism) on MEDUC (male’s edu-

cation) and FEDUC ( female’s education) for the 416 couples in the couples

dataset produces the following results:

Predictor b t

Intercept 22.6853

FEDUC .2497 5.139

MEDUC .0898 2.069

RSS 322.58233

SSE 2237.94588

Standard deviations:

CMODERN 2.4839

FEDUC 2.8

MEDUC 3.1

(a) Give R2 and R2
adj.

(b) Give the F-value and significance for the test of the model’s utility.

(c) Give the standardized coefficients for FEDUC and MEDUC.

(d) Give the partial correlation between CMODERN and each predictor, con-

trolling for the other predictor.

(e) Interpret the intercept and the unstandardized coefficients.

3.5 To the model in Exercise 3.4 are added FCHATT, DURYRS, MCHATT,

MALEAGE, and FEMAGE, producing the following result: R2
� .16672.

Test whether the addition of these five variables produces an improvement in

the model (i.e., test the null hypothesis that the five additional coefficients are

zero in the population).

3.6 Regard model 3 in Table 3.1. The regression of each predictor on the other

four predictors in the model produces the following R2’s: .1007 for math diag-

nostic score, .0953 for college GPA, .2102 for attitude toward statistics, .0942

for class hours in the current semester, and .1291 for number of previous

math courses. Give the VIF’s for each coefficient in the model. Does multi-

collinearity appear to be a problem?

3.7 The regression of STATMOOD (attitude toward statistics) on COLGPA (col-

lege GPA), SCORE (score on the math diagnostic), HOURS (class hours in
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the current semester), and PREVMATH (number of previous math courses),

for 214 students in introductory statistics, produces the following sample

equation (standard errors of coefficients are in parentheses underneath the

coefficients) and results:

ŷ � �6.748 � 1.597 colgpa � .296 score � .490 hours � 1.516 prevmath.

(4.981) (.604) (.110) (.145) (.344)

TSS � 6505.32710, R
2
adj � .195.

(a) Test the null hypothesis that all regression coefficients (except the inter-

cept) in the population equal zero. (Hint: Since

R
2
adj � 1 ��

SS

T

E

S

/(

S

n

/(

�

n �

K �

1)

1)
� ,

use this to solve for MSE, then compute the F statistic.)

(b) Give the value of R2.

(c) Give the estimate of σ2.

(d) Regardless of your answer to part (a), test the significance of each regres-

sion coefficient in the equation.

(e) Give the predicted STATMOOD score for someone with a GPA of 3.15,

a diagnostic score of 40, who’s taking 12 hours this semester, and who has

had two previous math courses.

(f) Is the intercept meaningful? Why or why not?

3.8 Using the students dataset, verify that statistical control for the variables

SCORE and COLGPA when looking at the effect of STATMOOD on

EXAM1 is accomplished by partialing out of STATMOOD its association

with a linear combination of SCORE and COLGPA. (Hint: You need to

regress STATMOOD on SCORE and COLGPA among only those with valid

EXAM1 scores and save the residuals. Then regress EXAM1 on these resid-

uals and verify that the regression coefficient is the same as the coefficient for

STATMOOD in the MULR of EXAM1 on STATMOOD, SCORE, and COL-

GPA.) Missing imputation: Substitute 40.9358974 for missing data on

SCORE and 3.0827835 for missing data on COLGPA.

3.9 Using the students dataset, use residual and partial regression leverage plots

to judge the empirical consistency of the MULR of STATMOOD on COL-

GPA, SCORE, PREVMATH, HOURS, STUDYHRS, and TVHRS for the

235 students. Missing imputation: Substitute the parenthetical values for

missing data on each variable indicated: COLGPA (3.0827835), SCORE

(40.9358974), PREVMATH (1), STUDYHRS (16.7844828), TVHRS

(9.5128755). Also, recode values greater than 4 on PREVMATH to the value

4. What do you conclude?
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3.10 The regression of STATMOOD on COLGPA, SCORE, PREVMATH, HOURS,

STUDYHRS, and TVHRS for 235 students in the students dataset produces the

following results:

Calculate both the standardized coefficients and the elasticities for all regres-

sors. Is there any difference in relative importance of the predictors when the

Ek’s are used to judge this rather than the b s
k ’s? Interpret the elasticities for

SCORE and for HOURS.

3.11 The regression for STATMOOD in Exercise 3.10 has an R2 of .2256 and a

TSS of 7056.65532.

(a) Give the value of R2
adj. [Hint: See the hint for Exercise 3.7(a).]

(b) Test whether the model is of any utility in predicting STATMOOD.

(c) Give the correlation between STATMOOD and its predicted value from

the MULR.

(d) Give the estimate of σ2.

3.12 Suppose that the true model for Y is .5X � 1.2Z � ε, but you estimate Y �

βX � ε
. Assuming that the correlation between X and Z is �.75 and σx � 1.75

while σz � 2.25, what parameter value is your sample regression coefficient

consistent for? Repeat this computation assuming that the true coefficients for

X and Z are �2, �4.148, and again if they are �2, 2.75. In each case, describe

the nature of the bias in estimating the true effect of X on Y.

3.13 For the 416 couples in the couples dataset, the regression of CONFLICT

(couple verbal conflict) on MCHATT, FCHATT (male and female church

attendance), MALEAGE, FEMAGE (male and female age), MEDUC,

FEDUC (male and female education), IHTOT2 (total household income), and

DURYRS (duration of the relationship in years) produces the following

results:

ŷ � 2.842 � .001667 mchatt � .007571 fchatt � .006181 maleage � .001743

femage � .002062 meduc � .007608 feduc � .003551 ihtot2 � .000858

duryrs.

Variable Variable

Variable Coefficient Mean Standard Deviation

STATMOOD 5.0383 5.4915

INTERCEPT �6.7106

COLGPA 1.1721 3.0828 .5012

SCORE .3222 40.9359 3.1133

PREVMATH 1.4474 1.2383 1.0308

HOURS �.5075 14.8426 2.3362

STUDYHRS .0662 16.7845 10.1542

TVHRS �.0444 9.5129 7.5350
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Partial variance–covariance matrix of parameter estimates:

MCHATT FCHATT MALEAGE FEMAGE

MCHATT .000165 �.000103 MALEAGE .000015 �.000010

FCHATT �.000103 .000162 FEMAGE �.000010 .000017

MEDUC FEDUC

MEDUC .000113 �.000056

FEDUC �.000056 .000131

Use t tests to test the differences between the effects of male and female char-

acteristics on couple conflict.

3.14 Use the GSS98 dataset to run the following: regress ABORTION (attitude

toward abortion, the sum of the seven abortion-attitude items coded 1 � “yes,”

0 � “no,” where a high score indicates a liberal attitude toward obtaining

abortions) on EDUCAT, INCOME, PAED, MAED, and RESPAGE for the

1868 respondents who are nonmissing on ABORTION. Then, add the variables

RELOSITY, PARTNRS5, and CONSERV to the model. Missing imputation:

Substitute the parenthetical values for missing data on each variable indicated:

EDUCAT (13.2824919), INCOME (13.2024490), CONSERV (4.0702152).

(a) Test whether the addition of the last three variables results in a significant

improvement in the model’s utility.

(b) Test whether the effects of PAED and MAED in the full model are signi-

ficantly different, using the t test for bPAED� bMAED.

(c) Interpret all model coefficients in the full model.

3.15 Using the kids dataset, estimate the model for the regression of ADVENTRE

on PERMISIV, MSEXATT, FSEXATT, MVALUES, FVALUES, MSTYLE1,

FSTYLE1, MSTYLE2, and FSTYLE2. Then conduct an omnibus test for the

equality of effects of male versus female parents’ sex attitudes, values, and

parenting styles on the focal child’s sexual adventurism (ADVENTRE).

3.16 Using the students dataset, estimate the following models of STATMOOD:

(a) The regression of STATMOOD on COLGPA, PREVMATH, HOURS,

STUDYHRS, and TVHOURS. Evaluate the hypothesis that the number

of previous math courses elevates attitude toward statistics because it

improves math proficiency as measured by the math diagnostic score.

That is, add SCORE to the model and test whether this results in a

significant reduction in the effect of PREVMATH.

(b) Finally, add to the model interactions between SCORE and COLGPA and

between HOURS and COLGPA. Test whether this block of two interac-

tion terms is significant. Regardless of significance, interpret the effect of

COLGPA in this model.
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Missing imputation: Follow the instructions for Exercise 3.9. Also, center

COLGPA, SCORE, and HOURS in all models, and be sure to create the

cross-product terms from the centered variables.

3.17 In the model E(Y) � β0� β1X1� β2X2, the OLS estimate of β1 is (Hanushek

and Jackson, 1977)

b1 � .

Use this formula to demonstrate why:

(a) b1 is no different from the value for b in the SLR of Y on X1 alone if

rx1x2
� 0.

(b) Multicollinearity tends to inflate the magnitudes of MULR coefficients.

3.18 Demonstrate the mathematical equivalence of the two forms of the nested F

test shown in the text.

3.19 Show that in the interaction model

E(Y) � β0 � β1X1 � β2X2 � . . .� βkXk � . . .� βKXK � γXkXj,

a unit increase in Xk results in a change in E(Y) of βk� γXj.

3.20 Verify that ∂E(Y )/∂Xk in the interaction model in Exercise 3.3 is βk� γXj.

3.21 Based on the results for model 2 in Table 3.4, compute the estimated partial

slope for years at the university for those with 2 years below, 2 years above,

and 9 years above mean years in rank. Then give the estimated mean salary

for these faculty members, assuming that they have been at the university 3

years more than average, that they have 3 years of prior experience, and that

their marketability factor is 1.1.

3.22 Although R2 is confined to the range [0,1], is it also true that R2
adj is so con-

fied? That is, can R2
adj ever be � 0 or � 1? If so, under what conditions? (Hint:

Set R2
adj � 0 and R2

adj � 1 and see what these inequalities imply.)

3.23 In the kids dataset, a MULR of offspring’s sexual adventurism (ADVEN-

TRE) on CPERMISS (a centered version of offspring’s sexual permissive-

ness), FCAGE2 (offspring’s age at time 2), MONITOR ( parental monitoring

at time 1), and the interaction of CPERMISS with MONITOR for 357 cases

produces the following sample equation:

ŷ � .0197 � .1625 cpermiss � .0001 fcage2 � .0155 monitor

� .024 cpermiss * monitor.

sy

�sx1

ryx1
� rx1x2

ryx2
��

1 � r2
x1x2
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Significant coefficients are in boldface type. MONITOR is a scale consisting of

the sum of six standardized items and therefore has a mean of zero. Also, let-

ting a represent the coefficient for CPERMISS and d the coefficient for CPER-

MISS * MONITOR, we have v(a) � .00157, v(d) � .00014, and cov(a,d) �

.000016.

(a) Interpret the main effect of CPERMISS in the model.

(b) Show the partial slope for CPERMISS in the model, and give its value at

1 standard deviation, 3.4 units, above mean parental monitoring.

(c) Test whether the effect of CPERMISS on ADVENTRE is significant at 1

standard deviation above mean parental monitoring, as well as at 2 stan-

dard deviations below mean parental monitoring.

3.24 Using the students dataset, test whether the following model for EXAM1

score is any different for males versus females in the population, using the

Chow test (use only the 214 cases with valid scores on EXAM1):

exam1 � β0� β1 colgpa � β2 score � β3 prevmath � β4 hours

� β5 studyhrs � β6 statmood � ε.

Missing imputation: Follow the instructions for Exercise 3.9. What do you

conclude?

3.25 For the students dataset, a regression of STATMOOD on COLGPA, SCORE,

PREVMATH, HOURS, STUDYHRS, and TVHRS, for 235 students, gives

SSE � 5464.69347, while separate regressions of STATMOOD on the same

predictors give SSE � 3415.49428 for the 163 female students and SSE �

1451.03996 for the 72 male students. Conduct a Chow test to discern whether

there is any difference in the population between the models for males versus

females.

3.26 Refer to Exercise 3.25. A variable called MALE is coded 1 for males and 0 for

females. This type of binary variable is called a dummy, design, or indicator

variable. If it is added to the model for STATMOOD for the combined sample

of 235 males and females in Exercise 3.25, it allows the intercept for males to

be different from the intercept for females, even though the coefficients of

regressors for males versus females are constrained to be the same.

(a) Why does adding MALE allow the intercepts to differ for males and

females?

(b) If SSE for this model in the combined sample is now 5018.55625, test

whether just the regressor effects (but not the intercepts) are different for

males versus females, using the Chow test. (Hint: The degrees of freedom

in the numerator of the test is no longer simply p � the number of param-

eters in the model. Rather, the df is the difference in the number of param-

eters estimated in the combined-sample model versus the total number of
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parameters estimated in the models for males and females.) What do you

conclude?

3.27 Suppose that we want to test whether β1 � β2 in model A: E(Y) � β0 � β1X1 �

β2X2 � β3X3. We have seen that this can be done via a nested F test of this

model against model B: E(Y) � β0� γ1(X1� X2) � γ2X3, as well as via a t test

of the form t � (b1 � b2)/σ̂b1�b2
, using estimates from model A. Woodridge

(2000) suggests yet a third way of performing this test. Let θ � β1 � β2,

implying that β1� θ � β2. Then model A can be expressed as E(Y) � β0 �

(θ � β2)X1 � β2X2 � β3X3, or E(Y) � β0 � θX1 � β2X1 � β2X2 � β3X3, or

E(Y) � β0� θX1 � β2(X1 � X2) � β3X3. A test of θ � 0 for this model is then a

test of H0: β1� β2 in model A. Notice that θ is just the coefficient for X1 in a

model that uses X1, X3, and X1 � X2 as the three regressors. Use the couples

dataset to verify that these three ways of testing β1 � β2 are the same, with

Y � WIFHAP, X1 � MFIGHTS, X2 � FFIGHTS, and X3 � DURYRS.
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C H A P T E R 4

Multiple Regression with Categorical

Predictors: ANOVA and ANCOVA

Models

CHAPTER OVERVIEW

Often, the explanatory variables in a regression model are categorical, that is, vari-

ables with only a few discrete values. These values may not even be ordered, but may

instead represent categories of a purely qualitative variable such as religious

affiliation or ethnic identification. In this chapter I discuss how to incorporate such

variables into a regression model. When all of the predictors are categorical, MULR

is equivalent to the analysis of variance (ANOVA). When both categorical and con-

tinuous variables are present in the model, the procedure is equivalent to the analy-

sis of covariance (ANCOVA). Although MULR is equivalent to these procedures,

researchers typically reserve the terms ANOVA and ANCOVA for analyses in which

the emphasis is on group comparisons of means on a dependent variable. More gen-

erally, in the regression context, a categorical predictor may simply be one of a set

of important explanatory variables in which the researcher is interested. I begin by

outlining two systems of coding for categorical variables: dummy coding and effect

coding. I then discuss one-way and two-way ANOVA via regression and illustrate

interaction between categorical predictors. Regression with both categorical and

continuous predictors is then taken up, along with the issue of multiple comparisons

of group means. Finally, I discuss models in which continuous and categorical pre-

dictors are allowed to interact with one another, and end the chapter by showing the

equivalence between the Chow test and a model in which a categorical predictor

is allowed to interact with all other covariates in the model. The example used

throughout is drawn from the faculty salary dataset.



MODELS WITH EXCLUSIVELY CATEGORICAL PREDICTORS

Dummy Coding

Categorical predictors cannot simply be entered as is into a regression equation. 

One obvious reason is that the values may not convey any real quantitative informa-

tion, as in the case of a nominal variable. Even with a quantitative variable, however,

its relationship with Y may not be linear. What is needed is a system of coding 

that is invariant to both the qualitative nature of a covariate’s values and to the func-

tional form of its relationship with Y. One such system is called dummy coding. The

name comes from the fact that the codes—ones and zeros—only represent whether

or not a case is in a given category of the variable, and otherwise convey no quanti-

tative meaning. As an example, regard Table 4.1, which presents average academic-

year salaries for 725 faculty members at Bowling Green State University (BGSU)

according to college and to whether they are on graduate faculty. Suppose that we

wish to regress academic year salary on whether or not someone is on graduate 

faculty (a status that depends on research productivity and when conferred, allows

one to teach graduate classes). We create a variable, GRAD, coded 1 if the person 

is on graduate faculty and 0 otherwise. This is called a dummy variable. Letting 

Y � academic year salary, the model is E(Y) � β0� δ GRAD (I like to use deltas to

denote the coefficients of dummy variables). How is this interpreted? Well, for those

who are not on graduate faculty, the mean salary is E(Y) � β0� δ(0) � β0. Thus, the

intercept is the mean of Y for those in the group coded 0, which is called the 

contrast, reference, or omitted group. The mean salary for those on graduate faculty

is E(Y ) � β0� δ(1) � β0� δ. I refer to this group as the interest category. The

difference in means between these two groups is E(Y � on graduate faculty) � E(Y � not

on graduate faculty) � β0� δ � β0� δ. A test of whether or not this mean difference

is significant is a test of H0 : δ � 0. This is just the usual test for the significance of 

a regression coefficient, consisting of the parameter estimate, d, divided by its 

estimated standard error. Least squares estimates of the parameters are obtained in

the usual fashion—by minimizing SSE with respect to the parameters. The least

squares estimate of β0 is the sample mean for the omitted group, while the least

squares estimate of δ is the difference in sample means for the interest and omitted

groups. The estimated regression equation in this case is ŷ � 39582 � 11393 GRAD.

From Table 4.1 it is evident that the intercept here is just the mean salary for those

not on graduate faculty, and the slope is the difference in mean salaries for the two

groups: 50975.061 � 39581.895 � 11393.166. The test statistic for the slope 

(not shown) is a t value of 10.552, which is highly significant (p � .0001). Recall

that the regression model assumes equal error variance, implying equal Y variance,

at each covariate pattern. There are only two covariate patterns here, 1 and 0. 

The assumption, therefore, is equal Y variance in each group—those on graduate 

faculty and those not on graduate faculty—in the population. In other words, in 

this case, regression accomplishes a test for the difference between group means

under the assumption of equal Y variance and is therefore equivalent to the two-

sample t test.
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Multicategory Variables. Suppose now that the categorical variable has more than

two categories. For example, the variable college in Table 4.1 has five categories:

“arts and sciences,” “business,” “education,” “other,” and “firelands” (actually, a

branch campus of BGSU being treated as a college here). In general, for an M-cate-

gory variable, we need to create M � 1 dummy variables to represent it in a regres-

sion model. Hence, we need to create four dummy variables to represent college. I

will let “arts and sciences” be the contrast group and will call the dummies FIREL,

BUSINESS, EDUCATN, and OTHER. Table 4.2 shows the coding of these dummy

variables for faculty members from the five colleges. As is evident, each dummy

variable takes on the value of 1 if a faculty member is in a particular college, and 0

otherwise. If someone is in “arts and sciences,” the contrast category, all dummies

equal 0. Notice the naming convention for the dummies that I follow here: Each

dummy is named after the interest category for that dummy. Hence FIREL takes on

the value 1 if someone is in the “firelands” college, and 0 otherwise, and so on. This

makes it very easy to identify what the interest category is for a particular dummy.

Why don’t we need another dummy for the category “arts and sciences”? Recall the

assumption for MULR that no predictor is an exact linear combination of the other

predictors. Suppose that we add one more dummy called ARTSCI, coded 1 if some-

one is in “arts and sciences,” and 0 otherwise. Then it is easy to verify that the fol-

lowing linear equation perfectly identifies ARTSCI for each case:

ARTSCI � 1 � FIREL � BUSINESS � EDUCATN � OTHER.

For example, a faculty member in “arts and sciences” has ARTSCI as 1 � 0 � 0 �

0 � 0 � 1. Someone in the “firelands” college has ARTSCI as 1 � 1 � 0 � 0 � 0 � 0.
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Table 4.1 Mean Academic Year Salaries for 725 Faculty Members by College and

Whether on Graduate Faculty

On Graduate Faculty?

Yes No Overall

College (n) (n) (n)

Arts and Sciences 51471.122 40592.507 49188.688

(290) (77) (367)

Firelands 55411.000 40106.206 40543.486

(1) (34) (35)

Business 60250.923 36498.769 54196.452

(76) (26) (102)

Education 47028.545 38294.214 44311.198

(62) (28) (90)

Other 44500.859 40137.915 43268.577

(94) (37) (131)

Overall 50975.061 39581.895 46302

(n) (523) (202) (725)



(The reader can verify that ARTSCI is similarly determined by the values of the

other four dummies for the remaining classifications of college.) In this case, since

ARTSCI is a perfect linear combination of the other dummies, the no-exact-

collinearity assumption is violated, and the regression parameters are no longer

identified. Intuitively, it is also evident that the pattern of ones and zeros for the four

dummies conveys all of the information required regarding group membership in

each of the five categories. The pattern in which all dummies equal zero identifies

membership in the omitted group.

The model now becomes

E(Y) � β0� δ1 FIREL � δ2 BUSINESS � δ3 EDUCATN � δ4 OTHER. (4.1)

This is equivalent to a one-way analysis of variance (one-way ANOVA). It is called

“one-way” since there is only one factor, or one independent variable, in the model.

Mean salary for “arts and sciences” faculty is

E(Y ) � β0� δ1(0) � δ2(0) � δ3(0) � δ4(0) � β0.

Thus, once again, the intercept is the mean of Y for the omitted group. Each regres-

sion coefficient (i.e., each δ) is the difference in means for the dummied category

(the interest category) and the reference category. For example, δ1 is the difference

in mean salary between “firelands” faculty and “arts and sciences” (A&S) faculty, as

can be seen by

E(Y � firelands) � E(Y � A&S) � β0� δ1(1) � δ2(0) � δ3(0) � δ4(0)

� [β0� δ1(0) � δ2(0) � δ3(0) � δ4(0)] � δ1.

(Again, the reader can verify using the model that the other deltas represent mean

contrasts for each college with “arts and sciences.”) With a multicategory predictor,

however, the deltas, individually, do not capture all of the potential mean contrasts

between pairs of categories. For an M-category predictor there are a total of

M(M � 1)/2 nonredundant contrasts that can be evaluated. The deltas capture, in 

the current model, the contrasts between each of the dummied colleges and “arts and
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Table 4.2 Dummy Variable Coding to Represent the Variable College for

Faculty Members in Each of the Colleges at BG

Faculty
Dummy Variable

Member Is In: FIREL BUSINESS EDUCATN OTHER

Arts and Sciences 0 0 0 0

Firelands 1 0 0 0

Business 0 1 0 0

Education 0 0 1 0

Other 0 0 0 1



sciences.” What about the contrast between, say, “firelands” and “business”? It turns

out that the differences between the deltas capture the other contrasts. In the case of

“firelands” vs. “business,” we have that

E(Y � firelands) � E(Y � business) � β0� δ1� (β0� δ2) � δ1� δ2.

Similarly,

E(Y � firelands) � E(Y � education) � β0� δ1� (β0� δ3) � δ1� δ3.

The reader can again verify that δ1� δ4, δ2� δ3, δ2� δ4, and δ3� δ4 capture the rest

of the contrasts, for a total of 5(4)/2 � 10 possible contrasts. Least squares estimates

for the model in equation (4.1) are shown as model 1 in Table 4.3.

Once again, the least squares estimate of β0 is the sample mean of Y for the group

omitted. Thus, the intercept in model 1 is the sample mean salary for faculty in “arts

and sciences,” or 49189 (it’s 49188.688 in Table 4.1). The OLS estimates of the deltas

are, again, differences in mean salaries, compared to “arts and sciences,” for each col-

lege. For example, the coefficient for firelands, �8645.202, is the mean salary for

“firelands” faculty (40543.486 in Table 4.1) minus the mean for “arts and sciences”

faculty (49188.688). The difference is �8645.202. The global F test for the model is

significant, which means that at least one of the deltas is nonzero. We see, in fact, that

t statistics for the coefficients suggest that all of the deltas are nonzero. Recall that the

F test actually tests the null hypothesis that every linear combination of the parame-

ters is zero. In dummy variable regression, it is especially important to keep this more

general character of the F test in mind, since linear combinations of the parameters
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Table 4.3 Models for Academic Year Salary Regressed on College and Whether 

on Graduate Faculty

Predictor Model 1a Model 2b Model 3a Model 4a

Intercept 49189.000*** 46302.000*** 40348.000*** 40593.000***

Firelands �8645.202*** �5758.194*** �123.946 �486.301

Business 5007.765*** 7894.772*** 5512.277*** �4093.737

Education �4877.490** �1990.482 �3744.090* �2298.292

Other �5920.111*** �3033.103** �5107.463*** �454.592

Grad faculty 11188.000*** 10879.000***

Grad faculty � Firelands 4426.179

Grad faculty � Business 12874.000***

Grad faculty � Education �2144.285

Grad faculty � Other �6515.672*

F 14.415*** 14.415*** 32.930*** 22.096***

∆F 99.142*** 7.151***

R2 .074 .074 .186 .218

a Uses dummy coding.
b Uses effect coding.

* p � .05. ** p � .01. *** p � .001.
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now make sense. In fact, every difference of the form δi � δj, comparing mean

differences between interest categories, is a linear combination of the parameters

that we are interested in. Hence, it may happen that the global F test is significant

but none of the individual dummy coefficients is. This is entirely reasonable, since it

may be one of the other contrasts—between interest categories—that is nonzero. The

test statistic for these other contrasts is of the form

t � �
d

σ̂
i

d

�

i�

d

dj

j
�,

where the numerator of the test is the difference between sample estimates of the

dummy coefficients, and the denominator of the test is the estimated standard error of

that difference. We could compute these contrasts by hand, employing the variance–

covariance matrix of parameter estimates to obtain the standard errors of the differ-

ences. But the equivalent and much simpler procedure is simply to change the contrast

category and rerun the regression. In the present case, I reran the regression with, alter-

nately, “firelands,” “business,” and “education” as the contrast categories to obtain the

other six contrasts. The other significant contrasts, using an α of .05, were “business”

versus “firelands,” “education” versus “business,” and “other departments” versus

“business.”

Effect Coding

Another type of coding that can be quite useful for categorical variables is effect cod-

ing. Rather than contrasting a given group’s mean with that of a single other group,

we might want to contrast it with a kind of overall average, across groups, on the

dependent variable. Effect coding allows comparisons of each interest category’s

mean of Y to a “grand mean” of Y across groups. In effect coding, we once again

require M � 1 variables for an M-category predictor. The interest categories of

effect-coded indicators are, once again, coded 1 and 0 for being, vs. not being, in the

category of interest. However, this time, instead of taking the value of zero on each

indicator, the contrast category is coded “�1” on each. Table 4.4 shows effect cod-

ing for the colleges at BGSU, with “arts and sciences” once again serving as the

omitted group.

Table 4.4 Effect Coding to Represent the Variable College for Faculty

Members in Each of the Colleges at BG

Faculty
Effect Variable

Member Is In: FIREL BUSINESS EDUCATN OTHER

Arts and Sciences �1 �1 �1 �1

Firelands 1 0 0 0

Business 0 1 0 0

Education 0 0 1 0

Other 0 0 0 1



With this type of coding, the intercept is now the unweighted average of all five

group means. Why? Let’s let the letters A, F, B, E, and O represent the colleges “arts

and sciences,” “firelands,” “business,” “education,” and “other departments,” respec-

tively. Then the model using effect coding of colleges is

E(Y) � µ � β0� δ1F � δ2B� δ3E � δ4O.

The population mean salary for each college is then

µF � β0 � δ1(1) � δ2(0) � δ3(0) � δ4(0) � β0 � δ1,

µB � β0 � δ1(0) � δ2(1) � δ3(0) � δ4(0) � β0 � δ2,

µE � β0 � δ1(0) � δ2(0) � δ3(1) � δ4(0) � β0 � δ3,

µO � β0 � δ1(0) � δ2(0) � δ3(0) � δ4(1) � β0 � δ4,

µA � β0 � δ1(�1) � δ2(�1) � δ3(�1) � δ4(�1) � β0 � (δ1 � δ2 � δ3 � δ4).

Now consider the unweighted average of the group means:

µ�j � �
�

5

jµj
���

β0� δ1�

5

β0 � δ2
��

� β

5
0 �
��

δ3 � β

5

0 � δ4
��

� β0 �

5

(δ1 � δ2
��

� δ3

5

� δ4)
�

� �
5

5

β0
� � β0.

Hence β0 is clearly the unweighted mean of the group means, or the grand mean,

and each delta is the difference between the mean of a given college’s salary and the

grand mean of all colleges’ salaries. For example, the difference between Firelands’

average salary and the grand mean is β0 � δ1� β0 � δ1, and so on.

Model 2 in Table 4.3 shows academic year salary regressed on college, now

coded using effect coding. The grand mean of all colleges’ salaries is 46302.

According to the estimate of δ1, “firelands” average salaries are 5758.194 below the

overall average salary, a difference that is quite significant. On the other hand, the

Business College’s average salary is 7894.772 above the grand mean, and the “other

departments” category of departments has an average salary that is 3033.103 lower

than the grand mean. These are also significant differences. Although the mean

salary for the College of Education is 1990.482 below the grand mean in the sam-

ple, this is not a significant difference. Hence, there is not enough evidence to sug-

gest that average salaries for the College of Education are any different than average

salaries across all colleges at BGSU. Another way to phrase this is that there is not

enough evidence to conclude that Education departments’ salaries are any different

than the university’s average salary for professors. If the difference in average salary

between the College of Arts and Sciences and the grand mean is of interest, the coding

must be changed to make a different college the reference category. As with dummy

coding, the mean difference in Y between different interest categories is captured
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by differences between the deltas. For example, the difference in mean salaries

between “business” and “education” is E(Y � business) � E(Y � education) � β0 � δ2 �

(β0� δ3) � δ2� δ3. According to model 2, the estimated difference is 7894.772 �

(�1990.482) � 9885.254. From Table 4.1 we can verify this figure by calculating the

difference between the two sample mean salaries: 54196.452 � 44311.198 �

9885.254. The reader is invited to consult Hardy (1993) or McClendon (1994) for

other ways of coding categorical variables. For most of the book, I employ dummy

coding exclusively. Dummy coding is by far the most common form of coding for

categorical variables in regression models.

Two-Way ANOVA in Regression

Model 3 in Table 4.3 adds the variable GRAD, representing membership on the

graduate faculty, to the model for academic year salary. The theoretical model is

now

E(Y) � β0 � δ1 FIREL � δ2 BUSINESS � δ3 EDUCATN

� δ4 OTHER � δ5 GRAD. (4.2)

This is equivalent to a two-way ANOVA model, since there are now two categorical

factors in the model: college and graduate faculty status. The model posits that

salary is a purely additive function of college and graduate faculty status. There-

fore, controlling for college, being on the graduate faculty is estimated to result in

an increase of 11188 in average academic year salary, a very significant incre-

ment. Also, controlling for being on graduate faculty, being in, say, the College of

Education is worth a reduction in mean salary of 3744.09 compared to being in the

College of Arts and Sciences—a significant decrement. The model also allows us to

predict mean salary based on college and graduate faculty status. Thus, for those in,

say, the College of Education, who are on graduate faculty, the estimated mean

salary is

ŷ � b0� d1(0) � d2(0) � d3(1) � d4(0) � d5(1) � b0� d3� d5

� 40348 � 3744.09 � 11188 � 47791.91.

However, this time the predictions do not equal the sample means shown in Table 4.1.

The average salary for those in the College of Education who are members of the

graduate faculty is actually 47028.545, according to Table 4.1. Why the discrep-

ancy? The additive model assumes that there is no interaction between the categori-

cal predictors in their effects on Y. This means, for example, that being on graduate

faculty is worth the same salary increment, regardless of college. Or, it means that

the difference between any two colleges in average salary is the same, regardless of

whether someone is on graduate faculty or not. In the current example, as we shall

see, this is not particularly realistic.
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Interaction between Categorical Predictors

The model that allows interaction between college and graduate faculty status is

E(Y ) � β0 � δ1 FIREL � δ2 BUSINESS � δ3 EDUCATN

� δ4 OTHER � δ5 GRAD � γ1 GRAD * FIREL � γ2 GRAD * BUSINESS

� γ3 GRAD * EDUCATN � γ4 GRAD * OTHER. (4.3)

There are two ways to interpret this model, depending on which is the focus variable

(the variable whose effect varies over levels of the other variable) and which is the

moderator variable (the variable whose levels condition the effect of the focus vari-

able). If GRAD (graduate faculty status) is the focus and college is the moderator,

we factor equation (4.3) so that the common multipliers of GRAD are all collected

in one partial effect. The result is

E(Y ) � β0 � δ1 FIREL � δ2 BUSINESS � δ3 EDUCATN � δ4 OTHER

� (δ5 � γ1 FIREL � γ2 BUSINESS � γ3 EDUCATN � γ4 OTHER) GRAD.

Here it is clear that the effect of GRAD, controlling for college, is

δ5� γ1 FIREL � γ2 BUSINESS � γ3 EDUCATN � γ4 OTHER

This implies that the effect of being on graduate faculty depends on membership in

a particular college. For example, the effect of being on graduate faculty for those in

“arts and sciences” is δ5� γ1(0) � γ2(0) � γ3(0) � γ4(0) � δ5. This gives meaning to

the main effect of GRAD in equation (4.3)—it’s the expected difference in salary for

those on, versus not on, graduate faculty among all those in the College of Arts and

Sciences. For faculty in, say, the Business College, the effect of GRAD is δ5 �

γ1(0) � γ2(1) � γ3(0) � γ4(0) � δ5 � γ2. Hence, δ5 � γ2 is the expected difference in

salary for those on, versus not on, graduate faculty among all those in the Business

College. Should γ2 prove to be equal to zero, the effect of GRAD would not be

different in “arts and sciences” than in “business.” The other gammas are interpreted

in a similar fashion: Each is the difference in the impact of being on graduate faculty

(as opposed to not being on graduate faculty) for the given college compared to “arts

and sciences.”

On the other hand, let’s say that college is the focus variable and GRAD is the

moderator. Then factoring the common multipliers of each college dummy in equa-

tion (4.3), we have

E(Y ) � β0 � δ5 GRAD � (δ1 � γ1 GRAD) FIREL � (δ2 � γ2 GRAD) BUSINESS

� (δ3 � γ3 GRAD) EDUCATN � (δ4 � γ4 GRAD) OTHER.

In this factoring of the equation, it becomes clear that the impact of being in a par-

ticular college, compared to being in “arts and sciences,” is dependent on whether
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someone is on graduate faculty. For example, the expected difference in salary for

someone in “firelands” versus someone in “arts and sciences” is δ1� γ1 GRAD.

Therefore, it is δ1 if someone is not on graduate faculty and δ1� γ1 if they are. Once

again, if γ1 equals zero, the difference in mean salaries between “firelands” and “arts

and sciences” is the same whether or not one is on the graduate faculty.

Test for Interaction. If all of the gammas in equation (4.3) equal zero, there is no

interaction between college and graduate faculty status in their effects on mean

salary. This can be tested using the nested F test, since setting all of the gammas to

zero in equation (4.3) results in the simplified model of equation (4.2). Hence, the

model in (4.2) is nested inside the model in (4.3). Model 4 in Table 4.3 presents sam-

ple estimates for the model in equation (4.3), along with the results of the nested F

test. As is evident in the table, the nested F statistic (shown as “∆F” in the table) is

7.151. With 4 and 715 degrees of freedom, this is a highly significant result

(p � .0001). It appears from tests of the individual gammas that there are two

significant interactions: between GRAD and BUSINESS and between GRAD and

OTHER. Let’s interpret the overall interaction effect using GRAD and college alter-

nately, as the focus variables. With GRAD as the focus, its partial effect is

10879 � 4426.179 FIREL � 12874 BUSINESS

� 2144.285 EDUCATN � 6515.672 OTHER.

The overall interpretation of this effect is that being on the graduate faculty seems to

be worth an increase in average salary for all faculty, but the extra amount is great-

est for the Business College and smallest for those in “other departments.” For

example, the increment due to being on graduate faculty for the Business College

is 10879 � 12874 � 23753, whereas for those in “other” departments, it is only

10879 � 6515.672 � 4363.328.

If college is the focus, the partial effects are:

Firelands: �486.301 � 4426.179 GRAD.

Business: �4093.737 � 12874 GRAD.

Education: �2298.292 � 2144.284 GRAD.

Other: �454.592 � 6515.672 GRAD.

Once again, the overall interpretation is that Firelands and Business faculty make, on

average, lower salaries than Arts and Sciences faculty if they do not have graduate

faculty status, but more if they do. On the other hand, those in “education” and those

in “other departments” make, on average, less than Arts and Sciences faculty if they

are not on the graduate faculty, and considerably less if they are. We must keep in

mind, however, that only two of the gammas are significant, so some of these appar-

ent differences do not necessarily hold in the population.

In contrast to the estimates in model 3 of Table 4.3, those for model 4 will per-

fectly (within rounding error) reproduce the cell means in Table 4.1. Why? Notice
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that there are 10 cells in Table 4.1, each containing a mean salary that is independ-

ent of the other means. Hence there are 10 independent pieces of information, or

degrees of freedom, in this table. Model 4 uses 10 parameters, an intercept and nine

regression coefficients, to explain these 10 observations. In terms of the means (but

not the individual faculty members), model 4 is saturated. That is, there are as many

parameters as observations. Whenever this occurs, the model will perfectly repro-

duce the sample observations, which in this case refer to the cell means. As an exam-

ple, consider using models 3 and 4 in Table 4.3, the main effect and interaction

models, to predict average salary for those in the Business College with graduate

faculty status. According to Table 4.1, the sample mean salary for these faculty is

60250.92. Model 3’s prediction is 40348 � 11188 � 5512.28 � 57048.28, which is

off by about $3000. Model 4’s prediction is 40593 � 10879 � 4093.737 � 12874 �

60252.26, which, within rounding error, is the correct value.

MODELS WITH BOTH CATEGORICAL AND 

CONTINUOUS PREDICTORS

Typically, in regression models we have a mix of both categorical and continuous

predictors. If there is no interaction between the categorical and continuous regres-

sors, these models are equivalent to ANCOVA models. The idea in ANCOVA is to

examine group differences in the mean of Y while adjusting for differences among

groups on one or more continuous variables, called covariates, that also affect the

dependent variable. We want to see how much group membership “matters,” in the

sense of affecting the response variable, after taking account of group differences on

the covariates. “Taking account,” of course, means holding the covariates constant,

or treating the groups as though they all had the same means on the covariates.

For simplicity’s sake, let’s assume that we have a categorical predictor, Z, with

categories A, B, and C, and one continuous covariate, X. Then letting C be the ref-

erence group for Z, and letting A and B be dummy variables for being in categories

A and B, respectively, the regression model for Y is

E(Y) � β0 � δ1A � δ2B � β1X. (4.4)

Figure 4.1 shows how this model can be interpreted. To begin, the model can be

expressed for each group separately, by substituting the values for each dummy into

equation (4.4). Hence, for group C the equation is

E(Y) � β0 � δ1(0) � δ2(0) � β1X � β0 � β1X, (4.5)

for group A we have

E(Y) � β0 � δ1(1) � δ2(0) � β1X � β0 � δ1 � β1X, (4.6)
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and for group B we have

E(Y) � β0 � δ1(0) � δ2(1) � β1X � β0 � δ2 � β1X. (4.7)

These three equations are essentially simple linear regressions of Y on X in which

the equation for each group has a different intercept but a common slope of β1.

Due to the common slope, the regression lines are parallel. This condition is

depicted in the figure. For group C, the regression of Y on X has intercept β0 and

slope β1. For group A, the intercept is β0 � δ1, and the slope is β1. For group B, the

intercept is β0 � δ2 and the slope is β1. Hence, controlling for Z, the impact of X is

constant; that is, the effect of X is the same in each group. On the other hand, δ1,

δ2, and δ2 � δ1 represent constant differences in the mean of Y across groups

regardless of the level of X. This can easily be verified by taking differences

between equations (4.5) to (4.7). For example, the difference in the mean of Y for

groups A and C is

E(Y � A) � E(Y � C) � β0 � δ1� β1X � (β0 � β1X) � δ1,

for groups B and C we have

E(Y � B) � E(Y � C) � β0 � δ2 � β1X � (β0 � β1X) � δ2,
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Figure 4.1 Regression model E(Y) � β0 � δ1A � δ2B � β1X, depicting the absence of interaction between

the categorical variable, Z, and the continuous variable, X.



and for groups A and B we have

E(Y � B) � E(Y � A) � β0 � δ2 � β1X � (β0 � δ1� β1X) � δ2� δ1.

In other words, the deltas and their difference represent group differences in the

mean of Y after adjusting for the covariate. In the figure, these differences are

depicted as two-headed arrows. Notice that these group differences in E(Y ) are the

same all along the range of X. This is an artifact of the model, since it does not allow

for interaction between X and Z.

Adjusted Means

When interest centers on differences in the mean of Y across groups, we often want

to examine mean differences both before and after adjusting for one or more covari-

ates. Actually, the adjusted mean differences themselves—the differences between

the adjusted means—are represented by the deltas in equation (4.4). But we may

want to present both unadjusted (disregarding any covariates) and adjusted (control-

ling for covariates) means, in order to highlight variability in group means both

before and after controlling for one or more continuous predictors. The idea behind

adjusted means is that we statistically “force” the groups to all have the same mean

on the covariate(s). How? We simply choose a value for each covariate and evaluate

the model at that value or values. It is customary to choose the sample mean of the

covariate as the control value. Thus, for the model in equation (4.4), the equation for

the adjusted mean of Y is

E(Y) � β0 � δ1A � δ2B � β1 x�.

The equations for the adjusted means of each group are

C: E(Y) � β0 � β1 x�.

A: E(Y) � β0 � δ1� β1 x�.

B: E(Y) � β0 � δ2� β1 x�.

By taking differences among these three equations, the reader can verify that the

adjusted mean differences are, in fact, δ1, δ2, and δ2 � δ1. The method is easily

extended to the case of multiple covariates: We simply substitute each covariate’s

mean into the equation and then evaluate the equation for the different groups to pro-

duce the adjusted means for each group.

Faculty Salary Example. Table 4.5 presents ANCOVA models for faculty salary

regressed on the dummies representing college, plus four centered covariates: years

in rank, years at BG (referred to in Chapter 3 as “years at the university”), prior

experience, and marketability. In Table 3.4 we saw that these covariates are impor-

tant predictors of salary. Model 1 in that table is reproduced as model 1 in Table 4.5
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(although the intercepts are different, since not all of the covariates were centered in

Table 3.4). It shows the results of salary regressed on the four centered covariates.

Although years in rank is not significant, the other three covariates all have sig-

nificant, positive effects on salary. If the distributions of these covariates are sub-

stantially different across colleges, it is important to adjust for them in any analysis

of the effect of location in a particular college of the university on salary. Otherwise,

we will have a misleading picture of the extent to which salary differences across

colleges are due to college per se rather than to key covariates which happen to differ

for each college. Table 4.6 shows the means on the four covariates both overall and

by each college.

The variability in the means reveals that the distributions on these four covariates

do, in fact, change considerably across colleges. Compared to the overall mean for

years in rank, “arts and sciences,” “education,” and “other departments” are above

average on years in rank, while “firelands” and “business” are below average. In that

years in rank is not a significant predictor of salary, however, these differences may

not be of consequence. Differences on the other three covariates, on the other hand,

could be important. “Arts and sciences” and “other departments” are above average

in years at BG, whereas “firelands,” “business,” and “education” are below average.

In terms of prior experience, “firelands” and “education” stand out as being substan-

tially above average, while “business” has the lowest mean on this factor. Finally,

marketability shows an interesting pattern in which the mean for the Business College

is not only above average but is substantially higher than the marketability scores for
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Table 4.5 Models for Academic Year Salary Regressed on College Plus Covariates 

for Number of Years in Rank, Number of Years at BG, Prior Experience, and

Marketability for 725 Faculty Members

Adjusted

Mean

Predictor Model 1a Model 2a Model 3b Salary

Intercept 47801.000*** 47950.000*** 46993.000*** 47950.000

Firelands �6098.382*** �5142.106*** 41851.618

Business 4444.926*** 5401.202*** 52394.926

Education �1507.845 �551.569 46442.155

Other �1620.079 �663.803 46329.921

Years in rankc
�121.466 �137.728 �137.728

Years at BGc 1072.730*** 1093.968*** 1093.968***

Prior experiencec 924.893*** 952.136*** 952.136***

Marketabilityc 35001.000*** 27020.000*** 27020.000***

SSE 57048547616 54259263744 54259263744

F 267.218*** 144.298*** 144.298***

R2 .598 .617 .617

a Uses dummy coding.
b Uses effect coding.
c Centered variable.

* p � .05. ** p � .01. *** p � .001.



any of the other colleges. In that marketability has a strong impact on salary, one

would expect that controlling for this covariate should reduce the gap in salary

between “business” and the other colleges.

Model 2 in Table 4.5 shows the ANCOVA model for salary regressed on the col-

lege dummies plus the four covariates. Is college’s effect on salary significant after

controlling for the covariates? That is, does the addition of the four dummies repre-

senting college make a significant contribution to the model? We answer this ques-

tion using the nested F test, since model 1 is nested inside model 2. The test statistic,

using the R2 values from the two models, is
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With 4 and 716 degrees of freedom, this is a very signficant result (p � .00001). We

can conclude that at least one of the dummy coefficients is nonzero. Or more gener-

ally, we can conclude that at least one of the mean contrasts in salary between col-

leges is nonzero. We see that two coefficients are significant: the mean difference

between “firelands” and “arts and sciences” and the mean difference between “busi-

ness” and “arts and sciences.” The other two coefficients, contrasting “education” and

“other departments” with “arts and sciences,” are nonsignificant. Recall from model 1

in Table 4.3 that all of the coefficients reflecting contrasts with “arts and sciences”

were significant when the covariates were ignored. Thus, some of the effects of 

college on salary have been accounted for by adjusting for differences across colleges

in key predictors of salary. This is highlighted further by the fact that the dummy

coefficients representing mean differences across colleges have all been reduced in

magnitude compared to model 1 in Table 4.3. For example, the unadjusted mean

difference in salary between “firelands” and “arts and sciences” is �8645.202. The

adjusted mean difference is now �6098.382. So a little over $2500 in the average

salary difference between “firelands” and “arts and sciences” is due to differences

between these colleges in average years in rank, years at BG, prior experience,
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Table 4.6 Means for the Covariates Years in Rank, Years at BG, Prior Experience,

and Marketability: Overall and by College of the University for 725 Faculty Members

at BGSU

Covariate

Years Years Prior

College in Rank at BG Experience Marketability

Arts and Sciences 7.880 13.777 2.973 .935

Firelands 5.486 10.514 3.143 .955

Business 5.843 9.304 2.069 1.159

Education 7.456 11.778 3.656 .865

Other 7.725 12.603 2.756 .830

Overall 7.397 12.530 2.899 .940
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and marketability. The same comment can be made regarding the other coefficient

reductions.

Model 3 in Table 4.5 is the same as model 2 except that effect coding is used to

represent colleges. In comparison to model 2 in Table 4.3, we see that the departures

of each college’s mean salary from the grand mean are smaller than was the case

without controlling for covariates. Moreover, whereas three of these departures were

significant before, only two are significant now. To further foreground the closing of

the salary gaps across colleges, the last column of Table 4.5 shows the adjusted mean

salaries for each college after accounting for the four key covariates. Because the

covariates are centered and their means are therefore all zero, calculating adjusted

means is quite straightforward. One just ignores the coefficients for the covariates in

model 2 in Table 4.5 and uses the intercept and dummy coefficients to calculate the

means. For example, the adjusted mean for “arts and sciences” is just the intercept

in model 2—47950. The adjusted mean for “firelands” is 47950 � 6098.382 �

41851.618, and so on. It is evident that compared to the unadjusted means for each

college in the last column of Table 4.1, the adjusted means exhibit less variability.

Mean Contrasts with an Adjusted Alpha Level. Recall that with five categories of

the variable college, there are 10 possible mean salary contrasts between pairs of col-

leges that can be tested. Up until now, I have been conducting these tests without

controlling for the increased risk of type I error—or capitalization on chance—that

accrues to making multiple tests. There are several procedures that accomplish this

control; here I discuss one, the Bonferroni comparison procedure. The Bonferroni

technique is advantageous because of its great generality. It is not only limited to

tests of mean contrasts. It can be used to adjust for capitalization on chance when-

ever multiple tests of hypothesis are conducted, regardless of whether or not they are

the same type of test. The rationale for the procedure is quite simple. Suppose that I

were making 10 tests and I wanted my overall chance of making at least one type I

error to be .05 for the collection of tests. That is, I want the probability of rejecting

at least one null hypothesis that is, in fact, true, to be no more than .05 over all tests.

If I make each test at an α level of .05, the probability of making a type I error on

each test is .05. This means that the probability of not making a type I error on any

given test is .95, and the probability of not making any type I errors across all 10

tests is therefore (.95)10 � .599. This implies that the probability of making at least

one type I error in all these tests is 1 � .599 � .401. In other words, we have about a

40% chance of declaring one H0 to be false when it is not. The Bonferroni solution

in this case is to conduct each test at an α level of .05/10 � .005. This way, the prob-

ability of not making a type I error on any given test is .995, and the probability of

making at least one type I error across all 10 tests is 1 � (.995)10 � .049. In general,

if one is making K tests and one wants the probability of making at least one type I

error to be held at α across all tests, the Bonferroni procedure calls for each test to

be made at an α level of α�� α /K.

Although the Bonferroni procedure has the advantages of simplicity and flexi-

bility, it tends to be somewhat low in power. Holland and Copenhaver (1988) discuss

several modifications of the Bonferroni procedure that result in enhanced power to
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detect false null hypotheses. The one I focus on here is due to Holm (1979). The

Bonferroni–Holm approach is to order the attained p-values for the K tests from

smallest to largest. One then compares the smallest p-value to α /K. If p � α /K, one

rejects the corresponding null hypothesis and moves to the test with the next small-

est p-value. This is compared to α /(K � 1). If this p is less than α /(K � 1), one

rejects the corresponding null hypothesis and moves to the test with the next small-

est p-value, which is compared to α /(K � 2). We continue in this fashion, each time

comparing the next smallest p-value to α /(K � 3), then to α /(K � 4), and so on,

until the largest p-value is compared to α /1 � α. As long as the p-value for the

given test is smaller than the relevant adjusted α level, the corresponding null

hypothesis is rejected and we continue to the next test. If, at any point, we fail to

reject the null, testing stops at that point and we fail to reject all of the remaining

null hypotheses.

Table 4.7 presents tests for mean salary differences between colleges after adjust-

ing for years in rank, years at BG, prior experience, and marketability, using

Bonferroni–Holm adjusted α levels (shown as α� in the table). The tests are based

on the dummy coefficients in model 2 in Table 4.5. The adjusted α levels are .05/10 �

.005, .05/9 � .0056, .05/8 � .0063, and so on, so that the last adjusted α level is .05.

The first seven contrasts are all significant since the p-value for each of the tests is

less than the adjusted α level. However, we fail to reject equality of mean salaries

for “other departments” versus “arts and sciences,” hence we fail to reject equality

of the last two contrasts as well. The outcomes of these tests are the same as would

have been realized if we had simply used the .05 α level for each test. However, this

procedure, unlike that simpler one, holds the overall α level down to .05. Notice that

the unmodified Bonferroni procedure, using α � .005 for each test, would have

failed to reject equality for the “other departments” versus “firelands” and the “edu-

cation” versus “firelands” contrasts. That they are rejected under Bonferroni–Holm

reveals the greater power of the latter procedure.

Table 4.7 Tests for Mean Salary Differences between Colleges after Adjusting

for Years in Rank, Years at BG, Prior Experience, and Marketability, Using

Bonferroni–Holm Adjusted αα Levels (Based on Model 2 in Table 4.3)

Mean Salary

Contrast Difference p α�

Business–Firelands 10543.000 �.0001 .0050

Other–Business �6065.005 �.0001 .0056

Firelands–A&S �6098.382 �.0001 .0063

Education–Business �5952.772 �.0001 .0071

Business–A&S 4444.926 .0002 .0083

Other–Firelands 4478.303 .0086 .0100

Education–Firelands 4590.537 .0092 .0125

Other–A&S �1620.079 .0850 .0167

Education–A&S �1507.845 .1508 .0250

Other–Education �112.233 .9254 .0500



Interaction between Categorical and Continuous Predictors

The ANCOVA model, together with adjusted means, makes sense only if the differ-

ences in group means are the same at different values of the covariate (or at different

values of the covariate patterns exhibited by the continuous regressors). In this case

it makes sense to speak of group mean differences that exist after adjusting for

the covariates—treating group differences as constant regardless of the levels of the

covariates. If this condition is not met, we have statistical interaction between the

continuous and categorical predictors. In this section of the chapter, I discuss this

type of interaction and show how it can be interpreted with, alternately, the continu-

ous and the categorical variable as the focus.

Interaction Model. For simplicity, once again, I explicate interaction with a model

that has one categorical predictor, Z, with three categories—A, B, and C (the refer-

ence category)—and one continuous predictor, X. This time, I allow Z to interact

with X in its impact on Y. The model is

E(Y ) � β0 � δ1A � δ2B � β1X � γ1AX � γ2BX. (4.8)

To interpret the interaction effect, let’s write the simple linear regression of Y on X

separately for each group. For group C the equation is

E(Y ) � β0 � β1X, (4.9)

for group A it is

E(Y ) � β0 � δ1 � (β1 � γ1)X, (4.10)

and for group B we have

E(Y ) � β0 � δ2 � (β1 � γ2)X. (4.11)

We can see immediately that the regression of Y on X has a different slope in each

group. Thus, if X is the focus, its impact is β1 in group C, β1 � γ1 in group A, and β1� γ2

in group B. That is, the effect of X changes across groups. If the gammas both turn out

to be zero, there is no difference in the effect of X in each group. The Y-intercepts for

each group are, once again, β0 for group C, β0 � δ1 for group A, and β0 � δ2 for group

B. Figure 4.2 illustrates the model for the three groups.

If group is the focus, we ask how group differences might depend on the level of

X. To ascertain this, we take differences between equations (4.9) to (4.11). The

difference in the mean of Y for group A vs. group C is (4.10) � (4.9), or

E(Y � A) � E(Y � C) � β0 � δ1 � β1X � γ1X � β0� β1X � δ1 � γ1X.
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The difference in means for groups B and C is (4.11) � (4.9), or

E(Y � B) � E(Y � C) � β0 � δ2 � β1X � γ2X � β0� β1X � δ2 � γ2X.

Finally, the difference in means for groups B and A is (4.11) � (4.10), or

E(Y � B) � E(Y � A) � β0 � δ2 � β1X � γ2X � β0 � δ1� β1X � γ1X

� (δ2 � δ1) � (γ2 � γ1)X.

It is evident here that group differences in the mean of Y are no longer constant as

they were in the no-interaction model. Instead, they are a function of the level of X.

Figure 4.2 depicts this situation by showing that the gap between any two groups’

means increases as we go from lower to higher values of X. This particular model is

designed to exhibit interaction that is ordinal in both X and Z. With respect to the

effect of X, this means that the direction of its impact (which in this example is pos-

itive) is the same in each group but that the magnitude of its effect changes across

groups. Similarly, that the interaction is ordinal in Z is illustrated by the fact that

although the gap between groups’ means gets larger with increasing X, the ordering

of group means is always the same: The mean for group B is always higher than the

mean for group A, which is always higher than the mean for group C.
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Figure 4.2 Regression model E(Y) � β0 � δ1A � δ2B � β1X � γ1AX � γ2BX, depicting ordinal interac-

tion between the categorical variable, Z, and the continuous variable, X.



Figures 4.3 and 4.4 depict various types of disordinal interaction. Figure 4.3

shows interaction that is disordinal in X but ordinal in Z. That is, the effect of X

changes direction across groups: positive in groups B and C but negative in group A.

Nevertheless, with respect to Z, the ordering of group means is always the same, with

the mean for group B being the highest and the mean for group A being the lowest,

regardless of the level of X. Hence the effect of Z is of the same nature, regardless of

X, but varies in magnitude over the values of X. Figure 4.4 illustrates interaction that

is disordinal in both X and Z. The effect of X changes direction across groups since,

again, it’s positive in groups B and C but negative in group A. The “direction” of Z’s

effect also changes over X. This is shown by the fact that although the means for

groups A and B are always higher than the mean for group C, group A’s mean is

higher than group B’s mean at lower values of X, but lower than B’s mean at higher

values of X. In other words, the nature of Z’s effect changes over levels of X. The

only way to tell whether the interaction is ordinal or disordinal in either variable

involved in the interaction is to substitute into the equation some sample estimates

of the main-effect and interaction coefficients. After evaluating the equation for the

different groups, or at different sample values of X, it should be relatively easy to dis-

cern the nature of the interaction effect.

Interaction Models for Faculty Salary. Table 4.8 shows the results of estimating a

model for faculty salary that includes the interaction of college with marketability in
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Figure 4.3 Regression model E(Y) � β0 � δ1A � δ2B � β1X � γ1AX � γ2BX, depicting interaction that is

disordinal in the effect of the continuous variable, X, but ordinal in the effect of the categorical variable, Z.
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Figure 4.4 Regression model E(Y) � β0 � δ1A � δ2B � β1X � γ1AX � γ2BX, depicting interaction

that is disordinal both in the effect of the continuous variable, X, and in the effect of the categorical

variable, Z.

Table 4.8 Main Effect and Interaction Models for the Regression of Academic Year

Salary on College Plus Covariates for Number of Years in Rank, Number of Years 

at BG, Prior Experience, and Marketability for 725 Faculty Members

Predictor Model 1 Model 2

Intercept 47950.000*** 47958.000***

Firelands �6098.382*** �5639.779***

Business 4444.926*** 2201.368

Education �1507.845 �767.187

Other �1620.079 �2000.977

Years in ranka
�137.728 �132.748

Years at BGa 1093.968*** 1088.270***

Prior experiencea 952.136*** 956.563***

Marketabilitya 27020.000*** 27820.000***

Marketabilitya
� Firelands �32394.000***

Marketabilitya
� Business 9392.054

Marketabilitya
� Education 9321.962

Marketabilitya
� Other �4197.697

F 144.298*** 98.524***

∆F 3.267*

R2 .617 .624

a Centered variable.

* p � .05. ** p � .01. *** p � .001.
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their effects on salary. For comparison purposes, the main effects (ANCOVA) model

without interaction, shown as model 2 in Table 4.5, is first reproduced here as model 1.

Model 2 adds the cross-products of marketability with the four college dummies. First

we must investigate whether the interaction is significant. As it involves four additional

terms, we perform the nested F test to compare models 1 and 2. The nested F is 3.267,

which is just significant ( p � .05). Evidently, the only significant individual coefficient

is for the cross-product of marketability with the “firelands” group. Nevertheless, for

didactic purposes, I consider all of the coefficients when interpreting the interaction

effect. First, if marketability is the focus, its partial slope is

27820 � 32394 FIREL � 9392.054 BUSINESS 

� 9321.962 EDUCATION � 4197.697 OTHER.

Here it is evident that the interaction is disordinal in marketability. Although mar-

ketability has a positive effect on salary for “arts and sciences,” “business,” “educa-

tion,” and “other departments,” its effect is estimated to be negative for “firelands.”

With a value of 27820 � 32394 � �4574, the effect suggests that a unit increase in

marketability in the Firelands college actually lowers one’s salary by $4574, on aver-

age. This seemingly counterintuitive result may make more sense when viewed from

the perspective of marketability as the moderator variable, as we do next.

With college as the focus, the dummy coefficients turn out to be:

Firelands: �5639.779 � 32394 marketability.

Business: 2201.368 � 9392.054 marketability.

Education: �767.187 � 9321.962 marketability.

Other: �2000.977 � 4197.697 marketability.

Each coefficient reflects the difference in mean salary between the indicated college

and “arts and sciences.” As is evident, this difference depends on the marketability

value for that faculty member’s discipline. The range of marketability values is .58

to 1.33, with a mean of .94 and a standard deviation of .149. Here it is important to

remember that marketability is centered. So the main effect of any given dummy 

represents the difference in mean salary between the indicated college and “arts and

sciences,” at average marketability of faculty disciplines. Consider the mean salary

difference between “firelands” and “arts and sciences,” for example. At average mar-

ketability, it is �5639.779. That is, for faculty members with average marketability,

Firelands faculty make about $5640 less than Arts and Sciences faculty. However,

at 2 standard deviations below average marketability, or a value of �.298, the effect

of “firelands” is �5639.779 � 32394(�.298) � 4013.633. That is, for those in less

marketable disciplines, it is more advantageous, salarywise, to be in the Firelands

college, compared to being in the College of Arts and Sciences. At 2 standard 

deviations above average marketability, or a value of .298, the effect is �5639.779

� 32394(.298) � �15293.191. The effect is clearly disordinal in college here, since
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Firelands faculty make a higher average salary than Arts and Sciences faculty at lower

marketability but a lower average salary at higher marketability. Similar changes in

direction of effects can be seen for the Education and Business colleges. For “educa-

tion,” the contrast with “arts and sciences” at �2 standard deviations of marketability

is �3545.132. At �2 standard deviations of marketability it is 2010.758. For “busi-

ness,” the numbers are �597.464 and 5000.200, respectively. For “other departments,”

however, average salary is always lower than for “arts and sciences,” regardless of mar-

ketability levels observed in the sample. At any rate, sample estimates suggest that

overall, the interaction is disordinal in both college and marketability.

Comparing Models across Groups, Revisited

The interaction of all model regressors with a dummy variable (or variables) repre-

senting group membership suggests that the dynamics of a given model are different

for each group. In Chapter 3 we saw that we could use a Chow test to test whether

the impact of a set of regressors on a response was different in different groups. We

can also accomplish the same task using cross-product terms. In this last section of

the chapter I show the equivalence of these two ways of addressing the same issue.

Another Look at the Chow Test. Recall that the Chow test is an omnibus test for

whether a model differs across groups: meaning whether the effect of at least one

explanatory variable is different across groups. It turns out that an assumption for

this test, as well as the equivalent test using cross-product terms, is that the error

variance in each group is the same. That is, if A and B represent the two groups in

question, and σ2, as usual, represents V(ε), the assumption is that σA
2 � σB

2 . In

Chapter 3 I simply assumed equal error variances in the equations for academic year

salary for male and female faculty and proceeded to test whether the factors

affecting salary had the same effects for each gender. However, to ensure that the test

is valid, we must first test whether, in fact, the assumption of equal error variances

is reasonable. The following test assumes that the error variance is normally distrib-

uted in each group. The test statistic is
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assuming that group A has the larger of the two error variances. If the error variance

in group B is larger, the test statistic is
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Under the null hypothesis that the error variances are the same, this statistic follows the

F distribution with numerator degrees of freedom equal to the error degrees of freedom

(dfE) for the model whose MSE is in the numerator of the test, and denominator degrees

of freedom equal to dfE for the model whose MSE is in the denominator (Hardy, 1993).

As an example, let’s test whether the error variances for the salary models in Table 3.5

are the same for male versus female faculty. For the male faculty, the MSE is



81171524.123, and the dfE is 505. For the female faculty, the MSE is 52550530.18, and

the dfE is 208. The test statistic, therefore, is
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With 505 and 208 degrees of freedom, this result is quite significant (p � .001). This

suggests that the Chow test for this problem, which found the salary model to differ

for males and females, was not valid. In Chapter 6, in which weighted least squares

is introduced, we will see how to conduct a test for equality of models across two

groups under the condition of unequal error variance.

In that graduate faculty status appears to play a key role in determining faculty

salary, one question worth investigating is whether model 1 in Table 4.8 differs by

graduate faculty status. That is, do the effects of college, years in rank, years at BG,

prior experience, and marketability have different effects on salary for those who are

on the graduate faculty, as opposed to those who are not? Table 4.9 presents several

models pertinent to this question. Model 1 shows the estimated effects of these fac-

tors on salary for the 202 faculty members not on graduate faculty, while model 2

shows the results for the 523 faculty members on graduate faculty. It seems that all

of the regression coefficients are quite different in each model, with some differences

more pronounced than others. Particularly noticeable are the effects of being in the

business college, prior experience, and marketability, all of which have substantially

greater positive effects on salary for those on graduate faculty. Moreover, the effects

of being in the business college and prior experience are significant only for those

on graduate faculty. We should keep in mind, however, that any time we run sepa-

rate analyses of the same model in different subgroups, the coefficient estimates will

differ to some extent purely because of sampling error. And even though a given

effect is significant in one group but not the other, this is not enough evidence to con-

clude that the effects are significantly different in each group.

Before we can test for model differences, we must again test for the equality of

error variances in each group. The estimated error variance, or MSE, for those on

graduate faculty status is 53934137.987, with 514 df. The MSE for those not on grad-

uate faculty is 50674043.62, with 193 df. Therefore, the test statistic is

F ��
5

5

3

0

9

6

3

7

4

4

1

0

3

4

7

3

.9

.6

8

2

7
�� 1.064.

With 514 and 193 df, this is not a significant result (p � .3). The assumption of equal

error variance in this instance appears reasonable.

In Chapter 3 the Chow test was performed by constraining all model coefficients,

including the intercept, to be the same in each group under the null hypothesis. This

may not always be desirable. In this particular example, the intercept represents the

salary of faculty members in “arts and sciences” who are average in years in rank,

years at BG, prior experience, and marketability. It may well be that average salary

for these faculty members differs according to graduate faculty status. That is, being

on graduate faculty may add some increment to salary. But the impact on salary of
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college, years in rank, years at BG, prior experience, or marketability may be the

same, regardless of whether or not one is on the graduate faculty. That is, in this

instance, we may want the null hypothesis to allow the intercept to differ by gradu-

ate faculty status while constraining the effects of the other regressors. We perform

the test both ways, so that the reader can see the difference in the outcomes.

The test that constrains the intercept as well as the other regressors is performed

by comparing model 1 in Table 4.8, the combined-sample model, with models 1 and

2 in Table 4.9. The test statistic is

F � � 35.101.
[54259263744 � (9780090418.7 � 27722146925)]/9
������

(9780090418.7 � 27722146925)/707

Table 4.9 Regression Models Pertaining to the Interaction of Predictors of Academic

Year Salary with Whether on Graduate Faculty

Predictor Model 1 Model 2 Model 3 Model 4

Intercept 40698.000*** 50023.000*** 39891.000*** 40698.000***

Graduate faculty 10318.000*** 9324.678***

Firelands 1409.370 803.314 1960.409 1409.370

Business 714.042 6957.555*** 5547.657*** 714.042

Education �188.553 �1486.229 �1000.544 �188.553

Other �1757.682 �1543.441 �1575.448 �1757.682

Years in ranka
�279.113 246.232** 195.092* �279.113

Years at BGa 1183.076*** 863.967*** 877.906*** 1183.076***

Prior experiencea 227.027 1010.841*** 845.124*** 227.027

Marketabilitya 9660.048* 27146.000*** 22442.000*** 9660.048*

Graduate faculty �606.056

� Firelands

Graduate faculty 6243.512**

� Business

Graduate faculty �1297.677

� Education

Graduate faculty 214.241

� Other

Graduate faculty 525.345*

� years in ranka

Graduate faculty �319.109*

� years at BGa

Graduate faculty 783.814***

� prior experiencea

Graduate faculty 17486.000***

� marketabilitya

SSE 9780090418.7 27722146925 41978431466 37502237344

F 55.884*** 145.241*** 188.799*** 115.595***

R2 .699 .693 .704 .735

a Centered variable.

* p � .05. ** p � .01. *** p � .001.
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With 9 and 707 df, this result is very significant (p � .00001), resulting in rejection

of the null hypothesis. This suggests that the salary models do differ according to

graduate faculty status. However, to what extent is this result an artifact of con-

straining the intercepts to be equal? Model 3 in Table 4.9 is the same salary model

as models 1 and 2, except that it is performed on the combined sample and adds a

dummy representing graduate faculty status. Notice that the effect of graduate fac-

ulty status is quite pronounced: All else equal, being on the graduate faculty adds,

on average, $10,318 to academic year salary. Model 3 is an ANCOVA model that

allows for different intercepts according to graduate faculty status. For example, for

those not on graduate faculty, the mean salary is

E(Y ) � 39891 � 1960.409 firelands � 5547.657 business � 1000.544 education

�1575.448 other departments � 195.092 years in rank

� 877.906 years at BG � 845.124 prior experience � 22442 marketability.

For those on graduate faculty, the mean salary is

E(Y) � (39891 � 10318) � 1960.409 firelands � 5547.657 business

� 1000.544 education � 1575.448 other departments � 195.092 years in rank

� 877.906 years at BG � 845.124 prior experience � 22442 marketability.

Here, it is evident that the intercept for those not on graduate faculty is 39891, while

for those on graduate faculty it is 39891 � 10318 � 50209. The Chow test allowing

the intercepts to differ is performed by comparing model 3 to models 1 and 2.

Notice, however, that there is a change in the numerator degrees of freedom, repre-

senting the difference in the number of parameters estimated. With the intercept con-

strained, this difference is just the number of parameters in the model, since the

model is simply being duplicated in each group. With the intercept unconstrained,

there is one more parameter being estimated in the combined model than before.

Now the difference is 18 parameters in models 1 and 2 minus 10 parameters in

model 3 � 8 numerator degrees of freedom. The test statistic is

F � � 10.55.

With 8 and 707 degrees of freedom, the result is very significant (p � .00001), but

the test statistic is substantially smaller compared to the result of the constrained-

intercept test. Nevertheless, we would conclude that the impact of at least one model

regressor is different for those who are on, versus not on, the graduate faculty.

Model Comparison Using Cross-Product Terms. One limitation of the Chow test

is that although it allows us to conclude that models are different across groups, it

doesn’t tell us which regressors have different effects. Performing model comparison

tests using cross-product terms rectifies that limitation. Model 4 in 

Table 4.9 is model 3 with the addition of the cross-products of graduate faculty sta-

tus with all other model regressors. To compare models across levels of graduate

[41978431466 � (9780090418.7 � 27722146925)]/8
������

(9780090418.7 � 27222146925)/707
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faculty status with the intercept constrained, we can perform a nested F test compar-

ing model 1 in Table 4.8 (RSS � 87480506481), the ANCOVA model for faculty

salary without the dummy for graduate faculty status, with model 4 in Table 4.9

(RSS � 104237532881, MSE � 53044182.948), the interaction model that includes

this dummy along with the cross-product terms. The test statistic is

F � � 35.101,

which agrees with the result of the first Chow test above. To compare models with-

out constraining the intercept, the more usual practice, we perform a nested F test

comparing models 3 and 4 in Table 4.9. This is essentially a test for the significance

of the block of cross-product terms capturing the interaction of graduate faculty sta-

tus with all other regressors in model 3. The R2 for model 3 is .7038 and the R2 for

model 4 is .7354. Hence, the test statistic is

F ��
(.

(

7
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3

�

54
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8

0

)

7

/8
�� 10.55,

which also agrees with the second Chow test above. In either case, we would prefer

the interaction model over the model that does not allow interaction between gradu-

ate faculty status and the other regressors.

Model 4 also indicates which regressor effects differ by graduate faculty status via

the t tests for the cross-product terms. Apparently, the factors whose effects differ

according to graduate faculty status are being in the Business College as opposed to

being in Arts and Sciences, years in rank, years at BG, prior experience, and mar-

ketability. Interpretation of the model is facilitated by examining the partial effect of

each of these variables as a function of graduate faculty status. The impact of being

in the Business College compared to being in Arts and Sciences is 714.042 �

6243.512 graduate faculty. This suggests that being on the graduate faculty adds

about $6243 to the average salary gap between the Business College and the Arts and

Sciences faculty. The effect of years in rank is �279.113 � 525.345 graduate fac-

ulty. Thus, a greater number of years in rank reduces salary for those not on the grad-

uate faculty but enhances salary for graduate faculty members. The effect of years at

BG is 1183.076 � 319.109 graduate faculty. Working at BG a year longer raises

average salary more for those who are not on the graduate faculty than for those who

are. The effect of prior experience is 227.027 � 783.814 graduate faculty, while the

effect of marketability is 9660.048 � 17386 graduate faculty. Both of these regres-

sors have stronger positive effects on salary for those who are on the graduate fac-

ulty than for those who are not.

Generalizing the Chow Test. Although the Chow test examples I have used involve

only two groups, the test can be generalized to any number of groups. For example,

suppose that we wish to compare a model across three groups, denoted A, B, and C.

First, we run the model on the combined sample, either constraining the intercepts

for the groups to be equal by excluding group membership from the model (giving

(104237532881 � 87480506481)/9
����

53044182.948
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us SSEc) or by allowing the intercepts to be unconstrained by including two dum-

mies in the model representing group membership (giving us SSEu). Next, we run the

model in each group separately (which gives us SSEA, SSEB, and SSEC). If there are

J parameters in the model (including the intercept), the test statistic with intercept

constrained is

F � ,

which under the null hypothesis of no model difference across groups has the F dis-

tribution with 2J and n � 3J degrees of freedom. The test statistic with the intercept

unconstrained is

F � .

The combined-sample model in this case has J � 2 parameters. Under the null

hypothesis of no difference across groups in the effects of the J � 1 regressors in the

model, this statistic has the F distribution with 2J � 2 and n � 3J degrees of freedom.

Extension to more than three groups follows in a similar fashion. Examples are given

in the exercises.

Generalizing the Variance Homogeneity Test. The Chow test for model equivalence

across multiple groups assumes, as before, that the error variance is the same in each

group. Once again, this assumption can be tested. This time, however, an appropri-

ate test is Barlett’s test (Neter et al., 1985). This test is based on the assumption that

the error variance is normally distributed in each group. Let σ̂1
2,σ̂2

2, . . . , σ̂G
2 be the

estimated error variances (i.e., MSE’s) for G different groups, with error degrees of

freedom equal to dfg, for g � 1, 2, . . . , G. Then the weighted average of the error

variances is

MSE* � �
d

1

fT
� �

G

g�1

dfgσ̂
2
g,

where dfT is the sum of the G error degrees of freedom. That is,

dfT � �
G

g�1

dfg.

Barlett’s test statistic is then

B � �
C

1
� �dfT log MSE* ��

G

g�1

dfg log σ̂ 2
g�,

where “log” refers to the natural logarithm, and

C � 1 ��
3(G

1

�1)
� �� �

G

g�1

�
d

1

fg
�� � �

d

1

f T

��
For large sample sizes in each group, and under the null hypothesis that the G error

variances are equal, this test statistic has approximately a chi-squared distribution

[SSEu� (SSEA � SSEB � SSEC)] / (2J � 2)
�����

(SSEA � SSEB � SSEC)] / (n � 3J)

[SSEC � (SSEA � SSEB � SSEC)] / 2J
����

(SSEA � SSEB � SSEC)] / (n � 3J)
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with G � 1 degrees of freedom. Two points should be noted. First, Barlett’s test is

very sensitive to departures from normality, so if the errors are not normally distrib-

uted, the test may not be accurate. Second, C is always greater than 1, so if the term

inside the parentheses in the expression for B is already under the critical chi-

squared value for testing at level α, it is not necessary to calculate C—the null

hypothesis will not be rejected either way. If the term inside the parentheses is

greater than the critical chi-squared value, it is necessary to calculate C and do the

complete computation for B (Neter et al., 1985). Examples are given in the exercises.

EXERCISES

4.1 In the couples dataset, 189 couples have no children, and 227, or 54.57%, of

couples have children. For all 416 couples, the mean couple-conflict score is

1.79, with a standard deviation of .601384. Couples without children have a

mean conflict score of 1.5658 with a standard deviation of .480. Couples with

children have a mean conflict score of 1.9759, with a standard deviation of

.629. If a dummy variable, PRESCHDN, is created with those having children

the interest category and those without children the contrast group, then:

(a) Give the sample equation for the SLR of couple conflict on PRESCHDN.

(b) Give r and r2 for the SLR of couple conflict on PRESCHDN.

(c) Test whether there is a significant relationship between couple conflict

and having children using the two-sample t test, the test for the

significance of r, and the test for the dummy coefficient (i.e., t � d/σ̂d). In

so doing, you should find that all three t tests are equivalent. (Hint: See

Exercise 4.25 for helpful ideas on this problem.)

4.2 For the 416 couples in the couples dataset, a regression of couple conflict on

a dummy variable OWNKID, representing all children in the household being

the natural children of both partners, and a dummy variable STEPKID, rep-

resenting at least one child being a stepchild (“no children” is the omitted

group) produced the following equation:

ŷ � 1.5723 � .4023 OWNKID � .3866 STEPKID.

The variance–covariance matrix of parameter estimates is:

OWNKID STEPKID

OWNKID .00365

STEPKID .00171 .00711

RSS is 16.3622 and SSE is 133.7280.

(a) Give the mean couple conflict for the three groups of couples.

(b) Test whether there is a significant relationship between child type and

couple conflict.



(c) Which child type categories are significantly different from each other in

average couple conflict?

4.3 For the students dataset, CLASSF is recoded into the categories “sophomore,”

“junior,” “senior,” and “postgraduate/graduate” (there are no freshmen). The

means (n’s) on the first exam for these groups are “sophomore” 81.595 (21);

“junior” 74.681 (70); “senior” 74.884 (88); “postgraduate/graduate” 84.064 (35).

(a) Show how the categories of CLASSF should be effect coded, naming the

effect variables SOPH, JUN, and POST (with “senior” as the reference

group).

(b) Using only hand calculations, give the sample regression equation for

regressing EXAM1 on SOPH, JUN, and POST.

4.4 Suppose that a continuous variable Y is regressed on two categorical vari-

ables: Z1 with categories A and B, and Z2 with categories C, D, and E. If Z1

is dummied with B as the interest category and Z2 is dummied with C and D

as the interest categories, the sample regression equation is

ŷ � 4 � 6B � 2C � D � 4BC � 2BD.

Fill in the following table with each of the cell means, based on this equation:

A B

C

D

E

4.5 Using the GSS98 dataset, perform a two-way ANOVA for the effect of gen-

der and marital status on attitude toward cohabitation (COHABTN) using

dummy-variable regression. In particular:

(a) Test whether marital status affects cohabitation attitude, controlling for

gender.

(b) Test whether there is a significant interaction effect between gender and

marital status.

(c) Use the interaction regression model to display the 10 sample cell means

for the cross-classification of gender with marital status.

4.6 In the two-way ANOVA model without interaction in Exercise 4.5, use

Bonferroni–Holm to test all 10 mean contrasts in cohabitation attitude by

marital-status categories.

4.7 In DeMaris (2002b) I present several regression analyses of the frequency 

of sexual activity in the past month for 2997 couples in the NSFH. A regression
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of sexual frequency on a dummy variable reflecting cohabiting status (1 �

“cohabiting unmarried,” 0 � “married”) produces the following equation:

ŷ � 8.171 � 3.314 cohabiting. A second analysis adds the continuous vari-

ables female age in years (mean � 33.43) and relationship duration in months

(mean � 92.63) to the model. The second equation is

ŷ � 13.969 � 2.322 cohabiting � .144 female age

� .01 relationship duration.

(a) Give the unadjusted mean sexual frequency for cohabiting vs. married 

couples.

(b) Give the adjusted mean sexual frequency for cohabiting vs. married cou-

ples, after adjusting for female age and relationship duration. Comment

on the differences between the unadjusted and adjusted means.

4.8 In the analyses in Exercise 4.7, MSE for the first equation is 43.183, MSE for

the second equation is 40.631, and the standard error of the cohabiting effect

is .201 in each equation. Test whether female age and relationship duration

account for a significant part of the cohabitation effect on sexual frequency,

using the Clogg et al. (1995) test discussed in Chapter 3.

4.9 For the couples dataset, the variable MPERCENT is the percent of total

weekly housework hours contributed by the male partner, calculated as

100� �.

This was regressed on MPARTIME and MUNEMP, dummies for male part-

ners who work “part time” or are “unemployed,” respectively (working “full

time” is the reference category); FPARTIME and FUNEMP, dummies for

female partners who work “part time” or are “unemployed,” respectively

(working “full time” is the reference category); and MINCOME and FIN-

COME (male and female income, respectively). The sample equation is

ŷ � 23.766 � 2.104 MPARTIME � .177 MUNEMP � 6.043 FPARTIME

� 4.738 FUNEMP � .020 MINCOME � .286 FINCOME.

(a) Interpret the intercept and each of the dummy coefficients.

(b) Give the adjusted mean percentages of housework done by male partners

in each of the nine cross-classifications of male employment with female

employment. (Note: Mean MINCOME � 23.5, mean FINCOME �

9.04.)

4.10 For the couples dataset, the regression of couple happiness (the mean of

HUSHAP and WIFHAP) on PRESCHDN (a dummy representing the presence

MMHOURS
���
MMHOURS�FFHOURS
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of children in the household), CONFLICT (couple conflict), and their inter-

action (PRESCONF) produces the following equation:

ŷ � 6.997 � .185 PRESCHDN � .479 CONFLICT � .157 PRESCONF.

Interpret the interaction effect with, alternately, presence of children and

conflict as the focus variable. Note that the couple conflict scale ranges from

1 (“no conflict”) to 6 (“maximum conflict”).

4.11 For the 230 main-respondent females in the couples dataset, the following

three regression equations were produced, where Y � the Center for Epidemi-

ological Studies Depression Scale [the 12-item version (CESD)], and the

regressors are some combination of OWNKID, STEPKID, and CONFLICT

(significant coefficients are shown in boldface type):

(1) yŷ � 13.2178 � .6332 OWNKID � 3.0679 STEPKID; R2� .0043.

(2) ŷ � �6.9947 � 11.8270 CONFLICT; R2
� .2062.

(3) ŷ � �7.0448 � 5.0846 OWNKID � .4777 STEPKID

� 13.0701 CONFLICT; R2
� .2279.

(a) Test whether child type is a significant predictor of women’s depressive

symptomatology after controlling for couple conflict.

(b) Interpret the coefficient for OWNKID in the last equation.

(c) Explain why the effects of OWNKID and STEPKID change signs from

equation 1 to equation 3.

4.12 Refer to Exercise 4.3. A regression of EXAM1 on SCORE, COLGPA, and

PREVMATH for the 214 students with valid grades produces an R2 of .4312.

When SOPH, JUN, and POST (coded as effect variables) are added to the

model, the R2 goes up slightly, to .4383.

(a) Test whether student classification is a significant predictor of exam scores

once SCORE, COLGPA, and PREVMATH have been accounted for.

(b) If the sample equation for the more complete model is

ŷ � �55.122 � 1.728 SOPH � 1.429 JUN � 1.603 POST

� 2.2 SCORE � 13.139 COLGPA � 1.805 PREVMATH

and the means for SCORE, COLGPA, and PREVMATH are, respectively,

40.925, 3.091, and 1.257, give the estimated average EXAM1 scores for

sophomores, juniors, seniors, and postgraduate/graduate students with aver-

age values of SCORE, COLGPA, and PREVMATH.

4.13 Refer to Exercise 4.12. A regression of EXAM1 on SCORE, COLGPA, and

PREVMATH and dummy variables representing student classification and
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named SOPHM (“sophomore”), JUNR (“junior”), and POSTG (“postgrad/

grad”), with seniors as the contrast group, produced the following sample

equation:

ŷ � �57.025 � 3.63 SOPHM � .474 JUNR � 3.506 POSTG

� 2.2 SCORE � 13.139 COLGPA � 1.805 PREVMATH.

Give the adjusted mean EXAM1 scores for sophomores, juniors, seniors, and

postgrad/grads. Compare your answer to part (b) of Exercise 4.12.

4.14 One analysis of faculty salary for the 725 faculty members at BGSU looks at

the interaction of gender with college (“firelands” is the group omitted here)

in their effects on faculty salary. The estimated equation, including several

controls (contained in the vector CONTROLS), is

ŷ � 36959 � 702.006 FEMALE � 1201.846 ARTSCI � 7738.588 BUSINESS

� 499.644 EDUCATN � 2900.191 OTHER

� 1301.887 FEMALE * ARTSCI� 4817.316 FEMALE * BUSINESS

� 1388.864 FEMALE * EDUCATN� 1058.814 FEMALE * OTHER

� g� CONTROLS.

There are a total of 20 regressors in this model, and the R2 is .8382. The model

without the interaction terms has an R2 of .8363.

(a) Test whether the interaction is significant.

(b) Interpret the intercept and all of the main effects of gender and college in

the model.

(c) Interpret the interaction effect, regardless of its significance level, with

gender and college alternating as the focus variables.

4.15 Using the faculty salary dataset, estimate the regression of AYSALARY on

rank (captured by the dummies R1 for “full professor,” R2 for “associate pro-

fessor,” and R4 for “instructor/lecturer,” with “assistant professors” as the ref-

erence group), centered versions of PRIOREX, YRBG, YRRANK, and

SALFAC, plus the dummies TERMDEG, GRAD, ADMIN, and FIRELAND.

(a) Intepret the rank effects.

(b) Give the adjusted mean AYSALARY for those in each rank in the base-

line group (i.e., no terminal degree, not on graduate faculty, not in an

administrative position, on the main campus).

4.16 Using the GSS98 dataset, conduct a one-way ANOVA via dummy-variable

regression, where Y � ABORTION and X � religious affiliation (“Protestant,”

“Catholic,” “Jewish,” “None,” “Other”). Use Bonferroni–Holm to test all 10
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mean contrasts. Then add the covariates EDUCAT and CONSERV to the

model and once again use Bonferroni–Holm to test the 10 religious-group con-

trasts on abortion attitude. Missing imputation: Follow the instructions for

Exercise 3.14.

4.17 For the 416 couples in the couples dataset, an analysis was conducted to

replicate DeMaris (1997). That article examined the impact of coital fre-

quency on women’s depressive symptomatology and how this might be mod-

erated by the male’s physical aggression against the female partner. The

analysis regressed the CESD on coital frequency (COITFREQ), dummies for

male and female violence (MALEHIT and FEMAHIT, respectively), the

interaction between COITFREQ and each violence dummy (MHITCOIT and

FHITCOIT, respectively), and a vector of control variables (CONTROLS).

The model has 15 parameters. The results for all 416 couples produced an

SSE � 81596.74241. The model was then estimated separately for the 186

couples in which the main respondent was male, and the 230 couples in which

the main respondent was female. For the male sample, SSE � 39246.83241,

MSE � 229.51364, dfE � 171; for the female sample, SSE � 39607.02799,

MSE � 184.21873, dfE � 215.

The females’ equation was

ŷ � .3344 � g� CONTROLS � .0183 COITFREQ � 28.4758 MALEHIT

�3.0606 FEMAHIT � 1.2076 MHITCOIT � .2841 FHITCOIT.

(a) Test whether the error variances in the equations for males and females

are equal.

(b) Regardless of your answer to part (a), test whether the same model

(including the intercept) holds in the population of partnered males ver-

sus partnered females.

(c) In the female equation, interpret the effect of COITFREQ as moderated

by partner violence.

4.18 Using the GSS98 dataset, estimate the regression of ABORTION on MALE,

RELOSITY, CONSERV, and EDUCAT for the 1868 respondents with 

valid ABORTION scores. Then perform the Chow test with both constrained

and unconstrained intercepts to test model invariance across categories of

RACE (“White,” “Black,” “Other”). First, use Bartlett’s test to test the homo-

geneity of error variance across the racial groups; but do the Chow test

regardless of this outcome. Missing imputation: Follow the instructions for

Exercise 3.14.

4.19 Retest the model’s equivalence across racial groups in Exercise 4.18 using 

the cross-product method. Again, use both constrained- and unconstrained-

intercepts approaches. You should demonstrate that this produces the same
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results as in Exercise 4.18. Missing imputation: Follow the instructions for

Exercise 3.14.

The following information is to be used for Exercises 4.20 and 4.21.

• For the 725 faculty members in the faculty salary dataset, the ANCOVA

model in Exercise 4.15, when estimated using the entire sample, has:

RSS � 112828737391, SSE � 28911032834, MSE � 40548433.147, and

dfE � 713.

• If a dummy for gender (FEMALE) is added, the results are RSS �

112913052400, SSE � 28826717824, MSE � 40486963.236, and dfE �

712.

• If the cross-product of FEMALE with all 11 other covariates is then added

to the model, the results are RSS � 113515775771, SSE � 28223994454,

MSE � 40262474.256, and dfE � 701.

• If the model in Exercise 4.15 is estimated for the 511 male faculty mem-

bers, the results are RSS � 72214388564, SSE � 23630713768, MSE �

47356139.816, and dfE � 499.

• If the model in Exercise 4.15 is estimated for the 214 female faculty mem-

bers, the results are RSS � 18209728848, SSE � 4593280685.4, MSE �

22739013.294, and dfE � 202.

4.20 Test the model equivalence of the model in Exercise 4.15 for males versus

females using the Chow test. Perform the test with both constrained- and

unconstrained-intercept versions. First, test homogeneity of error variance in

each group; then do the Chow test regardless of this outcome.

4.21 Redo Exercise 4.20 using the cross-product approach.

4.22 For the 214 students with valid EXAM1 scores in the students dataset, EXAM1

was regressed on COLGPA, STATMOOD, and SCORE. The results were

RSS � 26652.37864, SSE � 34995.71120, MSE � 166.64624, and dfE � 210.

• For the 69 “sociology” majors, the same model produced RSS �

12969.83816, SSE � 7162.26656, MSE � 110.18872, and dfE � 65.

• For the 43 “other social science” majors, the same model produced

RSS � 3070.59860, SSE � 5257.61617, MSE � 134.81067, and dfE � 39.

• For the 102 “other fields” majors, the same model produced RSS �

11694.08078, SSE � 21442.49456, MSE � 218.80096, and dfE � 98.

Use Barlett’s test to test for homogeneity of error variance across the three

groups of majors. Regardless of the outcome, conduct a Chow test for model

equivalence across the three groups of majors, constraining the intercept to be

the same across groups.
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4.23 Suppose that a model for Y is estimated as a function of a categorical variable,

Z, with categories A, B, C, and D (the reference category), and a continuous

variable X (range: �10 to �10). Suppose that the sample equation is

ŷ � 2 � .5A � .8B � .2C � 1.5X � .05AX � .15BX � .25CX.

Determine whether the interaction effect in X and in Z is ordinal or disordi-

nal, with, alternately, Z and then X as the focus variables.

4.24 Suppose that a model for Y is estimated as a function of a categorical variable,

Z, with categories A, B, C, and D (the reference category), and a continuous

variable X (range: �10 to �10). Suppose that the sample equation is

ŷ � 3.5 � A � 4B � 2C � .5X � .5AX � .25BX � .75CX.

Determine whether the interaction effect in X and in Z is ordinal or disordi-

nal, with, alternately, Z and then X as the focus variables.

4.25 Prove that the t test for d (the dummy coefficient) in the SLR of Y on a dummy

variable X is equivalent to the two-sample t test. Note that for two independ-

ently sampled groups, denoted group 0 and group 1, with sample sizes n0 and

n1, respectively, and means y�0 and y�1, respectively, the two-sample t test is

t(n0�n1�2) ��
σ̂�(1�/

y�
n�
1

0

�

)���
y�
(

0

1�/n�1)�
�,

where σ̂2 is the pooled estimate of the common population variance of Y, with

the formula

σ̂2 � .

(a) First, prove that σ̂2 in the two-sample t test equals MSE in the dummy-

variable SLR. [Hint: Start with MSE � �(y � ŷ)2/(n � 2); then use the fact

that ŷ� y�0 for X � 0, and ŷ� y�1 for X � 1, plus the fact that n0� n1 � n.]

(b) Then prove that the t tests are equivalent. [Hint: Start with σ̂2
y�1

�y�0
, which

equals σ̂2((1/n0)� (1/n1)). Then use the fact that (1/n0) � (1/n1) �

(n1� n0)/n0n1; n0� n(1 � π̂), n1� nπ̂; and �(x � x�)2 � nπ̂(1 � π̂).]

(n0�1)s2
0 � (n1�1)s2

1
���

n0 � n1�2
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C H A P T E R  5

Modeling Nonlinearity

CHAPTER OVERVIEW

Until now the models under discussion have been strictly linear. By this is meant that

(1) Y is held to be a linear, additive function of the explanatory variables, or, if inter-

action is present, it is of a linear nature; and (2) the model is linear in the parameters

(i.e., it is a weighted sum of regressors times parameters). (More formal definitions

of linearity in terms of the explanatory variables or the model as a whole are given

below.) In this chapter I introduce models in which Y is held to be a nonlinear func-

tion of either the explanatory variables or the model parameters. I begin by defining

these concepts and giving examples of models illustrating various nonlinear rela-

tionships between Y and the structural component of the model. I then illustrate

some of the more common nonlinear functions of explanatory variables that may be

helpful in modeling the response variable. This discussion segues into a lengthy

illustration of the use and interpretation of the quadratic model, perhaps the most

commonly employed nonlinear function in social data analysis. Here I also define

and discuss nonlinear interaction effects. Finally, I introduce the reader to nonlinear

regression, the technique employed when one’s model is nonlinear in the parameters

and cannot be converted to a convenient linear form. Readers unfamiliar with deriv-

atives from calculus are advised to peruse Section IV of Appendix A before tackling

this chapter. Because derivatives and partial derivatives are central to an understand-

ing of nonlinearity, they figure prominently in the subject matter that follows.

NONLINEARITY DEFINED

I begin by making a distinction between nonlinearity in the functional form of the

relationship between Y and X, versus nonlinearity of the model for Y. Nonlinearity



in the functional form of the relationship between Y and X is determined by the first

partial derivative of the model with respect to X. In any model in which Y is a func-

tion of X, if the first partial derivative of Y with respect to X is a function of X, the

model is nonlinear in X; otherwise, the model is linear in X. For example, suppose

that model A is

Y � α � βX � γZ � ε.

Since the first partial derivative of Y with respect to X, or ∂Y/∂X, is β, which is not a

function of X, the model is linear in X. However, in model B,

Y � α � βX � δX2 � γZ � ε,

the first partial derivative is ∂Y/∂X � β � 2δX. Since this is a function of X, the model

is nonlinear in X. In particular, this model, called a quadratic model, or curvilinear

model, in X, describes a parabolic curve (or part of a parabolic curve) relating Y to

X at any given value of Z. We can also define nonlinearity in the functional form

relating Y to X using the second partial derivative. If the second partial derivative of

Y with respect to X is not zero, the model for Y is nonlinear in X; if it is zero, the

model is linear in X. In model A, ∂2Y/∂X2� ∂(β)/∂X � 0 showing again that the

model is linear in X. On the other hand, in model B, ∂2Y/∂X2� 2δ, which is nonzero

provided that δ is not zero. This once again reveals that model B is nonlinear in X.

Intuitively, the first derivative measures the change in Y with change in X at the point

x. As long as this is not a function of X, that change is constant over levels of X. This

condition means that the relationship between Y and X can be represented by a

straight line, which is characterized by a constant slope (see Section I.P of Appendix

A). If, on the other hand, the first derivative is a function of X, this means that the

rate at which Y changes with change in X is itself changing with levels of X, describ-

ing some type of curve instead of a straight line. Moreover, if the first partial deriv-

ative of Y with respect to X is not a function of X, the second partial derivative of Y

with respect to X is necessarily zero. Note that conventional interaction models such

as model C,

Y � α � βX � δZ � γXZ � ε,

are not nonlinear in X, since ∂Y/∂X � β � γZ is not a function of X.

The linearity or nonlinearity of the model as a whole is determined by the first

partial derivative of Y with respect to the model’s parameters. Denote each of the P

parameters of any model by θp, for p � 1, 2, . . . , P (e.g., in linear regression we typ-

ically have P � K � 1 parameters). If the first partial derivative of Y with respect to

at least one of the θp is a function of any of the model parameters, the model for Y is

nonlinear (Ratkowsky, 1990). Model B, which is nonlinear in X, is nevertheless not

a nonlinear model, since the first partial derivatives of Y with respect to, alternately,

α, β, δ, and γ are 1, X, X2, and Z. Notice that none of these terms involves any of the

model parameters. On the other hand, consider model D: Y � α � Xβ� ε. Now,
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finding the first partial derivative of Y with respect to β involves finding the first

derivative of Xβ with respect to β. To do this we write Xβ as exp(log Xβ). Then

�
d

d

β
�[exp(log Xβ)] � �

d

d

β
�[exp (β log X )] � exp(β log X )log X � Xβ log X.

Since this expression involves β, model D is nonlinear for Y. Notice that it is also

nonlinear in X, since ∂Y/∂X � βXβ�1 is also a function of X. (Most models that are

nonlinear for Y are also nonlinear in X.) Some other examples of nonlinear models

are the exponential model with additive error term (Neter et al., 1985),

Y � γ0e
γ

1
X

� ε,

the exponential model with multiplicative error term (Fox, 1997),

Y � γ0e
γ

1
X eε,

the logistic population-growth model (Fox, 1997),

Y ��
1�exp(

β

β
1

2�β3X)
�� ε,

and the gravity model of migration (Fox, 1997),

Yij � α �
P

D
i
βP

ij
δ
j
γ

� εij,

where Yij is the number of migrants moving from city i to city j, Dij is the distance

between cities i and j, and Pi and Pj are the respective population sizes of cities i and j.

Employing the terminology of Fox (1997) and Neter et al. (1985), I make a fur-

ther distinction among three types of models. Linear models are those that are linear

in the parameters, such as models A through C above. Intrinsically linear models

(Neter et al., 1985) are those that are linear in the parameters after applying some

kind of transformation to the response and/or explanatory variables. An example is

the exponential model with multiplicative errors. If we transform Y by taking its nat-

ural logarithm, the model becomes log Y � log γ0 � γ1X � ε. Defining α as log γ0, the

model is log Y � α � γ1X � ε, which is now linear in the parameters, and therefore a

linear model. Similarly, logging Yij in the gravity model of migration produces

log Yij � α� � β log Pi � γ log Pj � δ (�log Dij) � log εij,

where α� � log α. This model is, again, linear in the parameters. Provided that the

errors in each model (ε and log εij, respectively) are independent and normally dis-

tributed with zero mean and constant variance, these models can be estimated using

ordinary least squares. Essentially nonlinear models (Fox, 1997) are nonlinear mod-

els that cannot be made linear by any transformations of the response or explanatory
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variables. The logistic population-growth model, the exponential model with addi-

tive errors, and model D are all essentially nonlinear models. Estimating these mod-

els requires the use of nonlinear least squares, which also depends on the assumption

that model errors are independent and normal, with zero mean and constant variance

(Fox, 1997; Greene, 2003; Neter et al., 1985) This technique is discussed in the final

section of this chapter.

COMMON NONLINEAR FUNCTIONS OF X

Figures 5.1 to 5.4 present several functions of X that are useful in modeling a non-

linear relationship with Y. These are all curves with one “bend” for X in the range

[0,�), and represent the most frequently encountered patterns of nonlinearity. I iden-

tify the curves by linking them to the shapes of the corresponding segments of a cir-

cle that has been quartered. Figure 5.5 illustrates this idea. That is, if we divide a

circle in half by running a line through its middle from left to right, and then divide

it in quarters by running a line through its middle from top to bottom, the circle is

separated into four segments. Segment I is the upper right-hand quarter of the circle,

segment II is the lower right-hand quarter, segment III is the lower left-hand quarter,
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Figure 5.1 Nonlinear relationships exemplified by the functions y � x2, y � x3, and y � ex.



Figure 5.2 Nonlinear relationships exemplified by the functions y � �x2, y � �x3, and y � �ex.

Figure 5.3 Nonlinear relationships exemplified by the functions y � x1/2, y � x1/3, and y � log x.



Figure 5.4 Nonlinear relationships exemplified by the functions y � �x1/2, y � �x1/3, and y � �log x.

Figure 5.5 Segment I, II, III, and IV curves.



and segment IV is the upper left-hand quarter. The curves in Figures 5.1 to 5.4

resemble these circle segments.

Figure 5.1 presents three functions of X representing segment II curves. These are

all curves with positive slopes, or first derivatives, that become more positive with

increasing X. The curve with the most rapidly increasing slope is y � ex, whose

derivative is ex. A slightly less dramatic increase in slope is seen in the curve y � x3.

Its derivative is 3x2. Finally, a curve with a relatively gentle increase in slope with

increasing X is y � x2, whose derivative is 2x. Figure 5.2 shows some segment I

curves. These can be obtained by simply “reflecting,” or changing the sign of, the

functions in the second segment. Notice that all of these curves have negative slopes

that become more negative with increasing X. Figure 5.3 illustrates three segment IV

curves. All of these have the characteristic of having positive slopes that become less

positive with increasing X. This is also easily seen by examining the slopes them-

selves. The most dramatic change, at least in the range of X shown here (.1 to 5) is

exhibited by y � log x. Its slope is 1/x, which ranges from 1/.1 � 10 to 1/5 � .2 in the

figure. The curve represented by y � x1/3 appears to “flatten out” most quickly. Its

derivative is 1/3x2/3. Its slope ranges from 1.55 when X is .1 to .11 when X is 5. The

curve y � x1/2 shows a similar pattern but with a more gentle reduction of the slope

with increasing X. Finally, Figure 5.4 presents segment III curves. These curves all

have negative slopes that become less negative with increasing X. Once again, they

can be produced by reflecting the three segment IV curves.

Quadratic Functions of X

Although Figures 5.1 to 5.4 present a variety of functions of X that can be used to fit

curvilinear relationships with Y, an especially useful function is the quadratic func-

tion, y � x2. Actually, the correct functional form of a quadratic model for Y is

Y � β0� β1X � β2X
2 � ε. (5.1)

This model includes the linear component of X, β1X, along with the curvilinear

component, β2X
2. As Aiken and West (1991) explain, models with higher-order

functions of X should always contain all lower-order components of the higher-

order terms. As these components are often highly correlated with the higher-order

terms, omitting them introduces a type of bias into the equation. That is, the regres-

sion of Y on X2 alone might produce a significant coefficient for X2 due to the cor-

relation between X and X2 along with a significant effect of X. In this case, the

supposed quadratic effect would be “driven” by a significant linear trend that is cor-

related with X2. A true test of whether there is a curvilinear component to the X–Y

relationship is achieved only when we control for X simultaneously. In Aiken and

West’s words: “. . . higher order terms actually represent the effects they are intended

to represent if and only if all lower order terms are partialled from them . . . ” (1991,

p. 110; emphasis in original).

For equation (5.1), d(Y)/dx � β1 � 2β2X. In this expression, β1 encapsulates the

linear component of the curve while β2 captures the departure from linearity. In fact,
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if β2 � 0, there is no departure from linearity, and we are left, once again, with a lin-

ear relationship between Y and X. The signs of β1 and β2 typically reveal the nature

of the curvilinear relationship between Y and X. For example, let’s assume that X is

always �0. If the X–Y relationship is characterized by the shape of a segment II

curve, both β1 and β2 should be positive. This indicates that the slope starts out pos-

itive (when X � 0) and becomes increasingly positive with increasing X. A segment

I curve would be indicated by both β1 and β2 being negative. That is, the slope starts

out negative and becomes increasingly so with increase in X. For a segment IV

curve, we would expect β1 to be positive and β2 to be negative. That is, the slope is

initially positive but becomes less so as X increases. Hence the 2β2X component

of the slope adds an increasingly negative number to β1 to bring the overall size of

the slope down ever further with increasing X. Finally, the segment III curve would

be indicated by the opposite pattern: β1 should be negative and β2 should be posi-

tive. The slope starts out negative, but we add an increasingly positive number

(2β2X) to β1, which has the effect of making the slope less and less negative with

increasing X.

Figures 5.1 to 5.4 do not represent the only possible curvilinear patterns that the

X–Y relationship might exhibit. In particular, they represent relationships between

Y and X that are monotonic in nature. That is, Y is always either increasing (in

segments II and IV) or decreasing (in segments I and III) with X in each case.

Fitting a model that is linear in X in these situations does not lead one too far astray,

since each of these curves could be—at least roughly—approximated by a straight

line. The correlation between Y and X in all cases should be significantly nonzero.

Not so with the curves in Figure 5.6. These are U-shaped (bottom curve) and

inverted U-shaped (top curve) curvilinear relationships that are not monotonic. In

each case, Y is increasing with X over part of X’s range, and decreasing with X over

the rest of X’s range. Fitting a model that is linear in X in these cases is likely to be

very misleading, producing a correlation close to zero. However, a quadratic model

nicely captures this type of curve. As shown in the figure, each curve was, in fact

generated by a quadratic model. The U-shaped curve has a negative β1 and a positive

β2, while the inverted U-shaped curve shows the opposite pattern. The only way the

analyst can tell whether the data evince the pattern in Figure 5.6, as opposed to

the patterns in Figures 5.3 and 5.4 (segment IV and III curves), is either to graph the

fitted values from the model against X or to plug some sample values of X into the

expression β1 � 2β2X.

A quadratic model is just a special case of a polynomial model in X. The Jth-order

polynomial model in X is

E(Y ) � β0 � β1X � β2X
2 � β3X

3
� � � � � βJXJ.

A Jth-order polynomial will fit any curve with J � 1 bends. As we have seen, the sec-

ond-order polynomial, the quadratic equation, will fit any curve with one bend. For

a curve with two bends, we could try the third-order polynomial, or cubic equation:

E(Y ) � β0 � β1X � β2X
2� β3X

3. (5.2)
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Polynomials higher than second order are rarely used, however. Adding increasingly

higher powers of X tends to produce severe collinearity problems, making estimation

quite unreliable (more about multicollinearity in Chapter 6). Moreover, higher-order

models become increasingly cumbersome to interpret. For example, for equation

(5.2), d(Y)/dx � β1 � 2β2X � 3β3X
2. This suggests that the slope of the X–Y rela-

tionship is itself a quadratic function of X. Not only is this somewhat difficult to

grasp, but it is hard to imagine many theories precise enough to allow the forecast-

ing of such a trend in advance. Most of the time, the quadratic function of X will be

sufficient to capture the types of nonlinear relationships found in the social sciences.

(An exception is discussed below, however.)

Applications of the Quadratic Model

To illustrate the fitting and interpretation of models that are nonlinear in X, I consider

the quadratic model in some detail. The GSS98 dataset contains information about

a respondent’s sexual frequency in the last year (coded 0 � “not at all” to 6 � “more

than 3 times a week”), his or her age (in years), and his or her health (coded 1 � “poor”

to 4 � “excellent”). [Note that although age is approximately continuous, sexual
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frequency and health are not. Nevertheless, they will be treated as such, since Bentler

and Chou (1988) suggest that as long as a quantitative variable has at least four cate-

gories, it is safe in analyses to treat it as continuous.] In earlier work with a different

sample (DeMaris, 2002b) I have found that there is a nonlinear relationship between

age and sexual frequency which can be captured by a quadratic model. Intuitively, one

would expect that sexual activity would decline with advancing age but that this

decline would not be linear. Age should have a relatively modest negative impact on

sexual activity until after age 50 or so, at which time a decline in testosterone levels,

particularly in men, should accelerate the decline in sexual activity with advancing age.

That is, I expect the relationship between age and sexual frequency to exhibit a seg-

ment I curvilinear pattern such as those in Figure 5.2.

One means of examining relationships for nonlinearity is via the scatterplot. (In

a multivariate context, one might prefer to examine partial plots, in which other vari-

ables have been controlled.) Let’s begin by examining a scatterplot of sexual fre-

quency with respondent’s age, which is depicted in Figure 5.7. A problem that arises,

particularly with discrete response variables having relatively few categories, is that

the scatterplot is not very informative. As is evident, it is difficult to discern any pat-

tern in the relationship between the two variables. An alternative strategy is to parti-

tion a continuous X into intervals and then to plot the mean of Y for cases in each

interval against the interval number. In the current case, I partitioned age according

to deciles of its distribution, with each decile containing approximately 10% of the

2320 respondents. Within each decile, I computed the mean of respondents’ sexual
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1998 GSS.



frequencies. A plot of mean sexual frequency with decile of respondent’s age is

shown in Figure 5.8. As expected, the plot resembles the types of curves found in

Figure 5.2: There is a nonlinear decline in mean sexual frequency with advancing

age, with the decline getting ever steeper as age increases. The decline is particularly

swift after the sixth decile, which represents ages 42–47. The curvilinear pattern also

poses some irregularities compared to the curves in Figure 5.2. For one thing, there

appears to actually be an increase in sexual frequency with age at the lowest ages,

followed by a decrease from the third decile (ages 30–34) on. However, this pattern

is easily handled with a quadratic model. Additionally, the fourth decile (ages 34–38)

appears to represent a departure from the general trend of increase followed by

accelerating decline. Whether this is worth taking into account in the model depends

on whether there is strong enough theoretical underpinning to support it. In the cur-

rent case, I treat it as a sample anomaly and assume that a quadratic function is most

appropriate.

Testing Departures from Linearity

As a first step in modeling sexual frequency as a function of age, I employ a model

that will fit any pattern in the relationship between these two variables. I refer to it

as the unconstrained model, since it does not constrain mean sexual frequency to fol-

low any particular pattern with respect to age. The variable age decile, representing

deciles of respondent age, is coded 1 for the first decile to 10 for the tenth decile. If

we dummy up this variable, omitting the first decile (i.e., the youngest age group,
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aged 18–25), the unconstrained model simply regresses sexual frequency on the nine

resulting dummies. The model is

E(Y) � δ1� δ2D2� δ3D3 � . . . � δ10D10, (5.3)

where D2, D3, . . . , D10 denote the nine dummies that represent the second through

the tenth deciles of age. The results are shown as model 1 in Table 5.1. The pattern

of the dummy coefficients confirms the trend shown in Figure 5.7. There is an initial

increase in sexual frequency from the first to the second age decile, since those in

the second decile have mean sexual frequency that is .416 higher than those in the

first decile. After this, there is a steady decline in sexual frequency, which becomes

more and more pronounced at later ages. Again it is clear that the fourth decile is not

quite in sync with this general trend.

At any rate, is the departure from linearity in the age–sexual frequency relationship,

as revealed in model 1, significant? That is, might a linear model nevertheless fit the

trend in the data adequately? We can test this with the test for linearity, a nested F test

based on comparison of model 1 with a model utilizing a linear effect for age decile.

This test takes advantage of the fact that a linear version of model (5.3) of the form

E(Y) � α � β age decile (5.4)

is nested inside model (5.3). Why? Recall from the definition of nesting in Chapter 3

that model (5.4) is nested inside model (5.3) if its parameters can be generated by
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Table 5.1 Dummy Variable, Linear, and Quadratic Models for the Regression 

of Frequency of Sex on Age for 2320 Respondents in the 1998 GSS

Regressor Model 1 Model 2 Model 3

Intercept 3.238*** 2.808*** 3.335***

Age decile �.277*** �.260***

(Age decile)2 �.065***

Second age decile .416**

Third age decile .378*

Fourth age decile �.002

Fifth age decile .182

Sixth age decile �.148

Seventh age decile �.413**

Eighth age decile �.888***

Ninth age decile �1.817***

Tenth age decile �2.676***

RSS 2002.350 1448.369 1954.210

MSE 2.988 3.216 2.999

R2 .225 .163 .220

Note: Age decile is centered, and the quadratic term for age is based on its centered version.

*p 	 .05. ** p 	 .01. *** p 	 .001.
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placing constraints on the parameters in model (5.3). In fact, model (5.4) is produced

from model (5.3) by placing the following constraints on the deltas in model (5.3):

δ1 � α � β; δj � ( j � 1)β for j � 2, . . . ,10. To see that this works, let’s take a couple

of examples. The intercept, δ1, in model (5.3) is the mean sexual frequency for those

in the first age decile. According to model (5.4), that mean is E(Y ) � α � β(1) �

α � β. The parameter δ8 in model (5.3) is the difference in mean sexual frequency

between those in the eighth age decile and those in the first. According to model (5.4),

that difference is α � β(8) � [α � β(1)] � α � 8β � α � β � 7β, or ( j � 1)β for

j � 8. The linear model in equation (5.4) is much more parsimonious than equation

(5.3) since it uses only two parameters instead of 10 to model the data. The difference

in the model degrees of freedom for these two models is, therefore, 8. The results of

estimating equation (5.4) are shown as model 2 in Table 5.1. The test statistic for

whether the linear model is adequate is

F(8,2310) � � 23.175,

which is quite significant ( p 	 .00001). Apparently, a linear model is not adequate to

fit the data here.

Next, I try the quadratic model:

E(Y ) � α � β age decile � γ (age decile)2. (5.5)

We can test whether the pattern of nonlinearity in the data is adequately captured by

the quadratic model with a nested test for model (5.5) versus model (5.3), since model

(5.5) is also nested inside model (5.3). The constraints placed on model (5.3) to pro-

duce the model in (5.5) are δ1 � α � β � γ ; δ j � ( j � 1)β � ( j 2 � 1)γ for j � 2, . . .
,10. Again a couple of examples reveal why this works. The mean sexual frequency

for those in the first decile, according to equation (5.3), is δ1. According to equation

(5.5), it is α � β(1) � γ (12) � α � β � γ; and δ5 in model (5.3) is the difference in

mean sexual frequency between the fifth and first deciles. According to model (5.5),

that difference is α � β( 5 ) � γ(52) � (α � β � γ) � 4β � 24γ, or ( j � 1)β � ( j 2 � 1)γ,

where j � 5. As the quadratic model replaces the 10 parameters in equation (5.3) with

only three parameters, the difference in model degrees of freedom between these two

models is 7. The test statistic for adequacy of the quadratic model is

F(7,2310) � � 2.302.

This is just significant at p 	 .03, which suggests that the quadratic model is not quite

adequate to capture all of the nonlinearity in the age–sexual frequency relationship.

However, in terms of discriminatory power, the quadratic model is a substantial

improvement over the linear model (the change in R2 is .057) and only slightly less

efficacious than the unconstrained model (the change in R2 is .0054). Adding perhaps

a cubic term might produce a nonsignificant nested F test, but I do not believe the

(2002.350 � 1954.210)/7
���

2.988

(2002.350 � 1448.369)/8
���

2.988



increase in complexity would be worthwhile. Hence, I choose the quadratic model as

exhibiting maximum parsimony while capturing most of the nonlinearity in the data.

Additionally, the quadratic model is most consistent with theoretical expectation.

Centering. For models 2 and 3 in Table 5.1, I employ the centered version of age

decile and then form the quadratic term by squaring this centered variable. This has

two advantages. First, it renders the main effect of age decile interpretable in the

quadratic model. The partial slope for age decile in model (5.5), which captures the

“effect” of age decile on sexual frequency, is β � 2γ age decile. The main effect of

age decile, or β, is the effect when age decile is zero, since in this case the “2γ age

decile” term disappears. If age decile is uncentered, this effect has no meaning, since

age decile, which begins at the value 1, cannot possibly take on the value zero.

However, if age decile is centered, it is zero whenever age decile is at its mean. Thus,

β is the effect of age decile at its mean. Moreover, the test of significance of b, the

sample estimate of β, is a test for whether the impact of increasing age (in deciles)

is significant at its mean value.

The second advantage of centering has to do with collinearity. Recall from

Chapter 3 that it was important to center the continuous variables involved in cross-

product terms in order to reduce potential collinearity problems. For the same rea-

son, we want to center X before creating higher-order powers of X (e.g., X2, X3) to

include in the model. As an example, without centering, age and age-squared are

correlated .9737, producing VIF’s (not shown) of 19.26 for each coefficient in the

quadratic model. After centering, the correlation is reduced to .1, and the VIF’s for

each coefficient are only 1.01. At the least, collinearity inflates the sampling variance

of one’s estimators, which tends to reduce the power of tests for the coefficients. In

this case, it has relatively little effect on the estimates, however, and both are quite

significant in the uncentered version of the model as well. In this model (not shown),

the coefficient for age decile, or b, is .422, while the coefficient for (age decile)2, or

g, is �.065. Although σ̂g is no different than for the model using the centered vari-

ables, σ̂b is about four times larger in the uncentered, versus the centered, model.

The quadratic effect, �.065, is the same in both models. The main effects in the cen-

tered and uncentered models are not directly comparable, since the value of .422 in

the uncentered model is the effect when age decile is zero. To make them compara-

ble, consider the effect of age decile at its mean for the uncentered model. As the

mean of age decile is 5.279, the effect is . 422 � 2(�.065) (5.279) � �.264, com-

pared to �.26 in the centered model. Both models apparently give rise to compara-

ble estimates of age decile’s effect on sexual frequency.

Interpreting Quadratic Models

The use of age decile in place of the continuous variable, age, was necessary for test-

ing various alternatives to the unconstrained model, since it allowed for the creation

of nested models. However, once the quadratic model was chosen, it was reestimated

using continuous age in place of age decile. Again, age was centered prior to taking

its square. The results are shown as model 1 in Table 5.2. The effects of both age and
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age2 are significant, and both are negative, again suggesting a segment I curve, the

pattern exhibited in Figure 5.8. The partial slope for age is �.04 � 2(.001) age. (The

effects are smaller than for the age decile model, since the units of age are now sin-

gle years instead of deciles.) Thus, at mean age (age � 44.455) the partial slope

is �.04; at 1 standard deviation above mean age (age � 61.229) it is �.04 � 2(.001)

(16.774) � �.074; and at 2 standard deviations above mean age (age � 78.003)

it is �.04 � 2(.001)(33.548) � �.107. These calculations suggest an accelerating

decline in sexual frequency with advancing age, as was expected.

Unit Impact versus Partial Derivative. Recall from Chapter 2 the distinction

between the unit impact of X [the change in E(Y ) for a unit increase in X, at x] and

the partial derivative with respect to X [the instantaneous change in E(Y ) with

change in X, at x]. As mentioned in Chapter 2, these are identical in linear models.

However, in nonlinear models they are different quantities. The partial derivative for

the quadratic model [e.g., model (5.1)] at a particular x is, as noted, β1 � 2β2x. The

unit impact, however, is

E(Y � x � 1) � E(Y � x) � β0 � β1(x � 1) � β2(x � 1)2 � (β0 � β1 x� β2x
2)

� β 0 � β1x � β1 � β2x
2 � 2β2x � β2 � β 0 � β 1 x � β 2 x 2

� β 1 � β 2 � 2β2x.

How much difference does this really make? Actually, it doesn’t make much difference

as long as a unit change in X is a relatively small change. In model 1 in Table 5.2, for

example, the difference is �.04 � 2(.001)x � �.04 � .002x for the partial derivative,

versus �.04 � .001 � 2(.001)x � �.041 � .002x for the unit impact. So, for example,

at 1 standard deviation above mean age the partial derivative with respect to age

is �.074 and the unit impact is �.075. In this case to interpret the partial derivative as

Table 5.2 Curvilinear and Interaction Models for the Regression of Frequency 

of Sex on Age and Health for 2320 Respondents in the 1998 GSS

Regressor Model 1 Model 2 Model 3 Model 4

Intercept 3.113*** 3.109*** 2.834*** 3.128***

Age �.040*** �.037*** �.048*** �.039***

Age2 �.001*** �.001*** �.0011***

Health .241*** .225*** .410***

Age 
 health .008** .012***

Age2

 health �.0007***

RSS 1981.836 2066.429 1841.966 2142.310

MSE 2.987 2.952 3.049 2.922

R2 .223 .232 .207 .241

Note: Age and health are centered, and all higher-order terms involving these variables use their

centered versions.

*p 	 .05. ** p 	 .01. *** p 	 .001.



the approximate change in average sexual frequency for a year’s (i.e., a unit of age)

increase in age is pretty accurate.

But if a unit increase represents a relatively large change in X, approximating the

unit impact with the partial derivative can be misleading. As an example, Lennon and

Rosenfield (1994) investigated the impact of perceived fairness in the household divi-

sion of labor on depressive symptomatology among employed wives, using a quad-

ratic effect of fairness. Perceived fairness was coded �1 for “very unfair to me” (i.e.,

the wife),�.5 for “unfair to me,” 0 for “fair to both of us,” .5 for “unfair to my

spouse,” and 1 for “very unfair to my spouse.” Actually, I prefer to refer to this as a

scale of overbenefit, since the highest score represents maximum overbenefit,

whereas maximum fairness occurs in the middle of the scale (see also Longmore and

DeMaris, 1997). According to equity theory (Walster et al., 1978) people experience

distress when they are either underbenefited or overbenefited. With this in mind, the

authors expected that depressive symptomatology would exhibit a U-shaped relation-

ship with overbenefit. Increases in the scale away from underbenefit and in the direc-

tion of fairness should reduce depressive symptoms, whereas increases away from

fairness and in the direction of overbenefit should again increase depressive symp-

toms. The coefficients for overbenefit and its square were, respectively, .086 and .188.

Therefore, the partial derivative is .086 � 2(.188) overbenefit, while the unit impact is

.086 � .188 � 2(.188) overbenefit. Using the partial derivative to approximate a

change in average depressive symptomatology for a unit increase in overbenefit at the

value of “very unfair to me” on the scale, we get a value of .086 � 2(.188)(�1)� �.29.

In actuality, a unit increase in the scale is associated with a change of .086 � .188 �

2(.188)(�1) � �.102. At the value of “fair to both,” the partial derivative estimates

the change as .086, whereas the unit impact is actually .086 � .188 � .274. In this

case, the partial derivative is not a particularly good approximation to the unit impact.

Whether this is a problem depends on how important it is to be accurate about the esti-

mated effect of a “unit increase” in the explanatory variable.

NONLINEAR INTERACTION

In Chapters 3 and 4 I discussed various interaction models. However, all of these

involved linear interactions, in which the impact of X might change over levels of Z,

but the relationship between Y and X at each z was always linear. In this section I

consider nonlinear interaction models, in which the nonlinear relationship between

Y and X varies as a function of Z. To motivate interest in the topic, let’s reexamine

the relationship between age and sexual frequency. Prior research on sexual fre-

quency (e.g., Rao and DeMaris, 1995) suggests that those in better health have sex

more often. I would go one step beyond this and suggest that health and age should

interact in their effects on sexual frequency. I have already shown that there is a non-

linear decline in sexual frequency with age. I further hypothesize that the nonlinear

decline in sexual frequency with advancing age will be less pronounced for those in

better, as opposed to poorer, health. This is a nonlinear interaction effect, and we

must first consider how to model it.
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Once again, I rely on the first partial derivative to define nonlinear interaction in

X. In a model for Y containing the variables X and Z, if the first partial derivative of

Y with respect to X is a function of both X and Z, the model is said to be character-

ized by a nonlinear interaction in X. If the first partial derivative of Y with respect to

X is only a function of Z but not X, the interaction is linear in X. Let’s examine a

series of quadratic models containing X and Z to see how this definition applies. In

model (5.6), Z is added purely as another covariate:

E(Y ) � β0 � β1X � β2X
2 � β3Z. (5.6)

The effect of X (i.e., ∂[E(Y)]/∂X) is β1 � 2β2X. As this is not a function of Z, there is

no interaction effect here. Thus the curves relating Y to X at each level of Z are par-

allel. Moreover, the curves are identical in shape since, in particular, the departure

from linearity, β2, is not a function of Z.

Model (5.7) adds the cross-product of X with Z:

E(Y ) � β0 � β1X � β2X
2 � β3Z � β4XZ. (5.7)

The effect of X is β1 � 2β2X � β4Z. This is a nonlinear interaction effect, since the

term is a function of both X and Z. This means that the curves relating Y to X over

levels of Z will not be parallel. However, they will be similar in shape since the

departure from linearity is still β2, which is not a function of Z. Notice that with

respect to Z, the interaction is linear because ∂[E(Y)]/∂Z is β3 � β4X. This is just a

conventional linear interaction, as this effect is not also a function of Z.

Model (5.8) adds the cross-product of X2 with Z:

E(Y ) � β0 � β1X� β2X
2 � β3Z� β4XZ� β5X

2Z. (5.8)

First, you should notice the hierarchical nature of these successive equations. For

every higher-order term in a given equation, all the lower-order components are also

in the equation. This is especially important to remember in equation (5.8), as it is

not immediately obvious that the XZ term must be in the equation. But if X2Z is in

the equation, we must also have all of its component regressors: X, X2, Z, and XZ. To

continue, the effect of X is β1 � 2β2X � β4Z � 2β5XZ. This can be further expressed

as (β1 � β4Z) � 2(β2 � β5Z )X. This makes clear that the effect is of the form

β � 2γX, typical of the quadratic model, except that now β, the linear component of

the curve, is (β1 � β4Z), and γ, the departure from linearity, is (β2 � β5Z). Obviously

this is a nonlinear interaction effect, since this expression is a function of both X and

Z. But in this case, not only are the X–Y curves not parallel, they are also not of the

same shape, since the departure from linearity is now also a function of Z. The effect

of Z, on the other hand, is β3 � β4X � β5X
2. This, again, is a conventional linear

interaction in Z, since the expression is not a function of Z. In other words, the Z–Y

relationship at each level of X is still linear.

178 MODELING NONLINEARITY



NONLINEAR INTERACTION 179

Finally, model (5.9) adds the cross-product of X2 with Z2, plus the additional

lower-order components necessitated by this term—Z2 and XZ2:

E(Y) � β0 � β1X � β2Z � β3X
2 � β4Z

2 � β5XZ � β6XZ2 � β7X
2Z � β8X

2Z2. (5.9)

In this equation, the effect of X can be written (β1 � β5Z � 2β6Z
2 ) � 2(β3 � β7Z �

β8Z
2)X, while the effect of Z can be written (β2 � β5X � β7X

2) � 2(β4 � β6 � β8X
2)Z.

In this case, then, we have a nonlinear interaction effect in both X and Z. For either

interaction, the curves relating Y to X (Z) are neither parallel nor of the same shape

across levels of Z (X).

Because model (5.8) is central to testing the hypothesis regarding the age–health

interaction posed above, let’s consider some additional issues concerning this model.

In particular, we can perform global tests of both curvilinearity and interaction by

comparing this model with other selected models (Aiken and West, 1991). If we fac-

tor equation (5.8) as

E(Y ) � (β0 � β3Z) � (β1 � β4Z)X � (β2 � β5Z)X2.

Then a test of curvilinearity tests the null hypothesis that the quadratic effect, which

in this case is β2 � β5Z, is zero. Assuming that Z is not uniformly zero, this will be

true if β2 and β5 are both zero. Hence a global test of curvilinearity is a nested F test

comparing model (5.8) with the usual linear interaction model,

E(Y ) � β0 � β1X � β2Z � β3XZ. (5.10)

To understand the global test of interaction, we factor (5.8) as

E(Y ) � β0 � β1X � β2X
2 � β3Z � (β4 � β5X)XZ.

The test for interaction involves the null hypothesis that β4 � β5X equals zero (i.e.,

that β4 � β5 � 0). The appropriate test is the nested test comparing model (5.8) with

model (5.6).

Returning to the GSS98 dataset, where Y � sexual frequency, if we let X � age

and Z � health, model 2 in Table 5.2 estimates equation (5.6), model 3 estimates

equation (5.10), and model 4 estimates equation (5.8). As the table note indicates,

age, health, and all of their higher-order relatives are based on the centered versions

of these variables. It is clear that health has a significantly positive linear effect on

sexual frequency in each model, as one would expect. It also looks like all interac-

tions involving age and health as well as all quadratic terms in age are significant.

Nevertheless, I begin by performing the global tests just outlined. The global test of

curvilinearity compares model 4 with model 3:

F(2,2314) � � 51.394.
(2142.310 � 1841.966)/2
���

2.922
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The global test of interaction compares model 4 with model 2:

F(2,2314) � � 12.984.

Both test statistics are highly significant, with p 	 .00001. Hence, the model for sex-

ual frequency appears to be characterized by both curvilinearity in the relationship

with age and an interaction between age and health in their effects on the response.

To evaluate my hypothesis completely, it is necessary to examine the age–health

interaction effect more closely. From the discussion above, the effect of age is of the

form (β1 � β4Z) � 2(β2 � β5Z)X, which as pointed out earlier, is a nonlinear interac-

tion. Here β1 is the coefficient of age, β4 is the coefficient of the age * health cross-

product term, β2 is the coefficient of age2, and β5 is the coefficient of the age2 *

health cross-product term. In terms of the coefficient estimates, the effect of age is

(�.039 � .012 health) � 2(�.0011 � .0007 health) age.

It is instructive to examine the impact of age at particular values of health. At 1 stan-

dard deviation (.815) below mean health, the effect of age is

[�.039 � .012(�.815)] � 2[�.0011 � .0007(�.815)] age � �.049 � .0011 age.

At mean health, the effect of age is

[�.039 � .012(0)] � 2[�.0011 � .0007(0)] age � �.039 �.0022 age.

At 1 standard deviation above mean health, the effect of age is

[�.039 � .012 (.815)] � 2[�.0011 � .0007(.815)] age � �.029 � .0033 age.

A more complete picture of the impact of age is obtained by evaluating each of

these three partial slopes at selected values of age. In this case I evaluated them at 1

standard deviation below mean age, at mean age, and at 1 standard deviation above

mean age. The results are shown in Table 5.3. Each number in the table is the impact

of age on sexual frequency at selected settings of age and health. The pattern that

emerges is somewhat unusual. Among younger respondents, age apparently has an

adverse effect on sexual activity that is more pronounced for those in poorer health

(reading down the first two columns). However, among the oldest respondents (1

standard deviation above mean age), this effect is reversed, and age has the most

adverse effect among the healthiest respondents (reading down the third column). In

other words, the decline in sexual activity with age is least dramatic for those in bet-

ter health, but only up to a certain age; after that, the decline is more rapid for those

in better health. This is much more easily discerned in Figure 5.9, which graphs the

age–sexual frequency relationship at the three levels of health. As is evident in the

figure, those in poorest health experience a nearly linear decline in sexual frequency

(2142.310 � 2066.429)/2
���

2.922
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Table 5.3 Partial Derivatives with Respect to Age for the Regression of Sexual

Frequency on Age and Health at Selected Values of Age and Health

Value of Age

One Standard One Standard

Deviation Deviation

Value of Health Below Mean Mean Above Mean

One standard deviation below mean �.031 �.049 �.067

Mean �.002 �.039 �.076

One standard deviation above mean .026 �.029 �.084

Note: Calculations are based on model 4 in Table 5.2.

Figure 5.9 Graph of nonlinear (in age) interaction between age and health in their effects on frequency

of sex.

with age; for those in average health, the decline is much more gradual; and for those

in good health, there is an initial increase in sexual activity with age, followed by a

gradual decline that becomes ever steeper after about age 55 (i.e., 10 years beyond

the mean of 44.455). As the decline in sexual activity with age tends to be most pro-

nounced for the unhealthiest respondents, I consider my hypothesis to be largely

supported.
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Using the same approach, we can recover the partial slopes for the impact of

health at the three settings of age employed above. (This is left as an exercise for the

reader.) Recall that in this type of model, the interaction is linear in health. This is

easily revealed by Figure 5.10, in which the relationship between sexual frequency

and health is plotted separately for those who are 1 standard deviation below mean

age, at mean age, and 1 standard deviation above mean age. It appears that health

has little impact on sexual frequency for the youngest respondents; their sexual activ-

ity is uniformly high regardless of health status. However, for those of average age

or older, health appears to have a substantial positive impact, with more sexual activ-

ity being reported by those in better health.

Nonlinear Interaction: Another Example. Another example of a nonlinear interac-

tion, one that does not involve the quadratic model, can be found in Mirowsky and

Hu (1996). They investigated the relationship between income and physical impair-

ment in two national probability samples. Based on an initial investigation of the

bivariate relationship between income and physical impairment, they decided that a

cube-root transformation of income in thousands would best represent the

Figure 5.10 Graph of linear (in health) interaction between age and health in their effects on frequency

of sex.



relationship. They also allowed this function of income to interact with education.

Their estimated equation takes the form

ŷ � a � g� controls � bX
1/3

� cZ � dZX
1/3, (5.11)

where g�controls is a weighted sum of coefficients times control variables, X is

income in thousands of dollars, and Z is education in years of completed schooling.

The first partial derivative of this equation with respect to X is

�
∂

∂

X

ŷ
� � �

1

3
� bX�2/3

� �
1

3
� dZX�2/3

��
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3

�

X2

d
/3

Z
�.

As this expression is a function of both X and Z, it is clearly a nonlinear interaction

(also made very clear by their graphs of the income–physical impairment relation-

ship at different levels of education; see Mirowsky and Hu, 1996, Fig. 4).

A sense of the nature of the interaction can be obtained by evaluating the impact

of income at, say, income � $10,000, at three levels of education. The coefficients

are b � �.038 and d � .021. In this analysis, Z (i.e., education) is centered, and

although its standard deviation is not given, I estimate it as 3, based on the range of

education. At 1 standard deviation below mean education, the impact of income is

�
�.03

3

8

(

�

10

.0
2

2
/3

1

)

(�3)
�� �.00725.

At mean education, the impact of income is
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0
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)

1(0)
�� �.00273.

At 1 standard deviation above mean education, the impact of income is

�
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3

8
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�
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.
2

0
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2

)

1(3)
�� .0018.

It is instructive to repeat these computations for income � $25,000. At 1 standard

deviation below mean education, the impact of income is

�
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3
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�� �.0039.

At mean education, the impact of income is
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)

1(0)
�� �.0015.
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At 1 standard deviation above mean education, the impact of income is
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�� .00097.

What these computations show is that income appears, in general, to reduce physi-

cal impairment. But income has a stronger impact on reducing impairment for those

with less education than for those with more education. Additionally, this trend (i.e.,

the differential impact of income according to education level) becomes less and less

evident at higher levels of income. As a final note, the partial derivative of (5.11) with

respect to Z (i.e., education) is c � dX1/3. Since this is not a function of Z, the inter-

action is linear in education.

NONLINEAR REGRESSION

In this final section of the chapter, I consider the estimation of essentially nonlinear

models. These are referred to as nonlinear regression models and are typically esti-

mated using nonlinear least squares. To avoid excessive mathematical complexity,

I restrict attention to a relatively simple model yet one that illustrates all of the key

facets of this technique. Table 5.4 presents measurements on the diagnostic quiz and

the score on the final exam for 11 students in my beginning graduate-level statistics

class. The quiz is given during the seventh week of the semester to gauge how well

students are assimilating the material. The final exam is given during the sixteenth

week. Figure 5.11 shows a scatterplot of these variables, with final exam scores plot-

ted against diagnostic quiz scores. There is clearly a strong positive relationship

between the variables but one that does not appear to be linear. In fact, it very much

resembles the pattern exhibited by the function y � ex in Figure 5.1. Is this reason-

able? Assuming that the diagnostic quiz taps statistical aptitude, the trend in the

figure suggests that an increase in aptitude has an accelerating positive effect on per-

formance in the class. That is, an increase in aptitude has a stronger effect on per-

formance for those who already have considerable aptitude than for those whose

skills are more rudimentary. If this is true, one appropriate model for these data, with
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Table 5.4 Score on Diagnostic Quiz and Score on Final Exam for 11

Students in Graduate Statistics

Diagnostic Quiz Final Exam Diagnostic Quiz Final Exam

32 36.50 84 75.25

60 49.75 84 103.00

60 36.75 92 108.00

76 61.75 92 89.25

84 92.25 100 91.50

84 61.00
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Y � final exam score and X � diagnostic quiz score, is the exponential model with

additive errors, a nonlinear model. As noted earlier, the model is

Y � γ0e
γ
1
X � ε. (5.12)

Before discussing the estimation of this model, I digress briefly and consider

instead the exponential model with multiplicative errors, also shown earlier:

Y � γ0e
γ
1
Xeε. (5.13)

Note that the only difference between these two models is the error structure: that is,

the manner in which error enters the model. Because of this difference, each model

suggests that the processes generating Y in either case are slightly different. For

example, let’s assume that γ0 � 1.5, γ1 � .25, X � .75, and ε � �2. Then according to

model (5.12), the value of Y is

Y � 1.5e.25(.75) �2 � �.1907,

while model (5.13) has the value of Y as

Y � 1.5e.25(.75)e�2 � .2449.

More generally, however, if ε is characterized by constant variance, model (5.12)

implies that the variance of Y is constant with increasing Y. The multiplicative nature

Figure 5.11 Scatterplot of final exam score with score on the diagnostic quiz for 11 students in gradu-

ate statistics.



of the error term in model (5.13), on the other hand, implies that the variance of Y

increases with increasing Y (Ratkowsky, 1990; the reader is also asked to verify this

in the exercises). Unless there is a compelling theoretical reason for choosing one

error structure over another ahead of time, it will not be a simple matter to decide

which is more reasonable. Based on the scatterplot in Figure 5.11, it does not appear

that a multiplicative error structure is warranted. There does not appear to be a pro-

nounced trend for the variance in Y to increase with Y, with the possible exception

of the large scatter of points at X � 84. An examination of model residuals plotted

against fitted values might also reveal which of model (5.12) or model (5.13) is the

correct choice. In the current case, both residual plots (not shown) appeared reason-

able. However, 11 data points are simply too few to allow for a reliable empirical

check on model plausibility. For this reason, I estimate both models, as well as the

simple linear regression model, and compare the results. First I consider the estima-

tion of model (5.13).

Estimating the Multiplicative Model

As noted earlier, if we transform Y by taking its log, model (5.13) becomes a linear

model:

log Y � α � γ1X � ε, (5.14)

where α � log γ0. If we can assume that ε is normally distributed with zero mean and

constant variance, σ2, this model can be estimated via OLS. Panel (a) of Table 5.5

shows the results of estimating this model, called the log y model in the table, as well
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Table 5.5 Regression Models for the Regression of Final Exam Score on Diagnostic

Quiz

(a) Regression Results

Parameter Estimate Linear Model Log y Model Exponential Model

Intercept �11.190 2.868*** 17.129*

Beta 1.094** .018*** .018***

R2 .690 .718 .717

* p 	 .05. ** p 	 .01. *** p 	 .001.

(b) Iteration History for Exponential Model

Iteration Intercept Beta SSE

0 17.5983 .0176 1893.8412

1 17.0852 .0182 1854.9534

2 17.1307 .0182 1854.9443

3 17.1294 .0182 1854.9443

Note: All R2s are calculated as r2
y,ŷ.
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as estimating the SLR model for Y (the linear model in the table). Both models show

a significant relationship between diagnostic quiz and final exam scores, with the

log y model having slightly greater discriminatory power. The estimates are, of

course, not directly comparable, but the fitted values will be similar. For example,

the linear model predicts final exam scores of 54.45 for X � 60 and 89.458 for

X � 92. Calculating the fitted values, ŷ , or estimated E(Y), for the log y model is not

quite as straightforward as it might seem. The estimated log of y would be given by

log ŷ � 2.868 � .018X. But according to Wooldridge (2000), if we simply take

ŷ � exp(log ŷ), we will systematically underestimate E(Y ). The reason for this is that

for this model, E(Y ) is given by

E(Y � X) � exp��
σ

2

2

�� exp(α � γ1X), (5.15)

where σ2 is the variance of ε. Therefore, the correct fitted values are given by

ŷ� exp��
σ̂

2

2

�� exp(log ŷ),

where the MSE in the regression for log Y would be used as the measure of σ̂2.

Wooldridge (2000) explains that these fitted values are not unbiased, but they are

consistent. The development in equation (5.15), however, relies on the normality of

the error term. With an MSE of .03981 in the current example, the fitted values for

X at scores of 60 and 92 for the log y model are 52.874 and 94.057, respectively.

Notice that these are slightly closer to the means of the actual Y values at these X val-

ues (43.25, 98.63) than are the fitted values for the linear model.

Interpreting γ1. Interpreting the effect of X in the log y model is facilitated by con-

sidering the ratio of E(Y � x � 1) to E(Y � x). That is, we examine the ratio of mean

responses for those who are 1 unit higher on X than others. Let c � exp(σ2/2). Then,

according to equation (5.15), this ratio is

�
E(

E

Y

(

�
Y

x

�
�

x)

1)
���

ce

c

α

e

e
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γ

e

1
(

γ

x

1

�
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1)

�� �
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e

1

γ

x

1

e
x

γ
1

�� eγ
1,

which implies that

E(Y � x � 1) � eγ
1E(Y � x).

In other words, exp(γ1) is the multiplicative impact on the mean of Y for each

unit increase in X. Or, 100(eγ
1� 1) is the percent change in the mean for each unit

increase in X. In the current example, each point higher the student scores on

the diagnostic quiz is estimated to increase the average final exam score by

100(e.018
� 1) � 1.8%. Moreover, an increase of 10 points on the diagnostic quiz

should raise the average final exam score by 100(e10(.018)
� 1) � 19.7%.



Discriminatory Power. As is the case with the fitted values, calculation of R2 is also

affected by equation (5.15). Wooldridge (2000) recommends calculating R2 using an

approach that depends only on the orthogonality of the errors with X (i.e., the orthog-

onality condition), but not on normality. This approach is as follows. Regress the log

of Y on X, using model (5.14), and obtain log ŷ (i.e., the fitted values from this regres-

sion). Create M � exp(log ŷ) for each observation. Then regress Y on M without an

intercept; this is known as a regression through the origin. Obtain the fitted values

from this regression and denote them as ŷ�. Then R2 is calculated as the squared cor-

relation between y and ŷ�. Using this procedure resulted in the value of .718 shown

in Table 5.5.

Estimating the Nonlinear Model

Estimation of the additive exponential model is complicated by the fact that the nor-

mal equations for this model have no closed-form solution or algebraic formula that

can be applied in one step. This can be seen by first considering the SSE for this

model. Writing the sample equation as

Y � g0e
g1X � e,

we see that the residual, e, is

e � Y � g0e
g1X .

The criterion to be minimized by the least squares estimates, in this case, is

SSE ��(Y � g0e
g1X )2.

The normal equations are found by taking the first partial derivatives of SSE with

respect to, alternately, g0 and g1, setting them to zero, and solving for g0 and g1. The

normal equations in this case are (Neter et al., 1985)

�
n

i�1

yie
g1Xi � g0 �

n

i�1

e2g1Xi � 0,

�
n

i�1

yiXie
g1Xi � g0 �

n

i�1

Xie
2g1Xi � 0.

Since these equations are nonlinear in the parameter estimates, they have no closed-

form solution and must be solved through iterative methods.

Actually, a more efficient procedure is to find the estimates via a direct search

rather than first finding the normal equations for the model. Perhaps the most com-

mon approach is the Gauss–Newton procedure (Myers, 1986; Neter et al., 1985).
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This technique uses a first-order Taylor series expansion to approximate the nonlin-

ear model with linear terms and then employs OLS to estimate the parameters in an

iterative fashion. A Taylor series expansion of a function of x, f(x), uses a polyno-

mial in x, p(x), to approximate the value of the function in some “neighborhood” of

a given value, a. (A neighborhood of a is some small interval of numbers centered

at X � a.) This is accomplished by forcing p(x) and its first n derivatives to match the

value of f(x) and its first n derivatives at X � a (Anton, 1984). In the current exam-

ple, we require only the first partial derivatives of Y � g0e
g1X � e with respect to g0

and g1. These are

�
∂

∂

g

Y

0

� � eg1X,

�
∂

∂

g

Y

1

�� g0 Xeg1X.

We then choose some values for the parameter estimates as starting values for the

iterative search. Call these values g0
(0) and g1

(0) One choice of starting values, followed

in the current example, was to use the coefficient estimates from the log y model in

Table 5.5. A first-order Taylor series expansion of g0e
g1X about g0

(0) and g1
(0) is

g0
(0)eg1

(0)X
� eg1

(0)X(γ0 � g0
(0)) � g0

(0)Xeg1
(0)X (γ1 � g1

(0)),

where γ0 and γ1 are the parameter values that we are trying to estimate (i.e., they are

the “variables” in this expression). A Taylor series approximation to the model for Y

is, therefore,

Y � g0
(0)eg1

(0)X
� eg1

(0)X (γ0 � g0
(0)) � g0

(0)Xeg1
(0)X (γ1 � g1

(0)) � ε.

If we let Y (0)
� Y � g0

(0)eg1
(0)X, then

Y (0) � eg1
(0)X (γ0 � g0

(0)) � g0
(0)Xeg1

(0)X (γ1 � g1
(0)) � ε. (5.16)

Myers (1986) refers to the left-hand-side of equation (5.16) as the “residual” for Y,

where the parameters of the term γ0e
γ1X are replaced by their starting values.

Equation (5.16) is now a linear regression model with no intercept (i.e., a regression

through the origin). The “parameters” to be estimated are γ0 � g
0

(0) and γ1 � g
1

(0),

which enter the model linearly, and the independent variables are eg1
(0)X and

g
0
(0)Xeg1

(0)X , which are two different transformations of X. OLS is then employed to

estimate equation (5.16), giving us the parameter estimates

b0
(0)

� γ̂0 � g0
0,

b1
(0)

� γ̂1 � g1
0.
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These are then used to obtain revised estimates of γ0 and γ1, since

γ̂0 � g0
(0) � b0

(0),

γ̂1 � g1
(0) � b1

(0).

We then take γ̂0 and γ̂1 as our new starting values for equation (5.16) and reestimate

the equation, again using OLS. We continue in this fashion, each time updating

our old estimates, plugging the updates into equation (5.16), and reestimating the

parameters until the difference between successive coefficient estimates and/or the

difference in successive SSE’s becomes negligible. If the procedure is working cor-

rectly, SSE should continue to get smaller with each successive iteration. At the pres-

ent time, many software programs for nonlinear regression (e.g., SAS) require the

user to supply the expressions for the first partial derivatives of the model with

respect to the parameters, as well as the starting values for the parameters, in order

for the program to run. Assuming that the assumptions on the errors are valid, the

resulting parameter estimates are approximately efficient, unbiased, and normally

distributed in large samples. This means that for large n, the usual regression test sta-

tistics are applicable.

Estimates for the exponential model with additive errors, based on the

Gauss–Newton procedure, are shown in the column “exponential model” in panel (a)

of Table 5.5. They can be compared to those for the log y model by noting that the

comparable parameter in the log y model to the intercept in the exponential model is

exp(2.8678) � 17.5983. Although the intercepts are slightly different, the coefficient

for X (diagnostic quiz score) is virtually the same in each model. R2 for the expo-

nential model is calculated as the square of the correlation between its fitted values

( ŷ) and Y. Again, this is virtually identical to the R2 for the log y model. Panel (b) of

the table shows the iteration history for the model. The initial estimates are in the

row labeled “iteration 0” and are just the parameter estimates from the log y model.

Convergence, in this case, was quite rapid, occurring in three iterations. Ratkowsky

(1990) observes that convergence to the least squares estimates usually occurs fairly

rapidly from reasonable starting values, especially for relatively simple models. In

fact, even if one mistakenly uses 2.8678 instead of exp(2.8678) as the starting value

for the intercept, convergence still occurs in five iterations. At any rate, all three

models for final exam score in this example appear to produce approximately the

same substantive conclusion regarding the impact of diagnostic quiz scores. In this

particular instance there is no special advantage to employing the nonlinear model.

However, in other cases, it may be the only suitable choice.

EXERCISES

5.1 Based on a probability sample of 680 married couples, Mirowsky (1985)

examined the relationship between depression (Y), a continuous scale ranging

from 0 (“no depression”) to 112 (“maximum depression”) and marital power
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(X). Power was operationalized in terms of who usually made major decisions

in the household, and was an approximately interval-level scale ranging from

1 (“wife always”) to 5 (“husband always”), with a value of 3 indicating that

decisions were made with both partners “having equal say.” One hypothesis

of the study was that depression would exhibit a U-shaped relationship with

power, showing a minimum when power was equally shared. The equations

for husbands and wives were:

Husbands: ŷ � a � g�controls � 12.343 power � 1.944 power2.

Wives: ŷ � a � g�controls � 11.567 power � 2.537 power2.

(a) Give the partial slope of each equation with respect to power.

(b) Show that each equation represents a U-shaped trend, using selected val-

ues of power.

(c) Using the fact that a U-shaped curve of the form y � a � bx � cx2

achieves a minimum value when x � �b/2c, show that minimum depres-

sion occurs for each partner when neither partner dominates decision

making.

5.2 Based on model 4 in Table 5.2, give the partial slope for the impact of health

at 1 standard deviation below mean age, at mean age, and at 1 standard devi-

ation above mean age, given that the standard deviation of age is 16.774.

5.3 Demonstrate with some selected values for γ0, γ1, x, and ε that for the multi-

plicative exponential model [i.e., model (5.13)], the variance of Y increases

with increasing Y, whereas the variance of Y is constant with increasing Y in

the nonlinear exponential model [i.e., model (5.12)]. (Hint: One choice of val-

ues is γ 0 � 1.5, γ 1 � .25, x � 1, 2, 3, 4, 5, and ε � �.5, .5).

5.4 An analysis of the 2320 respondents in the GSS98, examining the relationship

between sexual frequency (Y), age (centered), and education (centered),

found the following results for three different models:

Model 1: ŷ � 3.103 � .04 age � .001 age2
� .019 education; R2

� .2233.

Model 2: ŷ � 2.818 � .049 age � .035 education � .001 age * education;

R2
� .1982.

Model 3: ŷ � 3.108 � .039 age � .001 age2
� .029 education � .001 age *

education � .00005 age2 * education; R2
� .2238.

(a) Perform global tests for the age * education interaction and for the curvi-

linearity of the relationship between sexual frequency and age.

(b) Given that the standard deviation of education is 2.894, give the partial

slope of ŷ in model 3 with respect to age at 1 standard deviation below

mean education, at mean education, and 1 standard deviation above mean
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education. Compare the nonlinear interaction effect here to that for the

nonlinear interaction of age with health in Table 5.2.

5.5 For the data in Table 5.4, if the diagnostic quiz is divided up approximately

into quartiles, an unconstrained model for final exam scores, using three dum-

mies representing quartiles 2 to 4 produces R2 � .7937. A model with just the

quartile variable (coded 1 to 4) gives R2 � .7848. Moreover, a model with the

centered, continuous versions of diagnostic quiz and its square (the quadratic

model) has ŷ � 69.716 � 1.376 quiz � .012 quiz2.

(a) Test whether a linear model fits as well as the unconstrained model.

(b) Using the quadratic model, if the mean quiz score is 77.667 and the stan-

dard deviation is 18.642, give the predicted final exam scores for quiz

scores of 60 and 92.

(c) For the quadratic model, give the partial slope for quiz score at 1 standard

deviation below mean quiz scores, at mean quiz scores, and at 1 standard

deviation above mean quiz scores.

5.6 For the following nonlinear models from Ratkowsky (1990), find ∂y/∂x and

∂y/∂θp for each parameter θp (i.e., for each different parameter in the model):

(a) y � log(x � α).

(b) y � 1/(x � α).

(c) y � log(α � βx).

(d) y � α � βγ x.

5.7 Using the couples dataset, estimate the multiplicative exponential model for

COITFREQ as a function of MALEAGE. In particular:

(a) Give the equation for log ŷ .

(b) Interpret the effect of MALEAGE. What percent reduction in coital fre-

quency is expected for a 10-year gain in male’s age?

(c) Give the estimated expected value of Y (i.e., ŷ) for couples in which the

male partner is 25, 35, and 55.

(d) Give the R2 value for the model.

(e) Examine the residuals for plausibility of the assumptions on the errors.

5.8 Using the couples dataset, estimate the additive exponential model for COIT-

FREQ as a function of MALEAGE (you’ll need software that has a nonlinear

regression procedure here). Use the sample coefficients from the multiplica-

tive exponential model as starting values. In particular:

(a) Give the equation for ŷ.

(b) Interpret the effect of MALEAGE. What percent reduction in coital fre-

quency is expected for a 10-year gain in male’s age?

(c) Give the estimated expected value of Y (i.e., ŷ) for couples in which the

male partner is 25, 35, and 55.

(d) Give the R2 value for the model.

(e) Examine the residuals for plausibility of the assumptions on the errors.
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5.9. Regard the following data for 30 cases:

X Z Y X Z Y

0 �2.0845 3.56774 5 3.7676 .41187

0 .3866 .32872 5 6.5101 �.78784

0 .9488 1.03347 5 7.7405 �.97970

1 �.7751 1.43186 6 6.6440 �1.62030

1 �2.892 2.87661 6 7.9871 �.56195

1 �2.8461 3.24443 6 7.7051 �1.65471

2 5.2616 �.16583 7 5.0887 �.60902

2 5.9740 �1.60710 7 11.4823 �.94752

2 2.1966 1.22054 7 9.5552 �.41412

3 3.8658 �.72971 8 7.8112 �.98601

3 .3804 .47408 8 8.2402 �1.35958

3 3.4555 .12573 8 4.1219 �.90526

4 6.8522 �1.21795 9 4.9838 .16067

4 4.7659 �.95917 9 6.3705 �.51194

4 9.2228 �3.19808 9 11.9198 �.47474

(a) Estimate the following model for these data: E(Y) � α � βX1/3 � γZ �

δZX1/3, and give the sample equation.

(b) Give ∂ŷ/∂X and ∂ŷ/∂Z.

(c) Give the impact (i.e., partial slope) of X at the mean of Z and at 1 stan-

dard deviation below and above the mean.

(d) Give the impact of Z at the mean of X and at 1 standard deviation below

and above the mean.

(e) Graph Y against X at the mean of Z and at 1 standard deviation below and

above the mean.

5.10 Using the kids dataset, partition the variable PERMISIV approximately into

sextiles using the following ranges: � 8, (8,10], (10,12], (12,14], (14,16],

and 16.

(a) Plot the mean of ADVENTRE against sextiles of PERMISIV. Does the

trend appear linear?

(b) Use the sextile-coded version of PERMISIV to perform the test of lin-

earity in the regression of ADVENTRE on PERMISIV.

(c) Test the quadratic model in PERMISIV sextiles against the unconstrained

model employed in part (b).

(d) Using the continuous and centered version of PERMISIV, estimate the

quadratic model of ADVENTRE. Regardless of significance levels of the

coefficients, give the slope of PERMISIV on ADVENTRE at the mean of

PERMISIV and at 1 standard deviation below and above the mean. What

type of curve is indicated? (Note that PERMISIV ranges from 4 to 20.)

5.11 Using the couples dataset, partition the variable DURYRS approximately into

deciles, using the following ranges: �1.42, (1.42, 2.92], (2.92, 4.75], (4.75, 7],
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(7, 10.92], (10.92, 15.92], (15.92, 20.58], (20.58, 29.75], (29.75, 40.83],

 40.83.

(a) Plot the mean of DISAGMT against deciles of DURYRS. Does the trend

appear linear?

(b) Use the decile-coded version of DURYRS to perform the test of linearity

in the regression of DISAGMT on DURYRS.

(c) Test the quadratic model in DURYRS deciles against the unconstrained

model employed in part (b).

(d) Using the continuous and centered version of DURYRS, estimate the

quadratic model of DISAGMT. Regardless of the significance levels of

the coefficients, give the slope of DURYRS on DISAGMT at the mean of

DURYRS and at 1 standard deviation below and above the mean. What

type of curve is indicated? (Note: DURYRS ranges from .17 to 60.58.)

5.12 Regard the following nonlinear model for E(Y): E(Y) � α � βγ x. Letting

α � 5, β � 2, and γ � .35:

(a) Evaluate the slope (i.e., the first derivative of Y with respect to X) of X’s

impact on Y at X � 0, 2.5, and 5.

(b) Find E(Y ) at X � 0, 2.5, and 5.

(c) Graph the relationship between Y and X for X in the range [0,5] assuming

these parameter values.

5.13 Regard the following nonlinear model for E(Y): E(Y) � log(α � βX). Letting

α � 5, β � 2:

(a) Evaluate the slope of X’s impact on Y at X � 0, 2.5, and 5.

(b) Find E(Y ) at X � 0, 2.5, and 5.

(c) Graph the relationship between Y and X for X in the range [0,5] assuming

these parameter values.

5.14 Regard the following nonlinear model for E(Y ):

E(Y) ��
1�exp(

β

β
1

2�β3X)
�.

Letting β1 � 5, β2 � 2, and β3 � .35:

(a) Evaluate the slope of X’s impact on Y at X � 0, 2.5, and 5.

(b) Find E(Y ) at X � 0, 2.5, and 5.

(c) Graph the relationship between Y and X for X in the range [0,5] assuming

these parameter values.

5.15 Identify the type of curve exemplified by each of the following equations for

X in the range [�10, 10].

(a) ŷ � .5 � 2x � .5x2.

(b) ŷ � 3 � .75x � .25x2.
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(c) ŷ � 5 � 3.25x � .15x2.

(d) ŷ � 4 � 3x � 1.25x2.

5.16 Suppose that the model for E(Y ) is E(Y ) � 25 � .25x � .15x2 � 3z, where X and

Z are centered and sz � 1.75. Give the value of E(Y) at the mean value of X and

Z, at the mean of X but Z at z�� 1 sz, and at the mean of X but Z at z�� 1 sz.

5.17 Suppose that the model for E(Y) is E(Y) � �4 � 3x � .25x2 � 1.5z � .15xz,

where X and Z are centered and sz � 1.75. Give the value of ∂[E(Y)]/∂X at z�,

z� � 1 sz, and z�� 1 sz.

5.18 Suppose that the model for E(Y) is E(Y) � 5 � 1.75x � 3z � .35xz, where X

and Z are centered and sz � 1.75. Give the value of ∂[E(Y)]/∂X at z�, z� � 1 sz,

and z� � 1 sz.

5.19 Suppose that the model for E(Y) is E(Y) � 15 � 3x � .25x2 � 2z � .15xz �

.25x2z, where X and Z are centered and sz � 1.75. Give the value of ∂[E(Y )]/

∂X at z�, z� � 1 sz, and z�� 1 sz.

5.20 Suppose that the model for E(Y ) is E(Y ) � �5.2 � 5x � 3z �.45x2 �

.25z2 � .13xz � .07xz2 � .15x2z � .09x2z2, where X and Z are centered and

sz � 1.75. Give the value of ∂[E(Y)]/∂X at z�, z�� 1 sz, and z�� 1 sz.

In Exercises 5.21 to 5.25, identify whether the equation for E(Y) is charac-

terized by (a) a linear vs. nonlinear model, (b) a linear vs. nonlinear effect of

X or Z (in the absence of any interaction effects only), and (c) a linear vs.

nonlinear interaction in each of X and Z.

5.21 E(Y) � α � β log x � γ z � δz log x.

5.22 E(Y ) � α � βx � γx2 � δx3 � φz1/2 �λxz1/2.

5.23 E(Y) � log(α � βx � γz � λxz).

5.24 E(Y) � α � βx � γz � λxz.

5.25 E(Y) � α � xβ� γz � λz2 � φzxβ.
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C H A P T E R 6

Advanced Issues in Multiple

Regression

CHAPTER OVERVIEW

In this chapter I address a number of topics that are of a more advanced nature. Their

complexity is due primarily to the necessity to resort to matrix algebra for much of

their theoretical development. As matrix algebra may be foreign to many readers, this

is arguably the most difficult chapter in the book. For this reason, the reader is

strongly encouraged to read Section V of Appendix A before proceeding with this

chapter. A familiarity with the notation and major concepts of matrix algebra will be

extremely helpful for getting the most out of this material. On the other hand, those

uncomfortable with the matrix developments can simply skip them and attend only 

to the “bottom line,” as expressed in equations such as (6.5), (6.11), and (6.12) and

accompanying discussions. 

I begin by reviewing the matrix representation of the multiple regression model.

I then take up the topic of heteroscedasticity and weighted least squares (WLS) esti-

mation, the optimal estimation procedure when the homoscedasticity assumption

fails. Along with this I discuss the use of WLS in testing slope homogeneity across

groups when the assumption of equal error variance fails. I also consider the issue of

using weighted regression on data from complex sampling schemes, employing

WLS with sampling weights. This technique is referred to as weighted ordinary least

squares (WOLS) (Winship and Radbill, 1994). I then return to the issue of omitted-

variable bias, giving a formal development of the problem in the context of multiple

regression. I also give an example showing how omitted-variable bias can affect

interaction terms. The latter part of the chapter is devoted to regression diagnostics.

In particular, I explain how to diagnose regression analyses for undue influence

exerted by one or more observations. I also give a detailed explication of the problem



of multicollinearity, its diagnosis, and possible remedies. The chapter ends by con-

sidering two techniques designed to improve on OLS estimates in the presence of

severe collinearity: ridge regression and principal components regression.

MULTIPLE REGRESSION IN MATRIX NOTATION

The Model

In Section V of Appendix A, I outline the matrix representation of the multiple regres-

sion model. Let’s review the basic concepts covered there. Recall that the matrix rep-

resentation of the model for the ith observation is yi � xi
�ββ � εi, where xi

� is a 1 � p

vector of scores on the p regressors in the model for the ith observation. Here,

p � K � 1, and the first regressor score is a “1” that serves as the regressor for the

intercept term. Further, ββ is a p � 1 vector of the parameters in the model, with the

first parameter being the intercept, β0. Yi and εi are the ith response score and the ith

error term, as always. The matrix representation of the model for all n of the y scores

is y � Xββ � εε. Here, y is an n � 1 vector of response scores, X is an n � p matrix of

the regressor scores for all n observations, and εε is an n � 1 vector of equation errors

for the n observations. The ith row of X is, of course, xi
�. As always, it is assumed that

the errors have mean zero and constant variance σ2 and are uncorrelated with each

other. These assumptions are encapsulated in the notation ε � f(0, σ2I). This means

that the errors have some density function, f(.) (typically assumed to be symmetric

about zero, but not necessarily normal except for small samples) with zero mean and

variance–covariance matrix σ2I. (Readers possibly used to the notation xi
� for the rep-

resentation of the vector of regressor scores for the ith case may find the notation xi
�

used in this book to be somewhat unusual. However, in that the ith case’s regressor

values are contained in the ith row of the n � p matrix of regressor values for all n

observations, and as I use the superscript i to denote row vectors, the use of xi
� seems

more appropriate. Note that the ith case’s collection of regressor values written as a

column vector is therefore denoted xi throughout the book.)

OLS Estimates

The vector of OLS estimates of the model parameters is denoted b, and as noted in

Appendix A, its solution is b � (X�X)�1X�y. In Chapter 2 I noted that b1 in SLR was

a weighted sum of the yi and therefore normally distributed in large samples, due to

the CLT. Similarly, each of the bk in the multiple regression model is a weighted

sum, or linear combination, of the yi and is therefore also asymptotically normal.

This is readily seen by denoting the p � n matrix (X�X)�1X� by the symbol G, and

its kth row (where k � 0, 1, . . . , K) as gk
�. Then the kth regression estimate has the

form gk
�y. Assuming that the X’s are fixed over repeated sampling (the standard

fixed-X assumption), this is nothing more than a weighted sum of the y’s. The esti-

mates are unbiased for their theoretical counterparts, since, as shown in Appendix A,

E(b) � ββ. The variance–covariance matrix for b, denoted V(b), is σ2(X�X)�1. The

variances of the parameter estimates lie on the diagonal of this matrix.
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To illustrate the form of σ2(X�X)�1, let’s derive the expressions for the variances

of the SLR estimates, as given in Chapter 2, using matrix manipulations. In SLR, the

X matrix can be written [1 x], where 1 is a vector of ones and x is the column vec-

tor of scores on the independent variable. Therefore, X�X is

X�X � � �[1 x] � � � � � �.

The determinant of X�X is

n�x2
� ��x�

2

� n�x2
� n2x�

2
� n��x2

� nx�
2�� nSxx,

where Sxx� �(x � x�)2 [see Appendix A, Section II.C(1)]. The inverse of X�X is,

therefore,

(X�X)�1
� �

nS

1

xx

�� � �� �
Finally, σ2(X�X)�1 is

σ2(X�X)�1
�� �.

As the reader can see, the expressions for V(b0) and V(b1) on the diagonal of

σ2(X�X)�1 are the same as given in Chapter 2.

Hat Matrix. The fitted values in regression, denoted ŷi, are given by ŷi � xi
�b. The

vector of fitted values is therefore given by ŷ� Xb. Substituting for b, we have

ŷ� X(X�X)�1X�y, or ŷ� Hy. H, equal to X(X�X)�1X�, is called the hat matrix

(Belsley et al., 1980), since it converts y into ŷ. This matrix plays a key role in the

influence diagnostics discussed later in the chapter. Of particular interest are the

diagonals of this matrix, denoted hii. These tap into the leverage, or potential for

influence, exerted on the regression estimates by the ith observation. The matrix for-

mula for hii is hii � xi
�(X�X)�1xi.

Regression Model in Standardized Form

Recall from Chapter 2 that the standardized slope in SLR results from the OLS

regression of the standardized version of y on the standardized version of X. The

same holds true in multiple regression. However, to understand the standardized rep-

resentation of the MULR model, we must first examine the matrix representation of

the standardized variable scores. Suppose that we denote by yz the n � 1 vector of

�
�

n

σ
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standardized y-scores and by Z the n � K matrix of standardized X� scores (the “1”

disappears from this matrix in the standardization process; the standardized equation

therefore has no intercept). Now, note that (1/n)Z�Z � Rxx, the correlation matrix for

the X’s, and (1/n)Z�yz � rxy, the vector of correlations between the X’s and y. Why?

First, understand that the ith element in the kth column of Z is of the form

zik ��
xik

s

�

k

x�k
�,

where sk is the standard deviation of the kth regressor. That is, the ikth element of Z

is the kth variable minus its mean divided by its standard deviation for the ith case.

Partitioning Z by its columns, Z�Z is

Z�Z � � �[z1
. . . zK] � � �.

This is a K � K matrix whose kth diagonal element is

z�kzk��
�(xik

s

�

2
k

x�k)
2

�,

and whose off-diagonal elements are of the form

z�kzl ��
�(xik�

s

x�
k

k

s

)

l

(xil�x�l)
�,

where k and l denote two different regressors in the model. Multiplying this matrix

by 1/n results in the kth diagonal element being of the form

�
�(xik

s

�

2
k

x�k)
2/n

� � 1,

and the off-diagonal elements being of the form

�
�(xik � x�

s

k

k

)

s

(

l

xil � x�l)/n
�� rkl.

That is, the result is the correlation matrix for the X’s in the model. [Technically, we

should be multiplying by 1/(n � 1) instead of 1/n, but asymptotically these are equiv-

alent, and 1/n simplifies the expression. It should be evident that the difference

between n � 1 and n is virtually nil in large samples.] A similar argument demon-

strates that (1/n)Z�yz� rxy.

z�1zK
.

.

.

z�KzK

. . .

. . .

. . .

. . .

. . .

z�1z1
.

.

.

z�Kz1

z�1
.

.

.

z�K
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To write the model in standardized form, we shall find it convenient to transform

the response and regressors as follows. Let X* � (1/�n�)Z and y* � (1/�n�)yz.

Myers (1986, p. 76) refers to y* and X* as the vector and matrix, respectively, of

centered and scaled variables. That is, the kth column of X*, for example, represents

a variable of the form

�
����n

i��
xi

1

k

(�
�

xi�
x

k

�
��
k

xk�� )2�.
� .

The vector y* represents Y in similar form. Then the standardized version of the model

is y* � X*ββs
� εε*, and the standardized estimates are obtained via the OLS solution:

bs
� (X*�X*)�1X*�y* � ���

�
1

n�
� Z����

�
1

n�
� Z��

�1

��
�

1

n�
� Z��

�
�
1

n�
� yz

� ��
1
n

�Z�Z�
�1

�
1
n

�Z�yz � R�1
xx rxy.

In other words, the standardized regression coefficients are the product of the inverse

of the correlation matrix for the X’s times the correlations of the X’s with y. Further,

letting σ2
*

represent V(ε*), we then denote the variance–covariance matrix of the

errors in the standardized equation by σ2
*
I. Then the variance–covariance matrix of

standardized parameter estimates is V(bs) � σ2
*
(X*�X*)�1

� σ2
*
R�1

xx. Having estab-

lished the matrix representations for key elements in the MULR model, we are now

ready to consider additional MULR topics.

HETEROSCEDASTICITY AND WEIGHTED LEAST SQUARES

Until now the standard assumption we have been operating under is that the equation

errors are homoscedastic; that is, they have constant variance at each covariate pat-

tern. In that case, V(εε) � σ2I. Suppose that this isn’t the case. That is, suppose that the

error variances vary across covariate patterns such that V(εi) � σ2
i for i � 1, 2, . . . , n.

Assuming that the errors are still uncorrelated, the form of V(εε) is now

� �� V.

Under this scenario the appropriate estimator is the generalized least squares (GLS)

estimator, given by bw � (X�V�1X)�1X�V�1y (Myers, 1986). If V � σ2I, bw is sim-

ply b, the OLS estimator. Because V is diagonal, and taking the inverse of a diago-

nal matrix is accomplished by simply inverting the diagonal elements, bw has the

form

bw � (X�Dwi
X)�1X�Dwi

y,

σ2
1 0 . . . 0

0 σ2
2

. . . .

. . . . . . . .

. . . . . . . 0
0 . . . 0 σ2

n
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where Dwi
indicates a diagonal matrix with diagonal entries wi � 1/σ2

i . Now, if we

regard bw more closely, we see that it can be expressed as

bw � [(D�w� i�
X)�(D�w� i�

X)]�1(D�w� i�
X)�D�w� i�

y.

Recall that premultiplying a matrix or vector by a diagonal matrix simply multiplies

each row of that matrix or vector by the diagonal elements. Therefore, the design

matrix now has the form

D�w� i�
X � D�w� i�

[1 x1
. . . xK] �� �� Xw ,

and the response vector has the form

D
�w� i�

y �	 
� yw .

If we regress yw on Xw using OLS, the resulting estimator, (X�w Xw)�1X�w yw, will be

bw (as the reader can verify by substituting for Xw and yw in this expression). What

this means is that bw can be found by transforming the regressors and the response

and then performing OLS on the transformed variables. The transformation involves

multiplying the regressors and the response by the square root of the weight vari-

able, where the weights are the reciprocals of the error variances. Hence this esti-

mator is called the weighted least squares (WLS) estimator. Notice that the first

column of the transformed design matrix is no longer a column of ones. Instead, it

is a column of weights, which constitutes another variable. Consequently, the appro-

priate OLS regression analysis is a regression through the origin. The constant term

for the WLS analysis is the coefficient for the weight variable resulting from this run

(McClendon, 1994).

Properties of the WLS Estimator

If the proper weights, 1/σ2
i, are known, the WLS estimator bw has the following prop-

erties: (1) it is unbiased for ββ; (2) it achieves the minimum variance of all linear unbi-

ased estimators; and (3) it is the MLE for ββ if the errors are also normally distributed

(Myers, 1986). Unfortunately, the true error variances are typically unavailable, so the

proper weights are rarely known in practice. In this case, the error variances must first

be estimated from the data available and then used in the weighting procedure. The

resulting WLS estimator, also known as the feasible generalized least squares (FGLS)

�w�1� y1

�w�2� y2

�

�

�

�w�n� yn

�w�1� x1K

�w�2� x2K

�

�

�w�n� xnK

. . .

. . .

. . .

. . .
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�w�1� x11

�w�2� x21
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estimator, is no longer unbiased; however, it is still consistent and has a smaller sam-

pling variance than that of the OLS estimator in large samples (Wooldridge, 2000).

Consequences of Heteroscedasticity

What are the consequences of using OLS in the presence of heteroscedasticity? First,

the OLS estimators are inefficient. That is, there exist estimators with a smaller sam-

pling variance: namely, the WLS (i.e., FGLS) estimator. This means that tests of

significance will typically be more sensitive when using WLS than when using OLS.

Perhaps more important, however, the estimated standard errors of the OLS coefficients

obtained via the formula σ̂2(X�X)�1 (the formula employed by all regression software)

are no longer valid under heteroscedasticity. To see why, recall from Appendix A that

for the OLS b,

V(b) � V[(X�X)�1X�y] � (X�X)�1X�V(y)X(X�X)�1.

As long as V(y) � σ2I, this matrix reduces to σ2(X�X)�1 and then σ̂2(X�X)�1 becomes

an unbiased estimator of V(b). However, when heteroscedasticity prevails, V(y) � V

(shown above). The variance of b is then

V(b) � V[(X�X)�1X�y] � (X�X)�1X�VX(X�X)�1.

Hence, σ̂2(X�X)�1 is no longer a valid estimator of this variance–covariance matrix.

White’s Estimator of V(b). An alternative estimator of V(b) which is robust to het-

eroscedasticity is the White estimator (White, 1980). This is based on the idea that

the OLS b is a consistent estimator of ββ, which implies that the OLS residuals are

“pointwise consistent estimators” (Greene, 2003, p. 198) of the population εi.

Moreover, the squared residuals would be consistent estimators of the squared εi,

whose average values represent the variances of the εi, since V(εi) � E(εi � E(εi))
2
�

E(ε2
i ). Assuming at least one continuous predictor, the squared error for each case

would typically be unique, so it represents its own average. Hence, the squared OLS

residuals can be used to estimate the error variances in V, leading to the White het-

eroscedasticity-robust estimator,

Vw(b) � (X�X)�1X�V̂X(X�X)�1,

where V̂ is a diagonal matrix containing the squared OLS residuals (White, 1980).

Testing for Heteroscedasticity

In this section I discuss two tests for heteroscedasticity that are relatively easy to

implement in any regression software that makes the residuals available for further

manipulation. These tests are also available on request in some software (e.g., STATA,

LIMDEP). The null hypothesis for either test is that the errors are homoscedastic. The
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first is White’s test (White, 1980). For the substantive model E(Y) � β0� β1X1�

β2X2�
. . . � βKXK, the test is accomplished by first estimating the model with OLS

and then saving the residuals. One then regresses the squares of the residuals on all pre-

dictors in the model plus all nonredundant crossproducts among the predictors. For

example, if the model is E(Y) � β0� β1X1� β2X2� β3X3, one regresses the squared

residuals from estimating this model on X1, X2, X3, X
2
1, X

2
2, X

2
3, X1X2, X1X3, and X2X3.

The test is then nR2 from this run, which, under the null hypothesis of homoscedastic-

ity, is distributed as chi-squared with degrees of freedom equal to the number of regres-

sors used to model the squared residuals (in this case, that would be 9). Be advised,

however, that more than just homoscedasticity is being tested with this statistic. In fact,

White (1980, p. 823) describes this test as follows: “. . . the null hypothesis maintains

not only that the errors are homoskedastic, but also that they are independent of the

regressors, and that the model is correctly specified . . . .” In other words, this is more

of a general test for model misspecification.

The second test is the Breusch–Pagan test (Breusch and Pagan, 1979). This test

is much more focused on heteroscedasticity than White’s test, and, in fact, assumes

that the error variance is related in some systematic fashion to the model predictors

(Greene, 2003). There are various forms of the test, but the one I advocate here is

that suggested by Wooldridge (2000). In this case, one regresses the squared OLS

residuals from one’s substantitve model on just the predictors in one’s substantive

model. Once again, the test is nR2 from this regression, which is distributed as chi-

squared with K degrees of freedom under the null hypothesis of homoscedasticity.

Example: Regression of Coital Frequency

Let’s consider an example of a heteroscedastic model. Figure 6.1 presents a scatter-

plot of coital frequency in the last month against the male partner’s age for the 416

couples in the couples dataset. (This is similar to Figure 2.7, which shows a plot of

the residuals from this regression against male partner’s age.) Nonconstant error

variance is suggested by the wedge-shaped trend in the points in which the spread of

points tapers down dramatically from left to right. This phenomenon makes sub-

stantive sense. One would expect that there would be considerable variability in

coital frequency among young couples, since some are by choice more sexually

active than others. However, age brings its own limitations to sexual activity, regard-

less of individual proclivities. We would therefore expect less variability in sexual

frequency as couples enter middle and old age.

Table 6.1 presents regression results for these data. The first column shows the OLS

results for the regression of coital frequency on male’s age. The effect of male’s age is

negative and significant and suggests that each additional year of age reduces the cou-

ple’s coital frequency by about .15 time per month. The effect is quite significant. The

second column shows the standard errors estimated by White’s heterscedasticity-robust

technique. Compared to the OLS standard errors, the White standard errors are larger

for the intercept but slightly smaller for the effect of age. No real substantive difference

would result from using these standard errors in place of the OLS ones, however. The

third column presents the model for White’s test, which includes both male age and its
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square. The dependent variable for this run is the squared residual from the model in

the first column. White’s test is therefore 416(.0423) � 17.597. With 2 degrees of free-

dom, this is quite significant (p � .00015). For the Breusch–Pagan test, we regress the

squared residuals from the substantive model on male’s age (results not shown). The

R2 from this run is .0328. Hence, the Breusch–Pagan test is 416(.0328) � 13.645,
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Figure 6.1 Scatterplot of coital frequency with male’s age for 416 couples in the NSFH.

Table 6.1 OLS and WLS Results for the Regression of Coital

Frequency on Male Age for 416 Couples in the NSFH

OLS: White Model for WLS:

Predictor b(σ̂b) σ̂b White’s Testa b(σ̂b)

Intercept 14.028*** 201.057*** 13.522***

(.874) (.998) (.992)

Male age �.149*** �6.234** �.143***

(.019) (.018) (.016)

(Male age)2 .049*

R2
OLS .1295 .0423 .1570

R2
WLS .1280

a Response variable is the squared OLS residual.

* p � .05. ** p � .01. *** p � .001.



which with 1 degree of freedom is, again, highly significant (p � .00022). Apparently,

both tests result in a sound rejection of the null hypothesis of constant error variance.

WLS in Practice: Two-Step Procedure

To estimate the regression for coital frequency via WLS, we must first estimate the

error variances. One possibility is to regress the squared OLS residuals from the sub-

stantive model on the model’s predictors and then to use the fitted values from this run

as our estimates of σ2
i. The justification for this is that the fitted squared residuals are

consistent estimators of the expected squared residuals, which, as argued above, rep-

resent the error variances (McClendon, 1994). More generally, we regress the squared

residuals on a set of explanatory variables which may or may not coincide with the

substantive predictors, but which appear to determine the error variance (Greene,

2003). In the present case, I regressed the squared residuals on male’s age and the

square of male’s age—the same model as used for White’s test—and used the fitted

values to create the weights. Failure to include the square of male age would result in

several cases having negative weights and therefore being excluded from the regres-

sion. In this case, including the quadratic term is an easy way to prevent that. (Below

I consider another technique for ensuring that the weights remain positive.) The

weights are then simply the reciprocals of the fitted values. That is, I take wi � 1/ê2
i as

the weights for the WLS regression. (Most regression software has an option for run-

ning weighted regression; in SAS, for example, one simply includes a WEIGHT

statement followed by the name of the weight variable.) The results are shown as the

last column of Table 6.1. The magnitudes of both intercept and slope have been

reduced slightly. The standard error of the slope has also been reduced, consistent with

the WLS estimator exhibiting lower variance compared to OLS. Nonetheless, sub-

stantive conclusions are little affected by correcting for heteroscedasticity here.

R2 for WLS. The R2 for the OLS model is shown at the bottom of the first column

of Table 6.1, suggesting that about 13% of the variation in coital frequency is

accounted for by male age. Two R2’s are shown for the WLS run in the last column.

The first, R
2
OLS, is the one reported by the software from the WLS analysis. It should

appear suspicious to the reader. Because the OLS estimators result in the smallest

SSE compared to any other estimators, they necessarily produce the highest R2 in any

given sample. Therefore, the WLS estimates cannot result in a higher R2. The

“catch” is that the number reported by software is for the transformed (by the

weights) data, not the original data. To get the correct R2 value, we need to “hand-

calculate” (with the aid of a computer) the fitted values using the WLS estimates,

then use these fitted values to construct the WLS residuals. We then sum the squared

WLS residuals to get SSEw, and then R2
WLS is calculated as

R
2
WLS � 1 � �

S

T

S

S

E

S
w

�.

This value is also shown in the WLS column and is slightly smaller than R2
OLS, as

expected.
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Ensuring Positive Weights. Estimating the error variances by performing an OLS

regression on the squared residuals to get the fitted values will not always work. Very

often, several of the fitted values will be negative and there is no way to model that

problem away. A solution proposed by Wooldridge (2000) is to assume that the

squared errors are related to the model predictors via an exponential function. In par-

ticular, we suppose that the squared errors are related to the predictors via the fol-

lowing equation:

ε2 � σ2 exp(δ0 � δ1X1 � δ2X2 � . . . � δKXK)u,

where u, the error term in this model, has mean 1 and is orthogonal to the predictors.

This is really no more arbitrary than the assumption that the squared error is linearly

related to the predictor set but has the additional advantage of ensuring that ε2 is

always positive. The equation is then transformed so that it can be estimated via OLS:

log ε2
� α0 � δ1X1 � δ2X2�

. . . � δKXK� υ, (6.1)

where α0 � log σ2
� δ0 and υ � log u. According to Wooldridge, (6.1) now satisfies

the classic regression assumptions and we can therefore use OLS to get unbiased

estimates of its parameters. Using these, we obtain the fitted values and then trans-

form them using the exponential function to get the estimated squared residuals for

the weights. In other words, the procedure is:

1. Run the regression of Y on X1, X2, . . . , XK and save the residuals, ei.

2. Create the variable log e2
i.

3. Regress log e2
i on X1, X2, . . . , XK and get the fitted values, log ê2

i.

4. Exponentiate log ê2
i to recover ê2

i .

5. Regress Y on X1, X2, . . . , XK via WLS using as weights wi � 1/ê2
i.

Coital Frequency Revisited. Table 6.2 presents results for the regression of coital

frequency on male age (in years), female age (in years), union duration (duration of

the union in years as of wave 1), couple modernism, and couple disagreement (inter-

val variable ranging from 1 � “minimal disagreement” to 6 � “maximum disagree-

ment”) for our 416 couples. The first column is, again, the result of OLS estimation.

It appears that in addition to male age, couple modernism has a negative impact on

sexual activity. This is probably due to more modern couples being more gender

egalitarian. Such couples are likely to accord greater weight to the woman’s desires

regarding the frequency of sex, and women typically desire sex less often than men.

Net of other factors, the female’s age is also negatively related to coital activity, but

the effect is not quite significant.

As in the SLR model, I again suspect heteroscedasticity. This appears to be

confirmed in Figure 6.2, which is a plot of the residuals against the fitted values. The

figure reveals that the error variance appears to increase dramatically with increas-

ing values of predicted coital frequency. The White standard errors for the OLS run
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Table 6.2 OLS and WLS Results for the Multiple Regression of Coital

Frequency on Selected Predictors for 416 Couples in the NSFH

OLS: White Model for WLS:

Predictor b(σ̂b) σ̂b B-P Testa b(σ̂b)

Intercept 24.158*** 155.102* 19.433***

(3.723) (3.972) (3.147)

Male age �.092* �.815 �.093**

(.040) (.028) (.030)

Female age �.065 �.405 �.047

(.044) (.031) (.032)

Union duration �.033 �.397 �.026

(.033) (.024) (.022)

Modernism �.287* .2.482 �.156

(.114) (.120) (.095)

Disagreement �.958 .738 �.791

(.513) (.528) (.441)

R2
OLS .1577 .0373 .2431

R2
WLS .1530

a Response variable is the squared OLS residual.

* p � .05. ** p � .01. *** p � .001.

Figure 6.2 Scatterplot of residuals against fitted values from the multiple regression of coital frequency

on selected predictors for 416 couples in the NSFH.



are shown in the second column of Table 6.2. About half are larger than the OLS

standard errors and about half are smaller. Using the White standard errors, however,

the main substantive change would be that female age would become significant at

p � .04. The model for the Breusch–Pagan test is shown in the third column of the

table. The test statistic value is 15.517 and is chi-squared with 5 degrees of freedom

under the null. With a p-value of .0084, we would reject homoscedasticity. White’s

test statistic (not shown), on the other hand, is 27.997 and has 20 degrees of free-

dom, a nonsignificant result (p 	 .1). Nonetheless, as the Breusch–Pagan test con-

centrates its power specifically on heteroscedasticity, it will be more trustworthy

here. The last column of the table shows the WLS analysis based on using equation

(6.1) to estimate the weights. Notice that all of the standard errors are smaller com-

pared to those from OLS, evidence again of the greater efficiency of WLS. However,

the only significant predictor of coital frequency in the model is male age.

Testing Slope Homogeneity with WLS

In Chapter 3 I presented salary models for male and female faculty at BGSU and tested

whether they were the same. Although the test was significant, suggesting that the

effects of predictors on salary were different across gender, a critical assumption for

this test—equal error variances across groups—was found in Chapter 4 to be violated.

As I indicated in Chapter 4, when the equal error variance assumption is violated, there

is a WLS procedure that still allows us to test regression slope homogeneity—or equal-

ity of predictor effects—across groups. This approach is, however, restricted to having

only two groups. As outlined by Overton (2001), the idea is as follows. Suppose that

we have two groups in which the following models hold:

Y1 ��β1
k Xk � ε1, V(ε1) � σ2

1,

Y2 ��β2
k Xk � ε2, V(ε2) � σ2

2,

where the subscripts/superscripts 1 and 2 stand for groups 1 and 2, and σ2
1 
 σ2

2.

Suppose further that each group’s data are weighted by the reciprocals of their error

standard deviations. Then we have

�
σ
1

1

�Y1 � �
σ
1

1

��β1
k Xk � �

σ
1

1

�ε1

and

�
σ
1

2

�Y2 � �
σ
1

2

��β2
k Xk � �

σ
1

2

�ε2.

In this case, the new error variances are

V��
σ
1

1

�ε1� � �
σ
1

2
1

�V(ε1) � �
σ
σ

2
1

2
1
� � 1 and V��

σ
1

2

�ε2� � �
σ
1

2
2

�V(ε2) � �
σ
σ

2
2
2
2

�� 1.

That is, the weighting procedure restores error-variance homogeneity across groups,

rendering tests for group-covariate interactions valid (Overton, 2001). It should be
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noted that the case of unequal error variances across groups is not the same as het-

eroscedasticity, which is inequality of error variances across cases within groups. It

is still assumed in this procedure that the errors are homoscedastic within each group.

WLS in this case is used to correct only for unequal error variance across groups

(Overton, 2001).

To employ WLS to test slope homogeneity across two groups, we proceed as 

follows:

1. Regress Y on the model’s main effects separately in each of the two groups.

2. Compute MSE* � SSE/(dfE � 2) separately for each group, based on each regres-

sion. The adjustment to the error degrees of freedom is necessary to correct for

the bias in the reciprocals of the error variances when used as weights (see

Overton, 2001, pp. 221–222).

3. Invert each MSE* to create each group’s weight.

4. Run WLS using the group weights in the combined sample, along with group-

covariate cross-product terms, to examine differences in predictor effects across

groups.

Gender Differences in Salary Models, Revisited

Let’s tackle the issue of potential gender differences in the models for faculty salary one

more time. This time, having found that the error variances are unequal, I use the WLS

procedure outlined above. I employ the same model as in Table 3.5 except that this time

I omit the interaction of years at the university with years in rank. The basic model is

a regression of faculty salary on centered versions of prior experience, years in rank,

years at BG, and marketability. First I estimate the model separately for each gender

(results not shown). A test for error-variance homogeneity ( just to be sure that omitting

the interaction term doesn’t change things) results in an F of 1.527, which with 506 and

209 degrees of freedom, is again highly significant (p � .001). I then create the weights

for each gender. For males, SSE/(dfE � 2) � 41286268592/504 � 81917199.587. The

reciprocal of this is the males’ weight. For females SSE/(dfE� 2) � 11166831326/

207 � 53946045.053. Its reciprocal is the females’ weight. I then reestimate the basic

model in the combined sample, weighting the cases differentially, according to gender.

The results of the WLS analysis are shown in Table 6.3.

Model 1 is the main effects model. We see that the continuous covariates are all

significant with the exception of years in rank. The dummy for being female is also

quite significant and suggests that female salary is, on average, $4722.43 lower than

male salary. Model 2 adds the cross-products of female gender with the continuous

covariates. A nested F test, based on the R2’s from models 1 and 2 and reported at the

bottom of the model 2 column, suggests that the block of interaction terms is

significant. This essentially agrees with the results of the Chow test reported in Chapter

3. Apparently this result is robust to correction for error variance heterogeneity. Two

of the individual cross-product terms are significant. The more significant interaction

effect is that of female gender with prior experience. The effect suggests that, for

males, each additional year of prior experience is worth a $1042.845 increment in 
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academic-year salary. For females, each additional year is worth only 1042.845

� 662.797 � $380.048 in additional salary.

Overton (2001) notes that an advantage of the WLS procedure employed here is that

correct follow-up tests can be pursued to further explore the nature of the interaction

effect. For example, given that the strongest interaction appears to be that between

female gender and prior experience, suppose that I wish to test whether the gender

difference in salary is significant at different levels of prior experience. A useful tech-

nique is to use the uncentered version of prior experience and rescale it as necessary to

isolate the difference coefficient. (In Chapter 8 I refer to this scaling technique as tar-

geted centering and discuss it in more detail there.) In other words, the equation is:

ŷ� b0� d female � b1 PE � b2 years in rank � b3 years at BG � b4 marketability � g1

female * PE. To begin, I let PE � prior experience. Then for those with no prior expe-

rience, PE � 0. For males, estimated mean salary is ŷ� b0 � b2 years in rank � b3 years

at BG � b4 marketability. For females, it’s ŷ� b0 � d � b2 years in rank � b3 years at

BG � b4 marketability. The estimated difference in mean salary is d; therefore, a test for

the significance of d is a test for gender differences in mean salary for those with no

experience. Okay, you already knew that. But suppose that we want to test gender

differences at two years of experience. Then we let PE � prior experience � 2, and also

employ it for the cross-product term. For those with two years of experience, PE � 0

again, and again, a test for d is a test for the gender difference in mean salary for those

with two years of experience. In general, to conduct the test of gender difference at c

years of experience, we estimate the model with PE � prior experience � c, form the

cross-product using this version of PE, and use the t test for d. Running this procedure

with c set alternately to 0, 2, and 10 years of prior experience produces the following

mean differences in female minus male average salary: �2885.81 (0 years), �4119.68

(2 years), and �9055.18 (10 years). All differences are highly significant.
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Table 6.3 WLS Results for Testing Slope Homogeneity for Male vs.

Female Faculty in Effects of Continuous Covariates on Salary for

725 Faculty Members

Predictor Model 1 Model 2

Intercept 49195.000*** 49036.000***

Female �4722.427*** �5213.543***

Prior experiencea 820.422*** 1042.845***

Years in ranka
�115.306 �47.809

Years at BGa 988.633*** 1009.120***

Marketabilitya 31417.000*** 33601.000***

Female � prior experiencea
�662.797***

Female � years in ranka
�447.862*

Female � years at BGa 115.478

Female � marketabilitya
�7618.157

∆F 7.654***

a Centered variable.

* p � .05. ** p � .01. *** p � .001.



WLS with Sampling Weights: WOLS

A final application of WLS that should be mentioned is the use of WLS for weight-

ing regression analyses with sampling weights. Sampling weights are typically pro-

vided with secondary data gathered from complex sampling designs. In such designs,

different individuals have different probabilities of selection into the sample, and the

weights are used to make the sample distributions on one’s variables resemble their

population counterparts. This is important for the estimation of univariate parame-

ters such as means and proportions. It is often thought that regression analyses

should also be weighted with sampling weights in order to achieve correct infer-

ences. Winship and Radbill (1994), however, explain why this is not an advisable

practice most of the time.

First, if the unweighted data are homoscedastic, sampling weights will make

them heteroscedastic. Why? Suppose that the correct model for the data is

Yi ��βk Xik � εi,

where εi is normal with zero mean and variance σ2. However, we weight the data

before analysis, so that the data are actually

�w�i�Yi � �w�i��βk Xik� �w�i�εi.

Now the variance of the errors is V(�w�i�εi) � wiσ2, which of course implies het-

eroscedasticity. The immediate consequence of this is that as we have seen, standard

errors produced by regression software are no longer valid. Weighted estimators are

optimal and produce correct estimates of standard errors only when the weights are

a function of the error variances (Myers, 1986).

Second, if sampling weights are only a function of the independent variables

included in the model being estimated, unweighted OLS is really the appropriate

procedure. Using versus not using weights would be equivalent to drawing samples

exhibiting different distributions on the X’s. Yet none of the classic regression

assumptions requires that the distributions of the X’s in the sample mirror those in

the population. In fact, if the model is specified correctly, samples exhibiting different

distributions on the X’s should produce the same OLS estimates (Winship and Radbill,

1994). But if the model is misspecified, samples with different X distributions may

very well produce different regression estimates. So if the parameter estimates from

weighted and unweighted analyses differ, this suggests either that the model is

misspecified or that the weights are a function of the dependent variable (Winship and

Radbill, 1994).

To assess whether weighted and unweighted analyses produce different estimates,

Winship and Radbill (1994) recommend employing the test devised by DuMouchel

and Duncan (1983). Letting W represent the weight variable, the test is as follows.

First, we estimate the substantive model:

E(Y) � β0 ��βkXk. (6.2)
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Then we add the weight variable plus all interactions of the weight variable with the

model’s predictors:

E(Y) � β0 ��βkXk � δW ��γkWXk. (6.3)

Both analyses are done using OLS. The test is a nested F test of (6.2) versus (6.3). If

it is nonsignificant, weighted and unweighted analyses do not differ and the analyst

should proceed with OLS. If the test is significant, model (6.3) should be examined

more closely. If the weight variable itself has a significant effect, this suggests that the

weights are a function of X’s omitted from the model. If one or more WX interaction

terms is signficant, there may be imporant interaction terms missing from the model.

The analyst may then be able to respecify the model and perform the test again. If the

difference between weighted and unweighted analyses is still significant, the analyst

should then employ weighted regression using the sampling weights. In that case,

however, Winship and Radbill (1994) suggest employing White’s heteroscedasticity-

robust estimator of V(b) to obtain the standard errors of coefficients.

Example. Table 6.4 presents weighted and unweighted analyses of data from wave

one of the NSFH on 7273 intimate couples (married as well as cohabiting unmarried).
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Table 6.4 OLS and WOLS Results for the Regression of Couple Disagreement

on Demographic Predictors for 7273 Couples in the NSFH

Predictor Model 1 Model 2 Model 3

Intercept 11.122*** 11.044*** 11.171***

Cohabiting couple .400* �.094 .517*

Union duration �.066*** �.066*** �.066***

Biological children 1.894*** 1.951*** 1.873***

Stepchildren 1.194*** 1.030*** 1.260***

Minority couple .109 .584** �.043

Male education .001 �.018 .006

Female education .007 .018 .003

Income-to-needs ratio �.010 �.002 �.012

Case weight .063

Weight � cohabiting couple .631

Weight � union duration �.000a

Weight � biological children �.060

Weight � stepchildren .215

Weight � minority couple �.462**

Weight � male education .017

Weight � female education �.009

Weight � income-to-needs ratio �.007

RSS 17597.692 17773.178

a Actual value is �.0003.

* p � .05. ** p � .01. *** p � .001.



The dependent variable is couple disagreement: the average of male and female part-

ners’ reports of how often the couple has a serious disagreement (interval variable

ranging from 6 � “minimal disagreement” to 36 � “maximum disagreement”). The

NSFH data are from a complex sampling design in which certain groups were over-

sampled: cohabitors, recently married couples, minorities, stepparent families, and

one-parent families. Model 1 presents the results from the unweighted regression.

Among the predictors are male and female education (in years of schooling com-

pleted) as well as the income-to-needs ratio (the ratio of household income to the

poverty level for that type of household). As the model also includes dummies for

cohabitation, being a minority couple, having only biological children, and having

stepchildren (the contrast is being childless), as well as the continuous covariate union

duration (in years), the sampling weights are functions of model predictors. We

would therefore expect that weighting would make no difference in the parameter

estimates. MSE for model 2 is 16.509. The last row of the table shows the RSS values

necessary to compute DuMouchel and Duncan’s (1983) test statistic, which is

F � � 1.181.

The p-value for this test statistic is greater than .3, suggesting that weighted and

unweighted analyses do not differ. Model 3 presents the weighted estimates for com-

parison purposes. Clearly, there is no substantive difference between model 3 and 

the OLS results. Although the nested F is nonsignificant, we notice that there is one

significant interaction in model 2 between the weight variable and the dummy minor-

ity couple. If the DuMouchel and Duncan test had been significant, this term might

suggest an omitted interaction. In previous analyses of these data, I did find an inter-

action between minority status and the income-to-needs ratio in their effects on couple

violence (DeMaris, 2003). I therefore checked to see if the same interaction effect was

significant for couple disagreement (results not shown), but it was not. In sum, the esti-

mates for model 1 would seem to represent the optimal estimates for these data.

OMITTED-VARIABLE BIAS IN A MULTIVARIABLE FRAMEWORK

In Chapter 3 I presented a relatively simplified explication of omitted-variable bias. In

this section I present a more general framework from which to understand this issue.

In the process I show that omitted variables can also confound, suppress, or mediate

the effects of higher-order terms such as cross-products and quadratic effects. First,

recall that an interaction effect is of the form βkXk � γkXjXk, where the subscripts j and

k refer to two different predictors in the model. The effect of Xk is βk � γkXj, which

shows that the effect of Xk depends on the level of Xj. If γk is zero, there is no interac-

tion and the effect of Xk is constant over levels of Xj. Similarly, a quadratic effect is of

the form βkXk � γkX
2
k. The effect (partial derivative) of Xk is βk � 2γkXk. If γk is again

zero, there is no quadratic effect and the relationship between Y and Xk is linear. The

point is that the coefficient of the cross-product term or the quadratic term represents

the departure from additivity or linearity, respectively. That is, the higher-order term is

(17773.178 � 17597.692)/9
���

16.509
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what “carries” the effect in question. Hence, it is the association of this term with omit-

ted variables that may lead to bias.

Mathematics of Omitted-Variable Bias

To understand the effect of variable omission, let’s suppose that the true model for Y

is y � Xββ � εε, with εε being normal with zero mean and variance σ2I. Let’s further

partition the X matrix as [X1 X2], where the matrix X1 consists of the variables that

the researcher includes in his or her model, and the matrix X2 consists of vari-

ables left out of the researcher’s model. The corresponding partitioning of ββ is ββ� �

[ββ11� ββ22� ], where ββ1 contains the parameters associated with X1 and ββ2 those associ-

ated with X2. We further stipulate that X1 has K variables, the first being a column

of ones, and X2 has Q variables. Similarly, ββ1 has K parameters, including the inter-

cept, and ββ2 has Q parameters. Without loss of generality I also assume that the Kth

variable in X1 is a cross-product term of the form XjXk. Then y � Xββ � εε becomes

y � X1ββ1 � X2ββ2 � εε (in multiplying these partitioned entities we treat X like a row

vector). But instead, the researcher estimates y � X1ββ1� υ, where υυ � X2ββ2 � εε.

What is the result?

The OLS estimator for the researcher’s model is

b1 � (X�1X1)
�1X�1y

which, in actuality, is

b1 � (X�1X1)
�1X�1[X1ββ1 � X2ββ2 � εε]

� (X�1X1)
�1X�1X1ββ1 � (X�1X1)

�1X�1X2ββ2 � (X�1X1)
�1X�1εε

� ββ1 � (X�1X1)
�1X�1X2ββ2 � (X�1X1)

�1X�1εε

which means that

E(b1) � ββ1 � (X�1X1)
�1X�1X2ββ2 � (X�1X1)

�1X�1E(εε) � ββ1 � (X�1X1)
�1X�1X2ββ2.

Hence, the term (X�1X1)
�1X�1X2ββ2 represents the bias in b1 due to the excluded regres-

sors (since, formally, the bias in b1 is defined as E(b1 � ββ1) � E(b1)� ββ1).

It is worthwhile to consider this bias in greater detail. The matrix (X�1X1)
�1X�1X2,

referred to as the alias matrix (Myers, 1986), represents the matrix of least squares

solutions for the regression of each of the predictors in X2 on the set of regressors in

X1. Why? Let’s partition X2 as [x21 x22
. . . x2Q], adding a “2” subscript to the

column vectors to denote that these are the columns of X2. Then

(X�1X1)
�1X�1X2� (X�1X1)

�1X�1[x21 x22
. . . x2Q]

� [(X�1X1)
�1X�1x21 (X�1X1)

�1X�1x22
. . . (X�1X1)

�1X�1 x2Q]. (6.4)

It should be clear from (6.4) that each column of the K � Q alias matrix is a vector 

of OLS coefficients for the regression of a given column of X2 (i.e., a given regressor
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in X2) on all of the regressors in X1. Suppose that we denote the alias matrix as G.

Then it has the form

G �	 
�	 
,

where each gki is the partial regression coefficient for the impact of the kth regressor

in X1 on the ith regressor in X2. Hence, g11 is the partial effect of regressor 1 in X1

on regressor 1 in X2, g21 is the partial effect of regressor 2 in X1 on regressor 1 in

X2, . . . , gK1 is the partial effect of regressor K in X1 (in this case, the cross-product

term) on regressor 1 in X2, and so on. The bias in b1 as an estimator of ββ1 is then

(X�1X1)
�1X�1X2ββ2 �	 
	 
,

where βqy in the rightmost vector is the partial effect of the qth variable in X2 on Y.

The bias in the kth coefficient in X1 is therefore

gk
�ββ2 ��

Q

q�1

gkqβqy, (6.5)

which is the sum of the products of the elements in the kth row of G with the ele-

ments in the vector ββ2. That is, there is bias in the kth coefficient whenever the kth

regressor in X1 is associated with the qth regressor in X2, net of the other regressors

in X1 (i.e., gkq is nonzero), and the qth regressor in X2 is a predictor of Y, net of the

other regressors in X2 (i.e., βqy is nonzero).

Bias in the Cross-Product Term

The bias in the Kth term in X1, the cross-product term, takes the same form as

equation (6.5): namely,

gk
�ββ2 ��

Q

q�1

gKqβqy.

This suggests that the cross-product term is biased whenever Xk and Xj interact in their

effects on some excluded regressor that also affects Y. (The same applies to quadratic

effects: They are biased whenever Xk has a quadratic effect on some excluded regres-

sor that also affects Y.) Although researchers are usually very careful to include con-

trols to preclude omitted-variable bias in the main effects of focus variables, they
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typically treat interaction terms as though they are impervious to the same phenome-

non. The foregoing shows that they are not. This suggests that analysts should also be

aware of potential confounds or suppressors when they are investigating interaction (or

quadratic) effects. Equally important, they may want to consider covariates that could

mediate these effects. That is, certain covariates may be the mechanisms that are

responsible for bringing about the interaction (or nonlinearity).

Example: Bias in Models for Faculty Salary

Table 6.5 presents the results of several models that examine the main effect of gen-

der and the interaction of gender with college in their effects on faculty salary for our

725 faculty members in the faculty salary dataset. Model 1 contains the main effects

of gender and college, both factors represented by dummy variables. Here we see

that the “firelands college” and “other departments” are significantly lower, and the

“business college” is significantly higher, in average salary than “arts and sciences,”

controlling for gender. We see also that holding college constant, female faculty

members’ salaries are, on average, $11,799 lower than males’. Model 2 adds the

block of four cross-product terms representing the interaction of gender with col-

lege. The test for the significance of the interaction is

F(4,715) ��
(.

(

2

1

3

�

7

.

2

2

�

37

.2

2

1

)/

3

7

0

1

)

5

/4
�� 5.671.
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Table 6.5 Omitted-Variable Bias in the Interaction of Gender and College in Their

Effects on Salary for 725 Faculty Members

Predictor Model 1 Model 2 Model 3 Model 4

Intercept 51793.000*** 52420.000*** �2313.589 �1803.918

Female �11799.000*** �14641.000*** �690.883 �927.114

Firelands �8552.429*** �9934.029*** 60.204 �561.723

Business 5179.857*** 6156.490*** 5309.482*** 6095.228***

Education �1057.819 �2603.822 �1173.765 �1295.265

Other departments �3840.726** �7588.529*** �960.892 �1724.595*

Female � Firelands 6142.285 2681.444

Female � Business �3974.483 �3230.073

Female � Education 4529.827 300.709

Female � other 

departments 10704.000*** 1908.234

Prior experience 348.234*** 335.251***

Years in rank 720.781*** 723.296***

Years at BG �146.391* �158.452*

Marketability 19638.000*** 19294.000***

Rank 9530.083*** 9546.362***

R2 .213 .237 .796 .798

* p � .05. ** p � .01. *** p � .001.



With a p-value of .00017, this is quite significant. Tests of the individual terms indi-

cate that the effect is driven largely by the interaction of gender with “other depart-

ments.” Ignoring the other interaction terms, the gender gap in salary can be written

�14641 � 10704 other departments. This suggests that the gender gap is �14641 in

“arts and sciences” compared to �3937 in “other departments.”

Missing from these models, however, are several key factors in salary determination

that are also related to both gender and college, as well as to their interaction. Model 3

adds the covariates prior experience, years in rank, years at BG, marketability, and

rank to model 1. Rank is an ordinal variable (being treated as continuous) with four val-

ues: 1 (“instructor/lecturer”), 2 (“assistant professor”), 3 (“associate professor”), and 4

(“professor”). Among other associations in the data, it is well known that gender is

strongly related to rank, with females generally occupying lower ranks than males (see,

e.g., Balzer et al., 1996; Boudreau et al., 1997). For this reason, we would expect the

gender effect to be at least somewhat diminished when rank is held constant. In fact, it

is diminished substantially when these additional covariates are added in model 3 and

is no longer significant. The effect of college is also reduced when adding the covari-

ates, as was seen in Chapter 4. Now only “business” is significantly different from “arts

and sciences” in average salary. More important, when the interaction terms are reen-

tered, in model 4, the block is no longer significant (F � 2.112, p � .077). The interac-

tion is apparently accounted for by the covariates. But which ones?

Subsequent analyses (not shown) reveal that both years at BG and years in rank

exhibit significant gender * college interaction effects. The pattern of relationships is

exhibited in Figure 6.3. The gender * college cross-product term has a positive effect

on salary net of the covariates and has positive effects on both years at BG and years

in rank. Years at BG has a negative effect on salary, while years in rank has a positive

effect. Of the two covariates, years in rank has a much stronger effect on salary, 723.296

versus �158.452 in model 4 (as these covariates are in the same metric, the magnitudes

of the unstandardized coefficients can be directly compared). What this means is that
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Figure 6.3 Model illustrating omitted-variable bias in the interaction of gender with membership in

other departments in their effects on faculty salary.



when these covariates are ignored, the positive indirect path from the cross-product to

salary through years in rank overrides the negative indirect path through years at BG to

combine with the positive direct path from the cross-product to salary. The result is a

much larger positive “direct” path that manifests itself as a significant interaction. In the

current case, since gender is causally antecedent to other variables, we would say that

the covariates mediate, or account for, the interaction effect. Specifically, the gender gap

in years in rank is virtually nil in “other departments” vis-à-vis “arts and sciences,” and

more years in rank translate into higher salaries. Therefore, the smaller gender gap in

salary in “other departments” versus “arts and sciences” (the interaction effect) is due

primarily to the smaller gender gap in years in rank in “other departments,” in combi-

nation with years in rank’s positive effect on salary.

REGRESSION DIAGNOSTICS I: INFLUENTIAL OBSERVATIONS

In the final sections of the chapter I take up the issue of regression diagnostics and

begin by outlining the discovery and treatment of influential observations. Influential

observations are cases that exert an “undue” amount of influence on the estimated

regression model. That is, these are one or more cases that are essentially “driving”

the results, in the sense that the estimated model might be substantially different

were these cases deleted. Interest in the discovery of such cases was stimulated

largely by the work of Belsley et al. (1980). Today most regression software offers

several tools that allow the analyst to comb the data for such observations.

Why is it important to know which cases are especially influential? There are a

couple of reasons. First, it is possible that an influential data point is a coding error, a

bogus response, or some other such anomaly that was not caught in the data-cleaning

process. We certainly don’t want this type of case to remain in the analysis as is. As

an example, in DeMaris (1997) I discovered a highly influential case in my investi-

gation of heightened sexual activity in violent intimate relationships, using the NSFH

data from wave 1. A key hypothesis in that work was that greater sexual activity in

violent romantic partnerships was due partially to the climate of fear created by male

violence. I argued that females in these liaisons were likely to accede to sexual activ-

ity more often than they preferred, out of fear of the consequences of displeasing the

partner. Given that this sexual activity would in a sense be coerced, due to women’s

fear of violence by a displeased partner, I expected an increase in depression among

such women. To marshal evidence for this, I tested whether sex in the presence of

male violence was associated with an increase in the female’s depressive symptoma-

tology. Although this finding was supported, I also found that the most influential case

in the data appeared to have a bogus value of 93 for the number of times the couple

had “had sex” in the past month. However, deleting this observation only strength-

ened the original finding. In this case the findings appeared robust to the influence of

the “rogue” observation. Such may not always be the case, however.

Another possibility is that the existence of a few very influential observations reveals

a flaw in the model specification that the researcher may be able to correct. A handy

example of this can be found by examining influence diagnostics for model 3 in
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Table 6.5. One will find that the three most influential faculty members in the dataset

have one element in common: They are all “eminent scholars.” These are professors

with particularly luminous reputations in their fields who had been recently hired

under a statewide program to enhance the quality of scholarship at Ohio universities.

Their salaries were, as a consequence, considerably higher than those of other faculty

with comparable rank and experience at BGSU. In this case, however, it is easy to

model this phenomenon by including in the model a dummy variable that identifies

these types of scholars (see, e.g., Balzer et al., 1996). Once the dummy is included,

these cases no longer exert such influence, because they are better fitted by the model.

If influential observations represent neither “bad” data nor flaws in model

specification, nothing further can be done about them. There is no rationale for delet-

ing legitimate data from the analysis, regardless of their influence. It may nevertheless

be fruitful to know that the results are largely due to perhaps only a few “interesting”

cases in the data. The analyst may then wish to be more cautious in attempting to gen-

eralize beyond the current sample until the findings can be replicated in other datasets.

At any rate, let’s consider some tools to use in the exploration of such cases.

Building Blocks of Influence: Outliers and Leverage

The degree to which a case has the ability to influence the regression analysis

depends on two characteristics: the extent to which it is an outlier, and the extent to

which it has leverage. An outlier is a case that is far from the regression trend exhib-

ited by the other data points. That is, if the regression of Y on the X’s is represented

by a “swarm” of points in p-dimensional space, an outlier is a point that is at a

noticeable distance from this swarm, in the Y direction. An outlier is typically

identified by having a comparatively large residual, indicating that its actual Y value

is nowhere near where it is “supposed to be” [i.e., the regression line (plane) that

runs through the swarm]. An example of an outlier can be seen in Figure 2.1, dis-

cussed earlier, showing the regression of the first exam score on the math diagnostic

for 213 students. It is the lowest point in this swarm of points and occurs in the mid-

dle of the plot, the point with an X score of 37 and a Y score of 17. It is also the point

having the largest residual in the data (in absolute value), or the largest standardized

residual (see also Figures 2.6 and 2.8).

However, being an outlier by itself does not give an observation the power to

affect the regression. The location of this particular outlier in the middle of the data

does not allow it to exert much “pull” on the regression line. We say that it lacks

leverage to affect the regression. An observation has leverage to the extent that its

covariate pattern is atypical. That is, its combination of X scores is far from the

centroid, or vector of means, of the X’s. For the data in Figure 2.1, in which there

is only one X, the centroid is 40.925, the mean on the math diagnostic. Since a

score of 37 is relatively close to this, the outlier has little leverage. The two obser-

vations with math diagnostic scores of 28 (at the far left in the figure), on the other

hand, have considerable leverage. However, their location in the Y direction is con-

sistent with the trend in the swarm of points—their Y scores are 37 and 45, respec-

tively. Hence one can imagine that the regression line would not change much
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were they omitted from the analysis. In other words, the two cases with diagnos-

tic scores of 28 have leverage but are not outliers and thus have little influence, too.

In sum, the only types of cases with real power to influence the analysis are out-

liers with leverage.

Measuring Influence

There are several measures available that can help the analyst identify potentially

influential observations. First, let’s consider simply how to find such observations.

Then we’ll take up the issue of assessing how much influence they exert.

Externally Studentized Residuals. A handy diagnostic for flagging influential

observations is based on the residual for a given case. Now, the residual by itself is

not always effective in signaling influence. The reason for this is that an outlier with

lots of leverage will typically cause the fitted line to be shifted toward it, thereby

reducing the magnitude of the residual. What is needed is a residual that is sensitive

both to an observation’s distance from the fitted line and to its degree of leverage.

The ideal measure is called the externally studentized residual (Myers, 1986) and

symbolized by ti. Its formula is

ti ��
s�i�

yi�

1���
ŷi

h�ii�.
�. (6.6)

The numerator of this measure is ei, the ordinary residual. The first product in the

denominator, s�i, is the standard error of estimate (i.e., the square root of MSE) from

a regression that leaves out the ith observation. If the ith observation reflects a model

misspecification, s�i is a better estimate of σ than is the square root of MSE using all

of the cases (Myers, 1986). The second term involves the hat diagonal, hii, discussed

earlier. As mentioned, hii is a measure of the leverage exerted by the ith case. For mod-

els with an intercept, 1/n � hii � 1, and hii represents the standardized squared distance

from the ith case’s covariate pattern to the centroid of the X’s (Myers, 1986). In SLR,

the formula for hii is

hii � �
1

n
���

(xi

s
�

xx

x�)2

�.

As is evident, hii reaches its minimum in SLR when X is at its mean. Similarly, hii

reaches its minimum in a MULR model when xi is equal to x��, the vector of covari-

ate means. A rough guideline for evaluating the amount of leverage exerted by an

observation is that hii’s greater than 2p/n represent cases with noticeable leverage.

In sum, ti is a kind of standardized residual adjusted for a case’s leverage. Large

values of ti will be observed whenever cases have large residuals and/or high lever-

age values, and ti will be especially high for cases with both properties. This statis-

tic also represents a formal test for outlier status. Under the null hypothesis that the

ith case is not an outlier, and given standard assumptions on the εi, including nor-

mality, ti follows a t distribution with n � p � 1 degrees of freedom, where p � K � 1

is the number of model parameters (Myers, 1986). This suggests that ti values of
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about 2 or higher signal outliers. (Note that ti is usually referred to as “rstudent” in

software packages such as SAS.)

Dffitsi. Several measures are available to tap the degree of influence exerted by the

ith case on various regression results. The influence on the fitted values is best tapped

by a measure called Dffitsi:

Dffitsi ��
y

s

ˆi

�

�

i �
ŷi,

h�
�

ii�
i

�. (6.7)

The numerator of (6.7) is the difference between the fitted value for the ith case with

and without the ith case in the analysis (i.e., ŷi,�i is the fitted value for the ith case based

on a regression that omits the ith case). What about the denominator? The standard

error of prediction (i.e., the standard error of the ith fitted value) is σ�x�i
��(X��X�)��1x�i�,

and recall that hii � xi
�(X�X)�1xi. Therefore, the denominator is the estimated standard

error of the ith fitted value. Dffitsi can therefore be intepreted as the estimated number

of standard errors the fitted value changes when the ith case is omitted from the regres-

sion. A size-adjusted cutoff for Dffitsi, above which the value suggests noticeable

influence, is 2�p�/n� (Belsley et al., 1980).

Dfbetasji. The influence of the ith case on the jth parameter estimate is tapped by

Dfbetasji:

Dfbetasji ��
b

s

j

�

�

i�
bj

c

,�

j�j�
i

�. (6.8)

The numerator of (6.8) is the difference in the jth parameter estimate with and with-

out the ith case in the regression. The denominator is the estimated standard error of

the jth coefficient, since cjj is the jth diagonal element of (X�X)�1. Dfbetasji is inter-

preted as the number of standard errors the jth parameter estimate changes when the

ith case is omitted from the regression. A recommended cutoff for Dfbetasji is 2/�n�.

Cook’s Di. When there are many regressors in the model and n is large, it may be

very tedious to scrutinize all of the Dfbetasji, particularly when no single parameter

estimate is of paramount importance. With this in mind, a convenient summary

measure of the influence of the ith case on the collection of parameter estimates is

Cook’s distance measure, Di:

Di � . (6.9)

As b�i represents the vector of parameter estimates based on a regression that omits

the ith case, (6.9) is the standardized distance between the vector of parameter esti-

mates with and without the ith case in the regression. It may be easier to get an intu-

itive feeling for Di by regarding its expression in the SLR model:

Di,SLR � .
n(b0 � b0,�i)

2
� 2nx�(b0 � b0,�i)(b1 � b1,�i) � (b1 � b1,�i)

2�x2

�������
2MSE

(b � b�i)�(X�X)(b � b�i)
���

pMSE
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The larger the difference in parameter estimates from regressions with and without

the ith case, the larger is Di. In the extreme opposite case in which there is no change

in the parameter estimates after deleting the ith case, Di is clearly zero. Cook’s Di

has been described as an “F-like statistic” with degrees of freedom p and n � p

(Myers, 1986). However, the usual critical values of F used for hypothesis testing are

not applicable here. Neter et al. (1985) suggest instead that the 50th (rather than, say,

the 95th) percentile of the F distribution should be the cutoff for declaring a case

influential. In practice, it may be prudent to investigate any case more closely if its

Di value is markedly larger than all others (see, e.g., DeMaris, 1997).

Covratioi. Finally, a measure that assesses the influence of the ith case on the esti-

mated variance–covariance matrix of parameter estimates is Covratioi:

Covratioi ��
� s2

�

� s
i(
2

X

(X

��

�

i

X

X

)
�

�

i)
1

�

�

1�
�. (6.10)

Recalling that s2 is MSE, the estimate of σ2, this represents the ratio of the determinants

of the estimated variance–covariance matrix without, versus with, the ith case in the

regression. The rationale for this measure is that the determinant of the variance–

covariance matrix is a scalar measure of the generalized variance of the regression

coefficients (Graybill, 1976; Myers, 1986). All else equal, a smaller generalized vari-

ance implies regression coefficients that have greater precision. A value of Covratioi

greater than 1 suggests that the ith data point brings about a reduction in the general-

ized variance (the determinant is smaller with the ith case in the analysis), while a value

less than 1 implies that the ith case increases the generalized variance. Belsley et al.

(1980) suggest that influential observations will be indicated by Covratioi being either

greater than 1 � 3p/n or less than 1 � 3p/n. [It should be mentioned here that although

the diagnostic measures are all based on “omitting the ith case from the regression,” all

measures are computed in one pass through the data. In other words, all measures can

be calculated from one regression run. There is no need to actually run the regression

n times, each time omitting the ith case. See Myers (1986) for details.]

Illustration of Influence Diagnosis

As an example of the evaluation of influence, I examine the regression of the first exam

score on the math diagnostic score, college GPA, and attitude toward statistics for 214

students in my introductory statistics classes. The results are shown in Table 6.6. Panel

A presents regression results, and panel B presents diagnostics for the four most

influential observations in the dataset. Cutoffs for all of the diagnostic measures are

shown in parentheses. For example, since p is 4, the cutoff for leverage is 2(4)/214 �

.037. The cutoff for Dffitsi is 2�4�/2�1�4�� .273, the cutoff for Dfbetasi is 2/�2�1�4��

.137, and so on.

The single most influential observation is case number 214. Its ti value is over 4, and

its Dffits, Covratio, and D values are all the most extreme of any of the cases. With the

exception of the coefficient for college GPA, case 214’s influence on the fitted values

and the parameter estimates is especially noteworthy. This particular student, the same
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one responsible for the outlier in Figure 2.1, represents somewhat of an atypical data

point. He or she is fairly strong on the regressor values—with math diagnostic, college

GPA, and attitude scores of 37, 3.00, and 11, respectively—but surprisingly weak on

the exam, with a score of 17. On the other hand, his or her leverage is below the cutoff,

with a value of only .021. Nevetheless, the combination of what leverage there is plus

the case’s outlier status adds up to a fair amount of influence.

Panel A shows the regression estimates with (ball) and without (b�214) this case in

the analysis. To get an intuitive feeling for the coefficient influence measures, regard

the Dfbetasji for, say, the coefficient for the math diagnostic score. The value of .433

suggests that the coefficient should drop about four-tenths of a standard error when

case 214 is omitted from the regression. The estimated standard error of the

coefficient is .279 without this case in the analysis. Thus, the actual drop is (2.151 �

2.031)/.279 � .430, which is about what was predicted. Even deleting this most

influential case, however, there is little substantive change in the model. All regres-

sors have significant, positive effects on the first exam score. In fact, as the diagnos-

tics indicate, no case has the ability to alter any of the coefficients by more than

one-half of a standard error. In this example, then, the degree of influence exerted by

any given case is less than dramatic. For case number 214, even though he or she

exhibits a relatively unusual pattern of data values, there would be no compelling

reason to delete his or her data from the analysis.
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Table 6.6 Effect of Influential Observations on the OLS Regression for Score on the

First Exam for 214 Students in Introductory Statistics

Panel A:

Predictor ball b�214

Intercept �52.892*** �47.879***

Math diagnostic 2.151*** 2.031***

College GPA 12.929*** 12.872***

Attitude toward statistics .374* .441*

R2 .432 .446

Panel B: Influential Observations

Diagnostic (Benchmark) No.58 No.92 No.158 No.214

ti ( 	 2 in absolute value) �2.936 �2.649 �2.220 �4.287

hii ( 	 .037) .017 .025 .050 .021

Dffitsi ( 	 .273 in absolute value) �.381 �.425 �.511 �.628

Dfbetas0i ( 	 .137 in absolute value) �.275 .191 �.461 �.437

Dfbetas1i ( 	 .137 in absolute value) .179 �.143 .477 .433

Dfbetas2i ( 	 .137 in absolute value) .159 �.093 �.044 .032

Dfbetas3i ( 	 .137 in absolute value) .105 �.273 �.019 �.417

Covratioi (� .944 or 	 1.056) .882 .916 .978 .743

Cook’s Di ( 	 .84) .035 .044 .064 .091

* p � .05. ** p � .01. *** p � .001.



REGRESSION DIAGNOSTICS II: MULTICOLLINEARITY

Multicollinearity was touched on briefly in Chapter 3, in which I defined the prob-

lem and suggested some easy remedies. In this section I consider the topic in much

greater technical detail and also discuss alternatives to OLS when the problem can-

not easily be resolved. Recall that multicollinearity is a condition in which one or

more of the independent variables is almost exactly determined by the other regres-

sors. Another way of saying this is that there are one or more “near linear depend-

encies” among the columns of X, that is, among the regressors in the X matrix

(Myers, 1986, p. 76). A complete understanding of the problem requires that we dis-

sect the X matrix—in a manner of speaking. However, let’s work with the centered

and scaled matrix X* (discussed earlier), since this is the basis for the standardized

regression coefficients, from which the unstandardized versions are easily recovered.

We will refer to X* as the design matrix. Remember that X*�X* is Rxx, the correla-

tion matrix for the X’s.

Linear Dependencies in the Design Matrix

I begin by reminding the reader of the definition of linear dependence with respect

to the columns of a matrix. In Section V.G of Appendix A I defined the linear

dependence of the columns of a matrix A as follows: If there is a nonnull vector x

such that Ax = 0, then provided that no column of A is null, the columns of A are lin-

early dependent. Let’s see how this principle applies here. I will show that a linear

dependence in the design matrix is associated with a zero eigenvalue of the matrix.

Since the K � K matrix X*�X* is symmetric, it can be spectrally decomposed

(See Section V.H of Appendix A for an explanation of spectral decomposition).

Recall that the spectral decomposition of a symmetric matrix A allows us to write

the matrix as

A ��λjuju�j,

where λj is the jth eigenvalue of A and uj is the jth eigenvector for j � 1, 2, . . . , K.

This is equivalent to writing A � UDλU�, where U is the matrix whose columns are

the normalized eigenvectors of A and Dλ is the diagonal matrix of eigenvalues of A

(verification that these expressions for A are equivalent is left as an exercise). Pre-

and postmultiplication of A by U� and U, respectively, thereby produces U�AU � Dλ

(since U, being an orthogonal matrix, has the property that U�U � UU� � I). This is

called the eigenvalue decomposition of A (Myers, 1986). Now substitute X*�X* for

A, and we have that U�(X*�X*)U � Dλ, where λ now refers to the eigenvalues of

X*�X*, and U to the matrix of its normalized eigenvectors.

Recall from Appendix A that a matrix has an inverse only if its columns are lin-

early independent, in which case its determinant is not zero. Moreover, its determi-

nant is the product of its eigenvalues. So one or more zero eigenvalues imply that the

determinant is zero and are therefore indicative of exact linear dependence among the

columns of the matrix. Similarly, eigenvalues that are near zero reflect near linear
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dependence. Hence, a near-zero eigenvalue of X*�X* is indicative of near linear

dependence among the regressors. This is easier to see if we take advantage of the

eigenvalue decomposition of X*�X*:

U�(X*�X*)U � � �(X*�X*)[u1 u2
. . . uK]

�� �
�� �.

Now, if one of the eigenvalues, say λK, is near zero, we have that

u�K(X*�X*)uK� (X*uK)�(X*uK) � 0.

Notice that since X*uK is a vector (its dimensions are K � 1), (X*uK)�(X*uK) is

essentially the sum of squares of all elements of X*uK. And the sum of squares of

all elements can be near zero only if the vector itself is approximately the zero vec-

tor. In that X*uK is a linear combination of the columns of X*, this implies that the

columns of X* are approximately linearly dependent, according to the definition of

linear dependence given above. Moreover, the elements of uK reveal the nature of the

dependency, since they indicate the weights for the linear combination of the

columns of X* that is approximately zero.

For example, Dunteman (1989) presents a regression, for 58 countries, of educa-

tional expenditures as a percent of the gross national product (Y) on six characteris-

tics of countries: population size (X1), population density (X2), literacy rate (X3),

energy consumption per capita (X4), gross national product per capita (X5), and elec-

toral irregularity score (X6). The spectral decomposition of the design matrix reveals

one relatively small eigenvalue of .047, with the following associated eigenvector:
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u�� (.005 .097 �.065 �.660 .729 �.152). The largest weights are for X4

and X5, suggesting that these two variables are somewhat linearly dependent. Ignoring

the other elements of this vector, we have �.660X4� .729X5  0, or X4  1.105X5. In

fact, the correlation between these two regressors is .93.

Consequences of Collinearity

In Chapter 3 I suggested that two major consequences of multicollinearity were an

inflation in the variances of OLS estimates and an inflation in the magnitudes of the

coefficients themselves. To understand how collinearity causes these problems, we

rely once again on the spectral decomposition of X*�X*. First, consider the matrix

expression for the sum of the variances of the standardized coefficients. We begin

with the expression (bs
� ββs)�(bs

� ββs):

(bs
� ββs)�(bs

� ββs) � [bs
1 � βs

1 bs
2 � βs

2 . . . bs
K � βs

K]� ��� �bs
k � βs

k�2,

and therefore,

E[(bs
� ββs)�(bs

� ββs)] ��E(bs
k � βs

k)
2
��V(bs

k),

this last term being the sum of the variances of the standardized coefficients. Now

the variances of the coefficients are on the diagonal of the matrix σ2
*
(X*�X*)�1. The

sum of the diagonal elements of this matrix is, of course, its trace, and the trace of a

square matrix is the sum of its eigenvalues. Moreover, the eigenvalues of the inverse

of a matrix are simply the reciprocals of the eigenvalues of the matrix itself (the

proof of this is left as an exercise for the reader). Therefore, the eigenvalues of

(X*�X*)�1 are simply of the form 1/λk. Thus,

�V(bs
k) � tr[σ2

*
(X*�X*)�1] � σ2

*
tr[(X*�X*)�1] ��

K

i�1

�
σ
λ

2
*

i

�, (6.11)

and since

E[(bs
� ββ s)�(bs

� ββ s)] ��V(bs
k) ��

K

i�1

�
σ
λ

2
*

i

�,

we have that

E[bs
�bs

� bs
�ββ s

� ββ s
�bs

� ββs
�ββs] ��

K

i�1

�
σ
λ

2
*

i

�,

or

E(bs
�bs) �E(bs

�)ββ s
� ββ s

�E(bs ) � ββs
�ββs

��
K

i�1

�
σ
λ

2
*

i

�,

bs
1 � βs

1

bs
2 � βs

2

�

�

�

bs
K � βs

K
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or

E(bs
�bs) � ββ s

�ββ s
��

K

i�1

�
σ
λ

2
*

i

�. (6.12)

Equation (6.12) shows that the sums of squares of the coefficient estimates are heav-

ily upwardly biased when there is multicollinearity, as indexed by one or more small

eigenvalues. This means that the coefficients will have a tendency to be too large in

magnitude if the regressors are collinear (Myers, 1986).

Why are the coefficient variances inflated? The spectral decomposition of

(X*�X*)�1 is

(X*�X*)�1
��

K

i�1

�
λ

1

i

�ui u�i � �
λ

1

1

�u1u�1� �
λ

1

2

�u2u�2 � . . . � �
λ

1

K

�uK u�K. (6.13)

Now, to simplify things somewhat, let’s consider what this matrix looks like for three

regressors, focusing only on the diagonal elements. In this case (X*�X*)�1 is

�
λ

1

1

�� �[u11 u21 u31]� �
λ

1

2

�� �[u12 u22 u32]� �
λ

1

3

�� �[u13 u23 u33]

�� ��� ��� �
�� � .

The diagonals of σ∗
2 (X*�X*)�1 represent the coefficient variances. So, for example,

the variance of b1
s is then equal to

σ∗
2��

u

λ

2
1

1

1
� � �

u

λ

2
1

2

2
�� �

u

λ

2
1

3

3
��. (6.14)

This expression should make it clear that collinearity, in the form of a small eigen-

value, will tend to inflate the variance of a given coefficient. In fact, a given near lin-

ear dependency has the potential to affect the variances of all of the coefficients; but

�
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1
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there is a “catch.” Suppose that X2 and X3 are highly correlated but both are close to

orthogonal to X1. Then most likely λ3 will be fairly small, but so will u13, since the

high-magnitude weights will be u23 and u33. In this case, the contribution to V(b1
s) of

the last term inside the parentheses will be negligible. This suggests that the vari-

ables responsible for the near linear dependencies in the data are the ones whose

variances are primarily affected by collinearity.

Diagnosing Collinearity

There are three major tools in the diagnosis of collinearity. Expression (6.14) is associ-

ated with two of them. The first is the VIF, introduced in Chapter 3. The VIF tells us

how many times the variance of a coefficient is magnified as a result of the collinearity

compared to the ideal case of perfectly orthogonal regressors (Myers, 1986). It turns

out that the VIF’s are the diagonal elements of Rxx
�1 (Neter et al., 1985); hence, the term

inside the parentheses in (6.14) is the VIF for b1
s (or for b1, since the VIF is the same for

the unstandardized coefficient as it is for the standardized one). As mentioned previ-

ously, VIF’s of about 10 or higher indicate collinearity problems. The second diagnos-

tic allows us to discern which variables are, in fact, approximately linearly dependent.

This is the variance proportion, or pji:

pji ��
σ
V
*
2u

(b
ij
2

i
s

/

)

λj
�.

This is interpreted as the proportion of the variance of bi attributable to the collinear-

ity characterized by λj. For example, from (6.14) we have

p31��
σ*

V

2u

(
1

b
3

2

1
s

/

)

λ3
�.

Typically, high variance proportions associated with the same eigenvalue for two or

more regressors indicate that those regressors are approximately linearly dependent.

The third useful diagnostic is called the condition number of the (X*�X*)�1 matrix.

It is the ratio of the largest to the smallest eigenvalue and is typically symbolized by

φ. Condition numbers greater than 1000 are indicative of collinearity problems in the

matrix. Often, what is reported as the condition number by software (e.g., SAS) is

the square root of φ, in which case the cutoff is about 32. According to Myers (1986),

a complete collinearity diagnosis uses the condition number to assess the seriousness

of linear dependencies in the design matrix, the variance proportions to identify

which variables are involved, and the VIF’s to determine the amount of “damage” to

individual coefficients.

Illustration

Table 6.7 presents collinearity diagnostics for data reported in Neter et al. (1985) on

20 healthy females aged 25–34. The response variable is body fat, while the regres-

sors are triceps skinfold thickness (X1), thigh circumference (X2), and midarm cir-

cumference (X3). Although not exactly typical “social” data, this example was chosen
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primarily because it illustrates the symptoms and warning signs of extremely collinear

data. The OLS regression of body fat on the three independent variables is shown in

the first column of panel A of the table. A couple of symptoms of collinearity are

already evident here. To begin, the sign of the coefficient for thigh circumference is

counterintuitive: We would expect a greater thigh circumference to predict more, not

less, body fat. Also, the standardized coefficients are outside the range [ �1, 1]. The

VIF’s confirm that there is a collinearity problem that affects all of the coefficients:

All VIF’s are well over 10—by a factor of at least 10!

Panel B shows the eigenvalues of the X�X matrix as well as its condition num-

bers (i.e., �φ� for the ratio of the largest eigenvalue to each successively smaller one)

and the variance proportions. In this case, we are using the decomposition of X�X

instead of X*�X*. Either matrix is useful for diagnosing collinearity, although Myers

(1986) recommends using X*�X* if the intercept is not of special interest. At any

rate, the smallest eigenvalue is associated with a condition number of 677.372.

Bearing in mind that 32 is the cutoff, this is quite large indeed. This suggests that

there is a serious linear dependency in the matrix. The variance proportions indicate

that all three regressors, as well as the intercept, are tied together in a near linear

dependency.

A somewhat more realistic example, at least by social science criteria, is shown

in Table 6.8, which presents collinearity diagnostics for a regression using the NSFH

data employed for Table 6.4. This time I regress couple disagreement on several con-

trols plus the variables current male- and female age, male- and female age at the

beginning of the union, (shown simply as male- and female “age at union” in the
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Table 6.7 OLS, Ridge, and Principal Components Regression Results, and

Collinearity Diagnostics for Body Fat Data from 20 Women

Panel A: Regression Results

OLS Ridge PC

Predictor Estimator bs VIF Estimator Estimator

Intercept 117.085 � 7.403 � 12.205

Triceps skinfold thickness 4.334 4.264 708.843 .555 .422

Thigh circumference � 2.857 � 2.929 564.343 .368 .492

Midarm circumference � 2.186 � 1.561 104.606 � .192 � .125

R2 .801***

Panel B: Collinearity Diagnostics

Variance Proportions

λ No. λ Value �φ� pj0 pj1 pj2 pj3

1 3.968 1.000 .0000 .0000 .0000 .0000

2 .021 13.905 .0004 .0013 .0000 .0014

3 .012 18.566 .0006 .0002 .0003 .0069

4 .000009 677.372 .9990 .9985 .9996 .9917

*** p � .001.



table), and union duration. In a complete dataset with no missing values, these vari-

ables would be exactly linearly dependent since current age � age at union � union

duration. However, it is typical in survey data that answers are not recorded for a

number of cases. In this instance, I used mean substitution for the missing data.

Filling in the missing data with imputed values nullifies the exact linear dependency,

making it possible to estimate a regression. Again, the first column of panel A shows

the OLS results. This time none of the standardized coefficients is outside the range

[ �1, 1]. However, although the coefficient is not significant, the sign of the effect of

female age is somewhat counterintutive, since older couples typically have fewer

disagreements. The VIF’s suggest that at least three of the coefficient variances are

affected by collinearity: those for male age, female age, and union duration. The

coefficients for male- and female age at the beginning of the union have variances

that are somewhat inflated, but not by enough to cause concern.

Panel B again shows condition numbers and variance proportions. However,

this time I have only shown diagnostics connected with the two smallest eigenval-

ues. The smallest eigenvalues are associated with condition numbers of 31.197 

and 41.329, which are just large enough to signal that there are some approximate
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Table 6.8 OLS, Ridge, and Principal Component Regression Results, and

Collinearity Diagnostics for Regression of Couple Disagreement on Demographic

Predictors for 7273 Couples in the NSFH

Panel A: Regression Results

OLS Ridge PC

Predictor Estimator bs VIF Estimator Estimator

Intercept 15.077*** 14.995 14.994

Cohabiting couple .083 .005 1.187 .109 .132

Biological children 1.306*** .147 1.575 1.242 1.332

Stepchildren .975*** .079 1.303 .923 1.007

First union �.552*** �.063 1.605 �.484 �.510

Minority couple .022 .002 1.100 .041 .027

Male age (b6) �.011 �.036 10.184 �.024 �.028

Female age (b7) .003 .009 16.863 �.021 �.033

Male age at union (b8) �.048 �.093 5.245 �.032 � .029

Female age at union (b9) �.059 �.107 6.615 �.034 �.022

Union duration (b10) �.075 �.258 26.583 �.040 �.025

R2 .155***

Panel B: Partial Collinearity Diagnostics

Variance Proportions

λ No. λ Value �φ� pj6 pj7 pj8 pj9 pj10

10 .007 31.197 .734 .121 .653 .128 .051

11 .004 41.329 .186 .836 .141 .685 .914

*** p � .001.



linear dependencies among the regressors. The variance proportions associated

with eigenvalue number 10 indicate a correlation between male age and male age

at union. Those associated with eigenvalue number 11 suggest that female age,

female age at union, and union duration are somewhat linearly dependent. These

are all precisely the variables that would be exactly collinear were it not for 

missing data.

Alternatives to OLS When Regressors Are Collinear

Several simple remedies for collinearity problems were discussed in Chapter 3,

including dropping redundant variables, incorporating variables into a scale, employ-

ing nonlinear transformations, and centering (for collinearity arising from cross-prod-

uct terms). However, there are times when none of these solutions are satisfactory. For

example, in the body fat data, I may want to know the effect of, say, triceps skinfold

thickness on body fat, net of (i.e., controlling for) the effects of thigh circumference

and midarm circumference. Or, in the NSFH example, I may want to tease out the sep-

arate effects of male- and female age, male- and female age at the beginning of the

union, and union duration, on couple disagreement. None of the simple remedies are

useful in these situations. With this in mind, I will discuss two alternatives to OLS:

ridge regression and principal components regression. These techniques are some-

what controversial (see, e.g., Draper and Smith, 1998; Hadi and Ling, 1998).

Nevertheless, they may offer an improvement in the estimates of regressor effects

when collinearity is severe.

First we need to consider a key tool in the evaluation of parameter estimators: the

mean squared error of the estimator, denoted MSQE (to avoid confusion with the MSE

in regression). Let θ be any parameter and θ̂ its sample estimator. Then MSQE(θ̂)�

Eθ̂(θ̂ � θ)2. That is, MSQE(θ̂) is the average, over the sampling distribution of θ̂, of the

squared distance of θ̂ from θ. All else equal, estimators with a small MSQE are pre-

ferred, since they are by definition closer, on average, to the true value of the parame-

ter, compared to other estimators. It can be shown that MSQE(θ̂) � V(θ̂)� [B(θ̂)]2,

where B(θ̂) is the bias of θ̂(defined in Chapter 1). Both ridge and principal components

regression employ biased estimators. However, both techniques offer a trade-off of a

small amount of bias in the estimator for a large reduction in its sampling variance.

Ideally, this means that these techniques bring about a substantial reduction in the

MSQE of the regression coefficients compared to OLS.

At the same time, both techniques have a major drawback, particularly in the

social sciences, where hypothesis testing is so important: The extent of bias in the

regression coefficients is unknown. Therefore, significance tests are not possible. To

understand why, consider the test statistic for the null hypothesis that βk� 0. For sim-

plicity, suppose that the true variance of bk is known and that n is large, so that t tests

and z tests are equivalent. The test relies on the fact that bk is unbiased for βk. Now

the test statistic is

z ��
bk �

σb

β

k

k,0
�,
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where βk,0 is the null-hypothesized value of βk, which in this case is zero. Therefore,

if βk is truly zero, that is, the null hypothesis is true, then

E(z) � E��
bk �

σb

β

k

k,0
�� � �

σ
1

bk

�[E(bk) � βk,0]� �
σ
1

bk

�(0 � 0) � 0 (6.15)

and

V��
bk �

σb

β

k

k,0
�� � �

σ
1

bk
2�V(bk) � �

σ

σ
b

b

k
2

k
2� � 1. (6.16)

That is, the test statistic has the standard normal distribution under the null hypoth-

esis. Therefore, a value of 2 implies a sample coefficient that is 2 standard deviations

above its expected value under the null, and the probability of this is less than .05.

But suppose that bk is biased and its expected value is unknown. Then z would still

be normally distributed and (6.16) would still hold under the null hypothesis. But

(6.15) is no longer necessarily valid, since the expected value of the estimator is no

longer necessarily zero under the null. This means that the exact distribution of the

test statistic under the null hypothesis is no longer known, and the probability of get-

ting, say, a value of 2 cannot be determined. Given this limitation, these techniques

are useful only to the extent that the values of the coefficients themselves, rather than

whether they are “significant,” are of primary importance.

Ridge Regression. In ridge regression, we add a small value, called the ridge con-

stant, to the diagonals of the design matrix prior to computing R�1
xx rxy. What does this

do for us? To answer this, first consider the design matrix when there is no collinear-

ity. Suppose that we have a simple model with only two regressors and the correla-

tion between them (r12) is .5. Suppose further that the true model for the

standardized variables is Yz � .25Z1 � .15Z2 � ε*, where ε* is uncorrelated with the

regressors. This implies that the correlation of Y with Z1 is .325 and with Z2 is .275

(as the reader can verify using covariance algebra). If we have sample data that

reflect population values perfectly, the standardized coefficient estimates are

bs
� R�1

xx rxy � � �
�1

� � � � �� � � � �.

The OLS estimator gives us the true coefficients. Now suppose that we perturb rxy

slightly to simulate sampling variability. Arbitrarily, I add .01 to the first correlation

and subtract .01 from the second. Now we have

bs
� R�1

xx rxy � � �� � � � �.

The OLS estimator is slightly off but still pretty close to the true coefficients.

On the other hand, let’s say the correlation between the regressors is .995. Using

the same true regression parameters, the correlation of Y with Z1 is now .39925 and

.27

.13

.335

.265

1.3333 �.6667

�.6667 1.3333

.25

.15

.325

.275

1.3333 �.6667

�.6667 1.3333

.325

.275

1 .5

.5 1
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with Z2 is .39875. As before, with sample data that exactly reflect population values,

we have

bs � R�1
xx rxy � � �

�1

� �
� � �� � � � �.

Once again, the OLS estimator gives us the true coefficients. However, now when we

perturb rxy in the same fashion—adding and subtracting .01—we get

bs
� R�1

xx rxy � � �� � � � �.

In this case, both standardized coefficients are not only way off but also outside their

conventional range of [ �1, 1]. Moreover, the coefficient for Z2 is of the wrong sign.

The problem is that the diagonal elements of R�1
xx no longer dominate the matrix as they

did when r12 was .5. In the former case the ratio of the absolute value of the diagonal to

the off-diagonal element was 2. In the current case it is 1.005. So the ridge-regression

approach adds a constant, δ, where 0 � δ � 1, to the diagonal entries of Rxx in order to

make the diagonal of R�1
xx more dominant. After experimenting with different constants

(more on choosing δ below), I decided to use a value of .15. The estimator is now

bs
rr � R�1

xx rxy � � �
�1

� �
� � �� � � � �,

where “rr” stands for “ridge regression.” Notice, first, that the ratio of diagonal to

off-diagonal elements of R�1
xx has increased to 1.156. More important, the coefficient

estimates are now fairly close to the true parameter values.

In general, ridge regression calls for replacing (X*�X*) with (X*�X*� δ I). The

estimator is then bs
rr � (X*′X* � δ I)�1rxy. The ridge estimator has substantially

smaller variance than the OLS estimator, since the sum of the variances of the ridge

coefficients is (Myers, 1986)

�V(bs
k,rr) ��

K

i�1

�
(λ

σ

i �

*
2λ

δ
i

)2�,

which can be compared to the comparable expression for OLS shown in equation

(6.11). On the other hand, the bias of the estimator is easily seen. Because the OLS

estimator can be written

bs
� Rxx

�1
�
1

n
� Z�yz � Rxx

�1
�
1

n
� Z�(Zββs

� εε*) � Rxx
�1

�
1

n
� Z�Zββs

� Rxx
�1

�
1

n
� Z�εε*,

its expected value is

E(bs) � Rxx
�1

�
1

n
� Z�Zββs

� Rxx
�1

�
1

n
� Z�E(εε*) � Rxx

�1Rxxββs
� ββs,

.2521

.1199

.40925

.39975

3.4589 �2.9927

�2.9927 3.4589

.40925

.38875

1.15 .995

.995 1.15

2.25

�1.85

.40925

.38875

100.2506 �99.7494

�99.7494 100.2506

.25

.15

.39925

.39875

100.2506 �99.7494

�99.7494 100.2506

.39925

.39875
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showing that the OLS estimator is unbiased. Comparable operations for the ridge

estimator give us

E(bs
rr) � (Rxx � δδI)�1Rxxββ

s

 ββs.

Choosing δδ . Choosing the appropriate value of the ridge constant is more art than

science. There are a number of criteria to use [see Myers (1986) for a description of

several], but all revolve around plotting some criterion value against a succession of

values for δ and choosing the δ that produces the “best” criterion. One relatively

straightforward method is to use the ridge trace for each parameter estimate. This is

a plot of the estimate against a succession of values for δ ranging from 0 to 1. Recall

that the coefficients tend to be wildly inflated in magnitude and perhaps of the wrong

sign under collinearity. The ridge traces for the different coefficients reveal how the

coefficients shrink toward more tenable values as δ is increased until, after some

value of δ, call this δ*, there is little additional change in the coefficients. The value

of δ* is then chosen as the best ridge constant to use.

Ridge Regression with the Body Fat and NSFH Data. Figures 6.4 through 6.7

present the ridge traces for the intercept and the three regressors in the body fat data.
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Figure 6.4 Ridge trace for the equation intercept in the regression model for body fat.



Figure 6.5 Ridge trace for the coefficient of triceps skinfold thickness (b1) in the regression model for

body fat.

Figure 6.6 Ridge trace for the coefficient of thigh circumference (b2) in the regression model for

body fat.



Each of the plots suggests that the coefficients stabilize right around δ � .02, and

hence, this is the value chosen for the ridge constant. Notice in Figure 6.6, in partic-

ular, that the coefficient for thigh circumference changes sign from negative to pos-

itive very quickly as δ increases away from zero, and then remains positive. As

expected, this suggests that a greater thigh circumference is associated with more,

rather than less, body fat. The ridge regression estimates are shown in the “ridge

estimator” column of panel A of Table 6.7. These are the unstandardized estimates

and so can be compared to the OLS estimates in the first column. All have been

reduced markedly in magnitude, consistent with the expected reduction in the

coefficients once the multicollinearity problem has been addressed.

The ridge traces for male- and female age, male- and female age at the beginning

of the union, and union duration for the NSFH data are shown in Figures 6.8 to 6.12.

As these are the most problematic variables in the analysis, I choose a value of δ
based on an attempt to stabilize their effects. In this case, all of the graphs point

toward the value of .05 for δ, so this is the ridge constant that was chosen. Notice that

the coefficient for female age changes from positive to negative as δ moves away from

zero. Again, a negative effect was expected theoretically. Of the five plots, Figure

6.12, showing the trend in the coefficient for union duration, appears to evince the

most dramatic change. The ridge estimates are shown in the “ridge estimator” column
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Figure 6.7 Ridge trace for the coefficient of midarm circumference (b3) in the regression model for

body fat.



Figure 6.8 Ridge trace for the coefficient of male age in the regression model for couple disagreement.

Figure 6.9 Ridge trace for the coefficient of female age in the regression model for couple disagreement.



Figure 6.10 Ridge trace for the coefficient of male age at union in the regression model for couple dis-

agreement.

Figure 6.11 Ridge trace for the coefficient of female age at union in the regression model for couple

disagreement.



of panel A of Table 6.8. Again, these are the unstandardized coefficients. In this case,

there is some shrinkage in all of the coefficients, compared to the OLS estimates, but

the changes are nowhere near as pronounced as in Table 6.7. The most notable change

is the aforesaid reversal of sign for the effect of female age.

Principal Components Regression. Principal components regression, also called

regression on principal components, gets its name from the fact that the n scores on

the K independent variables can be linearly transformed into a comparable set of

scores on K principal components. However, the principal components have the

property that they are orthogonal to each other. Each principal component is a

weighted sum of all K of the original variables. Moreover, the principal components

contain all of the variance of the original variables, but the first J � K principal com-

ponents typically account for the bulk of that variance. The variance of the jth com-

ponent is equal to the jth eigenvalue of Rxx. So components associated with small

eigenvalues contribute very little to the data and as a result, can be omitted from the

analysis. As the small eigenvalues are associated with linear dependencies, this

omission also greatly reduces the impact of those linear dependencies on the design

matrix. Standard treatments of principal components regression (e.g., Jolliffe, 1986;

Myers, 1986) usually develop the technique by writing the regression model in terms

of the principal components.
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Figure 6.12 Ridge trace for the coefficient of union duration in the regression model for couple dis-

agreement.



Instead, I employ an alternative, but equivalent development that is more consistent

with the notion of altering the correlation matrix, as discussed above with respect to

ridge regression. Once again, we rely on the spectral decomposition of the design

matrix to understand the procedure. Recall that the design matrix can be decomposed

as Rxx� �λj uj u�j , which is the sum of K rank 1 matrices, each of the form λjuju�j (that

these matrices only have rank 1 is left as a proof for the reader). However, if λj is small,

the contribution of λj uj u�j to Rxx is relatively insignificant. But it is at the same time the

contribution that is associated with a linear dependency, so it is also troublesome to

include (as we see below). In principal components regression we simply leave this

contribution out of Rxx (and its inverse, Rxx
�1) when calculating the regression estimates.

To see the benefits of this, let’s return to our simple two-regressor example used ear-

lier. For the design matrix in which X1 and X2 are correlated .995, the eigenvalues are

1.995 and .005, with corresponding eigenvectors u�1� [.7071 .7071] and u�2� [�.7071

.7071]. The spectral decomposition of Rxx shows that it is the sum of two parts:

λ1u1u�1� 1.995� �[.7071 .7071] � � � (6.17)

and

λ2u2u�2� .005� �[�.7071 .7071] � � �. (6.18)

The reader can easily verify that the sum of the rightmost matrices in (6.17) and

(6.18) is Rxx. But notice that the matrix in (6.17), which I refer to as the reduced cor-

relation matrix and denote as Rred, almost perfectly reproduces Rxx, while the con-

tribution of the matrix in (6.18) is almost negligible. However, the decomposition of

Rxx
�1, following equation (6.13), shows that its two parts are

�
λ

1

1

� u1u1′ � .5013� �[.7071 .7071] � � � (6.19)

and

�
λ

1

2

� u2u2′ � 200� �[�.7071 .7071] � � �. (6.20)

Adding the rightmost expressions in (6.19) and (6.20) gives us Rxx
�1, as shown above.

Here it is clear that the contribution of the second eigenvalue, in the form of its

inverse, and associated eigenvector are what “blow up” Rxx
�1. Therefore, in con-

structing “Rxx
�1,” we simply omit the matrix in (6.20). I’m using quotation marks here

since the reduced form of Rxx
�1, which I now denote R�

red, is not actually the inverse

of Rred (which can easily be verified by noting that R�
red Rred 
 I). In fact, Rred is not

invertible, since it is a 2 � 2 matrix with rank 1, as is immediately evident—there is

only one independent vector present. In general, Rred is not invertible because it is

K � K but is the sum of fewer than K rank 1 matrices. As the rank of a summed

matrix is no greater than the sum of the ranks of its component matrices (Searle,

1982), the rank of Rred is always less than K, and therefore Rred cannot have an

100 �100

�100 100

�.7071

.7071

.2506 .2506

.2506 .2506

.7071

.7071

.0025 �.0025

�.0025 .0025

�.7071

.7071

.9975 .9975

.9975 .9975

.7071

.7071
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inverse. Consequently, I refer to R�
red in (6.19) as the pseudoinverse of Rred. The stan-

dardized principal components coefficients are therefore

bs
pc � R�

redrxy � � �� � � � �.

Although these are not quite as close to the true values of .25 and .15 as are the ridge

estimates, they represent a vast improvement over the OLS estimates.

In general, then, the principal components estimator of ββs is of the form bs
pc �

R�
redrxy, where

R�
red ��

J

i�1

�
λ

1

i

�uiui�

and J � K. Some authors recommend using the percentage of variance accounted for

by the J retained components as a guide to how many components to omit (e.g., Hadi

and Ling, 1998). However, typically, dropping the last component, which is associ-

ated with the smallest eigenvalue, will be sufficient. As with ridge regression, the

bias of the principal components estimator is easy to see, since

E(bs
pc) � E(R

_

red rxy) � R
_

red �
1

n
� Z� E(yz) � R

_

red �
1

n
� Z�Zββs

� R
_

redRxxββ
s

 ββs.

Body Fat and NSFH Data, Revisited. The last column in panel A of Tables 6.7 and

6.8 presents the unstandardized principal components estimates for the body fat and

NSFH data, respectively. Notice that the principal components estimates are quite

close to the ridge regression estimates, and both are substantially different from the

OLS estimates for the body fat data. For the NSFH data, all of the estimates, whether

OLS, ridge, or principal components, are fairly similar. Perhaps the key substantive

difference between OLS and the other estimators are that the latter have more intu-

itive signs for the effect of thigh circumference in the body fat data and for the effect

of female age in the NSFH data. Again, the primary limitation with the latter esti-

mators is that inferences to the population parameters cannot be made. On the other

hand, the ridge and principal components estimators are probably closer than the

OLS coefficients to the true values of the parameters. It should be mentioned that not

all software makes these two techniques available to the analyst. SAS offers both

estimators as options to the OLS regression procedure, invoked using the keywords

RIDGE (for ridge regression) and PCOMIT (for principal components regression).

Concluding Comments. Although I confine my discussion of influential observa-

tions as well as collinearity problems and remedies to this chapter, these issues apply

to all generalized linear models. Influence diagnostics have been devised for tech-

niques such as logistic regression (Pregibon, 1981) and are included in such software

packages as SAS. Collinearity problems can plague any model that employs multiple

regressors; however, not all procedures offer collinearity diagnostics. On the other

hand, multicollinearity is strictly a problem in the design matrix and does not depend

on the nature of the link to the response. Therefore, it can always be diagnosed with

.2

.2

.40925

.38875

.2506 .2506

.2506 .2506
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an OLS procedure that provides collinearity diagnostics, which most of them do. One

simply needs to code the dependent variable in some manner that is consistent with

the use of OLS. Versions of ridge and principal components regression have been

developed for logistic regression (see, e.g., Barker and Brown, 2001; Schaefer, 1986),

suggesting that such techniques should become more widely available for other gen-

eralized linear models in the future.

EXERCISES

6.1 Suppose that we have a population of N � 4 cases. Let X be a matrix with

columns x�1 � [1 2 4 8] and x�2� [2 1 3 4]. Suppose further that

σx1
� 2.681 and σx2

� 1.118. Also, let C be the centering matrix with dimen-

sions C44 � I44 � �
1

4
�J44.

(a) Show that Z � CXD�1/2 is the matrix of standardized variable scores for

these four cases, where D�1/2 is a diagonal matrix with elements 1/σxi
.

(b) Calculate the correlation matrix using Rxx� (1/n)Z�Z.

6.2 Prove that the inverse of Dci
is D1/ci

for i � 1, 2, . . . , n.

6.3 Show that A ��λjuju�j � UDλU�.

6.4 Prove that if λj are the eigenvalues of A, 1/λj are the eigenvalues of A�1.

(Hint: Start with the spectral decomposition of A and then take the inverse of

both sides of the equation.)

6.5 Let rx1x2
� .675 and show that VIF1 and VIF2 are the diagonal elements of R�1

xx.

6.6 Prove that MSQE(θ̂) � V(θ̂) � [B(θ̂)]2. (Hint: Start with the definition of MSQE;

let Eθ̂ � E(θ̂) for economy of notation, then subtract and add this term from

the expression inside parentheses and expand the expression.)

6.7 Prove that the matrix λuu� has only rank 1, for any scalar λ and any vector u.

6.8 Verify that, in general, for any square matrix A, tr(cA) � c tr(A), for any

scalar c.

6.9 For the following data:

Case X Y Case X Y

1 �2 2 6 6 12

2 3 3 7 9 5.5

3 3 6 8 9 8

4 6 4.5 9 15 2

5 6 7
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Do the following using a calculator:

(a) Calculate hii for all nine cases.

(b) For case 9, calculate ti, dffitsi, dfbetasji for the slope of the SLR and

Cook’s Di. Note that another formula for Cook’s D is (Neter et al.,

1985)

Di � �
pM

e2

S
i

E
� �

(1 �

hi

h
i

ii)
2� .

Also, for dfbetasji, use σ̂b1
from the regression that omits case 9.

6.10 Let Z1 � z11 z2
11 and let Z2 � [z21 z22] represent matrices of standardized

variable scores (i.e., assume that Z2
11 is standardized after being created from

the square of Z11) and suppose that the following model (in standardized

coefficients) characterizes the data:

Yz � .25Z11 � .01Z2
11 � .3Z21 � .25Z22 � εy,

Z21 � .2Z2
11 � ε21,

Z22 � .15Z2
11 � ε22,

Cov(Z11,Z
2
11 ) � .8,

Cov(Z11,εy) � Cov(Z11,ε21) � Cov(Z11,ε22)

� Cov(Z2
11,εy) � Cov(Z2

11,ε21) � Cov(Z2
11,ε22) � 0.

(a) If the analyst, instead, estimates yz � Z1ββs
1 � υ, where υ� Z2ββs

2 � εεy, give

the value of E(bs
1). [Hint: First, note that E(bs

1) � ββs
1 � r�1

11r12ββs
2, where

r�1
11r12β

s
2 is the bias in bs

1 and

r11 � � � and

r12 � � �.

Then use covariance algebra to derive all unknown correlations (recall that the

covariance between standardized variables is their correlation), and do the

appropriate matrix operations.]

(b) Interpret the nature of the bias in the sample quadratic term.

6.11 Let Z1� [z11 z12 cp], where CP � Z11Z12, and let Z2� [z21 z22]. Suppose

further that all variables, including CP, are standardized. (Note: Normally, we

don’t standardize quadratic or cross-product terms; rather, they are formed as

products of standardized variables; see Aiken and West, 1991. However, we

Cov(Z11,Z22)

Cov(Z2
11,Z22)

Cov(Z11,Z21)

Cov(Z2
11,Z21)

Cov(Z11,Z
2
11)

1

1

Cov(Z11,Z
2
11)
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do so here to simplify the covariance algebra.) Suppose that the following

model (in standardized coefficients) characterizes the data:

Yz � .25Z11� .15Z12� .10CP � .35Z21� .3Z22� εy,

Z21 � �.2CP � ε21,

Z22 � �.1CP � ε22,

Cov(Z11,Z12) � .45,

Cov(Z11,CP) � .85,

Cov(Z12,CP) � .90,

and the covariances of Z11, Z12, and CP, with all equation errors equal zero.

(a) If the analyst, instead, estimates Yz � Z1ββs
1 � υυ, where υ � Z2ββs

2 � εεy, give

the value of E(bs
1). (Hint: Follow the hint for Exercise 6.10.)

(b) Interpret the nature of the bias in the sample estimate of the coefficient of

the cross-product term (i.e., CP).

The following information is for Exercises 6.12 and 6.13: Suppose that the true

model for Y is β1Z1� β2Z2� ε, where all observed variables are standardized. 

Suppose, further, that the sample correlation matrix is Rxx � � � and 

the sample vector of correlations of the regressors with Y is rxy �

� �. Note also that the eigenvalues of Rxx are λ1� 1.997 and λ2� .003, while 

the eigenvectors are u1 � � � and u2 � � �.

6.12 Estimate ββs
� � � using OLS. Then perform a ridge regression using the

following values for the ridge constant: .05, .10, .15, .20, and .25. You will

have five different pairs of coefficient estimates. What appears to be the best

ridge constant based on the changes in the coefficients?

6.13 Conduct a principal components regression for the data in Exercise 6.12.

The following information is for Exercises 6.14 and 6.15: In the model

y*� X*ββs
� εε*, the spectral decomposition of the 4 � 4 correlation matrix, Rxx ,

results in the following:

Dλ � � �,

0

.

0

.00091806

.

.

.0689

0

0

.9996

� � �

� � �

2.9305

0

.

0

βs
1

βs
2

�.7071

.7071

.7071

.7071

.7192

.6786

.997

1

1

.997
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U � � �.

6.14 (a) Give φ for Rxx.

(b) Give Rxx.

(c) Give R�1
xx. [Hint: for parts (b) and (c) you may want to use a matrix program

such as SAS IML or MATLAB to perform the necessary calculations.]

6.15 (a) Show the decomposition of V(bs
4) after the fashion of equation (6.14),

assuming that V(ε∗) � σ2
*.

(b) Give the variance proportions p13, p23, p33, and p43.

6.16 For the following data:

Assume that the model for the squared errors is ε2
� σ2 exp(δ0 � δ1X)u, and

using a calculator, find the weights to be used in a WLS regression of Y on X.

6.17 Using the couples dataset, perform a WLS regression of COITFREQ on

MALEAGE via an OLS regression of �w� COITFREQ on �w� and �w�
MALEAGE, as discussed in the chapter (remember to specify a regression

through the origin). Confirm that the resulting coefficients for �w� and for

MALEAGE are the intercept and slope in the last column of Table 6.1. (Note:

The solution is also in this column.)

6.18 Use the kids dataset to test for heteroscedasticity in the regression of PER-

MISIV on ADVENTRE, FSTYLE1, MSEXATT, and FSEXATT. Do both

White’s test and the Breusch–Pagan test. Also, obtain the White het-

eroscedasticity-robust estimates of the OLS standard errors (using appropri-

ate software).

6.19 Use the kids dataset to estimate a WLS regression for the model in Exercise

6.18, employing an exponential function of the predictors to model the error

variance (as in Exercise 6.16). Be sure to provide the correct R2 for the WLS

analysis.

6.20 Using the students dataset, test whether the error variance for the model

EXAM1 � β0 � β1 SCORE � β2 COLGPA � β3 STATMOOD � ε is different

Case X Y Case X Y

1 0 0 4 10 12.5

2 0 5 5 15 7.5

3 10 2.75 6 15 27.5

�.3199

.8055

�.4988

.0014

.7549

�.1015

�.6480

�.0017

.0061

.0093

.0082

�.9999

.5725

.5837

.5756

.0137
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for males and females. Then test for gender differences in the model’s

coefficients using both OLS and WLS approaches. Missing imputation:

Substitute the parenthetical values for missing data on each variable indi-

cated: SCORE (40.9358974) and COLGPA (3.0827835).

6.21 Using the students dataset, and the results from Exercise 6.20, test for gender

differences in EXAM1 scores at college GPAs of 2.5, 3.0, and 3.5 employing

the WLS approach, in which the weights are functions of each gender’s error

variance.

For Exercises 6.22 to 6.25, use the faculty salary dataset and note that “the model”

refers to the regression of AYSALARY on YRDG, YRBG, PRIOREXP, R1, R2, R4,

YRRANK, SALFAC, GRAD, ADMIN, and EMINENT. This model should be regarded

as having heuristic rather than substantive value. First, YRDG, YRBG, and PRIOR-

EXP in ordinary circumstances would be exactly linearly dependent, since PRIOR-

EXP � YRDG � YRBG. However, in this case, due to inaccuracies in either recall or

recording of dates, some values of PRIOREXP were negative. These were simply

recoded to zero, a procedure which, as in the case of missing imputation, nullifies

the exact linear dependency. Second, it is probably not realistic to attempt to esti-

mate the impact of each of YRDG, YRBG, and PRIOREXP while holding the other

two variables constant, given how much information these variables have in com-

mon. Nevertheless, teasing out the separate impacts of each of these factors might

be of interest.

6.22 Examine the influence diagnostics for the model. Describe the characteristics

of the most influential observation(s) in the data. Is there any justification for

dropping any of the cases from the analysis?

6.23 Examine collinearity diagnostics for the model. Which variables appear to be

tied together by near-linear dependencies? How severe is the collinearity?

Which coefficients are affected, and by how much?

6.24 Using appropriate software, perform a ridge regression for the model. Use the

ridge traces of YRDG, YRBG, and PRIOREXP to choose the best ridge con-

stant.

6.25 Using appropriate software, perform a principal components regression for

the model, leaving out the last component of R�1
xx. Which set of coefficients is

more appealing: those from the ridge regression or those from the principal

components regression? Why?
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C H A P T E R 7

Regression with a Binary Response

CHAPTER OVERVIEW

In the social sciences some of the more interesting response variables are binary, or

dichotomous. In certain instances, such variables arise due to the crudeness of meas-

urement. For example, the NSFH asks respondents involved in marriages or cohab-

iting relationships whether they and their partner experienced any “physical

arguments” in the past year, with possible responses of “yes” and “no.” Although

physical aggression might be treated as a continuous variable if it were measured

more precisely, we are limited to a binary variable in this case, due to the measure-

ment strategy. Other variables are naturally binary, such as whether someone voted

in the last presidential election, or whether a woman experienced a pregnancy prior

to age 18. In either case, employing a linear regression model is not the optimum

strategy with a binary response. Hence, in this chapter we consider some alternative,

nonlinear regression models that are especially suited to dichotomous dependent

variables. I begin by considering the problems encountered in using linear regression

for such situations. I then introduce the two most popular alternatives, logistic and

probit regression, along with the theoretical rationale for these techniques. Details of

interpretation, estimation, and inference are covered, with analogies to counterparts

in linear regression. I then introduce two other, less known variants on binary

response models, the scobit and complementary log-log models. Although not as

easily interpreted as the logit model, these techniques overcome some of the limita-

tions of logit and probit. Because of its interpretational advantages, primary empha-

sis is given in this chapter to the logistic regression model. The chapter closes with

a discussion of assessing both discriminatory power and empirical consistency for

this model.
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248 REGRESSION WITH A BINARY RESPONSE

LINEAR PROBABILITY MODEL

Suppose that we have a binary response, Yi, coded 1 if the ith case is in the category

of interest, and 0 otherwise. (The coding of a binary response is actually arbitrary,

but dummy coding is especially convenient, as will become apparent.) Recall that

the linear regression model for the conditional mean of Y, given x, is

E(Yi) � β0 � β1Xi1 � β2Xi2 � . . . � βKXiK.

However, the mean of a dummy coded variable is the proportion of people in the cat-

egory of interest, or equivalently, the probability of being in the interest category,

denoted π. Letting πi be the probability of being in the interest category given the ith

covariate pattern, the linear regression model for the conditional mean of a binary

response is

πi � β0 � β1Xi1 � β2Xi2 � . . . � βKXiK. (7.1)

Because the probability is being modeled as a linear function of the parameters, this

is referred to as the linear probability model (LPM) (Aldrich and Nelson, 1984;

Long, 1997). The regression coefficients are interpreted in terms of the probability

of being in the interest category on Y. Hence, β1 represents the change in the proba-

bility for each unit increase in X1, net of the other covariates, and so on.

Example

Employing questions from the NSFH on partners’ violence toward each other, I

categorized 4095 married and cohabiting couples surveyed between 1987 and

1994 according to whether or not either partner had been violent toward the other

during that period. These data are in the violence dataset. A total of 555 couples,

or 13.55%, had experienced intimate violence. Of interest here is the extent to

which couple violence is a function of several couple characteristics, including

whether they were cohabiting, as opposed to legally married (cohabiting); the

duration of the relationship, in years, as of the initial survey (relationship dura-

tion); whether either partner in the couple was a minority (minority couple); the

female’s age at the start of the union ( female’s age at union); the degree to which

the male was socially or emotionally isolated from his or his partner’s immediate

kin (male’s isolation); the degree of economic disadvantage exhibited by the cou-

ple’s neighborhood of residence at the time of the initial survey (economic disad-

vantage); and whether either partner had a problem with alcohol or drugs

(alcohol/drug problem). The continuous variables relationship duration, female’s

age at union, male’s isolation, and economic disadvantage are all centered.

Although the couple’s violence profile is, in actuality, a three-category variable,

here I simply distinguish the violent from the nonviolent. In Chapter 8 I consider

the three-level response in greater detail. To keep things relatively simple, issues

of sample selectivity and other critical explanatory variables are omitted in what



follows. For the larger project on which this example is based, the reader should

consult DeMaris et al. (2003).

The OLS column in Table 7.1 presents the results of regressing violence on cou-

ple characteristics using the LPM. The F test suggests that the model is significant

as a whole, and the R2 indicates that it accounts for about 5% of the variation in vio-

lence. Several factors have significant effects in expected directions. Consistent with

past research (Stets, 1991), cohabitors are more likely than marrieds to be violent.

The coefficient of .161 means that, net of other effects, cohabitors’ probability of
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Table 7.1 OLS, Logit, and Probit Estimates for the Regression of Violence on Couple

Characteristics

Model

Predictor Estimate OLS Logit Probit

Intercept b .117*** �2.151*** �1.247***

σ̂b .007 .066 .034

t or z 17.750 �32.854 �37.058

Relationship duration b �.004*** �.046*** �.023***

σ̂b .0004 .005 .002

t or z �9.460 �9.299 �9.352

Cohabiting b .161*** .810*** .485***

σ̂b .037 .241 .145

t or z 4.360 3.363 3.340

Minority couple b .023 .221* .122*

σ̂b .012 .108 .059

t or z 1.850 2.042 2.082

Female’s age at union b �.003*** �.027*** �.014***

σ̂b .001 .007 .004

t or z �3.520 �3.588 �3.538

Male’s isolation b .002* .020* .011*

σ̂b .001 .008 .004

t or z 2.440 2.541 2.492

Economic disadvantage b .003** .023* .012*

σ̂b .001 .009 .005

t or z 2.590 2.483 2.329

Alcohol/drug problem b .158*** 1.029*** .589***

σ̂b .022 .156 .092

t or z 7.060 6.611 6.429

F or model χ2 (7 df ) 29.130*** 195.394*** 191.860***

R2 .048

R2
L .060 .059

R2
G .047 .049

R2
GSC .085 .084

R2
MZ .127

∆̂ .051

* p � .05. ** p � .01. *** p � .001.



being violent is estimated to be .161 higher than for married people. Each additional

year that the couple has been together is estimated to reduce the probability of vio-

lence by .004. The other effects are interpreted similarly.

Problems with the LPM

Although OLS is adequate for a quick exploration of the nature and significance of

predictor effects, there are several difficulties with the LPM. To begin, the assump-

tion of a model that is linear in the parameters is problematic. The conditional mean

is a probability and is therefore confined to the [0,1] interval. The linear predictor,

on the other hand, has no such constraints. For the linear predictor, �kβ kXik, to be

bounded by 0 and 1, it is necessary a priori to constrain the β’s to be very small, par-

ticularly when the X’s exhibit considerable variability [see Aldrich and Nelson

(1984) for specific examples of this]. Without such constraints, probabilities would

fall outside their logical range. This is evident in the OLS estimates in Table 7.1. If

we calculate the estimated probability of violence for a “low-risk” couple, that is, a

married nonminority couple without alcohol or drug problems that is 2 standard

deviations above the mean on relationship duration (SD � 12.823) and female’s age

at union (SD � 7.081), 2 standard deviations below the mean on male’s isolation

(SD � 6.296), and 1 standard deviation below the mean on economic disadvantage

(SD � 5.128), we have π̂� .117 � .004(2)(12.823) � .003(2)(7.081) � .002(2)

(�6.296) � .003(�5.128) � � .069, which is clearly an impossible value.

On the other hand, for the sake of argument, let’s suppose that the linear model

in equation (7.1) is the true model for the probability of interest. First, as long as the

mean structure—in this case, the structural model for πi—is specified correctly, the

parameter estimates will be consistent (Cameron and Trivedi, 1998). Nonetheless,

recall that estimation via OLS assumes that the errors have zero mean and constant

variance across all covariate patterns. Now, the model for an individual observation

is Yi � πi � εi. The errors can take on only two possible values: εi � 1 � πi for cases

in the interest category and εi � �πi for cases in the other category. As long as the

mean of the errors at each covariate pattern is zero, the OLS estimates will be unbi-

ased. To see that this holds here, note that the probability function f(ε) for the errors

is as follows: ε � 1 �π with probability π (i.e., the probability that Y � 1) and

ε � �π with probability 1 � π (the probability that Y � 0). Thus, the mean of the

errors is

E(ε) ��
ε

εf(ε) � (1 � π)π � (�π)(1 � π) � 0.

What about the constant-variance assumption? The variance of the errors is

V(ε) � E(ε � E(ε))2
��

ε
[ε � E(ε)]2f(ε) ��

ε
ε2f(ε)

� (1 � π)2π � (�π)2 (1 � π) � π (1 � π)[(1 � π) � π]

� π(1 � π). (7.2)

250 REGRESSION WITH A BINARY RESPONSE



In that π is a function of the explanatory variables, as shown by equation (7.1), the

implication of expression (7.2) is that the errors vary with the X’s and are therefore

inherently heteroscedastic. The consequences of this, of course, are that the OLS

estimators are no longer those with the smallest sampling variance and that OLS

estimates of the standard errors of coefficient estimates are biased. We could correct

these particular problems by using WLS estimation (Aldrich and Nelson, 1984).

However, the preferred approach is to employ a nonlinear probability model, which,

as we will see, makes more theoretical sense.

NONLINEAR PROBABILITY MODELS

Theoretically, the idea that probabilities are linear in explanatory variables is not par-

ticularly reasonable. Suppose that we are interested in modeling the effect of salary

offers on the probability of changing jobs. For someone who is “on the fence” on the

subject (i.e. someone with a 50–50 chance of changing jobs), a small increment 

in salary might be enough to entice one to switch to the new job. On the other hand,

for those with either very low or very high probabilities of changing jobs, small

differences in salary between the current and alternative positions probably will have

little effect on their intentions. In other words, the effects of explanatory variables on

the probability of an event should be stronger among those with probabilities in the

middle range, but weaker when probabilities are near 0 or 1. Linear models, in con-

trast, assume that a predictor has the same effect on the response, regardless of the

initial level of the response.

Latent-Variable Motivation of Probit and Logistic Regression

This idea can be developed more formally by assuming that our binary response is a

proxy for a latent continuous variable, or latent scale, which follows a linear regres-

sion model. That is, assume that there is an unobserved, continuous variable, Y*
i, such

that

Y*
i ��β kXik � εi,

and assume further that the εi are independent random variables having a symmetric

distribution with zero mean and constant variance across values of x. What we

observe, on the other hand, is a binary indicator, Yi, that takes on the value 1 when-

ever Y *
i is greater than some threshold value, c, and that takes on the value 0 other-

wise. For convenience, it is usually assumed that c is 0. Then the probability that Yi

is 1 is

P(Yi � 1) � P(Y*
i � 0) � P��β kXik � εi � 0�

� P�εi � ��β kXik � (7.3)
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� P�εi ��βkXik� (7.4)

� F��βkXik�. (7.5)

The terms (7.3) and (7.4) are equal because the distribution of ε is assumed to be

symmetric. (For example, the probability that a standard normal variable is greater

than �z is the same as the probability that it is less than z.)

Expressions (7.4) and (7.5) imply that the probability of Y being 1 can be modeled

as a distribution function of ε, denoted F(ε). The two distributions most often employed

are the standard normal distribution and the standard logistic distribution. Figure 7.1

depicts the standard normal (probit) and standard logistic (logit) densities. They are both

bell-shaped curves, but the logistic density has greater spread. The variances of these

densities are 1 for the standard normal and π2/3 (approximately equal to 3.29) for the

standard logistic. The formulas for these functions are as follows. The standard normal

density function (which uses the special symbol, φ) for a variable X, is

φ(x) � �
�

1

2�π�
�exp���

1

2
�x2�, (7.6)
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whereas the standard logistic density (which uses the symbol λ) is

λ(x) ��
[1 �

ex

e

p

x

(

p

x

(

)

x)]2�. (7.7)

Recall that the distribution function for a variable X, F( x), is the probability that

X � x. This is just the area under the curve to the left of x. Hence, the standard nor-

mal distribution function, represented by the special symbol, Φ, is

Φ(x) ��x

�∞
�
�

1

2�π�
�exp���

1

2
�u2�du,

where the integration symbol (�x
�∞

) indicates the area under the stated function

between negative infinity and x. This integral has no closed-form solution and must

be obtained by actually summing areas under the standard normal curve. However,

tables of areas under the standard normal curve can easily be used to find F( x) given

any value of x. The standard logistic distribution function, denoted with the symbol

Λ, is

Λ(x) ��
1 �

ex

e

p

x

(

p

x)

(x)
�,

which, unlike the standard normal, does have a closed form.

Figure 7.2 depicts the standard normal and standard logistic distribution func-

tions. It is evident that both are S-shaped curves that range from 0 to 1, as is logical

for a probability. The curves are quite similar, except that the logistic curve approaches

both 0 and 1 more gradually than does the normal. Indeed, it is not necessary to pose

a latent variable as underlying the model. We could simply choose a distribution

function as our model for probability due to its property of remaining within the [0,1]

interval for any value of x. Notice also that for both curves, the rate at which the

probability changes with x is minimal when the probability is either very small or

very large. As mentioned above, this is also a theoretically desirable property of a

probability function.

At this point, to simplify matters, let zi � �βkXik. Then the probit model for

P(Yi � 1) � πi, following expression (7.5), is

πi � Φ(zi) ��zi

�∞
�
�

1

2�π�
�exp���

1

2
�u2�du, (7.8)

and the logistic regression model for πi is

πi � Λ(zi) ��
1 �

ex

e

p

x

(

p

z

(
i)

zi)
�. (7.9)

It should be clear that these are both nonlinear functions of the parameters (i.e., the

betas). Nevertheless, both models can be linearized, using the appropriate link func-

tion. Recall from Chapter 1 that in generalized linear models, which encompass both

probit and logit, the link function is a transformation of the mean of Y (in this case,

π) that equals the linear predictor, �βkXik. The linear form of the probit model in

equation (7.8) is, therefore,
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Φ�1(πi) ��βkXik, (7.10)

where Φ�1(πi), called the probit, or normit, link, is the zi such that F(zi) � πi. [For

example, Φ�1(.025) � �1.96, since Φ(�1.96) � .025.] The linear form of the logis-

tic regression model in equation (7.9) uses the logit link (as derived in Chapter 1)

ln�
1 �

πi

πi

� ��β kXik . (7.11)

Equations (7.10) and (7.11) now resemble ordinary regression models in that the

response variables can take on any value in the real numbers, just as can the linear

predictor on the right-hand side. The coefficients, rather than indicating the effects

of explanatory variables on Yi, indicate the effects on the probit or logit link. Below

I consider more intuitive interpretations of the β’s, especially in the logit model.

Estimation

Both probit and logit models are constructed by assuming that a particular density

underlies the data. Hence, these models are typically estimated using maximum
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likelihood rather than least squares. We proceed as follows. If πi is the probability

that Yi equals 1, and 1 � πi is the probability that Yi � 0, we can write the discrete

density function for the Yi as

f(yi) � πyi
i (1 � π i)

1�yi.

This function gives us the probability that Y takes on either value in its range f(1) �

π1
i(1 � π i)

1�1 � π i and f(0) � π0
i (1 � π i)

1�0 �1 � π i. Now, the probability of observ-

ing y, a particular collection of ones and zeros, is

f(y) ��
n

i�1
π yi

i (1 � π i)
1�yi. (7.12)

Substituting (7.8) for πi in (7.12) results in the likelihood function for the probit

model:

L(ββ � y,x) ��
n

i�1
Φ(zi)

yi[1 � Φ(zi)]
1�yi.

Substituting (7.9) into (7.12) gives us the likelihood for the logit model:

L(ββ � y,x) ��
n

i�1
Λ(zi)

yi[1 � Λ(zi)]
1�yi.

The idea behind maximum likelihood estimation is to find the β values that max-

imize the likelihood function, or equivalently, the log of the likelihood function. For

example, the log of the likelihood function for logistic regression is

�(ββ � y,x) ��
n

i�1
	yi ln�1�

ex

e

p

x

(

p

x

(

i

x

�ββ
i
�

)

ββ)
�� (1 � yi)ln�1�ex

1

p(xi
�ββ)

�
, (7.13)

where xi
�ββ represents �βkXik (see Appendix A, Section V.J). To find the coefficient

estimates for the logit model, one takes the first partial derivatives of (7.13) with

respect to each of the β’s, sets them to zero, and then solves the set of simultaneous

equations for b. (The same idea applies to the probit model.) As this is a system of

nonlinear equations, an iterative procedure is required [see Long (1997) for details].

The matrix of second derivatives of (7.13) with respect to the parameters is called

the Hessian (the same applies to probit), and the inverse of the negative of the

expected value of the Hessian is the variance–covariance matrix for the parameter

estimates (Long, 1997). The estimate of this matrix provides the estimated standard

errors of the coefficients. With large samples, as noted in Chapter 1, MLEs tend to

be unbiased, consistent, efficient, and normally distributed.

Inferences in Logit and Probit

There are several inferential tests of interest in probit and logit that are analogous to

those in linear regression. First, the logit/probit counterpart to the global F test in lin-

ear regression is the likelihood-ratio chi-squared test, also called the model chi-squared.

Let L0 denote the likelihood function evaluated at the MLE for an intercept-only

NONLINEAR PROBABILITY MODELS 255



model, and L1 denote the likelihood function evaluated at the MLEs for the hypoth-

esized model. Then the model χ2 is

model χ2
� �2 ln �

L

L1

0
�

� �2 ln L0 � (�2 ln L1).

The log of L1 can be computed by plugging the coefficient estimates into the probit

or logit likelihood and then logging the result. In particular, ln L1 in logistic regres-

sion would be computed by evaluating (7.13) with ββ̂ substituted in place of ββ. For 

the logistic regression of violence on the couple characteristics shown in Table 1,

�2 ln L1 is 3054.132.

In binary response models, the likelihood evaluated under the MLE for an intercept-

only model has an especially simple form. In the absence of any covariates in the

model, the MLE for πi is just p, the sample proportion in the interest category on Y. L0

is, therefore,

L0 ��
n

i�1
pyi(1 � p)1�yi � pn1(1 � p)n0,

where n1 is the number of cases with Y equal to 1 and n0 is the number of cases with

Y equal to 0. For the violence example, the null likelihood is

L0 � (.1355)555(1 � .1355)3540,

and thus the log-likelihood is

ln L0 � 555 ln(.1355) � 3540 ln(1 � .1355) � �1624.763,

implying that

�2 ln L0 � �2(�1624.763) � 3249.526.

The model χ2 for the logistic regression of violence is, therefore, 3249.526 �

3054.132 � 195.394. Under the null hypothesis that the β’s for all of the explanatory

variables equal zero, the model χ2 is distributed as chi-squared with K degrees of

freedom, where K, as always, indicates the number of regressors in the model. In this

case, the df is 7, and the result is very significant, suggesting that at least one of the

regression coefficients is not zero.

Tests for nested models are accomplished with a nested χ2 test, analogous to the

nested F test in OLS. If model B is nested inside model A, a test for the validity of

the constraints on A that lead to B is

nested χ2
� model χ2 for A � model χ2 for B,
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which under the null hypothesis that the constraints are valid is chi-squared with

degrees of freedom equal to the number of constraints imposed (e.g., the number of

parameters set to zero).

As the coefficient estimates are normally distributed for large n, we use a z test to

test H0: βk � 0. The test is of the form

z � �
σ̂
b

b

k

k

�,

where σ̂bk
is the estimated standard error of bk. The square of z is what is actually

reported in some software (e.g., SAS), and z2 is referred to as the Wald chi-squared since

it has a chi-squared distribution with 1 degree of freedom under H0. This test is asymp-

totically equivalent to the nested χ2 that would be found from comparing models with

and without the predictor in question. However, the reader should be cautioned that

Wald’s test can behave in an aberrant manner when an effect is too large. In particular,

the Wald statistic shrinks toward zero as the absolute value of the parameter estimate

increases without bound (Hauck and Donner, 1977). Therefore, when in doubt, the

nested χ2 is to be preferred over the Wald test for testing individual coefficients.

Confidence intervals for logit or probit coefficients are also based on the asymp-

totic normality of the coefficient estimates. Thus, a 95% confidence interval for βk in

either type of model takes the form bk 	 1.96σ̂bk
. This formula applies generically to

any coefficient estimates that are based on maximum likelihood estimation and is

relevant to all the models discussed from this point on in the book. I therefore omit

coverage of confidence intervals in subsequent chapters.

More about the Likelihood. As the likelihood function is liable to be relatively

unfamiliar to many readers, it is worth discussing in a bit more detail. It turns out

that this function taps the indeterminacy in Y under a given model, much like the

total and residual sums of squares do, in linear regression. By indeterminacy, I

mean the uncertainty of prediction of Y under a particular model. For example, in

OLS, if the “model” for Y is a constant, µ, estimated in the sample by y�, the inde-

terminacy in Y with respect to this model is TSS � the sum of squares around y�. This,

of course, is the naive model, which posits that Y is unrelated to the explanatory vari-

ables. TSS measures the total amount of indeterminacy in Y that is potentially

“explainable” by the regression. On the other hand, SSE, which equals the sum of

squares around ŷ, is the indeterminacy in Y with respect to the hypothesized model.

If the model accounts perfectly for Y, then Y � ŷ for all cases, and SSE is zero.

In linear regression, we rely on the squared deviation of Y from its predicted value

under a given model to tap uncertainty. The counterpart in MLE is the likelihood of

Y under a particular model. The greater the likelihood of the data, given the param-

eters, the more confident we are that the process that generated Y has been identified

correctly. Under the naive model, the process that generated Y is captured by p, and

�2 ln L0 reflects the total uncertainty in Y that remains to be explained. The indeter-

minacy under the hypothesized model is �2 ln L1. What happens if Y is predicted
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perfectly by the model? Let’s rewrite the likelihood function as a general expression,

with π̂i denoting the predicted probability that Y � 1 for the ith case. We begin with

(7.12), but substitute π̂i, and write it as follows. Let 1 represent the set of cases with

Y equal to 1, and 0 the set of cases with Y equal to zero. Then we have

L(ββ � y,x) ��
y∈1

π̂i �
y∈1

(1 � π̂i ).

Now if Y is perfectly predicted, π̂i � 1 when Y � 1 and π̂i � 0 when Y � 0. We then

have

L(ββ � y,x) ��
y∈1

1�
y∈1

(1 � 0) � 1,

in which case �2 ln(1) � 0. In other words, the closer to zero �2 ln L is, the less

uncertainty there is about Y under the model. The larger �2 ln L is, the poorer the

model is in accounting for the data. The model χ2 simply tells us how much the orig-

inal level of indeterminacy in Y—from using the naive model—is reduced under the

hypothesized model. We will see below that this reasoning leads to one of the R2

analogs used in models employing MLE.

Logit and Probit Analyses of Violence

Logit and probit estimates for the regression of violence on couple characteristics are

shown in the “logit” and “probit” columns of Table 7.1. Model χ2 values suggest that

both models are significant. Substantively, the logit and probit results tend to agree

with the OLS ones: cohabiting instead of being married, being a minority couple,

male isolation, economic disadvantage, and having an alcohol or drug problem all

elevate the probability of violence, while longer relationship durations and older

ages at inception of the union lower it. Z ratios for tests of logit and probit

coefficients, with the exception of that for the intercept, are roughly comparable to

the OLS t ratios. The effect of being a minority couple is just significant in logit and

probit, but just misses being significant in OLS. Otherwise, all regressor effects are

significant, across all models.

However, predicted probabilities generated by logit and probit, particularly near

the extremes of 0 or 1, depart from those of OLS. For example, suppose that we rees-

timate the probability of violence for our low-risk couple described above. We saw

above that it was �.069 for OLS. For the logistic regression model, we first calcu-

late the predicted logit:

ln �
1�

π̂

π̂
� ��2.151 � .046(2)(12.823) � .027(2)(7.081)

� .020(2)(�6.296) � .023(�5.128) � �4.083.

Then the predicted probability is

π̂��
1 �

ex

e

p

x

(

p

�

(�

4.

4

0

.

8

0

3

8

)

3)
�� .017.
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In probit, we estimate

Φ�1(π̂) � �1.247 � .023(2)(12.823) � .014(2)(7.081)

� .011(2)(�6.296) � .012(�5.128) � �2.235.

Then the estimated probability is Φ(�2.235) � .013.

Interpreting the Coefficients. One way to interpret logit and probit coefficients is in

terms of their effects on Y* in the regression model for the latent scale, as the

logit /probit coefficients are estimates of the βk in this regression. However, presum-

ing that Y is a binary proxy for an underlying continuous variable may not always

make sense. Instead, the βk can be interpreted in terms of the probability of being in

the interest category on Y—but there’s a catch. In OLS, the partial derivative of E(Y )

with respect to Xk is a constant value, βk, regardless of the levels of the regressors.

This is no longer true in nonlinear models, as we saw in Chapter 5. Recalling that

both the logit and the probit model for πi are distribution functions, we can derive a

general expression for the partial derivative of a distribution function of xi
�β, with

respect to Xk. Employing the chain rule (Appendix A, Section IV.B) yields

�
∂

∂

Xk

�F(xi
�ββ) � �

∂x

∂
i
�ββ
�F(xi

�ββ) �
∂

∂

Xk

�(xi
�ββ)

� f(xi
�ββ)βk. (7.14)

Applying (7.14) to the logit and probit models, the partial derivatives are as follows.

For logit:

�
∂

∂

Xk

�πi � �
∂

∂

Xk

�Λ(xi
�ββ) � λ(xi

�ββ)βk

��
1�

ex

e

p

x

(

p

x

(

i

x

�ββ
i
�

)

ββ)
��

1� ex

1

p(xi
�ββ)

�βk

� πi(1 � πi)βk. (7.15)

For the probit model we have

�
∂

∂

Xk

�πi � �
∂

∂

Xk

�Φ(xi
�ββ)� φ(xi

�ββ)βk

� ���
1

2�π�
�exp	��

1

2
��xi

�ββ�
2


�βk. (7.16)

Expressions (7.15) and (7.16) make it clear that the partial slope of Xk with respect

to πi in logit and probit is not a constant but is rather dependent on a particular value
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of the linear predictor, xi
�β, which, in turn, varies with the regressors. For example,

in logistic regression the estimated partial slope for the probability of violence with

respect to relationship duration, for our low-risk couple, is

�
∂

∂

Xk

� π̂ � (.017)(1 � .017)(�.046) � �.00077.

For the probit model we have

�
∂

∂

Xk

� π̂ � ���
1

2�π�
�exp	��

1

2
�(�2.235)2
�(�.023) � �.00075,

which, despite differences in bk, is essentially the same as for logit. In that the cor-

rection factors in the partial slope, φ(xi
�ββ) for probit and λ( xi

�ββ) for logit, are always

positive and less than 1, the bk can be interpreted as the effects on the probability

apart from an attenuation factor. Hence positive coefficients indicate regressors with

positive effects on the probability, and negative regressors indicate regressors with

negative effects. Beyond this, the coefficients do not have an intuitively simple inter-

pretation. (We will see below, however, that the logit coefficients, when exponenti-

ated, have a particularly appealing interpretation.)

Alternative Models. An artifact of both logit and probit models is that the effect of

a regressor on the probability, as indicated by the partial derivative, is always 

at its maximum when π equals .5. In this case, the attenuation factor for logit

reaches its maximum value of (.5)(1 � .5) � .25. In the probit model, when the lin-

ear predictor is zero, π � Φ(0) � .5, and the attenuation factor reaches its maximum

value of 1/�2�π� � .399. Nagler (1994) pointed out that this is a limitation of logit

and probit models. People with an initial probability of an event of .5 will be indi-

cated to be most susceptible to regressor effects (i.e., the partial effect of each Xk

will reach its maximum value) due to a phenomenon that is imposed by the model

specification. He therefore proposed using an alternative model when sensitivity of

people’s probabilities of events to regressor effects was important in one’s investi-

gation. The model, called scobit for “skewed logit” (Nagler, 1994, p. 235), allows

the probability at which people are most susceptible to regressors to be estimated

from the data.

The scobit model is based on the Burr-10 distribution, which unlike logit and pro-

bit, is an asymmetric distribution. The formula for this distribution function is

B10(x) � 	�1 �

ex

e

p

x

(

p

x)

(x)
�


α

.

When α � 1, this reduces to the logit distribution. Hence, the logit model is nested

inside the scobit model, and a nested chi-squared test can be used to determine

whether scobit is an improvement over logit. The scobit model is developed with the

same latent-scale formulation as logit and probit except that the Burr-10 distribution

replaces the standard normal or standard logistic distribution. Once again, we assume

a latent scale, Y*, such that Y*
i � �β kXik � εi. This time, we assume that εi follows the
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Burr-10 distribution. Then

P(Yi � 1) � P(Y*
i � 0) � P��β kXik � εi � 0�

� P�εi � ��β kXik �.

However, because the Burr-10 distribution is not symmetric, this does not equal expres-

sion (7.4). Instead, because of the principle that P(x � c) � 1 � P(x � c), we have that

P(Yi � 1) � 1 � P�εi � ��β kXik �
� 1 �	�

1�

ex

e

p

x

(

p

�

(�

�
�
βk

β

X

k

i

X

k)

ik)
�


α
, (7.17)

which we denote as G(xi
�ββ). Again, it is easy to show that if α � 1, G(xi

�ββ) �

Λ(xi
�ββ). Unlike the case with logit and probit models, there is no link function that

linearizes (7.17) when α is not equal to 1.The probability, π*, at which people are

most susceptible to effects of explanatory variables is given by

π* � 1 ���1 �

α

α
��

α

(Nagler, 1994). As is evident, if α � 1, π* � .5, the π* for the logit model. Also, π*

converges to zero as α converges to zero; as α tends to infinity, however, π* reaches

a maximum value of about .632 (Nagler, 1994).

Another asymmetric distribution that can be employed as a probability model is

the complementary log-log model (Agresti, 2002; Long, 1997):

πi � H(xi
�ββ) � 1 � exp[� exp(xi

�ββ)]. (7.18)

The link function that linearizes (7.18) is

ln[�ln(1 � πi)] ��β kXik.

The likelihood function for this model becomes important in Chapter 10; therefore,

I give it here:

L(ββ � y,x) ��
n

i�1
π yi

i (1 � π i)
1�yi

��
n

i�1
[1 � exp(�exp(xi

�ββ))]yi[exp(�exp(xi
�ββ))]1�yi

��
y∈0

[exp(�exp(xi
�ββ))]�

y ∈1
[1 � exp(�exp(xi

�ββ))].

Figure 7.3 shows the density functions, and Figure 7.4 shows the distribution

functions for the scobit and complementary log-log models. The asymmetery of the
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Figure 7.3 Scobit and complementary log-log densities.

Figure 7.4 Scobit and complementary log-log distributions.



densities is evident in Figure 7.3, which reveals both densities to be skewed to the

left. In contrast to the logit and probit distributions, the functions in Figure 7.4 both

approach 1 more rapidly than they approach 0; this is particularly true for the com-

plementary log-log model. In fact, Agresti (2002) remarks that logit and probit mod-

els are not appropriate when π increases from 0 fairly slowly but approaches 1 quite

suddenly (see his monograph for an application in which this is the case). In that sit-

uation, the complementary log-log model would be most appropriate. Table 7.2 pres-

ents the scobit and complementary log-log estimates for the regression of violence.

Although the intercepts diverge, the regressor coefficients from each model are very

similar in value. Apart from an attenuation factor, the coefficients indicate effects on

π and are in substantive agreement with the logit and probit effects. The nested test

for scobit versus logit is shown as the “χ2 for alpha” in the table and is a test for H0:

α � 1. Because the test is nonsignificant, scobit appears to offer no improvement

over the logit model. (The scobit model is available in STATA, whereas the comple-

mentary log-log model is available in SAS.)

Interpreting the Partial Derivative, Revisited. It is tempting to interpret the par-

tial derivative in nonlinear probability models as the change in the probability for

a unit increase in a given predictor, net of other regressors (e.g., Cleary and Angel,

1984). This is, of course, the unit-impact interpretation appropriate in the LPM.

Although the partial derivative is, at times, a very close approximation to such a

change, this interpretation is not technically correct, as has been observed else-

where (DeMaris, 1993, 2003; Petersen, 1985). The reason is illustrated in Figure

7.5, which shows how closely the partial derivative approximates the change in

P( x) � exp( x)/ [1 � exp( x)] from x � 1 to x � 2, a unit change. Notice that this is

just a logistic regression model with β0 � 0 and β1 � 1. The partial derivative at

x � 1 is P�(1) � P(1)[1 � P(1)]β1 � (.731)(1 � .731)(1) � .1966. This is the slope

of the line tangent to P( x) at x � 1, as shown in the figure. Now the slope of that

line indicates change along the line for each unit increase in x, but 

not change along the function, as it is clear that the line does not follow the func-

tion very closely. Change along the function for a unit increase in x at x � 1 is

given by

P(2) � P(1) ��
1 �

e2

e2� � �
1 �

e

e
�

� .8808 � .73106 � .1497.

As .1966 is not very close to .1497, P�(1) is not a good approximation to the unit

impact. On the other hand, if a unit change represents a very small change in a pre-

dictor, the partial derivative will be a close approximation to the unit impact. But in

general, the accurate way to assess the change in probability for a unit increase in

Xk, net of other predictors, is to evaluate F( xk � 1 � x�k) � F( xk � x�k), where F rep-

resents the probability model of interest (e.g., logit, probit, scobit, complementary

log-log).

NONLINEAR PROBABILITY MODELS 263



Interpeting Logit Models: Odds and Odds Ratios. Logit models have an advantage

over other models in interpretability, because exp(βk) can be interpreted as the mul-

tiplicative impact on the odds of an event for a unit increase in Xk, net of the other

covariates. Indeed, exp(βk) is the multiplicative analog of βk in the linear regression

model. To understand why this is so, we exponentiate both sides of equation (7.11)

to express the logit model as

exp�ln�
1 �

πi

πi

�� � exp��β kXik �
or
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Table 7.2 Scobit and Complementary Log-Log Estimates for the Regression 

of Violence on Couple Characteristics

Model

Predictor Estimate Scobit Cloglog

Intercept b �14.922 �2.207***

σ̂b 728.360 .061

t or z �.020 �36.064

Relationship duration b �.044*** �.044***

σ̂b .005 .005

t or z �9.311 �9.330

Cohabiting b .685*** .685***

σ̂b .195 .194

t or z 3.519 3.530

Minority couple b .192* .192*

σ̂b .098 .098

t or z 1.959 1.959

Female’s age at union b �.025*** �.025***

σ̂b .007 .007

t or z �3.634 �3.624

Male’s isolation b .018* .018*

σ̂b .007 .007

t or z 2.528 2.515

Economic disadvantage b .022** .022**

σ̂b .008 .008

t or z 2.705 2.710

Alcohol/drug problem b .902*** .902***

σ̂b .130 .130

t or z 6.944 6.945

α 332675.100

Model χ2 (7 df ) 196.686*** 196.685***

χ2 (1 df ) for α 1.290

R2
L .061 .061

R2
G .047

R2
GSC .086

* p � .05. ** p � .01. *** p � .001.



�
1 �

πi

πi

� � exp(β0) exp(β1Xi1) exp(β2Xi2) . . . exp(βKXiK). (7.19)

The left-hand side of (7.19) is called the odds of event occurrence for the ith case

and is denoted Oi. The odds is a ratio of probabilities. In particular, it is the ratio of

the probability of the event to the probability of not experiencing the event. If the

odds is, say, 2, the event is twice as likely to occur as not to occur. If the odds is .5,

the event is only one-half as likely to occur as not to occur, and so on. Now suppose

that we have two people, with all covariates the same, except that the first has Xk

equal to xk � 1, and the second has Xk equal to xk. The ratio of their odds, or their

odds ratio, denoted ψxk�1, is

ψxk�1 � �
O

O
xk

x

�

k

1
��

�

� exp(βk).

exp(β0) exp(β1X1) exp(β2X2) 
 
 
 exp(βkxk) exp(βk) 
 
 
 exp(βKXK)
�������

exp(β0) exp(β1X1) exp(β2X2) 
 
 
 exp(βkxk) 
 
 
 exp(βKXK)

exp(β0) exp(β1X1) exp(β2X2) 
 
 
 exp(βk(xk � 1)) 
 
 
 exp(βKXK)
�������

exp(β0) exp(β1X1) exp(β2X2) 
 
 
 exp(βkxk) 
 
 
 exp(βKXK)
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Figure 7.5 First derivative of the logit function with respect to X, versus the unit impact of X on the logit

function.



That is, Oxk�1 � exp(βk)Oxk
, or, exp(βk) is the factor (Long, 1997), or multiplicative,

change in the odds for each unit increase in Xk, net of other regressors.

More on the Odds Ratio. Because the odds ratio is such a staple of interpretation

in logistic regression, it is worth some elaboration. Consider the zero-order

relationship between substance abuse and violence for our 4095 couples: Of the

3857 couples with no substance abuse, 485 reported violence. For this group,

the probability of violence is 485/3857 � .126, and their odds of violence is there-

fore .126/ (1 �.126) � .144. Among the 238 couples with substance abuse problems,

70 reported violence. Their probability of violence is therefore 70/238 � .294,

implying an odds of violence of .294/(1 � .294) � .416. To quantify the “effect” of

substance abuse on violence, we compute the ratio of these odds, or

.416/.144 � 2.889. That is, substance abuse raises the odds of violence by a factor of

2.889. Or, the odds of violence is 2.889 times higher for those with substance abuse

problems. Notice that it is incorrect to say that those with substance abuse problems

are “2.889 times as likely” to be violent, since this suggests that their probability of

violence is 2.889 times higher. In fact, their probability of violence is only

.294/.126 � 2.333 times higher. The ratio of probabilities, called the relative risk, is

equivalent to the odds ratio only if the probabilities are both very small. The reason

for this is that for two people, a and b, their odds ratio can be written

ψa,b ��
π

π
a

b

/

/

(

(

1

1

�

�

π

π
a

b

)

)
�� �

π

π
a

b

� �
1

1

�

�

π

π
b

a

�.

The first term in the rightmost expression is the relative risk. If both probabilities are

small, the second term in this expression will be close to 1, in which case the odds

ratio is approximately equal to the relative risk.

Logistic regression effects can also be expressed in terms of percent changes in

the odds. The percent change in the odds for a unit increase in Xk is

% Ox
k
�1 � 100��Oxk�

O
1 �

xk

Oxk
�� � 100��OO

xk

x

�

k

1
� �1� � 100[exp(βk) � 1].

For example, based on the logit estimates in Table 7.1, every year longer the couple

had been together at time 1 lowers the odds of violence by 100[exp(�.046) � 1] �

�4.5, or about 4.5%. Each unit increase in male isolation increases the odds of

violence by 100[exp(.02) � 1] � 2.02, or 2.02%. Now if two people are c units apart

on Xk, where c is any value, their odds ratio is ψxk�c � exp(βkc), and the percent

change in the odds for a c-unit increase in Xk is 100[exp(βkc) � 1]. With respect to

relationship duration, again, being together 10 years longer lowers the odds of vio-

lence by 100[exp(�.046 � 10) � 1] � �36.872, or about 37%. Or, a 5-unit increase

in male’s isolation elevates the odds of violence by 100[exp(.02 � 5) � 1] � 10.517,

or about 10.5%.

Confidence intervals for odds ratios can be found by exponentiating the endpoints

of confidence intervals for the coefficients. As an example, a 95% confidence inter-

val for the effect of relationship duration on the logit of violence, from Table 7.1, is
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�.046 	 1.96(.005) � (�.056, �.036). A 95% confidence interval for the ratio of the

odds of violence for those who are a year apart on relationship duration is then

[exp(�.056), exp(�.036)] � (.946, .965). In other words, we can be 95% confident

that each year longer the couple had been together at time 1 lowers the odds of vio-

lence by between 3.5 and 5.4%.

Odds ratios are also useful in estimating changes in the probability of event occur-

rence with changes in predictors once a baseline probability has been calculated. For

example, let our baseline couple be married, nonminority, alcohol/drug-free, and

average in relationship duration, female’s age at union, male isolation, and economic

disadvantage. This couple’s odds of violence is exp(�2.151) � .1164. Now, the prob-

ability is equal to Oi /(1 � Oi), so the couple’s probability of violence is .1164/(1 �

.1164) � .1043. If this couple were to develop a substance abuse problem, we would

estimate that their odds of violence would become (.1164) [exp(1.029)] � .3257. This

means that their probability of violence would be .3257/(1 � .3257) � .2457, or they

would experience a .1414 increase in the probability of violence. In that logit

coefficients are especially interpretable, logistic regression will be the focus of the rest

of this chapter and the next chapter as well.

Standardized Coefficients. In linear regression, standardized coefficients are often

employed to compare the relative impacts of different predictors in the same equa-

tion. The standardized coefficient is the product of the unstandardized coefficient

times the ratio of the standard deviation of Xk to the standard deviation of Y. In logis-

tic (or probit) regression, calculating a standardized coefficient is not as straightfor-

ward. Based on the latent-variable development of these models, we would need an

estimate of the standard deviation of Y*, in which case the standardized coefficient

would be

bs
k � bk �

s

s

y

x

*

k
�.

But Y* is unobserved, so its standard deviation is not readily estimated [but see

Long (1997) for a suggested estimation procedure]. One solution (found in earlier

versions of SAS) is to partially standardize the coefficients by multiplying them by

sxk
/σε, where σε is the standard deviation of the error term in the latent-variable

equation. In logit, σε is equal to about 1.814, the square root of π2/3 (in probit, it is

equal to 1). Applying this transformation to the coefficients for relationship duration

(SD � 12.823), female’s age at union (SD � 7.081), and male’s isolation (SD �

6.296) in the logit equation for violence, we get partially standardized coefficients of

�.325, �.105, and .069, respectively. Consistent with the magnitudes of the unstan-

dardized coefficients, the partially standardized coefficients point to the effect of

relationship duration as being the largest of the three in magnitude.

Numerical Problems. Estimation via maximum likelihood is frequently plagued by

numerical difficulties. Some of these are also common to estimation with least

squares. For example, multicollinearity creates the same types of problems in logis-

tic regression and other binary response models that it does in OLS: inflation in the
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magnitudes of estimates as well as in their standard errors, or in the extreme case,

counterintuitive signs of coefficients (Schaefer, 1986). Collinearity diagnostics are

not necessarily available in logit or probit software (e.g., none are currently provided

in SAS’s procedure LOGISTIC). However, in that collinearity is strictly a problem

connected with the explanatory variables, it can also be addressed with linear regres-

sion software. In SAS, I use collinearity diagnostics in the OLS regression proce-

dure (PROC REG) to evaluate linear dependencies in the predictors. The best single

indicator of collinearity problems is the VIF for each coefficient (as discussed in

Chapter 6). As mentioned previously, VIF’s greater than about 10 signify problems

with collinearity.

Other problems are more unique to maximum likelihood estimation. The first per-

tains to zero cell counts. If the cross-tabulation of the response variable with a given

categorical predictor results in one or more zero cells, it will not be possible to esti-

mate effects associated with those cells in a logistic regression model. In an earlier

article (DeMaris, 1995) I presented an example using the 1993 General Social

Survey in which the dependent variable is happiness, coded 1 for those reporting

being “not too happy,” and 0 otherwise. Among categorical predictors, I employ

marital status, represented by four dummy variables (widowed, divorced, separated,

never married) with married as the reference group, and race, represented by two

dummies (black, other race), with white as the reference group. Among other mod-

els, I try to estimate one with the interaction of marital status and race. The prob-

lem is that among those in the “other race” category who are separated, all

respondents report being “not too happy,” leaving a zero cell in the remaining cate-

gory of the response. I was alerted that there was a problem by the unreasonably

large coefficient for the “other race � separated” term in the model and by its asso-

ciated standard error, which was about 20 times larger than any other. Running the

three-way cross-tabulation of the response variable by both marital status and race

revealed the zero cell. An easy solution, in this case, was to collapse the categories

of race into “white” versus “nonwhite” and then to reestimate the interaction. If col-

lapsing categories of a categorical predictor is not possible, it could be treated as

continuous, provided that it is at least ordinal scaled (Hosmer and Lemeshow, 2000).

A problem that is much more rare occurs when one or more predictors perfectly

discriminates between the categories of the response. (Actually, it’s when some lin-

ear combination of the predictors, which might be just one predictor, discriminates

the response perfectly.) Suppose, as a simple example, that all couples with incomes

under $10,000 per year report violence and all couples with incomes over $10,000

per year report being nonviolent. In this case, income completely separates the out-

come groups. Correspondingly, the problem is referred to as complete separation.

When this occurs, the maximum likelihood estimates do not exist (Albert and

Anderson, 1984; Santner and Duffy, 1986). Finite maximum likelihood estimates

exist only when there is some overlap in the distributions of explanatory variables

for groups defined by the response variable. If the overlap is only marginal—say, at

a single or at a few tied values—a problem of quasicomplete separation develops. In

either case, the analyst is again made aware that something is amiss by unreasonably
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large estimates, particularly of coefficient standard errors. SAS also provides a warn-

ing if the program can detect separation problems. Surprisingly, the suggested solu-

tion for this problem is to revert to OLS regression. One advantage of the LPM over

logit or probit is that estimates of coefficients are available under complete or quasi-

complete separation (Caudill, 1988).

An example of quasicomplete separation comes from a recent analysis of 1995

data from a national sample of American women (DeMaris and Kaukinen, 2003).

Using logistic regression, we examined the impact of violent victimization on the

tendency to engage in binge drinking among a sample of 7353 women from the

NVAWS survey (described in Chapter 1). The coefficient for needing dental care due

to a physical assault was �14.893 with a standard error of 1556.7, and SAS pro-

vided a warning that there was “possibly” a quasicomplete separation problem.

Upon closer inspection, we saw that the dummy for needing dental care exhibited

no variation among the binge drinkers—all had values of 0, whereas values of 0 and

1 were observed among the nonbinge drinkers. An easy solution to the problem was

simply to eliminate this dummy from the set of regressors.

EMPIRICAL CONSISTENCY AND DISCRIMINATORY POWER 

IN LOGISTIC REGRESSION

In this final section of the chapter we take up the issues of empirical consistency and

discriminatory power. Here, the focus is on the logistic regression model, as more

work has been done in these areas on the logit model than on other specifications.

Empirical Consistency

Recall that empirical consistency refers to the property that Y behaves in accordance

with model predictions. One way to assess this might be as follows. For each distinct

covariate pattern in the data, compare the observed numbers of observations falling

into the interest (Y � 1) and reference (Y � 0) categories on Y with the expected num-

bers from the hypothesized model. A chi-squared test could then inform us whether or

not the fit of observed to expected frequencies is within sampling error. Unfortunately,

with at least one continuous covariate in the model, the number of covariate patterns

in the data is usually close to the sample size. In that case, there is only one observa-

tion in each covariate pattern, and the chi-squared statistic does not have the desired

chi-squared distribution under the null hypothesis of a good model fit. This statistic

would have the chi-squared distribution only when the expected frequencies are large

(Hosmer and Lemeshow, 2000).

Hosmer and Lemeshow (2000) solve this problem by grouping the covariate pat-

terns in such a way that the expected frequencies can become large as n increases,

allowing the appropriate asymptotic principles to operate. In particular, the Hosmer–

Lemeshow goodness-of-fit test for logistic regression groups observations by deciles

of risk. That is, group 1 consists of the n/10 subjects with the lowest predicted 

EMPIRICAL CONSISTENCY AND DISCRIMINATORY POWER 269



probabilities of being in the interest category on Y; group 2 consists of the n/10 

subjects with the next-lowest predicted probabilities of being in the interest 

category on Y, and so on. Once these 10 groups have been identified, the expected

number of observations in the interest category on Y in each group is calculated as

the sum of the π̂ over all subjects in that group. Similarly, the expected number of

cases in the reference category is the sum of (1 � π̂) over all cases in the same group.

The numbers of cases observed in the interest and reference categories are readily

tallied from the data. The Hosmer–Lemeshow statistic is then the Pearson chi-squared

statistic for the 10 � 2 table of observed and expected frequencies. Under the null

hypothesis that the model is empirically consistent, this statistic has approximately

a chi-squared distribution with 8 degrees of freedom (Hosmer and Lemeshow, 2000).

A significant χ2 indicates a model that is not empirically consistent. Hosmer and

Lemeshow (2000) suggest that a conservative rule regarding the sample size needed

for this test is that all expected frequencies should exceed 5.

Table 7.3 shows the results of employing this test with the logit model in Table

7.1. The table shows each decile of risk, along with the number of couples in each

group (which should be generally around 4095/10  410), the number of violent

couples, the expected number of violent couples based on the model, the number of

nonviolent couples, the expected number of nonviolent couples based on the model,

and finally, the Hosmer–Lemeshow χ2. As is evident, the χ2 is just significant at

p � .046. This suggests that the model is not quite empirically consistent. We will

see in Chapter 8 that this is due to the omission of some important effects from the

model.
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Table 7.3 Observed and Expected Frequencies of Violent and Nonviolent Couples

within Deciles of Risk According to the Logit Model of Table 7.1

Decile
Violent Nonviolent

of Risk N Obs. Exp. Obs. Exp.

1 413 19 14.34 394 398.66

2 412 30 24.50 382 387.50

3 409 24 33.95 385 375.05

4 412 34 42.55 378 369.45

5 410 42 49.33 368 360.67

6 409 68 55.83 341 353.17

7 411 69 62.72 342 348.28

8 410 65 69.64 345 340.36

9 410 72 80.35 338 329.65

10 399 132 121.66 267 277.34

Total 4095 555 554.87 3540 3540.13

Hosmer–Lemeshow χ2 15.743

df 8

p .046



Discriminatory Power

Here I consider two different approaches to assessing discriminatory power: the

classification table and analogs of the OLS R2.

Classification Tables. One means of assessing the ability of the model to discrimi-

nate among categories of the response is to examine whether it can accurately clas-

sify observations into each category of Y. Following the biostatistics literature, I

refer to observations that fall into the interest category as cases and those falling into

the reference category as controls (Hosmer and Lemeshow, 2000). A classification

table for logistic regression is a cross-tabulation of case versus control status based

on model predictions, against whether or not observations are actually cases or con-

trols. Table 7.4 presents the classification table for couple violence based on the logit

model in Table 7.1. The model-based classification procedure is as follows. We pick

a criterion value for π̂, and if an observation’s model-generated π̂ is greater than that

criterion, it is classified as a case; otherwise, it is classified as a control. By default,

the criterion is usually taken to be .5, and this is the value used to construct Table 7.4.

We see that of the 555 couples actually observed to be violent, only 6 were

classified as violent by the model. The sensitivity of classification, or the proportion

of actual cases that are classified as cases, is 6/555, or 1.08%. The specificity of

classification, or the proportion of actual controls that are classified as controls, is

3537/3540, or 99.92%. The false positive rate, or the proportion of actual controls

that are classified as cases, is 1 � specificity, or .08%. Notice that the sensitivity is

higher than the false positive rate, and this is typically what we find. If the model

affords no improvement in prediction of the response over what could be achieved

by random guessing, these will be the same. In this particular example, specificity 

is very high but sensitivity is abysmally low. However, the proportion correctly

classified is (6 � 3537)/4095� .8652, or 86.52% of observations. The proportion
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Table 7.4 Classification Table for Violence Based on the Logit Model

in Table 7.1

Observed

Classified Violent Nonviolent Total

Violent 6 3 9

Nonviolent 549 3537 4086

Total 555 3540 4095

Criterion .50

Sensitivity 1.08%

Specificity 99.92%

False positive rate .08%

Percent correctly classified 86.52%

Percent correct by chance 76.57%



classified correctly can be quite misleading, as it is here, because it depends both on

the proportion of cases falling into the interest category on Y and on the classification

criterion. Because the probability of violence in the sample is relatively low, very

few cases’ predicted values meet the .5 criterion. Hence, almost all of the cases are

predicted to be controls. As most of the cases are, indeed, controls, we get correct

predictions most of the time. But ideally, we want good prediction of cases as well

as good prediction of controls.

We can get a sense of how good the percent correctly classified is by consider-

ing what that would be if we ignored the model. Of course, we could just predict

that everyone is nonviolent and be correct 86.45% of the time. However, this mis-

classifies all of the violent couples. The preferred chance classification rule is one

that maximizes prediction of both controls and cases. Following the reasoning I

articulated in prior work (DeMaris, 1992), the chance classification rate is figured

as follows. In that 13.55% of couples in the sample are violent, we predict, with

probability equal to .1355, that a couple is violent. On the other hand, we predict,

with probability equal to 1 � .1355 � .8645, that a couple is nonviolent. What is

the chance that we will make a correct prediction? Our prediction is correct if an

actual case was predicted to be a case and an actual control was predicted to be a

control. Now, since couples are actually violent with probability equal to .1355 and

actually nonviolent with probability equal to .8645, the probability of a correct

prediction is

P(case predicted to be a case)P(observation is a case)

� P(case predicted to be a control)P(observation is a control).

In this case, we have .13552 � .86452 � .7657, or 76.57% of couples will be cor-

rectly predicted, based only on the marginal (i.e., sample) probability of violence. In

general, the chance correct prediction rate is p2 � (1 � p)2, where p is the sample

proportion in the interest category on Y.

If a lower criterion value is employed, we can achieve greater sensitivity, although

at the expense of specificity. For example, if the criterion is .1355, the marginal pro-

portion of violent couples, sensitivity increases to 66.67%, but specificity drops to

58.19%, and the false positive rate is 41.81%. The percent correctly classified, more-

over, falls to only 59.34%. We could continue varying the criterion value in this man-

ner, each time examining properties of the classification. In fact, this is the strategy

behind the receiver operating characteristic (ROC) curve (Hosmer and Lemeshow,

2000; Kramar et al., 2001). This is a plot of the sensitivity against the false positive

rate resulting from the criterion being varied throughout the range 0 to 1. Such a plot

is shown in Figure 7.6 for the logit model of couple violence. Ideally, the plot should

form a bow-shaped curve over the 45� line in the center of the plot, the line repre-

senting no improvement in prediction afforded by the model. The key statistic in

evaluating the quality of the ROC is the area under the curve (AUC). This area is

interpreted as the likelihood that a case will have a higher π̂ than a control across

the range of criterion values investigated (Hosmer and Lemeshow, 2000). Hosmer

and Lemeshow (2000) suggest the following guidelines regarding AUC:
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AUC � .5 The model has no discriminatory power.

.7 � AUC � .8 The model has acceptable discriminatory power.

.8 � AUC � .9 The model has excellent discriminatory power.

AUC � .9 The model has outstanding discriminatory power.

As the AUC in Figure 7.6 is .6767, the logit model in Table 7.1 does not quite

have acceptable discriminatory power.

Analogs of R2. In linear regression, R2 is the most commonly used measure for

assessing the discriminatory power of the model. R2 possesses three properties that

make it especially attractive for this purpose. First, it is standardized to fall in the

range [0,1], equaling 0 when the model affords no predictive efficacy over the mar-

ginal mean, and equaling 1 when the model perfectly accounts for, or discriminates

among, the responses. Second, it is nondecreasing in x, meaning that it cannot decrease

as regressors are added to the model. Third, it can be interpreted as the proportion of

variation in the response accounted for by the regression. Although many R2 analogs

have been suggested for logistic regression (see, e.g., Long, 1997; Mittlboeck and

Schemper, 1996), they fail to satisfy one or more of these properties. As a conse-

quence, none is in standard use. In this section I discuss a handful of such measures,

beginning with the two that I think are best.

The first issue to be considered is: What is the theoretical criterion being esti-

mated? This depends on the nature of the binary response. If the response is a proxy

for a latent scale, Y*, the quantity of interest could be considered to be the variation
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in Y* accounted for by the regression. Recall from Chapter 3 that P2 is the population

proportion of variation in Y that is variation in the linear predictor. In that the logistic

regression coefficients are estimates of the effects of the regressors on Y*, an estima-

tor of the P2 for the regression of Y*, suggested by McKelvey and Zavoina (1975), is

R2
MZ ��

V��
V�

b

�

kX

b

k�
kX

�

k�
π2/3

�, (7.20)

where the bk are the sample logistic regression coefficients, and therefore V(�bkXk) is

an estimate of the variance of the linear predictor for the regression of Y*. The term

π2/3 is the variance of ε for this regression, because the error is assumed to follow the

standard logistic distribution. Therefore, the denominator of equation (7.20) is an esti-

mate of V(Y*). Because the numerator and denominator are each consistent for their

population counterparts, R2
MZ is a consistent estimator of the P2 for Y*. For the logit

model in Table 7.1, R2
MZ � .127. R2

MZ is the measure that I recommend if one is inter-

ested in the variation accounted for in the latent scale underlying the binary response.

An extensive simulation found R2
MZ to be least biased and closest to the actual param-

eter value across a range of conditions, compared to several other estimators of P2 in

logistic regression (DeMaris, 2002c). Although R2
MZ has an explained variance inter-

pretation and is bounded by 0 and 1, it is not necessarily nondecreasing in x.

On the other hand, suppose that the response is a naturally dichotomous variable,

with no underlying continuous referent. It turns out that a generalization of the variance-

decomposition principle invoked in Chapters 2 and 3 to derive P2 can be drawn upon to

decompose the variation in a binary variable. From Greene (2003), a general expression

for the decomposition of the variance of Y in a joint distribution of Y and x is

V(Y) � Vx[E(Y � x)] � Ex[V(Y � x)].

That is, the variance in Y equals the variance of the conditional mean of Y given x plus

the mean of the conditional variance of Y given x. Dividing through by V(Y ) results in

1 ��
Vx[

V

E

(

(

Y

Y

)

� x)]
���

Ex[

V

V

(

(

Y

Y

)

� x)
�. (7.21)

Applying these principles to the linear regression model leads to the expression for P2

(see Chapter 3). Now in linear regression, V(Y � x) � V(ε) � σ2, and the average of σ2

over x is just σ2. So the second term on the right-hand side of (7.21) is just σ2/V(Y )

for the linear regression model. Recall that the variance of a binary response, however,

is π(1 � π), which is a function of the conditional mean. Therefore, the conditional

variance of Y given x, V(Y � x), is π(1 � π) � x. Hence, a binary-response analog of P2,

which I denote by ∆, is

∆ � 1 ��
Ex[π

π

(

(

1

1

�

�

π

π

)

)

� x]
�, (7.22)

where π in the denominator is the population marginal probability that Y � 1 (its

sample counterpart is p).
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I refer to ∆ as the explained risk of an event and show that it is bounded by 0 and

1 (DeMaris, 2002c). Like P2, ∆ reflects the model’s ability to account for the

response. When the model affords no improvement in predicting the event of inter-

est compared to using the marginal probability to predict Y, ∆ will be 0. At the other

extreme, if all conditional probabilities are either 0 or 1, the occurrence/nonoccur-

rence of an event is predicted with certainty. In this case, the conditional variance of

Yi is 0 for all i, and ∆ equals 1. A consistent estimator of ∆ is

∆̂ �1 ��
��n

i�1π

p

ˆ

(

i

1

(

�

1�

p)

πˆi)�xi�/n
�,

where the numerator of the second expression to the right of the equals sign is just the

average estimated conditional variance of Y over all n cases. Like R2
MZ , ∆̂ has an

explained variance interpretation and is bounded by 0 and 1 but is not necessarily

nondecreasing in x. My simulation results showed that ∆̂ was the best estimator of ∆
among the several R2 analogs investigated (DeMaris, 2002c). Both R2

MZ and ∆̂ require

casewise calculations and are not currently available in conventional software. (A

program in SAS that calculates these as well as six other R2 analogs is available from

the author by request, however.) For the logit model in Table 7.1, ∆̂� .051.

Three other measures are worth mentioning because they are all nondecreasing in

x as well as bounded by 0 and 1. All are based on the likelihood function, and as

such, have much broader applicability than R2
MZ and ∆̂. These can be employed with

any model employing maximum likelihood estimation. They are also readily calcu-

lated from standard logistic regression output. The first is the likelihood-ratio index

(Long, 1997):

R2
L � ,

the numerator of which is just the model χ2, described above. As mentioned above,

�2 log L0 is analogous to TSS and �2 log L1 is analogous to SSE; hence R2
L is a direct

counterpart of the OLS R2. However, it does not have an explained variance inter-

pretation. Rather, it represents the proportionate reduction in minus twice the log-

likelihood (a measure of total uncertainty in Y ) when the likelihood function is

evaluated at the MLEs for the parameters rather than the MLE for an intercept-only

model. I have found that R2
L is a comparatively good estimator of explained risk

(DeMaris, 2002c). For the logit model in Table 7.1, R2
L is

R2
L � � .060.

The second measure is the generalized R2 (Allison, 1995; Maddala, 1983). Its for-

mula is

R2
G � 1 � ��

L

L
0

1

� �
2/n

.

3249.56 � 3054.132
���

3249.56

�2 log L0 � (�2 log L1)
���

�2 log L0
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It can be shown that R2
G is identically equal to the OLS R2 in a linear regression

model with normally distributed errors. (A proof is available from the author on

request.) Because the likelihood functions in this equation may be difficult to work

with, the measure can also be computed as (Allison, 1995)

R2
G �1 � exp��

�

n

χ2

��,

where in this case, χ2 is the model χ2 discussed above. For the logit model in Table

7.1, R2
G is

R2
G � 1� exp���1

4

9

0

5

9

.

5

394
�� � .0466.

It turns out that R2
G has an upper bound of less than 1. In particular, the upper

bound is 1 � (L0)
2/n, suggesting the scaled measure, R2

GSC, proposed by Cragg and

Uhler (1970) as well as others (Maddala, 1983; Nagelkerke, 1991):

R2
GSC ��

1 �

R

(L

2
G

0)
2/n� ,

or in terms of ease of computation, we have

R2
GSC � .

The scaling ensures that R2
GSC lies between 0 and 1. Although both R2

G and R2
GSC

are comparable to R2 in the linear regression model, they do not have an explained

variance interpretation in logistic regression. For the logit model in Table 7.1,

R2
GSC is

R2
GSC � � �

.

.

0

5

4

4

6

8

6
� � .085.

All five R2 analogs just discussed are shown in Table 7.1, at the bottom of 

the logit model column (R2
L, R2

G, and R2
GSC are also shown for probit). Which to

employ depends on how couple violence should be conceptualized. Physical

aggression should probably be considered a continuous variable that ranges from

displacement aggression (e.g., kicking in doors) to relatively minor violence (e.g.,

pushing and shoving), to severe acts (e.g., beating someone up or attacking a per-

son with a weapon). Due to the crudeness of measurement in this case, however,

this range of acts is simply mapped into violence, a binary yes–no response. In 

that the continuous response of physical aggression is really the focus, however,

R2
MZ is the preferred measure. It indicates that about 13% of the variance in phys-

ical aggression is accounted for by the logistic regression. Were we to be solely

interested in the event of whether or not a couple is reported as being violent, how-

ever, ∆̂ suggests that only about 5% of this phenomenon is accounted for by the

model.

.0466
����
1 � exp[(2/4095)(�1624.763)]

1 � exp(�χ2/n)
���
1 � exp[(2/n)log L0]
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EXERCISES

7.1 The following ( x,y ) pairs were obtained for five individuals: (1.5, 1), (2, 1),

(1.5, 0), (1.75, 0), (4, 0). Maximum likelihood estimates for a logistic

regression of Y on X produced the following equation: ln Ô � 1.7184 �

1.0627X. Using this equation and a calculator, give the log of the like-

lihood function for this model, evaluated at the MLEs of the parameter

estimates.

7.2 Give the model χ2 for the model in Exercise 7.1.

7.3 Give R2
L, R2

G, and R2
GSC for the model in Exercise 7.1.

7.4 Using a calculator and the equation in Exercise 7.1, give R2
MZ and ∆̂ for the

model in Exercise 7.1.

7.5 For the low-risk couple described in this chapter, give the probability of vio-

lence, according to the scobit model in Table 7.2.

7.6 For the low-risk couple described in this chapter, give the probability of vio-

lence according to the complementary log-log model in Table 7.2.

7.7 For the 4095 couples in the NSFH, define a high-risk couple as a cohabiting,

minority couple in which at least one partner has a problem with alcohol or

drugs, who is 1 standard deviation below the mean on relationship duration

and female’s age at union, and 1 standard deviation above the mean on male’s

isolation and economic disadvantage. Give the estimated probability of vio-

lence for such a couple based on the logit model in Table 7.1.

7.8 Give the estimated probability of violence for the high-risk couple in Exercise

7.7 based on the probit model in Table 7.1.

7.9 Give the partial derivative of the probability of violence, with respect to rela-

tionship duration, based on both logit and probit, for the high-risk couple in

Exercise 7.7.

7.10 Recall that a “baseline” couple (having all covariates in Table 7.1 set to zero)

is estimated to have odds of violence equal to .1164 and a probability of violence

of .1043. Give the change in probability of violence expected for an addi-

tional year of being together, according to the logit model in Table 7.1.

7.11 Based on the probit model in Table 7.1, give the baseline probability of vio-

lence, as well as the change in the probability of violence for an additional

year of being together, for a baseline couple.
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7.12 Use partial derivatives to estimate the changes in probability calculated in

Exercises 7.10 and 7.11. How close are the approximations in this case?

7.13 A simplified logit model for couple violence for the 4095 NSFH couples is 

ln Ô � �1.948 � 1.0563 alcohol/drug problems � .0307 economic disadvan-

tage.

(a) Interpret all three of the parameter estimates in terms of the odds of vio-

lence, recalling that economic disadvantage is a centered variable.

(b) Show that equations (7.15) and (7.16) imply that the model is interactive

in the regressors in their effects on πviolent. This can be shown by showing

that a 1-unit increase in economic disadvantage has a different impact on

πviolent for those with alcohol/drug problems than for those without such

problems. (Hint: Use those without alcohol/drug problems, who have

mean economic disadvantage, as the baseline group.)

Use the following additional analyses of couple violence for the 4095 NSFH couples

for Exercises 7.14 to 7.20:

Predictor Logit 1 Logit 2 Probit 1 Probit 2

Intercept .0011 �.4657* �.1295 �.3810***

Average age �.0449*** �.0332*** �.0231*** �.0168***

First union �.2394* �.2212* �.1268* �.1146*

Number of children �.0403 �.1027* �.0255 �.0569**

Female traditional �.0773 �.1472 �.0439 �.0747

Male traditional .2444* .1898 .1391* .1071

Both traditional �.0528 �.0822 �.0251 �.0348

Conflict over money .3220*** .1812***

Conflict over time .1942*** .1082***

Conflict over sex .1735*** .0951**

�2 ln L 3120.892 2973.667 3122.895 2976.173

Partial covariance matrix for logit 2:

7.14 Excluding the intercept, interpret all regressor coefficients in logit 1 with

respect to the odds of couple violence.

7.15 Give model χ2’s for all four models and test whether the addition of the three

conflict variables adds significantly to model fit for both the logit and probit

analyses.

7.16 Give R2
L, R2

G, and R2
GSC for all four models.

Money Time Sex

Money .0027 �.0008 �.0005

Time .0025 �.0010

Sex .0027
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7.17 Based on logit 1, give:

(a) The impact on the odds of violence for a 10-year increase in average age.

(b) The impact on the odds of violence for having three additional children.

(c) The ratio of the odds of violence for couples in which only the female is

traditional vs. couples in which only the male is traditional.

7.18 Find the predicted probability of violence for a couple whose average age is

25, who is in their first union, who has three children, and among whom only

the male is traditional, based on both logit 1 and probit 1.

7.19 What is the difference in πviolent, compared to the couple in Exercise 7.18, for

having been in a prior union, based on both logit 1 and probit 1?

7.20 Using the results for logit 2, test whether the effects of conflict over money,

time, and sex on the log odds of violence are different from each other.

Use software along with the couples dataset to answer Exercises 7.21 to 7.26.

7.21 The variable FAGRESS represents whether or not the female partner has

hit, shoved, or thrown things at the male partner in the past year, and is

coded 1 (“yes”) and 2 (“no”). Regress this variable on SEPARATE, CHIL-

DREN, MAGUNION, CONFLICT (the average of MFIGHTS and

FFIGHTS), and DURYRS, using both logistic and probit regression. Show

the logit and probit estimates and model χ2’s, indicating significance levels

with asterisks. Interpret the effect of relationship duration in the logit and

probit models.

7.22 Find the predicted probability of female aggression at 1 standard deviation

above the mean of conflict, for those who never lived apart because of dis-

agreements, and who are average on all other predictors, for both the logit and

probit models in Exercise 7.21.

7.23 What is the change in probability of female aggression for a standard devia-

tion increase in the level of conflict, at the π̂ calculated in Exercise 7.22, based

on both logit and probit?

7.24 Based on the logit results in Exercise 7.21: What is the percent difference in

the odds of female aggression for those who have lived apart for a time

because of disagreements vs. those who have not? By what percent do cou-

ples’ odds of female aggression change for a standard deviation increase in

the male’s age at union formation?

7.25 What is the discriminatory power of the model, based on both R2
L and R2

MZ,

for both the logit and probit models in Exercise 7.21?
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7.26 Using the couples dataset, create a marital status variable with the following

levels (dummy names):

• Couples currently cohabiting unmarried (COHABIT)

• Married couples, both in a first marriage (FIRSTMAR)

• Married couples, husband married before (HUSBRE)

• Married couples, wife married before (WIFERE)

• Married couples, both married before (BOTHRE)

(Hint: You can create MARHIST using SAS code, as in: IF MARCOHAB � 1

THEN MARHIST � 1; * cohabitors; IF MARCOHAB � 1 AND MTI-

MARR � 1 AND FTIMARR � 1 THEN MARHIST � 2; * husband remar-

ried; and so on.) Then, using logistic regression:

(a) Test whether marital status has a significant effect on the probability of

female aggression, ignoring other covariates.

(b) Test all possible contrasts between pairs of marital status categories,

again, ignoring other covariates. Show the odds ratios (of female aggres-

sion) for each of these pairs. (Hint: This is most easily done via repeated

estimation of the model after changing the contrast category for the marital-

status dummies.)

(c) Test whether the effect of marital status is still significant after control-

ling for the covariates in the model of Exercise 7.21.

Use the following data for Exercises 7.27 to 7.30. These data are from Spector and

Mazzeo (1980), as reported in Aldrich and Nelson (1984). They are from a study that

examined the effect of a teaching method (PSI) on performance in an intermediate

macroeconomics class. The other regressors are entering GPA (GPA) and entering

knowledge of the material (TUCE).

OBS GPA TUCE PSI GRADE OBS GPA TUCE PSI GRADE

1 2.66 20 0 C 17 2.75 25 0 C

2 2.89 22 0 B 18 2.83 19 0 C

3 3.28 24 0 B 19 3.12 23 1 B

4 2.92 12 0 B 20 3.16 25 1 A

5 4.00 21 0 A 21 2.06 22 1 C

6 2.86 17 0 B 22 3.62 28 1 A

7 2.76 17 0 B 23 2.89 14 1 C

8 2.87 21 0 B 24 3.51 26 1 B

9 3.03 25 0 C 25 3.54 24 1 A

10 3.92 29 0 A 26 2.83 27 1 A

11 2.63 20 0 C 27 3.39 17 1 A

12 3.32 23 0 B 28 2.67 24 1 B

13 3.57 23 0 B 29 3.65 21 1 A

14 3.26 25 0 A 30 4.00 23 1 A

15 3.53 26 0 B 31 3.10 21 1 C

16 2.74 19 0 B 32 2.39 19 1 A
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7.27 Estimate the probability of getting an A (πA) as a linear function of GPA,

TUCE, and PSI, using OLS. Interpret the coefficients. Give π̂A for OBS 11.

7.28 Estimate πA as a linear function of GPA, TUCE, and PSI, using WLS. This is

done as follows: From the OLS regression in Exercise 7.27, save the fitted

values (i.e., the π̂A). Recode any π̂A � 0 as .001. Recode any π̂A  0 as .999.

Create the estimated conditional variance of Y for each case as π̂A(1 � π̂A).

The weight for WLS is then the reciprocal of this estimated conditional vari-

ance. Give π̂A for OBS 11, based on the WLS estimates.

7.29 Estimate πA as a function of GPA, TUCE, and PSI, using logistic regression.

Interpret all estimates in terms of odds. Give the π̂A for OBS 11. Give R2
L for

the model.

7.30 Estimate πA as a function of GPA, TUCE, and PSI, using both probit and

complementary log-log models. Give π̂A for OBS 11, based on each set of

estimates.
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CHAPTER OVERVIEW

In Chapter 7 we saw that the logistic regression model was particularly advantageous

with respect to the interpretation of coefficients. In this chapter, then, we consider the

logistic regression model in greater detail, continuing our investigation of couple vio-

lence in the NSFH. I begin by outlining the techniques used to investigate interaction

effects. First, I sketch out how we compare models across groups: in this case, minor-

ity vs. nonminority couples. This involves a logistic regression analog of the Chow test

that was covered in Chapters 3 and 4. I then consider modeling interaction effects

involving specific regressors, using cross-product terms. From this I move to a discus-

sion of modeling nonlinearity in the relationship between regressors and the logit,

detailing a general means of assessing whether linearity is plausible. I then address the

testing of coefficient changes across models, demonstrating an analog of the procedure

discussed in Chapter 3. I conclude the discussion of binary logistic regression by rein-

vestigating the discriminatory power and empirical consistency of the final model of

interest. The narrative then moves to an explication of logistic regression with multin-

omial responses. First, I develop the multinomial logistic regression model for the case

in which the categories of the response are not ordered, and consider both limited- and

full-information maximum likelihood approaches. Finally, I take advantage of the ordi-

nal nature of the response and introduce the ordered logit model.

MODELING INTERACTION

An artifact of the logistic regression model, as well as the other probability mod-

els considered, is that the regressors are automatically interactive with respect to



probabilities. (Showing this was the theme of Exercise 7.13.) However, to model

interaction over and above what is incorporated into the nature of the logit link, or

to model interaction in the odds or the log odds, we have two choices. Either we

can compare the model over levels of an explanatory variable or we can utilize

cross-product terms, similar to the approaches taken in linear regression.

Comparing Models across Groups

Until now I have been utilizing a combined sample of minority and nonminority cou-

ples to investigate models of couple violence. The dummy variable reflecting minor-

ity status in the model simply allows minorities to have a different baseline log odds

of violence than that for nonminorities. Otherwise, the effects of the other regressors

are assumed to be the same for minorities, as opposed to nonminorities. Although I

have no reason to suspect otherwise, it would be fruitful to provide a statistical

justification for combining the models for both groups. In Chapters 3 and 4 we saw

that the Chow test is used for this purpose in linear regression. There is an analog of

this test for logistic regression, recently outlined by Allison (1999).

Recall that the Chow test in linear regression assumes that the equation error vari-

ance is the same across groups. The following explication similarly assumes equal

error variance. In this case, however, the error variance in question pertains to the

latent-scale formulation of the logistic regression model. That is, if

Yi
* ��βkXik � εi

is the equation that underlies the binary response for the first group, and

Yi
* ��γkXik � υi

underlies the binary response for the second group, the assumption is that V(εi) �

V(νi). [It is not necessary to assume that a latent variable underlies the response in

order to motivate the homogeneity-of-variance assumption; see Allison (1999) for

details.] Unfortunately, there is no simple means of testing this assumption [see

Allison (1999) for suggested techniques, however]. In the present example, we sim-

ply assume that the error variances are equal. The Chow test analog for logistic

regression involves estimating the model for the combined sample and then for each

sample separately. For two groups, the test statistic is then χ2
� �2 ln Lc � [�2 ln

L1 � (�2 ln L2)], where ln Lc is the fitted log-likelihood for the combined sample,

ln L1 the fitted log-likelihood for group 1, and ln L2 the fitted log-likelihood for

group 2. Under the null hypothesis that γγ � ββ, that is, that regressor effects are the

same across groups, χ2 has a chi-squared distribution with degrees of freedom equal

to the difference in the number of parameters estimated in the combined versus the

separate sample approaches. As with linear regression, the intercept can be constrained

to be the same by omitting the dummy for group in the combined-sample model. 

Or, it can be allowed to differ across groups by including the group dummy in the

combined-sample model.
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Example. Table 8.1 presents the results of estimating logistic regression models for

couple violence using the combined sample of 4095 couples, as well as using sepa-

rate samples of 1216 minority and 2879 nonminority couples. The first model is just

a repeat of the logit model in Table 7.1 and represents a model in which the intercept

is unconstrained across groups. The second model constrains the intercept, in addi-

tion to the regressors, to be the same for minorities and nonminorities. The third and

fourth columns represent the models for minorities and nonminorities, respectively.

A glance at the coefficients in the last two columns suggests that there are some

differences in regressor effects across groups. But differences in coefficients are to be

expected, due purely to sampling variability. The test statistic for coefficient invari-

ance across groups, allowing the intercept to be unconstrained, is χ2 � 3054.132 �

(1006.921 � 2043.172) � 4.039. The degrees of freedom for the test are figured as

follows. Including the intercept, we estimate eight parameters in the combined model,

whereas we estimate seven parameters in each of the submodels. The test therefore

has (7 � 7) � 8 � 6 degrees of freedom. The result is nonsignificant (p � .671). If

we allow the intercept to be constrained, we have χ2 � 3058.240 � (1006.921 �

2043.172) � 8.147. With seven degrees of freedom, this test is also nonsignificant

(p � .32). Based on either result, I conclude that there is insufficient evidence to sug-

gest that regressor effects are any different for minorities versus nonminorities. As

was the case in linear regression, an equivalent test can be fashioned using cross-prod-

uct terms. Testing the difference between the model in the first column in Table 8.1

versus a model in which the cross-products of minority status with all 6 other regres-

sors has been added gives us the unconstrained-intercept test above. Adding the

dummy for minority status plus the six cross-product terms to the model in the sec-

ond column of Table 8.1, and testing the difference in resulting models, produces the

constrained-intercept test.
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Table 8.1 Regression Results for the Logit Model in Table 7.1 Estimated for the

Combined Sample as Well as Separately for Minority and Nonminority Couples

Combined Sample

Intercept Intercept Minority Nonminority

Predictor Unconstrained Constrained Couples Couples

Intercept �2.151*** �2.081*** �1.892*** �2.154***

Relationship duration �.046*** �.046*** �.039*** �.050***

Cohabiting .810*** .836*** .706* .960**

Minority couple .221*

Female’s age at union �.027*** �.026*** �.017 �.033***

Male’s isolation .020* .019* .027* .017

Economic disadvantage .023* .030*** .017 .032*

Alcohol/drug problem 1.029*** 1.011*** 1.244*** .946***

�2 log L 3054.132 3058.240 1006.921 2043.172

Number of parameters 8 7 7 7

n 4095 4095 1216 2879

* p � .05. ** p � .01. *** p � .001.



Examining Variable-Specific Interaction Effects

Interactions between specific variables in their effects on the response are best inves-

tigated with cross-product terms. In that the model for the probabilities is already

interactive in the regressors, what is achieved by adding a cross-product if the prob-

ability is our focus? The main advantage is that using a cross-product term allows

interaction effects in the probabilities to be disordinal, whereas without it, the inter-

action is constrained to be ordinal. Recall from Chapter 3 that the descriptors ordi-

nal and disordinal refer to degrees of interaction. When the impact of the focus

variable differs only in magnitude across levels of the moderator, the interaction is

ordinal. If the nature (or direction) of the impact changes over levels of the modera-

tor, the interaction is disordinal. Without a cross-product term, the partial slope of Xk

on the probability is, as noted earlier, βk[π(x) (1 � π(x))]. [I’m using the notation

π(x) here to emphasize that π changes with x.] Because [π(x) (1 � π(x))] � 0, the

impact of Xk on the probability always has the same sign, regardless of the settings

of the X’s in the model (i.e., βk[π(x) (1 � π(x))] takes on whatever sign βk takes).

Hence, the effect of Xk can differ only in magnitude, but not direction, with different

values of the X’s. With a cross-product in the model of the form γXkXj, however, the

partial slope for Xk becomes (βk � γXj) [π(x) (1 � π(x))]. In this case, because βk and

γ could be of opposite signs, the impact of Xk on the probability could change direc-

tion at different levels of Xj, producing a disordinal interaction.

The interaction model for the log odds, with two predictors, X and Z, is

ln O � β0 � β1X � β2Z � γXZ.

Interpretation is similar to that for the linear regression model, except that in this

case, the response is the log odds of event occurrence. With X as the focus variable,

its effect can be seen by factoring out its common multipliers:

ln O � β0 � β2Z � (β1 � γZ)X.

The impact of X on the odds is therefore exp(β1 � γZ), or, following the framework

I have previously articulated (DeMaris, 1991), it is exp(β1) [exp(γ)]z. This last

expression suggests that each unit increase in Z magnifies the impact of X by exp(γ).

Table 8.2 presents logistic regression models for couple violence allowing alcohol/

drug problem to interact with economic disadvantage in their effects on the log odds of

violence. There is solid justification for expecting these factors to interact. The impact

of having an alcohol or drug problem on intimate violence may be exacerbated in dis-

advantaged neighborhoods. Living amidst economic disadvantage is likely to enhance

the stress associated with substance abuse. Additionally, the social isolation and absence

of community monitoring that typically characterizes such neighborhoods may create a

context in which “high” or inebriated partners feel freer to vent their frustrations phys-

ically on one another (Miles-Doan, 1998; Sampson et al., 1997). Similarly, living in a

disadvantaged neighborhood may be more stressful for those with substance abuse

problems.
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Model 1 in Table 8.2 includes the cross-product of alcohol/drug problem with eco-

nomic disadvantage, the latter being a centered regressor. The effect of alcohol/drug

problem on the log odds of violence is .968 � .069 economic disadvantage. The effect

on the odds of violence is exp(.968 � .069 economic disadvantage). Thus, having a

substance abuse problem raises the odds of violence by exp(.968) � 2.633 for those in

neighborhoods of average economic disadvantage levels. For those a unit higher in

economic disadvantage, the effect of alcohol/drug problem on the odds is exp(.968 �

.069) � exp(1.037) � 2.821. Or, the effect of having an alcohol or drug problem is

magnified by a factor of exp(.069) � 1.071 for each 1-unit increase in economic dis-

advantage [see DeMaris (1991) for additional use of this multiplicative framework for

interpreting interactions]. For those who are a standard deviation (5.128) higher in eco-

nomic disadvantage, the effect of alcohol/drug problem is exp[.968 � .069(5.128)] �

exp(1.321) � 3.747. Or, with economic disadvantage as the focus, the impact of

economic disadvantage on the log odds is .016 � .069 alcohol/drug problem. For

those without substance abuse problems, each unit increase in economic disadvantage

magnifies the odds of violence by a factor of exp(.016) � 1.016, a nonsignificant effect.

For those with substance abuse problems, the effect is exp(.016 � .069) � exp(.085) �

1.089.

Targeted Centering

The significant interaction effect means that the effect of alcohol/drug problem (eco-

nomic disadvantage) changes over levels of economic disadvantage (alcohol/drug
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Table 8.2 Logistic Regression Models for the Interaction between Economic

Disadvantage and Alcohol/Drug Problem in Their Effects on Violence

Predictor Model 1 Model 2 Model 3

Intercept �2.148*** �1.180*** �2.065***

Relationship duration �.046*** �.046*** �.046***

Cohabiting .830*** .830*** .830***

Minority couple .216* .216* .216*

Female’s age at union �.027*** �.027*** �.027***

Male’s isolation .021* .021* .021*

Economic disadvantage .016 .085**

Alcohol/drug problem .968*** 1.321***

Alcohol/drug free �.968***

Economic disadvantage � SD .016

Economic disadvantage .069*

� alcohol/drug problem

Economic disadvantage �.069*

� alcohol/drug Free

Economic Disadvantage � SD .069*

� alcohol/drug problem

* p � .05. ** p � .01. *** p � .001.



problem). But is the effect of, say, economic disadvantage significant for those with

alcohol or drug problems? Or, is the effect of alcohol/drug problem significant for

those at, say, 1 standard deviation above mean economic disadvantage? What is

needed is a test for the significance of the focus variable at a particular level of the

moderator. In Chapter 3 I presented a formula for finding the variance of the partial

slope for the impact of X at a particular level, z, of Z. If the estimated partial slope

is written b1 � gz, the formula for V(b1 � gz), given by equation (3.10), is

V(b1 � gz) � V(b1) � 2z Cov(b1, g) � z2 V(g).

Here I outline a technique, first introduced in Chapter 6, that I refer to as targeted cen-

tering, which obviates the need to compute such a variance by hand. We simply code

the variables involved in creating the cross-product term so that the effect of interest

is the main effect of one of the variables. To discern whether economic disadvantage

is significant for couples with alcohol or drug problems, we simply recode the dummy

for alcohol/drug problem so that having an alcohol or drug problem is the reference

category. The new dummy is called “alcohol/drug free” in Table 8.2. Then the cross-

product of economic disadvantage with alcohol/drug free is formed to capture the

interaction effect. Model 2 in Table 8.2 shows the results. The main effect on the log

odds of violence of economic disadvantage is now the effect for those with alcohol or

drug problems. The value of .085 agrees with what was shown above for those who

have substance abuse problems. Now we see that the effect of economic disadvantage

is, indeed, significant for this group.

Model 3 shows the effect of applying targeted centering to economic disadvantage.

In that the standard deviation of economic disadvantage is 5.128, “economic disad-

vantage �SD” is economic disadvantage �5.128. [In that the variable is already

centered, economic disadvantage � (mean � SD) reduces to economic disadvantage �

SD.] The cross-product of alcohol/drug problem with (economic disadvantage �SD)

is formed and included in the model. Then the effect of alcohol/drug problem is:

1.321 � .069 (economic disadvantage �SD). For couples whose economic disadvan-

tage is 1 standard deviation above the mean, economic disadvantage �SD equals zero.

Hence, the effect of alcohol/drug problem at 1 standard deviation above mean eco-

nomic disadvantage is just the main effect of alcohol/drug problem, or 1.321, which,

as shown, is very significant. (This effect also agrees with the calculations above.) As

a final note, targeted centering can be employed in any regression equation, linear or

otherwise.

MODELING NONLINEARITY IN THE REGRESSORS

Although the logistic regression model is nonlinear in the regressors with respect to

probabilities, it is assumed to be linear in the log odds. However, this may not be 

a reasonable assumption. For example, in the case of couple violence, it might be

expected that the log odds of couple violence would initially drop markedly with

increasing relationship duration. Couples are likely to learn to use more constructive
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conflict-resolution techniques in their relationships over time and should become

less likely to be violent as they spend a longer time together. Violent couples are also

more likely to dissolve their relationships, so over time, we expect only the better-

adjusted couples to stay together. Nevertheless, beyond a certain relationship dura-

tion, increasing duration would not be expected to keep having a beneficial effect on

inhibiting violence. Rather, the effect of increasing duration should lessen in magni-

tude for couples who have been together for a long time. Although such a trend

might be fitted with a quadratic term, we begin without assuming any particular

parametric form that a nonlinear trend might take.

Testing for Nonlinearity

We can explore whether there is nonlinearity in the relationship between the log odds

and a continuous regressor using a technique suggested by Hosmer and Lemeshow

(2000). They recommend partitioning a continuous regressor into quartiles or quintiles

of its sample distribution. That is, for a continuous regressor, X, and using quintiles, we

recode X so that the value 1 represents the 20% of the sample with the lowest scores

on X, the value 2 represents the 20% of the sample with the next-lowest scores on X,

and so on, until finally, the value 5 represents the 20% of the sample with the highest

scores on X. We then dummy up the quintiles and examine the relationship between

the log odds of event occurrence and the quintile dummies, while controlling for other

model effects. Table 8.3 shows this technique applied to relationship duration.
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Table 8.3 Models Investigating the Nonlinear Effect of Relationship Duration on the

Log Odds of Violence

Predictor Model 1 Model 2 Model 3 Model 4

Intercept �1.529*** �1.027*** �2.310*** �2.837***

Cohabiting .759** .773** .769** .679**

Minority couple .244* .247* .242* .242*

Female’s age at union �.028*** �.028*** �.029*** �.029***

Male’s isolation .021* .021** .021** .021**

Economic disadvantage .023* .023* .023* .023*

Alcohol/drug problem 1.036*** 1.030*** 1.040*** 1.040***

Duration quintile 2 �.059

Duration quintile 3 �.493***

Duration quintile 4 �1.211***

Duration quintile 5 �1.349***

Duration quintile �.371***

Relationship duration �.054***

(Relationship duration)2 .001**

Relationship duration � SD �.029***

(Relationship Duration � SD)2 .001**

Model χ2 207.054*** 196.495*** 204.127*** 204.127***

df 10 7 8 8

* p � .05. ** p � .01. *** p � .001.



Model 1 presents the regression of the log odds of couple violence on the covari-

ates in Table 8.1, with relationship duration quintiles 2 to 5 represented as dummies.

The lowest quintile of relationship duration is the reference category. The dummy

coefficients indicate that the reduction in the log odds of violence associated with

quintiles 4 and 5 is substantially larger than the reductions associated with quintiles 2

and 3, suggesting a nonlinear trend. However, to observe this trend more readily, we

can plot the relationship between the log odds of violence and duration quintile, con-

trolling for the other covariates. This is accomplished simply by using the dummies

and the intercept to estimate the log odds for each quintile. That is, for married, non-

minority, alcohol- and drug-free couples at average female age at union, male isola-

tion, and economic disadvantage, the estimated log odds of violence is �1.529 for

those in the lowest duration quintile. For comparable couples in the second quintile,

the log odds is �1.529 � .059 � �1.588. For comparable couples in the third quin-

tile, the log odds is �1.529 � .493 � �2.022, and so on. The last two log odds are

�2.74 and �2.878. These values are then plotted against duration quintile, whose

values range from 1 through 5. The result is shown in Figure 8.1.

The plot suggests, as suspected, that the logit of violence declines with increasing

duration until quintile 4, at which point it levels off. This type of trend can be cap-

tured nicely with a quadratic term. However, there is also the suggestion that the
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Figure 8.1 Plot of log odds of violence against relationship duration quintile, based on model 1 in

Table 8.3.



decline begins gradually and then accelerates between quintiles 2 and 4 before it lev-

els off. That is, the entire curve actually appears to have three bends, suggesting that

perhaps a cubic polynomial in relationship duration would provide a good fit. Never-

theless, we first need to test whether the trend in relationship duration is significantly

nonlinear. For this purpose, we can test model 1 in Table 8.3 against model 2,

which includes duration quintile, coded 1 to 5, modeled as a linear effect. The test sta-

tistic is χ2 � 207.054 � 196.495 � 10.559. The test has 3 degrees of freedom and is

significant at p � .014. I conclude that the relationship between the log odds of

violence and relationship duration is not linear. To model the trend in Figure 8.1,

I elected to include both duration-squared and duration-cubed in the model, in addi-

tion to duration, all using the original continuous coding. For this purpose, relation-

ship duration is first centered, thus minimizing collinearity problems in the estimates

due to higher-order terms. It turns out that the cubic term was not significant (results

not shown) but the quadratic term was. So I chose the quadratic model as best cap-

turing the nonlinearity in relationship duration. The results are shown as model 3 in

Table 8.3.

Targeted Centering in Quadratic Models

The estimates in model 3 suggest that the partial slope for relationship duration is

�.054 � 2(.001) relationship duration. The implication is that relationship duration

reduces the log odds of violence, but at a declining rate the longer couples have already

been together. That is, the effect of an instantaneous increase in relationship duration

depends on the value of relationship duration. The main effect of relationship dura-

tion, �.054, is the partial slope (or partial derivative) of duration at mean duration,

which is 14.9 years. This is clearly significant. What about the effect at a standard devi-

ation above the mean? The unrounded estimates for duration and duration-squared are

actually �.0535 and .000968, respectively, and a standard deviation of relationship

duration is 12.8226 years. The effect is, therefore, �.0535 � 2(.000968) (12.8226) �

�.0287, or �.029. To assess whether this effect is significant, we would normally want

to calculate its standard error using covariance algebra. Letting X represent relation-

ship duration, the estimated partial slope can be denoted b � 2gx. Its variance is (as the

reader can verify with covariance algebra)

V(b � 2gx) � V(b) � 4x Cov(b,g) � 4x2 V(g).

Once again, however, we can use targeted centering to avoid computation of the

standard error by hand. In this case, we simply create a new “centered” variable, rela-

tionship duration � 12.8226, shown as “relationship duration � SD” in Table 8.3,

along with its square, (relationship duration � SD)2, and use these in the model to

capture the effect of relationship duration. The results are shown in model 4 in Table

8.3. The partial slope of relationship duration is now �.029 � 2(.001) (relationship

duration � SD). When relationship duration is at 1 standard deviation above the

mean, (relationship duration � SD) equals zero, and the effect is �.029, as calculated

above. As is evident, this effect is also quite significant.
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TESTING COEFFICIENT CHANGES IN LOGISTIC REGRESSION

In Chapter 3 we saw that we could test for the significance of changes in coefficient val-

ues across nested linear regression models using the procedure outlined by Clogg et al.

(1995). In the same article, the authors detailed the procedure for testing coefficient

changes in any form of the generalized linear model. Here, I discuss that procedure in

the context of logistic regression. As an example, Table 8.4 presents two models for cou-

ple violence. Model 1 represents the results of refinements in this chapter, with respect

to interaction and nonlinear effects, made to the base model of Chapter 7. It is essen-

tially the logit model from Table 7.1 to which have been added the quadratic effect of

relationship duration, plus the interaction between economic disadvantage and alco-

hol/drug problem. The model suggests that a number of factors affect the log odds of

couple violence. Of interest, however, are the mechanisms responsible for these effects.

Why, for example, do substance abuse problems elevate the odds of violence? One

possible explanation is that alcohol and drugs promote relationship dissension, par-

ticularly of a more hostile nature (Leonard and Senchak, 1996). Arguments may erupt

over a partner’s drinking or drug use. Or, the substance-abusing partner may, under

the influence of alcohol or drugs, become more belligerent than he or she normally

would. At any rate, I suggest that part of the effect of substance abuse on violence is

due to its tendency to increase hostile argumentation, which, in turn, elevates the risk

of violence. Similar arguments could be made for the other predictors. Each may

affect the risk of violence because it elevates the level of hostile argumentation in the
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Table 8.4 Comparing Coefficients for Focus Variables before vs. after Adding Conflict

Management Mediators

Predictor Model 1 Model 2 δ̂ z for δ̂

Intercept �2.308*** �2.553***

Cohabiting .789** .867*** �.077 �2.745

Minority couple .238* .206 .031 3.109

Female’s age at union �.030*** �.016 �.014 �14.004

Male’s isolation .021** .013 .008 16.062

Economic disadvantage .016 .014 .002 1.638

Alcohol/drug problem .978*** .654*** .323 18.417

Relationship duration �.054*** �.052*** �.001 �2.089

(Relationship duration)2 .00098** .0015*** �.0005 �21.873

Economic disadvantage .070* .061* .009 1.719

� alcohol/drug problem

Open disagreement .064***

Positive communication �.441***

Model χ2 210.319*** 453.310***

df 9 11

Hosmer–Lemeshow χ2 (8) 12.470

R2
MZ .239

∆ˆ .131

* p � .05. ** p � .01. *** p � .001.



relationship. Model 2 explores this possibility by adding two measures of relationship

dissension. Open disagreement taps the frequency of open disagreements, and posi-

tive communication is a scale that measures the extent to which disagreements are

conducted calmly. It is evident that the effect of alcohol/drug problem (at mean eco-

nomic disadvantage), as well as the effects of several other factors (e.g., female’s age

at union, male’s isolation) have been noticeably reduced after controlling for these

measures of verbal conflict. However, are these coefficient changes significant?

Variance–Covariance Matrix of Coefficient Differences

In general, the test for the significance of coefficient changes in logistic regression is

as follows. Once again, we define a baseline model with p parameters as

ln O � α ��βp
* Xp,

whereas the full model with q added parameters is:

ln O � α ��βpXp ��γqZq.

We are interested in whether the βk
* , the coefficients of the focus variables in the

baseline model, are significantly different than the βk, the coefficients of the same

focus variables in the full model, after the other variables (the Z1, Z2, . . . , Zq) have

been included. Therefore, we wish to test whether the coefficient differences, δk �

βk
*

� βk, for k � 1, 2, . . . , p, are different from zero. Under the assumption that the

full model is the true model that generated the data, the statistic dk/σ̂dk
(where dk �

bk
*
� bk is the sample difference in the kth coefficient and σ̂dk

is the estimated stan-

dard error of the difference) is distributed asymptotically as standard normal (i.e., it

is a z test) under H0: δk � 0 (Clogg et al., 1995).

Unfortunately, the standard errors of the dk are not a standard feature of logistic

regression software. However, they can be recovered via a relatively straightforward

matrix expression. If we let V(δδ̂) represent the estimated variance–covariance matrix

of the coefficient differences, the formula for this matrix is

V(δδ̂) � V(ββ̂) � V(ββ̂*)[V(ββ̂)]�1V(ββ̂*) � 2V(ββ̂*),

where V(ββ̂) is the sample variance–covariance matrix for the bk’s in the full model,

V(ββ̂*) is the sample variance–covariance matrix for the bk
*’s in the reduced model,

and [V(ββ̂)]�1 is the inverse of the variance–covariance matrix for the bk’s in the full

model (Clogg et al., 1995). [A copy of an SAS program that estimates the reduced

and full models, computes V(δδ̂), and produces z tests for coefficient changes across

models is available on request from the author.]

The third column of Table 8.4 shows the coefficient changes for all variables in

model 1 after open disagreement and positive communication have been added. Column

4 shows the z tests for the significance of the changes. We see that all changes are quite

significant except those for the effects of economic disadvantage and the interaction of
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economic disadvantage with alcohol/drug problem. In particular, part of the effect of

alcohol/drug problem (at mean economic disadvantage) appears to be mediated by

open disagreement and positive communication. A final comment before closing this

section: The reader will notice that even relatively small coefficient changes across

models turn out to be significant. The standard errors of the coefficient changes tend to

be quite small in this test, primarily because coefficients for the same regressors in base-

line and full models are not independent (Clogg et al., 1995). As in other such scenar-

ios involving dependent samples (e.g., the paired t test) standard errors of differences

between dependent estimates tend to be smaller, inflating the values of test statistics.

Discriminatory Power and Empirical Consistency of Model 2

We saw in Chapter 7 that the base logit model in Table 7.1 was not quite empiri-

cally consistent, according to the Hosmer–Lemeshow statistic. Nor did it have

impressive discriminatory power, according to either the explained-variance or

ROC criteria. However, that model was missing some important effects, which,

hopefully, have been incorporated into model 2 in Table 8.4. Reassessing empirical

consistency and discriminatory power for this model produced the following

results, shown at the bottom of the model 2 column. The Hosmer–Lemeshow sta-

tistic is 12.47, which, with 8 degrees of freedom, is no longer significant (p � .13).

The model now appears to be empirically consistent or to have an adequate fit.

About 24% of the variance in the underlying physical aggression scale is now

accounted for by the model. Or, the model explains about 13% of the risk of vio-

lence. The ROC for model 2 is shown in Figure 8.2. As is evident, the area under
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Figure 8.2 Receiver operating characteristic curve for model 2 in Table 8.4.



the curve is now .7593, which, according to the guidelines articulated in Chapter 7,

represents acceptable discriminatory power.

MULTINOMIAL MODELS

Response variables may consist of more than two values but still not be appropriate

for linear regression. Unordered categorical, or nominal, variables are those in which

the different values cannot be rank ordered. Ordered categorical variables have val-

ues that represent rank order on some dimension, but there are not enough values to

treat the variable as continuous (e.g., there are fewer than, say, five levels of the vari-

able). Logistic regression models are easily adaptable to these situations and are

addressed in this section of the chapter.

Unordered Categorical Variables

Until now I have been treating intimate violence as a unitary phenomenon. However,

in that violence by males typically has graver consequences than violence by females

(Johnson, 1995; Morse, 1995) it may be important to make finer distinctions. For this

reason, I distinguish between two types of violence in couples. I refer to the first as

“intense male violence,” which reflects any one of the following scenarios: The male

is the only violent partner, both are violent but he is violent more often, or both are vio-

lent but only the female is injured. All other manifestations of violence are referred to

as “physical aggression.” Both types of violence are contrasted with “nonviolence” (or,

more accurately, “the absence of reported violence”), the third category of the response

variable that I term couple violence profile. Of interest now is the degree to which the

final model for violence, model 2 in Table 8.4, discriminates among “intense male vio-

lence,” “physical aggression,” and “nonviolence.” I begin by treating couple violence

profile as unordered categorical. That is, these three levels are treated as qualitatively

different types of intimate violence (or the lack of it). However, it can be argued that

they represent increasing degrees of violence severity, with “intense male violence”

being more severe than “physical aggression,” which is obviously more severe than

“nonviolence.” In a later section, these three categories are therefore treated as ordered.

Of the 4095 couples in the current example, 3540, or 86.4%, are “nonviolent”;

406, or 9.9%, have experienced “physical aggression”; and 149, or 3.6%, are char-

acterized by “intense male violence.” There are three possible nonredundant odds

that can be formed to contrast these three categories. Each of these is conditional on

being in one of two categories of couple violence profile (Theil, 1970). For example,

there are 3946 couples who experienced either “nonviolence” or “physical aggres-

sion.” Given location in one of these two categories, the odds of “physical aggres-

sion” is 406/3540 � .115. This odds is also the ratio of the probability of “physical

aggression” to the probability of “nonviolence,” or .099/.864 � .115. Similarly, given

that a couple is characterized by either “nonviolence” or “intense male violence,” the

odds of “intense male violence” is 149/3540 (� .036/.864) � .042. Only two of the

odds are independent: once they are recovered, the third is just the ratio of the first
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two. Thus, given some type of violence, the odds that it is “intense male violence”

is .036/.099 � .364. In general, for an M-category variable, there are M(M � 1)/2

nonredundant odds that can be contrasted, but only (M � 1) independent odds.

Modeling (M � 1) Log Odds

As before, we typically wish to model the log odds as functions of one or more

explanatory variables. However, this time we require (M � 1) equations, one for each

independent log odds. Each equation is equivalent to a binary logistic regression

model, in which the response is a conditional log odds—the log odds of being in one

vs. another category of the response variable, given location in one of these two cate-

gories. Each odds is the ratio of the probabilities of being in the respective categories.

Equations for all of the other M(M � 1)/2 � (M � 1) dependent log odds are functions

of the parameters for the independent log odds, and therefore do not need to be esti-

mated from the data. Typically, we choose one category, say the Mth, of the response

variable as the baseline, and contrast all other categories with it (i.e., the probability of

being in the baseline category forms the denominator of each odds). With π1, π2, . . . ,

πM representing the probabilities of being in category 1, category 2, . . . , category M,

of the response variable, respectively, the multinomial logistic regression model with

K predictors is

log�π

π

M

1
� � β0

1
� β1

1
X1 � . . . � βK

1
XK

log�π

π

M

2
�� β0

2
� β1

2
X1 � . . . � βK

2
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π
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M
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�1
� � β0

M�1
� β1

M�1
X1 � . . . � βK

M�1
XK,

where the superscripts on the betas indicate that effects of the regressors can change,

depending on which log odds is being modeled.

Estimation. As before, parameters are estimated via maximum likelihood. In that the

model consists of a series of binary logistic regression equations, one method of esti-

mating the model, particularly in the absence of multinomial logistic regression soft-

ware, is via limited information maximum likelihood (LIML) estimation. In the

current example, this would be accomplished by selecting all cases characterized by

either “intense male violence” or “nonviolence” and ignoring those exhibiting “phys-

ical aggression.” One would then estimate a binary logistic regression for “intense

male violence” versus “nonviolence,” using only the cases selected. Next, one would

select only the cases characterized by either “physical aggression” or “nonviolence.”

For this group, one would estimate a binary logistic regression for “physical aggres-

sion” versus “nonviolence.” The two resulting sets of estimates would then constitute
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the multinomial logistic regression estimates. This approach, originally proposed by

Begg and Gray (1984), produces estimates that are consistent and asymptotically nor-

mal. However, they are not as efficient as those produced by maximizing the joint

likelihood function for all the parameters (across the M � 1 equations), given the data

[see Hosmer and Lemeshow (2000) for an expression for this likelihood]. The latter

approach is what is commonly employed for estimating the multinomial logistic

regression model. Maximization of the joint likelihood function using all the data is

referred to as full information maximum likelihood (FIML) estimation.

In SAS, one can use the procedures LOGISTIC or CATMOD for estimating the

FIML model. As SAS’s CATMOD (employed for this chapter) automatically chooses

the highest value of the response variable as the baseline, one controls the choice of

baseline by coding the variable accordingly. In the current example, I wanted “non-

violence” to be the baseline category, so the variable couple violence profile was

coded 0 for “intense male violence,” 1 for “physical aggression,” and 2 for “nonvio-

lence.” Table 8.5 presents the results of estimating the multinomial model of couple

violence profile using the regressors in model 2 of Table 8.4. Shown are the equations

for the two independent log odds—contrasting “intense male violence” with “nonvi-

olence” and contrasting “physical aggression” with “nonviolence”—based on either

FIML or LIML. The estimates in the equation for the third logs odds, which contrasts

“intense male violence” with “physical aggression,” are simply the differences in the
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Table 8.5 Multinomial Logistic Regression Models for Violence Profile as a Function

of Couple Characteristics

FIML Estimates LIML Estimates

Predictor IM vs. NV PA vs. NV IM vs. NV PA vs. NV

Intercept �4.024*** �2.810*** �4.046*** �2.794***

Cohabitingab 1.368*** .591 1.430*** .645*

Minority couple .255 .191 .251 .149

Female’s age at union �.029* �.011 �.029* �.010

Male’s isolation .028 .008 .030 .008

Economic disadvantage .037* .005 .035* .006

Alcohol/drug problemb .867** .579** .913*** .585**

Relationship durationb
�.066*** �.049*** �.068*** �.048***

(Relationship duration)2b .0005 .0016*** .0005 .0016***

Economic disadvantage .048 .067 .055 .072*

� alcohol/drug problem

Open disagreementb .058** .065*** .058** .069***

Positive communicationb
�.536*** �.408*** �.534*** �.406***

Model χ2 475.738*** 224.211*** 296.482***

df 22 11 11

R2
L .122 .180 .113

a Significant discriminator of intense male violence (IM) versus physical aggression (PA).
b Significant global effect on both log odds.

* p � .05. ** p � .01. *** p � .001.



first two sets of estimates. To see why, let π0 be the probability of “intense male vio-

lence,” π1 be the probability of “physical aggression,” and π2 be the probability of

“nonviolence.” Then, with K predictors of the form X1, X2, . . . , XK in the model, the

equation for the odds of “intense male violence” vs. “physical aggression” is

�
π

π
0

1

� � �
π

π
0

1

/

/

π

π
2

2

� �

� exp(β0
1
� β0

2 ) exp[(β1
1
� β1

2 )X1 ] . . . exp[(βK
1
� βK

2 )XK].

Of course, this third equation can easily be generated via SAS simply by changing

the coding of the response. In this case, I would switch the coding so that 1 repre-

sents “nonviolence” and 2 represents “physical aggression.” Then the first set of esti-

mates shown in the output would be for the log odds of “intense male violence”

versus “physical aggression.” However, it is usually less confusing to show only the

equations for the independent log odds, after selecting the most appropriate group as

the baseline category.

Interpretation of Coefficients. Model coefficients are interpreted just as they 

are in the binary case, except that now, more than two outcome categories are being

compared. For example, according to the FIML estimates, cohabitors have higher 

odds of “intense male violence” (versus “nonviolence”) than marrieds by a factor of

exp(1.368) � 3.927. They are not at higher risk than marrieds, however, for “physical

aggression.” Their odds of “physical aggression,” compared to the odds for marrieds,

is inflated by 100[exp(.591) � 1] � 80.6%, but this effect is not significant. Given

violence, the odds that it is “intense male violence” versus “physical aggression” is

exp(1.368 � .591) � exp(.777) � 2.175 times higher for cohabitors than for marrieds.

Is this effect significant? One could pose the question in one of two ways. First, we

could ask whether the effect of cohabiting on the log odds of “intense male violence”

is different from its effect on “physical aggression.” This would involve a test of the

difference between the coefficients for cohabiting in each equation. Or we can estimate

the log odds of “intense male violence” vs. “physical aggression” (the third, noninde-

pendent equation) and ask whether the cohabiting effect is significant in that equation.

In fact, it is (results not shown). The latter perspective is equivalent to asking whether

cohabiting discriminates “intense male violence” from “physical aggression.” In fact,

it is the only significant discriminator in the model, as indicated in the table footnote.

Several other effects in the FIML model are significant. Having an alcohol or drug

problem and more frequent disagreements elevates the odds of both “intense male

violence” and “physical aggression.” More positive communication and a longer rela-

tionship duration reduce the odds of both types of violence. The female’s age at union,

living in an economically disadvantaged neighborhood, and the nonlinear effect of

relationship duration, however, affect only the odds of one type of violence. Neverthe-

less, none of these variables’ effects are significantly different for “intense male vio-

lence” as opposed to “physical aggression.”

exp(β0
1 ) exp(β1

1
X1 ) . . . exp(βK

1
XK)

����
exp(β0

2 ) exp(β1
2
X1 ) . . . exp(βK

2
XK)

MULTINOMIAL MODELS 297



The LIML estimates are generally quite close to the FIML ones. This should usu-

ally be the case, as the LIML estimates are nearly as efficient as their FIML counter-

parts (Begg and Gray, 1984). One might wonder why we would bother with LIML if

the FIML software is available, as it generally is. As Hosmer and Lemeshow (2000)

point out, the LIML approach has some specific advantages. First, it allows the model

for each log odds to be different if we so choose, that is, to contain different regressors

or different functions of regressors, an approach not possible with FIML. Second, it

allows one to take advantage of features that may be offered in binary logistic regres-

sion software but not multinomial logistic regression software. Examples are weight-

ing by case weights or diagnosing influential observations. Third, means of assessing

empirical consistency, such as the Hosmer–Lemeshow χ2, are not yet well developed

for the multinomial model (Hosmer and Lemeshow 2000). However, using the LIML

approach, empirical consistency can be assessed for each equation separately, as dis-

cussed in Chapter 7. In fact, for the model in Table 8.5, the Hosmer– Lemeshow χ2

is 11.823 for the equation for “intense male violence” and 6.652 for the equation 

for “physical aggression.” Both values are nonsignificant, suggesting an acceptable

model fit.

Inferences. In multinomial logistic regression, there are several statistical tests of

interest. First, as in binary logistic regression, there is a test statistic for whether the

model as a whole exhibits any predictive efficacy. The null hypothesis is that all

K(M � 1) of the regression coefficients (i.e., the betas) in equation group (8.1) equal

zero. Once again, the test statistic is the model chi-squared, equal to �2 log (L0/L1),

where L0 is the likelihood function evaluated for a model with only the MLEs for the

intercepts and L1 is the likelihood function evaluated at the MLEs for the hypothe-

sized model. This test is not automatically output in CATMOD. However, as the pro-

gram always prints out �2 log L for the current model, it can be readily computed by

first estimating a model with no predictors and then recovering �2 log L0 from the

printout (it is the value of “�2 log likelihood” for the last iteration on the printout).

This test can then be computed as �2 log L0 � (�2 log L1). For the model in Table 8.5,

�2 log L0 was 3895.2458, while �2 log L1 was 3419.5082. The test statistic was

therefore 3895.2458 � 3419.5082 � 475.7376, with 11(2) � 22 degrees of freedom, a

highly significant result. (The LIML equations each have their own model χ2, as

shown in the table.)

Second, the test statistic, using FIML, for the global effect on the response vari-

able of a given predictor, say Xk, is not a single-degree-of-freedom test statistic as in

the binary case. For multinomial models, there are (M � 1) βk’s representing the

global effect of Xk, one for each of the log odds in equation group (8.1). Therefore,

the test statistic is for the null hypothesis that all M � 1 of these βk’s equal zero.

There are two ways to construct the test statistic. One is to run the model with and

without Xk and note the value of �2 log L in each case. Then, if the null hypothesis

is true, the difference in �2 log L for the models with and without Xk is asymptoti-

cally distributed as chi-squared with M � 1 degrees of freedom. This test requires

running several different models, however, excluding one of the predictors on each

run. Instead, most software packages, including SAS, provide an asymptotically
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equivalent Wald chi-squared test statistic [see Long (1997) for its formula] that per-

forms the same function. Predictors having significant global effects on violence

types, according to this test, are flagged with a superscript b in Table 8.5.

A third test statistic is for the effect of a predictor on a particular log odds. This

is simply the ratio of a given coefficient to its asymptotic standard error, which, as in

the binary case, is a z-test statistic. Fourth, it may be desirable to test effects of pre-

dictors on the nonindependent log odds—the odds of “intense male violence” versus

“physical aggression,” in the current example. As noted above, it is a simple matter

to obtain these tests, simply by rerunning the program and changing the coding of

the response variable. Fifth, tests of nested models with FIML are accomplished the

same as in the binary case. That is, if model B is nested inside model A (because, for

example, the predictors in B are a subset of those in A), �2 log(LB/LA) � �2 log LB �

(�2 log LA) is a chi-squared test for the significance of the difference in fit of the two

models.

Finally, there is a test of collapsibility of outcome categories. Two categories of

the outcome variable are collapsible with respect to the predictors if the predictor set

is unable to discriminate between them. In the current example, it was seen that only

one predictor—cohabiting—discriminates significantly between “intense male vio-

lence” and “physical aggression.” A global chi-squared test for the collapsibility of

these two categories of violence can be conducted as follows. First, I select only the

couples experiencing one of the other of these types of violence, a total of 555 cou-

ples. Then I estimate a binary logistic regression model for the odds of “intense male

violence” versus “physical aggression.” The test of collapsibility is the usual likeli-

hood-ratio chi-squared test that all of the betas in this binary model are zero. Under

the null hypothesis that the predictors do not discriminate between these types of

violence, this statistic is asymptotically distributed as chi-squared (Long, 1997). The

test turns out to have the value 23.51, which, with 11 degrees of freedom, is just

significant at p � .05. Apparently, the model covariates do generally discriminate

between “intense male violence” and “physical aggression,” with cohabiting being

the primary discriminator, as noted above.

Estimating Probabilities. The probabilities of being in each category of the

response are readily estimated, based on the sample log odds. That is, if U is the esti-

mated log odds of “intense male violence” for a given couple and V is the estimated

log odds of “physical aggression” for that couple, the estimated probabilities of each

response for that couple are

P(intense male violence) ��
1 � e

e
U

U

� eV
�,

P(physical aggression) ��
1 � e

e
U

V

� eV
�, (8.2)

P(nonviolence) ��
1 � e

1
U � eV
�.
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Table 8.6 presents the probabilities for each category of couple violence profile, based

on the FIML estimates in Table 8.5. The focus in Table 8.6 is on the effect, in partic-

ular, of alcohol/drug problem. This is evaluated at three settings of the other covari-

ates: low risk, average risk, and high risk. Low risk represents a covariate profile that

predicts low probabilities of violence. For this profile, I set cohabiting and minority

couple each to 0; male’s isolation, economic disadvantage, and open disagreement to

1 standard deviation below the mean; and female’s age at union, relationship dura-

tion, and positive communication to 1 standard deviation above the mean. For aver-

age risk, all covariates (apart from alcohol/drug problem) are set to zero. High-risk

couples have cohabiting and minority couple each set to 1; male’s isolation, economic

disadvantage, and open disagreement set to 1 standard deviation above the mean; and

female’s age at union, relationship duration, and positive communication set to 1

standard deviation below the mean. (Remember that the model also contains an inter-

action between alcohol/drug problem and economic disadvantage as well as a quad-

ratic effect of relationship duration.) Let’s calculate the probabilities for the first row

of Table 8.6 to see how equations (8.2) work. Recalling that 0 represents “intense

male violence” and 1 represents “physical aggression,” and employing several deci-

mal places for the coefficients, we have the following estimated log odds (numbers in

parentheses are the standard deviations of the continuous regressors). The log odds of

“intense male violence” for low-risk couples with alcohol or drug problems is

ln O0 � �4.024 � .0293(7.0807) � .0275(�6.2958) � .0372(�5.1283)

� .8672 � .0662(12.8226) � .000475(12.82262) � .0479(1)(�5.1283)

� .0575(�4.0237) � .5359(1.3788) � �5.7148,

and the log odds of “physical aggression” for low-risk couples with alcohol or drug

problems is

ln O1 � �2.8099 � .0114(7.087) � .00815(�6.2958) � .00532(�5.1283)

� .579 � .0489(12.8226) � .00162(12.82262) � .0665(1)(�5.1283)

� .0654(�4.0237) � .4084(1.3788) � �3.9182.
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Table 8.6 Predicted Probabilities for Intense Male Violence (IM), Physical Aggression

(PA), and Nonviolence (NV), as a Function of Alcohol/Drug Problems

Settings of Alcohol/Drug

Other Covariates Problems P(IM) P(PA) PI(NV)

Low risk Yes .00322 .01943 .97735

No .00174 .01540 .98286

Average risk Yes .03701 .09342 .86957

No .01659 .05585 .92756

High risk Yes .50758 .33663 .15579

No .36520 .29371 .34109



The estimated probabilities for each category of couple violence profile are, therefore,

P(intense male violence) � � .0032,

P(physical aggression) � � .0194,

P(nonviolence) � � .9774.

At this point it is instructive to compare the odds ratios generated by the FIML

model in Table 8.5 with the probabilities in Table 8.6, for a couple of reasons. For

one, odds ratios based on the FIML model must agree with odds ratios generated

from ratios of probabilities in Table 8.6. This helps us understand the meaning of the

odds ratios. Second, odds ratios convey a different impression than probabilities,

particularly in multinomial models. It is therefore important to understand the

differences between the “story” told by odds ratios and the “story” told by the prob-

abilities. For example, the probabilities of each type of violence are increased

markedly for high-risk as opposed to low- or average-risk couples. For high-risk

couples with alcohol or drug problems, the probabilities associated with either type

of violence are especially high. In fact, the chances of a high-risk couple with alco-

hol or drug problems experiencing “intense male violence” are better than 50–50.

One might be tempted to infer that alcohol or drug problems are especially predic-

tive of violence for high-risk couples. As high-risk couples are those who are, among

other things, 1 standard deviation above the mean on economic disadvantage, we

might conclude that alcohol or drug problems have the strongest effect on violence

at high (i.e., a standard deviation above mean) economic disadvantage.

The odds ratios, however, present a different picture. Consider the effect of alcohol/

drug problem on “intense male violence” versus “physical aggression.” That is, given

violence, what is the impact of alcohol/drug problem on the odds that it is of the

“intense-male” type? Employing four decimal places for increased accuracy, the

coefficient for the main effect of alcohol/drug problem (from Table 8.5) is .8672 �

.5790 � .2882. The coefficient for economic disadvantage � alcohol/drug problem is

.0479 � .0665 � � .0186. Therefore, the effect of alcohol/drug problem on the log

odds of “intense male violence” (versus “physical aggression”) is .2882 � .0186 eco-

nomic disadvantage. Or, the effect on the odds is

ψalc/drug � exp(.2882)[exp(�.0186)]ecndisad

� 1.33402(.98157)ecndisad.

This suggests that each unit increase in economic disadvantage reduces the effect of

alcohol/drug problem by a factor of .98157, approximately a 2% reduction. In other

words, the effect of alcohol/drug problem is actually diminishing with greater

1
����
1 � exp(�5.7148)� exp(�3.9182)

exp(�3.9182)
����
1 � exp(�5.7148) � exp(�3.9182)

exp(�5.7148)
����
1 � exp(�5.7148) � exp(�3.9182)
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economic disadvantage. In particular, at 1 standard deviation below mean economic

disadvantage, the effect of alcohol/drug problem is

ψalc/drug � 1.33402(.98157)�5.1283 � 1.46755.

At mean economic disadvantage the effect is

ψalc/drug � 1.33402.

At 1 standard deviation above mean economic disadvantage, the effect is

ψalc/drug � 1.33402(.98157)5.1283 � 1.21264.

These figures agree with the probabilities in Table 8.6. Taking ratios of probabilities, the

effect of alcohol/drug problem for low-risk couples (who are at �1 SD on economic

disadvantage) is

ψalc/drug ��
.
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The effect of alcohol/drug problem for average-risk couples (who are at mean eco-

nomic disadvantage) is

ψalc/drug ��
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and the effect of alcohol/drug problem for high-risk couples (who are at �1 SD on

economic disadvantage) is

ψalc/drug ��
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These values agree with those based on the FIML model, within rounding error.

The point of this exercise is that odds ratios reflect a comparison of odds rather than

probabilities. In that capacity, they can indicate a declining effect even in the pres-

ence of increasing probabilities, because it is the ratio of probabilities (i.e., the odds)

that is being measured. Thus, even though the probability of “intense male violence”

is increasing dramatically for those with alcohol or drug problems across degrees of

couple risk, given violence, the odds that it is of the “intense-male” type is declin-

ing. Because the presentation of the equations for the nonindependent log odds can

lead to some confusion of this type, I prefer to focus on the equations for the inde-

pendent log odds. If an appropriate baseline category is chosen, these are usually

sufficient to describe the results.
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Ordered Categorical Variables

When the values of a categorical variable are ordered, it is usually wise to take advan-

tage of that information in model specification. For example, the trichotomous catego-

rization of violence used for the analyses in Tables 8.5 and 8.6 represents different

degrees of violence severity, as mentioned previously. In this section, therefore, I treat

couple violence profile as an ordinal variable. The ordered logit model is a variant of

logistic regression specifically designed for ordinal-level dependent variables. Although

there is more than one way to form logits for ordinal variables [see, e.g., Agresti (1984,

1989) for other formulations], I focus on cumulative logits. These are especially appro-

priate if the dimension represented by the ordinal measure could theoretically be

regarded as continuous (Agresti, 1989). As I have already argued, this is the case for

couple violence profile. Cumulative logits are defined as follows. Suppose that the

response variable consists of J ordered categories coded 1, 2, . . . , J. The jth cumulative

odds is the ratio of the probability of being in category j or lower on Y to the probabil-

ity of being in category j � 1 or higher. That is, if O�j represents the jth cumulative odds,

and πj is the probability of being in category j on Y, then

O�j � .

Cumulative odds are therefore constructed by utilizing J � 1 bifurcations of Y. In

each one, the probability of being lower on Y (the sum of probabilities that Y � j) is

contrasted with the probability of being higher on Y (the sum of probabilities that

Y 	 j). This strategy for forming odds makes sense only if the values of Y are

ordered. With regard to violence, the first cumulative odds, O�0, is the ratio of the

probability that couple violence profile is 0 (“intense male violence”) to the proba-

bility that couple violence profile is 1 (“physical aggression”) or 2 (“nonviolence”).

Using the marginal probabilities given above of each type of violence, the marginal

sample value is .036/(.099 � .864) � .037. The second cumulative odds, O�1, is the

ratio of the probability that couple violence profile is 0 or 1 to the probability that it

is 2, with marginal value (.036 � .099)/.864 � .156. In other words, each odds is the

odds of more severe vs. less severe violence, with “more severe” and “less severe”

being defined using different values of j—the cutpoint (Agresti, 1989)—in either

case. The jth cumulative logit is just the log of this odds. For a J-category variable,

there are a total of J � 1 such logits that can be constructed. These logits are ordered,

because the probabilities in the numerator of the odds keep accumulating as we go

from the first through the (J � 1)th logit. That is, if Uj is the jth cumulative logit, then

it is the case that U1 � U2 � . . . � UJ � 1.

One model for the cumulative logits, based on a set of K explanatory variables, is

log O�j � β0
j
� β1

j
X1 � β2

j
X2 � . . . � βK

j
XK, (8.3)

where the superscripts on the coefficients of the regressors indicate that the effects of

the regressors can change, depending on the cutpoint, j. This model has heuristic

π1 � π2�
. . . � πj

���πj�1 � πj�2 � . . . � πJ

MULTINOMIAL MODELS 303



value as a starting point. However, strictly speaking, it is not legitimate for an ordinal

response. The reason has to do with the fact that at any given setting of the covariate

vector, x, it must be the case that P(Y � j � x) � P(Y � j � 1 � x) for all j. If covariates’

effects can vary over cutpoints, however, it is possible that P(Y � j � x) 	 P(Y � j � 1 � x)

for some j, which is logically untenable if Y is ordered. (I wish to thank Alan Agresti

for bringing this model flaw to my attention.) At any rate, model (8.3) is easily esti-

mated using binary logistic regression software, as it is just a binary logistic regres-

sion based on bifurcating Y at the jth cutpoint. Table 8.7 presents the results of

estimating this model for couple violence profile. Estimates in the second column, for

the log odds of “violence” versus “nonviolence,” are just the estimates from model 2

in Table 8.4, repeated here for completeness. Estimates in the first column are for the

log odds of “intense male violence” versus any other response.

Invariance to the Cutpoint. For the most part, results suggest that regressors have the

same effects on the log odds of more severe versus less severe violence, regardless of

the cutpoint used to make this distinction. For example, a unit increase in open dis-

agreement elevates the odds of “intense male violence” versus any other response by

a factor of exp(.041) � 1.042, whereas it raises the odds of “any violence” versus “no
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Table 8.7 Ordered Logit Models for Violence Profile as a Function of Couple

Characteristics

Intense Male 

Violence vs. Violence vs. More vs. Less

Predictor Other Response Nonviolence Violence

Intercept �4.008*** �2.553***

Intercept1 �4.106***

Intercept2 �2.528***

Cohabiting 1.202*** .867*** .909***

Minority couple .207 .206 .182

Female’s age at union �.029* �.016 �.017*

Male’s isolation .026 .013 .013

Economic disadvantage .036* .014 .018

Alcohol/drug problem .724** .654*** .639***

Relationship duration �.058*** �.052*** �.052***

(Relationship duration)2 .0001 .0015*** .0014***

Economic disadvantage .012 .061* .048

� alcohol/drug problem

Open disagreement .041 .064*** .062***

Positive communication �.443*** �.441*** �.435***

Model χ2 177.792*** 453.110*** 460.817***

Model df 11 11 11

Score test 12.457

Score df 11

R2
L .139 .140 .118

* p � .05. ** p � .01. *** p � .001.



violence” by a factor of exp(.064) � 1.066. Or each unit increase in positive commu-

nication lowers the odds of “intense male violence” by exp(�.443) � .642, whereas it

lowers the odds of “any violence” by exp(�.441) � .643, a virtually indistinguishable

difference in effects. If the effects of predictors are invariant to the cutpoint, a more par-

simonious specification of equation (8.3) is possible. This is

log O�j � β0
j
� β1X1 � β2X2 � . . . � βKXK. (8.4)

This is the ordered logit or proportional odds model (Agresti, 2002). In this model, the

effects of predictors are the same, regardless of the cutpoint for the odds. That is, each

unit increase in a given predictor, say Xk, multiplies the odds by a proportionality con-

stant of exp(βk), regardless of the cutpoint chosen. The results of estimating this model

(using procedure LOGISTIC in SAS) are shown in the last column of Table 8.7. Notice

that the intercept is allowed to depend on the cutpoint, so there are two intercepts in

the equation. (In fact, there are two different equations, but the coefficients are being

constrained to be the same in each.) In that predictors are assumed to be invariant to

the cutpoint, there is only one set of regression coefficients. Effects are interpreted just

as in binary logistic regression, except that the response is the log odds of “more

severe” versus “less severe” violence, rather than, as in Table 8.4, violence per se.

Thus, cohabiting is seen to raise the odds of “more severe” violence by exp(.909) �

2.482, or about 148%, whereas each unit increase in positive communication lowers

the odds of “more severe” violence by about 35%.

Test of Invariance. In the first two columns of Table 8.7, where effects are allowed

to depend on the cutpoint, some predictors appear to have different effects on the

odds of “intense male violence” compared to violence per se. For example, the effect

of cohabiting on the odds of “intense male violence” is exp(1.202) � 3.327, whereas

its effect on the odds of “any violence” is only exp(.867) � 2.380. Moreover, other

regressors, for example, female’s age at union or economic disadvantage, have

significant effects on only one of the odds. Are these variations significantly different

or just the result of sampling error? This can be tested using the score test for the

proportional odds assumption (provided automatically in SAS). The test statistic

tests the null hypothesis that regressor effects are the same across all J � 1 possible

cutpoints. That is, H0 is that for each of the K regressors in the model, βk
j
� βk for

j � 1, 2, . . . , J � 1. Under the null hypothesis, the score statistic is asymptotically

distributed as chi-squared with degrees of freedom equal to K(J � 2). This is the

difference in the number of parameters required to estimate the model in equation

(8.3) versus equation (8.4): K(J � 1) � K � K(J � 1 � 1) � K(J � 2). As shown in

Table 8.7 for the current example, its value is 12.457, which, with 11 degrees of free-

dom, is not significant. This suggests that there is insufficient evidence to reject the

proportional odds assumption. Apparently, the more parsimonious proportional-odds

model appears reasonable for the data.

Estimating Probabilities with the Proportional Odds Model. In the event that esti-

mates of P(Y � j) for j � 1, 2, . . . , J, based on the proportional odds model, are of
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interest, they are relatively straightforward to calculate. We draw on the probability

rule that for an integer-valued random variable, Y, P(Y � j) � P(Y � j) � P(Y � j � 1).

Now, note that, according to the proportional odds model,

log O�j � log�
P

P

(

(

Y

Y

	

�

j

j

)

)
� � β0

j
� xi


ββ, (8.5)

where, in this case, xi

ββ � β1X1 � β2X2 � . . . � βKXK. Thus, equation (8.5) implies

that
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Therefore, for j � 2, 3, . . . , J � 1, the formula for P(Y � j) is
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However, for j � 1, the lowest ordered value of Y, the formula for P(Y � 1) is

P(Y � 1) ��
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since P(Y � 0) � 0. And for j � J, the highest-ordered value of Y, the formula for

P(Y � J ), is

P(Y � J) � 1 � P(Y � J � 1) � 1 ��
1�

ex

e
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x

(
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�
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1

�
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�. (8.8)

As an example, suppose that Y is a four-category ordered response, with values

j � 1, 2, 3, 4, and the model is

log O�1 � �3.2 � .45X,

log O�2 � �2.8 � .45X,

log O�3 � �1.25 � .45X.

For X � 1.75, the four probabilities are

P(Y � 1) � � .082,
exp[�3.2 � .45(1.75)]

���
1 � exp[�3.2 � .45(1.75)]

P(Y � j)/P(Y 	 j)
����
[P(Y 	 j) � P(Y � j)]/P(Y 	 j)

P(Y � j)/P(Y 	 j)
���
1 � P(Y � j)/P(Y 	 j)

exp(logO�j)
��
1�exp(logO�j)
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P(Y � 2) � �

� .118 � .082 � .036,

P(Y � 3) � �

� .386 � .118 � .268,

P(Y � 4) � 1 � .386 � .614.

It is easily seen that the four probabilities sum to 1, and that P(Y � j) � P(Y � j � 1)

for j � 1, 2, 3.

Alternatives to the Proportional Odds Model. If the score test for the proportional

odds assumption is significant, so that the proportional odds assumption is unten-

able, what should one do? In this case the researcher has several options. First, he or

she can use the proportional odds model anyway, especially if noninvariant effects

are only peripheral to the study. As an example, if I were interested primarily in how

open disagreement and positive communication affect more severe violence, net of

other factors, it is clear that the proportional odds model in the last column of Table

8.7 summarizes these variables’ effects on the cumulative logits in an elegant fash-

ion. Particularly when there are several categories of the response variable, equation

(8.4) is a substantially more parsimonious description of the data than any of the

other multinomial approaches. Nevertheless, it is frequently desirable to use a

different modeling strategy when invariance is rejected. So one alternative is to

choose the most informative bifurcation of the response variable and proceed with

binary logistic regression. For example, either the first or second column in Table 8.7

could be a legitimate model to estimate. Or, if it is especially important to preserve

the distinctions among different response categories, the multinomial analysis pre-

sented in Table 8.5 is a workable strategy. Even if the response variable is ordinal,

use of the multinomial approach is always legitimate. At worst, we are only wasting

some information by not taking advantage of the ordering information in the values

of the response. Of course, if the response variable has at least five levels, its sam-

ple distribution is not too skewed, and the sample is large, the researcher may just

want to treat it as continuous and employ OLS.

Empirical Consistency and Discriminatory Power in Multinomial Models. As indi-

cated above, measures of empirical consistency (or goodness of fit) are not as well

developed for multinomial models as they are for, say, binary logistic regression.

Therefore, one means of assessing fit for the multinomial logistic regression of

unordered responses has already been suggested above. This is to use the Hosmer–

Lemeshow χ2 statistic along with the LIML estimation technique to evaluate the

empirical consistency of each separate equation. For ordered outcomes, Lipsitz et al.

(1996) have recently developed a goodness-of-fit test that is an extension of the

Hosmer–Lemeshow statistic to an ordinal response. The test is readily conducted using

existing software for the proportional odds model (e.g., SAS’s PROC LOGISTIC).

exp[�2.8 � .45(1.75)]
���
1 � exp[�2.8 � .45(1.75)]

exp[�1.25 � .45(1.75)]
���
1 � exp[�1.25 � .45(1.75)]

exp[�3.2 � .45(1.75)]
���
1 � exp[�3.2 � .45(1.75)]

exp[�2.8 � .45(1.75)]
���
1 � exp[�2.8 � .45(1.75)]
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The reader is referred to the authors’ article for further details. Discriminatory power

is easier to handle. Any of the measures such as R2
L, R2

G, or R2
GSC, which are based on

the log-likelihood, can be used with multinomial models. In Tables 8.5 and 8.7, I

have relied on R2
L to indicate the predictive efficacy of the models. According to this

statistic, discriminatory power for the multinomial models of couple violence profile

is modest, at best.

EXERCISES

8.1 Let P0 � the model-estimated probability, for a given case, of “intense male

violence,” P1 � the probability of “physical aggression,” and P2 � the proba-

bility of “nonviolence.” Using equation group (8.2), show that these three

probabilities sum to 1 for any given case.

8.2 Show how equation group (8.2) generates each probability defined in

Exercise 8.1. That is, show that equation group (8.2) is the correct formula for

generating each probability. [Hint: Substitute ln (P0/P2) for U and ln (P1/P2)

for V in equation group (8.2) to recover the probabilities.]

8.3 Based on model 1 in Table 8.2, give the odds ratio for those with vs. without

alcohol or drug problems at 1 standard deviation below, �
1

2
� standard deviation

above, and 1�
1

2
� standard deviations above mean economic disadvantage

(SD � 5.1283). In particular, in each case, by what factor is the impact of

alcohol/drug problem reduced/inflated as a function of economic disadvan-

tage?

8.4 Based on model 1 in Table 8.3, give the estimated probability of violence at

each duration quintile for cohabiting, minority couples, with an alcohol or

drug problem, who are 1 standard deviation above the mean on male’s isola-

tion (SD = 6.2958) and economic disadvantage (SD � 5.1283) and 1 standard

deviation below the mean on female’s age at union (SD � 7.0807).

8.5 Based on model 3 in Table 8.3, give the effect (i.e., partial derivative) of rela-

tionship duration on the log odds of violence at .5, 1.5, and 2 standard devi-

ations (SD � 12.8226) above mean relationship duration.

8.6 Based on the FIML estimates in Table 8.5, give the equation for the log odds

of “intense male violence” versus “physical aggression.”

8.7 Using the FIML model in Table 8.5, verify the probabilities in the last row of

Table 8.6, within rounding error.

8.8 Give the effect of alcohol/drug problem on the odds of “intense male violence”

versus “nonviolence,” at mean economic disadvantage, 1 standard deviation



below mean economic disadvantage, and 1 standard deviation above mean

economic disadvantage, based on the FIML estimates in Table 8.5. Use .8672

for the coefficient of alcohol/drug problem, .0479 for the coefficient for the

interaction term, and 5.1283 as the SD of economic disadvantage.

8.9 Estimate the same effects as in Exercise 8.8, but this time using the probabil-

ities in Table 8.6, showing that these effects agree with those in Exercise 8.8,

within rounding error.

8.10 Based on the proportional odds model in Table 8.7, give the odds of “intense

male violence” versus any other response, and the odds of “violence” versus

“nonviolence,” for cohabiting, minority couples, with alcohol or drug prob-

lems, at mean levels of the continuous regressors.

8.11 Using the principle, for a discrete variable, Y, that P(Y � j) � P(Y � j) �

P(Y � j � 1), along with the formulas in equations (8.6) to (8.8), give the esti-

mated probabilities of “intense male violence,” “physical aggression,” and

“nonviolence,” for the couples of Exercise 8.10, based also on the proportional

odds model in Table 8.7.

8.12 Using the students dataset, regress MISSG (a dummy for having missing data

on EXAM2 that reflects dropping the class before the second exam) on the

EXAM1 score and its square, student classification (CLASSIF), and STAT-

MOOD, using logistic regression. Missing imputation: Substitute 76.9774766

for missing data on EXAM1. Then:

(a) Interpret all coefficients, including the intercept and the main effect of

EXAM1.

(b) Center EXAM1 and form EXAM12 from the centered term. Rerun the

regression and interpret the effect of EXAM1 in this model.

(c) Use targeted centering to estimate and test the effect (i.e., partial deriva-

tive) of EXAM1 on the log odds of being missing on EXAM2 at 1 stan-

dard deviation below the mean of EXAM1.

(d) Compute the standard error for the test in part (c) using the formula for

V(b � 2gx) given in the chapter, and compare it to the standard error in

part (c). For V(b), V(g), and Cov(b,g), use the variance–covariance matrix

of parameter estimates based on the centered (not target-centered) ver-

sion of the model for EXAM1.

8.13 Using the students dataset, estimate the proportional odds model for FIRS-

TEX, the ordinal version of EXAM1, as a function of COLGPA, SCORE,

STATMOOD, and RATIO. Missing imputation: Follow the instructions for

Exercise 6.20. Then:

(a) Test whether the proportional odds hypothesis is supported.

(b) Interpret the effects of all regressors (excluding the intercept) on the odds

of a higher, as opposed to a lower, grade.
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8.14 Based on the estimates from Exercise 8.13:

(a) Give and interpret the estimated cumulative logit for each possible bifur-

cation of FIRSTEX for someone with a college GPA of 3.2, a math diag-

nostic score of 39, a STATMOOD of 3, and a RATIO of 25.

(b) Give the estimated probabilities of an A, B, C, D, and F, for the student

in part (a).

Use the following results for Exercises 8.15 to 8.19. The variable PORNLAW in the

GSS98 dataset was recoded as PORN18 as follows: 1 � “no prohibition of any

kind,” 2 � “prohibit its distribution to all ages,” and 3 � “prohibit its distribution to

persons under 18.” A multinomial logistic regression of PORN18 on FREQBARS

(frequency of going to bars, coded 1 to 6), AGE (in years), MALE (a dummy for

being male), RELOSITY (religiosity score; the sum of standardized items with the

high score being most religious), and CONSERV (coded 1 to 7, with the high score

being most politically conservative) produced the following results for n � 879 cases

using PROC CATMOD in SAS. The first parameter estimate listed for a regressor is

for the log odds of PORN18 � 1 versus PORN18 � 3; the second estimate is for the

log odds of PORN18 � 2 vs. PORN18 � 3:

Intercept-only model: �2 ln L � 1446.8468.

Wald χ(2)
2 for global effects of each regressor:

Hypothesized model: �2 ln L � 1264.5865.

Effects in hypothesized model:

Effect Parameter Estimate Std. Error

Intercept 1 �4.2337 .8784

2 �1.8312 .3925

FREQBARS 3 .0266 .1014

4 �.1507 .0514

AGE 5 .0222 .0105

6 .0286 .00473

MALE 7 �.3028 .3715

8 �.4796 .1589

RELOSITY 9 �.2397 .0944

10 .2915 .0495

CONSERV 11 .1376 .1335

12 .1661 .0600

Intercept 39.15

FREQBARS 9.03

AGE 37.41

MALE 9.23

RELOSITY 46.16

CONSERV 8.04

310 ADVANCED TOPICS IN LOGISTIC REGRESSION



8.15 Give the model χ2 for the hypothesized model and assess its discriminatory

power using an appropriate measure. Is the model significant?

8.16 Construct a table of regression estimates along the lines of the first two

columns of Table 8.5, starring the significant coefficients, and noting which

regressors have significant global effects on both log odds.

8.17 Interpret the effects of the regressors (excluding the intercept) on each odds.

Does it appear, from the nature of the regressor effects, that PORN18 might

be treated as ordinal and estimated with the proportional odds model? Why or

why not?

8.18 Give the estimated equation for the log odds of “no prohibition” versus “pro-

hibition for all,” based on the results for PORN18. Interpret all regressor

(excluding the intercept) effects in terms of odds.

8.19 Give the predicted probabilities associated with each response to PORN18 for

a 21-year-old man of average religiosity, with FREQBARS � 3 and CON-

SERV � 4.

Use the following results for Exercises 8.20 to 8.23. The variable DIVLAW (should

divorce be easier or more difficult to obtain?) in the GSS98 dataset is coded

1 � “make divorce easier to obtain,” 2 � “make divorce more difficult to obtain,”

3 � “keep it as is.” A multinomial logistic regression of DIVLAW on AGE (in years),

EDUCAT (education in years of schooling), MALE (a dummy for being male),

RELOSITY (religiosity score; the sum of standardized items with the high score

being most religious), BLACK (a dummy for being black, with white as the contrast

group), and OTHRACE (a dummy for being other than black or white, with white as

the contrast group) produced the following results, for n � 879 cases, using PROC

CATMOD in SAS. The first parameter estimate listed for a regressor is for the log

odds of DIVLAW � 1 vs. DIVLAW � 3; the second parameter estimate is for the log

odds of DIVLAW � 2 versus DIVLAW � 3:

Intercept-only model: �2 ln L � 1734.7917.

Wald χ(2)
2 for global effects of each regressor:

Intercept 30.31

AGE 17.13

EDUCAT 16.17

MALE 2.88

RELOSITY 52.07

BLACK 55.61

OTHRACE 16.78
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Hypothesized model: �2 ln L � 1575.1477.

Effects in hypothesized model:

8.20 Construct a table of regression estimates along the lines of the first two

columns of Table 8.5, starring the significant coefficients, and noting which

regressors have significant global effects on both log odds. At the bottom of

the table, include the model χ2, its df, and a measure of discriminatory power.

8.21 Interpret the effects of the regressors (excluding the intercept) on each odds. Does

it appear from the nature of the regressor effects that DIVLAW might be treated

as ordinal and estimated with the proportional odds model? Why or why not?

8.22 Give the estimated equation for the log odds of “making divorce easier” ver-

sus “making it more difficult.” Interpret the effects in terms of odds. Also,

what is the odds ratio for blacks versus those of other races?

8.23 Give the predicted probabilities associated with each response to DIVLAW

for a 45-year-old black female with 12 years of education and a religiosity

score of 5.

8.24 Use the kids dataset to estimate a binary logistic regression equation for MUL-

TIPLE (whether or not the focal child has had more than one sex partner in the

last month) as a function of FCAGE2, MALE, NONINTAC, MSEXATT,

FSEXATT, MSTYLE1, MSTYLE2, FSTYLE1, FSTYLE2, PERMISIV, and

the interaction of PERMISIV with MALE. Center PERMISIV to guard against

collinearity problems.

(a) Interpret the interaction effect by examining how the impact of PERMI-

SIV differs for male and female focal children, and by examining whether

Effect Parameter Estimate Std. Error

Intercept 1 3.2549 .7097

2 3.1548 .5994

AGE 3 �.0283 .00688

4 �.0112 .00552

EDUCAT 5 �.1535 .0404

6 �.1124 .0334

MALE 7 �.3396 .2253

8 �.0574 .1879

RELOSITY 9 .00313 .0609

10 .3241 .0536

BLACK 11 1.3872 .3197

12 �.3424 .3164

OTHRACE 13 1.1421 .4322

14 �.0789 .4301
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PERMISIV has a significant effect on having multiple partners, sepa-

rately within each gender.

(b) Perform Allison’s (1999) Chow test analog to discern whether the model

in part (a), minus the interaction term, differs on the whole between male

and female children.

(c) Estimate the discriminatory power of the interaction model investigated

in part (a).

8.25 Use the students dataset for the following exercise. Missing imputation: Do

not impute any missing values for this problem; use listwise deletion.

(a) ORDEXAM1 is a trichotomous version of EXAM1 with three values: A

(	89), B (	79), and C or worse (�79). Estimate a multinomial logistic

regression model for this variable, with C as the baseline category, as a

function of SCORE, MALE, STATMOOD, COLGPA, RMAJOR (dum-

mied up, with “sociology majors” as the reference group), and PRE-

VMATH. Interpret the coefficient estimates in terms of odds.

(b) Give the model χ2 for this model.

(c) What variables significantly discriminate an A grade from a B grade?

(d) Test the collapsibility of the A and B categories.

(e) Estimate the ordered logit model for this response, interpret the coefficients

and their significance levels, and assess whether the hypothesis of ordinal-

ity (proportional odds) is supported.
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C H A P T E R 9

Truncated and Censored 

Regression Models

CHAPTER OVERVIEW

In this chapter we once again focus on continuous (or, at least, approximately inter-

val-level) response variables, but take up the subject of regression models for trun-

cated or censored data. Truncated and censored responses arise when the data

observed on a continuous response are not fully representative of the range of values

of the response in the target population. I begin the chapter by defining truncation,

censoring, and a special variant of truncation, known as incidental truncation, that

gives rise to sample-selection bias. I then introduce the truncated regression model

and show how it is estimated via maximum likelihood. The discussion then moves

to the more commonly used censored regression, or tobit model. For this model I

discuss estimation via maximum likelihood, various ways of interpreting model

coefficients, and an analog of the R2 used in OLS. An alternative to the tobit model

is also presented that relaxes one of its major constraints. Finally, I take up sample-

selected regression, presenting both two-step and maximum-likelihood estimation

techniques for this model. Substantive applications are illustrated throughout the

chapter to enhance understanding of each technique.

TRUNCATION AND CENSORING DEFINED

Truncation

In contrast to approaches in other chapters, I begin this one with a more abstract set

of examples. First, consider a normally distributed variable, X, with a mean of 5 and
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a standard deviation of 1.2. Figure 9.1 shows the density of X. Notice the dotted line

at the point x � 3. Recall that f(x), the density of x, is the point on the curve corre-

sponding to x. For example, f(3) is the point on the curve corresponding to 3. F(x),

on the other hand, is the area under the curve to the left of x. Hence, F(3) is the area

to the left of 3 in Figure 9.1, while 1 � F(3) is the area to the right of 3. If the pop-

ulation of X values were the target population, a random sample taken from this dis-

tribution would be representative of that target population.

However, suppose that we were to draw a sample under the condition that X be

greater than 3. It is then not possible to observe values of X less than or equal to 3 in

the sample, and we say that the density (or distribution) from which we are sampling

is truncated at 3. That is, the sample is a random sample in the usual sense, but the

“population” from which it is being drawn is now truncated at 3. The population, or

density, that applies in this case is depicted in Figure 9.2. The sample is no longer rep-

resentative of the target population shown in Figure 9.1; rather, it is representative of

the population in Figure 9.2. Moreover, the density in Figure 9.2 is not simply the part

of Figure 9.1 that is to the right of 3. Rather, in order for the resulting function,

denoted f(x � x � 3), to remain a density, it must be rescaled so that the total area under

the curve is, again, 1. This is done by dividing the original density by 1 � F(3), the

area to the right of 3. That is, in general, if X is normal with density function f(x),

Figure 9.1 Normal density with mean � 5 and standard deviation � 1.2.
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mean µ, standard deviation σ, and truncation from below at the point c, then

f(x � x � c) is

f(x � x � c) ��
1 �

f(x

F

)

(c)
�. (9.1)

In the case of truncation from above, we obtain f(x � x � c) by dividing f(x) by F(c)

(see Greene, 2003; Wooldridge, 2000).

What does truncation do to the mean and variance of the new (i.e., truncated) ran-

dom variable? From Greene (2003, p. 759) we have the following moments of the

truncated normal distribution. If X is normal with mean µ and standard deviation σ,

and X is truncated from below at c, then

E(X � truncation) � µ � σλ(α), (9.2)

V(X � truncation) � σ2[1 � δ(α)], (9.3)

where

α � �
c �

σ

µ
�, (9.4)

Figure 9.2 Truncated normal density with mean � 5.125 and standard deviation � 1.083.
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λ(α) ��
1 �

φ(

Φ

α

(

)

α)
�, (9.5)

δ(α) � λ(α)[λ(α) � α], (9.6)

and where φ(α) and Φ(α) are the standard normal density and distribution functions,

respectively. Moreover, note that 0 � δ(α) � 1 for all values of α. Notice that α is

just the z-score for c, that is, it measures the number of standard deviations that c is

away from µ. The term λ(α) is called the inverse Mills ratio (IMR), or hazard func-

tion, for the standard normal distribution (Greene, 2003). As it plays an integral part

in all of the models in this chapter, it is worth examining in closer detail.

Figure 9.3 depicts the major components of the IMR. Shown is the standard nor-

mal distribution with mean 0 and standard deviation 1. Letting α � .5 in this case,

we see that φ(.5) is the density associated with .5 and is equal to

φ(.5) ��
�2�(3�.

1

1�4�1�5�9�)�
� exp�� �

1

2
�(.52)� � .352

and Φ(.5) is the shaded area to the left of .5 under the curve, which is equal to .691

(using a table of areas under the standard normal curve). One minus Φ(.5), therefore,

Figure 9.3 Components of the inverse mills ratio (hazard rate) for the standard normal density.



is the unshaded area that lies to the right of .5 and is equal to .309. The IMR for .5,

denoted λ(.5), is the ratio φ(.5)/[1 � Φ(.5)], or .352/.309 � 1.139. In general, as z

becomes increasingly negative, φ(z) approaches zero while 1 � Φ(z) approaches 1,

so λ(z) approaches zero. As z becomes increasingly positive, on the other hand, both

φ(z) and 1 � Φ(z) approach zero. It turns out, however, that 1 � Φ(z) approaches zero

more rapidly; hence λ(z) actually increases without bound. In other words,

limz→�λ(z) � �. So the theoretical range of λ(z) is (0,�); however, given that virtu-

ally all of a standard normal variable lies within 4 standard deviations of its mean,

the practical range of the IMR is approximately (0, 4.2). (I postpone further inter-

pretation of the IMR until we get to sample-selection models.)

Returning to the distribution in Figure 9.2, α is (3 � 5)/1.2 � �1.667, φ(�1.667)

is .0994, and 1 � Φ(�1.667) is .9522. Hence, λ(α) � .0994/.9522 � .1044, and the

mean of the distribution is therefore 5 � 1.2(.1044) � 5.125. Now δ(α) � .1044

[.1044 � (�1.667)] � .185. So the variance of the distribution is (1.22)(1 � .185) �

1.083. As is evident from the formulas for the truncated mean and variance, and as

shown in this example, truncation from below results in an increase in the mean but

a reduction in the variance. [Truncation from above results in a reduction in both the

mean and the variance; see Greene (2003) for details.]

Censoring

Suppose that we sample from the untruncated distribution of X shown in Figure 9.1 but

that for all X below the value of 3, we simply record X as being equal to 3. In this case

the sample is drawn from the full target population, but it is not fully representative of

that population with respect to the values of X, since a portion of the values have been

“censored” at 3. That is, for those observations, all we know is that X is less than 3. We

say that the sample is censored at 3. Censoring, unlike truncation, does not represent a

limitation in the population from which the data were drawn. Rather, it represents a

limitation in the measurement of the variable of interest. If the data were not censored,

they would be representative of the target population with respect to X (Greene, 2003).

The density that applies to censored data is actually a mixture of discrete and con-

tinuous densities and for the current example is shown in Figure 9.4. For values of X

above 3, the density is just the f(x) shown in Figure 9.1. However, for X � 3, the den-

sity is the probability that X is less than 3. (Recall from Chapter 1 that for a continu-

ous X, P[X � 3] and P[X � 3] are the same.) That is, we assign the area F(3) to be the

density corresponding to the value 3. This is depicted as a solid bar above the value

of 3 in Figure 9.4. Again, I draw on a theorem presented in Greene (2003, p. 763) to

calculate the moments of the censored normal variable. If X is normal with mean µ
and standard deviation σ, and X is censored from below at the threshold c, then

E(X � censoring) � Φ(α)c � [1 � Φ(α)] [µ � σλ(α)], (9.7)

V(X � censoring) � σ2[1 � Φ(α)] [(1 � δ(α)) � [α � λ(α)]2Φ(α)], (9.8)

where α, λ(α), and δ(α) are defined as in expressions (9.4) to (9.6). For the current

example, then, E(X � censoring at 3) � (.0478)(3) � .9522[5 � 1.2(.1044)] � 5.024; and
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V(X � censoring at 3) � 1.22(.9522)[(1 � .185) � (�1.667 � .1044)2(.0478)] � 1.323,

in which case σ � 1.15.

Both truncation and censoring involve limits on the response variable that are

based on the values of the response variable itself. Another form of truncation, known

as incidental truncation, involves limits on the response variable that are imposed by

the values of another variable. This other variable can be denoted Z*. When Z* is

greater than some threshold, c, values of X are observed. Otherwise, they are missing.

This is the conceptual underpinning for statistical solutions to the problem of sample-

selection bias, that is, the bias in OLS estimates of a population regression in which

there is self-selection into the sample (Heckman, 1979). I shall postpone discussion

of incidentally truncated data until I have introduced the simulation data below.

Simulation

For the purposes of introducing each of the models in this chapter, I created some

simple data that follow the assumptions required for each model. With this approach,

I intend to use ideal conditions to illustrate the advantages of truncated, censored,

and sample-selected regression models over linear regression estimated via OLS, so

that the reader can clearly see how each model is supposed to work. (Subsequently,

of course, we will “dirty things up” with real data and consider how these models

Figure 9.4 Density of the censored normal variable with mean � 5.024 and standard deviation � 1.15.



actually work in practice.) Hence I constructed a data set consisting of 1000 obser-

vations with the following variables: a variable ε that is normally distributed with

mean 0 and variance 4, a variable u that is normally distributed with mean 0 and vari-

ance 1, a variable X that is normally distributed with mean 3 and variance 1.75 but

is assumed to be fixed over repeated sampling, a variable W equal to 1 � .75X � u,

and a variable Y equal to �2 � 1.5X � ε. Moreover, ε and u were created so that their

joint distribution is bivariate normal, and their correlation, ρ, is .707. Otherwise, ε
and u are both uncorrelated with X.

What we essentially have, then, is a random sample of n � 1000 observations on

two variables of primary interest: X and Y. Moreover, Y follows a linear regression

on X with an intercept of �2 and a slope of 1.5. The conditional error, ε, is normally

distributed with a mean of zero and a variance of 4. The unconditional mean of Y

is E(Y ) � E(�2 � 1.5X � ε) � �2 � 1.5E(X) � E(ε) � �2 � 1.5(3) � 0 � 2.5. The

unconditional variance of Y can be recovered by noting that if Y � �2 � 1.5X � ε,

then V(Y ) � V(�2 � 1.5X � ε) � V(�2 � 1.5X) � V(ε) � (1.5)2 V(X) � V(ε) � 2.25

(1.75) � 4 � 7.9375. Moreover, the contribution due to the structural part of the model,

the linear predictor, is 2.25(1.75) � 3.9375, which represents 49.6% of the total vari-

ance of Y. Hence, P2, the population R2 for the regression, is .496. The regression

model for Y is one of the equations we will be trying to estimate in what follows.

To create truncated and censored data, I proceeded as follows. To truncate or cen-

sor 40% of the observations on Y, I created a variable Y* � Y � c, where c is the value

(1.859) representing the 40th percentile of the sample distribution on Y. This simply

sets the truncation point and censoring thresholds at zero rather than at c. Then I cre-

ated a truncated version of Y, Yt, by setting Yt to missing when Y* � 0, and setting

Yt � Y* otherwise. To create a censored version of Y, Yc, I set Yc to 0 whenever Y* � 0,

and I set Yc � Y* otherwise. Notice that this changes the underlying regression model

slightly. By subtracting 1.859 from both sides of the equation for Y, we see that Y* �

�3.859 � 1.5X � ε. This is the equation we are trying to estimate in the truncated and

censored regression examples. In the sample, we have 601 observations on Yt, with

the other 399 observations missing on Yt. We have 1000 observations on Yc, but for

399 of them the value of Yc is zero. For the other 601 observations, Yc takes on posi-

tive values.

Incidentally truncated data were created in a somewhat different manner. First, I

chose a new value of c (3.634) that constituted the 60th percentile for the sample dis-

tribution of W. I then constructed a variable Z* equal to W � 3.634. In this case, Z*

is less than or equal to zero for 60% of the cases. I then created a dummy variable,

Z, equal to 0 whenever Z* � 0, and equal to 1 otherwise. I then set Y to missing if

Z � 0; otherwise, Y is left as is. In the current example, then, only 400 cases have

valid scores on Y. The variable Y here is said to be incidentally truncated. I refer to

Z* as the selection propensity. When Z* is above zero, the case is selected into the

current sample (of responses) and we observe Y. Otherwise, we do not observe Y for

that case, although we do observe X. This is the model employed to understand and

correct for self-selection bias (more on this below). Recall that Y has a mean of 2.5

and a variance of 7.9375. What does incidental truncation do to the population mean

and variance of the truncated response? As before, I draw on a result presented in
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Greene (2003, p. 781) for the moments of the incidentally truncated bivariate normal

distribution: If y and z have a bivariate normal distribution with means µy and µz,

standard deviations σy and σz, and correlation ρ, then

E(y � z � a) � µy� ρσyλ(αz), (9.9)

V(y � z � a) � σ2
y[1 � ρ2δ(αz)], (9.10)

where

αz � �
a �

σz

µz
�, (9.11)

λ(αz) ��
1 �

φ(

Φ

α

(
z)

αz)
�, (9.12)

δ(αz) � λ(αz)[λ(αz) � αz]. (9.13)

In the current example, recall that ε and u are distributed as bivariate normal with 

a correlation of .707. Also, since Z* � W � 3.634 � 1 � .75X � u � 3.634, the equa-

tion for Z* is �2.634 � .75X � u. And, of course, the equation for Y is �2 � 1.5X � ε.

By theorem, a linear function of a normal random variable is also normally distrib-

uted (Hoel et al., 1971), so Z* and Y, both being linear functions of normally distrib-

uted errors, are also normally distributed, with a correlation (ρ) of .852 (found using

covariance algebra). This also implies that Z* and Y are bivariate normally distributed

(Hoel et al., 1971). We can therefore apply the theorem above to find the mean and

variance of Y, where Z* � “z” above and 0 � “a.” Using principles of expectation,

along with covariance algebra and some simple arithmetic, we also have αz � .273,

µy � 2.5, σy � 2.817, λ(αz) � .98, and δ(αz) � .692. Thus,

E(Y � Z*� 0) � 2.5 � .852(2.817)(.98) � 4.852,

V(Y � Z*� 0) � 2.8172[1 � .8522(.692)] � 3.949.

Once again, we see that truncation has increased the mean, but reduced the variance,

of Y. At this point, we have the tools needed to understand the regression models pre-

sented in this chapter.

TRUNCATED REGRESSION MODEL

The truncated regression model is based on the following idea. First, we assume that

there is an “underlying” regression model for Y in the target population that follows

the classic linear regression assumptions. That is, we assume that

Yi � xi
	ββ � εi, (9.14)
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where as in previous chapters, xi
	ββ represents β0� β1Xi1� β2Xi2� 
 
 
 � βKXiK, and

εi is normally distributed with mean zero and variance σ2. However, the sample is

restricted so that we only select cases in which Y is greater than c, where c is some

constant. A substantive example would be a study of factors affecting college GPA

using a random sample of sociology majors at a particular university. In that one

must have a minimum GPA of 3.0 to have a declared major in sociology at this insti-

tution, the sample is necessarily restricted to those with GPAs of 3.0 or higher and

is therefore not representative of college students in general.

Now, suppose that one were to use the truncated response to estimate the regression

model for Y using OLS. What are we actually estimating? First, understand that using

a sample drawn from a truncated population implies that what is being estimated is the

regression function in the truncated population, not the regression function in the gen-

eral population. Then, note that Yi is greater than c only if xi
	ββ� εi � c, or only if

εi � c � xi
	ββ. Therefore, the conditional mean of Y in the truncated population is

E(Yi � Yi� c, xi) � E(xi
	ββ � εi � εi� c � xi

	ββ)

� xi
	ββ � E(εi � εi� c � xi

	ββ).

To derive E(εi � εi � c � xi
	ββ), we apply equation (9.2), with c equal, in this case, to

c � xi
	ββ, and µ equal to the mean of εi, which is zero. By equation (9.2) we have that

E(εi � εi � c � xi
	ββ) � 0 � σλ(αi) � σλ(αi), (9.15)

where

αi ��
c � x

σ

i
	ββ � 0
� � �

c �

σ

xi
	ββ

�

and

λ(αi) ��
1 �

φ(

Φ

α

(
i)

αi)
�.

Therefore, the conditional mean of Y is

E(Yi � Yi � c, xi) � xi
	ββ � σλ(αi). (9.16)

To answer the previous question, then, equation (9.16) is what we are inadvertently

trying to estimate with OLS. But using OLS to estimate this conditional mean will

result in biased and inconsistent estimators of ββ, due to the term λ(αi), the IMR, in

the true model for the conditional mean. In that we have no sample measure of the

IMR, using OLS essentially results in omitted-variable bias.

Estimation

In both the censored and sample-selected regression models discussed below, we

have xi for all observations, so it is possible to estimate λ(αi) consistently using OLS
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and then to include it in the model as an extra term (see below). However, truncation

results in the exclusion of xi as well as Yi for cases in the sample. Therefore, this two-

step approach is not possible here. Instead, we resort to estimation via maximum

likelihood. Based on the expression in equation (9.1), the likelihood function for the

truncated regression model (Breen, 1996) is

L(ββ,σ � yi,x
i) ��

n

i�1

.

Maximizing this function with respect to ββ and σ gives us the MLEs. Unlike OLS

estimates, the resulting MLEs are consistent, asymptotically efficient, and asymptot-

ically normally distributed.

Simulated Data Example

Recall the simulation of truncated data discussed above. The underlying regression

model is Y*� �3.859 � 1.5X � ε. Table 9.1 presents the results of estimating this

model with OLS using both the full (n � 1000) and truncated (n � 601) samples.

With the full sample, OLS estimates should demonstrate the usual properties of

being unbiased and efficient. As is evident from the “OLS: full sample” column,

these parameter estimates are quite close to their true values. In particular, the slope

is estimated as 1.459 compared to its true value of 1.5, and σ is estimated as 1.996

whereas its true value is 2. The truncated data, on the other hand, result in OLS esti-

mates that are quite far from their true values. In fact, all estimates are too small in

magnitude, a general result of using OLS with a truncated response. For example,

the slope is estimated as .847 and σ is estimated as 1.551. The next column, headed

“MLE: truncated sample,” gives the maximum likelihood estimates for the truncated

regression model. (LIMDEP was used to estimate truncated regression models for

this chapter.) Notice again that these are quite close to the true values: the slope is

estimated as 1.438 and σ is estimated as 2.034.

(1/σ) φ[(yi � xi
	ββ)/σ]

����
1 � Φ(αi)

Table 9.1 Regression with Simulated Data, Showing Effects of Truncation and

Censoring on Parameter Estimates

OLS: OLS: MLE: OLS:

True Full Truncated Truncated Censored Tobit

Regressor Parameters Values Samplea Sampleb Sampleb Samplea Modela

Intercept β0 �3.859 �3.686 �.556 �3.631 �1.154 �3.717

X β1 1.500 1.459 .847 1.438 .881 1.465

σ 2.000 1.996 1.551 2.034 1.464 2.018

P2 .496 .482 .270 .386 .478

a n � 1000.
b n � 601.
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Application: Scores on the First Exam

To show an application of truncated regression, I employ an artificial data scenario

for heuristic purposes. Using the students dataset, I once again (as in Chapter 3)

examine the regression of first exam score, but this time I only sample students with

scores of 70 or better. There are 149 such cases out of the 214 students who took that

exam. Normally, there would be no reason to limit the response variable in this man-

ner unless, say, we only had information on explanatory variables for students with

grades of at least 70, or a similar constraint. At any rate, Table 9.2 shows the results

of regressing first exam score on college GPA, math diagnostic score, and attitude

toward statistics, using both OLS and MLE on the truncated sample. Once again,

with the exception of the intercept, all parameter estimates from OLS are smaller in

magnitude than those from the truncated regression model. Interpretation of the

coefficients in either model pertains to the entire population of students taking intro-

ductory statistics at BGSU, not just to those with first exam scores above 70. Thus,

the coefficient for math diagnostic score in the truncated regression model suggests

that each unit higher a student scores on the math diagnostic is associated with being

1.164 points higher on the first exam on average, net of the other regressors. The

other coefficients are interpreted in a similar fashion.

CENSORED REGRESSION MODEL

To motivate the censored regression model we once again begin with the presump-

tion of an underlying regression model that pertains to the target population. This

time we denote the underlying response as Y*
i. The model for Y*

i in the target popu-

lation is

Y*
i � xi

	ββ + εi, (9.17)

where, as before, εi is assumed to be normally distributed with mean 0 and variance

σ2. However, in our sample, the response is censored at a lower threshold of c,

Table 9.2 Unstandardized OLS and ML Estimates for the

Truncated Regression Model of  Exam 1 Scores

OLS ML

Regressor Estimates Estimates

Intercept 23.728* 4.348

College GPA 7.484*** 9.437***

Math diagnostic score .889*** 1.164***

Attitude toward statistics .175 .224

σ̂ 7.833 8.645

R2 .262

Note: n � 149.

* p � .05. ** p � .01. *** p � .001.
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where, without loss of generality, c is typically taken to be zero. [See Long (1997)

for a discussion of the case in which censoring involves an upper threshold, and for

a more general development in which the threshold can be any value. Regardless of

the value of c, though, the response can always be rescaled so that the censoring

threshold is zero, as was done above in creating the simulated data.] Thus, the

observed response, Yi, is defined as

Yi � �0 if Y*
i � 0, (9.18)

Y*
i if Y*

i � 0. (9.19)

In other words, what we observe are only zero or positive responses, whereas the

model of interest, in equation (9.17), pertains to an outcome that can, in theory at

least, take on a wider range of values. The task, as with truncated data, is to estimate

the parameters of equation (9.17) using incomplete information on the response. A

naive approach might be either to attempt to estimate equation (9.17) with all of the

observations using OLS, or to estimate equation (9.17) using OLS after limiting the

sample to those with positive scores on the response. As we will see below, either

approach will result in biased and inconsistent estimates of the conditional mean

function.

Social Science Applications

The social science literature is replete with examples of response variables that are

treated as censored. An interesting use of the tobit model is Fair’s (1978) analysis of

the impact of various factors on leisure time spent in extramarital affairs among a

sample of married women. In one of his analyses, the dependent variable was a

measure of the rate of extramarital sex per length of marriage, and constructed as

[(number of different extramarital partners � frequency of sexual relations with

each)/number of years married]. Those reporting no affairs had values of zero and

were treated as censored cases. In this instance, we might define Y* as the desired

rate of extramarital sex, which is observed in the form of an actual rate only when

some threshold value is crossed. Another example is Walton and Ragin’s (1990)

study of protest severity in response to austerity programs imposed in debtor nations

to stabilize the economy. In their sample of 60 debtor nations, 26 had positive val-

ues on the dependent variable of protest severity, an index based largely on journal-

istic accounts of protest activities in each country. Countries with no recorded

austerity protests were assigned a value of 0 on the response. These cases were those

whose protests were “. . . not severe enough to be recorded in international media”

(Walton and Ragin, 1990, p. 884).

Mean Functions

Given the model in equations (9.17) to (9.19), let’s derive the functions for the con-

ditional mean of Y, given Y*
i � 0, and for the conditional mean of Y among all obser-

vations.
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Regression Function for E(Yi�� Y*
i �� 0, xi). The regression function for the condi-

tional mean of the positive responses is as follows. The model implies that Y is pos-

itive only if Y*
i � xi

	ββ � εi � 0, which implies that εi � �xi
	β. Thus:

E(Yi � Y*
i � 0, xi) � E(xi

	ββ � εi � εi � �xi
	ββ )

� xi
	ββ � E(εi � εi � �xi

	ββ ) � xi
	ββ � σλ(αi). (9.20)

This result follows from applying equation (9.15), where c � 0. Notice that this is

just the truncated regression model again, since we are conditioning on Y* being

greater than zero. In this case, however, αi simplifies to

αi ��
0 �

σ

xi
	ββ

� ��
�x

σ

i
	ββ

�, (9.21)

and therefore

λ(αi) ��
1 �

φ(

Φ

�

(

x

�

i
	

x

ββ
i

/

	

σ
ββ
)

/σ)
���

Φ

φ(

(

x

x

i

i

	

	

ββ

ββ
/

/

σ

σ

)

)
�, (9.22)

with the last expression resulting from the symmetry of the normal distribution.

Regression Function for E(Yi �� xi). The regression function for Y among all obser-

vations can be obtained by realizing that equation (9.17) implies that Y* is normally

distributed with mean xi
	ββ and variance σ2. We can then apply equation (9.7) with

“X” equal to Y* and “c” � 0 to arrive at (Greene, 2003)

E(Yi � xi) � Φ��
xi

σ

	ββ
�	[xi

	ββ � σλ(αi)]. (9.23)

This is the censored regression, or tobit model. Here, again, the symmetry of the nor-

mal distribution allows us to write

1 � Φ���x

σ

i
	ββ

�	
as

Φ ��
x

σ

i
	ββ
�	.

It should now be clear that attempts to estimate regression models for Y using OLS with

either all of the data or only the cases in which Y is positive will result in biased and

inconsistent estimators due to the additional terms shown in equations (9.20) and (9.23).

Estimation

Unlike the case in truncated regression, censored regression models involve measures

of the explanatory variables for all cases. With this information it would actually be

possible to estimate λ(αi) for each case based on a probit analysis of the probability that
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Y* is uncensored. This estimate could then be substituted for λ(αi) in equation (9.20)

so that the model could be estimated with OLS [see Breen (1996) for further details].

This two-step technique is not necessary in this case, however, as the log-likelihood

function for  the tobit model is quite well-behaved. That function is (Greene, 2003)

ln L(ββ,σ � yi,x
i) �


1

yi � 0

� �
1

2
� �ln (2π) � ln σ2

� ��yi �

σ

xi
	ββ

�	
2

� �

1

yi �0

ln �1�Φ ��
x

σ

i
	ββ
�	�.

In this expression, the first sum represents the contribution of the uncensored obser-

vations to the log-likelihood, whereas the second sum represents the contribution of

the censored observations. Maximizing this function with respect to the parameters

(ββ and σ) of the model results in estimators with the usual asymptotic properties of

MLEs (Greene, 2003). It should be mentioned that tobit estimates based on the nor-

mal distribution may be inconsistent if the equation disturbance is nonnormal.

Estimation under different distributional assumptions for the error term is possible

in programs such as LIMDEP or PROC LIFEREG in SAS.

Interpretation of Parameters

The effects of individual regressors can be interpreted with respect to three different

mean functions in the tobit model (McDonald and Moffitt, 1980). The first is for the

mean of Y*, the underlying response; the second, shown in expression (9.20), is for

the mean of the positive observations; and the third, shown in equation (9.23), is for

the mean of all of the observed responses, the Yi.

Based on equation (9.17), the effect of the jth regressor on the mean of Y* is

�
∂

∂

Xj

� E(Y* � xi) � βj;

that is, the regression coefficients have the usual interpretation as the change in the

mean of Y* for a unit increment in Xj, net of the other regressors.

For the second function, the marginal, or partial, effect of Xj is

�
∂

∂

Xj

� Ε(Yi � Y*
i � 0, xi) � βj{1 � ziλ(zi) � [λ(zi)]

2}, (9.24)

where

zi � �
x

σ

i
	ββ
�,

and λ(zi) � λ(αi) is defined in equation (9.22).

The marginal effects for the third function are of the form

�
∂

∂

Xj

� E(Yi � xi) � Φ(zi)βj. (9.25)

The marginal effects of independent variables shown in equations (9.24) and (9.25)

are no longer constant, but depend on the values of all variables in the models,



including Xj. The reason for this is that they are functions of zi, which changes across

covariate patterns. Most often, however, these effects would be evaluated at the

means of the regressors. That is, for zi we substitute

z��� �
x�
σ

		

ˆ

ββ̂
�, (9.26)

with x� being the vector of regressor means.

McDonald and Moffitt’s Decomposition. McDonald and Moffitt (1980) suggested

a useful decomposition for the effect of the jth regressor on E(Yi � xi ). They showed

that equation (9.25) could be expressed as

�
∂

∂

Xj

� E(Yi � xi) � Φ(zi) �
∂

∂

Xj

� E(Yi � Yi � 0,xi) � E(Yi � Yi � 0,xi) �
∂

∂

Xj

� Φ(zi). (9.27)

Note that Φ(zi) is the probability of being uncensored for the ith case. Thus, equation

(9.27) shows that the effect of Xj on the mean of the observed Yi is a weighted sum of

its effect on the mean of the positive observations, weighted by the probability of being

uncensored, and its effect on the probability of being uncensored, weighted by the mean

of the positive observations. It is therefore possible to partition the effect of Xj into its

constituent parts. McDonald and Moffitt further simplified this partition by showing

that the proportion of Xj’s effect due to its effect on the mean of the positive observa-

tions is simply 1 � ziλ(zi) � [λ(zi)]
2. Once this is estimated, the proportion of Xj’s effect

due to its influence on being uncensored is just 1 minus this value. Again, this partition

is usually accomplished at the mean of the regressors by substituting z��, defined in equa-

tion (9.26), for zi in this expression. Examples are given in the applications below.

Analog of R2

A useful measure of discriminatory power for the tobit model has been proposed by

Laitila (1993). His pseudo-R2, denoted R2
p , is essentially identical to R2

MZ, presented

in Chapter 7 in connection with logistic regression. As in that situation, the measure

captures the variance in the underlying continuous variable, Y*, accounted for by the

structural part of the model. Denoting the tobit coefficient estimates by bk, we have

R2
p ��

V�

V



�


bkX

bk

k

X

	�

k	
σ̂2

�,

where the numerator is just the variance of the linear predictor, and the denominator

is an estimate of the variance of Y* and consists of the variance of the linear predic-

tor plus the estimated variance of the conditional errors. Laitila (1993) comments

that this measure is bounded by 0 and 1 and has an explained-variance interpretation

with respect to Y*. However, it may decrease with the addition of regressors to the

model, particularly when they are irrelevant to the response. The calculation of R2
p is

demonstrated in the applications below.
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Alternative Specification

The tobit model imposes a constraint that may or may not always be reasonable.

Consider the probability that a case is uncensored. In the tobit model, that probabil-

ity is

P(Yi � 0 � xi) � Φ��
xi

σ
	ββ
�	,

whereas the mean of the positive values, from expression (9.20), is

E(Yi � Y*
i � 0, xi) � xi

	ββ � σλ(αi). (9.28)

We see that because ββ is the same in both functions, the coefficients governing

whether a case is uncensored are constrained to be proportional to those governing

the mean of Y, given that Y is uncensored. That is, ββ is proportional to ββ/σ, with 1/σ
being the proportionality constant. This precludes some interesting possibilities. For

example, suppose that we are investigating the relationship between the age of an

offender and the length of sentence given, for a sample of criminal offenders. In that

one has to get caught in order to be sentenced, it may be that older offenders are more

experienced at crime and therefore less likely to get caught. However, given that they

are caught, they may get longer sentences because they are perceived to be more incor-

rigible than younger offenders. In other words, age may have opposite effects on the

likelihood of being sentenced vs. the length of sentence given. The tobit model, on

the other hand, forces age to have the same kind of effect on each component of the

process.

To free this constraint, Cragg (1971) proposed an alternative model, in which the

probability of being uncensored and the mean of the uncensored observations are

allowed to be governed by different parameters. In this model, the probability of

being uncensored is assumed to follow a probit model with parameter vector δδ:

P(Yi � 0 � xi) � Φ(xi
	δδ),

where since σ and δδ are not separately identifiable in probit, σ is assumed to equal 1.

The mean function for the positive responses is then characterized by the truncated

regression model in equation (9.28), employing a different parameter vector, ββ. If the

constraint is imposed that δδ � ββ/σ, the Cragg specification reduces to the tobit model

(Greene, 2003; Smith and Brame, 2003). To estimate the model we simply use a pro-

bit model to estimate whether a case is uncensored, using all of the observations. We

then estimate a truncated regression model for the conditional mean of the response,

using only the uncensored observations. A test statistic for whether the tobit model is

valid, compared to the Cragg model, that is, a test statistic for the null hypothesis that

δδ � ββ/σ, is constructed as

χ2
(∆df ) � �2 ln Ltobit � [�2 ln Lprobit � (�2 ln Ltruncated)],
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where ∆df is the difference in the number of parameters estimated between the Cragg

and tobit models. If this result is significant, the Cragg model is to be preferred. An

example is given below.

Simulated Data Example

As was the case with the truncated regression reported above for the simulated data,

the underlying model is Y*� �3.859 � 1.5X � ε. The last two columns of Table 9.1

show the results of estimating the underlying model using OLS on all of the obser-

vations, compared to using the tobit model. (The tobit model was estimated using

PROC LIFEREG in SAS.) As is evident, the OLS estimates are all too low, whereas

the tobit estimates, like those for the truncated regession model, are close to the true

parameter values. We can apply the McDonald–Moffitt decomposition to partition

the effect of X into its effect on the probability of being uncensored and its effect on

the conditional mean of the positive responses. For these data, x�� 3.024, so z���

[� 3.717 � 1.465(3.024)]/2.018 � .353. Now φ(.353) � .375, whereas Φ(.353) � .638.

Hence, λ(.353) � .375/.638 � .588. The proportion of X’s effect that is due to its

effect on the conditional mean of the positive Y’s is, therefore, 1 � .353(.588) �

.5882
� .447. So about 45% of X’s effect is due to its impact on the conditional mean,

while 55% is due to its impact on the probability of being uncensored. Finally, the

OLS estimate of P2 is also an underestimate of the parameter. Laitila’s pseudo-R2, on

the other hand, at .478, is fairly close to the true value of .496.

In this particular case, because the data were truly generated by the tobit model,

the Cragg specification should be no improvement over tobit. Or, to put it differently,

the tobit model should fit no worse than the Cragg model. Minus twice the log-like-

lihood for the tobit model is 3018.49, while �2 ln L for the probit model of whether

a case is uncensored is 974.923, and �2 ln L for the truncated regression model

(shown in the column “MLE: truncated sample” in Table 9.1) is 2043.234. The test sta-

tistic is therefore a chi-squared variate equal to 3018.49 � (974.923 � 2043.234) �

.333. The degrees of freedom for the test are figured as follows. We estimate two

parameters for the probit model (intercept and slope) and three parameters for the

truncated regression model (intercept, slope, and σ), whereas we estimate just three

parameters in tobit (intercept, slope, and σ). The difference in parameters estimated

is 5 � 3 � 2. As a χ2 equal to .333 with 2 df is quite insignificant, the hypothesis that

δδ � ββ/σ would not, in this case, be rejected—a correct decision.

Applications of the Tobit Model

Two response variables that can exhibit considerable censoring are depressive sympto-

matology and the severity of physical assaults. In both cases, paper-and-pencil measures

may simply not be sensitive enough to capture scores at the lower end of the construct.

Therefore, both variables will typically exhibit a large number of zero scores.

Depressive Symptomatology. Table 9.3 presents the results of regressing depressive

symptomatology—tapped by the Center for Epidemiological Studies Depression Scale
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(CESD) (Mirowsky and Ross, 1984)—on gender and characteristics of the relation-

ship for the couples in the couples dataset. Of the 416 couples, 64, or 15.4%, had

scores of zero on the scale and are considered censored cases. The CESD was meas-

ured for the main respondent, who could have been either the man or the woman. The

purpose of the current analysis was to examine whether relationship conflict has the

same effect on depression for women as it does for men. I expect that open disagree-

ment will have a stronger effect on depression for women, because they are typically

more sensitive than men are to the tenor of the relationship. Tobit estimates for a

model with gender, open disagreement, and their interaction—plus controls (a

dummy for being in an unstable relationship and a continuous measure of relation-

ship duration)—are shown in the column labeled “model 1.” OLS estimates are also

shown, for comparison purposes. As is evident, gender, open disagreement, and their

interaction are all significant. The tobit effects are somewhat larger than those esti-

mated by OLS. As expected, open disagreement has a stronger effect on depressive

symptomatology for women than for men. According to Tobit model 1, for men the

effect is simply the main effect of open disagreement, 6.753. For women, the effect is

6.753 � 6.494 � 13.247, a substantially larger value.

As open disagreement is centered, the main effect of “female” suggests that at aver-

age levels of disagreement, women have mean depressive symptomatology that is about

3.4 points higher than men’s. But is there a gender difference in depression when there

is little open disagreement? This question is easily answered by employing targeted cen-

tering. One standard deviation of open disagreement is .601. Let’s calculate the gender

difference in depressive symptomatology at 1 standard deviation below mean disagree-

ment, or at a value of �.601 for centered open disagreement. Subtracting �.601 from

Table 9.3 Unstandardized OLS and ML Estimates for Censored Regression

Models of Depressive Symptomatology

OLS

Tobit (ML) Estimates

Regressor Estimates Model 1 Model 2

Intercept 9.842*** 7.667*** 3.608

Female 2.685 3.371* �.532

Open disagreementa 6.202** 6.753**

Female � open disagreement 6.157* 6.494*

Unstable relationship .807 1.668 1.668

Relationship duration .083 .077 .077

(Open disagreement � 1 SD) 6.753**

Female � (open disagreement � 1 SD) 6.494*

σ̂ 14.542 16.305 16.305

R2 .148

R2
p .145 .145

Note: n � 416.
a Centered variable.

* p � .05. ** p � .01. *** p � .001.
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open disagreement is equivalent to adding .601 to open disagreement, hence the new

variable is shown as “open disagreement � 1 SD” in Table 9.3. We then create the cross-

product of female � (open disagreement � 1 SD) and include these variables in the

model in place of open disagreement and female � open disagreement. The results are

shown in model 2. The main effect of “female” is now the effect of being female among

couples who are 1 SD below the mean of open disagreement. The effect is �.532 and

is no longer significant. Apparently, when there is little conflict in the relationship, there

is no gender difference in depressive symptomatology.

Additional Issues. Laitila’s R2
p is easily calculated, since the variance of the linear

predictor (not shown) is 45.024, and the estimated error variance is 16.3052
� 265.853.

R2
p is thus 45.024/(45.024 � 265.853) � .145. Using McDonald and Moffitt’s decom-

position of effects (calculations are left as an exercise for the reader), we find that 46%

of regressor effects are due to their impact on the probability of exhibiting any depres-

sive symptomatology, while 54% are due to their influence on mean depressive symp-

tomatology for those above the threshold. In other words, slightly more than half of the

effects of the explanatory variables is due to their influence on the conditional mean.

The test of tobit against the Cragg specification (not shown) in this case is highly

significant ( p � .0001), suggesting that the tobit constraint is not justified for these

data. Inspection of the Cragg coefficients (not shown) suggests that they are all sub-

stantially larger than those in Table 9.3; however, only the effect of open disagreement

even approaches significance (p � .07) in the Cragg model.

Physical Assault Severity. Table 9.4 presents the results of regressions of physical

assault severity, measured using the conflict tactics scale (CTS) (Straus, 1979), for

Table 9.4 Unstandardized OLS and ML Estimates for

Censored Regression Models of Physical Assault Severity

OLS Tobit (ML)

Regressor Estimates Estimates

Intercept 91.552*** 60.581*

Child abuse index 11.405*** 15.013***

Age �.143 �.329

Education �9.290** �12.715**

Nonwhite �16.642* �12.670

Previously marrieda 6.355 12.341

Never marrieda
�16.465 �22.328

Income �3.046* �2.158

σ̂ 138.559 173.329

R2 .048

R2
p .049

Note: n � 1779.
a Currently married is the reference category.

* p � .05. ** p � .01. *** p � .001.



1779 women in the victims dataset (NVAWS) who had been the victims of either

physical assault, sexual assault, stalking, or threats. Predictors include the child

abuse index (interval variable coded 1 to 9, with higher scores indicating more severe

abuse experienced as a child), age (in years), education (interval-level measure

coded from 1 � “no schooling” to 7 � “postgraduate”), nonwhite (dummy for being

nonwhite, as opposed to white), previously married, never married (currently mar-

ried is the reference category for both dummies), and annual income (interval vari-

able coded from 1 � “less than $5,000” to 10 � “over $100,000”). In this example,

30.7% of the cases are censored with values of zero for physical assault severity.

Both OLS and tobit estimates are shown.

Some effects (e.g., those for child abuse and for education) are estimated to be

larger in magnitude in tobit, while others (e.g., for being nonwhite and for income)

are larger using OLS. The tobit results suggest that child abuse enhances physical

assault severity, whereas education reduces it. Aside from these effects, none others

are significant. McDonald and Moffitt’s decomposition (calculations are again left as

an exercise) suggests that 63.5% of regressor effects are due to their influence on

reporting any violence, while the other 36.5% are due to their impact on the aver-

age level of violence among those reporting it. In this particular case, the Cragg

specification could not be estimated, because the truncated part of the model would

not converge, even with the tobit estimates as start values. According to Wooldridge

(2000), however, one way to evaluate the appropriateness of the tobit specification

informally is to compare the δ̂ j from the probit analysis to β̂j / σ̂ from tobit. If these

are not too different from each other, the tobit model might be justified. Examining

the significant effects in this example, we compare effects for child abuse (.087 in

tobit; .045 in probit) and for education (�.073 in tobit; �.04 in probit). As these are

almost twice as large in tobit than in probit, we conclude, again that the tobit

specification may not be justified.

SAMPLE-SELECTION MODELS

The sample-selection model consists of two equations. The substantive equation

describes the response of interest:

Y*
i � xi

	ββ � εi, (9.29)

where εi is assumed to be normally distributed with mean 0 and variance σ2
ε.

However, whether Y*
i is actually observed or not depends on a second variable, Z*

i ,

the selection propensity, whose equation is

Z*
i � wi

	γγ � ui, (9.30)

where ui is normally distributed with mean 0 and variance σ2
u, and w includes x as a

proper subset; that is, all elements of x are in w, but w may contain elements that are

not in x (Wooldridge, 2000).  Now Y*
i is observed only if Z*

i is greater than zero. That
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is, the observed variable, Yi, is such that

Yi is missing if Z*
i � 0,

Yi � Yi if Z*
i � 0.

Further, the joint distribution of ε and u is bivariate normal, with correlation ρ. The

expected value of Yi is, therefore (Greene, 2003),

E(Yi � Z*
i � 0) � E(Yi � ui � �wi

	γγ)

� xi
	ββ � E(εi � ui � �wi

	γγ) � xi
	ββ � ρσελ(αu),

or

E(Yi � Z*
i � 0) � xi

	ββ + θλ(αu), (9.31)

where

θ � ρσε,

αu � �
�

σ

w

u

i
	γγ

�,

and

λ (αu) ��
Φ

φ(

(

w

w

i

i

	

	

γγ

γγ
/

/

σ

σ
u

u

)

)
�.

Equation (9.31) follows from (9.9) by letting “y” equal ε, “z” equal u, and “a” equal

�wi
	γγ, and recognizing that µε is zero here. As in previous models, attempts to esti-

mate the mean function for the observed Y using OLS and the variables in x result

in omitted-variable bias, due to omission of the term λ(αu).

Conceptual Framework

The sample-selection model is employed to adjust for nonrandom selection into the

current sample. Self-selection into the sample is a pervasive condition in the social

sciences (Berk, 1983; Breen, 1996). Individuals selectively choose to respond to sur-

veys, to respond to particular questions in surveys, to be followed up in subsequent

waves of a survey, and so on. Such selectivity is a problem to the extent that unob-

served elements that determine selection into the sample also affect the substantive

outcome, Yi (more on this below). As an example, DeMaris et al. (2003) tested an

integrated model of domestic violence using a sample of couples remaining intact

over both waves of the NSFH. In that the authors only included couples with non-

missing responses on the questions about intimate violence, their final sample was

affected by three different sources of selectivity: panel attrition, couple attrition

(through divorce or separation), and item nonresponse. A total of 45% of couples were



excluded due to these sources of selectivity. In all likelihood, unobserved character-

istics of couples which influenced their refusal to answer items on violence, their

failure to remain together as a couple, or their inability to be resurveyed also affect

their proclivity for violence. The authors therefore employed a sample-selection

model to adjust for this problem.

As another example of selection effects: providing information on particular

items may be dependent on individuals’ choosing to engage in an activity, a choice

that can be considered the product of a selection propensity. For example, studies of

earnings necessarily include valid data from only those electing to participate in the

labor force. However, the response variable can be considered to be the hourly wage

offer, which is relevant to all those who are of working age. For those who work, the

hourly wage offer is the actual wage earned. For those who are not working, the

hourly wage offer is unobserved (Wooldridge, 2000). Hence, estimates of regressor

effects using only working people are likely to be biased. As Wooldridge (2000,

p. 558) explains: “Because working may be systematically correlated with unob-

servables that affect the wage offer, using only working people . . . might produce

biased estimators of the parameters in the wage function.” Researchers should be

judicious, however, in how they define the target population. Otherwise, virtually every

analysis would seem to need correction for sample selectivity. Excluding, for exam-

ple, single people from a regression analysis of the propensity to dissolve an exist-

ing marital union (e.g., Booth et al., 1984) doesn’t result in selection bias provided

that it is the population of currently married couples that is of interest. As Stolzenberg

and Relles (1990, p. 408) observe: “. . . the severity of censoring, and probably the

severity of censoring bias, is affected by substantive decisions about the population

to which one wishes to draw inferences.”

Estimation

Although equation (9.30) posits a continuous selection propensity, in fact, all that is

observed is whether or not a case in selected into the current sample. Therefore the

model that is actually estimated employs a selection equation based on a binary indi-

cator, Zi:

Zi � �
and the condition for observing the outcome of interest is

Yi is missing if Zi � 0,

Yi � Y*
i if Zi � 1.

The selection equation then becomes (based on the reasoning articulated in

Chapter 7)

P(Zi � 1 � wi) � Φ(wi		γγ), (9.32)

if Z*
i � 0,

if Z*
i � 0

0

1

SAMPLE-SELECTION MODELS 335



where, due to identifiability requirements, σ2
u is now assumed to equal 1. The model

can be estimated with maximum likelihood [see Breen (1996) for an expression for

the log-likelihood]. An alternative procedure that has also been employed exten-

sively is the Heckman two-step, or Heckit (Greene 2003, p. 784) estimator. It is con-

structed as follows. First, estimate (9.32) as a probit model, employing the full

sample of cases. Then using wi and γ̂ from that analysis, estimate λ(αu) as

λ̂ (αu) ��
Φ

φ(

(

w

w

i

i

	

	

γ̂

γ̂

)

)
�.

Finally, estimate equation (9.31) with OLS using only those with nonmissing scores

on Yi and adding λ̂ (αu) as a regressor in the equation. This results in a consistent esti-

mate of ββ. However, the estimates of σ2
ε and coefficient standard errors produced by

OLS software are not correct because the error term is heteroscedastic. Greene (2003)

provides expressions for σ̂2
ε and for the correct asymptotic variance–covariance

matrix of parameter estimates and has incorporated them into the Heckit procedure in

LIMDEP. This procedure also generates an estimate of ρ equal to θ̂/σ̂ε, but as this is

not a sample correlation, the estimate can fall outside the range [�1, 1]. When it does,

LIMDEP reports it as 1 or �1 (see the example below). It should be noted here that

sample-selection models are not limited to probit and linear regression for the selec-

tion and substantive equations, respectively. Programs such as LIMDEP offer a vari-

ety of alternative specifications for both equations [see, e.g., Greene (1998) for

details].

Nuances

Some elements of the sample-selection model are characterized by nuances that need

further explanation. First, notice that selection bias comes about because of a

nonzero correlation, ρ, between ε and u, since the impact of the omitted term in

equation (9.31) is θ � ρσε, and σε would never be zero. What does this correlation

mean? As in other situations involving correlated errors (e.g., seemingly unrelated

regression equations or factor-analysis models) ρ represents a residual correlation

between two outcomes that remains after all observable effects have been accounted

for. In this particular case, ρ is the correlation between Z* and Y* that is not

accounted for by their mutual dependence on a set of observable explanatory vari-

ables. As an example, in the simulated data above, Corr(Z*,Y*) � .852, while

ρ � .707. Thus, only 1 � (.707/.852), or 17% of the Z*–Y* correlation, is due to the

explanatory variable, X, while the remainder is due to the correlation between the

two disturbance terms. If the correlation between Z* and Y* were accounted for

entirely by the explanatory variables in both equations, ρ would be zero and selec-

tion bias would not be a problem. This is tantamount to the situation of exogenous

selection (Wooldridge, 2000), or selection based on the independent variables, which

causes no problems of bias (Wooldridge, 2000). On the other hand, ρ is nonzero to

the extent that latent characteristics of observations affect both individuals’ propen-

sity to respond and their score on the substantive outcome [see also Berk (1983)] and

this is what induces selection bias.
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Second, w and x can be the same set of regressors, but it is better if we have at

least one factor in w that is not in x. Otherwise, the coefficients in equation (9.31)

are identified only because λ̂(αu) is a nonlinear translation of the model’s regres-

sors. Even so, having w and x be the same regressors causes substantial collinear-

ity problems, since x and λ̂(αu) will then tend to be highly correlated. Ideally, we

want to choose the unique element of w to be a factor that is unrelated to the out-

come.

Third, how is λ(αu) to be interpreted? This term can be considered the hazard of

exclusion (Berk, 1983). The higher its value, the more a given case possesses char-

acteristics associated with exclusion from the sample. Why? Once again, regard

Figure 9.3. Remember that as z � wi
	γ becomes increasingly positive, equation

(9.32) tells us that Φ(wi
	γ), the probability of being selected into the sample, also

increases, and φ(wi
	γ) decreases to zero, which means that λ(αu) shrinks toward

zero. As wi
	γ becomes increasingly negative, Φ(wi

	γ), the probability of being

selected, shrinks toward zero, while φ(wi
	γ) also decreases to zero but at a slower

rate, which implies that λ(αu) becomes large. Therefore, larger values of λ(αu)

reflect a lower probability of inclusion into the sample.

Fourth, θ, the “effect” of the hazard of exclusion, can be misleading, since it is

opposite to intuition. For one thing, it should probably be thought of only as an

association parameter, since the hazard of exclusion does not actually “cause” Y*.

Additionally, the sign of this effect is the same as the sign of ρ, since σε is always

positive. If ρ is positive, for instance, whatever unobserved factors raise the prob-

ability of selection also elevate the outcome. A positive “effect” of the hazard of

exclusion in this case indicates that the tendency to be included—not excluded—

is associated with a higher mean outcome. This is a subtle point that can easily

cause confusion. As an example, Berk’s (1983) exposition of sample selection

effects considered potential bias in the regression model for satisfaction with jury

duty brought about by using only the sample that responded to a mail survey. The

effect of λ̂ (αu) in the model for satisfaction with jury duty was seen to be nega-

tive, implying a negative value for ρ. The temptation is to conclude that exclusion

was associated with less satisfaction, or that the dissatisfied were less likely to

respond. Yet a negative ρ means that, net of observed covariates, the tendency to

respond was associated with less satisfaction; in other words, the dissatisfied were

more likely to respond.

Fifth, an examination of the nature of the bias associated with omitting λ(αu)

reveals the conditions under which sample selectivity does, and does not, create

problems. For simplicity of exposition, let’s assume that there is only one regressor,

although the principles generalize to any number of regessors. The substantive equa-

tion is

Y*� β0� β1X � ε,

where ε is normal with zero mean and variance σ2
ε. The selection equation is

Z*� γX � u,
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where u is normal with zero mean and variance 1. We define Z � 1 if Z*� 0,

and Z � 0 otherwise. Furthermore, Y � Y* is observed only when Z � 1. The mean

of Y is then

E(Y � X, Z � 1) � β0� β1X � ρσελ,

where λ � φ(γX)/Φ(γX). The equation for Y is then

Y � β0� β1X � ρσελ � υ,

where Cov(X,υ) � 0. If we estimate Y using OLS and omit λ, what is b1 consistent

for? We have

b1 � �
cov

s

(X
2
x

,Y )
�.

so

plim b1 ��
Cov

σ

(
2
x

X,Y)
� �

� � β1� . (9.33)

The rightmost expression in equation (9.33) suggests that bias is a function of ρ and

the association between X and λ. Most important, both must be nonzero for bias to be

a problem. This means that for any particular focus variable, Xk, selection bias is pres-

ent whenever ρ is nonzero and Xk is significantly correlated with λ—demonstrated by

Xk having a significant effect in equation (9.32). If one or the other of these conditions

fails to hold, selection bias is not a problem for one’s analysis, at least in regard to the

X in question.

Simulation

Recall the incidentally truncated simulation data discussed above. As noted there, the

underlying substantive model is Y*� �2 � 1.5X � ε, and 60% of the cases were trun-

cated incidentally. In this particular simple example, w � x, since they are both the

same regressor, X. Also, as ρ � .707 and σε� 2, θ � ρσε� .707(2) � 1.414. Table 9.5

shows the true values of the parameters, as well as the estimated values based on OLS,

the Heckit procedure, and ML estimation of the sample-selection model for the 399

cases with no missing Y values. Only the substantive estimates, not the selection equa-

tion estimates, are shown for the sample-selection models. Also, notice the absence of

lambda for the ML results. The direct incorporation of ρ and wi
	γ into the likelihood

function obviates the need to include lambda as a separate regressor. In that there was

a positive correlation between ε and u, and X had a positive effect on both selection and

outcome, what do we expect the nature of the bias of the OLS slope to be? This is

ρσε Cov(X,λ)
��

σ2
x

β1σ
2
x � ρσε Cov(X,λ)

���
σ2

x

Cov(X, β0 � β1X � ρσελ � υ)
���

σ2
x
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a little tricky. We have to remember that X’s effect on the hazard of exclusion is oppo-

site its effect on the probability of inclusion, which in this case implies a negative

Cov(X,λ). Hence, by expression (9.33), the OLS b1 should be an underestimate of β1.

This is, in fact, what Table 9.5 shows, as the OLS estimate is .825, whereas the Heckit

estimate of 1.644 and the MLE of 1.37 are both much closer to the true value of 1.5.

Although the Heckit and ML estimates of the slope are about equally distant from the

true parameter value, the ML estimates for β0, σ, and ρ are considerably better than the

Heckit estimates. When possible, ML is to be preferred over the Heckman two-step

procedure. However, whereas the Heckit model can always be estimated, the ML tech-

nique may at times fail to converge (see the applications below).

Applications of the Sample-Selection Model

I illustrate two applications in this section. In the first, I examine selection effects in

a regression of academic self-esteem at time 2 (T2) on measures of prior (T1) aca-

demic self-esteem, academic achievement, and controls for a sample of 423 students

in introductory sociology at Bowling Green State University (Bradley, 2000). The

data were collected during the course of a semester, with the outcome variable meas-

ured several weeks after the explanatory variables. A total of 649 students were ini-

tially enrolled in the study, but only 423 provided nonmissing data on the response.

Hence, 35% of the data were incidentally truncated. For this example, I expect that

ρ will be positive: unmeasured correlates of inclusion in the sample (e.g., diligence

in attending class and in responding to the survey) should be associated with higher

academic self-esteem.

The second example, based on the NVAWS, is a regression of posttraumatic

stress disorder symptoms (PTSD) for a sample of 331 women who had been victim-

ized by their current intimate partner. This is a subset of a larger sample of 1829

women who have ever been victimized by an intimate partner; however, only those

currently partnered were asked about PTSD. Because the response is relevant to all

women victimized by intimate partners, and because fully 82% of the sample is inci-

dentally truncated, selection effects pose a serious threat to inference. Predictors

employed in this analysis are largely measures of the severity of victimization

Table 9.5 Regression with Simulated Data, Showing Effects 

of Incidental Truncation on Parameter Estimates

True

Regressor Parameters Values OLS Heckit MLE

Intercept β0 �2.000 1.623 �3.032 �1.488

X β1 1.500 .825 1.644 1.370

Lambda θ 1.414 2.093

σ 2.000 1.769 2.333 2.044

P2 .496 .203 .213

ρ .707 .897 .694

Note: n � 399.
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perpetrated by any adult, including the current partner. Again, I expect a positive ρ,

since unmeasured factors associated with being in a currently abusive relationship

(e.g., growing up in a violent or unstable family) should also be predictive of higher

levels of PTSD.

Academic Self-Esteem. Table 9.6 presents the regression models for T2 academic

self-esteem (interval variable with higher scores reflecting greater academic self-

esteem), showing estimates from the Heckman two-step procedure as well as ML,

both estimated using LIMDEP, with uncorrected OLS (or, simply, “OLS”) for com-

parison. Predictors include high school GPA, college GPA, high school grades

(coded in half-point increments from 0 � “mostly F’s” to 4 � “mostly A’s”), male

(dummy for being male), T1 academic self-esteem (interval variable with higher

scores reflecting greater academic self-esteem), and T1 test anxiety (interval variable

with higher scores reflecting greater test anxiety). As a unique predictor for the

selection models, I chose an indicator of whether the student pays his or her own

tuition as a variable affecting selection, but not self-esteem. The reasoning is that stu-

dents who pay their own tuition are much more likely to attend every class. Since

missing data on the response is due primarily to absenteeism, paying one’s own

tuition should be a predictor of inclusion in the valid sample. There is no reason, on

the other hand, why paying one’s own tuition would per se boost self-esteem.

The only factor significantly related to selection is college GPA, with higher

GPAs presaging a greater probability of inclusion. Lambda, the hazard of exclusion

in the Heckit model, has a positive slope, as expected. Similarly, the ML estimate of

Table 9.6 Unstandardized OLS and ML Estimates of Sample-Selection Models of T2

Academic Self-Esteem

Heckman Two-Stepb MLb

Uncorrected

Regressor OLSa Selection Response Selection Response

Intercept 10.518*** �.991 �8.002 �1.003 9.473

Pays own tuition �.080 �.105

High school GPA .851 .140 1.830 .141 .907

High school grades �.306 .061 .235 .060 �.275

College GPA .873** .237** 2.644 .240** .972

Male .678 .006 .694 .006 .679

T1 academic self-esteem .591*** �.0003 .585*** .0001 .590***

T1 test anxiety �.091*** .002 �.074 .002 �.090***

Lambda 14.086

σ̂ 3.343 10.799 3.366

R2 .573 .576

ρ̂ 1.000 .237

a n � 423.
b n � 649.

* p � .05. ** p � .01. *** p � .001.
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ρ is .237. However, neither θ̂ nor ρ̂ (reported as 1.000 in Heckit) is significant, sug-

gesting that there may not be much of a selection problem in these data. This is also

evident in the relative lack of differences between OLS and ML estimates of the

parameters (the Heckit estimates are notoriously poor if selectivity is minimal; more

about this below). Nonetheless, for instructive purposes, consider the change in the

estimate for college GPA from the OLS to the ML estimates. Panel (a) of Figure 9.5

(a) 
College 
GPA 

Hazard of 
Exclusion 

Academic 
Self-Esteem

+

+

−

(b) 

Minor 
Violence 

Hazard of 
Exclusion 

PTSD 

+

+

−

Severe 
Violence 

Hazard of 
Exclusion 

PTSD

+

+

+

Child 
Abuse 

Hazard of 
Exclusion 

PTSD

+

+

−

Figure 9.5 Sample-selection bias in the analyses of academic self-esteem and PTSD.
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illustrates the effect of having omitted the correction for selectivity in the model. As

college GPA has a positive effect on academic self-esteem and a negative effect on

the hazard of exclusion (since it has a positive effect on the probability of inclusion),

and as the hazard of exclusion has a positive “effect” on academic self-esteem, the

impact of college GPA is underestimated without correcting for selectivity. The

effect of college GPA therefore goes from .873 in OLS to 2.644 in Heckit and .972

in ML, although neither of the latter estimates is significant. At any rate, as selectiv-

ity does not seem to be a problem in this analysis; the OLS estimates would be pre-

ferred over the others.

PTSD. Table 9.7 shows OLS and Heckit estimates for the regression of PTSD.

Predictors include dummies for having experienced minor physical assault,

severe physical assault, having had to take time off due to the physical assault,

and having experienced rape with penetration, as well as the interval variables

annual income and the child abuse index, as described above. In this particular

case, the ML procedure did not converge, a pitfall of this technique, as noted

above. The unique predictor of selection chosen here was an indicator of being

married to the partner. As marriage implies more barriers to the termination of

relationships, I would expect those who are married to the current partner to be

more likely to be found in currently abusive partnerships. On the other hand, there

is no particular reason why marital status per se should affect PTSD. The selec-

tion model results reveal that being married to the partner is, indeed, predictive

of inclusion in the current sample. So are having experienced minor physical

Table 9.7 Unstandardized OLS Estimates of Sample-Selection Models 

of PTSD

Heckman Two-Stepb

Uncorrected

Regressor OLSa Selection Response

Intercept 31.727*** �1.582*** 9.329

Married to partner .491***

Minor physical assault �1.464 .727*** 6.793

Severe physical assault 5.657*** �.350*** 1.937

Took time off due to assault 6.590*** �.002 5.929**

Child abuse index 1.092** .060*** 1.631***

Rape with penetration 3.453* �.123 1.312

Income �.963** �.027 �1.206***

Lambda 12.741**

σ̂ 13.994 17.631

R2 .209 .228

ρ̂ .723

a n � 331.
b n � 1829.

* p � .05. ** p � .01. *** p � .001.



assault and a greater severity of child abuse. Interestingly, having experienced

severe physical assault lowers the probability of inclusion. This is reasonable,

since those experiencing severe assault, which was most likely at the hands of an

intimate partner, might be especially likely to avoid ending up in another (i.e., a

current) abusive liaison.

In this example we find that lambda is also quite significant, and, as expected, ρ̂
is positive with a value of .723. These findings suggest that selectivity bias could be

a problem in this analysis. In particular, the coefficients for minor assault, severe

assault, and child abuse should all be affected. Panel (b) in Figure 9.5 illustrates the

nature of the biases. We should find the effects of minor physical assault and child

abuse to be suppressed by omission of lambda, while the effects of severe violence

should be confounded with the hazard. A comparison of OLS coefficients with those

of the Heckit procedure show that these expectations are borne out. The coefficient

for minor physical assault increases from �1.464 in OLS to 6.793 in Heckit, although

neither coefficient is significant. The coefficient for child abuse increases from 1.092

in OLS to 1.631 in Heckit, with both estimates being significant. The coefficient for

severe physical assault, on the other hand, is reduced to insignificance after control-

ling for the hazard of exclusion, going from 5.657 in OLS to 1.937 in Heckit.

Apparently, the impact of severe physical assault is overestimated in OLS when fail-

ing to correct for the fact that severely victimized women are more likely to be

excluded from the sample, and the hazard of exclusion is associated with a greater

mean PTSD.

Caveats Regarding Heckman’s Two-Step Procedure

Stolzenberg and Relles’s (1990, 1997) simulations compare the Heckman procedure

to uncorrected OLS under a range of conditions. They find that, on average, the

Heckman procedure performs no better than uncorrected OLS. However, Heckit

appears to reduce bias consistently when two conditions are simultaneously met: (1)

ρ is very high and (2) x and w are very highly correlated (Stolzenberg and Relles,

1990). They note further that substantive equations with high R2’s can tolerate con-

siderable sample selectivity without showing much bias; and if the selection model

itself exhibits poor discriminatory power, bias is also likely to be minimal. In sum,

they suggest that if bias is very severe and the sample is large, Heckit probably

improves the estimates. But if bias is only moderate, or if samples have “only a few

hundred cases,” there is substantial risk that the Heckman procedure will make the

estimates worse (Stolzenberg and Relles, 1997, p. 503). One way to approach sus-

pected selection bias is to estimate the sample-selection model with ML if possible,

or with the Heckit procedure if not. If one’s focus variables are significant predic-

tors of inclusion in the sample, and if θ̂ (Heckit) or ρ̂ (ML) are significant, sample-

selection corrections are appropriate. If these conditions do not obtain, correction for

selectivity may not be warranted. Moreover, when using the Heckit approach, the

test of θ̂ should employ the asymptotically correct standard error found in programs

such as LIMDEP or STATA rather than relying on the t test in standard OLS

software.
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EXERCISES

9.1 Suppose that Y is normally distributed with mean 12 and standard deviation

4. If the distribution is truncated at y � 8, what are the mean and standard

deviation of the truncated distribution?

9.2. Suppose that Y is normally distributed with mean 12 and standard deviation

4. If the distribution is censored at y � 8, what are the mean and standard

deviation of the censored variable?

9.3 Suppose that y and z have a bivariate normal distribution with µy� 12, µz� 8,

σy� 4, σz� 2, and ρ � .5. Suppose further that y is observed only when z � 5;

that is, the distribution of y is incidentally truncated at z � 5. What are the

mean and standard deviation for the incidentally truncated distribution of y?

9.4 Note that the inverse Mills ratio is expressed as λ(z) � φ(z)/[1 � Φ(z)].

However, for �z we have the IMR as

λ(�z) ��
1 �

φ(

Φ

�

(

z

�

)

z)
� � �

Φ

φ(

(

z

z

)

)
� � λ(α),

where α � �z, which is the form it takes in the censored (from below) and

sample-selected regression models discussed in this chapter. [Note that φ(z)/

Φ(z) in certain contexts is also denoted simply as “λ”.] Illustrate the practical

range of the IMR (in this latter form) by evaluating it at z equal to �4, 0, and 4.

9.5 Using equation (9.16) and the ML estimates in Table 9.2 for the truncated

regression model of exam 1 score, give the predicted mean exam 1 score for

a student in the population of students scoring at least 70 on exam 1, with a

college GPA of 3.2, a math diagnostic score of 43, and an attitude score of 10.

9.6 Using equation (9.16) and the ML estimates in Table 9.2 for the truncated

regression model of exam 1 score, give the predicted mean exam 1 score for a

student, in the population of students scoring at least 70 on exam 1, with a col-

lege GPA of 2.5, a math diagnostic score of 37, and an attitude score of �2.

9.7 Based on equation (9.23) and the estimates in model 1 of Table 9.3, give the

predicted observed CESD score for a woman 1 standard deviation below the

mean on open disagreement, in an unstable relationship, with a relationship

duration of 12 years.

9.8 Based on equation (9.23) and the tobit estimates in Table 9.4, give the pre-

dicted observed physical assault severity score for a 35-year-old woman with

child abuse index � 4, who has an education score of 5, is married and white,

and whose income score is 2.

9.9 Means for the regressors used in Table 9.3 are open disagreement � 0 (cen-

tered variable), female � .553, unstable relationship � .361, and relationship
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duration � 16.155. Verify the McDonald–Moffitt decomposition of regressor

effects for this application, as discussed in the text.

9.10 Means for the regressors used in Table 9.4 are child abuse index � 1.776, age �

39.868, education � 4.786, nonwhite � .201, previously married � .334, never

married � .153, income � 4.031. Verify the McDonald–Moffitt decomposition

of regressor effects for this application, as discussed in the text.

Exercises 9.11 to 9.13 involve the following (x,y) pairs: (1.5, 0), (2.2, 0), (1.8, 0),

(3.5, 1.25), (.82, 3.42), (3.85, 8.65). Also, tobit estimates for the regression of y on x

yield β̂0� �4.85827, β̂1� 2.24803, σ̂� 4.53832. Denote this information as Data One.

9.11 Using Data One, calculate Laitila’s R2
p.

9.12 Using Data One, calculate [corr(y, ŷ)]2, where ŷ is the predicted value for the

observed y’s, based on equation (9.23). Notice that this R2 analog is for the

observed y’s, whereas R2
p is for Y*.

9.13 Give the McDonald–Moffitt decomposition for the impact of x on y in Data One.

Exercises 9.14 to 9.16 involve the following (x,y) pairs: (8, 0), (6.2, 0), (7, .4), (5.5,

.55), (5.8, .62), (2.3, .89). Also, tobit estimates for the regression of y on x yield

β̂0� 1.38552, β̂1� �.17864, σ̂ � .26422. Denote this information as Data Two.

9.14 Using Data Two, calculate Laitila’s R2
p.

9.15 Using Data Two, calculate [corr(y, ŷ)]2, where ŷ is the predicted value for the

observed y’s, based on equation (9.23).

9.16 Give the McDonald–Moffitt decomposition for the impact of x on y in Data Two.

9.17 In the analyses reported in Table 9.7, PTSD was treated as an uncensored,

continuous response. Ignoring, for the moment, the problem of incidental

truncation, suppose that we treat PTSD as censored at its minimum value of

21, noting that 29.3% of women score at this value. A tobit analysis for

n � 330 women produces the following results:

β̂ Mean of X

Intercept 29.708

Minor physical assault �3.390 .924

Severe physical assault 6.939** .455

Took time off due to assault 8.472*** .242

Child abuse index 1.244** 2.139

Rape with penetration 4.393* .333

Income �1.275** 3.933

σ̂ 17.531
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(a) Give the predicted observed PTSD score for a woman who has experi-

enced minor and severe physical assault, rape with penetration, and tak-

ing time off because of the physical assault, and who has average income

and child abuse scores.

(b) To what extent is the effect of child abuse due to its effect on elevating

average PTSD for those above the censoring threshold, as opposed to its

effect on raising the risk of reporting any PTSD symptoms at all?

9.18 Suppose that y* � β0 � β1x1 � β2x2 � β3x3 � β4x4 � ε and z*� γ0� γ1x1�

γ2x2� γ3x3 � γ4x4 � υ, where Cov(xj,ε) � Cov(xj,υ) � Cov(ε,υ) � 0, all vari-

ables are standardized, all x’s are positively correlated, and all parameters

except β3, β4, γ3, and γ4 are positive, with the latter being negative. But you

estimate y*� β0� β1x1� β2x2� e and z*� γ0� γ1x1� γ2x2� u. What is ρeu?

[Hint: Compute corr(e,u) � cov(e,u) using covariance algebra, and evaluate

the sign of the resulting expression.]

9.19 Suppose that y* � β0 � β1x1 � β2x2 � β3x3 � ε and z* � γ0 � γ1x1 � γ2x2 �

γ3x3 � υ, where Cov(xj,ε) � Cov(xj,υ) � Cov(ε,υ) � 0, all variables are stan-

dardized, all x’s are positively correlated, and all parameter values are positive.

But you estimate y* � β0 � β1x1 � β2x2 � e and z* � γ0 � γ1x1 � γ2x2 � u. What

is ρeu? (Hint: Follow procedure for Exercise 9.18.)

9.20 Refer to equation (9.33) and the accompanying discussion of sample-

selection bias. Suppose that the models for y*, z* are y* � 2 � 3.2x � ε if

z* � 0; y* is missing otherwise; z* � .8x � υ. Also, σ2
y* � 17.64, the squared

correlation of y* with x is .726, σx� 1.25, ρ � .66, and E(λ) � 3�1.5x. What

is the bias in b1 as an estimate of β1 if no correction is made for incidental

truncation, where bias(b1) is defined in Exercise 9.21? Will b1 over- or under-

estimate β1? [Hint: In general, in the simple linear regression of y on x,

β1 � Cov(x,y) �σ2
x.]

9.21 Refer to equation (9.33) and the accompanying discussion of sample-selection

bias. Suppose that the models for y* and z* are: y* � 2 � 3.2x � ε if z* � 0; y*

is missing otherwise; z* � .8x � υ. Also, σε � 2.2, σx � 1.25, ρ � .66, and

Cov(x,λ) � .75. What is the bias in b1 as an estimate of β1 if no correction is

made for incidental truncation [where bias(b1) � plim b1 � β1]? Will b1 over-

or underestimate β1? (Hint: See the hint for Exercise 9.20.)

9.22 Use the female subsample of the couples dataset to estimate a tobit model for

CESD as a function of FEDUC, IHTOT2, VIOLENT, UNSTABLE, DIS-

AGMT, and PRESCHDN. Then:

(a) Interpret the significant effects.

(b) Give R2
p for the underlying depressive symptomatology score.

(c) Give the McDonald–Moffitt decomposition of regressor effects.

(d) Give the predicted value of observed CESD at the mean of the regressors.



9.23 In the students dataset, 15.7% of the 235 students are missing EXAM2 scores

because they dropped out of the course before the second exam. If the target

population is all students enrolling in introductory statistics at BGSU, a

regression of EXAM2 using only those with valid scores could be biased by

self-selection. Estimate a sample-selection model for EXAM2 regressed on

EXAM1, COLGPA, SCORE, and STATMOOD using either the ML or Heckit

procedure, along with uncorrected OLS. Use CLASSIF as the unique regres-

sor for the selection equation. Missing imputation: Substitute the parentheti-

cal values for missing data on each variable indicated: EXAM1 (76.9774766),

COLGPA (3.0827835), and SCORE (40.9358974). Evaluate the extent and

nature of any selection bias found.

9.24 Use the GSS98 dataset to estimate the regression of INCOME on EDUCAT,

RESPAGE, and MALE using OLS. In that 34.7% of the 2832 respondents are

missing on INCOME, correct for selection bias with either the ML or Heckit

procedure, employing CONSERV as the unique regressor for the selection

equation. Missing imputation: Substitute the parenthetical values for missing

data on each variable indicated: EDUCAT (13.251) and CONSERV (4.098).

Evaluate the extent and nature of any selection bias found.

9.25 Use the introductory sociology dataset to estimate the regression of T2 test anx-

iety (TESTANX2) on HSGPA, HSGRADE, COLLGPA, MALE, ACADSE1,

and TESTANX1. Because 36.5% of the 649 students are missing on TES-

TANX2, correct for selection bias with either the ML or Heckit procedure,

employing PAYOWN as the unique regressor for the selection equation.

Evaluate the extent and nature of any selection bias found.
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Regression Models for 

an Event Count

CHAPTER OVERVIEW

In this chapter we return to the study of discrete response variables, in particular,

count responses, variables that represent the number of occurrences of some event.

The number of events that occur to each case in a given observation period, or in a

given observation space, is assumed to be governed by an underlying rate of event

occurrence. In this chapter we focus on the outcome of this process, the count of

events over the period or the space. In Chapter 11 we focus on the waiting time from

the beginning of risk for an event until event occurrence, or the survival time in 

the “nonevent” state. These chapters are therefore tied together by their common

reliance on an unobserved continuous rate of event occurrence. Examples of count

variables are the number of articles published during graduate school by male and

female biochemists (Long, 1990), the number of domestic violence incidents

reported for a given offender in a 6- to 22-month follow-up of domestic violence

offenders (Sherman et al., 1992), or the number of police contacts for a sample of

juveniles aged 8 to 26 (Land et al., 1996).

I begin by defining count data and presenting probability distributions that are

commonly associated with count responses. I then consider why OLS is not opti-

mal for these types of data, and present instead the Poisson regression model. The

likelihood function for the model is illustrated, along with schemes for interpreting

the coefficients, and analogs of R2. Truncated, censored, and sample-selected vari-

ants of the model are also discussed. Due to the restrictive property of Poisson

regression that the conditional mean and variance of the dependent variable be

identical, the Poisson model is rarely adequate for count data, which are frequently
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overdispersed; that is, the variance exceeds the mean. For this reason, I then con-

sider a few variations on the Poisson model. One is the negative binomial regres-

sion model, which is appropriate when data are generally overdispersed. I also

consider a version of this model designed for truncated count distributions. Finally,

for cases in which overdispersion is due to an excessive number of zero counts, I

consider zero-inflated Poisson and negative binomial models, as well as the hurdle

model.

DENSITIES FOR COUNT RESPONSES

An event count is the number of occurrences of an event within a fixed domain of

observation (King, 1988). The domain can either be temporal or spatial. Hence, the

number of partners one has had sex with in the past month is an event count, where 

the event is having a sex partner, and the domain is one month. From above, the

number of domestic violence incidents in a 6- to 22-month period is an event count

in which the event is the incident and the domain varies between 6 and 22 months.

The number of taverns per city in a given state is, similarly, an event count, with the

event being the occurrence of a tavern and the domain being city size, most likely

expressed as the number of inhabitants. An example of an event count from the 

students dataset is the number of previous college-level math courses taken by each

student. In this case, the domain is assumed to be the student’s college career. 

This variable, for 230 students, ranges from 0 to 7, has a sample mean of 1.274, and

a sample variance of 1.274. The sample distribution on the variable is shown in

Figure 10.1.

We notice right away that the distribution is right-skewed and that there is a siz-

able proportion of students, about 24%, who have had no previous math classes.

These features are fairly typical of count data. Often, our first impulse with this type

of response might be to use linear regression with OLS estimation. For reasons to

be detailed below, this would be a poor choice of estimator. Another strategy might

be to collapse the variable into a dichotomy, contrasting taking one or fewer classes

with taking more than one class. One might then use logistic regression to analyze

this binary version of the variable. But this would be quite wasteful of information,

since we would be treating 0 or 1 class as the same answer, and we would also be

lumping two through seven classes into the same category. Fortunately, neither 

strategy is necessary, as count variables are well represented by certain specific dis-

crete densities, which can then be used as the basis of a likelihood function for a

regression model.

Poisson Density

For a random variable, Y, the Poisson density is

f(y � µ) � �
e�

y

µ

!

µy

�
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Figure 10.1 Distribution on number of previous math courses for 230 students in introductory statistics

(mean � 1.2739; variance � 1.2740).

for y � 0, 1, 2, . . . . The parameter µ is both the mean and the variance of Y. Figure

10.2 shows a Poisson density with mean and variance equal to µ � 1.274. Notice that

it resembles the sample distribution of number of previous math courses in Figure

10.1. The probability of a given value for Y is readily computed using this density.

For example, the probability that Y � 5, according to this density, is

f(5 � µ � 1.274) ��
e�1.27

5

41

!

.2745

�� .0078.

The sample proportion of students having five previous math classes, on the 

other hand, is .022. The Poisson density is constrained so that its variance equals its

mean, a property called equidispersion (Long, 1997). The next density relaxes that

restriction.

Negative Binomial Density

A second density that is very important for count data is the negative binomial 

density. This density can be expressed in a variety of different ways (see, e.g., Hoel

et al., 1971). Moreover, Cameron and Trivedi (1998) note that there are 13 distinct
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stochastic mechanisms for generating it. One such mechanism is as follows. Define

r to be an integer and p to be a number between 0 and 1. Then the negative binomial

density arises if we let y be the number of failures encountered before achieving the

rth success in a series of trials, where p is the probability of a success:

f(y � r, p) ��
(

y

r

!

�

(r

y

�

�

1

1

)

)

!

!
�pr(1 � p)y (10.1)

for y � 0, 1, 2, . . . (Hoel et al., 1971). The negative binomial density is said to be

overdispersed, meaning that the variance exceeds the mean. This is evident, since for

the negative binomial density,

E(y) � r�
1 �

p

p
� and V(y)�r�

1

p

�
2

p
�.

In that, for p between 0 and 1, p2 � p, the variance is larger than the mean. 

Figure 10.3 shows a negative binomial distribution with parameters r � 2 and

p � .61089. As the reader can verify, the distribution again has a mean of 1.274, but

this time its variance is 2.0853. For this distribution, the probability that Y � 5 is

f(5 � r � 2, p � .61089) ��
(

5

2

!

�

(2

5

�

�

1

1

)

)

!

!
� .610892(1 � .61089)5 � .02.

Figure 10.2 Poisson distribution for a discrete variable with mean and variance equal to 1.2739.
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MODELING COUNT RESPONSES WITH POISSON REGRESSION

Problems with OLS

With Y as an event count, the linear regression model is Y � �βkXk � ε. There are sev-

eral problems with this formulation, especially when using OLS estimation. First, the

usual assumption that the errors are normally distributed fails, since Y is typically

nonnormal, as is evident in Figure 10.1. With large samples, however, the parameter

estimates are approximately normally distributed, by the CLT, so inferences regard-

ing the regression parameters are still possible. Nevertheless, there are more serious

difficulties with using a linear function. The mean structure—the nature of the func-

tion relating the conditional mean to the linear predictor—is probably misspecified

with a linear model, given that a negative mean is not possible. Recall that as men-

tioned in Chapter 7, the right-hand side of the linear regression equation is not

constrained to be positive. If the mean structure is misspecified, OLS estimators 

are inconsistent (Cameron and Trivedi, 1998). The OLS estimator also assumes a

homoscedastic error structure. This is problematic if the data are generated by a count

distribution such as the Poisson or negative binomial. In such distributions, the 

Figure 10.3 Negative binomial distribution for a discrete variable with mean equal to 1.2739 and 

variance equal to 2.0853.



variance is a function of the mean, and as such, varies as the mean varies. If the errors

are really heteroscedastic, the standard error estimates produced by OLS are biased.

Poisson Regression Model

The Poisson regression model (PRM) assumes that the occurrence of events within 

a given domain is governed by an unobserved, continuous process. Although the

process is unobserved, its end product—an event count over the domain of interest—is

observed. The process is encapsulated in µi, the rate of event occurrence for the ith case.

The model makes two assumptions about this process (King, 1989). The independence

assumption is that the probability of a subsequent event is independent of the occur-

rence of a previous event. (Contagion is the situation in which the probability of a 

subsequent event is enhanced by a previous event, whereas negative contagion obtains

when this probability is reduced by a previous event.) The homogeneity assumption is

that the rate of event occurrence is constant over the domain of interest, which is usu-

ally time. (In Chapter 11 we relax this particular assumption about event processes.)

The Poisson model assumes that the number of events for the ith case follows a

Poisson distribution with parameter µi, and that µi is an exponential function of the

covariates. Hence, the density for Yi is

f(yi � xi,ββ) ��
e�

y

µ

i

i

!

µi
yi

�

for yi � 0, 1, 2, . . . and the specification for µi is µi � exp(�βkXik). The rate of event

occurrence, µi, is conditional on the covariates for each case. Hence, µi is both the

conditional mean and the conditional variance of Yi. The exponential specification

ensures that the mean is always positive. Also, recall from Chapter 1 that in the gen-

eralized linear model, if the response has a Poisson distribution, the link function is

the log of the mean, which implies an exponential function for the mean itself [i.e.,

ln µi � �βkXik implies that µi � exp(�βkXik)].

If the domain for the event process is not the same size for all cases, this needs to

be controlled, since a greater number of events would be expected the larger the

domain size. The domain size is the length of time that cases are at risk for events,

or the size of the geographical area over which events are counted, and so on. With

varying domain sizes, the solution is to model the expected count per domain size

(Cameron and Trivedi, 1998; King, 1988). If Ei represents the exposure, or domain

size, for the ith case, the model becomes

�
E

µ

i

i�� exp��
K

k�1

βkXik�,

which implies that

µi � Ei exp��
K

k�1

βkXik� � exp(ln Ei) exp��
K

k�1

βkXik�
�exp���

K

k�1

βkXik� � ln Ei�. (10.2)
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This suggests that the log of Ei should be entered into the model with its coefficient

constrained to 1. In some software (e.g., SAS) Ei is referred to as an offset when it

is to be entered into the model in this way. However, as others have noted (King,

1988), there is no harm in allowing the coefficient for ln Ei to be estimated. In fact,

in the author’s experience, the model is less likely to have convergence problems if

this parameter is estimated rather than constrained.

Estimation. The parameters of the model—the β’s—can be estimated via maximum

likelihood. The likelihood function follows from the joint density of the observed yi.

Letting y represent the vector, or set, of observed event counts, x represent the vector

of explanatory variables (including, possibly, ln Ei), and ββ represent the vector of

parameters, we have

L(ββ � y,x) ��
n

i�1

�
e�

y

µ

i

i

!

�i
yi

�,

which implies that the log-likelihood is

ln[L(ββ � y,x)]��
n

i�1

(yi ln µi � µi � ln yi!) ��
n

i�1
�yi��

K

k�0

βkXik�� exp��
K

k�0

βkXik�� ln yi!�
The MLEs of the betas are the bk that maximize this function. As with all MLEs, the

resulting estimates are consistent as well as asymptotically unbiased, efficient, and

normally distributed.

Inferences in the Poisson Regression Model. As in logistic regression, the test for

the significance of the model as a whole is performed with the model chi-squared

statistic. The null hypothesis is H0: β1 � β2 � . . . � βK � 0. The alternative hypothe-

sis is that at least one of these betas is not zero. The test statistic is χ2 � �2

ln L0 � (�2 ln L1), where L0 is the likelihood function for a model with only an

intercept and L1 is the likelihood function for the hypothesized model, evaluated at

the MLEs of the parameters. Under the null hypothesis, this statistic has a chi-squared

distribution with K degrees of freedom. Comparison of nested models is achieved

with the nested chi-squared test. If model 2 is nested within model 1, the test for

whether the nesting constraints are valid is ∆χ2 � �2 ln L2 � (�2 ln L1), with L2 the

likelihood for the nested model, evaluated at its MLEs. Under the null hypothesis

that the constraints are valid, this statistic has the chi-squared distribution with

degrees of freedom equal to the number of constraints imposed to produce the nested

model. Finally, individual regression coefficients can be tested with z-tests of the

form z � bk/σ̂bk
.

Interpretation of Regression Coefficients. As in logistic regression, the betas no

longer can be interpreted as the change in the mean for a unit increase in the pre-

dictors, due to the nonlinear functional form of the model. This is easily seen by

attempting to simplify the expression for the change in the mean when one of the

regressors, say Xj, increases by 1 unit, holding all other (K � 1) regressors constant.
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Letting x�j be the collection of all other regressors:

E(Y � xj � 1, x�j) � E(Y � xj, x�j) � exp[β0 � β1X1 � . . . � βj(xj � 1) � . . . � βKXK]

� exp(β0 � β1X1 � . . . � βjxj � . . . � βKXK).

It should be clear that this expression does not simplify further. The partial deriva-

tive of µi with respect to Xj, on the other hand, is

�
∂

∂

X

µ

j

i� � �
∂

∂

Xj

�[exp(β0 � β1Xi1 � . . . � βjXij � . . . � βKXiK)]

�βjexp(β0 � β1Xi1 � . . . � βjXij � . . . � βKXiK) � βjµi . (10.3)

This shows that the effect of the jth regressor is not constant, but rather, depends on

the levels of all covariates, since βjµi changes with µi. However, if we divide expres-

sion (10.3) by µi, we can isolate βj. As the partial derivative is the change in the

response for an infinitesimal increase in the predictor at a given predictor value, βj

can be interpreted as the proportional change in µi (as a proportion of µi) with an

infinitesimal increase in Xj at xj.

A more appealing interpretation can be found by exponentiating βj. Called the

factor change by Long (1997, p. 225), exp(βj) is the multiplicative change in the

expected count for each unit increase in Xj, net of the other regressors. To see this,

consider the ratio of expected counts for those who are 1 unit apart on Xj:

�

�

� exp(βj ) .

In other words, E(Y � xj � 1, x�j) � exp(βj)E(Y � xj, x�j), which shows that a 1-unit

increase in xj multiplies the expected count by exp(βj), controlling for the other

regressors. The proportionate change in the expected count for a unit increase in 

Xj is

� � 1� exp(βj)�1, (10.4)

and therefore the percent change in the expected count for a 1-unit increase in Xj is

100[exp(βj) � 1]. If Xj is a dummy variable, exp(βj) represents the ratio of expected

counts for those in the interest, versus the reference, categories, and expression

(10.4) represents the proportion by which being in the interest category compared to

the reference category increases or decreases the expected count.

E(Y � xj�1, x�j)
��

E(Y � xj, x�j)

E(Y � xj�1, x�j) � E(Y � xj, x�j)
���

E(Y � xj, x�j)

exp(β0) exp(β1X1) . . . exp(βj xj ) exp(βj ) . . . exp(βKXK)
������

exp(β0) exp(β1X1) . . . exp(βj xj) . . . exp(βKXK)

exp(β0 � β1X1 � . . . � βj(xj � 1) � . . . � βKXK)
�����

exp(β0 � β1X1 � . . . � βjxj � . . . � βKXK)

E(Y � xj�1, x�j)
��

E(Y � xj, x�j)
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A number of statisticians give a unit proportional impact interpretation to βj. For

example, Cameron and Trivedi (1998, p. 81) say: “The coefficient βj equals the 

proportionate change in the conditional mean if the jth regressor changes by one

unit.” As expression (10.4) shows, this is not technically correct. However, it is

approximately correct whenever a unit change in Xj equals a very small change in

that variable, which is what statisticians have in mind when they imbue βj with this

interepretation. In the latter case, βj should be a value close to zero, and exp(βj) is

then approximately equal to 1 � βj. For example, if βj � .05, then exp(.05) � 1.051.

In this scenario, exp(βj) � 1 � 1 � βj � 1 � βj, and the unit proportional impact inter-

pretation for βj is then appropriate. Otherwise, expression (10.4) provides the correct

proportionate change in the expected count for unit increases in Xj.

Example. Table 10.1 presents both OLS and PRM estimates for the regression of

number of previous math courses on several characteristics of students: age over 21

(a dummy for whether students are over 21), male (a dummy for being male), social

sciences major (a dummy for majoring in a social science other than sociology, with

sociology majors as the contrast group), other major (a dummy for majoring in other

than a social science field, with sociology majors as the contrast group), classifi-

cation (student classification), high school GPA, and college GPA. Substantively, the

models provide similar conclusions about the nature of regressor effects. Both

models are significant as a whole. The F statistic for the model estimated with OLS

is 7.67; with 7 and 222 degrees of freedom, this is significant at the .0001 level.

Similarly, the model χ2 for the PRM of 43.862, with 7 degrees of freedom, is also

Table 10.1 Unstandardized OLS and PRM Estimates for the Regression of Number

of Previous Math Courses

OLS PRM

Regressor b t b z exp(b)

Intercept �1.551 �2.311 �1.951 �3.287 .142

Age over 21 .265 1.595 .187 1.330 1.206

Male .436 2.877 .313 2.548 1.368

Social sciences majora �.052 �.255 �.028 �.154 .972

Other majora �.024 �.144 .037 .258 1.038

Classification .402 4.143 .336 3.723 1.399

High school GPA .547 3.486 .395 2.914 1.484

College GPA �.190 �1.323 �.174 �1.375 .840

F/model χ2 7.670 43.862

R2 .195

r2 .207

R2
L .067

R2
D .179

Note: n � 230.
a Sociology major is the reference category.



significant at the .0001 level. Three predictors are significant in both models, and in

similar directions. Males, students with higher classifications (e.g., seniors, as

opposed to sophomores) and those with higher high school GPAs all have a higher

expected number of previous math courses, compared to others. The coefficients

cannot be directly compared, however. For example, the OLS results suggest that

men have a mean number of previous math courses that is higher by .436, compared

to females. The PRM model’s coefficient suggests that men’s expected count of

previous math courses is 36.8% higher than women’s. The coefficient for high school

GPA in OLS implies that each unit increase in high school GPA adds .547 to the

expected count. The PRM coefficient, on the other hand, suggests that the expected

count increases by 48.4% for each unit increase in high school GPA.

The linear regression model gives negative predicted mean math-course counts—

which are clearly untenable values—at certain covariate patterns. For example, a stu-

dent who is a sophomore female social science major, under 21 years of age, with a

high school GPA of 2.5 and a college GPA of 3.5 has a predicted mean math-course

count of � 1.551 � .052 � .402(2) � .547(2.5) � .19(3.5) � � .097. In the PRM, on

the other hand, this student’s expected count is exp[� 1.951 � .028 � .336(2) �

.395(2.5) � .174(3.5)] � .395. The PRM also allows us to generate a predicted 

probability for any given count of previous math courses, based on the parameter

estimates. Using the formula for the Poisson probability, the predicted probability of

a particular value of Y for the ith case is

f̂(yi � xi,ββ̂) ��
e�

y

µ̂

!

iµ̂i
y

�.

Notice that this depends on the case’s covariates, since µi varies with the covariates.

Hence, for any given value of Y, there are potentially n different predicted probabil-

ities for that value. As an example, let’s calculate the probability of having had three

previous math courses for a senior male social science major, over 21 years of 

age, with a high school GPA of 2.8 and a college GPA of 3.1. First, the expected

math-course count for this student is exp[� 1.951 � .187 � .313 � .028 � .336(4) �

.395(2.8) � .174(3.1)] � 1.54. Then, the predicted probability of having had three

math courses for this student is

f̂(3) ��
e�1.54

3

(

!

1.54)3

�� .13.

Empirical Consistency and Discriminatory Power

Empirical Consistency. There are few formal tests of empirical consistency for

count models [but see Cameron and Trivedi (1998) and Greene (2003) for some sug-

gested approaches]. However, one means of informally assessing whether the data

behave according to model predictions is to compare the observed sample propor-

tions of cases having each value of Y with the mean predicted probability of each

value of Y, where the mean is taken over all n cases (Cameron and Trivedi, 1998;

Long, 1997). The mean predicted probability that Y � y, based on a PRM, is denoted

MODELING COUNT RESPONSES WITH POISSON REGRESSION 357



358 REGRESSION MODELS FOR AN EVENT COUNT

p̂y
p, and is calculated as

p̂y
p � �

1

n
��

n

i�1

�
e�

y

µ̂

!

iµ̂i
y

�.

As is evident, p̂y
p is simply the average predicted probability of y across all n cases.

Figure 10.4 shows a plot of p̂y
p, based on the PRM in Table 10.1, against the observed

proportions of students having each number of previous math courses. The PRM

appears to fit the sample proportions quite closely for counts of 2 or more. However,

the fit appears to be poor for counts of zero or one previous math course. Apparently,

the PRM overpredicts zero counts and underpredicts counts of 1. Below we consider

whether the PRM is really an appropriate model for this response.

Discriminatory Power. As is the case in logistic regression, there is no single coun-

terpart in count models to the R2 in linear regression for measuring discriminatory

power. Hence, I will discuss three different R2 analogs that have been proposed.

First, we should recall from Chapter 7 that the R2 in linear regression exhibits two

properties that are highly desirable in any measure of discriminatory power: it falls

Figure 10.4 Observed versus mean predicted probabilities for number of previous math courses, with

predictions based on the PRM.
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within the range of 0 to 1, and it is nondecreasing as regressors are added to a model.

The first measure I consider is the likelihood-ratio index, also considered for logis-

tic regression models. The formula in count models is essentially the same:

R2
L � 1 � �

l

l

n

n

L

L
1

0

�,

where L1 is the likelihood for the estimated model, evaluated at its MLEs, and L0 is

the likelihood for the intercept-only model. This measure is nondecreasing as pre-

dictors are added, since the likelihood never decreases as parameters are added to the

model. (If the likelihood could decrease with addition of predictors, ln L1, which 

is a negative value, could become larger in magnitude, implying a smaller R2
L.) In

logistic regression, this measure is also bounded by 0 and 1. However, in count mod-

els, this measure cannot attain its upper bound of 1 (Cameron and Trivedi, 1998),

and so may underestimate the discriminatory power of any particular model.

A second analog employed by some statisticians (Land et al., 1996) is the corre-

lation between Y and its predicted value according to the model. Recall that this

gives us the R2 for linear regression. Hence, this measure is r2 � [corr( y,µ̂)]2.

Although this measure is bounded by 0 and 1, it is not necessarily nondecreasing

with the addition of parameters. The advantage to these first two measures, on the

other hand, is that they are readily calculated from output produced by count-model

software.

The third measure, proposed by Cameron and Windmeijer (1997), is the deviance

R2. It is defined as follows. First, we define the Kullback–Leibler (KL) divergence,

a measure of the discrepancy between two likelihoods. Let y be the vector of

observed counts and µµ̂ be the vector of predicted counts based on a given model.

Further, let �(µµ̂0,y) be the log-likelihood for the intercept-only model, �(µµ̂,y) the

log-likelihood for the hypothesized model, and �(y,y) the maximum log-likelihood

achievable. This last would be the log-likelihood for a saturated model, one with as

many parameters as observations. Then the KL divergence between saturated and

intercept-only models, K(y,µµ̂0), equals 2[�(y,y) � � (µµ̂0,y)]. This represents an esti-

mate of the information on y, in sample data, that is “potentially recoverable by

inclusion of regressors” (Cameron and Windmeijer, 1997, p. 333) and corresponds

to the TSS in linear regression. The information on y that remains after regressors are

included in the model is the KL divergence between saturated and fitted models,

K(y,µµ̂), which is equal to 2[�(y,y)� �(µµ̂,y)]. This is analogous to the SSE in linear

regression. Finally, the deviance R2 is

R2
D�1� .

The reader should recognize that the right-hand side of R2
D is analogous to

1 � SSE/TSS, the R2 in linear regression. In this application, however, R2
D does not

have an “explained variance” interpretation. Rather, it is “the fraction of the maximum

potential likelihood gain (starting with a constant-only model) achieved by the fitted

model” (Cameron and Windmeijer, 1997, p. 338). R2
D possesses both of the other

properties of a desirable R2 analog: It is bounded by 0 and 1 and it is nondecreasing

K(y, µµ̂)
�
K(y, µµ̂0)
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with the addition of parameters. Moreover, in logit models, where �(y,y) � 0, this

measure reduces to

R2
D � 1 ��

K

K

(

(

y

y

,

,

µµ̂

µµ̂

0

)

)
� � 1 ��

�

�

2

2

�

�

(

(

µµ̂

µµ̂

0

,

,

y

y

)

)
� � 1 ��

�

�

(

(

µµ̂

µµ̂

0

,

,

y

y

)

)
� � R2

L.

The only drawback to R2
D is that it can be quite tedious to compute, and is not auto-

matically provided in software for count models. An exception is LIMDEP, which

provides R2
D for PRM models. For other models, however, the LIMDEP user has to

program the calculations for R2
D.

Measures of discriminatory power for both OLS and PRM models are shown in

the bottom of Table 10.1. The OLS analysis suggests that 19.5% of the variation in

number of previous math courses is accounted for by the model. The three R2

analogs for the PRM have widely differing values, with r2, at .207, being closest to

the OLS R2. R2
L’s value of .067 suggests that the model is weak, but this measure is

likely to underestimate discriminatory power. The superior measure is R2
D, which,

with a value of .179, is similar to the OLS R2 in suggesting a moderately efficacious

model.

Testing the Equidispersion Hypothesis. The PRM is the most basic of the count-

data models. Typically, it is not the appropriate model for the data because the

equidispersion hypothesis fails. And most often, this is because the data are overdis-

persed. Use of the PRM in the presence of overdispersion results in inefficient 

estimators and downwardly biased estimates of standard errors (Cameron and

Trivedi, 1998). Cameron and Trivedi (1998) suggest that a quick diagnostic for this

condition is simply to examine the sample unconditional mean and variance of Y. If

sy
2 � y	, the data are probably underdispersed, whereas if sy

2 � 2y	, the data are proba-

bly overdispersed. In the latter case, the factor of 2 is suggested, since the inclusion

of covariates will tend to reduce the conditional variance of Y in comparison with the

unconditional variance. It is the conditional variance of Y in relation to the conditional

mean that matters. For number of previous math courses, recall that sy
2 and y	 are both

1.274. Given that the conditional variance should be reduced even further by the

regressors, it is likely that the data are actually underdispersed.

One way to test for equidispersion is to compare the PRM to a known alternative

model that allows for under- or overdispersion, which includes the PRM as a special

case. Then a nested chi-squared test is a test for equidispersion. We consider this

type of test below. The drawback, however, is that such a test requires an assumption

of a particular alternative parametric form for the density of Y. A test of the equidis-

persion hypothesis that does not require this assumption has been proposed 

by Cameron and Trivedi (1990). Their approach only requires that we specify the

nature of the relationship between the mean and variance of Y. The null hypothesis

for the test is that the mean and variance are equal. That is, H0 is V(Y ) � E(Y ). 

The alternative hypothesis, H1, is that the variance is a function of the mean. 

Two possible functions that have been considered are V(Y ) � E(Y ) � αE(Y ) and

V(Y ) � E(Y ) � α[E(Y )2]. In either case, if α is negative, the data are underdispersed,



and if α is positive, the data are overdispersed. Letting µ stand for E(Y ), the null and

alternative hypotheses are reexpressed as

H0: E[(Y � µ)2] � µ,

H1: E[(Y � µ)2] � µ � αµ or E[(Y � µ)2] � µ � αµ2.

This implies the formulation

H0: E[(Y � µ)2 � Y] � 0,

H1: E[(Y � µ)2 � Y] � αµ or E[(Y � µ)2 � Y] � αµ2.

This formulation suggests that a test for whether α � 0 in the linear regression of

(Y � µ)2 � Y on αµ or αµ2 is a test for equidispersion (Cameron and Trivedi, 1990).

With µ̂i equal to the fitted values from the PRM, Cameron and Trivedi’s test involves

performing a linear regression of [(yi�µ̂i)
2 � yi]/
2	µ̂i on α[g(µ̂i)/
2	µ̂i] � e, using

OLS, where g(µ̂i) is either µ̂i or µ̂i
2 . (Note that this is a no-intercept model.) The t

test for α̂ from the regression is the test of H0. For the PRM in Table 10.1, the coeffi-

cients for both µ̂i and µ̂i
2 were negative (�.245, and �.143, respectively) and signi-

ficant, suggesting that the data are underdispersed. King (1989) discusses generalized

event count models that can handle underdispersed data. As such models are not

always readily available in commercial software (but see LIMDEP’s gamma model

for an exception), I will not discuss them further. Below I discuss models for han-

dling overdispersion, the more common situation.

Tobit versus Count-Data Models. At times there may be some confusion about

whether the data call for a tobit model or a count-data model, particularly when the

minimum value of Y is zero. The author has seen the tobit model used on a count

response with the rationale that the count is a proxy for an underlying continuous

variable that is modeled more appropriately using linear regression. Here I briefly

articulate the differences between these modeling approaches. First, a latent contin-

uous variable can be said to underlie the observed response in both cases: Y* in the

tobit model and µ in the PRM (King, 1989). Nevertheless, there are clear differences

between these models. In tobit, the latent response is determined by a linear regres-

sion, and negative values of Y* are reasonable. In the PRM, the latent response is an

exponential function of the regressors, and negative values of µ are not possible. In

tobit, Y* � Y once the censoring threshold has been crossed. In the PRM, µ is never

synonymous with Y. In tobit, zeros represent censored values of Y*—the zero sim-

ply means that Y* is below the threshold. In the PRM, zeros are legitimate counts

and do not represent censoring. Perhaps most important, in tobit, the response is

either continuous or a proxy for a continuous variable. In the PRM, the response is

a count. In short, whenever the response is a count, a count-data model such as the

PRM is the appropriate model.
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Truncated PRM

It is commonly the case that count variables are sampled from truncated distribu-

tions. A zero-truncated sample occurs when cases enter the sample conditional on

having experienced at least one event (Long, 1997). For example, in the kids dataset,

a question asks about the number of lifetime sex partners that each offspring has had.

Because the data are limited to households of offspring who have initiated sexual

intercourse, the sample is selective of sexually active offspring. Hence, counts of

zero are not observed. The mean and variance of number of lifetime sex partners for

the 357 offspring in the sample are 6.698 and 36.15, respectively, with a range of 1

to 20 partners. (Notice that the data appear to be overdispersed; this will be

addressed when we discuss the negative binomial regression model below.)

To understand the rationale for the truncated model, consider first the following

probability rule: If event B is a subset of event A, the probability of (A and B) is just

the probability of B itself. For instance, in a random draw from a deck of cards, the

probability that the card is a king and the king of spades is the same as the proba-

bility that the card is the king of spades, since the event “king of spades” is a subset

of the event “king.” Therefore, by the rules of conditional probability, the probabil-

ity of drawing the king of spades given that the card is a king equals P(king of 

spades and king)/P(king) � P(king of spades)/P(king) � (1/52)/(4/52) � 1/4, which

is quite intuitive. In a similar vein, for Y defined as a count variable limited to 

positive values, the event that Y equals any particular value 1, 2, 3, . . . , is a subset 

of the event that Y is greater than zero. Thus, P(Y � y � Y � 0) � P(Y � y and Y � 0)/

P(Y � 0) � P(Y � y)/P(Y � 0).

In the zero-truncated PRM, the density of Y is therefore adjusted by the proba-

bility that Y is a positive count. That is, since P(Y � 0) � e�µµ0/0! � exp(�µ), the

probability that Y is a positive count is 1 � exp(�µ). Therefore, the density of Y for

the truncated PRM is

f(yi � yi � 0,xi,ββ)��
yi!(

e

1

�

�

µiµ

e�
i
yi

µi)
�. (10.5)

As before, the likelihood function is formed by making the substitution µi �

exp(�βkXik), and taking the product of the densities over the n cases in the sample

(this is left as an exercise for the reader). Grogger and Carson (1991) give the con-

ditional mean and variance of Y for the truncated PRM: The conditional mean is

µi/(1�e�µi). In that the denominator is less than 1, the truncated mean is larger than

the untruncated mean. The conditional variance is

�
1�

µ

e
i
�µi
� �1 ��

µ

eµ
ie

i�

�µ

1

i
��.

Notice that because the term in parentheses is always less than 1, the conditional

variance in the truncated PRM is smaller than the conditional mean; hence equidis-

persion no longer holds for the truncated PRM.
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Example: Number of Lifetime Sex Partners. The column labeled “PRM” in Table

10.2 presents estimates of a truncated PRM for the number of lifetime sex partners

of 357 focal children in the NSFH, as a function of characteristics of both the child

and his or her parents. Predictors include father’s and mother’s education (in years

of schooling attained), a parental monitoring index (interval variable, with higher

scores indicating greater supervision of the child’s activities in wave 1), father’s and

mother’s sexual permissiveness (interval variables, with higher scores indicating

greater sexual permissiveness), the child’s age at first intercourse (in years), male (a

dummy for male children), child’s sexual permissiveness (interval variable, with

higher scores indicating greater permissiveness), and the cross-

product of male with child’s sexual permissiveness.

The model is significant overall, with a model chi-squared of 767.711

(p � .0001). The likelihood-ratio index, with a value of .262, suggests that the model

has moderate discriminatory power. In this instance, the model has a control for

differential exposure. The exposure factor is the log of the number of years of sex-

ual activity, defined as the difference between the child’s age at the time of the wave

2 survey and the child’s age at initiation of sexual activity. This factor is quite signifi-

cant and positive, as would be expected. Other significant factors are the father’s and

mother’s education, the age of the child at first intercourse, being male, and the

child’s sexual permissiveness. Interestingly, father’s and mother’s educations have

opposite effects on the average number of partners, with father’s education dimin-

ishing the expected count, and mother’s education raising it. More intuitive are 

the results for age at first intercourse. Each additional year the child waits before ini-

tiating sex reduces the mean number of partners by 100[exp(� .056) � 1], or about

Table 10.2 Unstandardized Truncated PRM and NBRM Estimates for the Regression

of Number of Lifetime Sex Partners for Focal Children in the NSFH

Regressor PRM NBRM

Intercept .458 .966

Father’s education �.022* �.021

Mother’s education .045*** .055**

Parental monitoring .125 .013

Father’s sexual permissiveness .002 �.013

Mother’s sexual permissiveness .012 .014

Age at first intercourse �.056*** �.101***

Male .517*** .542***

Child’s sexual permissiveness .060*** .071***

Male � child’s sexual permissiveness �.028 �.019

Exposure .536*** .484***

Overdispersion parameter .391***

Model χ2 767.711*** 1109.866***

R2
L .262 .379

Equidispersion χ2 342.156***

Note: n � 357.

* p � .05. ** p � .01. *** p � .001.
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2
�%. Males’ expected number of partners is exp(.517) � 1.677 times greater than

females’. As expected, the more sexually permissive the child, the greater his or her

estimated number of sex partners. This last factor may well be endogenous to the

number of partners. That is, those who have had more partners probably become

more permissive so that their attitudes are consistent with their behavior. As noted

above, the data are probably overdispersed. We address this problem shortly.

Estimated probabilities for the truncated model are calculated by substituting µ̂i,

based on the sample regression function, into equation (10.5).

Censoring and Sample Selection

Censored and sample-selected versions of the PRM are similar in principle to the

models discussed in Chapter 9. Censoring from above is a common occurrence with

count data. This applies whenever values of Y above a certain number are all col-

lapsed into one category. For example, the NSFH asks respondents in intimate rela-

tionships how many times they have “hit or thrown things at” a partner in the past

year. Responses are recorded as 0, 1, 2, 3, and 4 or more times. All frequencies above

4 have been recorded as 4, and we therefore have a count variable censored from

above at the value 4. The PRM is readily adjusted for censoring by making the nec-

essary alterations to the likelihood function. Cameron and Trivedi (1998) provide 

the details.

Sample selection bias is addressed by assuming that a latent propensity to respond

determines whether or not a count response is observed for the ith case in the sam-

ple. However, all we observe is whether or not a count is recorded for the ith case.

Denote the observed count by Y1 and the binary indicator of whether a count is

observed by Y2. The selection model is the probit model for Y2, while the substan-

tive model is the count model for Y1. Selection effects are handled by assuming that

the model for the observed count includes a disturbance term having a bivariate

normal distribution with the disturbance in the probit selection model. This specifi-

cation allows the formation of a likelihood function based on the joint density of Y1

and Y2. This full-information technique allows maximum-likelihood estimation of

the parameters of the count model in the presence of selection effects. A two-step

estimator analogous to the Heckman approach discussed in Chapter 9 is also possi-

ble. Cameron and Trivedi (1998) discuss selection models at some length. LIMDEP

allows estimation of count models in the presence of both censoring and sample

selection.

COUNT-DATA MODELS THAT ALLOW FOR OVERDISPERSION

The PRM is typically an inadequate model for count data because such data are usu-

ally overdispersed. In this section we consider some models that are designed to fit

overdispersed data. The first is the negative binomial regression model (NBRM). In

the PRM we assumed that the unobserved rate of event occurrence, µi, for each case

was determined exactly by the regressors. We then assumed that the density of yi was
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Poisson with parameter µi, and this assumption formed the basis for the likelihood

function. In the NBRM, we relax the assumption that the regressors perfectly deter-

mine the expected event count and allow a disturbance term into the relationship. We

further specify a continuous density for the disturbance term, so that the density of

yi becomes a mixture of two densities, one discrete and one continuous. The discrete

density is then integrated over the continuous density to produce the NBRM. As we

will see below, this strategy allows the conditional mean and variance of Y to differ.

A second approach to addressing overdispersion is to recognize that this problem

frequently arises because the data observed contain a substantially higher proportion

of zero counts than would be predicted by the PRM. We therefore consider two types

of models that allow for excess zero counts. The zero-inflated PRM and NBRM

models make a distinction between zeros that arise probabilistically, in the context

of the PRM or NBRM stochastic process, versus zeros that arise because certain

cases are precluded from having positive counts. In contrast, the hurdle model treats

all cases as being at risk for having positive counts, but allows for the process gen-

erating subsequent counts, given at least one count, to be different from the process

that generates positive counts, in general.

Negative Binomial Regression Model

The NBRM arises as a natural consequence of allowing a random disturbance term

in the relationship between the rate of event occurrence (i.e., the conditional mean

of Yi) and the regressors. That is, we model E(Yi) � θi as

θi � exp[(�βkXik) � εi]

� exp(�βkXik) exp(εi)

� µiυi,

where υi � exp(εi). Observe now that the conditional mean of Yi, θi, is determined

both by the model covariates, which determine µi, and by a multiplicative distur-

bance term, υi. The model regressors, in the form �βkXik, constitute observed 

heterogeneity, meaning measured characteristics that induce variation in µi across

cases. The disturbance term, on the other hand, is a measure of unobserved hetero-

geneity, which as we will see leads to overdispersion in Y. For the NBRM to be iden-

tified, we must assume that E(υi) � 1, in which case E(θi) � E(µiυi) � µiE(υi) � µi

(Cameron and Trivedi, 1998; Long, 1997). The density of Y, conditional on the

regressors and υi, is now

f(yi � xi,υi,ββ) ��
e�

y

θ

i

i

!

θi
y

i

���
e�µiυ

y

i(

i
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!
iυi)

yi
�. (10.6)

However, since υi is unobserved, this density cannot be used to construct the likeli-

hood function. (Remember that the only unknowns in the likelihood function must

be the model parameters, not unobservable variables.) The solution is to assume that

υi has a particular parametric density and then to “integrate it out” of density (10.6)
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in order to arrive at the marginal density for Y; that is, the density that is no longer

conditional on υi. The usual assumption is that υi has a gamma density with param-

eter α�1. This is a continuous right-skewed density that resembles a chi-squared

variable. In fact, the chi-squared density is a special case of the gamma density (Hoel

et al., 1971).

Constructing the NBRM Density. “Integrating out” υi means that we take the aver-

age value of density (10.6) over the distribution of υi [see Greene (2003) for the

details of the integration]. The advantage of assuming a gamma density for υi here

is that this integration then has a closed-form solution. The resulting marginal den-

sity of Yi, given the regressors and α, is the negative binomial density (Cameron and

Trivedi, 1998):

f(yi � xi,ββ,α) ��
	(
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α

(
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α
1

�
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y
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i
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yi

, (10.7)

where as before, µi equals exp(�βkXik). The gamma function, Γ(
), in this expression

is defined by an integral with no closed-form solution (Hoel et al., 1971). However,

it turns out that Γ(a) � (a � 1)! if a is an integer. The term α�1 is not typically an

integer. But if it were, given that yi is an integer, density (10.7) would have the same

form as the negative binomial density in expression (10.1), where r � α�1 and

p � α�1/(α�1 � µi). The product of density (10.7) over all n sample cases is the like-

lihood function, which is then maximized with respect to α and ββ to find the MLEs.

Because the conditional mean of Yi in density (10.7) is still µi � exp(�βkXik), the

betas still have the same interpretations as given to those in the PRM. (This holds

true for all count models discussed in this chapter.) Estimated probabilities for each

count are calculated by substituting µ̂i � exp(�β̂kXik) and α̂ into expression (10.7).

Greene (1998) presents a convenient recursion formula that can be programmed into

LIMDEP for the calculation of these probabilities.

Testing for Overdispersion. The conditional variance of Yi in the NBRM is

µi � αµi
2. The parameter α, called the overdispersion parameter, is always greater

than or equal to zero. This means that the conditional variance is normally greater

than the conditional mean. If α equals zero, the conditional variance is equal to the

conditional mean and the NBRM reduces to the PRM. That is, the PRM is nested

inside the NBRM, and therefore a test for overdispersion is a test for whether α � 0.

This can be performed using either a nested chi-squared test or a Wald test of the form

z � α̂/σα̂. The two tests are asymptotically equivalent (Cameron and Trivedi, 1998).

However, in that α cannot be less than zero, the distribution of these test statistics is

nonstandard. Thus, when performing the chi-squared test at a given level of signifi-

cance, say δ, we use the critical value of 2δ for the test statistic as the criterion. For

the Wald test, we simply use the critical value corresponding to δ rather than δ/2. For

example, performing the chi-squared or Wald test at the .05 level for H0: α � 0

involves using the critical χ2 value corresponding to the .1 level, or the critical z value

corresponding to the .05 level, and so on (Cameron and Trivedi, 1998).
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Example: Number of Days of Depression. Figure 10.5 shows the number of days

during the past week on which respondents “could not shake off the blues, even with

help from your family or friends,” for the 416 main respondents in the couples

dataset. This item is one of 12 similar items that constitute the short form of the

Center for Epidemiological Studies Depression (CESD) scale. Although these items

are typically used in a scale, here I focus simply on a count of the number of days

on which respondents experienced this particular symptom of depression. The vari-

able has a mean of .839 and a variance of 2.926. These values suggest that the data

are overdispersed. We notice also that there is an exceptionally high proportion of

zero counts: 71% of respondents report no days in which they experienced this

symptom. Both phenomena, overdispersion and excess zeros, suggest that the PRM

will not be an appropriate model for these data. One hypothesis of interest with

respect to this variable is that women will tend to be psychologically more adversely

affected by relationship problems than men, or conversely, more psychologically

protected by a good relationship. This is reasonable given that (1) women are social-

ized to be more sensitive to relationship issues than men are, and (2) women tend 

to respond to stress more with depressive symptomatology, whereas men tend to

respond more with abuse of drugs and alcohol.

Figure 10.5 Distribution on number of days in the past week respondents could not “shake off the blues”

for 416 couples in the NSFH.
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The PRM estimates for Y � number of days could not “shake blues” (depression

days, for short), based on several couple characteristics, are shown in the first col-

umn of Table 10.3. Predictors not previously described are a dummy variable reflec-

ting the male being the main respondent of the face-to-face interview (male main

respondent), the male’s age at inception of the union, the total household income for

the couple, the number of children under 18 in the household, a relationship happi-

ness score (interval variable based on both partners’ reports, ranging from 1 � “very

unhappy” to 7 � “very happy”), and the cross-products of male with both open dis-

agreement and relationship happiness. Of particular interest are the effects of open

disagreement and relationship happiness, as well as their interactions with being

male. The model suggests that open disagreement has a significant positive effect 

on depression days: Each 1-unit increase in disagreements increases mean depres-

sion days by a factor of exp(.934) � 2.545 for women. For men, each 1-unit increase

in disagreement increases the expected count of depression days by exp(.934 �

.418) � 1.675. As expected, the impact of disagreement is significantly weaker for

men than for women. On the other hand, the effect of happiness in reducing the

mean number of depression days is stronger for men than for women, contrary 

to hypothesis. For women, the factor change for unit increases in happiness is

exp(� .095) � .909, and not significant. For men, it is significantly greater in mag-

nitude than for women, at exp(� .095 � .195) � .748. The results also suggest that a

greater number of children reduces depression days. (The significant effect for being

male is not interpretable, since it represents the gender difference at zero dis-

agreements, a value outside the observed range of this predictor.)

Table 10.3 Unstandardized PRM and NBRM Estimates for the Regression of

Number of Days in the Past Week Respondents Could Not “Shake Off the Blues”

Regressor PRM NBRM

Intercept �1.271* �1.280

Male main respondent 1.697* 2.195

Male’s age at union inception .006 .007

Union duration .003 .001

Household income �.005 �.004

Number of children �.128* �.109

Open disagreements .934*** .951**

Relationship happiness �.095 �.111

Male � open disagreements �.418** �.410

Male � relationship happiness �.195* �.283

Overdispersion parameter 3.438***

Model χ2 172.203*** 443.810***

R2
L .126 .326

Equidispersion χ2 271.607***

Note: n � 416.

* p � .05. ** p � .01. *** p � .001.



The second column of the table shows the NBRM estimates. The first item of inter-

est is the test for whether the data are overdispersed, which is the test for H0: α � 0. The

value of α is estimated as 3.438. The Wald test statistic, with a z-value of 5.319

(p � .0001), strongly rejects H0. The nested chi-squared test statistic, shown as

“equidisperion χ2” in the bottom of the table, is a one-degree-of-freedom chi-squared

equal to the difference in model chi-squareds between the PRM and the NBRM. Its

value is 443.810 � 172.203 � 271.607, as shown in the table. With a p-value less than

.0001, this test statistic also results in a sound rejection of the equidispersion hypothe-

sis. We notice now that although the coefficients of the NBRM are comparable in value

with those in the PRM, all are nonsigificant except for the effect of open disagreement.

The latter suggests that unit increases in open disagreement increase the expected count

of depression days by a factor of exp(.951) � 2.588, or 159%. Recall that standard

errors for the PRM are downwardly biased in the presence of overdispersion. Hence,

using the appropriate model has resulted in larger standard errors, diminishing the size

of test statistics for the individual coefficients. Although fewer coefficients are sig-

nificant in the NBRM, compared to the PRM, R2
L has increased substantially. This is

due to the addition of the overdispersion parameter to the likelihood function rather than

to an enhanced ability of the regressors to account for the response.

Truncated NBRM. A truncated version of the NBRM can also be estimated for

data limited to positive counts. Again, the density function for the response is

adjusted by the probability of a positive count. The probability of a zero count in

the NBRM is
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and therefore the probability of a positive count is
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.

The density of the truncated NBRM is
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As always, the product of this density over all n cases is the likelihood function,

which is maximized to find the MLEs. Estimated probabilities for each count 

are calculated by substituting µ̂i � exp(�β̂kXik) and α̂ into expression (10.8). In

untruncated models, employing the PRM with overdispersed data does not interfere

with obtaining consistent estimates of the parameters. However, as Grogger and

Carson (1991) point out, this property does not carry over to truncated data.

Ignoring overdispersion in a truncated response by inappropriately applying the
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PRM results in inconsistent parameter estimates, as well as biased estimates of

standard errors.

Lifetime Number of Sex Partners, Revisited. The second column of 

Table 10.2 presents the truncated NBRM for the lifetime number of sex partners for

the NSFH focal children. Both the Wald and the nested chi-squared tests for the

overdispersion parameter suggest that the hypothesis of equidispersion should be

rejected. In this case, there is little substantive change in the conclusions except 

that the coefficient for father’s education is no longer significant. Again, with the

addition of the overdispersion parameter, R2
L has increased somewhat.

Zero-Inflated Models

Zero-inflated models, defined by Greene (1994), Lambert (1992), and Long (1997),

among others, account for excess zeros by distinguishing between two different

types of zero counts. Borrowing terminology employed for the analysis of contin-

gency tables, I refer to these as structural versus sampling zeros (Agresti, 2002).

Structural zeros come from a population that is not at risk for the events of interest,

often because they are logically precluded from experiencing such events. Sampling

zeros come from a different population that is at risk for experiencing events, but

people with zero counts simply have not experienced any events within the domain

of observation, due to the stochastic nature of the event process. As an example, sup-

pose that we were to ask a sample of adolescents: “How many different sex partners

have you had in the past month?” Zero counts would arise for two reasons. One pop-

ulation of adolescents has not yet initiated sexual activity and so are logically pre-

cluded from having any sex partners. Their zeros are therefore structural zeros. The

other population has initiated sexual activity, but certain adolescents have just not

engaged in sexual activity with anyone in the past month. Their zeros are sampling

zeros; they are subject to an event process that eventuates in some probability of hav-

ing a zero count. Similarly, our example of the number of days in the previous week

on which respondents could not “shake the blues” can be seen as arising from a 

zero-inflated event process. Some people are simply not prone to melancholy or

depression because they do not respond in that manner to stress. Other people are

indeed prone to depression but have not experienced any depression days in the past

week. In short, whenever some of the zero counts in a sample can come from a sub-

population of those who for some reason are precluded from experiencing the events

of interest, a zero-inflated model may be appropriate.

ZIP Model. The zero-inflated Poisson (ZIP) model applies the Poisson model to the

population of those who are at risk for the events in question, and a separate binary

response model to model the probability of being in the structural-zero group. The

probability of a zero count is then a weighted average of the probability that Y � 0

in each group, where the weights are the probabilities of belonging to each group.

Let P0 represent the structural-zero population and P� represent the population at

risk for at least one event. Also, let ψi represent the probability that the ith case is in
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the structural-zero group, and (1 � ψi) represent the probability of being in the at-

risk group. The probability of a zero count, according to the ZIP, is

f(0 � xi,ββ) � ψiP(Yi � 0 � P0) � (1 � ψi)P(Yi � 0 � P�)

� ψi (1) � (1 � ψi) exp(�µi)

� ψi � (1 � ψi) exp(�µi). (10.9)

Notice that the probability of a zero for those in P0 is 1. This is referred to as a degen-

erate probability distribution (Cameron and Trivedi, 1998). For Y greater than zero, the

probability of any given count is equal to the probability of being in the at-risk group

times the probability of having that count, given that one is at risk for events:

f(yi � xi,ββ)� (1 � ψi)�
e�

y

µ

i

iµ

!
i
yi

� for yi � 1, 2, 3, . . . , (10.10)

where µi � exp(�βkXik). Together, expressions (10.9) and (10.10) constitute a density

since the probabilities for Y � 0, 1, 2, . . . sum to 1 (the proof is left as an exercise).

The probability of being in P0, ψi, is governed by a separate binary response

model. Most often, a logit model is used, in which the covariates are the same as those

in the Poisson model (although they need not be), but the parameters are, of course,

different. Assuming the regressors are the same in both models, the model for ψi is

ln�
1 �

ψi

ψi

� ��γkXik. (10.11)

The ZIP model formulated in this way requires twice as many parameters as the

PRM. Lambert (1992) suggested that if the same covariates affect both ψi and µi, it

would be natural to reduce the number of parameters by formulating ψi as a function

of µi. However, I agree with Long (1997, pp. 243–244) that “. . . it is difficult to

imagine a social science application in which one would expect the parameters in the

binary process to be a simple multiple of the parameters in the Poisson process.”

Therefore, I do not cover this more simplistic model here. The interested reader is

referred to Lambert (1992) for that coverage.

Estimation. Estimation of the ZIP model proceeds by maximizing the ZIP likeli-

hood function with respect to the parameters [Cameron and Trivedi (1998) present

the log-likelihood function for the model]. Estimated probabilities for counts under

the ZIP model are calculated by employing the MLEs to construct ψ̂i and µ̂i and then

inserting these terms into expressions (10.9) and (10.10) to recover the probabilities.

The appropriate formulas are

ψ̂i ��
1�

ex

e

p

x

�
p

�
��

γ̂k

γ̂

X

k

i

X

k�
ik�

�, (10.12)

µ̂i � exp��β̂kXik�. (10.13)
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The conditional mean and variance of Y in the ZIP model are (Long, 1997)

E(Yi � xi) � (1 � ψi)µi,

V(Yi � xi) � (1� ψi)(µi � ψiµi
2).

In that µi � ψiµ
2
i is greater than µi unless ψi � 0, the conditional variance exceeds the

conditional mean, and overdispersion is therefore accommodated.

Comparing PRM and ZIP Models. There is no nested chi-squared test for com-

paring the ZIP and PRM because the PRM is not nested inside the ZIP. In order for

the PRM to be nested within the ZIP, ψi would have to equal zero, in which case the

ZIP would reduce to the PRM. However, there is no simple set of parameter con-

straints that can achieve this result. The natural constraint would be to set γγ � 0 in

equation (10.11). However, under this condition ψi is exp(0)/[1 � exp(0)] � �
1

2
�, which

is not the desired result. In light of this, we can employ a test proposed 

by Vuong (1989) that compares nonnested models. Let f̂ 1( yi � xi) be the predicted

probability that Yi � yi for the ith case under model 1, with xi that case’s vector of

regressor values, and let f̂ 2( yi � xi) be the predicted probability under model 2.

Furthermore, let

mi � ln�
f

f̂

ˆ

2

1

(

(

y

y

i

i

�
�
x

x
i

i

)

)
�,

and let the mean and standard deviation of mi over all n cases be m	 and sm, respec-

tively. Then the Vuong test statistic for testing model 1 against model 2 is

V ��
sm /

m	

n	
�,

which is asymptotically distributed as standard normal. If model 1 is the ZIP and

model 2 is the PRM, the ZIP is favored if V is greater than 1.96, whereas the PRM

is favored if V is less than �1.96.

ZINB Model. The zero-inflated negative binomial (ZINB) model is developed in a

comparable manner to the ZIP. For the NBRM, the probability of a zero count is

(1 � αµi)
���1

. Therefore, the ZINB model for the zero and positive counts is

f(0 � xi,ββ) � ψi � (1�ψi)(1 � αµi)
���1,

f(yi � xi,ββ,α)� (1�ψi)�
	(

Γ

α

(
�

α
1

�

)	

1�

(y

y

i�
i)

1)
���α�

α
1

�

�

1

µi

��
α�1

��µi �

µ

α
i

�1��
yi

for yi � 1, 2, 3, . . . ,

where ψi, as in the ZIP, is determined by a logit model with a separate parameter set.

These densities are used to construct the likelihood function to obtain the MLEs. As

usual, plugging ψ̂i, µ̂i, and α̂ into these expressions provides predicted probabilities

for each count, where ψ̂i and µ̂i are estimated according to equations (10.12) and
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(10.13), based on the MLEs for the ZINB model. The conditional mean and variance

for the ZINB model are (Long, 1997)

E(Yi � xi) � (1 � ψi)µi,

V(Yi � xi) � (1 � ψi)µi[1 � µi(ψi � α)].

Once again, it is evident that the conditional variance exceeds the conditional mean. The

ZIP is nested inside the ZINB, so a nested chi-squared test can help choose between

these models. However, the NBRM is not nested inside the ZINB model, so again, the

Vuong statistic can be used to compare them, as in the case for the ZIP and PRM.

Depression Days, Continued. Table 10.4 presents both ZIP and ZINB models for the

number of days respondents could not “shake the blues.” Two columns are shown for

each model. The logit column displays parameter estimates for the logistic regression

of whether a case is a structural zero, while the PRM and NBRM columns provide

the estimates for the relevant count models for those at risk for days of depression.

The reader should notice that the logit and count-model coefficients are generally of

opposite signs. This is sensible, since attributes that reduce the likelihood of being in

the structural-zero group tend to enhance the expected event count, and vice versa. In

the ZIP, the only factor that predicts being in the structural-zero group is open dis-

agreement, with more disagreements reducing the likelihood of being in this group.

The PRM for those with positive counts suggests, again, that disagreements have a

Table 10.4 Unstandardized ZIP and ZINB Estimates for the Regression of Number 

of Days in the Past Week Respondents Could Not “Shake Off the Blues”

ZIP ZINB

Regressor Logit PRM Logit NBRM

Intercept .551 �.103 .216 �.461

Male main respondent �.202 1.773* �.083 1.900

Male’s age at union inception �.001 .007 �.002 .009

Union duration �.001 .001 �.001 .002

Household income �.002 �.006* �.002 �.007

Number of children .151 �.023 .167 �.012

Open disagreements �.901** .484*** �.877* .556**

Relationship happiness .260 .005 .272 .014

Male � open disagreements .072 �.459* �.050 �.550

Male � relationship happiness .112 �.127 .142 �.111

Overdispersion parameter .278

Model χ2 471.786*** 480.358***

R2
L .347 .353

Equidispersion χ2 8.572**

Vuong statistic 16.144*** 5.828***

Note: n � 416.

* p � .05. ** p � .01. *** p � .001.
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stronger positive effect on the expected event count for women than for men, as

hypothesized. Additionally, those with a higher household income have significantly

fewer expected depression days, net of other effects. The Vuong statistic, with a

value of 16.144, strongly suggests that the ZIP is an improvement over the ordinary

PRM. R2
L suggests that the ZIP has moderate discriminatory power.

The ZINB model, on the other hand, suggests that open disagreement constitutes

the only factor that affects either the likelihood of being in the structural-zero group,

or the expected event count, given that one is at risk for depression days. The Vuong

statistic for the ZINB versus the ordinary NBRM, at 5.828, indicates that the ZINB is

to be preferred. Whether the ZINB is to be preferred to the ZIP is not quite as straight-

forward. The equidispersion χ2 is significant, but the Wald test for the dispersion

parameter is not. As these tests are asymptotically equivalent, they should agree; how-

ever, at times there will be such disparities. The safest conclusion is that although

there is some evidence that disagreement has a stronger effect on depression days for

women than men, the only robust effect is that open disagreement raises both the risk

for depression days and the expected count of depression days, net of other factors.

Figure 10.6 illustrates another means of comparing all four models investigated

for depression days, as suggested by Long (1997). It shows a plot of observed minus

predicted probabilities for the PRM, NBRM, ZIP, and ZINB models of depression

Figure 10.6 Observed–predicted probabilities for number of days could not “shake blues,” based on

PRM, NBRM, ZIP, and ZINB models.
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days. That is, let py be the sample proportion exhibiting a count of y depression days

and p̂y
M be the mean predicted probability of a count of y according to a count model,

where M is, variously, PRM, NBRM, ZIP, or ZINB. Then each line in Figure 10.6 is

a plot of py � p̂y
M over the values of Y � number of depression days. The ideal model

is the one whose plot is closest to the zero line—the horizontal line in the middle of

the graph. The PRM is clearly a poor-fitting model, particularly for 0, 1, or 2 depres-

sion days. The NBRM is somewhat better but still has a noticeable overprediction

for a count of one day. Both the ZIP and the ZINB models appear to have similarly

good fits to the data, with ZINB being slightly superior to ZIP.

Hurdle Models

The hurdle model was introduced by Mullahy (1986) in the context of a discussion

of modified count models. In contrast to the approach taken by the zero-inflated

model, the hurdle model assumes that all cases are at risk for events and that the

probability of a zero count is governed by a stochastic process. However, the hurdle

model allows model regressors to have different effects on the likelihood of experi-

encing at least one event, as opposed to the likelihood of a subsequent event given

that at least one event has occurred. The idea is that experiencing at least one event

is a “hurdle” that requires a different parameterization than is the case for experi-

encing subsequent events. As an example, the NVAW survey asked women respon-

dents to report the number of physical assaults they had ever experienced from any

type of offender. For the 1343 minority women in the sample, the range was 0 to 124

assaults, with a mean of 2.081, a standard deviation of 10.035, and 71.7% reporting

no assaults. For this variable, it is not reasonable to suppose that there is a popula-

tion that is not at risk for assault. As this type of event is not under individual con-

trol, everyone is presumed at risk for an assault. However, the process generating

subsequent assaults may well be different than the process affecting the likelihood of

at least one assault. We will explore this using the Poisson hurdle model.

Parameterization of the Poisson Hurdle Model. In the Poisson hurdle model,

allowance is made for the rate of event occurrence to be different for zero, as

opposed to positive, counts. The model for a zero count is, therefore,

f(0 � xi,γγ) ��
e�µ

0

1

!

iµ1
0
i

�� e�µ1i,

where µ1i � exp(�γkXik). The model for positive counts is then a truncated PRM

based on a different parameter set, adjusted for the probability of a nonzero count

(Cameron and Trivedi, 1998). That is, for Y � 0,

f(yi � xi,ββ,γγ) � [1 � f(0 � xi,γγ)][f(yi � yi � 0,xi,ββ]

�(1�e�µ1i)�
yi!

e
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2
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where µ2i � exp(�βkXik). Now in the event that γγ � ββ, we have that µ1i � µ2i, and the

hurdle model reduces to the ordinary PRM, since the specification is now

f(0 � xi,ββ) ��
e�µ

0

1

!

iµ1i
0

�� e�µ1i,

f(yi � xi,ββ) � (1�e�µ1i)�
yi!

e

(1
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�

µ1i

e

µ
�
1
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i
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1i)
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e�µ

y

1i

i

µ

!
1i

yi

� for yi � 1, 2, 3, . . . .

This means that the PRM is nested inside the Poisson hurdle model (King, 1989) and

a nested chi-squared test can be used to compare these models. The test is also a test

for the constraint that γγ � ββ, that is, that the covariates have the same effects on the

probability of at least one count as they do on the probability of each additional

count. The test has K � 1 degrees of freedom.

Estimation. The likelihood function for the hurdle model is worth considering in

some detail, as it suggests how the model can be estimated, even in the absence of

specialized software. Let 0 represent the zero counts in the sample and y � 0 repre-

sent the positive counts. Then the likelihood function is of the form

L(ββ ,γ � y,x) ��
y∈0

P(y � 0) �
y∈y�0

P(y � 0)P(y � y � 0)

��
y∈0

e�µ
1 �
y∈y�0

(1 � e�µ1)�
(eµ2 �

µ2
y

1)y!
�,

which, in terms of the parameters is

L(ββ ,γ � y,x) ��
y∈0

exp��exp��γkXik�� �
y∈y�0�1 � exp��exp��γkXik��� (10.14)

� . (10.15)

Of importance is that this partitions into two separate likelihoods that can be maxi-

mized independently. The reader should recognize expression (10.14) as the likeli-

hood for a complementary log-log model of the probability that Y is greater than zero

(see Chapter 7), whereas expression (10.15) is the likelihood for the truncated PRM.

Therefore, the Poisson hurdle model can be estimated in two steps: a complemen-

tary log-log model for the probability of a positive count, followed by a truncated

PRM for cases with positive counts.

Example: Number of Lifetime Physical Assaults. Table 10.5 presents estimates of

the regular PRM and of the Poisson hurdle model for the number of lifetime physi-

cal assaults for the 1343 minority women in the minority women dataset.

Explanatory variables are education, income, the child abuse index (as described

previously), plus dummy variables for employment status (other employment,

�
y∈y�0

exp�y�βkXk�
��
��exp�exp��βkXk����1�y!
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unemployment, with full- or part-time employment as the reference group), dummy

variables for marital status (formerly married, never married, with currently married

as the reference group), and a dummy for having been raped (either with or without

penetration). The variable exposure is the log of the woman’s age in years, the ration-

ale being that the older a woman is, the longer she is at risk for assault. Exposure

should be positively related to the number of assaults. Moreover, I would expect

prior experience of victimization (e.g., having been abused as a child or having been

raped) to raise the expected number of assaults. Research suggests that prior victim-

ization may increase women’s tolerance of abusive situations, including those that

eventuate in physical aggression (Kalmuss, 1984).

The PRM suggests that several factors in addition to exposure affect the mean num-

ber of assaults: child abuse, employment status, marital status, and the experience of

having been raped. However, significance tests for the PRM will be too liberal if the

data are overdispersed, as these data appear to be, judging from the mean and standard

deviation reported above. The next two columns report the Poisson hurdle results. Of

interest is whether the hurdle model is an improvement over the PRM. The test is �2

ln L1 � (�2 ln L2), where model 1 is the PRM and model 2 is the Poisson hurdle model.

The log-likelihood for the hurdle model is simply the sum of the log-likelihoods for the

complementary log-log part and the truncated PRM part of the model. The test statistic

is therefore �2[�6312.701 � (�3554.224 � 738.603)] � 4039.749. This statistic has

Table 10.5 Unstandardized PRM vs. Poisson Hurdle Estimates for the Regression of

Number of Lifetime Physical Assaults Experienced by Minority Women in the NVAW

Survey

Hurdle Model

PRM P(Pos. Count) Truncated PRM

Regressor b b b

Intercept �.953*** �1.306 �4.285

Education .006 .037 �.411

Income �.018 .027 �.236

Abused as a child .282*** .179*** 1.493***

Other employmenta �.154** �.117 �.243

Unemploymenta �.169* .202 �1.259

Formerly marriedb .647*** .469*** 3.134

Never marriedb
�.257*** .125 �1.607

Raped .299*** .408*** .631

Exposure .283*** �.149 3.109

Model χ2 2423.127*** 122.890*** 882.762***

R2
L .161 .077 .110

χ2 for hurdle 4039.749***

Note: n � 1343.
a Employed either full- or part-time is the reference category.
b Currently married is the reference category.

* p � .05. ** p � .01. *** p � .001.
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the chi-squared distribution with 10 degrees of freedom under the null hypothesis that

γγ � ββ (i.e., that the hurdle offers no improvement over the PRM). It is highly signifi-

cant (p � .0001), suggesting that the hurdle model is to be preferred. According to this

model, the probability of being assaulted is elevated by having been abused as a child,

having been raped, or having been married before. The last effect is probably due to

the fact that an overwhelming proportion of physical assaults on women are perpe-

trated by intimate partners. Given that a woman has been assaulted, however, only

having been abused as a child increases the expected number of assaults. This finding

is consistent with others’ work (see, e.g., Kalmuss, 1984).

EXERCISES

10.1 Recall that for a discrete variable, Y, the sum of f( y) over the values of Y

equals 1.0, where f( y) is the density of Y. Show that the truncated Poisson

density has this property.

10.2 Show that the ZIP density has the property mentioned in Exercise 10.1.

10.3 Suppose that Y has a Poisson density with mean equal to 3.2. Find 

(a) P(Y � 0); (b) P(Y � 3); (c) P(Y � 10).

10.4 Suppose that Y has a Poisson density with mean equal to 1.5. Find 

(a) P(Y � 0); (b) P(Y � 3); (c) P(Y � 10).

10.5 Suppose that Y has a negative binomial density with parameters r � 4,

p � .1. Find (a) P(Y � 0); (b) P(Y � 3); (c) P(Y � 10).

10.6 Suppose that Y has a negative binomial density with parameters r � 1,

p � .45. Find (a) P(Y � 0); (b) P(Y � 3); (c) P(Y � 10).

10.7 Suppose that Y has a negative binomial density and let r � 1. (a) Find p such

that E(Y) � 3.2. Then find (b) P(Y � 0); (c) P(Y � 3); (d) P(Y � 10).

10.8 For a PRM with covariates X1, X2, . . . , XK, show that the multiplicative

change in E(Y ) for a c-unit increase in Xj is exp(βjc).

10.9 Give the log of the likelihood function for the truncated PRM.

10.10 Prove that 1 � µe�µ/(eµ
� 1) is always less than 1 for µ � 0. (Hint: Start by

assuming that the assertion is true, and manipulate the inequality until a

more obviously correct assertion appears.)

10.11 Greene (1998) gives the following recursion formula for the probabilities 

of various Y-values under the PRM: p0 � exp(�µ); pj � (µ/j)(pj � 1) for j � 1,



2, . . . . Show that this recursion is equivalent to the formula e�µµy/y! for

y � 0, 1, 2, 3, 4.

10.12 Use Greene’s recursion from Exercise 10.11 to find f̂ ( y � x,β̂) for y � 0, 1,

2, 3, 4 if µ̂� 1.75.

10.13 Greene (1998) gives the following recursion formula for probabilities under

the NBRM:

p0 � ��α�

α
1

�

�

1

µ
��

α�1

, pj ��
α�1�

j

j�1
� �

α�1

µ

� µ
� pj�1.

If α̂� 3.5806 and µ̂� 1.75, give the estimated probabilities for y � 0, 1, 2, 3,

4, based on the NBRM, using this recursion.

10.14 Sherman et al. (1992) randomly assigned 1200 domestic violence offenders

to arrest versus no arrest treatments and then followed them for 6 to 18

months posttreatment. The response of interest was the number of subse-

quent police reports to a local women’s shelter for the same offender.

Employing the NBRM, their estimated model was

ln µ̂� β̂0 � g�x � .198 arrest � .261 employed � .026 married

� .434 arrest * employed � .3 arrest * married,

where arrest, employed, and married are all dummy variables for these

respective statuses, and g�x represents the other terms in the model. Ln L for

this model was �1218.77, while ln L for the model without the two cross-

product terms was �1222.29.

(a) Test whether the interactions of married and employed with arrest are

significant as a block.

(b) Interpret the interaction effects with respect to the conditional mean of Y.

10.15 King (1988) employed the PRM to examine several predictors of the num-

ber of members of the U.S. House of Representatives who switched political

parties in a given year for the years 1802–1876. The exposure variable was

the log of the number of members of the House in each year. His estimated

model was ln µ̂� β̂0 � g�x � 3.49 exposure.

(a) Let N � the number of members of the House of Representatives in a

given year, and let the estimated equation, in general, be ln  µ̂� β̂0 �

g�x � d exposure, and derive an expression for the proportionate change

in the rate of event occurrence for each additional member in the House,

net of the other covariates.

(b) Let N � 250, and estimate the proportionate change in the expected

number of switchers for each additional member of the House of

Representatives, using King’s equation.
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10.16 Show that � j
P(Y � j) � 1 for j� 1, 2, . . . , in the truncated negative binomial

density.

10.17 For the 416 couples in the couples dataset, a PRM for the number of chil-

dren under 18 in the household produces the following results:

µ̂� exp[1.9939 � .5976 cohabiting � .0428 male’s age at union

� .0389 union duration � .0054 household income],

where cohabiting is a dummy for cohabiting as opposed to being married,

male’s age at union and union duration are measured in years, and house-

hold income is in thousands of dollars. All effects are significant at p � .05.

(a) Interpret the cohabiting effect.

(b) Give the predicted probability of zero, one, and two children for a cou-

ple married for 12 years with a household income of $150,000, in which

the male was 18 at inception of the marriage.

(c) Ln L � �620.6443 for the intercept-only model versus �555.5196 for

the hypothesized model. Test the null hypothesis that all regression

coefficients equal zero, and give R2
L.

10.18 Cameron and Trivedi’s (1990) regression-based test suggests that the res-

ponse in exercise 10.17 is overdispersed. An NBRM for the same data 

produces the following estimates:

µ̂� exp[2.1295 � .6295 cohabiting � .0457 male’s age at union

� .0427 union duration � .0056 household income],

α̂� .1812, σ̂α̂� .0987, and ln L � � 552.5279.

(a) Do both Wald and likelihood-ratio chi-squared tests for equidispersion

versus overdispersion. What do you conclude?

(b) Repeat Exercise 10.17(b) based on the NBRM model.

10.19 A ZIP model for the data in Exercises 10.17 and 10.18 produces the follow-

ing results:

ln�
1�

ψ̂

ψ̂
� � �12.4046 � 2.1386 cohabiting � .2064 male’s age at union

� .2716 union duration � .0054 household income;

µ̂� exp[.7758� .3345 cohabiting � .0085 male’s age at union

� .0225 union duration � .0085 household income],

and V � 10.0016 for ZIP/PRM.

(a) Interpret the model with respect both to the probability of being in the

structural-zero group and to the expected count given that one is in the

at-risk group.

(b) Which model is to be preferred: the ZIP or the PRM?

(c) If ln L � � 487.8682 for the ZIP model, give R2
L for the ZIP. [Hint: Use

additional information from Exercise 10.17(c).]
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10.20 Repeat Exercise 10.17(b) based on the ZIP results.

For Exercises 10.21 to 10.25, use the 1485 cases in the inmates’dataset to model the

number of class III tickets (NUM3TIX) received by inmates as a function of LOG-

TIME (the exposure factor), ETHNIC, EDUCCL, FIRSTARR, CENAGE,

CENAGESQ, SMALL, MEDIUM. [Also, you need software (e.g., LIMDEP, STATA)

for count models.]

10.21 Estimate the PRM for the number of class III tickets.

(a) Show the regression estimates and their significance levels.

(b) Perform Cameron and Trivedi’s (1990) regression-based test for equidis-

persion and give your conclusion.

(c) Estimate the discriminatory power of the model using r2, R
2
L, and/or R2

D.

10.22 Estimate the NBRM for these data.

(a) Show the regression estimates and their significance levels.

(b) Test the null hypothesis of equidispersion versus overdispersion via both

Wald and likelihood-ratio tests.

(c) Estimate the discriminatory power.

10.23 Estimate the ZIP model for these data.

(a) Show estimates for ln [ψ/(1 � ψ)] and for µ.

(b) Which is to be preferred, ZIP or PRM?

(c) Estimate the discriminatory power of the ZIP model.

10.24 Estimate the Poisson hurdle model for these data.

(a) Show coefficient estimates both for the probability of a positive count

and for the truncated PRM.

(b) Test the hurdle model against the PRM.

(c) Conceptually, which zero-altered model makes more sense here, the ZIP

or the hurdle?

10.25 Construct a graph after the fashion of Figure 10.6 to compare the fit of PRM,

NBRM, and ZIP to the observed sample proportions for the first 11 values

of NUM3TIX (i.e., values 0 to 10).
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Introduction to Survival Analysis

CHAPTER OVERVIEW

In Chapter 10 the response of interest was the number of events occurring in some

fixed period of time. This chapter is concerned, instead, with the waiting, or survival,

time in the nonevent state until some event occurs. For example, rather than focus-

ing on the number of subsequent domestic violence offenses committed in a given

follow-up period by a sample of those arrested for domestic assault (Sherman et al.,

1992), we might instead wish to model the time from release from arrest to the first

incidence of recidivism. Or, equivalently, we may be interested in modeling the risk

of recidivating at any given time, conditional on having survived up to that moment

without recidivating. The corpus of tools for analyzing such data is typically col-

lected under the rubric of survival analysis, and the risk of an event occurring at any

given time is referred to as the hazard of the event. These terms stem from the bio-

medical literature, where many of the techniques were first developed and where the

event of interest was often death. In the social sciences, another name for this body

of techniques is event history analysis. These techniques have been used in the social

science arena to study the occurrence of such events as the formation of the first mar-

ital or cohabiting union (Lamb et al., 2003), transitions out of cohabiting unions

(DeMaris, 2001; Sanchez et al., 1998), the role of premarital cohabitation in marital

disruption (Bennett et al., 1988), and gender differences in the promotion process in

academic settings (Long et al., 1993), to cite a few examples.

Because event history data present some unique challenges for the data analyst, I

begin this chapter by defining terms and acquainting the reader with the nature of sur-

vival data. I then illustrate the major concepts of survival analysis, such as survival

and hazard functions, using the life table technique, and employ as an application the

event of disruption from a marital or cohabiting union. I then consider regression

models for event history data, beginning with a parametric model but moving quickly



to the much more commonly employed Cox semiparametric regression model. Again,

the event of union disruption is used to illustrate the major ideas. The Cox model is

explored in some detail, along with strategies for dealing with time-varying covari-

ates, nonproportional effects of covariates, and left truncation. Plots of survival curves

and hazard functions along with examples from published research are used through-

out to help the reader assimilate the techniques as they are used in practice.

NATURE OF SURVIVAL DATA

Key Concepts in Survival Analysis

Survival, or event history, data consist of observations on when events occur to a sam-

ple of people over time. An event is a qualitative change in state. In the study of exist-

ing marriages, for example, the event of divorce is a change from the married to the

unmarried state. In the study of academic promotions, the event of promotion is a

change in state from, say, associate professor to full professor, and so on. In the ideal

scenario we would follow a collection of people from the time when they first become

susceptible to a change in state until they all eventually experience that change. Some

events lend themselves readily to this protocol. A sample of patients diagnosed with

a terminal illness, for example, may be followed from diagnosis with the illness until

death, an event that is sure to occur to all patients if the study continues for sufficient

time. Hence survival times can usually be observed for everyone in the sample.

However, many events in the social sciences, such as first marriage, divorce, or

pregnancy, are not inevitable; a number of people fail to experience the event regard-

less of study length. In these cases the survival time is said to be right-censored: All

that is known is that survival time is greater than the last recorded time for a partic-

ular person. For example, if a sample of marriages is followed for 20 years and a

given marriage is still intact at the end of the study, that marriage’s survival time is

censored at 20 years. This means that the couple’s survival time is not exactly

observed but is known only to be greater than 20 years. A critical assumption is that

censoring is noninformative; that is, the process leading to being censored is inde-

pendent of the hazard of event occurrence. If this assumption holds, censored cases

are representative of all other persons surviving up until the same time, controlling

for relevant covariates (Collett, 1994). In studies of marital dissolution, for example,

couples’ survival times are typically considered censored upon one partner becom-

ing widowed. As the probability of dying is not normally presumed to be affected by

marital instability, this type of censoring is typically considered noninformative.

I have been referring to “following” people or cases over time as though survival

data are exclusively prospective. This is not at all the case. Much of the data on event

histories in the social sciences are collected retrospectively. For example, the NSFH

interview schedule contains long sections exploring respondents’ marital and cohab-

itation histories, job histories, fertility histories, and so on. As long as significant

events can be associated with specific dates in a case’s biography, event histories can

be constructed after the fact.
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A word is in order about the use of the term time. In event history analysis, time

typically refers to the duration in a given state rather than calendar time. Nevertheless,

sometimes “time” refers to calendar time. In fact, a critical concept in survival analy-

sis is the calendar time at which a case is first exposed to the risk of an event. I refer

to this time as the inception of risk. Once the inception of risk is given, survival time

is then calculated as the calendar time at which the event of interest occurs minus the

inception of risk. If cases are lost to follow-up or the study ends before an event

occurs, the time at which the case was last observed minus the inception of risk gives

the censored survival time for that case.

In this chapter I moreover assume that time is a continuous variable, which gives

rise to continuous-time survival models. In practice, time is never measured so pre-

cisely as to be truly continuous, but it can be treated as such if measured finely

enough—say in days, weeks, or months. Use of a continuous-time model is predi-

cated, however, on the notion that an event can occur at any given time or after any

given amount of time has elapsed. However, some events can only occur at particu-

lar calendar times. For example, promotion in academic rank typically occurs only

at the beginning of the school year. In this type of process, survival time is a discrete

variable and the appropriate analytic technique is a discrete-time survival model.

Even if the true event-generating process is a continuous one, however, a discrete-

time analysis may still be appropriate if events are only known to occur in some

interval of time. Discrete-time analyses are considered in Chapter 12.

Nature of Event Histories

To further tease out critical concepts in survival analysis, I direct the reader to Figure

11.1, which provides a schematic of various event histories in a given study. For sim-

plicity, it is assumed in the figure that the event of interest is a single, nonrepeatable

event. Examples would be the first instance of sexual intercourse or the first marriage.

Although either of these events may be repeated several times, the first instance of

either is a one-time affair. The horizontal axis represents survival time. Each line stands

for a person’s event history and represents the time period from inception of risk until

either censoring or termination in the event of interest. These periods are also referred

to as episodes or spells. Each line moves from left to right in the figure, with vertical

bars on the left indicating known inceptions of risk and vertical bars on the right indi-

cating right-censoring times. An arrowhead at the end of the line indicates that the per-

son experienced the event of interest at a given time. Solid lines represent durations

observed in a given study, while dotted lines reflect survival time that is outside the

study. Individuals a, b, c, and e experience inception of risk at t0, which is also the

beginning of observation, or start time for the study. I consider these people first, as

they are the most common kinds of observations. Case a represents an observation that

is right-censored by the ending date of the study, denoted t1. Case b, in contrast, is

right-censored by virtue of either being lost to follow-up, or by experiencing a different

type of event that removes him or her from the risk for the event of interest (e.g., the

death of a spouse removes couples from the risk for divorce). Case c experiences the

event of interest during the observation period and is referred to as being uncensored.



Case e experiences a different type of event—symbolized by a rectangle—that affects

his or her risk for the event of interest. Influential events of this type are typically mod-

eled as time-varying covariates, a topic taken up below. In sum, cases a, b, c, and e are

all easily accommodated in standard survival analyses.

Other cases pose particular problems that may or may not be tractable. Case f has

inception of risk at some time prior to its coming under observation at t0. The dura-

tion over which f is at risk prior to t0 is indicated by the dotted line. For case f, incep-

tion of risk is known. Case i is similar except that inception of risk is unknown. Both

f and i are said to have left-truncated survival times. In survival analysis people are

said to have left-truncated survival times whenever they have been at risk for the

event of interest for some period prior to the start time of the study. As in previous

chapters, truncation refers to the situation in which respondents are observed only

when their responses are above or below some threshold value. In this instance,

observation of survival times for left-truncated cases is predicated on their survival

in the nonevent state up to the start of the study. Hence, if tb is the duration of sur-

vival before the start of the study and T denotes survival time, in general, left-truncated

observations are observed only when T � tb. Left truncation is fairly common in panel

studies in which respondents in a given state at time 1 are tracked in subsequent sur-

veys to see if they experience the event of interest. As an example, the author fol-

lowed married as well as unmarried cohabiting couples in wave 1 of the NSFH to

explore whether intimate violence reported at time 1 predicted separation or divorce
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Figure 11.1 Schematic of event history data for single nonrepeatable events.



by wave 2 (DeMaris, 2000). As virtually all of these unions were begun prior to the

date of the wave 1 survey, the data were characterized by considerable left truncation.

Below I discuss the difficulties associated with left truncation, along with simple reme-

dies for the problem when the inception time is known, as with case f. When this time

is unknown, the problem is considerably less tractable.

The remaining cases pose more serious problems for survival models. Case d expe-

riences the event of interest but inception of risk and time of event occurrence both take

place after the study is completed. This type of case is referred to as being fully right-

censored (Yamaguchi, 1991) and is not amenable to analysis using survival techniques.

Similarly, cases g and h experience the event of interest before the start of the study.

As an example, suppose that we were to follow a group of 12-year-olds to observe the

length of time before they smoke their first cigarette. However, some children in the

sample have already begun smoking but cannot remember the date on which that

occurred. Assuming that inception of risk begins at birth, all we know of such children

is that survival time is less than 12 years. These types of cases are accordingly known

as left-censored survival times (Collett, 1994; Hosmer and Lemeshow 1999) and are

also not very amenable to survival modeling.

A final concept of central importance that can be gleaned from Figure 11.1 is the

risk set. This is the set of people who are at risk for event occurrence at any given

time t. For example, the risk set at time t0 in the figure consists of cases a, b, c, e, f,

and i. Immediately after case f has been censored, the risk set consists of cases a, b,

c, e, and i. Immediately before case c experiences the event, however, the risk set

only consists of cases a and c, since cases b, e, f, and i have either experienced the

event (cases e and i) or have been censored (cases b and f) at an earlier time.

Critical Functions of Time: Density, Survival, Hazard

In survival models, three functions of time are particularly important: the density

function, the survival function, and the hazard function. The three are also closely

interrelated, so that given any two, the third is readily calculated. First, we note that

survival time, denoted by T, is a random variable ranging from zero to infinity, which

like any other variable, has population distribution and density functions. Certain den-

sities not featured elsewhere in this book are especially important in survival models.

Examples are the exponential, Weibull, Gompertz, and log-logistic densities. (The

exponential density was introduced in the Chapter 1 appendix.) As the exponential

function is very easy to work with, I use it to illustrate the three functions discussed

in this section. If survival time has an exponential distribution, its density function is

f(t) � λ exp(�λt),

where λ is a positive constant. For example, if survival time in days after contract-

ing some disease has an exponential distribution with λ � .35, the density function

at a time of 15 days is

f(15) � .35 exp[�(.35)(15)] � .0018.
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Recall that as the density of a continuous variable is not a probability, this value has

no intuitive interpretation.

In general, the distribution function for survival time is

F(t) � P(T � t) ��t

0
f(u) du.

As is evident, F(t) is just the probability that T is less than or equal to t, and the inte-

gration symbol simply denotes that this function is found by integrating, or summing

up, the area under the density curve between 0 and t. For the exponential distribution,

we have

F(t) � 1 � exp(�λt).

In the example just given, the distribution function evaluated at 15 days is

F(15) � 1 � exp[�(.35)(15)] � .995.

This means that the probability of dying within 15 days’ time is .995.

The survival function, denoted S(t), is simply P(T � t), that is, the probability of

surviving beyond time t. For the exponential density,

S(t) � 1 � P(T � t) � 1 � [1 � exp(� λt)] � exp(� λt).

To continue with the example, the probability of surviving beyond 15 days is

S(15) � exp[�(.35)(15)] � .0052.

The interpretation is that there is only a .52% chance of surviving beyond 15 days.

Of central importance in survival analysis is the hazard function. In fact, the log of

the hazard function is most often the response variable in survival regression, giving

rise to models known as hazard models. Ideally, what we would like to model is the

probability of experiencing the event of interest exactly at time t. (In discrete-time

models, we can employ this as the response variable.) However, the probability that a

continuous variable—in this case, time—takes on any specific value in its range is

zero. So, instead, we define the hazard as follows. First, let ∆t represent some small

increment in time. Then consider the probability that the event occurs in some small

time interval, say between t and t � ∆t, conditional on its not having occurred yet. This

probability is denoted

P(t � T � t � ∆t � T � t).

If we further divide this probability by ∆t, we would have the conditional probabil-

ity of event occurrence in some small time interval per unit of time, or the rate of

event occurrence in a small time interval. The hazard at time t, denoted h(t), is then

NATURE OF SURVIVAL DATA 387



the limit of this rate as the time interval shrinks to zero. Formally, we have

h(t) � lim∆t→0 . (11.1)

The hazard in continuous time can be interpreted as the instantaneous rate of event

occurrence, or as Blossfeld et al. (1989, p. 31) describe, it is “. . . the instantaneous

probability that episodes in the interval [t, t � ∆t] are terminating provided that the

event has not occurred before the beginning of this interval.”

Relationships between the hazard, survival, and density functions follow from the

foregoing definitions. Now, the density function is the first derivative of the distri-

bution function. Thus, the density function can be written as

f(t) � F�(t) � lim∆t→0 �
F(t � ∆

∆

t

t

) � F(t)
�� lim∆t→0�

P(t � T

∆

�

t

t � ∆t)
�,

and by the rules for conditional probabilities,

P(t � T � t � ∆t � T 	 t) � � .

Therefore, h(t) can be written as

h(t) � lim∆t→0 � lim∆t→0

� lim∆t→0 � �
S

f(

(

t

t

)

)
�. (11.2)

In other words, the hazard function is the ratio of the density function to the survival

function. Notice the similarity to the hazard function of the normal distribution—

lambda—as defined in Chapter 9. Equation (11.2) implies further that f(t) � h(t)S(t).

Employing equation (11.2), we find that the hazard function for the exponential

distribution is

h(t) ��
λ

e

e

x

x

p

p

(�

(�

λ

λ

t)

t)
�� λ.

As this is a constant rather than a function of t, the exponential distribution is said to

have a constant hazard. In other words, the hazard of event occurrence remains con-

stant over time. As this may be unrealistic for many applications, other distributions,

such as the Weibull, allow for the hazard to change over time. However, the focus in

this chapter is on a semiparametric modeling approach for the log hazard, or ln[h(t)],

that does not depend on the choice of distribution for survival time. I therefore omit

detailed discussion of more complex distributions.

P(t � T � t � ∆t) / ∆t
���

P(T 	 t)

P(t � T � t � ∆t) / P(T 	 t)
����

∆t

P(t � T � t � ∆t � T 	 t)
���

∆t

P(t � T � t � ∆t)
��

P(T 	 t)

P(t � T � t � ∆t�T 	 t)
���

P(T 	 t)

P(t � T � t � ∆t � T 	 t)
����∆t
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Example: Dissolution of Intimate Unions

To illustrate the concepts just discussed, and in particular, to give a sense of the sur-

vival and hazard functions, I consider data drawn from both waves of the NSFH on

the dissolution of married and unmarried cohabiting relationships. The example is

based on a larger study (DeMaris, 2000) that examined the impact of intimate vio-

lence on union disruption. Whereas that study included all married and cohabiting

couples who had been together for up to 20 years in wave 1, the present example is

limited to the 1230 couples who had been together for at most three years in wave 1.

Five to seven years later, in the wave 2 survey, the same couples were queried as to

whether they were still together. If they had split up, they were asked to give the

dates of separation or divorce. For consistency between cohabitors and marrieds, the

date of separation was employed to index the event of union disruption. The few

couples experiencing the death of either partner were considered censored as of the

date of death. Because most couples had been in their unions for some time (any-

where from 0 to 3 years) before being initially surveyed, the data are left-truncated.

Nevertheless, I will begin by ignoring this problem and treat couples as though they

were all observed from inception of risk. Later I adjust the analyses for left trunca-

tion and compare results.

Nonparametric Estimation of S( t) and h( t). A first step in survival analysis

typically involves examining survival and hazard functions for the sample as a

whole, ignoring potential differences among people induced by explanatory variables.

Table 11.1 presents nonparametric estimators of S(t) and h(t) for the 1230 couples
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Table 11.1 Life-Table Estimates of Survival and Hazard Functions for the Event 

of Union Disruption

Time Number Number Risk Conditional Survival Hazard

Interval Failed Censored Set P(Failure) Function Function

[0, 6) 52 0 1230.0 .0423 1.0000 .0072

[6, 12) 35 1 1177.5 .0297 .9577 .0050

[12, 18) 45 0 1142.0 .0394 .9293 .0067

[18, 24) 27 3 1095.5 .0246 .8926 .0042

[24, 30) 28 2 1066.0 .0263 .8706 .0044

[30, 36) 30 2 1036.0 .0290 .8478 .0049

[36, 42) 30 0 1005.0 .0299 .8232 .0051

[42, 48) 16 3 973.5 .0164 .7986 .0028

[48, 54) 17 2 955.0 .0178 .7855 .0030

[54, 60) 18 32 921.0 .0195 .7715 .0033

[60, 66) 25 161 806.5 .0310 .7565 .0052

[66, 72) 19 348 527.0 .0361 .7330 .0061

[72, 
) 6 328 170.0 .0353 .7066

Total 348 882



in the sample. The method employed here is the life-table approach (Blossfeld 

et al., 1989). This technique involves partitioning survival time into a series of q � 1

nonoverlapping time intervals of the form [0,a1), [a1,a2), . . ., [aq,
), where ak

indicates the kth value of time and then using the censored and uncensored cases in

each interval to estimate the two functions. (Recall that “[a1,a2)” means that the

interval includes a1 but not a2.) In the current case, since the follow-up interval

between survey waves ranged between about five and seven years, survival time in

months from the wave 1 interview until either disruption or censoring ranged from

0 to 86. This time period was then partitioned into 6-month intervals, except for 

the last period, which encompassed months 72 or later. The last interval, shown as

“[72,
)” in the table, was made larger because there were so few disruptions after

month 72.

We first estimate the conditional probability of failure for a given interval. Letting

dk represent the number of disruptions, or “failures” in the kth interval, wk represent

the number of cases censored in the kth interval, and Rk represent the number of indi-

viduals who had no event until the beginning of the kth interval, the conditional

probability of failure for the kth interval is (Blossfeld et al., 1989):

λ̂k ��
Rk �

d

w
k

k / 2
�, (11.3)

where the denominator is an estimator of the risk set for the kth interval. If there are

no censored cases, λ̂k is simply dk /Rk. However, this simpler computation would

tend to underestimate the actual hazard rate in the presence of censoring (Blossfeld

et al., 1989). Hence, one-half of the number of censored cases is subtracted from Rk

in (11.3). The reasoning here is that if censored observations are assumed to be uni-

formly distributed over the interval, the average size of the risk set in the interval is

Rk � wk /2 (Hosmer and Lemeshow, 1999). As an example, R1 is 1230, and there are

no censored cases, so the first conditional probability of failure is simply 52/1230 �

.04227 or .0423. In the second interval, we start with 1230 � 52 � 1178 couples who

have had no event so far. There is one censored case in this interval, so the risk set

is 1178 � �
1
2

� � 1177.5, and λ̂2 � 35/1177.5 � .0297. Now, the risk set for the next

interval must remove the remaining censored cases plus the 35 uncensored cases,

and there are no new censored cases, so it is calculated as 1177.5 � �
1
2

� � 35 � 1142.

The remaining computations proceed in a similar fashion.

The conditional probability of failure is used to construct estimates of both the

survival and hazard functions. First, let p̂k � 1 � λ̂k be the conditional probability of

survival through the kth interval, given survival through the preceding interval. For

example, 1 � .0423 � .9577 is the conditional probability of surviving through the

first interval, and 1 � .0297 � .9703 is the conditional probability of surviving through

the second interval. The survival function estimate, Ŝk, is constructed as the product

of these conditional probabilities. That is, the survival function estimate for the kth

interval is

Ŝk � (p̂k)(p̂k � 1)(p̂k � 2) . . . (p̂1).
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In SAS’s PROC LIFETEST, which was used for Table 11.1, the survival function is

the proportion of the sample surviving to the beginning of the interval, hence p̂1 is

always 1. For the second interval, Ŝ2 � (1)(1 � .0423) � .9577, which is the propor-

tion surviving up to the second interval. The proportion surviving until the third

interval is then (1)(.9577)(1 � .0297) � .9293, and so on.

Finally, an estimator of the average hazard rate at the midpoint of the kth interval

is (Blossfeld et al., 1989)

ĥmk
��

Lk(

2

2

λ

�

ˆ
k

λ̂k)
�,

where Lk � ak � ak � 1 is the length of the kth interval. Thus,

ĥm1
��

6(

2

2

(

�

.04

.0

2

4

3

2

)

3)
� � .0072.

The other estimates in the column “hazard function” are computed in similar

fashion. (No hazard estimate is shown for the 13th interval, as L13 cannot be

computed.) Plots of the survival and hazard functions from Table 11.1 against the

lower limits of the time intervals are shown in Figures 11.2 and 11.3. The survival

NATURE OF SURVIVAL DATA 391
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function exhibits a relatively smooth decline from a high of 1 at the start of the

process, to a minimum of .7066 for the interval with a lower limit of 72 months.

Apparently, slightly over 70% of relationships survived for at least 72 months

intact. The hazard function, on the other hand, displays a more erratic trend; there

appears to be no clear upward or downward pattern. The greatest hazard of

disruption is apparently in the first six-month interval, although the last interval’s

hazard is almost as high. Nonetheless, all of the hazards are quite low, with the

highest being only .0072.

Examining Parametric Forms for the Hazard Function. As Blossfeld et al. (1989)

explain, nonparametric estimates of the survival function can be used to suggest a

potential parametric model for the log of the hazard function. In particular, a plot of

various functions of Ŝ(t) against time can be used to reveal which density function is

most appropriate for survival time. As we will see below, if a parametric distribution

for time can be identified, we can take advantage of maximum likelihood estimation

in regression models for ln[h(t)], which confers certain benefits (e.g., asymptotic

efficiency) over alternative estimation techniques. To understand the idea behind these

transformations, we again examine the exponential density. Recall that its survival

function is S(t) � exp(�λt). Taking logs of both sides of this equation and multiplying

both sides by �1, we have �ln S(t) � λt. That is, �ln S(t) is a linear function of time
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with an intercept of zero. Therefore, if time has an exponential distribution, a plot of

�ln Ŝ(t) against time should form a straight line through the origin.

Similarly, a Weibull distribution is supported if a plot of ln[�ln Ŝ(t)] against the log

of time produces a straight line. On the other hand, if the function ln(ln[Ŝ(t)/ Ŝ(t � 1)])

has a linear relationship with time, a Gompertz distribution is supported. In this case,

t and t � 1 represent adjacent times or time intervals. Finally, if the function

ln[(1 � Ŝ(t))/Ŝ(t)] has a linear relationship with the log of time, a log-logistic distribu-

tion for survival time is indicated. Rather than relying on visual inspection alone, one

can regress the relevant transformation of Ŝ(t) on time and include quadratic or cubic

terms in time to test for nonlinear effects. When this was done with the life-table esti-

mates of S(t) from Table 11.1, the exponential, Weibull, and log-logistic distributions

were all supported. However, as the exponential distribution is the most parsimonious

of the three, and as the plot in Figure 11.3 is consistent with a constant hazard, I will

choose the exponential distribution for survival time, at least to start with.

REGRESSION MODELS IN SURVIVAL ANALYSIS

The hazard function depicted in Figure 11.3 assumes that all people have the same

hazard at any given time. This is, of course unrealistic, since individual characteris-

tics will typically raise or lower the hazards for certain people compared to others.

One way to introduce individual heterogeneity, or variability, into the hazard func-

tion is to model ln[h(t)] as a function of a set of covariates representing people’s

attributes, giving rise to regression models for the log of the hazard function. In this

section of the chapter I begin with a parametric model: in particular, the exponential

model. As programs for the estimation of parametric models (e.g., PROC LIFEREG

in SAS) usually model the log of survival time, rather than the log of the hazard, I

begin with log survival-time models.

Accelerated Failure-Time Model

Letting Ti denote the survival time for the ith person, parametric models take the form

ln Ti � xi
�ββ � σεi, (11.4)

where σ is a parameter to be estimated and εi is a random disturbance term whose

density determines the parametric form of the model. For example, the exponential

model is specified by constraining σ to equal 1 and assuming that εi has a Gumbel

distribution (Allison, 1995), since this specification implies an exponential distribu-

tion for survival time. As noted, the exponential model assumes that the hazard of

the event of interest is constant over time. A Weibull model would be specified by

retaining the Gumbel distribution for εi but allowing σ to depart from the value of 1.

If σ � 1, the hazard is decreasing with time. If σ is between .5 and 1, the hazard is

increasing at a decreasing rate. If σ is between 0 and .5, the hazard is increasing at

an increasing rate. And if σ � .5, the hazard is increasing at a constant rate (Allison,
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1995). Models of the form in equation (11.4) are referred to as accelerated failure-time

(AFT) models. The reason for this is that if we exponentiate both sides of equation

(11.4), we get

Ti � exp(xi
�ββ � σεi) � eβ0 eβ1X1 . . . eβKXK eσεi,

which makes it clear that increases in covariate values either accelerate or deceler-

ate the survival (or, conversely, the failure) time.

Maximum Likelihood Estimation. Assuming that the disturbance term in equation

(11.4) has a Gumbell distribution allows us to estimate the parameters of this equation

via maximum likelihood. To form a general expression for the likelihood function for

survival data, we reason as follows. First, let ci be the censoring indicator for the ith

person, coded 1 if the person is uncensored, and 0 if censored. (This seems like back-

ward coding for a dummy variable but is conventional coding in survival analysis.)

Then, for the ith uncensored case, let f(ti, ββ, xi) be that case’s density at time T � ti
given parameter vector ββ and covariate vector x. Similarly, for the ith censored case,

let S(ti, ββ, xi) be that case’s survivor function, or probability of survival through time

T � ti, given parameter vector ββ and covariate vector x. A general expression for the

likelihood function for n sample cases is then (Hosmer and Lemeshow, 1999)

L(ββ � t,x) ��
n

i�1
{[f(ti, ββ, xi)]

ci [S(ti, ββ, xi)]
1�ci}. (11.5)

Notice that all of the sample information regarding event and censoring times is

being exploited in expression (11.5). Taking logs of both sides of this function, a

general expression for the log of the likelihood function is

ln L(ββ � t,x) ��
n

i�1

{ci ln[f(ti, ββ, xi)] � (1 � ci) ln[S(ti, ββ, xi)]} (11.6)

To construct the likelihood for the exponential model, we must first specify its

density and survival functions. First, to simplify notation somewhat, we rewrite the

exponential model letting Yi � ln Ti and imposing the constraint that σ � 1:

Yi � xi
�ββ � εi. (11.7)

Then note that in general, if X has a Gumbel distribution, its density function is

f(x) � exp(x � ex), (11.8)

whereas its survival function is

S(x) � exp(�ex). (11.9)

Recall that εi in equation (11.7) has a Gumbel distribution, and notice that this equa-

tion also implies that εi can be written as yi � xi
�ββ. Then, substituting yi � xi

�ββ for x
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in equations (11.7) and (11.8), and inserting both into equation (11.6), the log-

likelihood function for the exponential model is:

ln L(ββ � t,x) ��
n

i�1

(ci ln{exp[yi � xi�ββ � exp(yi � xi�ββ)]}

� (1 � ci) ln{exp[�exp(yi � xi�ββ)]}),

which after some algebraic manipulation reduces to

ln L(ββ � t,x) ��
n

i�1

[ci(yi � xi
�ββ) � exp(yi � xi

�ββ)]
(11.10)

As always, maximizing function (11.10) with respect to ββ provides MLEs for the

elements in ββ. As the focus of this chapter is on the Cox model, discussed below, I

postpone discussion of inferences until that section. However, the usual test statis-

tics based on MLEs are applicable, including likelihood-ratio tests for the model as

a whole, chi-squared difference tests for nested models, and Wald chi-squared tests

for individual coefficients. These are similar in form to those for other likelihood-

based models discussed in Chapters 7 to 10.

Application to Union Disruption. Model 1 in Table 11.2 presents the results of

estimating the exponential model for the log of survival time in 1230 married and

unmarried cohabiting unions in the NSFH. Several covariates that have been
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Table 11.2 Parametric and Semiparametric Regression Models for the Hazard 

of Union Disruption

Predictor Model 1a Model 2b Model 3c Model 4d Model 5e

Intercept 1.917***

Relationship duration (months) .029*** �.028*** �.021*** �.028*** �.022***

Female’s age at union .054*** �.053*** �.053*** �.074*** �.055***

Both in a first union .792*** �.779*** �.779*** �.479*** �.621***

Alcohol or drug problem �.376* .360* .373* .363* .368*

Open disagreement �.030* .029* .030* .031* .031*

Conflict resolution style .233*** �.228*** �.229*** �.184*** �.190***

Continuously cohabiting 1.193*** 1.540***

Cohabiting to married �.159 .321

Union birth �1.457*** �.557***

Note: n � 1230.
a Exponential model.
b Cox model.
c Cox model adjusted for left truncation.
d Cox model adjusted for left truncation, with cohabiting to married and union birth treated as time invariant.
e Cox model adjusted for left truncation, with cohabiting to married and union birth as time-varying

covariates.

* p � .05. ** p � .01. *** p � .001.



shown in past research to affect relationship dissolution are included. All

covariates employed in models 1 to 3 were measured in the first wave of the

survey and are fairly self-explanatory. Relationship duration in months taps the

number of months from inception of the union (whether marital or cohabiting)

until the date of the wave 1 interview. Female’s age at union is a proxy for the

couple’s age at inception of the union, since partners’ ages are highly correlated.

Both in a first union is a dummy flagging couples in which neither partner has

married or formed a cohabiting union before. Alcohol or drug problem is a

dummy that identifies couples in which either partner has an alcohol or drug

problem. Open disagreement is the frequency of open disagreements in the

relationship over the past year, a continuous variable ranging from 6 to 31.2.

Conflict resolution style is also a continuous variable, ranging from 2 to 10,

tapping the extent to which disagreements have been calm and partners have

avoided arguing heatedly or shouting.

Interpreting the Exponential Model. As is evident, all variables are significant pre-

dictors of survival time, with longer survival times evidenced by couples who had

been together longer before wave 1, who were older when entering the union, who

were in a first union, and who had calmer conflict resolution styles. Predictably, cou-

ples in which either partner had an alcohol or drug problem or those with more fre-

quent disagreements had shorter survival times. It is straightforward to generate

predicted survival times using the model. For example, consider a couple together

for two years at wave 1, in which the woman was 21 at the start of the union, who

were both in a first union, who had no substance abuse problems, whose open dis-

agreement score was 10, and whose conflict resolution score was 5. Their predicted

log-survival time in months is

ln T̂�1.917 � .029(24) � .054(21) � .792 � .030(10) � .233(5) � 5.404,

which implies a survival time of 222.3 months, about 18�
1

2
� years.

Of perhaps more importance are the interpretations of the effects. Each coefficient

represents the estimated additive change in log-survival time for a 1-unit increase in

the relevant predictor, net of other covariates. Or, exponentiating the coefficient gives

us the acceleration or deceleration in survival time for a 1-unit increase in the pre-

dictor. Hence, each year older the woman is before entering a union magnifies sur-

vival time by a factor of exp(.054) � 1.055, or 5.5%. Similarly, those with substance

abuse problems are estimated to have survival times that are lower by a factor of .687

compared to others. Or, their survival times are estimated to be reduced by about

31.3%. A convenient feature of the exponential model is that if the sign of the

coefficient is reversed, we get the effect on the log of the hazard. This makes perfect

intuitive sense, since a greater hazard of event occurrence should shorten survival

time, and vice versa. Thus, the effect of relationship duration on the log hazard is

�.029, while the effect of alcohol or drug problems is .376. Exponentiating these

coefficients provides us with an estimate of the hazard ratio—the ratio of hazards—

for those who are 1 unit apart on the relevant predictor. As an example, the hazard
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ratio for those with alcohol or drug problems versus others is exp(.376) � 1.456. Or,

the hazard of disruption for couples with substance abuse problems is elevated by

about 46%.

Cox Regression Model

One problem with parametric models is that their accuracy depends very much on

whether the correct distribution is selected, and selection of the correct distribu-

tion, unless guided by strong theory, can be a challenging task. Recall that an

exploration of the parametric form of the survival-time distribution for the union

disruption problem using the techniques enumerated above failed to identify a sin-

gle distribution as best. The exponential distribution was chosen for simplicity. But

during model estimation a Lagrange multiplier chi-squared test for the constraint

on σ (not shown) resulted in rejection of the null hypothesis that σ � 1. As the

value of σ̂ is 1.216, there is evidence that the hazard of union disruption is declin-

ing over time. (However, a declining hazard can also be an artifact of unmeasured

heterogeneity, as explained in Chapter 12.) This suggests that the Weibull model

may be more appropriate, although there is no guarantee that it is the correct dis-

tribution, either.

In a highly influential 1972 paper, the statistician D. R. Cox proposed a model and

associated estimation technique that obviates the need to identify the appropriate dis-

tribution for survival time. Known widely as the proportional hazards model, this tool

has come to dominate survival analysis in many fields. Although this technique has

some drawbacks, its major advantage is that the researcher can be completely

indifferent to the form of the survival-time distribution and still obtain good estimates

of covariate effects. The estimation technique is called partial likelihood estimation

and represents a rather remarkable insight on Cox’s part. For this reason, it is worth

considering in some detail.

Model and Its Interpretation. First, the Cox model takes the form

hi(t) � h0(t) exp(xi
�ββ), (11.11)

where hi(t) is the hazard of event occurrence at time t for the ith case. Note here that

the covariate vector, x, and parameter vector, ββ, include only the explanatory vari-

ables; there is no constant term in either. The term h0(t) is a baseline hazard function

that is left unspecified as to form. It is interpreted as the hazard function for a case

whose covariate values are all zero. “Left unspecified” essentially means just that:

We do not give it any particular form in the model. It could potentially represent any

of the parametric survival-time functions discussed so far, as well as any number of

others. As we will see, this function can be safely ignored in the estimation of the

parameters. Covariates have the effect of raising or lowering the hazard from the

baseline by some fixed amount. Moreover, exp(βk) represents the ratio of hazards for

people who are a unit apart on Xk, controlling for other effects. For example, suppose
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that there are two covariates in the model, X1 and X2. Further, consider the ratio of

the hazards for individuals i and j who are 1 unit apart on X1, controlling for X2. We

have

� �exp(β1).

This means that the hazard for individual i is exp(β1) times the hazard for individual

j at any given time, or their hazards are proportional—with proportionality constant

exp(β1)—over time. Formally, a proportional hazards model is one in which “the

hazard for any individual is a fixed proportion of the hazard for any other individ-

ual” over time (Allison, 1995, p. 114). Despite this property giving the model its

name, it is easy to modify the model to handle nonproportionality, as I show below.

The model in log-hazard form is

ln[hi(t)] � λ0(t) � xi
�ββ,

where λ0(t) � ln[h0(t)].

Partial Likelihood Estimation. According to Blossfeld et al. (1989), the likelihood

function for equation (11.11) can be factored into the product of separate terms as

follows. First, suppose that k of the n people in the sample are uncensored. We then

order the k event times such that t(1) � t(2) � . . . � t(k), where the notation “t(i)”

represents the ith ordered event time. Additionally, let R(t(i)) denote the risk set at

the ith ordered event time. As before, the risk set consists of all cases with survival

or censored times greater than or equal to t(i). Then the likelihood function for the

Cox model is

L(ββ,h0(t) � t,x) ��
k

i�1 o∈R(t(i))
�  h0(t(i)) exp(xo

�ββ)�
k

i�1

S0(ti)
exp(xi�ββ),

where S0(ti) is the baseline survival function for the ith case. Cox termed the first fac-

tor the partial likelihood and treated it like an ordinary likelihood, while discarding

the remaining terms. Thus, the partial likelihood (PL) function is

PL(ββ � t,x) ��
k

i�1
. (11.12)

Cox proposed maximizing function (11.12) with respect to ββ to arrive at the param-

eter estimates. Because this approach discards information about ββ contained in 

the other terms in the likelihood function, the PL estimator is not fully efficient.

However, the estimator still possesses the other desirable characteristics of ML esti-

mation, such as consistency and asymptotic normality (Klein and Moeschberger,

1997).

exp(xi
�ββ)

��

ο∈R(t(i))

� exp(xo
�ββ)

exp(xi
�ββ)

��

ο∈R(t(i))

� exp(xo
�ββ)

h0(t) exp[β1(x1 � 1)] exp(β2 X2)
����

h0(t) exp(β1 x1) exp(β2 X2)

hi(t)
�
hj(t)
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Understanding the Partial Likelihood. Let’s take a closer look at function (11.12)

in order to understand what the terms inside the product operator represent. Each

term is based on an application of conditional probability rules to the probability of

an event at time t(i). In particular, we ask: What is the “probability” that a person

with covariate vector xi “fails” at time t(i) given that there is one failure at time t(i)?

In that time is continuous, we are dealing with hazards instead of probabilities, but

the rules are the same. We have

P(case xi fails at t(i) � one failure at t(i))

� �

� �

(11.13)

It should be clear that the numerator of expression (11.13) is the hazard for the case

that fails at t(i) and the denominator is the sum of the hazards for all those at risk at

t(i). As is evident here, the baseline hazard function cancels out of the numerator and

denominator of expression (11.13) and can therefore be ignored. Finally, to see how

function (11.12) is applied in practice, we take a very simplified example. Suppose

that the sample consists of three observations on marital unions having survival

times of 42, 56, and 86 months. The first two times are disruption times, while the

last is a censored survival time. Further, assume there is only one covariate, Xi, in the

model. The PL function for these three observations is (where subscripts represent

the case numbers)

PL(ββ � t,x) � .

As is evident, censored observations (e.g., the third observation here) contribute only

to the denominators in the partial likelihood, not to the numerators. In general, there

are as many separate terms in this product as there are uncensored cases.

Advantages and disadvantages of PL. Several comments are in order about the PL

technique. First, the PL function only employs information about the ordering of event

times, not the times themselves. It is therefore not necessary that these times be meas-

ured precisely, as long as we are able to order them from smallest to largest. On the

other hand, tied event times pose a problem, since the function assumes that the event

times are distinct. Hosmer and Lemeshow (1999) discuss a handful of techniques that

have been developed to handle ties, and these are implemented in mainstream software,

such as SAS. An exact partial likelihood in the presence of ties is given in Kalbfleisch

and Prentice (1980), whereas approximations to the exact likelihood have been devel-

oped by Breslow (1974) and Efron (1977). As the exact function requires longer 

exp(βX2)
���
exp(βX2) � exp(βX3)

exp(βX1)
����
exp(βX1) � exp(βX2) � exp(βX3)

exp(xi
�ββ)

��

ο∈R(t(i))

� exp(xo
�ββ)

h0(t) exp(xi
�ββ)

���

o∈R(t(i))

� h0(t) exp(xo
�ββ)

P(case xi fails at t(i))
���
P(one failure at t(i))

P(case xi fails at t(i) � one failure at t(i)
�������

P(one failure at t(i))
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computing time than either approximation, the latter have been viewed as more

advantageous in application. However, given the rapid evolution of ever-speedier

processors, the issue of computer time may ultimately diminish in importance. Of

the two approximations, Efron’s is recommended as being closer to the exact method

(Hosmer and Lemeshow, 1999). Nevertheless, if there are too many tied survival

times in one’s data—say more than 5% of the observations are tied at any given

time—the discrete-time techniques discussed in Chapter 12 should be considered

(Yamaguchi, 1991).

Inferences for the Cox Model. Inferences for the Cox model are performed with

tests that parallel the usual procedures for models estimated with maximum likeli-

hood. First there is a likelihood-ratio test for the significance of the model as a

whole. [Actually, Hosmer and Lemeshow (1999, p. 98) refer to the test as a “partial

likelihood-ratio test,” but I will use “likelihood-ratio test” for short.] The null hypoth-

esis for the test is H0: β1 � β2 � . . . � βK � 0 versus H1: at least one βk is not zero.

The test statistic is the likelihood-ratio chi-squared (LRχ2):

LRχ2
� �2 ln �

L

L
0

1
�� �2 ln L0 � (�2 ln L1),

where L0 is the partial likelihood for a model with no covariates and L1 is the partial

likelihood for the hypothesized model, evaluated at the partial-likelihood estimates

(PLEs) of the parameters. Under the conditions that the sample size is large—in

particular, that the number of uncensored cases is large (Hosmer and Lemeshow,

1999)—and the null hypothesis is true, this statistic is approximately distributed as

chi-squared with K degrees of freedom. Also, there are LRχ2 tests for nested mod-

els. If model B is nested inside model A, a test for the constraints on A leading to B

is ∆χ2
� LRχ2(A) � LRχ2(B). If the constraints are valid, ∆χ2 has a chi-squared dis-

tribution with degrees of freedom equal to the number of constraints imposed (e.g.,

the number of parameters set to zero). As PL estimates are asymptotically normally

distributed (Cox, 1975), tests for individual coefficients, referred to as Wald tests,

take the form

Wald χ2
� ��

σ

b

ˆb

k

k

��
2
,

which are one-degree-of-freedom chi-squared tests under the hypothesis that βk � 0.

Finally, confidence intervals for the βk, as well as the hazard ratios, exp(βk), can be

constructed using the standard errors of the coefficients, denoted σ̂bk, and the critical

values of the standard normal distribution. For example, a 95% confidence interval

for βk takes the form bk � 1.96σ̂bk
. Exponentiating the lower and upper limits of this

interval provides a 95% confidence interval for exp(βk).

Cox Models for Union Disruption. Model 2 in Table 11.2 shows the results of esti-

mating the Cox model for the log hazard of union disruption. As mentioned, there is
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no intercept in the model. The LRχ2 statistic for the model as a whole is 166.826,

which with six degrees of freedom is highly significant (p � .0001). The coefficients

are quite close in magnitude to those of the exponential model, but opposite in sign,

since we are modeling the log hazard rather than log survival time. As with the expo-

nential model, exponentiating a coefficient provides an estimate of the hazard ratio

for a unit difference on that predictor, net of other model covariates. Thus, being in

a first union is associated with a hazard ratio of exp(�.779) � .459, meaning that

first unions have about a 54% lower hazard of union disruption at any given time

compared to others. In a similar vein, exponentiating the coefficient for alcohol or

drug problem suggests that relationships characterized by substance abuse have a

43% higher risk of union disruption at any given time. The standard error for alco-

hol or drug problem is .164. So a 95% confidence interval for the coefficient is

.36 � 1.96(.164) � (.039, .681). Or a 95% confidence interval for the ratio of hazards

for those with, versus without, substance abuse problems is [exp(.039), exp(.681)] �

(1.040, 1.976). Note that the coefficients for model 2 cannot be employed to arrive at

an estimator of a given couple’s hazard of disruption. The reason is that an estimator

of the baseline hazard function is missing in Cox models. However, we can estimate

the impact on the hazard associated with given covariates. As indicated below, we can

also use the estimates to construct estimated survival functions.

Adjusting for Left Truncation

As noted above, the sample of unions is characterized by various degrees of left trun-

cation. Left truncation, also referred to as delayed entry into the risk set (Hosmer and

Lemeshow, 1999) or interrupted spells (Hamerle, 1991), represents a form of sam-

ple selectivity. In that left-truncated cases have survived long enough to come under

observation, they tend to overrepresent low-risk cases among any given cohort. This

phenomenon can lead to a loss of estimator efficiency or even to biased estimates if

uncorrected (Hamerle, 1991). Programs for AFT models typically do not allow

adjustments for left truncation. But the Cox model is easily accommodated to left-

truncated data, provided that inception of risk is known for each case, as is true of

the current data. Essentially, the partial likelihood function is made conditional on

having survived until the start time of the study [see Guo (1993) and Hamerle (1991)

for technical details]. In SAS’s Cox regression program, PHREG, left-truncated

cases can be specified via the ENTRYTIME option on the model statement, as well

as in other ways (see Allison, 1995). Model 3 in Table 11.2 shows the estimates for

union disruption after adjusting for left truncation. There is little change in the

coefficients, probably because of the prior restriction that at the beginning of obser-

vation (wave 1), couples had been together for no longer than three years. Left trun-

cation is therefore not as extensive a problem here as it was in the full study [see

DeMaris (2000) for details].

Another Nonparametric Estimator of S( t). The Cox model can also be used to

obtain a nonparametric estimator of the survival function in the presence of left trun-

cation. This provides an alternative estimator to the standard life-table approach
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offered by, say, SAS’s procedure LIFETEST, which does not allow such adjustments.

The procedure is to estimate the Cox model without any covariates, using the ENTRY-

TIME option. The result is an alternative nonparametric estimator known as the

Kaplan–Meier estimator. This estimator is particularly desirable when there are few

tied survival times, because it is based on the exact event and censoring times in the

data (Blossfeld et al., 1989). Figure 11.4 shows the nonparametric survival curve—

ignoring the covariates—for the union disruption data using this approach.

Estimating Survival Functions in Cox Regression

One drawback to the Cox model is that there is no simple means for recovering the

estimated survival function, since information about the survival times themselves is

discarded in the estimation process. However, techniques have been developed for

estimating the baseline survival function, S0(t), based on the partial likelihood

parameter estimates. One method, according to Klein and Moeschberger (1997), is

based on the cumulative baseline hazard rate at time t, denoted H0(t), which is a sort

of cumulative sum of the hazards up to time t for all cases at risk. Once b, the vec-

tor of parameter estimates, is obtained by maximizing the PL likelihood, an estimate
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of H0(t) can be constructed. The baseline survivor function is then recovered via the

formula Ŝ0(t) � exp[� Ĥ0(t)]. Estimated survival functions at given values of the

covariates can then be calculated as

Ŝ(t � x � x0) � Ŝ0(t)
exp(x0�b),

(11.14)

where x0 is a given setting of the covariates.

Figure 11.5 presents separate estimated survival functions for those in first unions

and those with prior union histories, based on model 3 in Table 11.2. These functions

are produced using the BASELINE statement in SAS’s PHREG program. This feature

estimates baseline survival functions and then applies equation (11.14) to produce sep-

arate survival curves for those in first unions versus others. The other model covariates

are set to their mean values. The figure conveys quite forcefully that those in first unions

have greater survival rates at any given time. For example, 83.5% of first unions are

estimated to be intact after five years, compared with 68.5% of those with a prior union

history; and 76.1% of first unions are predicted to survive for at least 102 months (8�
1

2
�

years), as opposed to 55.4% of those with a prior union history. The model, of course,

creates these effects since the risk of union disruption is fixed at being 54% lower for
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those in first unions. The reader may notice the appearance of an increasing gap

between the survival probabilities of the two groups over time. However, this is just an

artifact of the nonlinear transformation from log-hazards to survival rates rather than a

differential effect of first-union status over time. In model 3, the effects of all covariates

on the log hazard, including first-union status, are posited to be constant over time.

Figure 11.6 shows the effect of age at union formation on survival rates, with other

covariates (including first-union status) set to their means. Separate survival curves

are shown for three values for female’s age at union: 19, 27, and 35. Again, the curves

reveal the advantage in being older when forming a union: the survival probabilities

for the three groups at five years are .632, .739, and .819, respectively.

Time-Varying Covariates

An advantage of the Cox model, and of survival analysis in general, is the ability to

incorporate into the model predictor variables whose values vary over time. Called

time-varying covariates, such explanatory variables are often a natural outcome of

following cases over time. Many personal characteristics change over time, such as

employment status, annual salary, marital status, number of children borne, whether
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pregnant, educational level attained, and so on. To effectively model the influence of

these variables on the risk of event occurrence, we need to keep track of these

changes. On the other hand, causal inferences for such variables must be tendered

with caution, as these covariates are often subject to influence by the hazard process

itself. Yamaguchi (1991) presents a lucid discussion of the varieties of time-varying

covariates and their role in causal modeling. At any rate, the Cox model that incor-

porates time-varying covariates is

hi(t) � h0(t) exp(xt
i�ββ),

where the subscript t on the covariate vector indicates that one or more of the covari-

ates may change in value over time. To simplify the notation in later models, how-

ever, I omit this subscript, with the understanding that the covariate vector may

always include one or more time-varying covariates.

Time-varying covariates are readily specified in Cox regression software such as

STATA or SAS. This is done in PHREG, for example, via programming statements

after the initial specification of the model. As Allison (1995) admonishes, however,

there is no way to check whether these covariate values are being implemented cor-

rectly. One advantage of the discrete-time approach discussed in Chapter 12 is that

the data can be scrutinized to ensure that time-varying covariates are coded correctly.

In the union disruption data there are two time-varying covariates of interest. One

pertains to the eventual marital status of couples who were cohabiting at time 1. Those

cohabiting unmarried in wave 1 who subsequently marry should experience greater

marital stability than those who remain unmarried. Marriage implies a greater com-

mitment to the permanence of the relationship and is more legally binding on the part-

ners. Therefore, the act of marrying, in and of itself, should reduce the risk of a breakup.

Of course, it is also likely that those with higher-quality relationships to begin with are

both more inclined to marry and less likely to break up. In this case the transition to

marriage may be affected by the same process that affects the hazard of disruption and

may not represent a distinct causal influence. In any case, it is desirable to distinguish

cohabitors who remained unmarried throughout the follow-up period from those who

married. Continuous cohabitation can be modeled via a time-invariant dummy. For

cohabitors who married, we can construct a time-varying dummy variable that takes the

value 0 until the month in which marriage occurs, at which point it changes to 1.

The other time-varying element of importance is the advent of a birth to the union.

Several couples experienced the birth of one or more children to the union during the

follow-up period. Having a child, or an additional child, should also mitigate against

union disruption. Couples are motivated to preserve their unions when children are

present due to the desirability of two-parent households for children’s development.

However, as in the case of the transition from cohabitation to marriage, fertility deci-

sions may also be influenced by the hazard of disruption. Couples with troubled rela-

tionships may postpone childbearing in the anticipation that the union might end.

Again, any causal role played by the event of a birth during the follow-up period

should be tentatively entertained. Nevertheless, experiencing a birth can be coded as
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a time-varying covariate that takes the value 0 until the date of the first birth to the

union, at which point it changes to 1. In creating this variable, however, we need to

ensure that the variable is coded 1 only if the birth occurs prior to a disruption.

Models 4 and 5 in Table 11.2 add the two dummies for cohabiting status plus the

dummy for a union birth. In model 4 these dummies are treated as time invariant. In

other words, two dummies are created to represent the two types of cohabitation, and

a dummy is created to represent the advent of a birth to the union prior to censoring or

disruption. These dummies are treated as fixed over the follow-up period. In model 5,

on the other hand, cohabiting to married and union birth are coded as time-varying

covariates, as described above. The differential treatment of these variables across

models is especially important for the cohabiting-status dummies. The method for cod-

ing the time-varying version of cohabiting to married necessarily lumps together

cohabitors who later marry with married couples, until these cohabitors make the tran-

sition to marriage, at which point they form a distinct group. Thus, the risk of disrup-

tion for cohabitors who remain unmarried may appear lower than it actually is, due to

the mixing of marrieds and cohabitors in the contrast category over time. Entering

cohabiting status as time-invariant in model 4 therefore provides a check on the robust-

ness of the cohabitation effects.

The results suggest that the substantive conclusions would be unchanged regard-

less of specification. According to either model, continuous cohabitation elevates the

risk of disruption, compared to being married. Cohabitors who transition to mar-

riage, on the other hand, experience no significant inflation in the risk for disruption

compared to marrieds. Having a birth lowers the hazard of disruption compared to

having no birth. In particular, model 5 suggests that continuous cohabitation elevates

the risk for disruption by a factor of exp(1.54) � 4.665, or 367%, compared to being

married. Model 5 also suggests that there is about a 43% reduction in the hazard of

disruption upon the advent of a union birth.

Handling Nonproportional Effects

As indicated, the model in equation (11.11) assumes proportionality in the hazards.

When is this assumption violated? In truth, the model is already nonproportional as

soon as we include time-varying covariates (Allison, 1995; Collett, 1994). The reason

is that proportionality of hazards requires the effect of each covariate to be constant

over time and also requires the number of units apart of any two people to be constant

over time. The latter is violated with time-varying covariates, since these will change

at different rates for different individuals, thereby changing the disparities in their

covariate values. Regardless, the primary violation of the proportional hazards assump-

tion occurs when effects of covariates depend on time. Nonproportional effects are

readily tested and modeled via cross-product terms in the Cox model. We simply add

the cross-product of the covariate in question, which can either be time-invariant or

time-varying, with survival time. Hence, if the model for the log-hazard is nonpropor-

tional in Xj, it takes the form

ln[hi(t)] � λ0(t) � β1X1 � . . .� βjXj � γXjT � . . .� βKXK.
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The effect of Xj on the log-hazard is then βj � γT, which clearly varies over time. At

T � 0, or the inception of risk, the effect is βj. At T � t, however, it is βj � γ t, and so

on. A general test for nonproportionality of covariate effects would be conducted by

adding the block of interactions of all model covariates with time to the proportional

hazards model, and testing for a significant improvement in fit via the ∆χ2 statistic.

Table 11.3 presents the results of estimating nonproportional effects for two types

of covariates in the union-disruption model. The first is alcohol or drug problem. A

reasonable hypothesis is that the deleterious impact on relationship stability of sub-

stance abuse problems recorded at a given point in the relationship dampens over

time. This can be due to the fact that couples become inured to such addictions on

the part of their partner. Or, this could be the result of attempts on the part of the sub-

stance abuser to seek treatment for the problem. The second factor investigated is

cohabiting status. As relationships endure over longer periods, the formalization of

unions via marriage may become less important to their stability, implying a declin-

ing effect over time for the cohabitation dummies.

Model 1 examines the substance abuse effect by adding an interaction term of the

form alcohol or drug problem * time. As expected, the effect is significant and nega-

tive. The impact of alcohol or drug problem on the log-hazard of union disruption is

seen to be .972 � .014 time. The value of .972 suggests that the hazard ratio for those

with vs. without substance abuse problems is exp(.972) � 2.643 at union inception.

After five years, however, the effect on the log-hazard drops to .972 � .014(60) � .132,
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Table 11.3 Cox Models for Union Disruption Illustrating the Handling 

of Nonproportional Effects of Covariates

Predictor Model 1 Model 2 Model 3a Model 4b

Relationship duration (months) �.022*** �.024*** �.029*** �.025***

Female’s age at union �.055*** �.055*** �.062*** �.056***

Both in a first union �.618*** �.611*** �.728*** �.639***

Alcohol or drug problem .972** .965** .348* .377*

Continuously cohabiting 1.540*** 2.230***

Cohabiting to marriedc .319 .296

Union birthc
�.568*** �.603*** �.719*** �.606***

Open disagreement .031* .031* .030* .031*

Conflict resolution style �.188*** �.184*** �.236*** �.185***

Alcohol or drug problem � time �.014* �.014 d

Continuously cohabiting � time �.017**

Cohabiting to married � time �.0003

Likelihood ratio χ2 319.722*** 329.853*** 178.307*** 127.310***

Degrees of freedom 10 12 7 7

Note: n � 1230.
a Unstratified model.
b Model is stratified by marital status.
c Time-varying covariates.
d p � .051.

* p � .05. ** p � .01. *** p � .001.



implying a hazard ratio of only 1.141. Model 2 adds the interaction of continuously

cohabiting * time and cohabiting to married * time to model 1. Testing the additional

terms as a block results in a ∆χ2
� 329.853 � 319.722 � 10.131, which, with 2 df, is

significant at p � .0063. As predicted, both interaction terms are negative, although

only the first is significant. Hence, the effect on the log-hazard of disruption for con-

tinuously cohabiting, compared to being married, is 2.23 at inception of the union,

suggesting a hazard ratio of exp(2.23) � 9.3. In other words, at the start of a union,

those in strictly cohabiting unions have about nine times the risk of disrupting 

compared to marrieds. After five years, however, this risk ratio drops to exp[2.23 �

.017(60)] � 3.353.

Stratified Models

In the event that one suspects nonproportionality in the effect of a nominal covariate

and that covariate’s effect per se is of tangential importance, it can also be modeled

as a stratifiying factor. Stratified models allow the baseline hazard to vary across

groups while constraining the effects of covariates to be the same across groups. Why

does variation in the baseline hazard function across groups imply nonproportional-

ity of the grouping variable’s effect? Consider a parametric model (a Gompertz model,

in particular) for the log-hazard, which is linear in time T, with an interaction effect

of Xj with time. Its form is

ln[hi(t)] � β0 � γ0T � β1X1 � . . .� βjXj � γ1XjT � . . .� βKXK.

The effect of time is then γ0 � γ1Xj, which implies that the manner in which the

log-hazard varies with time depends on the value of Xj. In the Cox model the para-

metric form of the relationship with time, rather than being linear, can take any

form, but the idea is the same. Interactions of covariates with time imply either that

the effect of the covariate depends on time, as shown in the previous paragraph, or

that the relationship of the hazard with time depends on the covariate or grouping

factor.

In stratified models, each stratum, or value of the grouping factor, has a separate

baseline hazard function. Thus, the Cox model for each stratum, s, is (Hosmer and

Lemeshow, 1999)

hsi(t) � hs0(t) exp(xi
�ββ),

where s � 1, 2, . . . , S. As there is no subscript on ββ, the effects of covariates on the

hazard are held to be the same for each stratum. The contribution to the partial like-

lihood for the sth stratum is (Hosmer and Lemeshow, 1999)

PLs(ββ � t,x) ��
ks

i�1

exp(xs
i
�ββ)

��

�
ο∈R(ts(i))

exp(xs
o
�ββ)’
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where ks refers to the total number of events in the sth stratum and k � k1 � k2 � . . . �

kS. The full stratified partial likelihood is (Hosmer and Lemeshow, 1999)

PL(ββ � t,x) ��
S

s�1
PLs(ββ � t,x). (11.15)

The PL estimate of ββ is obtained by maximizing function (11.15) with respect to the

parameters.

A few comments about stratification are in order. First, the stratifying variable is not

in the model, so one loses the ability to estimate the effect of the stratifying variable

itself. This is not of particular concern if the stratifying variable is primarily a control

rather than a focus variable. Moreover, the effects of all covariates whose values are

constant within each stratum are incorporated into the stratum-specific baseline hazard

function (Hosmer and Lemeshow, 1999). This implies that one cannot estimate the

effects of any other characteristics that only vary across strata rather than within strata.

This can be seen as a plus, too, since these factors are all being held constant. That is,

any nuisance factors that vary across strata are being automatically controlled in the

estimation process. Stratification also offers an advantage over simply incorporating

into the model an interaction of the stratifying factor with time (Allison, 1995).

Including a term in the model of the form G * time, where G denotes the stratifying vari-

able, assumes a linear interaction with time, which may not be the correct form. With

stratification, the functional form of the interaction with time is accounted for auto-

matically by allowing separate baseline hazard functions that remain unspecified.

Testing Parameter Invariance. A key assumption of stratified analysis is that the

parameter vector, ββ, is invariant over strata. If this is violated, it simply means that

covariates have different effects, depending on stratum, and the stratified model is

not warranted. It is a simple matter to test this assumption, however (Klein and

Moeschberger, 1997). One simply estimates the stratified Cox model and obtains

�2 ln L for it, denoted �2 ln Lst.Then one estimates the Cox model for each stratum

separately, denoting �2 ln L for each analysis as �2 ln Lj, where j � 1, 2, . . . , S.

Minus twice the log-likelihood for the model that allows ββ to vary over strata is then

�2 ln LJ ��
S

j�1

�2 ln Lj.

The test statistic for the null hypothesis of parameter invariance is

χ2
st � �2 ln Lst � (�2 ln LJ). (11.16)

If ββ is invariant over strata, this statistic has the chi-squared distribution with K(S � 1)

degrees of freedom. If the test is significant and invariance is rejected, one can always

just report the results of estimating the model separately for each stratum.
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Union Disruption Example. The last two models in Table 11.3 illustrate the results

of stratification. Above, we saw that cohabiting status was seen to interact with time

(model 2). Therefore, I estimated a model including only the main effects of covari-

ates (i.e., no interactions with time) as both unstratified (model 3) and stratified by

cohabiting status (model 4). The unstratified version, model 3, assumes the same

baseline hazard across cohabiting statuses, an assumption that has already been

rejected. The three strata for model 4 are marrieds, continuous cohabitors, and

cohabitors who subsequently married. Although substantive conclusions are not

dramatically altered with stratification, there are noticeable reductions in the effects

of being in a first union, having a union birth, and the style of conflict resolution in

the stratified model compared to the unstratified one. Hazard ratios are interpreted

in the same manner as in unstratified models, so exp(�.606) � .546 is the ratio of

hazards for those with a union birth, versus others, and so on. That is, although the

baseline hazards differ across strata, having a union birth is posited to magnify the

baseline hazard to the same degree in each stratum. Are the effects of covariates

invariant across cohabiting-status groups? This was tested by performing the test in

equation (11.16). First, I estimated the model (model 3) for each cohabiting-status

group separately and summed �2 ln L for the three analyses to arrive at 3660.921

for �2 ln LJ. Minus twice the log-likelihood for model 4 is 3678.86. The test sta-

tistic is χ2
st � 3678.86 � 3660.921� 17.939 and has 7(3 � 1) � 14 degrees of

freedom. As p � .2, the result is nonsignificant, suggesting that the stratified model

is valid.

Assessing Model Fit

Discriminatory Power. As always, the degree to which a given model fits the data

is of considerable interest. This can be assessed in terms of either the model’s dis-

criminatory power or its empirical consistency. As to the first attribute, there is even

less agreement on which R2 analog is best in survival analysis than in the techniques

covered in earlier chapters. An investigation by Schemper and Stare (1996) consid-

ered several possible measures of discriminatory power for survival models.

Nonetheless, the authors admonish that there is no uniformly superior measure, par-

ticularly since performance depends heavily on the degree of censoring. The meas-

ures most recommended by the authors tend to be computationally cumbersome.

However, a measure that appears to perform reasonably well under all conditions

and is simple to calculate is the generalized R2 introduced in Chapter 7, a measure

also recommended by other authors (Allison, 1995; Hosmer and Lemeshow, 1999).

For the Cox model, the formula is

RG
2
� 1 � exp���L

n

Rχ2

��.

As an example, discriminatory power for model 2 in Table 11.3 is
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R2
G � 1 � exp���3

1

2

2

9

3

.

0

853
�� � .235.

As Schemper and Stare (1996) have found R2 analogs in survival analysis to range

typically between .10 and .45, model 2 can be said to exhibit a moderate amount of

discriminatory power.

Empirical Consistency. A test for goodness of fit, or empirical consistency, of the

Cox model has been recently developed by May and Hosmer (1998). It has been

designed in the same spirit as the Hosmer and Lemeshow (2000) goodness-of-fit test

for logistic regression. The procedure is as follows. First, fit the Cox model of inter-

est and obtain b, the estimate of the parameter vector. Second, calculate the esti-

mated risk score, ri, for each person as r̂i � xi
�b. (The risk score is nothing more than

the linear predictor for each case.) Third, order the risk scores from lowest to high-

est and then group individuals according to deciles of risk. If there are too few cases

to create 10 groups, the authors suggest that a minimum number of groups should be

five. Fourth, create dummy variables representing the group each case falls into; for

10 groups, there should be 9 dummies, etc. Fifth, add the block of dummies to the

model of interest in a separate step and test whether the block is significant using

∆χ2. If the block is not significant, there is evidence that the model has an adequate

fit to the data.

As an example, I performed the test on model 4 in Table 11.2 using deciles of risk

scores. This is not the final model of interest, as it treats the time-varying covariates

as time-invariant. However, the calculation of risk scores with time-varying covari-

ates is problematic since people’s risk scores change over time when time-varying

covariates are involved. Model 4, on the other hand, facilitates the calculation of a

single risk score for each case. I calculated risk scores using the formula r̂i ��.028

relationship duration � .074 female’s age at union � . . . � 1.457 union birth. Based

on a frequency distribution for the scores, I identified the deciles of risk and created

nine dummies to represent them in the model. The LRχ2 values for the models with

and without the decile-of-risk dummies are 431.4674 and 417.3661, respectively.

The test statistic is therefore ∆χ2
� 431.4674 � 417.3661 � 14.1013, which, with nine

degrees of freedom, is not significant ( p � .119). In this case, then, there is no evidence

to suggest that the model lacks empirical consistency.

EXERCISES

11.1 The following partial table refers to 1000 domestic violence offenders fol-

lowed for one year after release from arrest. The event of interest (a “fail-

ure”) was the first subsequent arrest for domestic violence recorded by

police. Subjects were considered censored if they were arrested for a

different offense during the follow-up period or if they had not been arrested

by the end of the study.

EXERCISES 411



412 INTRODUCTION TO SURVIVAL ANALYSIS

Show the estimated survival and hazard functions for these data using the

life-table estimators.

11.2 The following data represent times to arrest or censoring for six of the

offenders from Exercise 11.1, along with a dummy variable for whether the

offender was employed at the time of arrest:

a1 � uncensored; 0 � censored.

If the Cox estimate for the effect of employment is �1.073, give �2 ln L for

the Cox model for these data with employment as the predictor.

11.3 For the data in Exercise 11.2, the standard error of the effect of employment

is 1.235. Also, �2 ln L for a model with no covariates is 10.386. Use both

LRχ2 and Wald tests to test whether the effect of employment is significant.

Regardless of significance, interpret the effect of employment on the hazard

of rearrest for domestic violence.

11.4 Suppose that the number of weeks to rearrest for domestic violence after an

initial arrest has an exponential distribution with λ � .0035. Give:

(a) The probability of arrest within one year after the initial arrest.

(b) The probability of surviving one year without being arrested.

(c) The probability of arrest between weeks 35 and 40.

11.5 The survival function for the Weibull distribution is (Blossfeld et al., 1989)

S(t) � exp[(�λt)σ], where λ and σ are positive constants. Show that this dis-

tribution implies that ln[�ln S(t)] is linear in the log of t.

Censoring

Subject Indicatora Weeks Employed

1 1 39 0

2 1 17 1

3 1 46 1

4 1 12 0

5 0 22 0

6 0 52 1

Time (weeks) Number Number

Interval Failed Censored

[0,10) 25 3

[10,20) 30 8

[20,30) 28 7

[30,40) 46 19

[40,
) 82 752



11.6 Show that if time has an exponential density with λ � 1, the log of time has a

Gumbell density. [Hint: Write the expression for F(t). Then let Y � ln t and let

G( y) be the distribution function for Y. Then note that G( y) � P(Y � y) �

P(ln t � y) � P(t � ey). Now express P(t � ey) in terms of F(t). This gives you

G( y), and taking its first derivative with respect to y gives the density of Y. This

is a well-known technique for finding density and distribution functions for a

function of some variable, where the variable has some known distribution.

See, e.g., Hoel et al. (1971).]

11.7 Based on model 1 in Table 11.2, give the predicted survival time for a cou-

ple together for 2 months at wave 1, in which the woman was 19 at the start

of the union, in which the man had been married before, in which both part-

ners had drinking problems, whose open disagreement score was 30, and

whose conflict resolution score was 3.

11.8 Suppose that there is a time-varying dummy, M, for marital status such that

M � 1 if married and 0 if unmarried. Continuing with the substantive exam-

ple from Exercise 11.1, say that we have two subjects with the following val-

ues for M at the times indicated:

Let the Cox model for the hazard of rearrest be ln hi (t) � λ0 (t) � δMi (t),

where δ0. Demonstrate, using these data points, that the ratio of hazards

for case 1 versus case 2 is nonproportional, due to the time-varying covari-

ate in the model.

Use the following information for Exercises 11.9 to 11.11. Yamaguchi (1991)

employed Cox regression to explore the impact of several factors on the hazard of

dropping out of college. The sample consisted of 265 students from the High

School & Beyond Survey who were high school seniors in 1980 and who

subsequently entered four-year colleges. The follow-up period was 1980–1984.

The event constituting a “failure” consisted of either dropping out of the initial

college of choice or transferring to a different college. Those who graduated or

were still in the same school at the end of the study (1984) were considered

censored observations. Duration in college was measured in months. The

predictors used were:

Time M for M for

(weeks) Case 1 Case 2

10 0 1

15 0 0

30 1 1

42 1 0
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SEX � dummy for being female.

GRD � self-reported high-school grades (1 � “mostly A’s” to 8 � “mostly D’s”).

PRT � dummy for being a part-time student (“full-time student” is the contrast).

LAG � time lag (months) between high-school graduation and college entry.

MS � time-varying dummy for being married at time t.

EMP � time-varying dummy for being employed at time t.

11.9 The first model investigated by Yamaguchi resulted in the following equation:

r̂i � .324 SEX � .285 GRD � 1.462 PRT � .127 LAG � .086 PRT * LAG.

LR χ2
(5)

� 49.57. Interpret the results by interpreting all coefficients. (All

effects except for SEX are significant at p � .05.)

11.10 Suppose that the baseline survivor function for the first five months is 1,

.995, .991, .926, .914. Give the estimated survival function for a male full-

time student whose high-school grades were mostly B’s (GRD � 3), and

who waited 12 months before starting college.

11.11 The second model investigated produced the following equation:

r̂i � .340 SEX � .289 GRD � 1.368 PRT � .125 LAG � .081 PRT * LAG

� 1.255 MS � .512 EMP.

LR χ2
(7)

� 62.70.

(a) Test whether the effects of both time-varying covariates simultaneously

equal zero.

(b) Interpret the effects of marriage and employment.

(c) Estimate the discriminatory power of the model.

11.12 Teachman (2003) examined the influence on the hazard of first union for-

mation (either marriage or cohabitation) of a number of demographic covari-

ates for a sample of 7477 women taken from the 1995 National Survey of

Family Growth. One model produced the following hazard ratios (net of

other covariates) for ever having lived before age 16 in various alternative

family forms, compared to continuous habitation with both biological par-

ents (the reference group):

Mother-only family: 1.10.

Step-parent family: 1.21.

Parent and cohabiting partner family: 1.26.

Two cohabiting parents family: 1.12.

Residual family type: 1.24.

Interpret the effect of living in a family with two cohabiting parents. Give

the hazard ratios for living in a mother-only family versus living in each of
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the following family arrangements: a step-parent family, a family consisting

of one parent and cohabiting partner, and a two cohabiting parents family.

11.13 A Cox regression for the log-hazard of union disruption based on the 1230

couples in the NSFH used the following predictors: relationship duration in

months (DURATION), female’s age at union inception (FAGUNION),

whether either partner experienced a parental divorce (PARENTAL), whether

the household had children under 5 (CHDN5), and whether either partner was

a minority (MINORITY). Partial results are:

(a) Is the model significant as a whole?

(b) Compute the Wald χ2 for each coefficient. Which coefficients are

significant?

(c) What is the discriminatory power of the model?

11.14 Added to the model in Exercise 11.13 is a nonproportional effect of

PARENTAL, of the form PARENTAL * TIME, producing:

(The effect of PARENTAL in this model is .079.) Test whether

PARENTAL has a significant nonproportional effect. Irrespective of the

outcome of the test, show the hazard ratio for those with versus without

parental divorce experience at 1 month’s, 10 months’, 30 months’, and

50 months’ duration.

11.15 A Cox regression for the log-hazard of union disruption based on the 1230

couples in the NSFH used the following wave 1 predictors: male partner

was violent (HEHIT), female partner was violent (SHEHIT), male’s rela-

tionship happiness (HUSHAP), female’s relationship happiness (WIFHAP),

male’s relationship commitment (HCOMMIT), female’s relationship com-

mitment (WCOMMIT). Partial results are as follows:

Variable b

PARTIME .00314

�2 ln L 4556.388

Variable b σ̂b

DURATION �.015 .006

FAGUNION �.042 .009

PARENTAL .220 .133

CHDN5 .103 .120

MINORITY .200 .129

�2 ln L0 4599.743

�2 ln L1 4556.715
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(a) Interpret the significant (at p � .05) effects.

(b) By what percent is the hazard of disruption elevated when the male has

been violent versus when the female has been violent.

(c) If the estimated covariance of the parameter estimates for HEHIT and

SHEHIT is �.05, give a 95% confidence interval for the ratio of the haz-

ard of disruption for couples characterized by male violence versus cou-

ples characterized by female violence.

(d) What is the discriminatory power of the model?

11.16 The following data represent age at first sexual intercourse or censoring for

a sample of six teenage girls, along with mother’s educational level and a

dummy for family type (1 � “two-parent biological,” 0 � “other”):

a1 � uncensored; 0 � censored.

If the estimate of the effect of mother’s education from a Cox model stratified

by family type is �.144, give �2 ln L for the stratified Cox model.

11.17 The following data represent times in months to voluntary job termination

or censoring for five employees, along with the cumulative number of days

of sick leave taken by the start of the study:

a1 � uncensored; 0 � censored.

Censoring Days of

Subject Indicatora Months Sick Leave

1 1 14 2

2 1 3 0

3 1 9 12

4 0 15 1

5 0 2 4

Censoring Family Mother’s

Subject Indicatora Age Type Education

1 1 16 1 13

2 0 19 1 15

3 1 17 1 20

4 1 15 0 12

5 1 16 0 16

6 0 14 0 17

Variable b σ̂b

HEHIT .316 .248

SHEHIT .132 .242

HUSHAP �.084 .051

WIFHAP �.144 .047

HCOMMIT �.095 .073

WCOMMIT �.425 .070

LRχ2 150.153
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If the Cox estimate for the effect of days of sick leave is .070, give �2 ln L

for the Cox model with days of sick leave as the predictor.

Use the Union Disruption Data for the following computer exercises involving Cox

regression.

11.18 Estimate a Cox model for the hazard of disruption as a function of MEDUC,

FEDUC, MINCOME, FINCOME, HE1, and WE1. Adjust for left truncation

using the method, outlined by Allison (1995), in which one of the predictors

is made into a time-varying covariate as follows. A covariate, say MEDUC,

is labeled MEDUCTD. MEDUCTD is then set to missing while SURVIVAL

is less than DURATION; otherwise, it is set equal to MEDUC. MEDUCTD

is then used in the model in place of MEDUC.

(a) Report the parameter estimates and note which ones are significant.

(b) Interpret the effects of FEDUC and MINCOME.

(c) Test (at α � .05) for the equality of the effects of male and female edu-

cation as well as the equality of effects of male and female income using

individual Wald tests.

11.19 Test whether the effects of MEDUC versus FEDUC and the effects of MIN-

COME vs. FINCOME are equal using a global test for both equalities simul-

taneously.

11.20 Estimate the model in Exercise 11.15 stratified by MINORITY (minority sta-

tus of the couple), and test whether the parameter vector is invariant over strata.

11.21 Estimate a model of union disruption as a function of DURATION, FAGU-

NION, FIRSTUNI, ALCDRUG, DISAGMT, COMSTYLE, and the interaction

of DISAGMT with COMSTYLE. Estimate the impact of DISAGMT at 1 stan-

dard deviation above the mean level of communication style, and test whether

it is significant at this level of COMSTYLE. (Hint: Use targeted centering.)

11.22 Perform May and Hosmer’s (1998) goodness-of-fit test for model 3 in Table

11.2.
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CHAPTER OVERVIEW

In Chapter 11 we considered various ways of modeling single, nonrepeatable events,

using Cox’s semiparametric regression model as our primary analytic vehicle. Often,

however, event histories are more complex. For example, instead of duration at risk

terminating in only one possible state, there may be multiple destination states that

terminate duration at risk. I have already alluded to one such possibility: that mar-

riages may terminate in death as well as in separation or divorce. Or, rather than

being a one-time occurrence, the event of interest may be repeatable. Examples of

repeatable events are getting married, taking a job, getting a promotion, being arrested,

or getting pregnant. In these instances, each person may contribute several survival

spells or episodes to the data file. Or, events may take place in discrete rather than

continuous time. An example already given is promotion to a higher academic rank

in institutions of higher education. Even if events occur in continuous time, however,

duration at risk may only be recorded in terms of time intervals rather than exact

times. Such discrete or interval-censored data require different modeling techniques

than those heretofore discussed.

In this chapter we expand our toolkit for survival analysis by considering the

modeling of multiple events, the modeling of repeated events, and the modeling of

data that are discrete or interval-censored. I begin with an exploration of models for

multiple events, focusing on the competing risks model. An alternative two-step

model is also considered for cases in which the competing risks model is not war-

ranted. I then move to a discussion of models for repeated events. Because repeated



episodes for a given person are likely to be correlated, I discuss several approaches

to handling the dependence of survival times across cases. Finally, I detail the

approach taken when data are either interval-censored or truly discrete. As this situ-

ation necessitates the transformation of one’s data, I discuss the data-transformation

process first and then consider how survival analysis is accomplished with the trans-

formed data file. Data for illustrating the techniques are, again, drawn from the

author’s own research.

MULTISTATE MODELS

Survival models in which duration-at-risk can terminate in any of several possible

destination states are termed multistate models (Blossfeld et al., 1989). In many

instances, event histories are characterized by multiple event types rather than a sin-

gle type. For example, duration in unmarried cohabitation can terminate in either

separation or marriage. Duration in a given job can end in either voluntary job ter-

mination, involuntary job termination, a transition to a job with a different firm, or a

promotion (or demotion) within the same firm. Duration in college can end in drop-

ping out of school, a transfer to a different college, or graduation. The most common

approach to analyzing these types of event histories is the competing risks model.

The model is predicated on two key assumptions. First, it is assumed that the transi-

tion to each event type is governed by a separate causal process. An alternative

model that assumes the same underlying process for all transitions is discussed

below. Second, it is assumed that conditional on model covariates, the multiple event

types are independent of each other. That is, the hazard of any given event type is

unrelated to the hazard of any other event type. With respect to duration in college,

for example, this would mean that those who are at especially high risk of transfer-

ring to another school are not, as a result, at any higher or lower risk for dropping

out than others. A model that allows for dependence among events is also discussed

below.

Modeling Type-Specific Hazard Rates

Suppose that for each person, i, there are a total of m � 1, 2, . . . , Q different possi-

ble destination states that could terminate his or her duration at risk. Further, let Ti

represent the variable containing the survival time for the ith person and let Mi rep-

resent the variable denoting the event type that the ith person transitioned to at time

Ti � t. Competing risks models utilize type-specific hazard rates of the form

him(t) � lim∆t→0 . (12.1)

The probability in the numerator of equation (12.1) is identical, apart from the i sub-

script, to that in equation (11.1.) defining the hazard for single events, except for the

addition of “Mi � m.” This probability is now interpreted as the conditional proba-

bility of event occurrence in some small interval of time, given survival up to the

P(t � Ti � t � ∆t, Mi � m � Ti � t)
�����

∆t
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beginning of that interval and given that the event is of the mth type. In words, him(t)

is the instantaneous rate of occurrence of the mth event type to the ith person at time

t given survival up to that time. One way of thinking about these hazards is to define

Tim as the time at which the mth event type occurred to the ith case and to imagine that

each case has a set of Ti1, Ti2, . . . , TiQ times attached to it. However, in that the

occurrence of one event removes one from the risk of occurrence of any other

events—and hence the name competing risks—we only observe one time, Ti, the one

that is the smallest (Allison, 1995). As before, of course, observations who are still

at risk at the end of the study or who are lost to follow-up are considered censored.

The overall hazard of event occurrence at any given time is simply the sum of haz-

ards for all possible event types. That is,

hi(t) ��
Q

m�1

him(t).

A Cox model for competing risks takes the form

him (t) � h0m(t) exp(xi
�ββm). (12.2)

Noteworthy is the fact that the baseline hazard function and the coefficient vector are

both subscripted with “m.” This implies that separate processes are allowed to char-

acterize each type-specific hazard: Each can have a different baseline hazard func-

tion and a different set of effect parameters. [More generally, each hazard can even

include different explanatory variables or be modeled using a different parameteri-

zation of survival time; see Allison (1995).] It turns out that the partial likelihood

function for model (12.2) factors into distinct partial likelihoods for each event type

if the competing events are considered censored cases (Allison, 1995). What this

means is that the parameters of equation (12.2) can be estimated by estimating a Cox

model for each separate event type while treating the competing events and censored

cases all as censored observations. Hence, estimating a competing risks model

involves no new techniques over those that were covered in Chapter 11. The analy-

sis of each different transition produces a LRχ2 test and a set of estimates that are

asymptotically normally distributed, enabling the usual Wald tests and confidence

intervals pertaining to the given event type.

One new question arises, however. We might ask whether a separate model is

really necessary for each event type, instead of simply treating all events the same

and estimating equation (11.11), the Cox model for a single event. A test statistic for

the null hypothesis that the same process determines all transitions is formed as fol-

lows. First, estimate equation (12.2) in the manner described above. Then sum all M

of the minus twice log-likelihoods for the resulting Cox models as

�2 ln LM ��
Q

m�1

�2 ln Lm.

Then code as the same “event” all M of the different event types and estimate a Cox

model for the occurrence of an “event.” Denote �2 ln L for this model as �2 ln LC.

Assume there are K predictors in the model, in general. The test statistic for testing
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model invariance to event type is

∆χ2
[K(M�1)] � �2 ln Lc � (�2 ln LM), (12.3)

which under the null hypothesis of invariance is distributed as chi-squared with

K(M � 1) degrees of freedom. The term K(M � 1) represents the difference in the

number of parameters estimated to construct LC versus LM. A significant result sup-

ports the competing risks approach.

Example: Transitions Out of Cohabitation

In a recent article the author examined survival time in the state of unmarried cohab-

itation for 411 cohabiting couples in the NSFH (DeMaris, 2001). Couples were all

cohabiting in wave 1 of the survey, at which time several characteristics of the cou-

ples were measured. In wave 2 of the survey interviewers recorded whether the cou-

ple was still together or not. If the couple had separated, the date of separation was

recorded. If the couple had married, the date of marriage was recorded. Thus, two

transitions were possible: separation and marriage. In all, 85 couples were still cohab-

iting unmarried, while 173 had married and 153 had separated. Those who were still

cohabiting unmarried were considered censored observations.

Demographic predictors of the hazard of a transition included female’s age at

union inception, relationship duration (in months) as of the wave 1 survey, whether

either partner was a minority, and whether the couple experienced a birth to the

union between waves 1 and 2, the last being a time-varying covariate. Several other

measures tapped the quality of the relationship as measured in wave 1: frequency of

open disagreement, conflict resolution style, each partner’s relationship happiness

(on a scale from 1 � “very unhappy” to 7 � “very happy”), and each partner’s per-

ception of relationship stability (on a scale from 1 � “very high probability of sepa-

rating” to 5 � “very low probability of separating”). The focus variables pertained to

intimate violence experienced by the couple. Measures of intimate violence con-

sisted of dummies for whether or not the male or the female had been violent with

each other in the past year and whether or not the relationship had been character-

ized by intense male violence. The latter was coded 1 if the male had been the only

violent partner, or both were violent but the male’s violence was more frequent, or

the female was the only injured partner. The primary hypothesis was that violence

by either partner, and especially intense male violence, would elevate the risk of sep-

aration and diminish the risk of marriage, net of other regressors.

I estimated a competing risks model by first specifying a Cox model for the haz-

ard of separation, treating both continuous cohabitation and marriage as censored

cases. Then I specified a Cox model for the hazard of marriage, treating continuous

cohabitation and separation as censored cases. As couples had been cohabiting for

anywhere from less than one month to over 18 years when interviewed in wave 1,

both models were adjusted for left truncation. The results are shown in Table 12.1.

At first glance, it appears that the transition to marriage is better accounted for

than the transition to separation. The discriminatory power, using R2
G, of models for
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separation and marriage are .118 and .189, respectively. Only four effects are significant

for the risk of separation. Predictably, couples with a more positive conflict resolu-

tion style have lower hazards of separation than others. Also, consistent with the ear-

lier study of union disruption reported in Chapter 11, couples who were older at

union inception, as tapped by the female’s age at union inception, have lower risks

of separating. Although neither partner’s violence per se has an effect on separation,

couples characterized by intense male violence have hazards of separation that are

higher than others’ by a factor of exp(.731) � 2.077; or their hazards of separating

are about twice as high as others’. A birth to the union between survey waves reduces

the hazard of separation, similar to its effect found in Chapter 11 for the sample that

included marrieds.

Several effects are significant when predicting the transition to marriage. A more

positive conflict resolution style hastens the transition to marriage, as does a greater

frequency of disagreement. The latter effect may well be due to dissatisfaction with

being unmarried and conflicts over whether or when to make the transition to mar-

riage. Surprisingly, the only effect of factors measuring violence is for violence by

the female partner, which lowers the transition rate to marriage. I have earlier spec-

ulated that as it is still customary for the male to propose marriage, her violence may

inhibit that step on his part (DeMaris, 2001). Minority couples have lower hazards
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Table 12.1 Competing Risks Models for Exits from Unmarried

Cohabitation

Transition to Transition to 

Predictor Separationa Marriageb

Open disagreement �.013 .073**

Conflict resolution style �.155* .138*

Male’s violence �.620 .755

Female’s violence .479 �1.286*

Intense male violence .731* �.307

Union birthc
�.878* �2.367**

Female’s age at union �.035** �.013

Relationship duration (months) �.006 �.010

Minority couple �.062 �.765***

Male’s relationship happiness .009 .196*

Female’s relationship happiness �.153 �.179*

Male’s relationship stability �.212 .321**

Female’s relationship stability �.027 .312*

Likelihood ratio χ2 51.896*** 86.126***

Degrees of freedom 13 13

Note: n � 411.
a Survival time is censored upon transition to marriage.
b Survival time is censored upon transition to separation.
c Time-varying covariate.

* p � .05. ** p � .01. *** p � .001.



of marriage, net of other factors. Somewhat counterintuitively, experiencing a birth

to the union inhibits the transition to marriage. However, this effect is consistent with

others’ findings. In particular, Wu and Balakrishnan (1995) suggest that those who

are comfortable with having children outside of marriage are probably more ideo-

logically committed to long-term cohabitation as an alternative to marriage. The

remaining indices of marital quality have predictable effects except for the female’s

relationship happiness: The happier she is with the relationship, the lower the haz-

ard of marriage. Most likely this just reflects the fact that if women are happy with

the relationship as is, they are reluctant to formalize the union.

Test for Model Invariance. Although regressor effects appear to be quite different for

the event of separation, as opposed to marriage, this could simply be the result of

sampling error. As mentioned, the null hypothesis of model invariance is that the

same baseline hazard function and the same parameter vector characterize each

transition type. This hypothesis was evaluated by estimating a Cox model for any

transition out of cohabitation, where marriage and separation are treated as the same

event, and employing the test statistic in equation (12.3). Minus twice the log likeli-

hood for the combined-event model was 2907.772, while �2 lnL for the models for

separation and marriage, respectively, were 1314.038 and 1512.889. The test statistic is,

therefore, ∆χ2
� 2907.772 � (1314.038 � 1512.889) � 80.845. As the model has 13

covariates, the degrees of freedom equal 13(2 � 1) � 13. At a p-value of less than

.00001, the test is quite significant, suggesting that the two events are characterized

by different hazard processes.

Alternative Modeling Strategies

Two-Step Approach. As indicated, the competing risks model presumes that transi-

tions to different end states are characterized by different causal processes acting in

parallel (Allison, 1995). However, some multistate processes may follow a different

pattern. For example, the transition to a romantic union from the single state may be

determined primarily by one set of factors, such as subjects’ opportunities to meet

potential partners or their own attractiveness in the marriage market. However,

whether that union is an unmarried cohabitation rather than a marriage may be more

strongly determined by other factors, such as subjects’ educational level, religiosity,

or family background. This raises the possibility of an alternative modeling strategy

in which one mechanism is allowed to govern the timing of a transition, in general,

and a separate mechanism governs the type of transition, given that a transition

occurs. Dubbed the two-step approach by Hachen (1988), the model is estimated by

first estimating a survival model—say, the Cox model—for the transition to any

state. In this case, all outcome states are treated the same (i.e., they are all coded as

the same state). In a second step, only the subjects who made a transition are

selected, and a multinomial (or binary) logit model is estimated to examine the

impact of model covariates on which state is selected. In this second analysis, the log

of survival time is included as a covariate (Allison, 1995). Note that this second step

is not an event history analysis.
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The choice of whether to employ the competing risks or two-step approach is

strictly a theoretical decision. Allison (1995) suggests that the two-step approach is

especially appropriate if the different destination states are alternative means for

achieving the same goal, as in married versus unmarried cohabitation. By this crite-

rion, the competing-risks model is clearly more appropriate for the analysis of cohab-

iting transitions, as separation and marriage fulfill very different goals for cohabitors.

Hachen (1988) provides detailed guidelines concerning which model to use, but these

are more conceptually complex. Let P(m) represent the conditional probability that

the mth state is entered, given transition to some state. Hachen suggests that the two-

step model is to be preferred whenever the effect of covariates on a transition, in gen-

eral, is invariant to changes in the P(m) for m � 1, 2, . . . , Q. One example given by

Hachen considers the effect of taking a high school sex-education class on the first

type of contraception used during sexual intercourse. Suppose for some reason the

availability of, say, IUDs to adolescents were suddenly curtailed. If the effect of high

school education on the hazard of first contraceptive use in general is not affected by

the lowered probability of IUD use, the two-step model should be employed.

Otherwise, the competing risks model would be preferable.

Dependence of Events. The assumption of competing risks models that alternative

destination states are independent of each other may often be untenable. Instead,

unmeasured factors may link each of the states. Using, again, the formation of the

first romantic union as an example, it is likely that unmeasured characteristics of

individuals, such as a need for intimate companionship, raise or lower the risk of

union formation, in general. Therefore, the hazard of cohabitation and the hazard of

marriage would tend to be correlated across cases. Hill et al. (1993, p. 247) maintain

that hazard models that ignore this type of dependence among hazards “may provide

inaccurate estimates of base hazard rates or parameters.” The authors have formu-

lated a shared unmeasured risk factors (SURF) model to adjust for correlated haz-

ards, which can be estimated using conventional software. The technique currently

has several limitations, however. It has only been formulated for the case of two

competing risks. Moreover, only a positive correlation between risks is allowed for;

and the approach assumes that the two-step model is appropriate. If these conditions

are satisfactory, the model can be estimated via a two-stage procedure that is detailed

in the authors’ article (Hill et al., 1993).

MULTIEPISODE MODELS

Models for repeated events are termed multiepisode (Blossfeld et al., 1989) or recur-

rent event models (Hosmer and Lemeshow, 1999). Rather than contributing just one

spell to the data file, each case now contributes e � 1, 2, . . . , E potential spells to the

file, where e represents a given event number, and E the total number of events expe-

rienced by the ith case. Each spell is a survival time in the nonevent state until the

event recurs. There are several potential ways of modeling repeated events (see, e.g.,

Hosmer and Lemeshow, 1999). The model discussed here is that advocated by
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Allison (1984, 1995) and is relatively flexible and easy to estimate. Its form is

hie(t) � h0(t � te�1) exp(xie
�ββ). (12.4)

The notation needs some clarification. The response, hie(t), is the hazard of the eth

event for the ith person. The baseline hazard function, h0 (t � te�1), is assumed to be

the same for each event. However survival time is denoted as “t � te�1,” where t is

survival time until the eth event or censoring and te�1 is survival time until the pre-

vious event. The difference is the survival time for the current, or eth, event. In other

words, survival time for each spell begins at inception of risk for the current event,

which is normally the time of occurrence of the previous event (although there are

exceptions, e.g., the example of unemployment spells below). This follows the

assumption that cases are not at risk for a subsequent event until after the occurrence

of a prior event. [An alternative is to reckon survival time for all spells from the incep-

tion of risk for the first event; see Hosmer and Lemeshow (1999) for a discussion of

alternative start times for recurrent event data.] The e superscript on x indicates that

covariate values may change with the risk periods for each event. Covariates may

also change over time within each risk period, as always. The recurrence of an event

terminates a given spell. Spells that are ongoing at the end of the study constitute

censored cases. Estimation is straightforward: One simply treats each spell for a

given case as a separate observation and then pools all spells over all n cases in the

sample to arrive at a total file of nE observations. One then estimates the Cox model

for “an event” in the usual fashion.

Example: Unemployment Spells

As an example, Goza and DeMaris (2003) examined transitions out of unemploy-

ment for a sample of 283 Brazilian immigrants residing in the United States and

Canada in 1990–1991. The authors’ study was primarily focused on testing predic-

tions from job search theory regarding the duration of unemployment for immi-

grants. Each respondent in the study experienced, on average, about 2.2 periods of

unemployment, ranging from under one month to as much as five years in duration.

Inception of risk for each spell was the date of loss of the previous job, rather than

the date on which the previous job began. Spells that ended in reemployment were

considered uncensored cases. Unemployment spells that were ongoing when data

collection ended were considered censored. When all spells were pooled over all

cases, a total of 620 unemployment spells constituted the analytic sample. Of these,

578 were uncensored and 42 were censored. A series of Cox models for the hazard

of reemployment was estimated using these data and is shown in Table 12.2.

Model 1 in Table 12.2 contains the eight focus variables in the study: age at the

start of unemployment, duration in months on the previous job, the respondent’s

number of relatives living in North America, cumulative time in years in North

America, the log of monthly income on the last job, education in years of schooling,

a dummy for being female, and a dummy for English proficiency being self-rated as

at least “good” when entering North America. All effects are significant at the .05
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level. Longer spells of unemployment are associated with being older at the start of

the unemployment spell, spending more time in the previous position, having been

in North America longer, being female, and surprisingly, having good English

proficiency. The last effect is perhaps the result of those with better English skills

having higher expectations for good positions and therefore holding out longer for

them (Goza and DeMaris, in 2003). On the other hand, shorter unemployment spells

obtain for those with more relatives in North America and those with more human

capital in the form of attained educational level and income from the last job.

Nonindependence of Survival Times

Model 1 is the most restrictive possible model in the sense that it makes several

assumptions about the data that may or may not be tenable. To begin, it is assumed

that the 620 spells constitute a set of independent observations, given model covari-

ates. In all likelihood this assumption is violated since the same people contribute

more than one spell to the data set. Therefore any unmeasured factor that might ele-

vate (or diminish) the rate of reemployment for a given person will tend to shorten

(or lengthen) successive spells for the same person, resulting in correlated survival

times. One solution recommended by Allison (1984) is to add covariates that tap into

characteristics of the person’s prior event history, such as the number of events prior

to the current spell or the length of the previous spell. In that independence of obser-

vations is assumed to hold net of model covariates, including the proper covariates

might render the independence assumption tenable. As a result, model 2 includes

two additional factors pertaining to respondents’ job histories: The cumulative num-

ber of months of unemployment experienced and the cumulative number of jobs
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Table 12.2 Cox Multiepisode Models for Transitions Out of Unemployment

Predictor Model 1 Model 2 Model 3a Model 4b

Age at unemployment �.118* �.124* �.136* �.113

Duration of previous job (months) �.026** �.028** �.030** �.026**

Number of relatives in North America .020* .019* .184 .021*

Cumulative time in North America �.136*** �.113* �.152*** �.136**

Log of monthly income last job .061*** .064*** .068*** .080***

Education .051*** .049*** .058*** .052***

Female �.351** �.349** �.371** �.369***

Good English proficiency �.509** �.509** �.549* �.477*

Cumulative months unemployed �.018

Cumulative no. previous jobs .001

θ̂ .128**

Note: n � 620 unemployment spells.
a Shared-frailty model.
b Stratified by job-spell number.

* p � .05. ** p � .01. *** p � .001.



taken by the respondent. Neither additional factor is significant. More important,

however, none of the other effects are appreciably altered when these factors are con-

trolled.

A second approach to the dependence problem is to adjust the standard errors of

coefficients to account for the dependence of survival times within a person’s event

history. Lin and Wei (1989) proposed a “sandwich” estimator for the covariance

matrix of parameter estimates from a potentially misspecified Cox model. The

resulting estimates of variances and covariances of Cox regression coefficients are

robust to various types of misspecification, including dependence among observations.

(As we will discover below, the problem of dependence can be cast in terms of an

omitted variable; hence such misspecification is in the form of omitted-variable

bias.) The robust estimator of V(b) is available in mainstream software packages

such as SAS and STATA. Model 1 was reexamined employing the robust standard

errors of coefficients (results not shown). However, again, results were not altered

appreciably. The largest change in standard error estimates was for the coefficient of

good English proficiency: The unadjusted standard error was .182, while the robust

estimate was .192. The coefficient remained significant at p � .008 in either case.

A third approach to handling nonindependence of survival times is to employ the

fixed-effects partial likelihood (FEPL) approach (Allison, 1996). This strategy uti-

lizes a fixed-effects model for the hazard, which takes the form

hie(t) � h0(t � te�1)αi exp(xie
�ββ). (12.5)

The additional multiplicative term in the model, αi, represents a fixed constant that

characterizes each person. These constants represent individual-level factors affecting

the hazard, which are responsible for the correlated survival times for events per-

taining to the same person. Normally, these factors are unmeasured and are corre-

spondingly referred to as factors reflecting unmeasured heterogeneity in the hazard.

A convenient method of estimation absorbs the αi into the baseline hazard function,

thus converting equation (12.5) into

hie(t) � h0i(t � te�1) exp(xie
�ββ). (12.6)

The reader should notice the resemblance of equation (12.6) to the stratified version

of the Cox model presented in Chapter 11. In fact, equation (12.6) is estimated sim-

ply by estimating the Cox model while stratifying on individuals. However, a major

drawback to this approach, as mentioned in Chapter 11, is that only the effects of

covariates whose values vary across or within spells may be estimated. In other

words, individual characteristics such as gender or race that remain constant across

the spells for a given person cannot be assessed. Nevertheless, all such characteris-

tics are implicitly controlled during model estimation. In the unemployment exam-

ple the only covariates in model 1 that vary over unemployment spells for a given

immigrant are age at unemployment, duration of previous job, cumulative time in

North America, and log of monthly income. A FEPL model containing just these four

covariates was therefore estimated (results not shown). The only significant effect
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was for log of monthly income, and its value was .059, which tends to agree with the

covariate’s effect in model 1.

A fourth approach to the dependence problem is similar in spirit to the unob-

served-heterogeneity approach just discussed. However, instead of being fixed, the

heterogeneity term is modeled as a random variable and referred to as a frailty.

Frailty models account for a burgeoning literature within survival analysis (see, e.g.,

Aalen, 1994; Blossfeld and Hamerle, 1990; Blossfeld and Rohwer, 1995; Galler and

Poetter, 1990; Hosmer and Lemeshow, 1999; Klein and Moeschberger, 1997; Land

et al., 2001; McGilchrist and Aisbett, 1991) and are becoming more available in

mainstream software. When the frailty characterizes a group of observations, the

model is referred to as a shared-frailty model. In recurrent-event data, for example,

the shared-frailty model is applicable since each person contributes a group of obser-

vations to the data in the form of multiple episodes. The Cox shared-frailty model

for multiepisode data is (Klein and Moeschberger, 1997)

hie(t) � h0(t � te�1)υi exp(xie
�ββ), (12.7)

where the frailty, υi, is assumed to have some density with a mean of 1 and a vari-

ance of θ. The gamma density is often chosen for its mathematical tractability.

Frailties greater than 1 imply a greater hazard of event occurrence, net of covariates.

That is, these people are more “frail,” or susceptible to the event. Frailties less than

1 indicate greater resistance to the event, or longer survival times. The difference

between equations (12.5) and (12.7) is subtle but important. In equation (12.5), αi is

a fixed effect, whereas in equation (12.7), υi is a random variable with some popu-

lation distribution. By “fixed effect” is meant that there is some finite set of αi in the

population that are constant values over repeated sampling. That is, each sample of

people is a sample from the same set of limited αi values, with the same value of α
characterizing potentially many people in the population. On the other hand, υ in

equation (12.7) is a random variable that is not fixed over repeated sampling, and

may in fact be unique to each person. The set, assumed to be infinite, of all possible

υi in the population is represented by some distribution function.

Model 3 in Table 12.2 is the Cox shared-frailty model for the unemployment data,

assuming a gamma distribution for the frailties. The model was estimated using

STATA. The estimate of the frailty variance is .128 and is significantly different from

zero according to a likelihood-ratio test. It is therefore important to take account of

individual frailties in the model. That said, however, results are, again, not radically

altered compared to model 1, except that in model 3 the number of relatives in North

America no longer has a significant effect on the hazard.

A word of caution is in order regarding unobserved heterogeneity. In the Cox

model, the shape of the hazard function is ignored. However, in parametric models

that specify some form for the hazard, care must be exercised in interpreting the

effect of a hazard that appears to be declining over time. Unobserved heterogeneity,

if unaccounted for, can artificially generate a declining hazard. The reason is that

over time, the frailest people experience the event and drop out of the risk set. This

leaves a risk set that is composed increasingly of the most “resistant” individuals,
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making it appear that the risk for the event is declining over time (Blossfeld and

Rohwer, 1995). As unobserved heterogeneity is rarely completely accounted for, a

declining hazard function should always be regarded with some skepticism.

Model Variation across Spells

An additional assumption of model 1 is that each successive spell of unemployment is

characterized by the same hazard function for reemployment. This, of course, may not

be the case. Many times the first episode of any event has a different survival trajec-

tory than later episodes. To investigate this possibility, I created a variable represent-

ing the sequencing of unemployment spells. This variable, job-spell number, was

coded 1 for the first unemployment spell, 2 for the second unemployment spell, 3 for

spell numbers 3 or 4, and 4 for spell numbers 5 or higher. Later spells were collapsed

due to relatively few people having more than four unemployment episodes. I then

dummied up job-spell number and added the three dummies to model 1 (results not

shown), producing a base model for testing interaction. In the next step, I allowed the

job-spell number dummies to interact with time (results not shown) in order to capture

changes in baseline hazards across unemployment spells. The likelihood-ratio test for

the addition of the interaction terms produced a nonsignificant result (∆χ2
(3)

� 2.2902,

p � .514), suggesting that the baseline hazard function did not vary across unem-

ployment spells. Nevertheless, model 4 in Table 12.2 reestimates model 1 but stratifies

by job-spell number. Again, the results are not appreciably altered, compared to model

1, except that age at unemployment in model 4 is not quite significant.

A final simplifying assumption made in model 1 is that the effects of covariates

on the hazard of reemployment are the same for each successive unemployment

episode. Again, such an assumption may not be tenable. We might expect, for exam-

ple, that having many relatives to help in the job search would have a stronger effect

in later unemployment periods than in earlier ones. During an initial episode of

unemployment, people may rely on only their own credentials to find jobs. After

repeated unemployment spells, however, people may begin to call on their larger kin

network for additional aid in helping to secure a good position. A general test for the

interaction of model 1 covariates with job-spell number was effected by creating the

cross-products of the three job-spell number dummies with the eight covariates in

model 1 and then adding these to the base model described above (results not

shown). Due to small cell sizes, however, the interaction of job-spell 4 with good

English proficiency could not be entered into the model. The test for interactions

resulted in a ∆χ2 of 66.566, which, with 23 df is significant at p � .00001. This sug-

gests that one or more regressors has different effects, depending on the sequencing

of the unemployment spell. Model 1 was therefore estimated separately for obser-

vations defined by different values of job-spell number (results not shown). As

expected, the effect of having relatives in North America only becomes significantly

positive in the later unemployment episodes—job-spell numbers 3 or 4. At the same

time, the effects of gender and human capital (i.e., income and education) are only

significant in earlier episodes—job-spell numbers 1 or 2—and decline to non-

significance thereafter.
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MODELING INTERVAL-CENSORED DATA

As alluded to previously, survival time may be a discrete rather than a continuous

variable. Or, even if theoretically continuous, all that may be recorded is whether or

not events have been experienced in some interval of time. In either case, the data

are described as interval-censored and the appropriate model is a discrete-time haz-

ard model. However, a distinction should be made from the outset between a

discrete-time analysis vs. a discrete-time model. If survival time is truly discrete, the

model being estimated is a discrete-time model. If survival time, although interval-

censored, is truly continuous, on the other hand, then employing the discrete-time

approach results only in a discrete-time analysis. That is, the model for a discrete-

time process is being used to approximate the underlying continuous-time model.

Discrete-Time Hazard Model and Estimation

Suppose that survival time for the ith case, denoted again by Ti, is now a discrete

variable representing time periods in which events occur. For example, in the study

of time to promotion among college professors by Long et al. (1993), Ti was a dis-

crete variable measured in single years, since promotions take effect at the beginning

of the academic year. Survival time was therefore measured in years from the date

of hire (for promotion to associate professor) or from the previous promotion (for

promotion to full professor) until the current promotion or censoring. If, in the union

disruption data, survival time were only measured in six-month intervals, then

Ti � 1, 2, 3, . . . , would capture the six-month interval in which separations or cen-

soring occurred. In either case, the discrete-time hazard, Pit, is defined as a proba-

bility

Pit � P(Ti � t � Ti � t). (12.8)

That is, Pit is the conditional probability that an event occurs at time (or in time inter-

val) t to the ith case given that no event occurs before time t (Allison, 1982).

A popular model for the discrete-time hazard as a function of covariates is the logit

model, which employs the log-odds of event occurrence at time t as the response

ln�
1 �

Pit

Pit

� � α(t) � xi
�ββ, (12.9)

where α(t) represents some function of time, and xi
�ββ, as in the Cox model, repre-

sents a weighted sum of covariates times parameters, excluding an intercept term.

The term α(t) captures the manner in which the log-odds of event occurrence

depends on time. As explained below, this term is quite flexible and can take a

variety of forms. Also, note that when the probability of an event in any given time

interval is small, the log-odds of event occurrence is approximately equal to the log-

hazard of event occurrence. Why? Notice that when Pit is small, say a value of .05

or less, then 1 � Pit is approximately 1. For example, 1 � .05 � .95 � 1. Therefore,

Pit / (1 � Pit) � Pit /1 � Pit. Hence, equation (12.9) can be regarded as a model for the
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log-hazard of event occurrence given small Pit’s in each interval, and interpreted

accordingly.

Likelihood Function for Discrete-Time Data. Estimation of equation (12.9) is typ-

ically performed using a transformed data set. To provide the rationale for this trans-

formation, I now consider the likelihood function for model (12.9). This explication

is, admittedly, algebraically tedious. But it is key to the reader’s understanding of the

procedure employed to estimate discrete-time models. To continue, let δi be a cen-

soring indicator for the ith case, coded 1 if an event occurs at time ti, and 0 if the case

is censored at time ti. The likelihood function for model (12.9) is

L(ββ � t, xi) ��
n

i�1

[P(Ti � ti)]
δi [P(Ti 	 ti)]

1�δi. (12.10)

Now, for those who experience the event at time ti, their contribution to the likeli-

hood is P(Ti � ti). For those who are censored at ti, the contribution is P(Ti 	ti).

Further, if Piti
is the probability that the ith case experiences the event at time ti, then

1 � Piti
is the probability that no event is experienced at ti. And by probability rules,

the probability of surviving to time ti without experiencing the event is simply the

product of (1 � Piti
) over all values of Ti up to time ti. That is,

P(Ti 	 ti) � �
ti

j =1

(1 � Pij) (12.11)

and the probability that the event does not occur before ti but then occurs at time ti
is then Piti

times the probability of surviving to time ti � 1:

P(Ti � ti) �Piti �
ti�1

j�1

(1 � Pij). (12.12)

Substituting expression (12.11) for P(Ti 	 ti) and expression (12.12) for P(Ti � ti)

into equation (12.10), the likelihood function can be expressed as

L(ββ � t,xi) ��
n

i�1
�Piti �

ti�1

j�1

(1 � Pij)�
δi

��
ti

j=1

(1 � Pij)�
1�δi

. (12.13)

Taking logs of both sides of equation (12.13), we have the log-likelihood for the

discrete-time model:

ln L(ββ � t,xi) ��
n

i�1
�ln�Piti �

ti�1

j�1
(1 � Pij)�

δi
� ln��

ti

j�1
(1 � Pij)�

1�δi�
��

n

i�1
�δi ln Piti

� δi   �
ti�1

j�1

ln (1 � Pij) � (1 � δi)�
ti

j�1

ln (1 � Pij)�

��
n

i�1
�δi ln Piti

� δi   �
ti�1

j�1

ln (1 � Pij) ��
ti

j�1

ln (1 � Pij) � δi �
ti

j�1

ln (1 � Pij) �
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��
n

i�1
�δi ln Piti

� δi �
tj�1

j�1

ln (1 � Pij) ��
ti

j�1

ln (1 � Pij) � δi ln (1 � Piti
)

� δi �
ti�1

j�1

(1 � Pij) �
��

n

i�1
�δi ln �

1�

Pi

P
ti

iti

� ��
ti

j�1

ln (1 � Pij) �,

or

ln L(β � t, xi) ��
n

i�1

δi ln �
1�

Pi

P
ti

iti

���
n

i�1

�
ti

j�1

ln (1 � Pij) . (12.14)

Now, suppose that we define a dummy variable, yij, such that yij � 1 if the ith case

experiences an event at time ti, and 0 otherwise. We can then rewrite equation

(12.14) as

ln L(ββ � t,xi) ��
n

i�1

�
ti

j�1

yij ln �
1�

Pi

P
j

ij

� ��
n

i�1

�
ti

j�1

ln (1 � Pij) . (12.15)

Notice that the second sum in the first term on the right-hand side of equation (12.15)

will be zero until time ti, at which point the first term on the right-hand side of equa-

tion (12.15) will be identical to the first term in equation (12.14). However, equation

(12.15) is now in a recognizable form. Consider the log-likelihood function for the

logistic regression model, which I will denote as ln LLR [see equation (7.13)].

Letting πi � exp(xi
�ββ)/[1 � exp(xi

�ββ)] in equation (7.13), we have

ln LLR ��
n

i�1

[yi ln πi � (1 � yi) ln (1 � πi)]

��
n

i�1

[yi ln πi � ln (1 � πi) � yi ln (1�πi)]

��
n

i�1

yi ln �
1 �

πi

πi

� ��
n

i�1

ln (1 � πi ). (12.16)

What the reader should now recognize is that the log-likelihood for the discrete-time

hazard model in equation (12.15) is just the log-likelihood for a logistic regression

model [e.g., equation (12.16)] for which the units of analysis are time periods rather

than individuals. This means that model (12.9) is estimated by first converting per-

son-level data, in which people are the analytical units, into person-period data, in

which people’s time periods are the analytical units. One then estimates equation

(12.9) as an ordinary logistic regression model using the person-period data (as

demonstrated below).

Approximating a Continuous-Time Process. If time is truly discrete, equation

(12.9) is an appropriate model. However, if time is truly continuous but the data are
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interval-censored, the appropriate model is the interval-censored Cox model

(Allison, 1995; Hosmer and Lemeshow, 1999):

ln[�ln(1 � Pit)] � α(t) � xi
�ββ, (12.17)

which is simply the complementary log-log model applied to person-period data.

If survival times are generated by the Cox model and then grouped into intervals,

the corresponding model for Pit is equation (12.17) (Allison, 1982, 1995). This

implies that the parameter vector, ββ, in equation (12.17) is identical to that in the

underlying Cox model and can therefore be given the same interpretation.

Moreover, the parameter vector in equation (12.17) is invariant to interval length,

which is not true of model (12.9). This doesn’t mean that sample estimates of

equation (12.17) are invariant to interval length, but rather only that the underly-

ing theoretical model is (Allison, 1982). At any rate, equation (12.17) is the cor-

rect model to use whenever time is theoretically continuous and the Cox model is

presumed to underlie the data.

Converting to Person-Period Data

The process of converting from person- to person-period data is straightforward. It

merely involves expanding individual observations by the number of time intervals

they contribute to the process under study. That is, a given case’s data record is repli-

cated (including the original record) as many times as its number of intervals of sur-

vival time. Covariate values are either duplicated in each replication if they are

time-invariant, or changed appropriately on successive replications if they are time-

varying. A binary indicator of event occurrence takes the value 0 in each replication

if the case is censored. If the case is uncensored, the event indicator is coded 0 in

each replication except the final one, in which it is coded 1. A variable, T, repre-

senting the time-interval number, is also recorded with the values 1, 2, 3, . . . , τ,

where τ represents the last time interval observed for that case. Once the data are

converted, the event indicator can be regressed on a set of covariates, using model

(12.9) or (12.17). The term α(t) in the model utilizes some parameterization for T.

The most general parameterization is simply to represent T with a series of τ � 1

dummies in the model. This is equivalent to the unspecified function of time implicit

in the Cox model.

As an example, let’s consider the conversion of the data on union disruption for

the 1230 NSFH couples from Chapter 11. In this case, time is theoretically continu-

ous, which is why the Cox model was used for the analyses in Chapter 11. Suppose,

however, that we simulate the situation in which survival time is recorded only in

six-month intervals. We begin by recoding survival time for each couple according

to the number of six-month intervals it represents. For the moment I ignore left trun-

cation and treat inception of risk as beginning at the wave 1 survey. The maximum

time recorded from wave 1 until disruption or censoring was 86 months. I therefore

created a variable, INTERVAL, ranging from 1 to 15, representing survival time—

in six-month increments—for each couple. Those whose survival time was less than

MODELING INTERVAL-CENSORED DATA 433



or equal to six months were coded 1, those surviving more than six months but no

more than a year were coded 2, and so on. I then replicated each couple’s data up to

a maximum of 15 times, depending on their value of INTERVAL. For example, if

INTERVAL was 7, the couple’s record was replicated seven times. If INTERVAL

was 15, it was replicated 15 times, and so on. In the resulting couple-period data set,

INTERVAL was relabeled TIME. The event indicator, named DISRUPTD, was

coded as 0 on each replicated record for censored cases. For uncensored cases, DIS-

RUPTD was coded 0 for each replicated record except the last, where it was coded

1. In all, 12,480 records were produced in the couple-period data set. Table 12.3 fur-

ther illustrates the conversion process.

Panel A in the table shows the couple-level data for three couples. The first couple,

ID 18, is a continuously cohabiting couple who separated 33 months after wave 1.

They had been together nine months before the initial survey. The second couple was

cohabiting at wave 1 and had been living together three months before the start of

the survey. They then married 13 months after wave 1, and separated 38 months after

wave 1. The third couple had been married for 21 months prior to wave 1 and was

censored 67 months after wave 1 by the wave 2 survey. This couple had a birth to

the union 51 months after the initial survey.

Panel B shows the couple-period version of the data. To account for left-trunca-

tion, survival time prior to the start of the study was used to update the TIME vari-

able accordingly for each couple. Hence, as couple 18 was not observed until the

second six-month interval of their risk period, TIME begins with the value 2 for this

couple. Their total survival time was 9 � 33 � 42 months, which puts their survival

time in the seventh interval. Hence, the maximum TIME value for this couple is 7.

Notice that DISRUPTD is coded 0 for times 2 through 6 and then changes to 1 when

TIME � 7. The second couple, ID 630, had been together for only three months before

wave 1. As they are still coming under observation in the first time interval, TIME

begins at 1 for them. Couple 630 got married 3 � 13 � 16 months after inception of

the union, which puts their marriage in the third interval. Thus, the time-varying

indicator of transition to marriage, COHTOMAR, changes from 0 to 1 at TIME � 3.

As their survival time is 41 months, they are last observed when TIME � 7, at which

time DISRUPTD again changes to 1. Finally, the married couple’s survival time is

21 � 67 � 88 months. However, as they are observed for only 67 months, they con-

tribute only 12 (since 67/6 � 11.17) records to the expanded data set. Nevertheless,

they do not come under observation until the fourth time interval, hence TIME

begins at 4 for this couple. Their birth took place 21 � 51 � 72 months after incep-

tion of the marriage, which puts their birth in the 12th interval. Thus, the time-vary-

ing covariate UNBIRTH is coded 0 until TIME � 12, at which point it changes to 1.

They were last observed at TIME � 15, where DISRUPTD remains at 0. Notice that

time-invariant covariates are duplicated as is on all records for all couples.

Discrete-Time Analysis: Examples

Union Disruption. Table 12.4 presents the results of estimating discrete-time mod-

els for the log-hazard of union disruption using the couple-period data for our 1230

NSFH couples. The “logit model” is equation (12.9), employing 14 dummies for the
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Table 12.3 Union Disruption Data in Couple versus Couple-Period Formats

A. Couple Data

F D D D

A U U C U

G R D U R O C R

U A U A N T H O T

N T R P I O O H O

I I M A B B N M M

I O O O R I I L A A

D N N S T R R Y R R

18 28.75 9 33 1 0 1 0

630 23.92 3 38 1 0 0 1 13

25 21.67 21 67 0 1 51 0 0

B. Couple-Period Data

F C D

A U C O I

G N O H S

U B H T R

N T I O O U

I I R N M P

I O M T L A T

D N E H Y R D

18 28.75 2 0 1 0 0

18 28.75 3 0 1 0 0

18 28.75 4 0 1 0 0

18 28.75 5 0 1 0 0

18 28.75 6 0 1 0 0

18 28.75 7 0 1 0 1

630 23.92 1 0 0 0 0

630 23.92 2 0 0 0 0

630 23.92 3 0 0 1 0

630 23.92 4 0 0 1 0

630 23.92 5 0 0 1 0

630 23.92 6 0 0 1 0

630 23.92 7 0 0 1 1

25 21.67 4 0 0 0 0

25 21.67 5 0 0 0 0

25 21.67 6 0 0 0 0

25 21.67 7 0 0 0 0

25 21.67 8 0 0 0 0

25 21.67 9 0 0 0 0

25 21.67 10 0 0 0 0

25 21.67 11 0 0 0 0

25 21.67 12 1 0 0 0

25 21.67 13 1 0 0 0

25 21.67 14 1 0 0 0

25 21.67 15 1 0 0 0

(Continued)



15 time intervals representing survival time. Actually, after adjusting for left trunca-

tion, there were 20 six-month intervals of survival time. But I collapsed intervals 15

to 20 into the value 15 in order to have enough uncensored observations in each

interval. The logit model is an approximation to the Cox model shown as model 5 in

Table 11.2. However, there are two key differences. First, the Cox model includes

prior relationship duration. This is not possible with the discrete-time approach since

prior duration is already incorporated into the time-interval dummies. Second, the

discrete-time model includes the effect of time on the log-hazard, which is ignored

in the Cox model.

The time dummies seem to suggest somewhat of a declining trend in the hazard,

in that with the exception of time interval 9, log-hazards are elevated in the first three

intervals, compared to other intervals, and significantly so, compared to the last

interval. Otherwise, covariate effects in the logit model tend to mirror those in the

Cox model except for the regressors alcohol or drug problem and open disagree-

ment, which are not significant in the logit model. The proper interpretations of logit

model effects would be in terms of the odds of dissolution. However, given the small

probabilities of disruption in each time interval, as seen in Table 11.1, the effects can

safely be interpreted in terms of hazard ratios. Hence, each unit improvement in

conflict resolution style is estimated to reduce the hazard of disruption at any given

time by a factor of exp(�.205) � .815, and so on. A more accurate estimate of the

“underlying” Cox model is shown as model 1 in Table 12.4. This is equation (12.17),

again estimated using time-interval dummies. Although the effects are similar to

those in the logit model, the coefficients for continuously cohabiting, union birth,
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Table 12.3 (Continued)

Variable Definitions

ID Couple identification number

FAGUNION Female’s age at union inception

DURATION Number of months from inception of union until beginning of

observation period

DURMOS Number of months from beginning of observation period until either

disruption or censoring

APART Censoring indicator at the couple level

UNIBIR Time-invariant dummy for a union birth

DURTOBIR Number of months from beginning of observation period until a

union birth

COHONLY Dummy for continuous cohabitation

COHMAR Time-invariant dummy for cohabitations that transitioned to marriage

DURTOMAR Number of months from beginning of observation period until the

transition to marriage

TIME Number of the current time interval

UNBIRTH Time-varying dummy for occurrence of a union birth

COHTOMAR Time-varying dummy for cohabitations that transitioned to marriage

DISRUPTD Censoring indicator at the couple-period level



and conflict resolution style, in particular, are closer to the Cox results. Again, expo-

nentiating the coefficients in model 1 provides estimates of the hazard ratios for unit

increases in the predictors.

Parameterizing the Hazard Function. An advantage of the discrete-time approach is

that one can explore various parameterizations of the hazard as a function of time to

see which best fits the data. If these functions imply nested models, we can use ∆χ2

to test whether the effect of time can be represented more parsimoniously than in the

model that employs the time-interval dummies. I therefore examined a series of

nested models, beginning with a model excluding the effect of time altogether. That

is, I began by simply omitting the time-interval dummies from the model and tested

whether a significant loss in fit resulted. If no loss in fit were experienced,
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Table 12.4 Discrete-Time Approximations to Continuous-Time Models of Union

Disruption

Logit

Complementary Log-Log Models

Predictor Model Model 1 Model 2

Intercept �1.344* �1.517** �1.132*

Time interval 1 1.373*** 1.335***

Time interval 2 .951** .948**

Time interval 3 .658* .649*

Time interval 4 .455 .416

Time interval 5 .108 .129

Time interval 6 .362 .359

Time interval 7 .338 .337

Time interval 8 .496 .487

Time interval 9 .661* .644*

Time interval 10 �.043 �.046

Time interval 11 .324 .322

Time interval 12 .204 .199

Time interval 13 .528 .523

Time interval 14 .533 .518

Time interval number �.037*

Female’s age at union �.056*** �.054*** �.054***

Both in a first union �.628*** �.609*** �.612***

Alcohol or drug problem .284 .287 .275

Continuously cohabiting 1.643*** 1.573*** 1.587***

Cohabiting to married a .355 .349 .351

Union birth a �.568*** �.555*** �.547***

Open disagreement .027 .027 .025

Conflict resolution style �.205*** �.190*** �.188***

Note: n � 1230; number of couple periods is 12,480.
a Time-varying covariate.

* p � .05. ** p � .01. *** p � .001.



a constant-hazard model would be indicated. However, ∆χ2 for the constant-hazard

model (results not shown), compared to model 1, was 26.826, which, with 14 df was

significant at p � .02. I next fitted a series of polynomial models in time (a variable

whose values represent time intervals) beginning with a linear term for time, then

adding a quadratic term, a cubic term, and a quartic term, and compared all to model

1. The linear model had ∆χ2 � 20.801, which, with 13 df, was not quite significant

(p � .077). Adding a quadratic term did not improve fit, although quadratic, cubic,

and quartic models also resulted in no significant loss in fit, compared to model 1.

Due to its greater parsimony, however, I present the linear model (model 2) in Table

12.4. Again, results are approximately the same as for the other two models in the

table. The significant and negative effect of time interval number in model 2 indi-

cates, as previously suggested, that the hazard of disruption is declining with time.

However, recall that unmeasured heterogeneity could also be responsible for such a

trend. A discrete-time model that adjusts for unmeasured heterogeneity has been dis-

cussed by Land et al., (2001).

Advantages of the Discrete-Time Approach. The discrete-time approach has some

clear advantages over the Cox model and over parametric models such as the expo-

nential or Weibull. Therefore, even with continuous-time data, it may at times be

advantageous to convert one’s data to a discrete-time format in order to benefit from

these features. First, there is the issue of tied survival times. For example, for the

unemployment data considered in Chapter 11 (as well as below), fully 33.9% of

spells were tied at a survival time of one month. About 15% were tied at two months,

10.2% at one-half a month, and 9.2% at three months. When there are many tied sur-

vival times in the data, the Cox model becomes unreliable (Yamaguchi, 1991). On

the other hand, ties pose no problem for the discrete-time approach. Second, esti-

mation of the Cox model becomes quite time-consuming when there are many time-

varying covariates in the model. With the discrete-time approach, the number of such

covariates is immaterial, as they are simply incorporated directly into the data set.

Third, software for Cox models typically renders the creation of time-varying covari-

ates transparent to the analyst. One just has to trust that they are being created cor-

rectly. In the discrete-time method, one can visually inspect the records to ensure

correct coding. Fourth, the discrete-time approach allows one to explore the shape of

the hazard function and to test various parameterizations of time against the unspecified

function of time implied by time-interval dummies. Finally, as with the parametric

models mentioned in Chapter 11, the discrete-time method allows for estimation of

the hazard function as well as the survival function.

Estimation of hazard and survival functions employing, say, model 2 in Table

12.4 is straightforward. The estimate of the hazard at time t is recovered from the

equation

P̂it � 1�exp[�exp(β0 � β1t � xi
�g)],

where xi
�g is the linear combination of covariates and parameter estimates, apart from

the intercept and the linear effect of time. The survival function, denoted Sit � P(Ti 	 ti),
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is estimated using a recursion formula that is initialized at the value 1:

Ŝit � 1(1 � P̂i1)(1 � P̂i2)(1 � P̂i3) . . . (1 � P̂it).

[See Singer and Willett (1993) for programming suggestions for estimating Pit and

Sit using SAS.] Figures 12.1 and 12.2 display the survival and hazard functions at

mean values of model covariates for those in first unions as opposed to others, based

on model 2 in Table 12.4.

Cohabiting Transitions. The technique for estimating competing-risks models

when time is discrete or interval-censored parallels the method just articulated for

the single-event case. However, the likelihood function no longer factors into sepa-

rate components for each event type, as it does in continuous time (Allison, 1982).

Instead, parameter estimates are obtained by maximizing the joint likelihood involv-

ing all event types simultaneously. This is accomplished readily with multinomial

logistic regression applied to person-period data. For example, in applying the dis-

crete-time approach to the 411 cohabiting transitions analyzed above using the Cox

model, I created couple-period data in a manner similar to that described above for
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Figure 12.1 Survival curves for event of union disruption by whether in a first union, based on model

2, Table 12.4.



the union disruption data. Once again, I created 15 six-month time intervals and

replicated couples’ records up to a maximum of 15 times, resulting in a total of 2265

couple-periods. Due to the longer time these couples had been together prior to wave

1, however, adjusting for left truncation resulted in values for TIME as high as 44,

equivalent to 264 months. Nevertheless, in estimating the model, I collapsed the time

variable down to five categories in order to have ample cell sizes for each type of

transition. The event indicator, called COMPRISK, was coded according to SAS’s

convention for multinomial logistic regression (in PROC CATMOD) in which the

highest code is the reference group. In this case, the reference group consisted of the

censored cases—the continuous cohabitors—and was coded 3 in all periods. For

uncensored cases, the event indicator was coded 3 until the last interval, at which

point it was coded 1 for those who separated and 2 for those who married. The

results for the multinomial logit model are shown in Table 12.5. Substantively, the

findings are quite similar to those from the Cox model in Table 12.1, except that in

the discrete-time formulation the effect of female violence on the transition to mar-

riage is no longer significant.

Transitions Out of Unemployment. As a final example of discrete-time analyses, I

reestimated the risk of reemployment for Brazilian immigrants, earlier examined using
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Figure 12.2 Hazard curves for event of union disruption by whether in a first union, based on model 2,

Table 12.4.



Table 12.5 Discrete-Time (Multinomial Logit) Approximations to Competing-Risks

Models for Exits from Unmarried Cohabitation

Separation vs. Continuous Marriage vs. Continuous 

Predictor Cohabitation Cohabitation

Intercept .754 �6.895***

Time interval 1 1.378*** 2.137***

Time interval 2 .609 1.304***

Time interval 3 .471 1.488***

Time interval 4 �.039 .938*

Open disagreement �.010 .077**

Conflict resolution style �.153* .153*

Male’s violence �.573 .677

Female’s violence .397 �1.169

Intense male violence .766* �.347

Union birtha
�1.045** �2.467***

Female’s age at union �.040*** �.014

Minority couple �.091 �.798***

Male’s relationship happiness .046 .202*

Female’s relationship happiness �.168* �.182*

Male’s relationship stability �.226 .297*

Female’s relationship stability �.037 .277*

Note: n � 411; number of couple periods is 2265.
a Time-varying covariate.

* p � .05. ** p � .01. *** p � .001.

Table 12.6 Discrete-Time Approximations to Multiepisode Models for Transitions

Out of Unemployment

Complementary Log-Log Models

Logit Cox Weibull 

Predictor Model Approximation Approximation

Intercept �1.516*** �1.513*** �1.477***

Time interval 2 1.168*** .916***

Time interval 3 1.763*** 1.336***

Time interval 4 1.520*** 1.180***

Time interval 5 3.596*** 2.356***

Log of time interval 1.149***

Age at unemployment �.161* �.129* �.124*

Duration of previous job (months) �.045*** �.029*** �.029**

Number of relatives in North America .029* .022* .024*

Cumulative time in North America �.184*** �.141*** �.145***

Log of monthly income last job .104*** .065*** .065***

Education .061** .048*** .048**

Female �.504*** �.381*** �.382***

Good English proficiency �.676** �.546** �.530**

Note: n � 620 job spells; number of spell-periods is 1485.

* p � .05. ** p � .01. *** p � .001.
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the Cox model. In this instance, the 620 unemployment spells represent the origi-

nal “person-level” data. Months of unemployment for each spell were partitioned

into five time intervals, each spell’s covariates were replicated up to five times, and

a total of 1485 spell-periods were created. An event indicator for reemployment was

coded 0 in all spell-periods for censored cases, but changed to 1 in the last period

for those who were reemployed. Both logit and complementary log-log models

were then employed to estimate the binary indicator of reemployment. Table 12.6

shows the results and is to be compared to model 1 in Table 12.2, which employs

the Cox model. The logit and Cox approximation models both simulate the Cox

model in that time is coded as a series of dummies (omitting the first time interval)

and is therefore left unspecified. However, an assessment of various parametric

forms for the hazard function as articulated in Chapter 11 pointed to the Weibull

distribution as being most appropriate for survival time. The Weibull model is

therefore simulated in the third column of Table 12.6, by using log of time-interval

to represent time periods, rather than the time-interval dummies. In all three mod-

els, there is the suggestion of an increasing hazard of reemployment over time. The

results of all three models, but especially of the two complementary log-log mod-

els, are quite close in spirit and in parameter values to their Cox counterpart in

Table 12.2.

EXERCISES

12.1 A competing-risks model for transitions out of the current job for a popula-

tion of employees has the following form, where X � IQ and transition types

are: 1 � “quit,” 2 � “fired,” and 3 � “promoted”:

hi1(t) � .02 exp(�.005X ),

hi2(t) � .005 exp(� .009X ),

hi3(t) � .015 exp(.007X ).

Give the hazard of a job transition of any kind after three years of employ-

ment for someone with an IQ of 120.

12.2 Based on the information in Exercise 12.1, by what percent is the hazard

changed for each 10-point increase in IQ for (a) the hazard of quitting, (b)

the hazard of being fired, and (c) the hazard of being promoted?

12.3 In the employment-transitions problem of Exercise 12.1, if all transitions are

treated the same and a Cox model is estimated for the hazard of any transi-

tion, the likelihood is .0011. On the other hand, a competing-risks model pro-

duces the following likelihoods for quitting, being fired, and getting promoted,

respectively: .3, .25, and .655. Test whether the same model applies to each

event type.



12.4 Axinn and Thornton (1993) examined the influence of mothers’ and chil-

dren’s attitudes toward marriage and cohabitation, in 1980, on children’s

union-formation experience between 1980 and 1985. They estimated equa-

tions for (a) the cohabitation rate, in which risk sets consisted of those not

yet cohabiting or married; (b) the marriage rate, in which risk sets consisted

of those not yet cohabiting or married; (c) the marriage rate, in which risk

sets consisted of those not yet married; and (d) the union formation rate, in

which risk sets consisted of those not yet cohabiting or married. If marriage

and cohabitation are regarded as competing risks, which two equations

would represent a competing-risks model? Why?

12.5 In the Axinn and Thornton (1993) study mentioned in Exercise 12.4, which

equations must be employed to get the appropriate likelihoods for testing

model invariance over event types in a competing-risks model of marriage

versus cohabitation?

12.6 In the study of Exercise 12.4, the following equation characterizes the inter-

action of mother’s attitude toward cohabitation (higher scores indicate more

favorable attitudes) with child’s gender: ln ĥi (t) � lnh0 (t) � x�g � 1.00

mother’s attitude � .51 female � 1.17 mother’s attitude * female, where x�g

represents the linear combination of control variables and parameter esti-

mates. Interpret this interaction effect.

12.7 In the study of the hazard of reemployment of Brazilian immigrants discussed

in this chapter, suppose that we have a male immigrant with the following his-

tory: first laid off from work in September 1985. Rehired in December 1985.

Quit his job in June 1987. Got another job in April 1988. Promoted in October

1988. Fired in October 1990. Got a new job in December 1990. Quit that job

in May 1990. Still unemployed when interviewed in October 1991. Translate

this job history into a set of unemployment spells. Show duration unemployed

in months and censoring status for each spell.

12.8 Suppose that a discrete-time approach is taken for the analysis of the hazard

of reemployment, in which survival is recorded in three-month intervals.

How many spell-periods would be contributed by the immigrant in Exercise

12.7, and in how many of these would the binary response variable—the

event indicator—be coded 1?

12.9 Goza and DeMaris (2003) examined several models for the hazard of reem-

ployment using the unemployment data on Brazilian immigrants discussed

in the text. In one discrete-time model employing the log of time interval

(LOGTIME), they find a nonproportional effect of CANADA (dummy for

residing in CANADA versus the U.S.) of the form ln[� ln(1 � Pit)] � �

1.5974 � x�g � 1.7198 LOGTIME � .4064 CANADA � .6924 CANADA *
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LOGTIME. Interpret the effect of Canadian residence on the hazard of

reemployment (recalling that the coefficients can be interpreted as effects on

the log-hazard in the complementary log-log model). At what value of TIME

is the coefficient for Canadian residence approximately zero?

12.10 Using the “Cox approximation” model in Table 12.6, give the estimated haz-

ards and survival probabilities for the first two time intervals for a male

immigrant who was 40 years old at the beginning of unemployment, who

had been in his previous job for six months, who had three relatives in North

America (NA), who had been in NA for five years, who was making

$25,000.00 per year in his last job, who had a high school education, and

whose English proficiency was “good.”

12.11 Using model 2 in Table 12.4, give the estimated hazards and survival prob-

abilities for the first two time intervals for a continuously cohabiting couple

in which the female was 19 at inception of the union, both partners are in a

first union, neither partner has problems with substance abuse, there was no

union birth, the open disagreement score is 5.5, and the conflict resolution

style score is 2.5.

12.12 Long et al. (1993) used a discrete-time model to examine the process of pro-

motion in rank for 556 male and 450 female professors in the field of bio-

chemistry. All people had held positions as assistant professors in research

universities at some point in their careers. Letting αα�t represent a particular

parameterization of time, their model was expressed as

Pit � ,

where the t superscript on the covariate vector denotes the potential presence

of time-varying covariates. What type of model is this? (Hint : Rewrite the

equation in a more easily recognizable form.)

12.13 In the Long et al. (1993) study, time was parameterized as a fourth-order

polynomial in years in rank. Letting t denote years in rank, the equation for

men’s hazard of promotion to associate professor, as a function of years in

rank, and apart from covariates, was

ln�
1 �

Pit

Pit

���12.221 � 4.507t � .694t2 � .043t3 � .001t4.

Give the estimated hazards and the survival probabilities for the first four

years in rank for a man whose covariate values were all equal to zero.

12.14 In the Long et al. (1993) study, the equation for the hazard of promotion to

associate professor as a function of years in rank, for women, was, apart

1
����
1 � exp(�αα�t �xit

�ββ)
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from the covariates,

ln�
1 �

Pit

Pit

� ��6.383 � 1.541t �.151t2 � .004t3 � .000t4.

Give the equation for the effect of years in rank, apart from covariates, as a

function of gender, using a dummy, F, for being female, and a set of

coefficients for the interaction of gender with time. That is, the equation

should take the form

ln�
1 �

Pit

Pit

�� α � δF � at � bt2 � ct3 � dt4 � g1Ft � g2Ft2 � g3Ft3 � g4Ft4.

12.15 The Long et al. (1993) study employed the following covariates (among oth-

ers): (a) years between receiving the PhD and entering the current rank; (b)

prestige of the PhD-granting department; (c) whether the doctorate was in

a medical area; (d) prestige of the current employing institution; (e) whether

the current job was in the PhD-granting institution; and (f) the square root

of the number of articles published since entering the current rank. Which

of these are time-invariant, and which are time-varying, covariates? Why?

12.16 Using the cohabiting transitions dataset, estimate the multistate model in

Table 12.1 via the two-step approach discussed in the text, despite this

approach being theoretically questionable for this problem. Be sure to

include both DURATION and the log of SURVIVAL in the logit step of the

model. Show estimates for both equations, with significant effects starred,

and provide a general interpretation of the results.

12.17 Using the cohabiting transitions dataset, estimate the competing risks

model of Table 12.1, allowing nonproportional effects of HEHIT, SHEHIT,

and TERROR2. Show estimates for both equations, with significant effects

starred, and provide a general interpretation of the results.

12.18 Using the unemployment dataset, estimate a Cox multiepisode model for 

the hazard of reemployment using the predictors PRVJBS, JOBDUR,

FEMALES, NEWEDUC, LOGINC, and CANADA. Show estimates for the

equation, with significant effects starred, and provide a general interpreta-

tion of the results.

12.19 Using the unemployment dataset, estimate the model of Exercise 12.18,

allowing a nonproportional effect for JOBDUR. Show estimates for the

equation, with significant effects starred. Test for a significant nonpropor-

tional effect using both LRχ2 and Wald χ2 tests. Interpret the nature of the

nonproportional effect by showing how the effect of JOBDUR varies with

survival time.
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12.20 Reestimate the model of Exercise 12.19 using the discrete-time approach.

Employ five time intervals, as follows: DURUNEM � 1, 1 � DURUNEM � 2,

2 � DURUNEM � 4, 4 � DURUNEM � 6, and DURUNEM � 6. Then use

the complementary log-log model, along with the log of time interval, to

approximate the Weibull model. Show estimates for the equation, with

significant effects starred, and provide a general interpretation of the results,

particularly as they differ from those found in Exercise 12.19.
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A P P E N D I X  A

Mathematics Tutorials

APPENDIX OVERVIEW

In the event that your mathematics skills are rusty, the following sections contain

brief tutorials in basic algebra, summation notation, covariance algebra, derivatives,

and matrix algebra. Although you certainly can read and digest all of this material

before proceeding with the rest of the book, most readers will probably not want to

do that. Therefore, these tutorials are each designed to be discrete sections that can

be reviewed separately, according to the reader’s need to refresh his or her skills.

I. BASIC ALGEBRA

Algebra involves operations using arbitrary numbers, or  variables, as well as spe-

cific numbers, or constants. In the following sections, letters such as a, b, c, x, w, y,

or z denote any arbitrary real numbers (in this book we will only be concerned with

real numbers), whereas 3 or π denote constants. (The symbol π denotes an irrational

number representing the ratio of the area of a circle to the square of its radius, and

equaling approximately 3.14159.) Further, I follow the mathematical notational con-

vention that exponents only apply to the expression immediately to the left of the

exponent unless parentheses group elements for exponentiation. Thus, if x � 3, then

2x2 � 2(32) � 18. But (2x)2 � [2(3)]2 � 36.

The following algebraic rules apply to any real numbers.

A. Commutative Property of Numbers

(1) a � b � b � a.

Example: 3 � 7 � 7 � 3 � 10.
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(2) ab � ba.

Example: 6(9) � 9(6) � 54.

B. Associative Property of Numbers

(1) a � (b � c) � (a � b) � c.

Example: 7 � (11 � 19) � (7 � 11) � 19 � 37.

(2) a(bc) � (ab)c.

Example: 2[4(8)] � [2(4)]8 � 64.

C. Distributive Property of Numbers

(1) a(b � c) � ab � ac.

Example: 3(4 � 5) � 3(4) � 3(5) � 12 � 15 � 27.

(2) (a � b)c � ac � bc.

Example: (6 � 2)4 � 6(4) � 2(4) � 24 � 8 � 32.

D. Repeated Application of Distributive Property

Since a(b � c) � ab � ac, if we let a � m � n, then a(b � c) � (m � n)(b � c) �

(m � n)b � (m � n)c � mb � nb � mc � nc.

Note: Subtraction and division are neither commutative nor associative:

a � b � b � a

a � (b � c) � (a � b) � c

�
b

a
�� �

a

b
�

�
a

c

/b
� � �

b

a

/c
�

E. Identities

(1) 0 is the identity element for addition and subtraction. That is,

a � 0 � 0 � a � a.

a � 0 � a (however, 0 � a � �a).

(2) 1 is the identity element for multiplication and division. That is,

1(a) � (a) 1 � a.

a / 1 � a (however, 1/a does not equal a).
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F. Inverses

For every real number a, �a is the additive inverse of a, such that

a � (�a) � 0.

For every real number a, 1/a is the multiplicative inverse, or reciprocal, of a, such

that

(1/a)a � a(1/a) � (a/a) � 1.

G. Other Properties of Addition, Subtraction, Multiplication, and Division

If a � b, then for any number c:

(1) a � c � b � c,

(2) a � c � b � c,

(3) ac � bc,

(4) a/c � b/c provided that c is not 0.

H. Factorials

For any integer, N, the symbol N! (pronounced “en factorial”) is defined by

N ! � N(N � 1)(N � 2)(N � 3) . . . (2)(1). For example, 5 ! � 5(4)(3)(2)(1) � 120.

I. Properties Associated with Zero

(1) 0 (a) � a(0) � 0; therefore, it is also true that 0(0) � 0.

(2) a/0 is an undefined operation; therefore, 0/0 is also undefined.

(3) Any number (except 0) raised to the 0 power equals 1.

(4) 00 is undefined (however, 0 1
� 0).

(5) 0 ! � 1.

(6) If a/b � 0, then a � 0.

(7) If ab � 0, then either a � 0 or b � 0 or both a and b equal zero.

J. Rules for Negative Signs

(1) �(�a) � a.

(2) (�a)b � �ab � a(�b).

(3) (�a)(�b) � ab.

(4) (�1)a � �a.
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K. Rules for Fractions

(1) �
�

a

b
� � �

�

b

a
�� ��

a

b
�.

Example: �
�

2

3
� � �

�

3

2
� � ��

2

3
�.

(2) �
�

�

a

b
� � ��

�

b

a
� � ��

�

a

b
� � �

a

b
�.

Example: �
�

�

3

7
� � ��

�

7

3
� � ��

�

3

7
� � �

3

7
�.

(3) �
a

b
� �

d

c
�� �

b

a

d

c
�.

Example: �
2

3
���

5

7
��� �

(

(

2

3

)

)

(

(

5

7

)

)
� � �

1

2

0

1
�.

(4) �
a

b

d

d
�� �

a

b
�.

Example: �
3

4

π
π
�� �

3

4
�.

(5) �
a

d
�� �

b

d
�� �

a �

d

b
�.

Example: �
1

3

7
�� �

1

9

7
�� �

1

1

2

7
�.

(6) �
a

b
�� �

d

c
���

ad

b

�

d

bc
�. Why? Since

�
a

b
�� �

a

b

d

d
� and �

d

c
�� �

b

b

d

c
�,

then

�
a

b
�� �

d

c
�� �

a

b

d

d
�� �

b

b

d

c
���

ad

b

�

d

bc
�.

Example: �
x

y

z
�� �

x

y

w
2���

xzy

y

�

2

xw
�.

Elaboration: By rule I.E(2), multiplying xz/y by 1 leaves the term unchanged.

However, if we write 1 as y/y, we have, by rule I.K(3), (xz/y)(y/y) � xyz/y2. Now both

terms in the example have the same denominator, hence the numerators can be

summed, as in rule I.K(5), and the result follows.

(7) �
c

a

/

/

d

b
� � �

b

a
� �

c

d
�� �

a

b

d

c
�.

Example: �
x

2

yz

π
/

/

3

x

π
� � �

x

6
2

π
y

2

z
�.
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(8) �
a

b
�� �

d

c
� if and only if ad � bc.

Example: �
2

3

x
� � �

3

4
� implies that 8x � 9 or x � �

9

8
�.

L. Laws of Exponents

Let x and y be real numbers, and suppose that a and b are positive real numbers.

Then

(1) bxby
� bx�y.

Example: (274/18)(272/18) � 276/18
� 271/3

� 3.

(2) �
b

b
y

x

�� bx�y.

Example: �
x

x

3

5�� x3�5
� x�2

� �
x

1
2�.

(3) (bx)y
� bxy.

Example: (3π)2
� 32 π

� 995.04.

(4) (ab)x
� axbx.

Example: (9x)2
� 81x2.

(5) ��
a

b
��

x

� �
a

b

x

x
�.

Example: ��
3

xy

z
��

2

� �
x

9

2

z

y
2

2

�.

(6) b�x
� �

b

1
x
�.

Example: 15�4
� �

1

1

54�.

M. Working with Rational Exponents

Frequently, we encounter expressions such as �a� or �
3

a� or (�
3

a�)2. Each expres-

sion involves a rational exponent or an exponent that is the ratio of integers. In

particular:

�a�� a1/2.

�
3

a� � a1/3.

(�
3

a�)
2

� a2/3.

In general, if p and q are integers, ap/q is defined to be (�
q

a�)p, or, equivalently,

�
q

a�p�. The laws of exponents enumerated above apply also to rational exponents.

MATHEMATICS TUTORIALS 451



Some examples are

(�32)4/3
� (�

5

��3�2�)4
� (�2)4

� 16

16�5/2
� �

16

1
5/2� ��

(�
1

1�6�)5� � �
4

1
5�� �

10

1

24
�

(�16)�2/5
��

(�1

1

6)2/5� ��
(�

5

��
1

1�6�)2� ��
(�1.7

1

411)2���
3.0

1

314
�.

Rational exponents are frequently easier to work with than numbers expressed using 

root signs. For example, suppose that we wish to evaluate [�5 �(�2��)3�][�5 �(�2��)1�7�].
Using rational exponents, we write

��5 �(�2��)3�� as [(21/2)3]1/5
� (23/2)1/5

� 23/10,

and we write

��5 �(�2��)1�7�� as [(21/2)17]1/5
� (217/2)1/5

� 217/10.

Thus,

��5 �(�2��)3����5 �(�2��)1�7��� (23/10)(217/10)�23/10�17/10
� 220/10

� 22
� 4.

N. Logarithms

Definition. The logarithm to the base q of a number x, symbolized “logq x,” is the

power to which one would have to raise the number q in order to get x. For example:

log28 � 3 because 23
� 8.

log216 � 4 because 24
� 16.

log4 �
1

1

6
�� �2 because 4�2

� �
1

1

6
�.

log42 � �
1

2
� because 41/2

� 2.

log644 � �
1

3
� because 641/3

� 4.

Rules for Logarithms

(1) logq1 � 0.

(2) logq ac � logqa � logqc.

(3) logq �
a

c
�� logqa � logqc for c � 0.
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(4) logq a
r
� r logq a.

(5) logq �
1

c
�� �logqc for c � 0.

The natural logarithm, denoted “ln” (or “log”) is very important in statistics. It is the

logarithm to the base e. The number e (after the German mathematician, Euler) is an

irrational number defined as follows: e � limx→∞(1 � 1/x)x. The expression to the right

of the equals sign here means (in English) “the value approached by (i.e., the limiting

value, or limit, of) the expression (1 � 1/x)x, as x is allowed to increase without bound.”

This value can be estimated by plugging a very large value of x into the expression

(1 � 1/x)x. For example, if x � 999999999, we have (1 � 1/999999999)999999999
�

2.71828182438, or 2.718, to three decimal places. The natural log of x, written ln x or

log x, is therefore the power to which one must raise e to get x. It is defined only for

x � 0.

Examples:

ln 1 � 0 because e0
� 1.

ln 10 � 2.3026 because e2.3026
� 10.

ln �
1

2
�� �.693 because e�.693

� �
1

2
�.

ln 500 � 6.215 because e6.215
� 500.

Antilog Function. The function ex or exp(x) is called the exponential function. This

is also known as the antilogarithm, or antilog, of x, since it “undoes” the log func-

tion. Another way of stating this is that the exponential function is the inverse of the

log function, and vice versa. That is, e ln x
� x and ln  e x

� x.

For example, ln e2 is the power to which one must raise e to get e2, and this is

obviously 2, hence ln e2
� 2. On the other hand, if one has the log of a number, and

one raises e to that power, one recovers the number again. Thus, 6.215 is the log of

500, so e6.215, or elog 500, gives us 500 again.

O. Absolute Value

The absolute value of a number a, denoted �a�, is defined as follows:

(1) �a� � a if a � 0,

(2) �a� � �a if a � 0.

Examples: �3� � 3 (since 3 � 0); and ��3� � 3 [since � 3 � 0, its absolute value is

�(�3), or 3].

(3) For any real number, a, �a�2�� �a�.

Examples: �3�2� � �3� � 3; �(��3�)2� � �(�3)� � 3.
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If a and b are real numbers and n is an integer:

(4) �ab�� � a��b�.

Example: �3(�4)�� � �12�� 1 2 � � 3���4�.

(5) ��
b

a
��� �

�
�
a

b

�
��.

Example: ���5

2
�� � �

��
� 5

2

�
�

�� �
2

5
�.

(6) �an�� � a�n.

Example: �(�3)3�� � �3�3 � 33
� 27.

Note: In general, �a 	 b�� � a�	 � b�. For example, ��3 � 4�� 1 � � �3�� � 4�� 7.

P. Functions

Functions and functional notation are very important in mathematics and statistics. In

the models in this book, for example, an outcome variable is typically modeled as a

function of one or more explanatory variables. Let’s define this notion more precisely.

Definition. A function is a rule of correspondence between the elements of two sets,

set x and set y. The elements are the respective values of x and y. It is usually posited

that y is a function of x, denoted y � f(x), meaning that the values of y depend on the

values of x, often via some mathematical formula involving x. The function itself is

the rule that assigns a unique element from the set y to each element in the set x.

The simplest function is a constant: y � f(x) � 5 [or f(x) � 5; or y � 5]. This says

that the set y consists of one element, 5, which corresponds to each and every ele-

ment in the set x. Another example is f(x) � 4x � 7. In this case, 4x � 7 is the rule

that assigns y to a given x value. When x � 0, y � �7. When x � 1, y � �3, and so

on. The notation “f(x)” is arbitrary. We could just as well use g(x), h(x), θ(x), or π(x).

As another example: g(x) � x2
� 3x � 1.

It is important to understand that in the notation “f(x),” x is just a generic label or

a dummy variable. That is, it represents whatever is the subject of the operations

called for in the function. For example, if we let f(x) � x2
� 10, this notation essen-

tially says: “The outcome—f(x), or y—of this function is arrived at by squaring the

input—x—and then adding 10 to that result.” Hence, f(x � 3) � (x � 3)2
� 10,

f(ln x) � (ln x)2
� 10, f(ex) � (ex)2

� 10, and so on.

To speak of y as being a function of x also implies dependence of y on x. That is,

the value of y is generated by applying the rule (or formula) to different values of x.

It is in this sense that we will use the term function in this book. In social research,

y is the outcome variable, whose value is generated (in a causal sense) by values of

one or more explanatory variables.

Functions can be expressed in many different ways, with many different variables:
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A � f(r) �πr2 (the area of a circle is a function of its radius, r).

V � f(r,h) �πr2h (the volume of a cylinder is a function of its radius, r,

and its height, h).

V � f(r) � �
4
3

�πr3 (the volume of a sphere is a function of its radius, r).

Functions can also be implicit; that is, the rule is unspecified:

Teacher salary � f(county of employment).

Job satisfaction � f(salary, autonomy, responsibility, role specificity).

Linear Functions. Especially important in this book, and in statistics generally, are

linear functions. Y is a linear function of one or more x’s if it can be expressed as a

weighted sum of x-values times constants plus (possibly) other constants. For exam-

ple, equations of the form y � a � bx are linear functions of a single x. This is a

weighted sum of a constant, b, times x, plus another constant, a. As another exam-

ple, y � a � b1x1 � b2x2 � b3x3 is a linear function of x1, x2, and x3.

The function y � a � bx is linear in the sense that if the set of points (x,y) is plotted

on a two-dimensional graph, they will all fall on a straight line. [Correspondingly,

when y is a linear function of several x’s, the set of points (x1, x2, . . . , xk, y) falls on 

a single hyperplane.]

Example. Let y � 2 � 3x. Figure A.1 presents a graph of this equation. The equation

is defined by two important components: the intercept, a (2, in this case), and the

slope, b (3, here). The intercept is the value of y when x � 0. It is also the value of y

where the line of (x,y) points, implied by the equation, crosses the y-axis. The slope

of the equation indicates the number of units y changes as x increases by 1 unit. It is

also known as the ratio of the “rise” in y to the “run” in x, or slope � rise/run. For

example, if x increases 5 units, from 0 to 5, y increases from 2 � 3(0) � 2 to 2 �

3(5) � 17. This is an increase of 15 units. The unit increase in y per unit increase in

x, however, is 15/5 � 3 units, which agrees with the slope value of 3 for this equa-

tion. The resulting (x,y) points achieved by plugging sample values of x into this

equation lie on the line indicated in the figure.

Point–Slope Form of a Line. If we know the slope of a linear equation and any

point on the equation, we can easily recover the equation for the line. Hence, if x0,y0

is a point on the line and b is the slope, the general equation for the line is

(y � y0) � b(x � x0). As an example, let’s find the equation for the line with slope 5.2

that passes through the point (2,9). Solution: The equation would be (y � 9) �

5.2(x � 2) or y � 9 � 5.2x � 10.4. The resulting equation in the form y � a � bx is

y � �1.4 � 5.2x. It is easily verified that the point (2,9) is on the line, since if x � 2,

we have y � �1.4 � 5.2(2) � 9.

Nonlinear Function. Y can also be a nonlinear function of x. Examples are y � a �
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ln x, y � a � ex or y � a � bx � cx2. In each case, x enters the equation in some form

other than simply being multiplied by a constant. The graphs of such equations would

be curves rather than straight lines. In the third example here, y � a � bx � cx2, notice

that y is a nonlinear function of x but it is linear in the parameters, a, b, and c. That is,

if we were to fix the value of x (say, by setting x � 2) in this equation, and evaluate it

for different values of a, b, and c, it becomes a function of these parameters rather than

of x. In this event, notice that y would be a linear function of the parameters, since y is

a weighted sum of the parameter values times constants. The constants for a, b, and c,

respectively, are 1, x, and x2. The concept of linearity in the parameters becomes

important when we consider multiple linear regression.

Q. Exercises

(1) Find (3x � 2)(y � z).

(2) Find (2x � �y�� z)(x2
� �y�� 4w).

(3) Solve �
1
2

�x � 12 � �2�4�.

(4) Evaluate �
2!(6

6

�

!

2)!
�.
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(5) Find �
a

c

b
�� �

3a

cd

bπ
�.

(6) Find �
z

x

w
�� �

2

y

w
�.

(7) Solve �
�
25

x�
� � �

4

9
�.

(8) Find (3x3)(5x2).

(9) Find ��
2

x

y
��

z

.

(10) Find �
(�

�
3

2�
2�
)3

�.

(11) Simplify ln �
�
x2

z�
�.

(12) Find f(x) � �
1
2

�� 9x for x � ��
1
2

�, �
1
3

�,2.

(13) Find f(x) � x2
� 3x � 1 for x � ��

1
2

�, �
1
3

�,2.

(14) Let f(x) � �x� and g(x) � 2x. Find f(g(x)) for x � 3.

(15) Let f(x) � ex and g(x) � �3 � 5x. Find f(g(x)) for x � �
1
2

�.

(16) Let f(x) � 2 � �
1
2

�x and g(x) � �3 � 5x. Find f(g(x)).

(17) Find the equation for the line with slope 18 that passes through the (x,y)

point (��
1
2

�, �
1
2

�).

II. SUMMATION NOTATION AND RULES OF SUMMATION

A. Summation Notation

Anyone who has ever taken a statistics course is certainly familiar with summation

notation. It is a compact means of expressing statistical formulas involving operations

on n sample values. For example, if we have five sample values of y: y1, y2, y3, y4, and

y5, the sum of these five values, in summation notation, is 	5
i�1yi, which indicates the

sum y1 � y2 � y3 � y4 � y5. The i below the summation symbol is called the index of

summation. It indicates which elements are to be summed and ranges in integer incre-

ments from 1 to n. Since y is subscripted with i, “yi” indicates the y-values that are to

be summed and is known as a “variable with respect to the summation.”

B. Rules of Summation

As it is often useful to recast sums into a different form for computational (or theo-

retical) reasons, the following set of rules for working with sums will be helpful:

(1) 	n
i�1c � nc. (The sum of a constant, n times, is n times that constant.)

(2) 	n
i�1cxi � c	n

i�1xi . (The sum of a constant times a variable with respect to the

summation is equal to the constant times the sum of the variable.)
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(3) 	n
i�1 (xi 	 yi 	 zi) � 	n

i�1 xi 	 	n
i�1 yi 	 	n

i�1 zi . (The sum of a sum or

difference of terms is equal to the sum or difference of the separately summed

terms.)

(4) 	n
i�1 (xi yi) � 	n

i�1xi 	n
i�1yi . (It is not generally true that the sum of the prod-

uct of terms is equal to the product of the separately summed terms.)

(5) 	n
i�1 �

y

x

i

i
�� �

	
	

n
i
n
i

�

�

1

1

x

y
i

i
� . (It is not generally true that the sum of the ratio of terms is 

equal to the ratio of the separately summed terms.)

C. Working with Summations

Let’s apply rules II.B(1) through II.B(3) to produce computing formulas for two well-

known statistical measures.

(1) Sample Variance. The sample variance of x is defined as sx
2
� 	n

i�1 (xi � x�)2/

(n � 1), or, omitting the index of summation for simplicity’s sake, we have sx
2
�

	(x� x�)2/(n � 1). (We omit the index of summation when it is clear which element

is the variable with respect to summation, as it is in this case.) Now, by the rules

above,

	(x � x�)2
�	(x2

� 2xx�� x�
2)

(expanding the term inside the sum)

�	x2
�	2xx��	x�

2

[by rule II.B(3)]

�	x2
� 2x�	x� nx�

2

[by rules II.B(2) and II.B(1), respectively]

�	x2
� 2x�nx�� n x�

2

(because x� � 	 x/n implies that 	 x � nx� )

�	x2
� 2nx�

2
� n x�

2

�	x2
� nx�

2 .

Thus, a computing formula for the sample variance is

sx
2
��

	 x

n

2

�

�

1

nx�
2

�.
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(2) Sample Covariance. The sample covariance between x and y is defined as

cov(x,y) ��
	(x �

n �

x�)

1

(y � y�)

�.

Again, let’s work with the sum in the numerator:

	(x � x�)(y � y�) �	[xy � xy�� x�y � (x�)(y�)]

(expanding the term inside the sum)

�	 xy �	 xy� �	 x�y �	(x�)(y�)

[by rule II.B(3)]

�	 xy � y�	 x � x�	 y � n(x�)(y�)

[by rules II.B(2) and II.B(1)]

�	 xy � n(x�)(y�) � n(x�)(y�) � n(x�)(y�)

�	 xy � n(x�)(y�).

A computing formula for the covariance is, therefore,

cov(x,y) ��
	 xy

n

�

�

n

1

(x�)(y�)

�.

The reader will notice, in the derivations above, that both x� and y� are treated as con-

stants. This, in fact, is the case with respect to the summation. That is, once the n

cases have been employed to compute the means of x and y, these entities are then

constant values with respect to any further summations.

D. Weighted Sums

One sum that is particularly important in statistics is the weighted sum. A weighted

sum of a set of variables, x1, x2, . . . , xk, takes the form 	wkxk, where the wk are the

weights and k is the index of summation. In this case, each xk has an associated weight,

wk, by which it is multiplied. This type of sum is also called a linear combination or a

linear composite of the x’s. If the weights, moreover, sum to 1, the result is some type

of mean. For example, the sample mean is a weighted sum, where each x is given the

same weight, 1/n. This is easily seen, since the sample mean can be expressed as

x� � 	(1/n) x. This clearly has the form 	wkxk, where k � i, and wi � 1/n. Weighted

means are linear combinations of means (say, from different subpopulations), where

the weights are not the same for each mean. For example, the weights might be the
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proportion of the overall population that falls into each subpopulation. If the weights

sum to 1, the result is the mean, or “average,” of the means. Finally, a linear contrast

is a weighted sum in which the weights sum to zero. Linear contrasts are widely used

to test various hypotheses about sample means in analysis of variance (ANOVA).

E. Exercises

(1) Prove that it is always true for any set of x-values that 	 (x � x�) � 0.

(2) Prove that for any set of n sample values x1, x2, . . . , xn, adding a constant, c,

to each value changes the mean from x� to x�� c but does not affect the sam-

ple variance of X. That is, prove that Mean(X � c) � x� � c and that s2
x�c � s2

x .

(3) Prove that if any set of X-values is standardized, by converting each X-value

to Z via the formula z � (x � x�)/sx, the mean of the standardized scores is

always zero and the standard deviation of the standardized scores is always

1. That is, prove that it is always the case that z� � 0 and sz � 1. [Hint: Write

out formulas for the mean and standard deviation using Z instead of X, then

substitute (x � x�)/sx for Z and use the summation rules to simplify the result.]

III. COVARIANCE ALGEBRA

Many theoretical derivations of importance to statistics depend on making use of

covariance algebra. Covariance algebra consists of a set of algebraic rules for finding

variances and covariances involving variables and constants. These rules make it

possible to find variances of terms, and covariances between terms, which appear at

first glance to be quite complicated.

A. Definition

Cov(x,y) � E(x �µx)(y �µy). The population (or theoretical) covariance between x

and y is the expected value, or average, of the cross-product of deviation scores in x

with deviation scores in y. [The sample estimator of this quantity is given in Section

II.C(2). Notice the difference in notation between “Cov” for the population entity and

“cov” for the sample entity.] The covariance is a quantitative measure of how two

variables vary together. Positive covariances reflect situations in which large (small)

values of x are associated with large (small) values of y. Negative covariances indi-

cate that large (small) values of x are associated with small (large) values of y.

B. Basic Rules of Covariance Algebra

Let W, X, Y, and Z be variables, and let a, b, c, and d be constants, in a given set of

data. Then:

(1) Cov(X,Y ) � Cov(Y,X). Covariance is symmetric with respect to the order of

the variables.
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(2) Cov(X,c) � 0. The covariance of a variable with a constant is zero. This

makes intuitive sense, since one of these “variables” isn’t varying at all.

(3) V(X) � Cov(X,X). The variance of a variable is the covariance of that variable

with itself.

(4) V(cX) � c2V(X). The variance of a constant times a variable is the square of

the constant times the variance of the variable.

(5) Cov(aX,bY) � ab Cov(X,Y). The covariance of variables multiplied by con-

stants is the product of the constants times the covariance of the variables. Or,

constants can be “pulled through” covariance operations.

(6) Cov(aX � bY, cW � dZ) � ac Cov(X,W) � ad Cov(X,Z) � bc Cov(Y,W) � bd

Cov(Y,Z). The covariance of two linear combinations is a linear combination

of the individual covariances. This rule shows a simple technique for finding

the covariance of any two terms. Let’s find that last covariance again, to see

how this works:

Step 1. Multiply the terms on each side of the comma together using regular algebra:

(aX � bY)(cW � dZ ) � aXcW � aXdZ � bYcW � bYdZ.

Step 2. In the resulting sum, separate the original components of each term with

commas:

aX,cW � aX,dZ � bY,cW � bY,dZ.

Step 3. Take the sum of the covariances of the terms joined by commas:

Cov(aX,cW) � Cov(aX,dZ) � Cov(bY,cW) � Cov(bY,dZ)

Step 4. Apply the appropriate basic rules above to reduce the result to an expression

involving the sum of constants times covariances of variables or constants times

variances of variables:

� ac Cov(X,W) � ad Cov(X,Z) � bc Cov(Y,W) � bd Cov(Y,Z).

Notice that I’ve applied rule III.B(5) to the expression in step 3 to arrive at the

result in step 4.

C. Applications

Application 1. In linear regression, we regress Y on a set of X’s: X1, X2, . . . , XK in

a particular sample. Each bk (i.e., each regression coefficient) has an associated sam-

pling variance. Each pair of regression coefficients, such as b1 and b2, say, has a sam-

pling covariance. Sampling variances and covariances make sense only in the

context of repeated sampling. That is, the current sample is only one of an infinite
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number of possible samples of size n that could be drawn from the population.

Hence, the current (i.e., those from your particular sample) regression coefficients

are only one set from an infinite number of sets of regression coefficients that could

be obtained by regressing Y on the X’s in each of the infinite number of samples. The

variance of bk, denoted V(bk), is then a quantitative measure of the variation in bk one

would encounter from performing all of these different sample regressions. The

covariance of, say, b1 with b2, denoted Cov(b1,b2), is a measure of the extent to

which the values of b1 and b2, from all of these regressions, would covary.

Okay, suppose that you have two coefficients in a particular sample, say b1 and

b2, and you want to test whether the population analogs of these coefficients are

equal. That is, you want to test the null hypothesis H0: β1 �β2, or H0: β1 �β2 � 0.

The test is a t test of the form

t(n�K�1) ��
SE

b

(
1

b

�

1 �

b2

b2)
�,

where SE(b1 � b2) is the estimated standard error of b1 � b2, the difference in the

sample coefficients. This standard error is the estimate of the square root of

V(b1 � b2), the variance of b1 � b2. How do we find this variance?

Realize first that b1 and b2 are variables over repeated sampling, and their

difference is therefore also a variable, so we can use covariance algebra to find the

difference between two variables:

V(b1 � b2) � Cov(b1 � b2, b1 � b2)

[by rule III.B(3); notice that the constant multiplier of b2 here is “�1”]

�Cov(b1,b1) � Cov(b1,b2) � Cov(b2,b1) � Cov(b2,b2)

[by rule III.B(6)]

� V(b1) � V(b2) � 2 Cov(b1,b2)

[by rules III.B(1) and III.B(3)]. The sampling variance of b1 � b2 can therefore be

estimated by plugging sample estimates of V(b1), V(b2), and Cov(b1,b2) into this last

expression and then taking its square root. The required sample estimates can be

found in the variance–covariance matrix of parameter estimates, which is an

optional part of standard regression output.

Application 2. Continuing our linear regression example, suppose that we estimate

an interaction model with two explanatory variables, X and Z. Our sample equation

is ŷ � a � bX � cZ � dXZ, where XZ is the cross-product of the variables X and Z.

We are interested in whether the impact of X on Y is significant at a particular level

of Z, say at z. As explained in Chapter 3, the partial slope for the effect of X on Y at

a particular level of Z is a function of Z. To see this, we factor all multipliers of X
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in the regression equation ŷ � a � bX � cZ � dXZ, and we get ŷ � a �

cZ � (b � dZ)X. Hence, the partial slope for X is the coefficient of X in this rewrit-

ten equation, or b � dZ. That is, the partial slope depends on the particular value of

Z at which it is evaluated. When Z � z (a particular value of Z), the partial slope is

b � dz. The test statistic for the significance of this partial slope is, like any test sta-

tistic for a partial slope, the partial slope estimate divided by its estimated standard

error. This is a t-test statistic with n � K � 1 degrees of freedom under the null

hypothesis, where K � the total number of regressors in the model (in this simple

case, K � 3).

The test is

t(n�K�1) ��
SE

b

(

�

b�

dz

dz)
�.

How do we find SE(b � dz)? You guessed it—we use covariance algebra. We have to

find an estimate of V(b � dz) and then take its square root. Now, remember that if Z

is fixed over repeated sampling (or if our results are conditional on the particular val-

ues of Z in our sample), z is a constant throughout this process (of repeated sampling,

that is). That is, it doesn’t change over repeated sampling; only b and d vary. Don’t

confuse the b and d in this example with the b and d in the covariance algebra rules.

In that case they were constants. Now they’re estimated regression coefficients, and

therefore variables! So

V(b � dz) � Cov(b � dz,b � dz)

[applying rule III.B(3)]

� Cov(b,b) � Cov(b,dz) � Cov(dz,b) � Cov(dz,dz)

[by rule III.B(6)]

� V(b) � 2z Cov(b,d) � z2V(d)

[using rules III.B(3), III.B(4), and III.B(5)].

Again, estimates of the required variances and covariances can be obtained from

the variance–covariance matrix of parameter estimates.

Application 3. As a third example of applying covariance algebra, I prove that the

correlation between x and y is 1 in absolute value whenever y is a perfect linear func-

tion of x. First, consider the formula for the correlation coefficient: rxy � cov(x,y)/

sxsy. That is, the correlation between x and y is the covariance of x with y, divided by

the product of their standard deviations. Since the product of the standard deviations

can also be written as the square root of the product of the variances of x and y, we

also have that rxy � cov(x,y)/�v�(x�)v�(y�)�.
Now, suppose that y is a perfect linear function of x. That is, suppose that y �

a � bx. Then cov(x,y) � cov(x, a � bx) � b cov(x,x) � b v(x) [by rules III.B(2),
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III.B(3), and III.B(5)]. Also, v(y) � v(a � bx) � cov(a � bx, a � bx) � b2 v(x) [also

by rules III.B(2), III.B(3), and III.B(5)]. Hence,

rxy ��
�
co

v�
v

(x�
(

)

x

v�
,y

(y�
)

)�
� ��

�v�(

b

x�
v

)

(

b�
x
2

)

v�(x�)�
� ��

v(

b

x

v

)�
(x)

b�2�
�

(the variance of x is always positive, but b may not be) � b/�b�� b/b � 1 if b � 0,

or �b/�b � �1 if b � 0.

D. Exercises

For variables X, Y, and ε and constants α, β, a, b, c, and d:

(1) Find the covariance of �5� X with �5� Y.

(2) Find the covariance of a � bX with c � dY.

(3) Find the covariance of �
1
2

�X � 3Y with 2X � 9Y if Cov(X,Y) � 1.2, V(X) � .5,

and V(Y) � 2.5.

(4) Find the variance of 2X � 3Y if Cov(X,Y) � 1.2, V(X) � .5, and V(Y) � 2.5.

(5) Suppose that Y �α�βX � ε. Find the variance of Y in terms of the variance

of X and the variance of ε if Cov(X,ε) � 0.

(6) Show that the correlation between X and Y is unchanged if X is multiplied by

a positive constant, c, and Y is multiplied by a positive constant, d, where

the correlation between any two variables U and V is ρUV � Cov(U,V)/

�V�(U�)V�(V�)�. [Note: The implication is, of course, that the correlation

between two variables is unchanged by a rescaling of the variables (e.g., the

correlation between height in feet and weight in pounds is the same as the

correlation between height in meters and weight in grams).]

(7) Show that the covariance between two standardized variables, Zx and Zy, is

the same as their correlation. [Hint: Use the definition of correlation in prob-

lem (6) and define Z x � (X �µx)/σx and Z y � (Y �µy)/σy.]

IV. DERIVATIVES

A. Introduction

The derivative is a very important tool for the quantification of effects of explanatory

variables in regression models. (It is also central to the estimation of parameters for

these models.) In this tutorial, I define the derivative and partial derivative and give

a series of algebraic rules for finding derivatives in various situations.

The derivative is the solution to one of the fundamental problems of calculus, the

tangent problem (Anton, 1984): Given a function Y � f(x) and a point P(x0,y0) on its

graph, find the equation of the tangent line, T, to the graph at P. Figure A.2 illustrates

this problem. The tangent line, T, is the line that touches f(x) only at point P. Finding

the equation of this line requires determining its slope, which I denote as btan. Once
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this slope is known, given that we know a point on the line, P(x0,y0), the equation for

the line is simply (y � y0) � btan(x � x0) (see Section (I.P).

As we saw earlier (i.e., in Section I.P), the slope of a straight line indicates the

number of units that Y changes as X increases by 1 unit, along the line. However, for

a nonlinear function of X, as shown in the figure, the slope of the line passing

through point P on the curve is continually changing as P moves along the curve.

Similarly, along the curve, f(x), Y does not change at a uniform rate as X increases.

Rather, at some points along the curve Y is changing very rapidly with X (the slope

at P is very steep), while at other points Y is changing more slowly (the slope at P is

very shallow). Only along a straight line does Y change at a uniform rate with X.

Hence, for any function in general, the slope, btan, indicates the instantaneous rate

of change of Y with increase in X at a particular point, x. 

Generally, the change in a function f(x) as X increases from x0 to x1 is f(x1) �

f(x0). The ratio of this change to the increase in X is then [f(x1) � f(x0)]/(x1 � x0).

This represents the average rate of change in the function with change in X over the

interval from x0 to x1. This ratio is also the slope of the line joining point P(x0,y0) and

point Q(x1,y1) in Figure A.2, called a secant line for the curve and denoted “S” in the

figure. We denote the slope of this line as bsec. This slope is a very crude approxi-

mation to btan. However, if we move point Q closer to point P and then recalculate
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bsec � [f(x1) � f(x0)]/(x1 � x0), bsec will become a better approximation to btan. If we

continue in this fashion, moving Q increasingly closer to P and calculating bsec each

time, the line S will rotate toward a “limiting” position as Q converges to the point

P. That position will be T, the tangent line of interest. This notion motivates the

following definition.

Definition. The slope, btan, of the line tangent to the curve at the point (x0,y0) is

btan � limx1→x0
�
f(x

x
1

1

) �

�

f

x

(

0

x0)
�.

In English, this says that the slope of the line tangent to a function at a point is the

value approached by the ratio of the change in the function to the change in x at that

point as the change in x diminishes to zero (i.e., as x1 converges to x0). This expres-

sion is so important that it is given some special notation (that is more consistent

with the “English interpretation” above). First, let ∆x � x1 � x0, so that x1 � x0 �∆x.

Also let btan � f
(x0). This slope is also called the first derivative of f with respect to

X at the point x0. In this altered notation, the first derivative is defined as

f
(x0) � lim∆x→0�
f(x0 �∆

∆
x

x

) � f(x0)
�.

Thus, the first derivative is the slope of the line tangent to the curve, f(x), at x0 [or at

the point P(x0,y0)]. More intuitively, as noted previously, it is the instantaneous rate

of change in Y along the function f(x), with increase in X, at the point x0. Because of

this interpretation, the first derivative is ideal for quantifying the causal impact of X

on Y, at least at a particular value of X.

It is typical to present the formula for the first derivative in terms of x, rather than

x0, making the notation more general. Thus, the first derivative of any function f(x),

at the point x, is

f
(x) � lim∆x→0�
f(x�∆

∆
x

x

) � f(x)
�

Example 1. Let’s see how this works. Suppose that we calculate the first derivative

of f(x) at the point x, where f(x) �α�βx. (Notice that this is the simple linear

regression function, as for the mean of Y at a given x.) We have

f
(x) � lim∆x→0

� lim∆x→0

� lim∆x→0 �
β
∆
∆
x

x
�� lim∆x→0 β�β.

The last equality results because the expression we are computing the limiting value

for (i.e., β) is no longer a function of ∆x. In fact, it is a constant value regardless of

what ∆x converges to. Hence its limit, as ∆x converges to zero, remains at that value.

α�βx�β∆x�α�βx
���

∆x

α�β(x�∆x)�(α�βx)
���

∆x
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This example demonstrates that the slope of f(x) in the simple linear regression

model is β, a constant. That is, E(Y) changes at a constant rate with increase in X, at

any point x, along the regression line.

Example 2. Now suppose that f(x) � x2. Again, the derivative is

f
(x) � lim∆x→0�
f(x�∆

∆
x

x

) � f(x)
�

� lim∆x→0�
(x�∆
∆
x

x

)2
�x2

�

� lim∆x→0

� lim∆x→0�
∆x(2

∆
x

x

�∆x)
�

� lim∆x→0 2x �∆x �2x �0�2x .

In this case, the first derivative, f
(x) � 2x, is a function of x. That is, the rate of

change of y with increase in x depends on the value of x. Thus, unlike a linear func-

tion of x, this nonlinear function of x (i.e., x2) has a nonconstant slope. For example,

when x � 1, the slope is 2(1) � 2, so y is increasing at twice the rate of x. When x � 2,

on the other hand, the slope is 2(2) � 4, so y is increasing at four times the rate of x,

and so on.

B. Rules for Finding Derivatives

Although we have defined the first derivative in terms of a limiting value above, it is

not necessary to compute this limit every time we want to find the first derivative.

Fortunately, there is a set of algebraic rules that provide derivatives for the functions

that we will encounter. First, let us introduce some additional notation. The first

derivative of f(x) with respect to x is also denoted �
d

d

x
�f(x). This notation will be 

especially useful when more complicated functions are involved. The rules are:

(1) �
d

d

x
�(c) � 0, where c is a constant (i.e., the derivative of a constant with respect

to x equals zero).

Example: �
d

d

x
�(5) � 0.

(2) �
d

d

x
�ex

� ex.

(3) �
d

d

x
� ln x � �

1

x
�.

(4) �
d

d

x
�cf(x) � c�

d

d

x
�f(x), where c is a constant.

x2
�2x∆x�(∆x)2

�x2

���
∆x
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Example: �
d

d

x
�(3.75 ln x) � 3.75�

d

d

x
�lnx � �

3.

x

75
�.

(5) �
d

d

x
�xr

� rxr�1, where r is any real-valued exponent. 

Examples: �
d

d

x
�x2

� 2x; �
d

d

x
�x5

� 5x4; �
d

d

x
�x2/3

� �
2

3
�x�1/3; �

d

d

x
�4x3

� 12x2.

(6) �
d

d

x
�[f(x) 	 g(x)] � �

d

d

x
�f(x) 	 �

d

d

x
�g(x).

Example: �
d

d

x
�(ln x � x2) � �

d

d

x
�(ln x) � �

d

d

x
�(x2) � �

1

x
�� 2x.

(7) �
d

d

x
�[f(x)g(x)] � f(x)g
(x) � g(x)f
(x).

Example: Find �
d

d

x
�(�x� ln x).

Solution: Let f(x) � �x�� x1/2 and g(x) � ln x. Then f
(x) � �
1
2

�x�1/2
� 1/2�x�, and

g
(x) � 1/x. Hence,

f(x)g
(x) � g(x)f
(x) � �x� �
1

x
�� (ln x)�

2�
1

x�
� � �

�
1

x�
� � �

2

l

�
n x

x�
� ��

2

2

�

�
ln

x�
x

�.

(8) �
d

d

x
���

g

f(

(

x

x

)

)
�� � .

Example: Find �
d

d

x
���

�
ex

x�
��.

Solution: Let f(x) � ex and g(x) � �x�. Then f
(x) � ex and g
(x) � �
1
2

�x�1/2
� 1/2�x�.

Hence,

��
�x�ex

� e

x

x(1/2�x�)
�� ex

�
2

2

x

x

�

3/2

1
�.

One final rule that is particularly useful is based on the composition of two func-

tions, f(x) and g(x).

Definition. Given two functions, f(x) and g(x), the composition of f(x) with g(x) is

the function defined by f(g(x)).

This needs some explanation. The composition of f with g essentially takes g(x)

as the input to f(x). That is, “x” in f(x) becomes “g(x).” We then perform on g(x) the

operations specified by the function f(x). Another way to view this operation is to

call f(x) the “outside function” and g(x) the “inside function.” Then f(g(x)) is the out-

side function evaluated at the inside function of x. [Exercises (14) to (16) in Section

I.Q already involved compositions of functions.]

Example. Suppose that f(x) � x2 and g(x) � ln x. Then the composition f(g(x)) is (ln

x)2. Notice that g(x) � ln x becomes “x,” or the input, to the function f(x) � x2. 

g(x)f
(x) � f(x)g
(x)
���

[g(x)]2

g(x)f
(x) � f(x)g
(x)
���

[g(x)]2
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As another example, suppose that f(x) � ex and g(x) �α�βx. Then f(g(x)) � eα� βx.

As a third example, suppose that f(x) � x2 and g(x) � y � a � bx. Then f(g(x)) �

(y � a � bx)2.

Chain Rule. If g(x) is differentiable at the point x and f(x) is differentiable at the

point g(x), the composition of f with g, f(g(x)), is differentiable at the point x.

Moreover,

(9) �
d

d

x
�[f(g(x))] � f
[g(x)]g
(x) � ��dg

d

(x)
�f(g(x))���

d

d

x
�g(x)�.

That is, the derivative of f(g(x)) is the derivative of the outside function evaluated at

the inside function times the derivative of the inside function with respect to x.

Example 1. Find �
d

d

x
�ln x2.

Solution: Let f(x) � ln x and g(x) � x2. That is, ln x is the outside function and x2 is

the inside function, so that f(g(x)) is ln(x2) � ln x2. Then

�
d

d

x
�ln x2

� ��
d

d

x2�ln x2���
d

d

x
�x2� � �

x

1
2�(2x) � �

2

x
�.

Example 2. Find �
d

d

x
�(5 � x2)3.

Solution: One way to solve this, of course, is to find the cube of (5 � x2) and then

take the first derivative with respect to x of the resulting expression. This is the “long

way around.” Using rule IV.B(9), however, we have

�
d

d

x
�(5 � x2)3

��
d(5 �

d

x2)
�(5 � x2)3

�
d

d

x
�(5 � x2) � 3(5 � x2)2(�2x) � �6x(5 � x2)2.

The reader can verify that the same answer is arrived at going the long way around.

Example 3. Find �
d

d

x
�e5�x�.

Solution: Let f(x) � ex and g(x) � 5�x�. Then

�
d

d

x
�e5�x�

��
d5

d

�x�
�e5�x�

�
d

d

x
�5�x�� e5�x���2�

5

x�
�� � �

5

2

e

�

5�

x�

x�
�.

Higher-Order Derivatives. The second-, third-, and higher-order derivatives of f(x)

with respect to x are just the derivatives of the next-lower-order derivative. That is,

f�(x) � �
d

d

x
�f
(x) is the second derivative of f(x) with respect to x,

f�(x) � �
d

d

x
�f�(x) is the third derivative of f(x) with respect to x, and so on.
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Example. Find the second derivative of f(x) � x3 with respect to x.

Solution: f
(x) � 3x2, f�(x) � �
d

d

x
�(3x2) � 6x.

In this book we are not concerned with derivatives any higher than second order.

C. Partial Derivatives

Partial derivatives are derivatives with respect to a particular variable, say x, for func-

tions in more than one variable. Suppose that y � f(x,w,z). That is, f is now a func-

tion of three independent variables, x, w, and z. Suppose that we fix w and z at the

respective values of w0 and z0. Then y � f(x,w0,z0) is only a function of x. In other

words, holding w and z constant at the values of w0 and z0, respectively, the values

of y change only as we plug different values of x into the function. These resulting

values of y (as x varies) then represent the “curve” of the function as x takes on

different values. This brings us to the following.

Definition. The first partial derivative of f(x,w0,z0) with respect to x, at x0, is the

slope of the tangent line to the curve f(x,w0,z0) at the point (x0,w0,z0).

The first partial derivative of f(x,w,z) with respect to x is denoted:

�
∂
∂
x
�f(x,w,z) or fx(x,w,z).

The partial derivative (unless otherwise stated, we assume that this refers to the

first partial derivative) is calculated by treating all other independent variables in the

function as though they are constants. In that we are fixing them at specific values

(e.g., w0,z0), this makes intuitive sense.

Example 1. Find �
∂
∂
x
�(.5 � 1.2x � 3w � �2� z).

Solution: In that w and z are being treated as constants, the only term involving x is 

“1.2x.” Hence, �
∂
∂
x
�(.5 � 1.2x � 3w � �2� z) � 1.2.

Example 2. Find �
∂
∂
x
�(xwz2

� w�x�� z3 ln x).

Solution: �
∂
∂
x
�(xwz2

� w�x�� z3 ln x) � wz2
� �

1

2
�wx�1/2

� �
z

x

3

�� wz2
� �

2�
w

x�
� � �

z

x

3

�.

Example 3. Find �
∂
∂
X3

�(α�β1X1 �β2X2 �β3X3 �β4X2X3).

Solution: �
∂
∂
X3

�(α�β1X1 �β2X2 �β3X3 �β4X2X3) �β3 �β4X2.

Second Partial Derivatives. We can compute second- and higher-order partial

derivatives. These are just derivatives of the next-lower-order partial derivative.

470 MATHEMATICS TUTORIALS



Again, we will only be concerned with first- and second-order partial derivatives in

this work. Because the function in question consists of more than one independent

variable, second-order derivatives can be constructed either with respect to the same,

or a different, variable than is true for the first partial derivative. Hence, for y � f(x,z)

we have

�
∂
∂
x

2y
2� � �
∂
∂
x
���
∂
∂
y

x
�� : the second partial derivative of y with respect to x,

also denoted fxx(x,z).

�
∂
∂
z

2

2

y
� � �
∂
∂
z
���
∂
∂
y

z
�� : the second partial derivative of y with respect to z,

also denoted fzz(x,z).

�
∂
∂
z

2

∂
y

x
� � �
∂
∂
z
���
∂
∂
y

x
�� : the mixed second partial with respect to x, then z,

also denoted fxz(x,z).

�
∂
∂
x

2

∂
y

z
� � �
∂
∂
x
���
∂
∂
y

z
�� : the mixed second partial with respect to z, then x,

also denoted fzx(x,z).

Second partial derivatives with respect to each variable or each pair of variables can

be constructed for functions of several variables as well as for functions of just two

variables. As with first partial derivatives, the second partial derivative with respect

to a given variable is constructed by treating all other variables as constants. 

Example 1. Find �
∂
∂
x

2

2�(xwz2
� w�x�� z3 ln x).

Solution: From Example 2 in Section IV.C we found that �
∂
∂
x
�(xwz2

� w�x��

z3 ln x) � wz2
� �

1

2
�wx�1/2

� �
z

x

3

�. Hence,

�
∂
∂
x

2

2�(xwz2
� w�x�� z3 ln x) � �

∂
∂
x
��wz2

� �
1

2
�wx�1/2

� z3x�1� � ��
1

4
�wx�3/2

� z3x�2

� �
4

�

x3

w
/2� � �

x

z3

2�.

Example 2. Find �
∂
∂
z

2

2�(xwz2
� w�x�� z3 ln x).

Solution: First, we note that �
∂
∂
z
�(xwz2

� w�x�� z3 ln x) � 2xwz � 3z2 ln x. Then we

have that 

�
∂
∂
z

2

2�(xwz2
� w�x�� z3 ln x) � �

∂
∂
z
�(2xwz � 3z2 ln x) � 2xw � 6z ln x.

Example 3. Find �
∂z
∂
∂

2

x
�(xwz2

� w�x�� z3 ln x) .
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Solution: We saw that �
∂
∂
x
�(xwz2

� w�x�� z3 ln x) � wz2
� �

1

2
�wx�1/2

� �
z

x

3

�, Hence,

�
∂z
∂
∂

2

x
� (xwz2

� w�x�� z3 ln x) � �
∂
∂
z
��wz2

� �
1

2
�wx�1/2

� z3x�1� � 2wz � 3z2x�1.

Example 4. Find �
∂x
∂2

∂z
� (xwz2

� w�x�� z3 ln x) .

Solution:

�
∂x
∂2

∂z
� (xwz2

� w�x�� z3 ln x) � �
∂
∂
x
���
∂
∂
z
�(xwz2

� w�x�� z3 ln x) �
� �
∂
∂
x
�(2xwz � 3z2 ln x) � 2wz � 3z2 x�1.

It is not just coincidence that the mixed second partial derivatives in Examples 3

and 4 are equal. By theorem, the mixed second partial derivatives are equal for a

wide class of functions (Munem and Foulis, 1984).

D. Exercises

(1) Find �
d

d

x
�(x3).

(2) Find �
d

d

x
�(x4/5).

(3) Find �
d

d

x
�(3x4

� 2x3
� x2

� 1).

(4) Find f
(x) for f(x) � ln x � x3 and evaluate f
(3). [Hint: First find f
(x) in

general, then plug in “3” for x and evaluate the result.]

(5) Find f
(�2) for f(x) � ex
� x2.

(6) Find f
(x) if f(x) � x3ex.

(7) Find f
(x) if f(x) � x ln x.

(8) Find f
(x) if f(x) � �x� ln x2.

(9) Find f
(x) if f(x) � �
�
ln x

x�
�.

(10) Find f�(x) if f(x) � x4.

(11) Find f�(x) if f(x) � ln x.

(12) Find f�(x) if f(x) � e5x.

(13) Find f
(x) if f(x) � (ln x)2.

(14) Find f�(x) if f(x) � e x2
.

(15) Find �
d

d

x
���1 �

e x

e x
��.

(16) Find �
d

d

x
���1 �

eα

e

�

α

β

�

x

βx��.
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(17) Find f
(x) if f(x) � ln x2.

(18) Find f
(x) if f(x) � (x � 2)4.

(19) Find f
(x) if f(x) � ��
1

2
�x � ln x�

3

.

(20) Find �
∂
∂
x
�(x2

� 3xy � y2).

(21) Find �
∂
∂
x
���1 �

eα

e

�

α

β

�

x�

βx

γ

�

w�

γw

λ

�

z

λz
��.

V. MATRIX ALGEBRA

Matrix algebra is a compact and powerful form of algebra that makes possible com-

putations that would be extremely cumbersome to perform in ordinary, called scalar,

algebra. In this tutorial, I define the major elements and tools of matrix algebra and

demonstrate various applications of its use in statistics. Many students find matrix

notation and matrix manipulations to be especially arcane. In this tutorial I will try,

as much as possible, to demystify these topics.

A. Why Matrix Algebra?

Sometimes you just can’t “get there from here” very well without matrix algebra.

Let’s consider an example. Suppose that we wish to find the expected value and vari-

ance of the ordinary least squares (OLS) estimator of βk in the linear regression

model. That is, we need to find E(bk) and V(bk), applying rules for finding the expec-

tation and variance of sample statistics. With just one regressor in the model, this

isn’t too daunting in scalar algebra. The formula for b is just

b ��
	(

	
X �

(X

X�

�

)(Y

X�)

�

2

Y�)
�.

However, with two regressors in the model, the formulas for b1 and b2 are

,

.

The reader can well imagine how cumbersome these expressions get with even more

regressors in the model. In contrast, the formula in matrix notation for the vector, or

	(X1� X�1)
2	(X2 � X�2)(Y � Y�) �	(X1 �X�1)(X2 � X�2)	(X1� X�1)(Y�Y�)

b2 �����������

	(X1 � X�1)
2	(X2 � X�2)

2
� �	(X1 � X�1)(X2 � X�2)�

2

	(X2 � X�2)
2	(X1 � X�1)(Y � Y�) �	(X1 �X�1)(X2 � X�2)	(X2 � X�2)(Y�Y�)

b1 �����������

	(X1 � X�1)
2	(X2 � X�2)

2
� �	(X1 � X�1)(X2 � X�2)�

2
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set, of regression estimates, b, for any number of regressors in the model, is

b � (X
X)�1X
y, which is considerably more parsimonious. Using this expression,

finding the expectation and variance of b is quite straightforward, as is demonstrated

in Section V.J below.

B. Notation and Definitions

Notation. The following notational conventions will be used throughout this sec-

tion: Capital letters (e.g., A, B, X, Z) denote matrices. Lowercase letters in boldface

(e.g., a, b, x, z) represent vectors. Lowercase letters at the end of the alphabet (e.g.,

u, v, w, x, y, z) represent variables. Lowercase letters at the beginning of the alpha-

bet (e.g., a, b, c, d) represent constants.

Definitions. A vector is a collection of values, or scalars, arranged in a column. For

example,

x � � �
is a vector consisting of the three scalars (numbers) 1, 2, and 3. A vector can also be

written as a row of numbers. When it is, it is referred to as a row vector and given a

transpose (x
) superscript. In fact, the transpose of a column vector is the same vec-

tor written as a row. Thus,

x
 � [ ].

In contrast to some works, this book will always use a transpose sign to indicate a

row vector.

A matrix is simply a collection of column (row) vectors:

X � � �.

Matrices are distinguished according to the number of rows and columns in the

matrix. These constitute the dimensions, or order, of a matrix and are often shown

as subscripts to the matrix symbol. In that the matrix, X, above, has three rows and

three columns, it would be denoted X33. In general, Xrc is a matrix with r rows and

c columns. Individual elements inside a matrix are denoted, in the abstract, with i

and j subscripts to indicate their row and column location within the matrix. Thus,

xij is the element in the ith row and jth column of the matrix X. For example, in the

matrix immediately above, x32 � 6.

A vector is a matrix with either r or c equal to 1. Vectors can also be distinguished

by dimensional subscripts. For example,

x31 � � �,

1

2

3

7

8

9

4

5

6

1

2

3

1 2 3

1

2

3
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whereas

x
13 � [ ].

However, most of the time, the dimensions of a matrix or a vector will be omitted

from the symbol, for expressive economy.

A matrix can be shown in more compact notation by showing only its columns,

written as vectors. For example, if the columns of X are denoted

x1 � � �, x2 � � �, and x3� � �,

we can write X as

X � [x1 x2 x3],

where in this case, the subscripts on the columns indicate the column numbers rather

than their dimensions. Notice that when we write X as [x1 x2 x3], it has the form

of a row vector. In fact, a matrix could be described as a vector whose individual

elements are themselves vectors. Writing X as [x1 x2 x3] is also referred to as

partitioning X by its columns. This is not the only way to partition a matrix. It can

also be partitioned by submatrices within the overall matrix. However, we will fre-

quently find it useful to partition X by its columns (or its rows) and then to treat it in

subsequent operations as though it is a vector, which, in fact, it is. Examples will be

seen shortly.

Similarly, if the rows of X are denoted

x1

 � [ ], x2


 � [ ], and x3

 � [ ],

we can also write X as

X � � �.

In this case, X is shown as partitioned by its rows and has the appearance of a col-

umn vector, which, again, it is. It is a column vector whose individual elements are

themselves row vectors. In general, I use xi to denote the ith column of a matrix, X,

and xi

 to denote the ith row of that matrix. This notation allows an unequivocal lan-

guage for representing rows and columns of a matrix, as well as their transposes,

without ambiguity. As noted above, the transpose of a column vector is that column

written as a row. Hence,

x
1 � [ ].

The transpose of a row vector is, conversely, that vector written as a column. In that

the row vector already has a transpose sign, transposing it again eliminates the

1 2 3

x1



x2



x3



3 6 92 5 81 4 7

7

8

9

4

5

6

1

2

3

1 2 3
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transpose sign:

�x1

�
� x1

� � �.

Note that for any matrix X, xi, the ith column of the matrix, and xi, the transpose

of the ith row of the matrix, are not generally equal. This is easily seen in the exam-

ple matrix X above, since

x1 � � � � � �� x1.

Two vectors are equal only if they consist of exactly the same elements. Two matri-

ces are equal only when they have the same elements and these elements are in the 

same positions in the matrix. For example, X � � � is not equal to 

Y� � �, even though both matrices consist of the same elements.

The transpose of a matrix X, denoted X
, is a matrix whose rows are the columns

of X, or equivalently, whose columns are the rows of X. For example, Y immediately 

above is the transpose of X. That is, Y � X
, since the first column of X, � �, forms

the first row of Y, and so on.

The transpose of a partitioned matrix is the transposed matrix of transposed sub-

matrices. This sounds complicated. Let’s see what it means, by finding the transpose of

X again, but this time writing X partitioned by its columns. That is, X � [x1 x2 x3],

so

X
 � � � � � � � Y.

Notice that X
 is created by transposing the matrix X from a row vector to a column

vector, while at the same time transposing all of the submatrices, which are column

vectors, into row vectors. We could achieve the same result by partitioning X by its

rows and then transposing it:

X � � � implies that X
 � x1 x2 x3� � �.

Here we see that X
 has been created by transposing X from a column to a row

vector while transposing the rows into columns.

3

6

9

2

5

8

1

4

7

x1



x2



x3



3

6

9

2

5

8

1

4

7

x
1

x
2

x
3

1

2

3

3

6

9

2

5

8

1

4

7

7

8

9

4

5

6

1

2

3

1

4

7

1

2

3

1

4

7
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A square matrix is one with the same number of rows as columns. X and X


above are square matrices since they each have three rows and three columns. In

general, a square matrix is of the form Ann, where n is the number of rows and

columns in the matrix. The diagonal of a square matrix consists of the elements in

the ith row and ith column for i � 1, 2, . . . , n. For example, the diagonal of X is 

� �. (We follow the convention of denoting the diagonal of a matrix as a column

vector.) Notice that these are the elements in, respectively, the first row, first column;

the second row, second column; and the third row, third column, of X. The trace of

a square matrix, or tr(A), for A square, is the sum of the diagonal elements. Hence

tr(X) � 1 � 5 � 9 � 15.

C. Working with Matrices

Vectors. Adding or subtracting two vectors consists of the elementwise addition or

subtraction of the components of two vectors, provided that they are of the same 

order. For example, if a � � � and b � � �, then a � b � � � � � � and 

a � b � � � � � �. However, addition and subtraction cannot be performed 

for vectors of different orders, or between vectors and matrices, or between scalars

and either vectors or matrices.

Multiplication of vectors takes place in either of two ways. The inner product of

two vectors is the product of a row vector with a column vector of the same order. It

is formed by summing the elementwise products of the corresponding components of 

each vector. The result is a scalar. For example, a
b � [3 5]� �� (3)(2) � (5)(4) � 26.

The outer product, on the other hand, is the product of a column vector with a row

vector of the same order. The result is a matrix whose elements are all possible

products of the elements of the column vector with the elements of the row vector.

Hence, ab
 � � �[2 4] � � � � � �. Finally, any vector can

be multiplied or divided by a scalar. The result is a vector whose elements are all 

multiplied or divided by that scalar. For example, .5a � � � � � �.

Matrices. Adding or subtracting two matrices consists of the elementwise addition

or subtraction of the components of two matrices, provided that they are of the same

order. Hence if

A � � � and B � � �,
9

4

3

12

5

8

2

7

1.5

2.5

(.5)(3)

(.5)(5)

12

20

6

10

(3)(4)

(5)(4)

(3)(2)

(5)(2)

3

5

2

4

1

1

3 � 2

5 � 4

5

9

3 � 2

5 � 4
2

4

3

5

1

5

9
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then

A � B � � � � � �,

and

A � B � � � � � �.

Matrix multiplication is not simply the elementwise product of corresponding

components in two matrices (although one type of matrix product, the Hadamard

product, is formed in this fashion, but is not used very much). To begin, matrix mul-

tiplication can only take place between two matrices that are conformable for multi-

plication. A and B are conformable if B has the same number of rows as A has

columns. That is, Arc and Bcq are conformable for multiplication since A has c

columns and B has c rows. The result of the product AB is a matrix with r rows and

q columns. Hence, two matrices are conformable if the column dimension of the first

is equal to the row dimension of the second, and the order of their product is then the

row dimension of the first by the column dimension of the second. As an example,

A32 � � � and B24 � � � are conformable, since A has two columns

and B has two rows. Their product, AB, will be a 3  4 matrix.

The product is constructed by taking the inner products of each row vector in A with

each column vector in B. That is, the (i, j)th element of AB is the inner product of the

ith row of A with the jth column of B. Let’s see how this works by computing AB:

The (1,1)th element of AB is the inner product of the first row of A with the first 

column of B: [1 2]� � � 4. The (2,1)th element of AB is the inner product of the 

second row of A with the first column of B: [3 4]� � � 10. The (3,1)th element 

of AB is the inner product of the third row of A with the first column of 

B: [5 6]� � � 16. The (1,2)th element of AB is the inner product of the first row 

of A with the second column of B: [1 2]� � � 10. We continue in this fashion until 

we get to the last element of AB, the (3,4)th: [5 6]� � � 94. The complete prod-

uct is

AB � � �� � � � �.

26

60

94

16

38

60

10

24

38

4

10

16

8

9
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2

1

2

4

6

1

3

5

8
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3

2

1

2

1

2

1

8

9

6

5

4

3

2

1

2

4

6

1

3

5

�4

4

�1

�5

5 � 9

8 � 4

2 � 3

7 � 12

14

12

5

19

5 � 9

8 � 4

2 � 3

7 � 12
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Another way to understand this operation is to partition A by its rows and B by

its columns. This treats A like a column vector and B like a row vector. AB is then

an outer product whose individual elements are inner products of rows of A with 

columns of B. In particular, if A � � � and B � [b1 b2 b3 b4] then

AB � � �[b1 b2 b3 b4] � � �
This result demonstrates the method of matrix multiplication we just articulated.

The product of a matrix, A, with a vector, c, is formed in a similar fashion, except

that a vector consists of only one column, so the process is somewhat simpler. Again,

the process is easy to see if A is partitioned by its rows. In this case, A takes the form

of a column vector and c takes the form of a constant. The result is treated like the

product of a vector with a constant. Hence,

Ac � � �c � � �.

That is, the result is a vector whose elements are inner products of the rows of A with 

the vector c. For example, if c � � �, then

Ac � � �� � � � �.

Notice that A32 and c21 are conformable for multiplication, and the result, Ac, is a

3  1 vector. Finally, the product or the quotient of a matrix with a scalar is formed

by multiplying (dividing) each element of the matrix by that scalar.

D. Special Matrices

A variety of special matrices are used in matrix algebra, and these will be defined

here.

(1) Diagonal Matrix. A diagonal matrix is a square matrix having zeros for all of

its off-diagonal elements. For example:

D � � � is a diagonal matrix.

Premultiplying a matrix A by a diagonal matrix D results in a matrix whose rows

are multiplied by the corresponding diagonal elements in D.

0

0

9

0

5

0

3

0

0
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43
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Example: � � � � � � � � � �.

Postmultiplying a matrix A by a diagonal matrix D results in a matrix whose

columns are multiplied by the corresponding diagonal elements in D.

Example: � � � �� � � � � �.

(2) Null Matrix. A null matrix is a matrix with all elements zero. It will be distin-

guished from the scalar zero by placing it in boldface type.

Example: 0 � � � is a null matrix.

Analogous to the rule in scalar algebra, A 	 0 � A and A0 � 0A � 0 for any

matrix A, provided that A and 0 are conformable for these respective operations.

(3) Identity Matrix. An identity matrix, denoted by I, is a square matrix with 1’s on

the diagonal and zeros everywhere else.

Example: I � � � is an identity matrix of order 3.

Identity matrices are analogous to the scalar 1: AI � IA � A for any matrix A.

(4) Idempotent Matrix. An idempotent matrix A is one with the property that 

A2
� A.

Example. Identity matrices are all idempotent, since I2
� II � I. The second equality

in this last expression follows from the property that any matrix is unchanged when

multiplied by an identity matrix.

(5) Symmetric Matrix. A symmetric matrix A has the property that A � A
.

Example: � � is symmetric, since if you transpose it, you get the same

matrix again. Covariance and correlation matrices for a set of K variables are always

symmetric matrices.

(6) Orthogonal Matrix. An orthogonal matrix A has the property that A


A � AA
 � I. To elaborate further, we must first define normality and orthogonality

with respect to vectors. A vector x is normal if x
x � 1. First, note that x
x is simply
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the sum of squared elements of the vector x (as the reader can easily verify for him-

self or herself, using any vector x). Thus, a normal vector is such that the sums of

squares of its elements equals 1. Two vectors, x and y, are orthogonal if x
y �

y
x � 0. A set of vectors is orthonormal if each vector is normal and they are all

pairwise orthogonal. A square matrix whose columns constitute an orthonormal set

of vectors is an orthogonal matrix.

Example:

P �� �
is orthogonal, as is readily verified. The reader can also verify that P
P � PP
 � I.

(7) Centering Matrix. Centering matrices are used to represent quantities such as

	(X � X� )2 for a set of variable scores x1, . . . , xn. To describe this matrix, we must

first define the summing vector. A vector whose elements are all 1’s is represented

as 1 and is referred to as a summing vector. This label arises from the fact that

1
x � x
1 � 	x, as the reader can easily verify with any vector x. For a 1-vector of

order n (i.e., having n elements), the square matrix Jnn � 11
 is a matrix of order n, all

of whose elements are 1’s. Further, the matrix J�� (1/n)Jnn is a square matrix all of

whose elements are 1/n. A centering matrix, C, is then defined as C � (I � J�) , where

I is of the same order as J�. Let’s see where the centering matrix gets its appellation.

For a vector x of variable scores, Cx is such that Cx � (I � J�)x � Ix � J�x. Now

Ix � x [see V.D(3)]. But what is J�x? J�x � (1/n)11
x � 1[(1/n)1
x] � 1x�, which equals

a vector all of whose elements are x�. Let’s denote this vector of means by x�. Thus,

Cx � (I � J�)x � x � x�, a vector consisting of x scores that have been centered or devi-

ated from their means. This formulation is shown below to provide the basis of

matrix formulas for sample variances and covariances.

E. Rules for Matrix Expressions

Rules for matrix expressions are analogous to those for algebraic expressions, with

some key differences. They are:

(1) Commutative property: A � B � B � A.

(2) Associative property 1: A � (B � C) � (A � B) � C.

(3) Associative property 2: (AB) C � A(BC) � ABC.

(4) Scalar property: cAx � Acx � Axc for any scalar c. That is, the order of

multiplication is invariant with respect to scalars.

Rules V.E(1) to V.E(4) are similar to rules in scalar algebra. The following

properties, however, are unique to matrix algebra:
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(5) Distributive property 1: A(B � C) � AB � AC. Note that A is on the left in

both terms here. This is not just coincidental. The result is not generally

equal to AB � CA or BA � AC or BA � CA. In fact, given conformability

requirements, BA and CA may be undefined.

(6) Distributive property 2: (B � C) A � BA � CA, which is not generally equal

to AB � AC.

(7) AB � CA cannot be factored.

(8) In scalar algebra a � ca is factored as (1 � c)a. Similarly, in matrix algebra,

A � CA, for A and C being square matrices, is factored as (I � C)A, where

I is an identity matrix of the same order as A and C. That is, I is analogous

to the scalar 1 in factoring operations. Also, the expression x
x � x
Cx is

factored as x
(I � C)x. In the same vein, BA � 2B is factored as B(A � 2I).

(9) Unlike the situation in scalar algebra, AB � 0 does not imply that either A

or B is a null matrix.

Example: AB � 0 for A � � � and B � � �. Moreover, for

X�� �, X2
� 0 even though X is not 0.

(10) (ABC)
 � C
B
A
. That is, the transpose of a product of matrices is the

product of the transposed matrices, in reverse order.

(11) (A 	 B)
 � A
 	 B
.

(12) tr(A 	 B) � tr(A) 	 tr(B).

(13) tr(A) � tr(A
).

(14) tr(ABC) � tr(CAB) � tr(BCA). That is, the trace of a matrix product is

invariant to elementwise cycling of individual matrices in the product. Note

that elementwise cycling means the last matrix in the product is “cycled” to

the front of the product, and this process is repeated to produce all possible

nonredundant orderings of the product. The product BAC, for example,

would not constitute an elementwise cycling of ABC.

(15) A scalar equals its own trace [i.e., tr(c) � c].

(16) A scalar equals its own transpose [i.e., c
 � c].

F. Matrix Equations and Their Solutions

One of the most valuable uses of matrix algebra is in solving systems of linear equa-

tions. As an example, the following is a system of linear equations in two unknowns,

x11 and x21:

x11 � x21 � 20

x11 � x21 � �12.
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1
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1
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This system of equations can be written as a matrix equation of the form Ax � y,

where A is a matrix of constants, x is the vector of unknowns, x11 and x21, and y is

the vector of constants on the right-hand side of the equation. For this system we 

have A � � � , x � � � , and y� � �. The reader can verify that the 

left-hand side of this system can be expressed as the vector Ax.

The Inverse. Solving this system amounts to finding the inverse matrix of A,

denoted A�1, if it exists. (Below we consider conditions necessary for the inverse of

a matrix to exist.) The inverse of a square matrix A (the inverse exists only for square

matrices) is the matrix A�1, with the following property: AA�1
� A�1A � I. This is

analogous to the inverse, a�1, of a scalar, a, since a a�1
� a�1a � 1. Multiplication

by the inverse matrix is the scalar analog of division. (Note that dividing by a matrix

is an undefined operation.) The equation ax � y has solution x � a�1y, in scalar alge-

bra, because we can multiply both sides of the equation by a�1 to isolate x on the

left-hand side. That is, ax � y implies that a�1ax � a�1y or x � a�1y. similarly, the

matrix equation Ax � y is solved by premultiplying both sides of the equation by A�1:

Ax � y implies that A�1Ax � A�1 y, or Ix � A�1 y, or x � A�1 y. In the example,

A�1
� � � (the reader can verify that AA�1

� A�1A � I in this case). The 

solution is therefore x � � �� �� � �.

The Determinant. Finding the inverse matrix can be complex and time consuming.

Fortunately, we can let the computer do the actual work for us. Nevertheless, to fur-

ther our understanding, we’ll discuss how to find the inverse of a second-order

matrix, as that is quite simple. First, we need to find the determinant of the matrix.

The determinant of a square matrix A, denoted �A�, is a scalar value that is related

to the degree of linear independence among the columns of the matrix. (We will

take up the issue of linear independence below.) For any 2  2 matrix A, where 

A � � �, �A� is equal to (a11)(a22) � (a21)(a12). For higher-order matrices, the 

idea is the same, except that the determinant becomes a weighted sum of determi-

nants of lower-order submatrices within the larger matrix.

Example. The determinant of A � � � is �A�� (1)(�1) � (1)(1) � �2.

Finding the Inverse. The inverse of a second-order matrix A, having the form

� �, is
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Here we see that the inverse is the reciprocal of the determinant times a matrix in which

the positions of a11 and a22 are interchanged, while the signs of a12 and a21 are reversed.

Example. The determinant of A � � � was already found to be �2; hence,

A�1 is

��
1

2
�� � � � �,

which agrees with our previous result.

Multiplication Rule. The inverse of a product of matrices is the product of their

individual inverses, in reverse order, provided that the individual inverses exist. That

is, (ABC)�1
� C�1B�1A�1, provided that A�1, B�1, and C�1 all exist. It is easy to

see why this is true, since (ABC)�1(ABC) � C�1B�1A�1ABC � C�1B�1IBC �

C�1B�1BC � C�1IC � C�1C � I.

Transpose Rule. The inverse of the transpose is the transpose of the inverse. That

is, (A
)�1
� (A�1)
.

G. Linear Dependence and Rank

Let’s consider again the product Ax. The result is a vector. For a 3  3 matrix A and

a 3  1 vector x, Ax can be represented as

[a1 a2 a3]� �� [a1x11 � a2x21 � a3x31].

This formulation exploits the fact that A can be partitioned by its columns and then

treated like a row vector (which it is). Hence the resulting product, Ax, can be treated

like an inner product of two vectors, giving us the result on the right-hand side of the

equation. The resulting vector, [a1x11 � a2x21 � a3x31], is therefore seen to be a lin-

ear combination, or weighted sum, of the columns of A, with the weights being the

components of x. Now if there is a nonnull (i.e., nonzero) vector x such that Ax � 0,

then provided that no column of A is null, the columns of A are said to be linearly

dependent. What this means is that one column of A is a linear combination of the

other columns, since Ax � 0 implies that a1x11 � a2x21 � a3x31 � 0, or

x11a1 � � x21a2 � x31a3, or a1 � ���
x

x
2

1

1

1

��a2 � ���
x

x
3

1

1

1

��a3.

If there is no nonnull x such that Ax � 0, the columns of A are linearly independent.

Linear dependence is especially important in linear regression, where the columns of

the “design matrix,” X, represent one’s independent variables (as we will shortly show).

It is assumed in linear regression that the columns of X are linearly independent. If they
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are, instead, linearly dependent, the least-squares estimates are undefined. Unless one

predictor is a perfect linear combination of other predictors, linear dependence is rare.

However, near-perfect linear dependence, a not-so-rare phenomenon, is the problem

known as multicollinearity.

Rank. The rank of a matrix A, denoted r(A), is the number of linearly independent

columns in the matrix. (The number of linearly independent columns of a matrix is

the same as the number of linearly independent rows.) The rank of a matrix has a

direct bearing on whether the inverse of a matrix exists: If the rank of an n  n matrix

equals n, the matrix has an inverse. Also: A has an inverse if and only if �A� is not zero.

This principle is apparent in the definition of the inverse for a 2  2 matrix above,

since if �A� is zero, the inverse is undefined. Hence, a matrix A has an inverse only if

its columns are linearly independent, in which case its determinant is nonzero.

Example. The 2  2 matrix A� � � has only one linearly independent column,

since the second column is twice the first. We would therefore expect that the inverse

of this matrix doesn’t exist. This is clear from the fact that �A�� (1)(4) � (2)(2) � 0;

hence, the inverse is undefined.

H. Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors are very important tools in the diagnosis of and rem-

edy for multicollinearity. Therefore, I introduce them briefly here.

Definitions. Given a square matrix Ann, we ask whether there is a scalar λ and a vec-

tor u such that Au �λu. (In other words, the scalar acts like the matrix in products

with the vector.) If so, then λ is called an eigenvalue of A and u is called an eigen-

vector of A. It turns out that, for any Ann, there are n such λ’s and at least n such u’s.

It should, however, be noted that the eigenvalues of A are roots of a polynomial

equation of degree n and are not necessarily real numbers unless A is symmetric. The

eigenvalues of a symmetric matrix are all real.

Example. � � has two eigenvalues, �5 and 7, with associated eigenvectors

u
1 � [2 �3],

u
2 � [2 3].

The reader can easily verify that

� � � �� �5� � ,

� � � �� 7� �.
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Two principles connect eigenvalues to other matrix properties:

(1) The trace of a matrix is equal to the sum of its eigenvalues.

(2) The determinant of a matrix is equal to the product of its eigenvalues.

Rule 2 helps to convey somewhat of an intuitive feeling for eigenvalues. They are

associated with the degree of linear dependence in a matrix, since if the determinant

is zero, meaning that one or more columns of a matrix is a linear combination of the

other columns, one or more of the eigenvalues must therefore also be zero.

Spectral Decomposition of a Symmetric Matrix. A special application of eigenval-

ues and eigenvectors is the spectral decomposition of a symmetric matrix. It shows

how a symmetric matrix (a correlation matrix, for example) can be shown to be a

weighted sum of its eigenvalues times other matrices. These other matrices consist

of the outer products of the matrix’s eigenvectors with themselves. This formulation

is especially important for understanding the remedy for multicollinearity known as

principal components regression.

Suppose that we have a symmetric matrix, A. Suppose, further, that λj and uj are the

jth eigenvalue and associated eigenvector, respectively, of A. If A is n  n, there are n

eigenvalues and eigenvectors associated with this matrix. If A is symmetric, it turns out

that its eigenvectors are all pairwise orthogonal. Without any loss of generality, we can

normalize the eigenvectors so that each is also normal. The jth eigenvector, uj, is nor-

malized by multiplying it by 1/�u�
ju�j�. The resulting normalized eigenvectors will be

both normal and orthogonal. Hence, if we collect them in a matrix U, it will be an

orthogonal matrix with the property that UU
 � I. We then note that

A � AI � AUU
.

Now suppose, for argument’s sake, that A is 2  2, so that U is also 2  2. Then

UU
 � [u1 u2]� � � u1u
1 � u2u
2 �	uju
j.

This illustrates that, in general,

A � AUU
 � A	uju
j �	Auju
j �	λjuju
j .

(Recall that by the definition of eigenvalues and eigenvectors, Auj �λjuj.) The last sum

on the right is called the spectral decomposition of a symmetric matrix. It shows that any

symmetric matrix A can be shown to be a sum of matrices, each of which is the product

of an eigenvalue of A times the outer product of its associated eigenvector with itself.

I. Expectation and Variance of Vectors

The expectation of a random variable, X, is denoted by E(X). It is the average, or

mean, value of X in the population and is usually given the symbol µ. The variance

u
1

u
2
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of a random variable, V(X), is the average squared deviation of X from its mean. That

is, V(X) � E(X �µ)2. We can define similar properties for vectors of random variables. 

Suppose that x is a vector of, say, three random variables: x � � �. Notice now 

that the elements of this vector are not specific values. Rather, they are variables.

That is, instead of talking about these variables individually, we have collected them

in a vector, x. The expected value of the vector x, denoted E(x), is simply the vector

of expected values of the individual variables. That is,

E(x) �� ��� ��µµ.

Notice that µµ is the symbol for the vector of variable means.

The variance of the vector x is defined as V(x) � E[(x �µµ)(x �µµ)
]. Notice here

that (x �µµ) is a column vector of the variables deviated from their means. Its trans-

pose (x �µµ)
 is therefore a row vector of the variables deviated from their means.

Thus, (x �µµ)(x �µµ)
 is an outer product of two vectors, or a matrix. In other words,

the variance of a vector is a matrix of expected values. For our three-variable vector,

x, here’s what (x �µµ)(x �µµ)
 looks like:

(x �µµ)(x �µµ)
 �� �[X1 �µ1 X2 �µ2 X3 �µ3]

�� �.

Hence,

V(x) � E[(x �µµ)(x �µµ)
]

�� �� V.

Since E(Xi �µi)
2 is the variance of Xi, and E(Xi �µi)(Xj �µj) is the covariance of Xi

with Xj, V is referred to as the variance–covariance matrix for x.

We have seen above that the product of, say, a 3  3 matrix A with a 3  1 vector

x has the form

Ax �� �x �� �.
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x
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a1
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That is, each element of the resulting matrix is a linear combination of the elements

of the vector x. In general, if A is a matrix of constants and x is a vector of random

variables with E(x) �µµ and V(x) � V, then y � Ax is called a linear transformation

of the vector x, and

E(y) � E(Ax) � AE(x) � Aµµ,

V(y) � AVA
.

J. Applications

In this section we examine some common statistical applications of matrix algebra.

Application 1. Expressing a sample variance–covariance matrix of K variables in

matrix notation. Suppose that we have a sample of measurements on K variables, X1,

X2, . . . , XK, for n persons. Let’s construct a matrix expression for the variance–

covariance matrix of these X’s, in matrix algebra. First, for the sake of simplicity, let’s

assume that K � 3, so that our variables are X1, X2, and X3. Further, let’s assume that

n � 5. Then, our data matrix can be expressed as

X �
 �.

Each row consists of the variable scores for one observation, and each column rep-

resents all of the scores for one variable. In general, such a data matrix, X, can be

constructed for any value of K or n. Now consider a given column of X, say the first.

Denote this as x1. We saw above that if C is the centering matrix, Cx1 � x1 � x�1 is

the vector of x1 scores deviated from their means. Now, the inner product of this vec-

tor with itself is the sum of squares of the elements of the vector. That is,

(Cx1)
(Cx1) � (x1 � x�1)
(x1 � x�1) �	
n

i�1

(xi1� x�1)
2.

(The reader can verify that this would be true, using the first column of the matrix X

above.) Now (Cx1)
(Cx1) � x
1C
Cx1 [by rule V.E.(10)] � x
1Cx1, since C is both sym-

metric and idempotent. At this point, let’s pause and show that C is symmetric and

idempotent. Recall that C � (I � J�) � I � (1/n)11
. Thus, C
 � [I � (1/n)11
]
 �

I
 � 11
(1/n) � I � (1/n)11
 � C [by rules V.E (10), V.E (11), and the fact that I is

symmetric, as the reader can easily verify]. Hence, C is symmetric. Now

C2
� (I � J�)(I � J�) � I2

� IJ�� J�I � J�2
� I � J�� J�� J�2

� I � J�� C [since I, as noted

previously, is idempotent, and J�2
� (1/n)11
(1/n)11
 � (1/n2)11
11
 � (1/n2)1n1
 �

(1/n)11
 � J�]. Therefore, C is also idempotent.

Since x
1Cx1 � 	n

i�1
(x1i � x�1)

2, we have that

�
n �

1

1
�x
1Cx1 ��

	(

n

x1

�

�

1

x�1)
2

�� s2
1,
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the sample variance of X1. Now what is [1/(n � 1)]x
1Cx2? Recall that Cx1 � x1 � x�1.

Similarly, Cx2 � x2 � x�2. Hence,

(x1 � x�1)
(x2 � x�2) � (Cx1)
Cx2 � x
1C
Cx2 � x
1Cx2 �	
n

i�1

(x1i � x�1)(x2i � x�2).

That is, x1
Cx2 is the corrected (by the mean) sum of cross-products of X1 with X2.

Therefore,

�
n �

1

1
�x
1Cx2 � �

n �

1

1
� 	

n

i�1

(x1i � x�1)(x2i � x�2) � cov(X1,X2).

With these results established, we now consider the matrix product [1/(n � 1)]X
CX

for the X matrix above. Partitioning X by its columns gives us X � [x1 x2 x3]. Hence

X
 CX is

� �C[x1 x2 x3].

Treating C as a constant (which is legitimate as long as conformability for multipli-

cation is satisfied), this equals

� �.

Thus,

�
n �

1

1
�X
CX �� �,

which is the sample variance–covariance matrix of the variables in X. Notice that the

sample variances of X1, X2, and X3 are on the diagonal, while the covariances are

everywhere else.

Application 2. Multiple regression in matrix algebra. Let’s examine the matrix for-

mulation for the multiple regression model. First, we consider the multiple regres-

sion equation for the ith observation, with, say, two regressors in the model—again,

for simplicity. The model is Yi �β0 �β1Xi1 �β2Xi2 � εi. To estimate the model using

ordinary least squares it is assumed, among other things, that the εi are independent

and identically distributed random variables with a mean of zero and a variance of

σ2 for all i. Let’s again suppose that n � 5, to make things manageable. With these

�
n �

1

1
�x
1Cx3

�
n �

1

1
�x
2Cx3

�
n �

1

1
�x'3Cx3

�
n �

1

1
�x
1Cx2

�
n �

1

1
�x
2Cx2

�
n �

1

1
�x'3Cx2

�
n �

1

1
�x
1Cx1

�
n �

1

1
�x
2Cx1

�
n �

1

1
�x'3Cx1

x
1Cx3

x
2Cx3

x'3Cx3

x
1Cx2

x
2Cx2

x'3Cx2

x
1Cx1

x
2Cx1

x'3Cx1

x
1

x
2
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specifications, the data can easily be represented as follows. The set of five Y scores

can be represented by the vector

y � � �.

The scores on the independent variables for the five cases can be represented with

the regressor matrix

X52 � � �.

The error terms can be represented by the vector

εε� � �.

Finally, the vector of parameters can be represented by the vector

ββ� � �.

Now we make the following modifications in notation. First, we drop the second

subscript on the terms in y and εε, for simplicity. The remaining subscript simply

indexes the ith case, where i � 1, . . . , 5. We have

y � � �, εε� � �.

Next, we add a column of ones to the matrix X to accommodate the equation inter-

cept (as the reader will see shortly). The resulting matrix, called the design matrix, is

X � � �.

x12

x22

x32

x42

x52

x11

x21

x31

x41

x51

1

1

1

1

1

ε1
ε2
ε3
ε4
ε5

y1

y2

y3

y4

y5

β0

β1

β2

ε11

ε21

ε31

ε41

ε51

x12

x22

x32

x42

x52

x11

x21

x31

x41

x51

y11

y21

y31

y41

y51
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The regression equation for the first observation is y1 �β0(1) �β1x11 �β2x12 � ε1.
(Notice how “1” is the “variable” whose coefficient is β0 here.) Another way to write

this is y1 � x1

 ββ� ε1, where x1


 is the first row of the X matrix and ββ is the parame-

ter vector. (The reader can verify that this is the equation for y1 by performing the

operations on the right-hand side of this equation, using the first row of X and the

parameter vector, plus the error term.) In general, we write yi � xi

ββ� ε i as the model

for the ith observation on Y. To write all five equations at once, we employ matrix

notation: y � Xββ� εε . In general, y � Xββ� εε is the matrix expression for the regres-

sion of the observed y values on the predictor set, regardless of sample size. To under-

stand why this expression works, we partition X according to its rows. Then we have

y � � �� � � ββ� � �.

Notice that in this formulation, I am depicting ββ as though it is a constant, since to

show it as a column vector makes it appear as though it is not conformable for mul-

tiplication with X. However, its conformability for multiplication with X is clear,

since X is 5  3 and ββ is 3  1. The result, however, is a 5  1 vector, of which the

ith element is xi

ββ.

Recall, from above, the assumption that the εi are independent and identically dis-

tributed random variables with a mean of zero and a variance of σ2 for all i. These

assumptions can also be expressed in matrix form. They are E(εε) � 0 and V(εε) �σ2I.

That is, if the expected value of each error is zero, the expected value of the vector

ε is a vector of zeros. Hence, E(y) � E(Xββ� εε) � E(Xββ) � E(εε) � Xββ� 0 � Xββ. The

term σ2I needs some further explanation. Remember that the variance of a vector of

variables (and the ε’s are, in fact, theoretical random variables) is a variance–covari-

ance matrix for the variables. What this second assumption is saying is that the vari-

ance–covariance matrix for the error terms is of the form σ2I, where I is n  n. That

is, in our simple example, the variance–covariance matrix for the five error terms is

of the form

σσ2 � �� � �� V(εε).

As we can see, this means that the variances of the error terms are a constant value

of σ2 for each observation, and the covariances among the error terms are all zero.

The vector of parameter estimates is

b � � �.
b0

b1

b2

0

0

0

0

σ2

0

0

0

σ2

0

0

0

σ2

0

0

0

σ2

0

0

0

σ2

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

0

ε1
ε2
ε3
ε4
ε5

x1



x2



x3



x4



x5



y1

y2

y3

y4

y5
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These are found by minimizing the sum of squared residuals with respect to the

parameter values. The least-squares solution vector, b, is found by solving the nor-

mal equations, which in matrix form are

X
Xb � X
y.

The least-squares solution vector is therefore

b � (X
X)�1X
y.

Now we come full circle and answer the original question posed at the beginning

of this particular tutorial (see Section V.A): How do we find the expected value and

variance of a coefficient estimate in the linear regression model? In fact, let’s find the

expected value and variance of the entire vector of linear regression estimates. First,

we will assume that the X-values are fixed over repeated sampling. This fixed-X

assumption is a standard assumption in linear regression, although it is routinely

violated. Nevertheless, the results we present hold asymptotically regardless of the

nature of the X’s (see, e.g., Greene, 2003). Moreover, we assume that we have a sam-

ple of n observations and p � K � 1 regressors, including the equation intercept, so

that y and εε have dimension n  1, X has dimension n  p, and ββ has dimension p  1.

If X is fixed, the p  n matrix (X
X)�1X
 is a matrix of constants. Call this matrix

A. Recall, in general, that if A is a matrix of constants, then y � Ax is called a lin-

ear transformation of the vector x, and E(y) � AE(x), V(y) � AVA
. Now let b be y

here, and let y be x. Then b � Ay and we have that E(b) � AE(y) �

(X
X)�1X
E(y) � (X
X)�1X
 Xββ� Iββ� ββ. This shows that the vector of estimates,

b, is unbiased for the parameter vector, ββ. Now what about V(b)? First, we need to

observe that if y � Xββ� εε, then V(y) � V(Xββ� εε ) � V(εε) �σ2I � V. (The term Xββ
has no variance over repeated sampling, since X is fixed and ββ is also a collection of

constants.) We then have 

V(b) � AVA
� (X
X)�1X
σ2IX(X
X)�1

�σ2(X
X)�1X
X(X
X)�1

�σ2(X
X)�1I �σ2(X
X)�1.

Substituting the estimate of σ2 [which is SSE/(n � K � 1)] into this last expression

gives us an estimate of the variance–covariance matrix of the regression parameter

estimates.

Application 3. Using matrix calculations to find the estimates of b0 and b1 in a sim-

ple linear regression. Just for practice, let’s use the matrix expression for b,

b � (X
X)�1X
y, to calculate b for a simple linear regression model of four observa-

tions. It is then left as an exercise for the reader to verify that the same estimates are

obtained using the traditional SLR formulas for the intercept and slope (see Chapter

2). The four X-values are 2, 3.3, 3.9, and 7. The four Y-values are, respectively, 5, 2,

492 MATHEMATICS TUTORIALS



3, and 9. The relevant vectors and matrices are, therefore,

y� � �,

X � � �.

To find the least-squares solution vector, we calculate

X
X � � �� �� � �

(as the reader can verify). To find the inverse of this 2  2 matrix, we first find the

determinant, which is (4)(79.1) � (16.2)(16.2) � 53.96. The inverse matrix is then

�
53

1

.96
�� �� � �.

(as the reader can verify). In a similar vein, we have

X
y � � �� �� � �

(as, again, the reader should verify). Finally, we have

b � (X
X )�1X
y � � �� �� � �
The reader should also verify this last calculation. The sample regression equation

is, therefore,

Y � .4418 � 1.0638X � e.

K. Exercises

(1) Evaluate x
y for x � � �, y � � �.
4

6

�
1

2
�

��
1

2
�

1.4418

1.0638

19

91.3
�3.002

�3.0741

�1.4659

�3.002

19

91.3

5

2

3

9

1

7

1

3.9

1

3.3

1

2

�.3002

.0741

1.4659

�.3002
�16.2

4

79.1

�16.2

16.2

79.1

4

16.2

2

3.3

3.9

7

1

1

1

1

1

7

1

3.9

1

3.3

1

2

2

3.3

3.9

7

1

1

1

1

5

2

3

9
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(2) Evaluate x
z for x � � � and z � � �.

(3) Evaluate � � 
 �.

(4) Evaluate � � � �.

(5) Evaluate � � � �.

(6) Evaluate xy
 for x � � � and y � � �.

(7) Evaluate � � � �.

(8) Evaluate � � � �.

(9) Find A�1 if A � � � and verify that A�1A � AA�1
� I.

(10) Find A�1 if A � � � and verify that A�1A � AA�1
� I.

(11) Verify that the inverse of A �� �is ��
1

3
�B, where B �� �.

(12) Verify that the inverse of P � �
1

1

5
�� � is P
. Matrices with 

this property are orthogonal, that is, if uj is the jth column of the matrix, then

u
juj � 1 for all j, and u
iuj � 0 whenever i�j. Verify that the columns of P

have these properties.

(13) Solve the following systems Ax � y by finding x � A�1y:

System a: 2x1 � 3x2 � 5; 4x1 � x2 � 9.

System b: 3x1 � 5x2 � 0; 2x1 � 4x2 � 7.

2

�10

�11

�14

�5

2

5

�10

10

�3

6

�3

4

�11

6

2

2

�3

3

6

10

2

5

8

1

4

7

��
1

2
�

9

�
1

2
�

2

4

8
2

6

x12

x22

x11

x21

0

d2

d1

0

0

d2

d1

0

x12

x22

x11

x21

4

6

�
1

2
�

��
1

2
�

0

�2

3

�1

0

1

1

2

1

2

2

1

1

1

2

1

2

2

1

�.5

�2

1.5

2

4

1

3

3

9

2

4

1

3

3

�3

12

2

4

6
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(14) For the data y � 6, 2, 3, 0 and x � 1, 2, 3, 4, find the vector b of least-

squares estimates for the regression of y on x using matrix algebra. Also, if

SSE � y
 y � b
X
y, give the estimated variance–covariance matrix of

regression parameter estimates.

(15) For the data y � 1, 1.5, 1, 3 and x � �.5, 0, .5, 10, find the vector b of least

squares estimates for the regression of y on x using matrix algebra. Also,

give the estimated variance–covariance matrix of regression parameter esti-

mates.
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A P P E N D I X  B

Answers to Selected Exercises

This appendix contains short answers to the odd-numbered chapter exercises, plus

short answers to all exercises in Appendix A. Note that the term self-correcting

means that it is obvious when the correct solution has been reached.

CHAPTER 2

2.1. (a) b0: the estimated average score on the first exam for those with a college

GPA of zero is 25.092; b1: each unit increase in college GPA is expected to

result in a 16.783-point increase in the first exam score. (b) σ̂b0
� 6.347;

σ̂ b1
� 2.027. (c) F � 68.579; p � .0001. (d) r2

� .244; r2
adj � .241. (e)

σ̂2
� 219.717. (f ) 75.441. (g) (12.810, 20.756).

2.3. The orthogonality assumption is not very reasonable. For example, health pos-

itively affects coital activity and is negatively correlated with age. Therefore,

the true model for coital frequency is more likely Y �β0 �β1 male age �β2

male health � ε�. When we estimate Y �β0 �β1 male age � ε, ε�β2 male

health � ε�. So even if Cov(male age, ε�) � 0, Cov(male age, ε) � Cov(male

age, β2 male health � ε�) �β2 Cov(male age, male health) � 0.

2.5. b0 � y� � b1x� implies that y�� b0 � b1x�, which means that the point (x�, y�) is on

the regression line.

2.7. Self-correcting.

2.9. (a) corr(SAT,GPA) � .834. (b) t(8) � 4.28; p �.01. Yes. (c) Ê(GPA) � 1.049 �

.337SAT. (d) 2.67. (e) �.27.

2.11. (a) b0 � 13.052; b1 � �.7681. (b) r � �.364. (c) b0: the estimated average

homicide rate for cities with a zero reading quotient is 13.052; b1: being a unit

higher on the reading quotient is associated, on average, with a homicide rate



that is lower by .7681. (d) t(52) � �2.818; p � .01. Yes, there is a significant

linear relationship. (e) .1325. (f ) 7.58.

2.13. Via SAS: The Shapiro–Wilk test produces a p-value of .0003, suggesting that

the null hypothesis of normally distributed errors should be rejected.

2.15. (a) ŷ � 2.7575 � .1542x. (b) σ̂2 � 3.0811. (c) r2 � .1039. It has modest dis-

criminatory power, at best. (d) F(2,6) � .9703/3.7847 � .2564; p � .7. We can-

not reject the null hypothesis that the model is empirically consistent with the

data. (e) r2
adj � �.0081.

2.17. Self-correcting.

2.19. r2
adj � 1 ��

n

n

�

�

2

1
� �

S

T

S

S

E

S
� � 1 � � � �

n

n

�

�

2

1
�  � r2 �

��
n � 2

n � 1
� � r2 � �1 � �

n

n

�

�

1

2
��, and this is � r2, since 

�1 � �
n

n

�

�

1

2
�� � 0 for n 
 3.

2.21. Self-correcting.

2.23. corr(error,STATMOOD) � 0. This is an artifact of OLS estimates;

corr(error,COLGPA) � .4603. This suggests that there is some other system-

atic factor (namely, COLGPA) in the error term that should be entered as a

regressor in the model; corr(error,SCORE) � .4738. This suggests that there is

some other systematic factor (namely, SCORE) in the error term that should

be entered as a regressor in the model; corr(error,EXAM1) � .95908. This

suggests that error accounts for a substantial part of the variation in EXAM1;

corr( ŷ, STATMOOD) � 1.0. This is due to the fact that ŷ is an exact linear

function of STATMOOD; corr( ŷ, error) � 0. This follows from the fact that the

error term is uncorrelated with STATMOOD; corr( ŷ, EXAM1) � .2832. This

is equal to the correlation between STATMOOD and EXAM1, since ŷ is just

a linear “translation” of STATMOOD.

2.25. s2
y� b2

1 s2
x�s2

e.

2.27. Self-correcting.

CHAPTER 3

3.1. X2 � 3⇒ ŷ � (b0 � 3b2) � b1X1; X2 � 6⇒ ŷ � (b0 � 6b2) � b1X1;

X2 � 9⇒ ŷ � (b0 � 9b2) � b1X1.

3.3. (a) .454. (b) .454.

3.5. F(5,408) � 3.802, p � .0022. The addition of these variables appears to produce

a significant improvement in the model.

3.7. (a) F(4,209) � 13.899, p �.00001. Reject H0. At least one coefficient is not zero.

(b) .2101. (c) 24.586. (d) COLGPA: t � 1.597/.604 � 2.644; significant at

p � .009; SCORE: t � .296/.110 � 2.691; significant at p � .008; HOURS:

SSE
�
TSS

SSE
�
TSS

SSE
�
TSS

SSE
�
TSS

SSE
�
TSS

SSE
�
TSS

SSE
�
TSS
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t � �.490/.145 � �3.379; significant at p � .0009; PREVMATH:

t � 1.516/.344 � 4.407; significant at p � .000017. (e) 7.275. (f ) Not really,

since zero is outside of the observed, and in some cases, logical range of most

of the regressor values. No one has zero college GPA, math diagnostic score,

or hours in the current semester.

3.9. The plot of standardized residuals against ŷ from the regression reveals no

major irregularities, and all ze are under 4 in absolute value. Similarly, the par-

tial regression leverage plots reveal no noticeable nonlinear trends. In conclu-

sion, the model appears, at least, to demonstrate empirical consistency.

3.11. (a) .2052. (b) F(6,228) � 11.07, p �.00001. Yes, the model appears to have

some utility for predicting STATMOOD. (c) .475. (d) 23.9679.

3.13. t for MCHATT versus FCHATT effects is .2599 and is not significant; t for

MALEAGE versus FEMAGE effects is �.6164 and is not significant; t for

MEDUC versus FEDUC effects is .2934 and is not significant.

3.15. The test of equality of male versus female parent effects is F(4,347) � .0949,

p � .98. There is not enough evidence to conclude that there is a difference in

male versus female parent effects on offspring’s sexual adventurism.

3.17. (a) If rx
1
x2

� 0 then b1 � ryx1
(sy /sx1

), which is the b for the SLR of Y on X1. (b)

As r2
x1x2

approaches 1.0, the denominator of b1 becomes ever smaller, mean-

ing that the magnitude of b1 grows ever larger.

3.19. E(Y � xk � 1, x�k) � E(Y � xk, x�k) (note that Xj is one of the other X1, X2, . . . , XK)

�β0 �β1X1 �β2X2 � . . . �β k ( xk� 1) � . . . �βKXK� γ (xk � 1)Xj

�β0 �β1X1 �β2X2 � . . . �βkxk � . . . �βKXK � γ xkXj

�βk(xk � 1) �βkxk � γ (xk � 1)Xj � γxkXj

�βk(xk � 1 � xk) � γ [(xk � 1)Xj � xkXj]

�βk(1) � γ (xkXj � Xj � xkXj) �βk � γXj.

3.21. At 2 years below mean years in rank the estimated partial slope is

1008.267 � 15.481(�2) � 10039.229; at 2 years above mean years in rank it 

is 1008.267 � 15.481(2) � 977.305; at 9 years above mean years in rank it is

1008.267 � 15.481(9) � 868.938. Estimated mean salaries: 57444.749,

57410.961, 57351.832, respectively.

3.23. (a) Net of other factors, for kids with an average level of parental monitoring,

a unit increase in their sexual permissiveness is worth, on average, a .1625-

unit increase in their sexual adventurism. (b) Partial slope: .1625 � .024

MONITOR. Partial slope at 1 standard deviation above mean parental moni-

toring: .2441. (c) At �1 SD above mean parental monitoring: t(352) � 4.253,

p �.001; significant. At 2 SD below mean parental monitoring:

t(352) � �.0079; not significant.

3.25. F(7,228) � 3.8805, p �.001. The models for STATMOOD do appear to be

significantly different for males and females.
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3.27. Nested F � 2.627, which implies a t of 1.6208, p � .1058. t for

difference � 1.624, p � .1051. t for θ� 1.624, p � .1051.

CHAPTER 4

4.1. (a) ŷ � 1.5658 � .4101 PRESCHDN. (b) r � .341, r2
� .116. (c) Two-sample t

test: t � 7.36, p � .001; test for r: t � 7.38, p � .001; test for d: t � 7.35, p �.001.

4.3. (a)
SOPH JUN POST

Senior �1 �1 �1

Sophomore 1 0 0

Junior 0 1 0

Postgrad/grad 0 0 1

(b) ŷ � 78.806 � 2.789 SOPH�4.125 JUN � 5.258 POST.

4.5. (a) F(4,1255) � 33.135, p � .00001. Net of gender, marital status has a

significant effect on cohabitation attitude. (b) F(4,1251) � 1.045, p � .38. There

is not enough evidence to conclude that there is an interaction effect in the pop-

ulation. (c) Cell means: married female � 5.603; married male � 5.688; wid-

owed female � 4.802; widowed male � 5.474; divorced female � 6.522;

divorced male � 6.662; separated female � 6.909; separated male � 5.95;

never married female � 7.013; never married male � 7.396.

4.7. (a) Married couples: 8.171; cohabiting couples: 11.485. (b) Married couples:

8.23. cohabiting couples: 10.55. The adjusted means are closer together, sug-

gesting that part of the gap in sexual frequency between marrieds and cohab-

itors is accounted for by differences in age and relationship duration between

these types of couples.

4.9. (a) Interpretations:

• Intercept: Males in couples where both are working full time do, on aver-

age, 23.766% of the housework, when MINCOME and FINCOME are both

zero (this is, of course, nonsensical, but is nevertheless the interpretation!).

• MPARTIME: Controlling for partners’ incomes and females’ employment

status, males’ average percent contribution to housework is 2.104 more

when males work part time, compared to when they work full time.

• MUNEMP: Controlling for partners’ incomes and females’ employment sta-

tus, unemployed males do, on average, .177% less housework, compared to

those who work full time.

• FPARTIME: Controlling for partners’ incomes and females’ employment sta-

tus, the average percent contribution to housework of male partners of

women who work part time is 6.043 less, compared to males whose partners

work full time.

• FUNEMP: Controlling for partners’ incomes and females’ employment status,

the average percent contribution to housework of male partners of unemployed

women is 4.738 less, compared to males whose partners work full time.
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(b) Adjusted mean percent of housework done by males when: both work full

time: 25.881; male works part time, female full time: 27.985; male unem-

ployed, female full time: 25.704; male works full time, female part time:

19.838; male works full time, female unemployed: 21.143; both unemployed:

20.966; both work part time: 21.942; male works part time, female unem-

ployed: 23.247; male unemployed, female part time: 19.661.

4.11. (a) F(2,226) � 3.176, p � .05. Yes, it is. (b) Controlling for couple conflict,

women with natural children are, on average, 5.0846 units lower on depres-

sive symptomatology, compared to those without children. (c) Since both

types of kids are associated with greater conflict, but less depression with

conflict controlled, and conflict is strongly positively related to depression,

omitting conflict from the model reverses the impact of kids on depression.

4.13. Seniors: 75.892; sophomores: 79.522; juniors: 76.366; postgrad/grads: 79.398.

The means are the same, within rounding error, as in Exercise 4.12(b).

4.15. (a) Interpretation of rank effects: Full professor: net of the covariates, full pro-

fessors’ average salary is $17,500 higher than for assistant professors. Associate

professor: net of the covariates, associate professors’ average salary is $6213.53

higher than for assistant professors. Instructor/lecturer: net of the covariates,

instructor/lecturers make, on average, $7870.20 less than assistant professors.

(b) Adjusted means: full professors � 56243; associate professors � 44956.526;

assistant professors � 38743; instructor/lecturers � 30872.797.

4.17. (a) F(171,215) � 1.2459, p � .064. There is not enough evidence to reject homo-

geneity of error variance. (b) Chow test: F(15,386) � .895, p � .57. The models do

not appear to differ for males versus females. (c) Effect of COITFREQ:

�.0183 � 1.2076 MALEHIT � .2841 FEMAHIT. Interpretation: coital fre-

quency has virtually no effect on the female’s depressive symptomatology if

neither partner has been violent; it increases depressive symptomatology if the

male has been violent; and it lowers depressive symptomatology if the female

has been violent.

4.19. Intercept constrained: F(10,1853) � 2.381. Intercept unconstrained: F(8,1853) �

2.336.

4.21. Constrained intercept: F(12,701) � 1.422. Unconstrained intercept:

F(11,701) � 1.361.

4.23. The interaction is disordinal in Z, but ordinal in X.

4.25. Self-correcting.

CHAPTER 5

5.1. (a) ps, husbands: �12.343 � 2(1.944) power. ps; wives: �11.567 � 2(2.537)

power. (b) Husbands: ps at power � 1 is �8.455. ps at power � 4 is 3.209;

wives: ps at power � 1 is �6.493. ps at power � 4 is 8.729. (c) Husband’s

minimum occurs at power � 3.175; wife’s minimum occurs at power � 2.28.
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5.3. With γ0 � 1.5, γ1 � .25, ε1 � .5, ε2 � �.5, we have:

X 1 2 3 4 5

Model (5.13):

Y1 3.176 4.077 5.236 6.723 8.632

Y2 1.168 1.500 1.926 2.473 3.176

Model (5.12):

Y1 2.426 2.973 3.676 4.577 5.736

Y2 1.426 1.973 2.676 3.577 4.736

Variances of Y:

S2
5.13 2.016 3.320 5.478 9.031 14.884

S2
5.12 .5 .5 .5 .5 .5

5.5. (a) F(2,7) � .151, n.s. A linear model appears adequate for the data. (b) A quiz

score of 60 implies ŷ � 49.152; a quiz score of 92 implies: ŷ � 91.903. (c) ps

at mean �1 SD(Quiz): .929. ps at mean(Quiz): 1.376. ps at mean � 1

SD(Quiz): 1.823.

5.7. (a) log ŷ � 2.773 �.024 MALEAGE. (b) Each additional year older the male

partner is results in a 100(e�.024 � 1) � 2.37% reduction in coital frequency.

For a 10-year increase in age, the reduction is 21.34%. (c) Male age � 25:

ŷ � 12.043. Male age � 35: ŷ � 9.474. Male age � 55: ŷ � 5.862. (d) .127. (e)

When the residuals are plotted against log ŷ, they appear to have zero mean,

but their variance appears to increase with log ŷ. According to a formal test,

the normality of the errors would be rejected. So the assumptions on the errors

may not be warranted.

5.9. (a) ŷ � 1.693 � .508x1/3 � .896z � .365zx1/3. (b) �
∂

∂
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x

ˆ
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�
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.365z
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(d) Effect of Z at x�� 1sx : �.471; at x� : �.293; at x�� 1sx : �.184. (e) See

Instructor’s Solutions Manual.

5.11. (a) See Instructor’s Solutions Manual. The trend resembles a segment I

curve. (b) F(8,406) � 2.444, p � .014. It appears that the data trend is

significantly nonlinear. (c) F(7,406) � .521, n.s. It appears that a quadratic

model adequately captures the nonlinearity in the relationship. (d) ŷ � 1.824

�.013 DURYRS � .0002 DURYRS2. Slope at mean � 1 SD: �.007; at

mean: �.013; at mean � 1 SD: �.019. A segment I curve is indicated.

5.13. (a) At x � 0: �
5 �

2

2(0)
� � .4. At x � 2.5: �

5 � 2

2

(2.5)
� � .2. At x � 5:

�
5 �

2

2(5)
� � .133. (b) At x � 0: 1.609. At x � 2.5: 2.303. At x � 5: 2.708.

(c) See Instructor’s Solutions Manual.

5.15. (a) U-shaped curve. (b) U-shaped curve. (c) Segment I curve. (d) Inverted 

U-shaped curve.

5.17. At z�� 1sz : �3.263 � .5x. At z�: �3 � .5x. At z�� 1sz : �2.738 � .5x.



5.19. At z�� 1sz : �2.378 � .375x. At z� : �3 � .5x. At z��1sz : �3.263 � 1.375x.

5.21. (a) Linear model. (c) Nonlinear interaction in X. Linear interaction in Z.

5.23. (a) Nonlinear model. (c) Nonlinear interaction in X and in Z.

5.25. (a) Nonlinear model. (c) Nonlinear interaction in X and in Z.

CHAPTER 6

6.1. (a) Self-correcting. (b) Rxx � � �.

6.3. Self-correcting.

6.5.

Rxx�� �⇒R�1
xx ��

1 �.

1

6752�� �� � �

6.7. λuu��λ� �u��� �, and each λuju� is a scalar multiple of the same

vector, u�, so each λuju� is an exact linear function of every other vector (e.g.,

λu2u�� �
u
u

2

1
�λu1u�, and so on). Therefore there is only one linearly independent

row in the matrix, hence the matrix has rank 1.

6.9. (a) hii for cases 1 through 9, respectively: .475, .1646, .1646, .1112, .1112, .1112,

.1572, .1572, .5479. (b) t9 � �2.172; dffits9 � �2.392; dfbetas9 � �1.521;

D9 � 1.867.

6.11. (a) E(bs
1) �� �. (b) The cross-product term, and therefore the interaction

effect, are completely suppressed when the intervening variables are omitted.

6.13. bs
pc �� �.

6.15. (a) V(bs
4) �σ2

* ��2
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�� � σ2
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(1.00248). 

(b) p13 � .000408; p23 � .00000024; p33 � .02198; p43 � .9776.

6.17. Self-correcting.

6.19. WLS estimate of the equation is: 10.8721 � .1993 ADVENTRE � .0852

FSTYLE1 � .2041 MSEXATT � .1988 FSEXATT. R2
WLS

� .1049.

6.21. Gender difference in exam scores at: college GPA � 2.5: d � 1.429, p � .68, n.s.;

at college GPA � 3.0: d � �2.149, p � .34, n.s.; at college GPA � 3.5:

d � �5.727, p � .07, n.s.
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6.23. One serious near linear dependency involving YRDG, YRBG, and PRIOREXP.

The VIF’s for their coefficients (52.836, 49.587, and 14.719, respectively) sug-

gest that the coefficient variances are substantially affected.

6.25. Partial principal component results in the form of VARIABLE (bpc) are: INTER-

CEPT (7873.500), YRDG (�13.897), YRBG (�80.556), PRIOREXP

(179.726). (See Instructor’s Solutions Manual for the full set of estimates.) The

ridge estimates are the most intuitively appealing, since one would expect that,

all else equal, YRDG, YRBG, and PRIOREXP would each have a positive effect

on salary.

CHAPTER 7

7.1. �3.0089.

7.3. R2
L � .1058. R2

G � .1328. R2
GSC� .1795.

7.5. .0176.

7.7. .718.

7.9. Logit: �.0093; probit: �.0082.

7.11. Baseline π̂� .1062. Change in probability: ∆π̂� �.0042.

7.13. (a) The odds of violence for those with no alcohol or drug problems at aver-

age economic disadvantage is .143. Having alcohol or drug problems

magnifies the odds by a factor of 2.876, net of economic disadvantage. Each

unit increase in economic disadvantage magnifies the odds by a factor of

1.031, controlling for substance abuse problems. (b) For those without alco-

hol/drug problems with mean economic disadvantage, the change in the prob-

ability of violence for a unit increase in ECNDISAD is ∆π̂� .0034. For those

with alcohol/drug problems, on the other hand, the change is ∆π̂� .0064.

7.15. The model χ2’s are: logit model 1 � 128.634; logit model 2 � 275.859; probit

model 1 � 126.631; probit model 2 � 273.353. The test for the additional

conflict block is: logit: χ2
(3)

� 147.225; probit: χ2
(3) � 146.722. Both tests are

significant at p � .0001.

7.17. (a) .638. (b) .886. (c) .725.

7.19. Logit: ∆π̂� .044; probit: ∆π̂� .04.

7.21. Partial results are as follows. Logit equation: ln Oˆ ��1.0825�1.1050 lived

apart �.2936 number of children � . . .; model χ2
(5)

� 62.4470. Probit equa-

tion: Φ�1(π̂) � �.8325 � .6055 lived apart �.1550 number of children �. . .;

model χ2
(5) � 63.1250. (See Instructor’s Solutions Manual for the full set

of estimates.) Interpretations: Logit: Each additional year the couple has

been together lowers the odds of female aggression by

100[exp(�.1219) � 1] � 11.5%. Probit: Each additional year the couple has

been together reduces the latent female-aggression scale by .0614, on average.

7.23. Probit: ∆π̂� .0512; logit: ∆π̂� .0362.

7.25. Probit: R2
L � .258; R2

MZ � .53; logit: R2
L � .255; R2

MZ � .564.
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7.27. Interpretations: Each unit increase in GPA adds .464 to the probability of an

A. Those taught with the PSI method have .379 greater probability of getting

an A. Each unit increase in TUCE adds .01 to the probability of an A.

Estimated probability: π̂A,11� �.078.

7.29. Interpretations: Each unit increase in GPA raises the odds of getting an A by

a factor of 16.88. Those taught with the PSI method have 10.791 times higher

odds of getting an A. Each unit increase in TUCE raises the odds of getting an

A by a factor of 1.1. Estimated probability: π̂A,11� .024. R2
L � .374.

CHAPTER 8

8.1. Self-correcting.

8.3. At �1 SD economic disadvantage: ψ� 1.848. At �.5 SD economic disadvan-

tage: ψ� 3.142. At �1.5 SD economic disadvantage: ψ� 4.476. At �1 SD

economic disadvantage, the impact of alcohol/drug problem is reduced by about

30%. At �.5 SD, it’s increased by 19.3%, and at �1.5 SD, it’s increased by 70%.

8.5. At �.5 SD: �.041. At �1.5 SD: �.016. At 2 SD: �.003.

8.7. Self-correcting.

8.9. Self-correcting.

8.11. With 0 � “intense male violence,” 1 � “physical aggression,” and 2 � “nonvi-

olence,” the estimated probabilities are: P(Y � 0) � .085; P(Y � 1) � .225;

P(Y � 2) � .69.

8.13. (a) χ2
(12) � 11.5317, p � .484. There is not enough evidence to reject the pro-

portional odds hypothesis. (b) Interpretations: Controlling for other regres-

sors, each unit increase in COLGPA magnifies the odds of a higher grade by

a factor of 8.929. Controlling for other regressors, each unit increase in math

diagnostic score magnifies the odds of a higher grade by a factor of 1.305.

Controlling for other regressors, each unit increase in STATMOOD magnifies

the odds of a higher grade by 1.064. Controlling for other regressors, each unit

increase in the ratio of study hours to TV hours diminishes the odds of a higher

grade by about 2%.

8.15. Model χ2
(10) � 182.2603, p � .00001. The model is significant as a whole.

R2
L � .126.

8.17. Sample interpretations (see Instructor’s Solutions Manual for the complete set

of interpretations): AGE: Controlling for other regressors, each additional year

of age increases the odds of “no prohibition” by a factor of 1.022, and

increases the odds of “prohibition for all” by a factor of 1.029. MALE:

Controlling for other regressors, men’s odds of “no prohibition” are 26.125%

lower than women’s, and their odds of “prohibition for all” are 38.097% lower

than women’s. On treating PORN18 as ordinal: no. (See explanation in

Instructor’s Solutions Manual.)

8.19. P(no prohibition) � .026. P(prohibition for all) � .178. P(prohibition if

�18) � .796.
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8.21. Sample interpretations (see Instructor’s Solutions Manual for the complete set

of interpretations): EDUCAT: Controlling for other regressors, each additional

year of schooling reduces the odds of “easier” by 14.23%, and the odds of

“more difficult” by 10.631%. MALE: Controlling for other regressors, men’s

odds of “easier” are 28.794% lower than women’s, and their odds of “more

difficult” are 5.578% lower than women’s. On treating DIVLAW as ordinal: no.

(See explanation in Instructor’s Solutions Manual.)

8.23. P(easier) � .248. P(more difficult) � .699. P(keep as is) � .053.

8.25. (a) Sample interpretations (see Instructor’s Solutions Manual for the complete

set of interpretations): SCORE: Controlling for other regressors, a unit

increase in SCORE magnifies the odds of an A by 1.451, and the odds of a B

by 1.304. MALE: Controlling for other regressors, males’ odds of an A are

.573 times females’ odds, whereas their odds of a B are .998 times those of

females. (b) Model χ2
(12) � 97.96, p � .00001. (c) College GPA is the only dis-

criminator of an A versus a B grade. (d) χ2
(7) � 31.287, p � .0001. The grades

of A and B are not collapsible with respect to the predictors. (e) Test for the

proportional odds assumption: χ2
(7) � 9.7946, p � .2005. There is insufficient

evidence to reject the proportional odds assumption. Sample interpretations

(see Instructor’s Solutions Manual for the complete set of interpretations):

SCORE: Controlling for other regressors, a unit increase in SCORE increases

the odds of a better grade by 34%, an effect that is significant at p � .0001.

MALE: Controlling for other regressors, men’s odds of a better grade are

38.4% lower than women’s, a nonsignificant effect.

CHAPTER 9

9.1. E( y � y � 8) � 13.152. SD( y � y � 8) � 3.172.

9.3. E( y � z � 5) � 12.278. SD( y � z � 5) � 3.884.

9.5. 87.365.

9.7. 22.289.

9.9. Self-correcting.

9.11. R2
p � .254.

9.13. The proportion due to change in the mean is .377. The proportion due to

change in P(uncensored) � .623.

9.15. [corr(y,ŷ)]2 � .638.

9.17. (a) ŷ � 43.819. (b) 83.9% of the effect of child abuse is due to its effect on ele-

vating average PTSD, while 16.1% of its effect is due to raising the risk for

PTSD.

9.19. ρeu �β3γ3 V(x3), which is � 0.

9.21. Bias(b1) � .697, therefore b1 will overestimate β1.

9.23. There is little evidence of selection bias, since neither LAMBDA (Heckit) nor

ρ̂ (ML) is significant, suggesting that the association between remaining in the
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class and score on exam 2 is pretty much accounted for by the explanatory

variables. Also, the ML and OLS estimates tend to be quite similar.

Interestingly, students with a stronger attitude toward statistics appear to be

less likely to have stayed in the class!

9.25. The ML procedure did not converge in this case. But judging from Heckit,

selection bias does not appear to be a problem. The only significant predic-

tor of inclusion is paying one’s own tuition. Its effect suggests that those

who pay their own way are more likely to be nonmissing on the response.

Otherwise, none of the focus variables are significant predictors of inclu-

sion, and LAMBDA is also nonsignificant. As a result, there is relatively

little difference between OLS and Heckit estimates of the substantive

equation.

CHAPTER 10

10.1. �
∞
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�
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�
1

e�µ
� (1 � e�µ) � 1.

10.3. (a) f(0) � .041. (b) f(3) � .223. (c) f(10) � .0013.

10.5. (a) f(0) � .0001. (b) f(3) � .0015. (c) f(10) � .00997.

10.7. (a) p � .238. (b) f(0) � .238. (c) f(3) � .105. (d) f(10) � .016.

10.9. L(ββ � y,x) ��
n

i� 1
�yi��

K

k�0

βkXik� � exp��
K

k�0

βkXik� � ln yi! �

ln�1 � exp��exp� �
K

k�0

βkXik����.

10.11. f(0) � e�µ≡ . f(1) � �
µ

1
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10.13. f̂ (0 � x,ββ̂ ) � .575. f̂ (1 � x,ββ̂) � .138. f̂ (2 � x,ββ̂ ) � .076. f̂ (3 � x,ββ̂ ) � .050.

f̂(4 � x,ββ̂) � .035.

10.15. (a) Proportionate change is (1 � 1/N)d� 1. (b) .014.

10.17. (a) Cohabitors’ expected number of children in the household is estimated to

be about 45% lower than that of marrieds. (b) f̂ (0 � x,ββ̂) � .388.

f̂(1 � x,ββ̂) � .367. f̂(2 � x,ββ̂) � .174. (c) χ2
(4) � 129.8468, p � .00001. Reject H0.

At least one coefficient is nonzero. R2
L � .105.

10.19. (a) The likelihood of being in the structural-zero group is higher if a couple is

cohabiting, was older at inception of the union, has been together longer, and

has a higher household income. The expected number of children, given that

a couple is at risk for having children, is, correspondingly, lower for couples

with the same characteristics. (b) Since V � 10 � 1.96, the ZIP is to be pre-

ferred over the PRM. (c) R2
L � .214.
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10.21. (a) Selected estimates (significance levels) are: LOGTIME .0472 (.0029);

ETHNIC .3633 (.0000); EDUCCL �.0684 (.0005). (See Instructor’s

Solutions Manual for the full set of estimates.) (b) Test 1 [H1 is

V( Y) �µ�αµ]: α̂� 2.798, p � .0000. Test 2 [H1 is V( Y) �µ�αµ2]:

α̂� 2.607, p � .0000. Conclusion: the data are overdispersed. (c) r2 � .1139;

R2
D � .1827; R2

L � .1437.

10.23. (a) Selected estimates for the log odds of being a structural zero (µ) are:

LOGTIME .0321 (.0453); ETHNIC �.5456 (.0677); EDUCCL .0148

(�.0546). (See Instructor’s Solutions Manual for the full set of estimates.)

(b) V � 27.2561 for ZIP/PRM, so ZIP is preferred. (c) R2
L � .3516; r2 � .0604.

10.25. See Instructor’s Solutions Manual for the graph.

CHAPTER 11

11.1. Hazard estimates are: ĥ1 � .003; ĥ2 � .003; ĥ3 � . 003; ĥ4 � .005. Survival esti-

mates are: Ŝ1 � 1 .000 ; Ŝ2 � .975; Ŝ3 � .945; Ŝ4 � .916; Ŝ5 � .869.

11.3. Wald: χ2 � .755, n.s. LRχ2 � .811, n.s. Interpretation: the hazard of rearrest for

domestic violence at any given time is 65.8% lower for those who were

employed when first arrested.

11.5. S(t) � exp(�λtσ)⇒ ln S(t) � �λtσ ⇒ �ln S(t) � λtσ ⇒ ln[�ln

S(t)] � lnλ�σ ln t.

11.7. 11.29 months.

11.9. Sample interpretations (see Instructor’s Solutions Manual for the complete

set of interpretations): Net of other covariates, women’s hazard of dropping

out is 38.265% higher than men’s at any given time, and the hazard of drop-

ping out is increased by 32.976% for each unit decrement in high-school

grades at any given time.

11.11. (a) ∆χ2
(2) � 13.13, p � .0014. There is evidence that at least one of the effects is

nonzero. (b) Marriage: net of other covariates, at any given time being married

raises the hazard of dropping out by a factor of 3.508. Employment: net of other

covariates, at any given time being employed raises the hazard of dropping out

by a factor of 1.669. (c) R2
G � .211.

11.13. (a) LRχ2
(5) � 43.028, p � .0001. The model is significant. (b) Wald chi-

squareds: DURATION: χ2 � 6.25; FAGUNION: χ2 � 21.778; PARENTAL:

χ2 � 2.736; CHDN5: Χ2 � .737; MINORITY: χ2 � 2.404. DURATION and

FAGUNION have significant effects. (c) R2
G � .034.

11.15. (a) Interpretations: each unit increase in the female partner’s relationship hap-

piness reduces the hazard of disruption by 13.4%; each unit increase in the

female partner’s commitment reduces the hazard of disruption by 34.6%. (b)

20.2%. (c) (.480, 3.013). (d) R2
G � .115.

11.17. �2 ln L � 6.086.

11.19. Global test: ∆χ2
(2) = 3.7116, p � .156, n.s. There is insufficient evidence to sug-

gest that there are any gender differences in the effects of income or education

on the hazard of disruption.
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11.21. The effect of DISAGMT at 1 standard deviation above the mean of COM-

STYLE is .02283, a value that is not significant.

CHAPTER 12

12.1. .048.

12.3. ∆χ2
(2) = 7.598, p � .022. Reject H0; conclude that the three events are charac-

terized by different models.

12.5. Equations (a), (b), and (d).

12.7.
Unemployment Duration Censoring

Spell Unemployed Indicator

1 3 1

2 10 1

3 2 1

4 17 0

12.9. When TIME � 1 (i.e., in the first interval), the hazard of reemployment is

50% higher for immigrants residing in Canada. However, each unit increase

in LOGTIME brings a 50% reduction in the effect of Canadian residence.

The coefficient is approximately zero when TIME � 1.8.

12.11. The hazards for the first two intervals are: P̂i1 � .191; P̂i2 � .184. The survival

function for the first two intervals is: Ŝi1 � .809; Ŝi2 � .660.

12.13. The hazards for the first four years are: P̂i1 � .00023; P̂i2 � .0035;

P̂i3 � .0205; P̂i4 � .0573. The survival function for the first four years is:

Ŝi1 � .9998; Ŝi2 � .996; Ŝi3 � .976; Ŝi4 � .92.

12.15. (a) and (c) are time invariant, since their values are fixed at the time the

employee enters the given rank (either assistant or associate professor).

(b), although treated as time-invariant in the study, could easily be regarded

as time varying, since the prestige of an institution can change over time.

(d), (e), and (f ) are time varying because their values change with years

in rank.

12.17. Selected estimates for the log-hazard of separation (marriage) are DIS-

AGMT �.009 (.073); COMSTYLE �.151 (.142); HEHIT �1.467 (2.712).

(See Instructor’s Solutions Manual for the full set of estimates.)

Interpretation: the main effects of covariates not involved in an interaction

with survival time are similar to those in Table 12.1. The block of crossprod-

uct terms is not significant when added to either model, according to ∆χ2

tests. However, there is a significant nonproportional effect for male violence

in the model for marriage, which suggests that male violence accelerates the

transition to marriage at first, but over time this effect is diminished.

12.19. Selected estimates for the log-hazard of reemployment are PRVJBS �.045*;

JOBDUR �.052***; FEMALES �.314**. (See Instructor’s Solutions

Manual for the full set of estimates.) Tests: ∆χ2 � 7.9135, p � .005. Wald
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χ2
� 8.2846, p � .004. By either test, the interaction is significant.

Interpretation: At the time of unemployment, each additional month on the

previous job reduces the hazard of reemployment by about 5%. After being

unemployed for 17.33 months, however, the duration of the previous job no

longer has any impact on the hazard of reemployment.

APPENDIX A

I.Q (1) 3xy � 2y � 3xz � 2z.

(2) 2x3
� x2 �y�� x2z � 2x�y� � y � �y� z � 8xw � 4�y� w � 4wz.

(3) x � 2�2�4� �24.

(4) 15. 

(5) �
ab(d

c

�

d

3π)
�. 

(6) �
2x

2

�

zw

yz
�. 

(7) x � 123.4568. 

(8) 15x5. 

(9) . 

(10) 27/6. 

(11) 2ln x � �
1
2

� ln z. 

(12) f(��
1
2

�)� 4; f (�
1
3

�)� 3.5; f(2) � 18.5. 

(13) f(��
1
2

�)� 2.75; f(�
1
3

�)� �
1
9

�; f(2) � �1. 

(14) f(g(3)) � �8�. 

(15) f(g(�
1
2

�))� .6065. 

(16) f(g(x)) � x. 

(17) y � 9.5 � 18x.

II.E (1) Self-correcting. 

(2) Self-correcting. 

(3) Self-correcting.

III.D (1) 5 Cov( X,Y ). 

(2) bd Cov( X,Y ). 

(3) �65.2. 

(4) 10.1. 

(5) β2 V( X) � V(ε).

(6) Self-correcting. 

(7) Self-correcting.

IV.D (1) 3x2. 

(2) �
5x

4
1/5�. 

(3) 12x3 � 6x2 � 2x. 

xz

�
2z yz
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(4) f�(x) � �
1

x
�� 3x2; f�(3) � 27�

1
3

�. 

(5) f�(�2) � 4.1353. 

(6) ex(x3 � 3x2). 

(7) 1 � ln x. 

(8) �
4 �

2�
2 l

x�
n x

�. 

(9) �
2�

ln

x�
x

(l

�

n

2

x)2�. 

(10) 12x2. 

(11) ��
x

1
2�. 

(12) 25e5x. 

(13) �
2 l

x

n x
�. 

(14) 2ex2
(2x2 � 1). 

(15) �
(1 �

ex

ex)2�. 

(16) β�
(1�

eα

e

�

α�

βx

βx)2�. 

(17) �
2

x
�. 

(18) 4(x � 2)3. 

(19) 3��
1

2
�x � ln x�

2

��
2

1
�� �

1

x
��. 

(20) 2x � 3y. 

(21) β�
(1�

eα

e

�

α�

βx

β

�

x�

γw

γ

�

w�

λz

λz)2�.

V.K (1) �1. 

(2) 66. 

(3) � �. 

(4) � �. 

(5) � �. 
(6) � �.  

(7) � �.  

(8) � �.  
d1x12

d2x22

d1x11

d2x21

x12d2

x22d2

x11d1

x21d2

3

�3
2

�2

4

4

�1

1

0

�1

5

6

7

0

1

1

0

21

45
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(9) ��
1

8
� � �. 

(10)
1

2

1
�� �. 

(11) Self-correcting. 

(12) Self-correcting. 

(13) System a: � � = � �, within rounding error. System b: � �
= � �, within rounding error. 

(14) b � � �, V̂(b) � � �. 

(15) b � � �, V̂(b) � � �.
�.0036

.0014
.0360

�.0036

1.1702

.1809

�1.075

.43

3.225

�1.075
7 

�1.7

1.5909

�.9545

xl

x2

2.2857

�.1429

xl

x2

�
1
2

�

�
1
2

�

9

�2

�4

2
8

�6
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Absolute value, 453–454 

Accelerated failure-time (AFT) model, 393–397 

Additive exponential model, 188–190 

Additive model, 106, 133

Adjusted alpha level, 141–142 

Adjusted mean difference, 138, 140

Adjusted means, 138–142 

Adjusted R2, see R2, adjusted

Algebra, basic, 447–457 

Algebra, covariance, see Covariance algebra

Algebra, matrix, see Matrix algebra

Algebra, scalar, 473

Alias matrix, 214

Alpha level, 34

Alternative estimator, see Ordinary least squares

(OLS), alternatives to, under multicollinearity

Alternative hypothesis, 34

Analysis of covariance (ANCOVA), 126, 136–142

Analysis of variance (ANOVA), 126

Antilog, 453

Approximately continuous variable, 40, 43

Area under the curve (AUC), 272–273, 293–294 

Arithmetic average, 26

Associative property, 448, 481

Assumptions for linear regression, 4, 43–45, 86–87 

Asymmetric distribution, 260–263 

Asymptotic

efficiency, 32

normality, 24, 32, 197

properties, of MLE’s, 31–32 

results, 37

unbiasedness, 31–32 

Attenuation factor, probit and logit regression, 260

Authenticity, 7, 56, 69–70, 89, 95, 103–104 

Average causal effect, 10

Averaging slopes, 84

Bartlett’s test, 153–154 

Baseline category, of a multinomial variable, 295

Baseline hazard function, 429

absorption of unmeasured heterogeneity into,

427

in Cox model, 397, 399, 401, 408 

multiepisode model, 425

Baseline survival function, 398, 402–403 

Bell-shaped graph, 23

Bernoulli density, 5, 21–22 

Best-fitting straight line, 40–41, 46–48 

Betas, interpretation of, 85–86 

Bias

due to an included-variable,

see Included-variable bias

due to an omitted-variable,

see Omitted-variable bias

in b1, due to excluded regressors, 214

of an estimator, 31

of OLS estimate of V(b) under heteroscedasticity,

202

of principal components estimator, 241

of ridge estimator, 233–234 

Biased estimator, 231–232

Binary response, 86, 247

Bivariate normal distribution, 320–321, 334 

Bonferroni multiple comparison procedure, 141–142 
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Breusch-Pagan test, 203–205 

Burr-10 distribution, 260–261 

Capitalization on chance, 141

Categorical explanatory variable, 126

Causal assumption, see Orthogonality condition

Causal inference(s), 9–13 

Cell means, 135–136 

Censored normal random variable, moments of,

318–319 

Censored observations

in censored regression model, 327, 331, 333

in discrete-time analysis, 431, 433–434 

in multiepisode models, 425–426 

in survival analysis, 383–411 

Censored regression model, 324–333 

Censored sample, 318

Censoring

in PRM, 364

indicator, 394, 431–432 

noninformative, 383

threshold, 318, 324–325 

Centering

and scaling, 200

in logistic regression, 290

in MULR, 106, 110, 138, 147, 175, 179

in SLR, 73

targeted, see Targeted centering

Central limit theorem (CLT), 32–34, 59, 352

Centroid of the x’s, 219

Chain rule, 469

Chance classification rule, 272

Change in probability, see Probability, change in

Characteristic root, see Eigenvalue(s)

Characteristic vector, see Eigenvector(s)

Chi-squared density, 366

Chi-squared test, see Likelihood-ratio chi-squared

test; Model chi-squared

Chow test, 111–112, 148–154, 209, 283–284 

Cities dataset, 74–76 

Classification table, 271–273 

Closed-form function, 23

Closed-form solution, 188, 253, 366

Coefficient changes, test for, 97–98, 103–104,

291–293 

Coefficient differences, test for, 94–96, 125, 462

Coefficient of determination, 52, 54, 85. See also

Discriminatory Power; R2

Cohabiting transitions dataset, 15, 421–423,

439–440 

Collapsibility, 299

Collapsing interval variables, 18

Collinearity, 87, 175. See also Multicollinearity

Column vector, see Vector, column

Commutative property, 447–448, 481 

Comparing models, see Chow test

Competing risks, 419–424, 439–440. See also

Multistate model

Complementary log-log model, 261–263. 

See also Interval-censored Cox model

Complete separation, 268–269 

Complex sampling design, 211, 213

Composition of functions, 468–469 

Compound path, 102

Computer programs, see LIMDEP; MATLAB;

SAS; SPSS; STATA

Condition number, 228–230 

Conditional 

errors in GLM, 4

mean, NBRM, 366

mean, PRM, 353

mean, zero-truncated PRM, 362

mean, ZINB model, 373

mean, ZIP model, 372

mean in GLM, 4

mean of y, censored observations, 325–326 

mean of y, linear regression, 44, 71, 84–85 

mean of y, truncated population, 322

probability, 19, 390, 424, 430

random assignment, 10

variance, NBRM, 366

variance, PRM, 353

variance, zero-truncated PRM, 362

variance, ZINB model, 373

variance, ZIP model, 372

variance of y, 71

Conditioning, on the independent variable, 70

Confidence interval, 33–34 

Cox model, 400–401 

for β0, β1, 61 

for βk, 93

for odds ratio, 266–267 

for population mean, 33–34 

for probit and logit coefficients, 257

Conformability, of matrices, 478

Confounding, 98–100 

Consistency, 11–12, 32, 34, 56, 99–100 

Constant slope, see Slope, constant

Constant variance assumption, 63–64, 185–186,

250–251. See also Homoscedasticity

assumption 

Constrained-intercept model, 149–152, 283–284 

Constraints, on parameters, 93–96 

Constrast category, 78

Contagion, 353

Continuous, treating ordinal variable as, 171, 217

Continuous density function, 21

Continuous variable, 18–19, 43, 45
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Continuous-time survival model, 384

Contrast, linear, 460

Contrast group, 127

Convergence in distribution, 32

Cook’s D, 221–222, 243

Correlated regressors, 80

Correlation coefficient, 26, 57, 60, 463

Correlation matrix, 199, 224

Count variable, 6, 348

Count-data models, vs. censored regression, 361

Counterfactual, 10

Counterintuitive sign, of regression coefficient,

229–230 

Couples dataset, 14, 40, 203–208, 330–332,

367–369, 373–375 

Covariance, 26

Covariance, of residuals with x, 64–65 

Covariance, sample, see Sample covariance

Covariance algebra, 8, 96, 232, 460–464 

Covariance structure model, 7

Covariate pattern, 4, 85, 112, 127, 143, 219

Covariate patterns, grouping, 269

Covariate(s), 39, 136

Covratio, 222 

Cox regression model, 397–398, 430, 433

empirical consistency of, see Empirical

consistency in Cox model

in two-step approach, 423

interval-censored, see Interval-censored

Cox model

shared-frailty model, 428

stratified, see Stratified Cox model 

vs. discrete-time model, 436–442 

Cragg model, 329–330, 332–333 

Criterion, for R2 analogs, 273–275 

Criterion value, for π̂, 271

Criterion variable, see Dependent variable 

Critical value, 35–36 

Crossproduct term(s) 

for follow-up to slope homogeneity test, 210

for model comparison, 148, 151–152

for modeling interaction in MULR, 104–105

for modeling nonlinear interaction, 178–184 

in logistic regression, 285–287

interpretation of, 104–105, 107–108 

omitted-variable bias in, 215–218

problems with, 108–109 

Cube-root transformation, 182

Cubic equation, 169–170, 175

Cumulative baseline hazard, 402–403 

Cumulative distribution function (CDF),

see Distribution function 

Cumulative logit model, see Ordered logit model;

Proportional odds model

Cumulative logits, 303

Cumulative odds, 303 

Current-partner victims dataset, 15, 339–340,

342–343 

Curvilinear model, see Quadratic model

Curvilinearity, 168–169, 171–172, 179–180 

Cutpoint, 303–305 

Data, 17, 43, 86

Datasets, used in book, 13–16 

Deciles of distribution, 171–172 

Deciles of risk, 269–270, 411 

Declining hazard, see Hazard, declining

Decomposition

of X′X, 229

of population variability in y, 52–53 

of sample variability in y, 53–54 

of variation, binary response, 274

Decomposition, spectral, see Spectral decomposition

Degrees of freedom, 136

Delayed entry, see Left truncation

Deleting observations, justification for, 218–219 

Density function, 20–21, 71, 252, 261–263. 

See also Distribution function

Departure from linearity, 168–169, 172–175, 178

Dependence of events, 424

Dependent variable, 39

Derivative(s), 464–473 

Design matrix, 224, 484, 490

Design variable, see Dummy variable(s)

Destination states, 419–424 

Determinant, see Matrix, determinant of

Deterministic relationship, 43

Deviance R2, see Discriminatory power in 

count-data models

Dfbetas, 221–223 

Dffits, 221–222 

Diagnostics, see Influence diagnostics; Outliers;

Regression diagnostics

Diagonal

elements, of Z′Z, 199 

matrix, see Matrix, diagonal

of a square matrix, 477

of design matrix, 232–233 

of hat matrix, 198

of R-1
xx , 227, 232–233 

of σ2(X′X)−1, 198

of variance-covariance matrix of regression 

coefficients, 226–227 

Dichotomous independent variable, 78

Difference in means, 127, 143–144 

Difference in regression coefficients, test for,

see Coefficient differences, test for

Differential calculus, 48

Direct effect, 101, 218
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Discrete density function, 20–21, 255

Discrete variable, 18

Discrete-time hazard model, 430–442 

Discrete-time survival model, 384

Discrimination, of categories of y, 297

Discriminatory power, see also Coefficient of

determination; R2

defined, 7

in censored regression, 328

in competing risks model, 421–422 

in count-data models, 358–360, 363

in Cox model, 410–411 

in logistic regression, 271–276, 293–294 

in MULR, 80, 85, 88, 90, 174, 187–188  

in NBRM, 369–370 

in selection models, 343

in SLR, 52–57 

in logy model, 186

in multinomial models, 307–308 

in ZIP model, 374

vs. empirical consistency, 69 

Disordinal interaction, see Interaction, disordinal

Distribution function, 20, 253–254, 260–262,

387, 413. See also Density function

Distributive property, 448, 482

Disturbance, 3, 43, 84–85 

Disturbance variance, see Error variance(s)

Domain size, 353

Domain, of observation, 349

Dummy variable(s), 2, 43, 86, 127

coding, 78, 127–131 

coefficient(s), 140, 289 

exact linear combination of, 128–129 

model, for departure from linearity, 173

naming convention, 128

Duration of risk, 384–385 

Effect coding, 131–133, 139, 141

Effect estimators, 24

Effect size, 118

Efficiency, see Asymptotic efficiency

Eigenvalue(s), 224–231, 233, 240–241, 485–486 

Eigenvector(s), 224–225, 227–228, 240, 485–486 

Elasticity, 91–92 

Empirical consistency

defined, 7

in count-data models, 357–358 

in Cox model, 411

in logistic regression, 269–270, 293

in MULR, 112–118 

in multinomial logistic regression, 307

in SLR, 54, 63–69 

Episode, 384

Equal error variance assumption, see Error 

variance(s)

Equality, of coefficients, test for, see Coefficient

differences, test for

Equality, of matrices, 476

Equality, of vectors, 476

Equation disturbance, see Disturbance

Equation error, see Disturbance

Equation parameters, see Parameter(s)

Equidispersion, 350, 360–361. See also

Overdispersion 

Error variance(s), 84, 127, 148–149, 153–154, 205

Error-variance homogeneity, 208–209 

Essential ill-conditioning, 109

Essentially nonlinear model, 164–165, 184

Estimation, see also Maximum likelihood

estimation; Ordinary least squares (OLS);

Partial likelihood estimation

of censored regression model under alternative

distributions, 327

of hazard function, interval-censored Cox

model, 438

of sample selection model, 335–336 

of standard error of sample intercept in SLR, 61

of standard error of sample slope in SLR, 58

of survival function, interval-censored Cox

model, 438–439 

Event, defined, 383

Event, nonrepeatable, defined, 384

Event count, defined, 349

Event history analysis, defined, 382

Event indicator, 433–434, 442 

Event occurrence, rate of, 353–378 

Exact linear dependence, 224, 230

Exact linear function, 43

Exactly identified model, see Just-identified

model

Exogenous selection, 336

Expectation, 25–26, 44

Expected value, 3, 61, 486–488, 492

Explained risk, 274–275 

Explained variance, see Coefficient of

determination; Discriminatory power; R2

Explanatory variable, 39

Exponential

AFT model, 393–397 

density, 22, 30–31, 386–387, 392–393 

family of density functions, 5–6 

function for mean of event count, 353–378 

function for squared errors in WLS, 206

hazard model, 438

model with additive error term, 164, 185

model with multiplicative error term, 164, 185

survival function, 387, 392–393 

Exponents, 451–452 

Exposure, 353, 363, 377

Externally studentized residuals, 220–221 
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F test, 60, 68–69, 93, 130–131, 249

Factor change, see Multiplicative effect

Factorial, 449

Factoring, of matrix expressions, 482

Faculty salary dataset, 16, 106–108, 110–112,

126–154, 208–210, 216–218 

False positive rate, 271–273 

Feasible generalized least squares (FGLS)

estimator, see Weighted least squares (WLS) 

estimator

Finite population correction, 27–28 

First derivative, 30–31, 44–45, 48, 71, 388 

First partial derivative, 105, 163–164, 183–184,

188 

First-order interaction, 104

Fit, of model, see Empirical consistency

Fitted line, 40–42, 47

Fitted value(s), 46, 187–188, 198. See also

Predicted y scores

Fixed effect(s), 17, 428

Fixed-effects partial likelihood (FEPL) model,

427–428 

Fixed-X assumption, 43–45, 70, 86, 197, 320, 492 

Focus variable, 134, 143, 147 

Follow-up tests, slope homogeneity test, 210

Fractions, 450–451 

Frailty model, see Cox regression model, shared

frailty model

Full information maximum likelihood (FIML)

estimates, 296–302 

Fully right-censored survival time,

see Right-censored survival time

Function, 454–456 

Function, linear, 455–456 

Gamma density, 366, 428 

Gamma function, 366

Gauss-Newton procedure, 188–190 

Generalized event count models, 361

Generalized least squares (GLS) estimator,

see Weighted least squares (WLS) estimator

Generalized linear model (GLM), 4–7, 353

Generalized R2, see R2, generalized

Generalized variance, 222

Global effect of Xk, test for, 298–299 

Gompertz density, 386, 393

Gompertz model, 408

Goodness of fit, see Empirical consistency

Grand mean, 132 

Gravity model of migration, 164

GSS98 dataset, 16, 40, 61–63, 101–104, 170–182 

Gumbel distribution, 393–394, 413

Hadamard product, 478

Hat diagonal, 198, 220–223 

Hat matrix, 198

Hazard

constant, 388, 437–438 

declining, 397, 428–429, 436, 438

function, defined, 387–388 

function, for exponential distribution, 388

function, for standard normal distribution,

317–318 

function, parameterizing, in discrete-time 

analysis, 437–438 

model, 387

of an event, 382

of exclusion, 337–343. See also Inverse Mills

ratio (IMR) 

rate, average, 391

rates, type-specific, defined, 419–420 

ratio, defined, 396

ratio, in Cox model, 398

ratio, in discrete-time analysis, 436–437 

Heckit estimator, see Heckman two-step estimator

Heckman two-step estimator, 335–343, 364 

Hessian, 255

Heterogeneity, 365, 393. See also Unmeasured

heterogeneity

Heteroscedasticity, 200–208 

consequences of, 202

induced by weighting, 211

of error in OLS estimator of Heckman model,

336

tests for, 202–203 

vs. unequal error variances across groups, 209

Hierarchical equations, 178

Higher-order term(s), 168, 178, 213–218 

Homogeneity assumption, in Poisson regression,

353

Homogeneity-of-variance assumption, logistic

regression, 283

Homoscedasticity assumption, 352. See also

Constant variance assumption

Hosmer-Lemeshow test, 269–270 

Hurdle model, 365, 375–378 

Hyperplane, 85

Hypothesis testing, 34–37 

Hypothetical population, 29, 42

Idempotent matrix, see Matrix, idempotent

Identically distributed random variables, 32, 59

Identification, 87. See also Just-identified model;

Overidentified model

Identity, scalar, 448

Identity link, see Link function

Identity matrix, see Matrix, identity

Identity transformation in GLM, 4–5 

Ill-conditioning, see Essential ill-conditioning;

Nonessential ill-conditioning
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Inception of risk, 384–386, 401, 407, 425

Incidental truncation, see Truncation, incidental

Included-variable bias, 12

Independence assumption, in Poisson regression,

353

Independence of events, 19

Independent sampling, 43, 45

Independent variable, 39

Indeterminacy, in y, 257

Index of summation, 457

Indicator variable, see Dummy variable(s)

Indirect effect, 101, 218

Inefficiency, of OLS estimators, 202

Inferences

in competing risks model, 420

in Cox model, 400

in MULR, 92–98 

in multinomial logistic regression, 298–299 

in Poisson regression, 354

in probit and logit regression, 255–257 

in SLR, 58–61 

Influence diagnostics, 198, 218–223, 241. 

See also Outlier(s); Regression diagnostics 

Influential observations, see Influence diagnostics;

Outlier(s); Regression diagnostics

Information matrix, see Hessian

Inmates dataset, 16

Inner product, 477, 488

Inscribed rectangles, 37

Instantaneous rate of change, 45

Integral, 25–26, 37

Interaction, 63, 110, 300

between categorical and continuous predictors,

143–148 

between categorical predictors, 134–136 

difficulty in estimating, 268

disordinal, 105, 145–148, 285 

effect, 104–109, 213, 285 

global test for, in quadratic models, 179–180 

model, 104–105, 134–135, 143, 462–463 

modeling in logistic regression, 282–287 

ordinal, 105, 144–145, 285 

ordinal vs. disordinal, in logistic regression, 285

with time, 406–409 

Intercept, 44, 48, 50–52, 57, 61, 455

Interest category, 78, 127, 131

Interpretation

of coefficients, probit and logit regression,

259–260 

of logit model, 264–267 

of parameters, censored regression, 327–328 

of regression coefficients in the PRM, 354–356 

Interrupted spell, see Left truncation

Interval estimation, 33

Interval measurement, 18

Interval-censored Cox model, 432–433, 436–437,

440–442. See also Complementary log-log

model

Interval-censored data, 430–442 

Intrinsically linear model, 164

Introductory sociology dataset, 16, 339–342 

Invariance property, 31

Invariance to interval length, in interval-censored

Cox model, 433

Invariance to spell number, in multiepisode 

models, 429

Inverse Mills ratio (IMR), 317–318, 322. See also

Hazard of exclusion 

Inverse, 198, 224, 227, 449. See also Matrix,

inverse of

Inverted U-shaped curvilinear relationship, 169

Iterative algorithm, 188–190 

Joint density function, 30, 71

Jth-order polynomial model, 169

Just-identified model, 8. See also Identification;

Overidentified model

Kaplan-Meier estimator, 401–402 

Kids dataset, 14, 362–364, 370

Kullback-Leibler divergence, 359–360 

Lack-of-fit mean square (MLSF), 68, 112

Lack-of-fit sum of squares (SSLF), 68, 112

Lack-of-fit test, 67–69 

Lagrange multiplier test, 397

Lambda, see Hazard of exclusion; Inverse Mills

ratio (IMR)

Large-sample confidence interval for µ,
see Confidence interval for population mean

Latent continuous variable, 11, 361

Latent root, see Eigenvalue

Latent scale, 251, 259–260, 273–274, 283

Latent vector, see Eigenvector

Least squares, see Ordinary least squares (OLS)

Left censoring, 386

Left truncation, 385–386, 389, 401–402, 421,

434–437, 440

Length, of kth time interval, 391

Level of measurement, 17

Leverage, 198, 219–220, 222–223 

Life-table method, 389–392 

Likelihood function

defined, 30–31 

for censored regression model, 327

for complementary log-log model, 261,

376–377 

for Cox model, 398–400 

for discrete-time data, 431

for linear regression, 71
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for logistic regression, 255–258 

for NBRM, 366

for Poisson hurdle model, 376

for PRM, 354

for probit model, 255

for survival data, general, 394

for truncated regression model, 323

for zero-truncated NBRM, 369

for zero-truncated PRM, 362

Likelihood-ratio chi-squared test 255–256, 395,

400–401, 411, 429. See also Model 

chi-squared

Likelihood-ratio index, 275, 359, 363

LIMDEP (computer program)

for count-data models, 360–361, 364, 366, 381

for linear regression, 202

for truncated and censored regression, 323,

327, 336, 340, 343

Limited information maximum likelihood (LIML)

estimation, 295–298 

Limited response variable, 1

Limiting value, 466–467 

Linear

association, 57

combination, 92, 130–131, 197, 484, 488. 

See also Weighted sum

component of curve, 178

composite, see Linear combination; Weighted

sum

dependence, 224–226, 484

equation(s), 3, 482–483 

function, 2, 43–45, 321

independence, 484

interaction effect, 104

model, 162, 164

predictor, 4, 85, 250, 328

probability model (LPM), 248–251 

regression model, 2. See also Multiple linear

regression (MULR) model; Simple linear

regression (SLR) model

relationship, 38–42 

transformation, of a vector, 488, 492

Linearity, test of, see Test of linearity

Linearity in the parameters, 86, 250, 456

Linearizing a model, 86, 253–254, 261 

Link function, 5, 254, 353

Log hazard, 396

Log link, see Link function

Log survival-time model, see Accelerated 

failure-time (AFT) model

Logarithm(s), 452–453 

Log-hazard of event occurrence, 430–431 

Logistic distribution, see Standard logistic

distribution

Logistic population-growth model, 164

Logistic regression model, 6, 253–254, 432. 

See also Logit model

Logit link, see Link function

Logit model, 371, 373, 423, 430–442. See also

Logistic regression model 

Log-likelihood function

defined, 31

for discrete-time data, 431–432 

for exponential AFT model, 395

for linear regression, 71

for logistic regression, 255

for PRM, 354

for survival data, general, 394

Log-logistic density, 386, 393

Log-odds, of event occurrence, 430

Log-survival time, 396

Logy model, 186

Lower-order component, 168, 178

Main effect, 106, 134, 147, 175

Main effects model, 105–106, 133, 136, 209

Marginal density of y, 366

MATLAB (computer program), 245

Matrix

addition rule, 477–478 

algebra, 473–493 

centering, 481, 488–489 

correlation, see Correlation matrix

defined, 474

determinant of, 198, 222, 224, 483, 486

diagonal, 200–201, 479–480

diagonal of, 198, 227, 477

expressions, rules for, 481–482 

hat, see Hat matrix

idempotent, 480, 488

identity, 480

information, see Hessian

inverse of, 483–485. See also Inverse 

multiplication rule, 478–479 

notation, for multiple linear regression,

197–200 

null, 480

of regressor scores, 197

order of, 474

orthogonal, 480–481 

partitioned, see Partitioned matrix

rank of, 240, 484–485 

singular, 87

square, 477

subtraction rule, 477–478 

symmetric, 480, 486, 488

trace of, 226, 477, 486

transpose of, 474–476 

INDEX 527



Maximum likelihood estimation, see also

Estimation; Ordinary least squares (OLS);

Partial likelihood estimation

defined, 30–32 

for censored regression model, 326–327 

for discrete-time survival model, 430–432,

439–440  

for exponential AFT model, 394–395 

for linear regression, 70–72 

for multinomial logistic regression,

295–297 

for NBRM, 366

for Poisson hurdle model, 376

for PRM, 354

for probit and logit models, 254–255 

for sample selection model, 335–336 

for truncated regression model, 322–323 

for zero-truncated NBRM, 369

for ZINB model, 372

for ZIP model, 371

Maximum likelihood estimator (MLE), of the 

population mean, 31 

May-Hosmer goodness-of-fit test, see Empirical

consistency in Cox model

McDonald-Moffitt decomposition, 328, 330,

332–333 

Mean 

contrast, 129–131, 140

difference, 132–133 

function(s), sample selection model, 334

of residuals, 64 

of sample slope in SLR, 58–60 

predicted probability, 357–358, 374–375. 

See also Predicted probability; Probability,

estimating

square regression (MSR), 93

squared deviation, 26

squared error (MSE) in linear regression,

54–56, 87–88 

squared error of an estimator (MSQE), 231

structure, 250, 352

substitution, 230 

Mechanism, 101

Mediation, 98–99, 101–104 

Metrics, changing, 77

Minimization, of SSE, 48–50, 72, 87

Minority women dataset, 15, 376–378 

Misspecification, 203, 211

Mixed second partial derivative, 49, 471

Model chi-squared, 298, 354, 356. See also

Likelihood-ratio chi-squared test

Model comparison, using crossproduct terms,

151–152 

Model fit, see Empirical consistency

Model invariance to event type, test for, 420–421,

423 

Model misspecification, estimate of σ under, 220

Model-reality consistency, see Authenticity

Moderator variable, 104, 134

Monotonic relationship, 169

Multicategory variable, 128–129 

Multicollinearity, see also Collinearity

consequences of, 226–228  

diagnosis of, 228–231 

in generalized linear models, 241–242 

in Heckman model, 337

in logistic regression, 267–268 

in polynomial models, 170

problems with, 87, 92, 106, 109–110, 485 

remedies for, 110, 231–242 

Multiepisode model, 424–429, 440–442 

Multinomial logistic regression model, 295,

439–441. See also Unordered categorical

variables 

Multiple correlation coefficient, see Coefficient of

determination; Discriminatory power; R2

Multiple linear regression (MULR) model, 84–85,

489–493. See also Linear regression model;

Simple linear regression (SLR) model

Multiplication of matrices, see Matrix,

multiplication rule

Multiplicative effect, 187, 264–266, 285–286, 355

Multistate model, 419–424. See also Competing

risks

Naïve model, 257

National Survey of Families and Households

(NSFH), 14

Near linear dependency, 224–225, 227

Negative binomial density, 350–352, 366

Negative binomial regression model (NBRM),

365–366 

Negative contagion, 353

Negative signs, rules for, 449

Nested chi-squared test

for binary response models, 256–257, 260, 263

for Cox model, 400, 408, 411

for discrete-time analysis, 437–438 

for exponential AFT model, 395

for hurdle model vs. PRM, 376–378 

for multiepisode model, 429

for multinomial logistic regression, 299

for overdispersion, 366, 369

for PRM, 354

for ZIP vs. ZINB models, 373

Nested F test

for ANOVA and ANCOVA models, 135, 140,

147, 152 
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for multiple regression model, 93–96 

for quadratic model, 173, 179–180 

for WOLS, 212–213 

in omitted-variable bias example, 216–217 

Nested model(s), 93, 173–174, 437

No-intercept model, see Regression through the

origin

Nominal measurement, 17

Nonconstant variance, 63–64, 186 

Nonessential ill-conditioning, 109

Nonindependence, 293, 297, 426–429 

Noninformative censoring, see Censoring,

noninformative

Nonlinear

association, detecting, 113–118 

equations, 255

function, 165–170, 455–456 

interaction, 104, 177–184 

least squares, 165, 184–190 

model, estimation of, 188–190 

probability model, 251

regression, 184–190 

transformation, 110

Nonlinearity

defined, 162–165 

in functional form of relationship between y

and x, 162–163 

in regressors, modeling in logistic regression,

287–290 

in relationship between y and x, 65–66 

in the parameters, 86

in the relationship between regressor and 

criterion, 109

in x, 163

of model, 162–165 

revealed by scatterplot, 171–172 

testing for, in logistic regression, 288–290 

Nonnested models, comparing, see Vuong test

Nonparametric estimation, 389–393 

Nonprobability sample, 26–27, 29

Nonproportionality, 406–410 

Normal density, 23–24, 71, 314–343 

Normal equations, 49–50, 54, 72, 87, 188, 492

Normal vector, see Vector, normal

Normality assumption, 43, 45, 63, 87, 148,

153–154, 187

Normit link, see Link function

Null hypothesis, 34

Null likelihood, see Likelihood function for 

logistic regression

Null matrix, see Matrix, null

Numerical problems, in logistic regression,

267–269 

NVAWS, 15

Odds, 264–266, 294–295 

Odds ratio(s), 264–267, 301–302 

Off-diagonal elements, of Z′Z, 199 

Offset, 354

Omitted group, 78, 127

Omitted interaction, 213

Omitted variable, 80

Omitted-variable bias, 80, 98–104, 213–218, 322,

334, 338 

Oneway ANOVA model, 129, 132

Optimal distribution, 108–109 

Order, of a matrix, see Matrix, order of

Ordered categorical variables, 303–308 

Ordered logit model, 305. See also Proportional

odds model

Ordinal interaction, see Interaction, ordinal

Ordinal variable, 18, 40

Ordinary least squares (OLS), 4, 29–30, 45–52,

87, 127, 130. See also Estimation; Maximum 

likelihood estimation; Partial likelihood 

estimation

alternatives to, under multicollinearity,

231–242

for censored regression, 325, 327

for count-data models, 349, 352–353, 356–357 

for nonlinear model, 186, 189–190 

for sample selection model, 336, 338–343 

for truncated regression, 322–324 

solution in matrix notation, 474, 492

unweighted, 211–212 

Orthogonal regressors, 79, 228

Orthogonality condition, 11, 45, 64–65, 86, 98, 188

Orthogonality of vectors, 481

Orthonormal set of vectors, 481

Outcome variable, see Dependent variable

Outer product, 477

Outlier(s), 66, 112, 219–221. See also Influence

diagnostics; Regression diagnostics 

Overdispersion, see also Equidispersion

defined, 351

diagnostic for, 360

in ZIP model, 372

models accounting for, 364–378 

parameter, 366

test for, 360–361, 366, 369, 374

Overidentified model, 8. See also Identification;

Just-identified model

Parallel curves, 178

Parameter(s), 3, 24, 27, 37, 42

Parameter invariance, test for, 409–410 

Parameter space, 34

Parametric form, for hazard function, 392–393 

Parent model, 93
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Part correlation, see Semipartial correlation 

coefficient

Partial correlation coefficient, 89, 115–118 

Partial derivative, 86, 259–260, 263, 470–472 

Partial effect, 104–108, 134–135, 147–148, 152.

See also Partial regression coefficient, in

two-regressor model; Partial slope 

Partial F test, see Nested F test 

Partial likelihood estimation, 398–400, 408–409.

See also Estimation; Maximum likelihood

estimation; Ordinary least squares (OLS) 

Partial likelihood function, see Likelihood

function for Cox model

Partial likelihood-ratio test, see Likelihood-ratio

chi-squared test

Partial regression coefficient, in two-regressor

model, 123. See also Partial effect; Partial

slope

Partial regression leverage plot, 113–118, 171

Partial slope in interaction model, test of, see Test

of significance of b1 + gz

Partial slope, 176–177, 180–182, 259–260,

462–463. See also Partial effect; Partial

regression coefficient, in two-regressor model

Partialling, 114–115, 168

Partially standardized coefficients, in logistic

regression, 267

Partitioned matrix, 214–215, 475 

Partitioning a continuous regressor, 171, 288

Path analysis, 101

Path model, 7–9 

Pearson correlation coefficient, see Correlation

coefficient

Percent change, 92, 187, 266, 355

Percentile, of t distribution, 61

Perfect linear combination, 57, 87

Person-period data, 432–434 

Plim, 32, 99–101 

Point estimate, 33

Point-slope form of a line, 455

Pointwise consistent estimators, 202

Poisson density, 6, 22, 349–351 

Poisson hurdle model, see Hurdle model

Poisson regression model (PRM), 6, 353

Polynomial model, 169–170, 438

Population, 17, 27–29, 42

Population mean, 25–26 

Population parameter, 27, 37

Population R2, see R2, population

Positive linear trend, 46

Positive relationship, 41

Potential response model, 10

Power of a test, 36

Predicted probability, see also Mean predicted

probability; Probability, estimating 

binary response models, 250, 258–259 

NBRM, 366, 379

PRM, 357, 378–379 

zero-truncated NBRM, 369

zero-truncated PRM, 364

ZINB model, 372–373 

ZIP model, 371

Predicted survival time, exponential AFT model,

396

Predicted y scores, 50–52, 90. See also Fitted

value(s)

Prediction error, 29, 47–48, 54–55 

Predictor, 39

Principal components regression, 231, 239–242, 486

Probabilistic relationship, 43

Probability, 19–20 

as a function of the odds, 267

at which individuals are most susceptible, 261 

change in, 263, 267

conditional rule for, 362, 388

density function (PDF), see Density function

distribution, 20, 371

estimating, 299–301, 305–307. See also Mean

predicted probability; Predicted probability 

limit, see Plim

rule, for integer-valued random variable, 306

rule, in discrete-time analysis, 431

sample, 26–29 

Probit link, see Link function

Probit model, 253–254, 329, 336

Product limit estimator, see Kaplan-Meier 

estimator

Proportion correctly classified, 271–272 

Proportional constraint, in censored regression

model, 329

Proportional hazards model, see Cox regression

model

Proportional hazards, 398

Proportional odds model, 305–307. See also

Ordered logit model

Proportional reduction in error (PRE) measure, 54

Proportionality constant, 305

Proportionate change, 92, 355 

Prospective survival data, 383

Pseudo-inverse, 240–241 

Pseudo-isolation assumption, see Orthogonality

condition

Pseudo-R2, see Discriminatory power; R2

Pure error mean square (MSPE), 67, 112

Pure error sum of squares (SSPE), 67, 112

P-value, 35
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Quadratic

effect, 175, 213, 300

function, 168, 467

model, 68–69, 163, 168–182 

model, nonlinear interaction in, 177–182 

model, targeted centering in, 290

model, test for adequacy of, 174

relationship, 109

Quasi-complete separation, 268–269 

R2, see also Coefficient of determination;

Discriminatory power 

adjusted, 56, 90 

analog for censored regression, 328, 330, 332

analog for count-data models, see

Discriminatory power in count-data models

analog for Cox model, 410–411 

analog for logistic regression, 258, 273–276 

change in, 174

desirable properties of, 273

for exponential model, 188, 190

for LPM, 249

for MULR, 84, 88

for SLR, 54–56 

for WLS, 205

generalized, 275–276, 410–411

limitations of, 56–57 

population, 320

Random component, of GLM, 4

Random sample, 27, 35

Random variable, 17, 32

Rank, of a matrix, see Matrix, rank of

Rate of change, 465–466 

Rate of event occurrence, 387–388 

Ratio measurement, 18

Receiver operating characteristic (ROC) curve,

272–273, 293–294 

Recurrent event model, see Multiepisode model

Reduced correlation matrix, 240

Reference group, 78, 127

Regression

assumptions, see Assumptions for linear

regression

diagnostics, 218–223. See also Influence

diagnostics; Outlier(s)

function, in truncated population, 322

model, in standardized form, 198–200 

model, in survival analysis, 393–411 

on principal components, see Principal

components regression

parameter, identification of, 129

sum of squares (RSS), 54

through the origin, 188–189, 361

Regressor, 39, 214–216 

Rejection rule, 35

Relative frequency, 19, 27

Relative risk, 266

Reliability, 109

Repeated sampling, 27, 29, 43

Re-scaling, 77

Research hypothesis, 34

Residual(s), 46–47, 112–118, 188

Response surface model, 68

Response variable, see Dependent variable

Retrospective survival data, 383

Retrospective time frame, 103

Reversal, 100

Ridge constant, 232 

Ridge estimator, 233

Ridge regression, 231–239 

Ridge trace, 234–239 

Right-censored survival time, 383–386 

Risk, 382

Risk, inception of, see Inception of risk

Risk score, 411

Risk set, 386

Robust estimator of V(b), see Sandwich estimator

Root signs, 451–452 

Row vector, see Vector, row

Rstudent, 221

Sample covariance, 459

Sample mean, 459

Sample selection bias, 319, 336–338, 364

Sample selection model, 333–343. See also

Truncation, incidental

Sample statistic, 27

Sample variance, 458

Sampling distribution, 26–29, 31–33, 58–61 

Sampling weights, 211–213 

Sampling without replacement, 27 

Sampling zero, 370

Sandwich estimator, 427 

SAS (computer program)

for binary response models, 257, 263, 267–269,

275, 280

for logistic regression, 292, 296, 298, 305, 307,

310–311 

for MULR, 112, 190, 205, 221, 228, 241, 245

for PRM, 354

for reading data, 13

for SLR, 68, 75

for survival analysis, 391, 393, 399, 401–403,

405, 427, 439–440 

for truncated and censored regression, 327, 330

Saturated model, 8, 136 
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Scalar property, for matrices, 481

Scaled generalized R2, see R2 analog for logistic

regression

Scatterplot

for exponential model, 184–186 

for mean of y against deciles of x, 172

for revealing nonconstant error variance,

203–204

in MULR, 112–117 

in SLR, 39–42, 46–47, 63–67 

Scobit model, 260–261 

Score test, for proportional odds assumption, 305

Secant line, 465

Second partial derivative, 49, 163, 470–472 

Second partials test, 49

Second-order interaction model, 104–105 

Second-order polynomial equation, 168–169 

Segment I curve, 165–168, 172, 176

Segment II curve, 165, 167–168 

Segment III curve, 165, 167–168 

Segment IV curve, 166–168 

Selection bias, see Sample selection bias 

Selection equation, 333, 335, 337, 339–343 

Selection propensity, 320, 333, 335 

Self-selection, 319, 334 

Semiparametric model, see Cox regression model

Semipartial correlation coefficient, 89 

Sensitivity, 271–273 

Shape of curves, similarity of, 178–179 

Shared unmeasured risk factors (SURF) model, 424

Simple linear regression (SLR) model, 43–44,

186–187. See also Linear regression model;

Multiple linear regression (MULR) model

Simple random sample, 27

Simpson’s paradox, 100

Simulation, to create truncated and censored data,

319–320 

Simultaneous equations, 48

Singular matrix, see Matrix, singular

Skew, 40–43 

Slope, 42–45, 48–52, 58–61 

common, 137

constant, 163, 467

equality of, see Coefficient differences, test for

equivalent tests for, 60

homogeneity, test for, 208–210 

in SLR, as weighted sum of the yi, 59–60 

nonconstant, 467

of a linear equation, defined, 455

of simple linear regression function, 466–467 

standardized, see Standardized slope 

Slutsky theorem, 11, 32, 56, 99

Specificity, 271–273 

Spectral decomposition, 224–225, 227, 240, 486 

Spell, see Episode

SPSS (computer program), 13, 68, 75

Spuriousness, 98–104, 109 

Square matrix, see Matrix, square

Squared partial correlation coefficient, 115–118 

Standard deviation, 26

Standard error, asymptotically correct, in

Heckman two-step estimator, 343

Standard error of estimate, 220

Standard error of prediction, 221

Standard error of the sample mean, 33

Standard logistic density, 252

Standard logistic distribution, 253–254 

Standard normal distribution, 25, 33, 232, 253–254 

Standardized 

coefficient, 90–91, 106, 109, 118, 229, 232, 267

covariance, 26

estimates, solution for, 200

partial regression coefficient, 90–91 

principal components coefficients, 241

residual(s), 66–67, 219

sample regression equation, 57

slope, 57–58, 100, 198

variable scores, 198–199, 232

Standard-score form, 25

Start time, 384

STATA (computer program), 13, 202, 263, 343,

381, 405, 427–428 

Statistical control, 80–84 

Statistical interaction, see Interaction

Statistical model, 2

Statistical power, 108

Stochastic component of model, 43

Stochastic regressors, 70

Stratified Cox model, 407–410, 427–428 

Stratum-specific baseline hazard function, 409

Structural equation model, see Covariance

structure model

Structural part of model, 43, 85

Structural zero, 370, 373–375 

Students dataset, 15–16, 39, 88–94, 112–118,

219–220, 222–223, 324, 349, 356–357, 360

Substantive equation, 333, 337–343 

Sum of squared errors (SSE), 47–48, 54, 87, 188,

190, 495

Sum of squared residuals, see Sum of squared

errors (SSE)

Sum of squares of coefficient estimates, bias in, 227

Sum of variances, 226, 233

Summation notation, 457–460 

Suppression, 100

Survival analysis, defined, 382

Survival function, 402–404, 412

Survival time, 425, 433–434 

532 INDEX



Swarm of points, 219

Symmetric distribution, 252

Symmetric effect, 104

Symmetric matrix, see Matrix, symmetric

Systematic component of GLM, 4

Systematic variance, 84

t test, 58, 60–61, 93, 96, 152. See also

Two-sample t test

Tangent line, 45, 464–466 

Target population, 315, 335

Targeted centering, 210, 286–287, 290, 331–332 

Taylor series expansion, 189 

Test of linearity, 172–175 

Test of significance of b1 + gz, 108, 286–287 

Third-order polynomial equation, 169–170 

Threshold value, 251

Tied event times, 399–400, 402, 438

Time, calendar, 384

Time, survival, see Survival time

Time intervals, 389–392, 430–437  

Time-invariant covariate(s), 433–434 

Time-varying covariate(s), 385, 404–411,

433–434, 438

Tobit model, see Censored regression model

Tolerance, 110

Total effect, 101

Total sum of squares (TSS), 53–54 

Trace, see Matrix, trace of

Transformation(s), 164, 186, 189, 200

Transformed mean in GLM, 4

Transpose, see Matrix, transpose of

True causal effect, 10

Truncated

density, 315–316 

normal distribution, moments of, 316–317 

PRM, 362–364 

PRM, in hurdle model, 375–376 

regression model, 321–324, 326, 329

Truncation, incidental, 319, 320–321, 333–343.

See also Sample selection model

Two-sample t test, 127, 161. See also t test

Two-step estimation, 326–327, 335–343, 376,

423–424 

Two-step procedure in WLS, 205–208 

Twoway ANOVA, 133–136 

Type I error, 34, 141

Unadjusted mean difference, 140

Unbiased estimator, 27–28, 31, 33, 60

Unbiasedness of OLS b, 492

Uncensored case(s), 327, 384–411, 425,

433–434

Uncentered model, 175

Uncertainty, of prediction of y, see Indeterminacy,

in y

Unconditional probability, 19

Unconstrained model, 172–173 

Unconstrained-intercept model, 153, 284 

Unconstrained-intercept test, 152 

Unemployment transitions dataset, 16, 425–429,

440–442 

Union disruption dataset, 14, 389–411, 433–438 

Unit impact, 44, 86, 105, 176–177, 263 

Unit proportional impact, 356

Unmeasured heterogeneity, 397, 427–429, 438.

See also Heterogeneity

Unordered categorical variables, 294–302. 

See also Multinomial logistic regression

model

Unstandardized coefficients, 57, 62–63, 86, 100,

106, 217, 241

Unweighted OLS, see Ordinary least squares

(OLS), unweighted

U-shaped curvilinear relationship, 169, 177

Variable-specific interaction effects, 285–287 

Variance

definition, 26–28, 32–33, 458, 489

homogeneity test, see Bartlett’s test

inflation, of regression coefficients, 227–228 

inflation factor (VIF), 110, 175, 228–230, 268

of a difference in regression coefficients, 462

of b1 + gz, 108, 287

of bj − bk, 96

of OLS coefficients, 58, 60, 198. See also

Variance-covariance matrix of parameter

estimates in MULR

of partial slope, interaction model, see Variance

of b1 + gz

of partial slope, quadratic model, 290

of sample intercept in SLR, 61

of structural part of model, 53

of the errors, 52

proportion(s), 228–231 

Variance-covariance matrix

defined, 487–489 

for b, see Variance-covariance matrix of

parameter estimates in MULR

of coefficient differences, logistic regression, 292

of parameter estimates in MULR, 96, 108, 131,

462, 492. See also Variance of OLS 

coefficients

of parameter estimates, in Heckman model, 336

of parameter estimates, probit and logit

regression, 255

of regression errors, 197, 200, 491

of standardized parameter estimates, 200
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Vector

column, 474

defined, 474

expected value of, 486–487 

in joint density function, 30

normal, 480–481, 486

of correlations of x’s with y in MULR, 199

of fitted values, 198

of OLS Estimates, 197

of random variables, defined, 487

of regressor means, see Centroid of the x’s

of regressor values, 71

of response scores, 197

of sample responses, 71

row, 474

summing, 481

variance of, 486–487 

Vectors, addition of, 477

Vectors, subtraction of, 477

Victims dataset, 15, 332–333 

Violence dataset, 15, 247–276, 284–308   

Visual-approximation line, 46–47 

Vuong test, 372–374 

Wald chi-squared, 257, 299

Wald test, 366, 369, 374, 395, 400

Wave I couples dataset, 15, 212–213, 229–231,

236–239, 241

Weibull AFT model, 393

Weibull density, 386, 388, 393, 442

Weibull hazard model, 438, 441–442 

Weighted least squares (WLS) estimator,

200–213, 281

Weighted mean, 459–460 

Weighted ordinary least squares (WOLS), 196,

211–213 

Weighted sum, see also Linear combination

bk as, 197

central limit theorem for, 32

defined, 459–460 

matrix-vector product as, 484

McDonald-Moffitt decomposition as, 328

mean as, 25–26 

of coefficients times controls, 183

of the parameters in the MULR equation,

86

Weighted vs. unweighted analyses, test for 

differences between, 211–213 

Weights for WLS estimation, 205–206,

209 

White estimator of V(b), 202, 204, 207, 212

White standard errors, 203–204, 207–208 

White’s test, 203–204, 208

Y-intercept, 42

z test, 24, 58, 231, 257, 292, 299

Zero

cell count, in logistic regression, 268

count, probability of, hurdle model, 375

count, probability of, ZINB model, 372

count, probability of, ZIP model, 371

counts, 361, 367, 370

properties associated with, 449

Zero-inflated count-data model, 365, 370–375 

Zero-inflated negative binomial (ZINB)

regression, 372–375 

Zero-inflated Poisson (ZIP) regression,

370–375 

Zero-truncated NBRM, 369–370 

Zero-truncated PRM, 362–364 

Zero-truncated sample, 362
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