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To my Father 





FOREWORD 

Recent years brought up many new techniques combining various as-
pects in so-called cognitive processing. This way of computing can be used 
with success in many areas of science and engineering by offering better 
analogy to human-like processing of information. Such an approach may 
be especially interesting in acoustics, where we deal with very inaccurate 
perceptions of phenomena due to the hearing sense characteristics which 
are highly imprecise with regard to time and spectral resolution.  

This book demonstrates in which way soft computing methods (e.g. 
rough set-based methods) can be applied to provide flexible information 
processing capabilities for handling ambiguous decision making problems 
such as for examples musical signal processing, pattern classification, fea-
ture and rule generation. Methods of integrating rough sets, fuzzy and arti-
ficial neural networks for efficient knowledge discovery are also shown.  

Fuzzy logic provides yet another tool that seems one of the best solu-
tions for processing such inaccurate information as can be found in acous-
tics. In many domains building up membership functions could be prob-
lematic, however in acoustics the so-called subjective testing provides a 
good solution to this problem. Even, if such a testing is time consuming, it 
falls into the realm of human expertise, thus providing a class of perceptual 
membership functions. In addition, rules are quite obvious in the acoustic 
domain, and if not, they can be mined using other soft computing tech-
niques, such as, for example, rough sets. In such a way it is possible to 
mimic human hearing perception and the way of processing perceived in-
formation in human brains.

The book addresses a number of topics such as the fundamentals of 
hearing and music perception, musical data representation and analysis, 
automatic classification of musical instrument sounds and musical phrases, 
musical sound separation, automatic recognition of musical styles, sound 
processing in hearing prostheses based on artificial neural networks, rough 
sets fuzzy logic principles, and others – based on cognitive approach. A 
review of soft computing and data mining techniques is provided, includ-
ing all mentioned methods and others such as decision trees, evolutionary 
processing, and genetic algorithms. This book provides however a bal-
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anced mixture of both theory and review of applications along with exten-
sive bibliography. 

The author has attempted to address a broad group of individuals with 
the common interest – music and hearing perception and sound processing 
based on cognitive approach. This is an important issue because of increas-
ing specialization in science, however this book may be read by specialists 
from various domains and give them a comprehensive view on presented 
subjects.

This is a book of many new ideas and results, that will be of interest 
to all those interested in modern approach to imperfect data analysis. The 
author deserves highest appreciation for her valuable work. 

Zdzis aw Pawlak 



   The past can be pondered, the future must be created 

        E. Schillebeeckx

The emerging concept of human-centered computing or anthropomorphic 
approach represents a significant move towards intelligent systems, and af-
fords a new perspective on information technology. Relationships between 
the human brain, mind and perception that have the potential of enhancing 
peoples’ cognitive performance can be found in many domains, examples 
of which will be shown in relation to music processing and classification. 
On the other hand, it would be advisable to design systems capable of imi-
tating perceptual processes that are best adapted to specific technological 
problems.  

The objective of this monograph is to provide novel insights into per-
ceptual mechanisms underlying the processing of sound and music in dif-
ferent environments. A solid understanding of these mechanisms is vital 
for numerous technological applications such as, for example, information 
retrieval from distributed musical databases. In order to investigate the 
cognitive mechanisms underlying music perception some soft computing 
methods will be used. The system proposed by the Author, based on the 
rough set method and fuzzy logic, provides knowledge on how humans in-
ternally represent such notions as quality and timbre and therefore it allows 
the human-like automatic processing of musical data. In addition, the 
automatically extracted knowledge on the above processes can be com-
pared to fundamentals of hearing psychophysiology and to principles of 
music perception. Also other applications of hybrid decision systems to 
problem solving in music and acoustics will be exemplified and discussed 
in this book based not only on the review of some literature sources, but 
also on the experimental results obtained in the Multimedia System De-
partment, Gdansk University of Technology. 

PREFACE



The aim of this book is to show examples of the implementation of 
computational intelligence methods in musical signal and music analysis, 
as well as in the classification tasks. A part of this book contains a short 
review of perceptual bases of hearing and music. Then methods and tech-
niques that can be classified as computational intelligence or machine-
learning are shortly introduced. The presented methods are applied in the 
areas considered to be most relevant to music information retrieval (MIR) 
and acoustics. Accordingly, methods based on such learning algorithms as 
neural networks, rough sets, fuzzy-logic, and genetic algorithms were con-
ceived, implemented and tested on musical data. In addition, the above-
mentioned methods were applied to the analysis of musical duets, musical 
phrases and audio signals. Another problem discussed within the frame-
work of this book is the ‘computing with words’ concept applied to both 
acoustics and psychophysiology. Perception-based analysis applied to psy-
chophysiology focuses on the evaluation of hearing impairments. Applica-
tion of neural networks to the processing of beamformer signals is another 
issue reviewed in this book. The last application described is devoted to 
the problem of audio-visual correlation search. This is based on a hybrid 
system consisting of rough-fuzzy and evolutionary computation methods. 
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1 INTRODUCTION 

    
Over the last decade, a series of publications has brought and established 
new research areas related to music, and intensified the research verging 
on several disciplinary boundaries, typically dealt with separately. The ex-
plosion of collaboration and competition was triggered by the Internet 
revolution. Research achievements published in the Internet, along with 
audio and video available through the Internet have made research more 
efficient. This creates enormous possibilities and synergy. Also standards 
are more easily defined and implemented. On the other hand, content 
search of the Internet resources must in response bring new solutions to the 
problem – most possibly in the form of new standards and technology.  
Among new emerging areas are: Music Information Retrieval (MIR), Se-
mantic Audio Analysis (SAA), music ontology, and many others. Music 
Information Retrieval refers to data extraction and retrieval from musical 
databases found on the Internet. The MIR strategic plans were defined and 
re-defined many times. Strong collaboration, and at the same time strong 
competition, afforded solutions to many problems defined within the scope 
of MIR, and overcame some of the largest obstacles found in this field. In 
addition, these problems have been addressed by technology, thus no re-
search plans have been immune to the demands of an increasingly com-
petitive technology environment.

There exist several definitions on semantic audio analysis. In one of 
them SAA means the extraction of features from audio (live or recorded) 
that either have some relevance to humans (e.g. rhythm, notes, phrases) or 
some physical correlate (e.g. musical instruments). This may be treated as 
complementary to human-entered metadata. In order to differentiate be-
tween human-entered metadata and semantic data, the latter issue consti-
tutes a form of ‘technical metadata’, which can accompany a recording or 
broadcast. Thus metadata are important elements of SAA, and should 
cover both the extraction of features and their semantic representation. 
This book will highlight examples where SAA can supplement interactions 
with music and audio. 

Human communication includes the capability of recognition. This is 
particularly true of auditory communication. Information retrieval can be 

Bożena Kostek: Perception-Based Data Processing in Acoustics, Studies in Computational
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2      1 INTRODUCTION        

investigated with cognitive systems engineering methodologies. Music in-
formation retrieval turns out to be particularly challenging, since many 
problems remain unsolved to this day. 

Topics that should be included within the scope of the aforementioned 
areas include: automatic classification of musical instrument sounds and 
musical phrases/styles, music representation and indexing, estimating mu-
sical similarity using both perceptual and musicological criteria, recogniz-
ing music using audio and/or semantic description, building up musical da-
tabases, evaluation of MIR systems, intellectual property rights issues, user 
interfaces, issues related to musical styles and genres, language modeling 
for music, user needs and expectations, auditory scene analysis, gesture 
control over musical works, and many others. Some topics contained 
within the notion of MIR are covered by the MPEG-7 standard, which 
provides description of the multimedia content in order to support better 
interpretation of information.  

It should be stressed that solving these problems requires human assis-
tance. Many features of multimedia content description are based on per-
ceptual phenomena and cognition. The preparation of format description, 
both numerical and categorical, is done on the basis of understanding the 
problem area. Information retrieval systems are presupposed to give an ex-
act match to documents involving the same cues to the user query. How-
ever, operations, which are behind the query do not always provide good 
responses to the user’s interest. This means that retrieving multimedia con-
tent on the basis of descriptors would also require human assistance. Deci-
sion systems may produce numerous rules generated in the mining process. 
This necessitates the provision of the generated rules for post-processing. 
Another problem which needs attention is the processing of unknown, 
missing attribute values or incomplete data when acquiring knowledge 
from databases. To improve information retrieval quality, various strate-
gies were proposed and used, such as probabilistic, clustering and intelli-
gent retrieval. The latter technique often uses concept analysis requiring 
semantic calculations.

The MPEG-7 standard refers to metadata information contained in the 
Internet archives. This notion is often applied to the value-added informa-
tion created to describe and track objects, and to allow access to those in-
formation objects. In this context descriptors that are well-defined provide 
means for better computing and improved users interfacing and data man-
agement. It can easily be observed that these low-level descriptors are 
more data- than human-oriented. This is because the idea behind this stan-
dard is to have data defined and linked in such a way as to be able to use it 
for more effective automatic discovery, integration, and re-use in various 
applications. The most ambitious task is, however, to provide seamless 
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meaning to low- and high-level descriptors. In such a way data can be 
processed and shared by both systems and people. 

There seems to exist a way to change primitives into higher abstraction 
levels, namely semantics. One of the most interesting concepts are the so-
called  ‘computing with words’ introduced by Zadeh, and the perception-
based data processing which refer to the fact that humans employ words in 
computing and reasoning, arriving at conclusions expressed as words from 
premises formulated in a natural language. Computing with words can be a 
necessity when the available information is too imprecise to justify the use 
of numbers or can be a right solution when it is in better rapport with real-
ity. It seems that this paradigm of computing can be used with success in 
music information retrieval, as it offers better processing of subjective de-
scriptors of musical instrument sounds and enables the analysis of data that 
result in a new way of describing musical instrument sounds. An example 
of such processing was recently introduced by the author. It was proposed 
that categorical notions would be quantities partitioned by using fuzzy 
logic. Lately, Zadeh presented an overview of fuzzy logic defined in terms 
of computational rather than logical sense. In his overview he suggested 
that fuzzy logic has four principal aspects. The first one refers to fuzzy 
logic understood in narrow sense, thus it is the logic of approximate rea-
soning. The second aspect is related to classes that have unsharp bounda-
ries. The third one is concerned with linguistic variables, which appear in 
fuzzy rules, designated for control applications and decision analysis. The 
fourth aspect, a so-called epistemic facet, is related to knowledge process-

are based on the concept of granularity, which reflects the ability of human 
sensory organs and brain to process perception-based information. Existing 
theories, especially probability theory, do not have the capability to oper-
ate on such information, thus the development of the methodology of 
computing with words is considered by Zadeh to be an important event in 
the evolution of fuzzy logic. 

It may be observed that musical object classification using learning al-
gorithms mimics human reasoning. These algorithms constitute a way to 
handle uncertainties in musical data, so they are especially valuable in do-
mains in which there is a problem of imprecision and a need for knowl-
edge mining. Such algorithms often need human supervisory control, thus 
user modeling is also necessary for retrieval processes. This remark refers 
to both rule-based systems and neural networks in which an expert controls 
the algorithm settings and the choice of feature vectors.  

The research studies, introduced and examined in this book, often repre-
sent hybrids of various disciplines. They apply soft computing methods to 
selected problems in musical acoustics and psychophysiology. These are 

ing, meaning and linguistics. Applications related to the last mentioned aspect 
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discussed on the basis of the research carried out in the MIR community, 
as well as on the results of experiments performed at the Multimedia Sys-
tems Department of Gdansk University of Technology. The topics pre-
sented in this work include automatic recognition of musical instruments 
and audio signals, separation of duets, processing musical data in the con-
text of seeking for correlation between subjective terms and objective 
measures. The classification process is shown as a three-layer process con-
sisting of pitch extraction, parametrization and pattern recognition. Artifi-
cial Neural Networks (ANNs) and rough set-based system are employed as 
decision systems and they are trained with a set of feature vectors (FVs) 
extracted from musical sounds recorded at the Multimedia Systems De-
partment, and others available in the MIR community. Also, genetic algo-
rithms were applied in musical sound classification.  

This book starts with a chapter that focuses on the perceptual bases of 
hearing and music perception. The next chapter reviews some selected soft 
computing methods along with the application of these intelligent compu-
tational techniques to various problems within MIR, beginning with neural 
networks, rough set theory, and including evolutionary computation, and 
some other techniques. In addition, a review of the discretization methods 
which are used in rough set algorithms is given. The discretization process 
is aimed at replacing specific data values with interval numbers to which 
they belong. Within this chapter, methods of sound parametrization are 
also discussed. This chapter aims at presenting only the main concepts of 
the methods mentioned, since the details are extensively covered in a vast 
selection of literature. Following this, the next chapter deals with musical 
signal separation, its second part introduces the musical phrase analysis, 
while the third one is focused on metadata analysis. The Frequency Enve-
lope Distribution (FED) algorithm is presented, which was introduced for 
the purpose of musical duet separation. The effectiveness checking of the 
FED algorithm is done on the basis of neural networks (NNs). They are 
tested on feature vectors (FVs) derived from musical sounds after the sepa-
ration process has been performed. The experimental results are shown and 
discussed.

The next chapter deals with the applications of hybrid intelligent tech-
niques to acoustics, and introduces the research, which is based on cogni-
tive approach to acoustic signal analysis. This chapter starts with a short 
review of fuzzy set theory. It is followed by a presentation of acquisition 
of subjective test results and their processing in the context of perception. 
Evaluation of hearing impairment based on fuzzy-rough approach is pre-
sented within this chapter. An overview of the experiments is included, 
with more detailed descriptions available through some of the cited au-
thor’s and her team’s papers. In addition, the topic of processing of acous-
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tic signals based on beamforming techniques and neural networks is pre-
sented using cognitive bases of binaural hearing. Another topic related to 
audio-visual correlation is a subject of the consecutive chapter. Once 
again, a hybrid approach is introduced to process audio-visual signals.  

The last chapter outlines the concluding remarks which may be derived 
from the research studies carried out by the team of researchers and stu-
dents of the Multimedia Systems Department, Gda sk University of Tech-
nology. An integral part of each chapter is a list of references, which pro-
vide additional details related to the problems presented in the consecutive 
book sections. 



2 PERCEPTUAL BASES OF HEARING AND 

MUSIC PERCEPTION

2.1 Perceptual Bases of Hearing Perception 

2.1.1 Human Auditory System 

The human auditory system pertains to the entire peripheral auditory 
mechanism. Classically, the peripheral auditory system has been divided 
into three basic parts - the outer ear, the middle ear, and the inner ear. Each 
part of the ear serves a specific purpose in the task of detecting and inter-
preting sound. The outer and middle parts form the conducting apparatus 

The outer ear serves to collect and channel sound to the middle ear. In-
coming signals are collected by the auditory canal and then led to the mid-
dle ear. They cause the tympanic membrane (eardrum) to vibrate. In addi-
tion, the outer ear provides protection for the middle ear and prevents 
damage to the eardrum. Because of the length of the ear canal, it is capable 
of amplifying sounds with frequencies of approximately 3000 Hz. The 
sound pressure gain is about 10 dB. As sound travels through the outer ear, 
it still is in the form of a pressure wave, with an alternating pattern of high 
and low pressure regions. It is not until the sound reaches the eardrum at 
the interface of the outer and the middle ear that the energy of the me-
chanical wave becomes converted into vibrations of the inner bone struc-
ture of the ear. 

The middle ear is an air-filled cavity which contains three tiny bones: 
hammer (malleus), anvil (incus) and stirrup (stapes), known collectively as 
the ossicular chain. The middle ear serves to transform the energy of a 
sound wave into the internal vibrations of the bone structure and to transfer 
these vibrations via the ossicular chain and the oval window into the inner 
ear. Since the pressure wave striking the large area of the eardrum is then 

Bożena Kostek: Perception-Based Data Processing in Acoustics, Studies in Computational
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concentrated on the smaller area of the stirrup, the force of the vibrating 
stirrup is nearly 17 times larger than that of the eardrum. Therefore the ra-
tio of the area of the eardrum to the stapes footplate area defines the mid-
dle ear transformer. Compression forces the eardrum inward and rarefac-
tion pushes it outward, thus making the eardrum vibrate at the frequency of 
the sound wave. Being connected to the hammer, the eardrum sets the 
hammer, the anvil, and the stirrup into motion which again is of the same 
frequency as the sound wave. The stirrup is connected to the inner ear so 
its vibrations are transmitted into the fluid of the middle ear where they 
create a compression wave. The three tiny bones of the middle ear act as 
levers to amplify the vibrations of the sound wave. Due to the mechanical 
characteristics of the stirrup, its displacements are greater than those of the 
hammer, which results in additional amplification of 1.3 times. Thus, the 
total amplification of the middle ear transformer of 17 x 1.3 is obtained. 
The middle ear does not perfectly match the impedance of the cochlea to 
the air, so some portion of energy is reflected. It is assumed that only 60% 
of the sound energy passes from the middle ear to the cochlea. Further-
more, the transfer of the sound energy through the middle ear is not con-
stant across frequency. In addition, the middle ear is connected by the 
Eustachian tube to the mouth. This connection enables the equalization of 
pressure within the air-filled cavities of the ear (Durrant and Lovrinic 
1997; Gelfand 1998).  

The inner ear houses the sensory organ of hearing (cochlea) as well as 
the vestibular system. The latter part assists in maintaining balance. The 
cochlea is a snail-shaped organ which can stretch up to 32 mm approxi-
mately. It is filled with a sea water-like fluid. The inner surface of the 
cochlea is lined with over 17 000 hair-like nerve cells which perform one 
of the most critical roles in the process of hearing. There are two types of 
hair cells, namely inner and outer hair cells. There is a single row of inner 
hair cells, and typically there are three rows of outer hair cells. These nerve 
cells differ in length by minuscule amounts and they also show different 
resiliency to the fluid which passes over them. As a compressional wave 
moves from the interface between the hammer of the middle ear and the 
oval window of the inner ear through the cochlea, the small hair-like nerve 
cells are set in motion. Each hair cell has a natural sensitivity to a particu-
lar frequency of vibration. When the frequency of the compressional wave 
matches the natural frequency of a nerve cell, that nerve cell resonates with 
a larger amplitude of vibration. The increased vibrational amplitude in-
duces the cell to release an electrical impulse which passes along the audi-
tory nerve towards the brain where it is decoded and interpreted. Only 
about 5% of neurons connect to the outer hair cells, this means that each 
neuron receives input from numerous outer hair cells. Their activity is 



summated by the neurons to improve sensitivity. The other 95% of neurons 
connect to the inner hair cells providing better discrimination.

Since the basilar membrane of the cochlea, on which the travelling 
waves appears, has a variable spatial sensitivity to specific stimulation fre-
quencies, therefore it works like a frequency-place processor. There is also 
a simple relation between the place and the sensitivity of neurons to a spe-
cific characteristic frequency referred to as ‘tonotopical organization’.  
Both Fletcher and Zwicker independently drew a simple conclusion that 
the auditory system can be modeled with a set of band-pass filters located 
on frequency axis reflecting critical bands. Moore made the statement that 
the shape of critical bands can be approximated as rectangular which 
makes them different from the shape of hearing filter characteristics on the 
cochlea membrane. He suggested the scale of equivalent rectangular bands 
expressed in ERB units. The auditory system is characterized with expo-
nential curve easily approximated by the filter, whose impulse response 
has the gamma filter envelope modulated by medium frequency (Durrant 
and Lovrinic 1997; Gelfand 1998). 

2.1.2 Auditory  Perception 

Several investigations (Zwicker and Feldkeller 1967; Zwicker and Fastl 
1990) have shown that many aspects of the human auditory perception are 
in fact almost independent of individual preferences. The most important 
ones are the occurrence of masking, the perception of loudness, and the 
perception of pitch. These characteristics of the human auditory system 
can be modeled in order to get an objective estimate of perceived audio 
quality (Thiede 1999). Most of these characteristics can be approximated 
by analytical expressions which, for example, have been proposed in the 
works of Terhardt (Terhardt 1979; Zwicker and Terhardt 1980; Terhardt 
1992).  

The listener-independent characteristics of the auditory perception  form  
a  low-level model  of  the  human  auditory  system.  Besides the study of  
Zwicker,  the  works  of Moore  (Moore 1989, 1996)  also  include  de-
scriptions of most  aspects  of  the auditory  perception but they form a 
slightly different model. Even though the results of the experiments carried 
out by Moore (1989, 1996) are often  considered  to  correspond better  to  
the  physiological  structure  of  the  auditory  system,  the  model  pro-
posed  by Zwicker  has  proven  to  work  rather  well  when  applied  to  
perceptual  coding  and perceptual measurement (Thiede 1999). 

The subjectively perceived  loudness of  an  audio  signal  does not solely 
depend on  its sound  pressure  level  but it also depends on  other  signal  

2.1 PERCEPTUAL BASES OF HEARING PERCEPTION            9 
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characteristics  such as its frequency distribution for  example. This effect 
is taken into account by replacing the decibel scale with the phon scale.
The loudness of a signal given in phons corresponds to  the  sound  pressure  
level  in  decibels  of  a  pure  tone  at  1 kHz  which produces the same per-
ceived loudness as the measured signal.  

When the sound  pressure  level  of  a  pure  tone  that  produces  a  certain  
loudness  is plotted  as  a  function  of  frequency,  the  resulting  curves  are  
called the equal  loudness contours. The equal loudness contours for a 
sound pressure level of 0 dB is of particular interest, as it corresponds to 
the absolute  threshold  of  hearing (see Fig. 2.1). Terhard proposed to ap-
proximate this threshold curve by the following expression:  

4328.0 10])3.3(6.0exp[5.664.3 fffLTq
(2.1)

This function is used in audio coding strategies. 
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Fig. 2.1. Hearing threshold approximation 

Before the detection of a sound takes place on the basilar membrane, the 
acoustical signal is transferred via the ear canal and the middle ear to the 
inner ear. The transfer function can be described by the following expres-
sion (Thiede et al 2000): 

4328.0 10])3.3(6.0exp[5.664.36.0)( ffffA (2.2)

or by its simplified form given by  Moore (1996): 

432 10])3.3(6.0exp[5.6)( fffA (2.3)

where f is given in kHz. A small difference between these two functions 
may be observed for low frequency range.  

Zwicker and Terhard (1980) proposed an expression for the critical 
bandwidth:
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69.02 ]4.11[7525 cff (2.4)

where the center frequency of the band cf  is denoted in kHz, and the 

bandwidth f  in Hz. 

The critical band rate is expressed in Bark units and is usually referred 
to by the symbol of z. Schroeder (Schroeder et al 1979) proposed a very 
simple approximation to calculate the frequency that corresponds to a 
given critical band rate: 

)
7

(sinh650
b

f or
650

arcsinh7
b

b
(2.5)

The model given above was designed for a frequency range relevant to 
speech, and is consistent with psychoacoustical measurements of up to 5 
kHz which corresponds to 20 Barks. On the other hand, Terhard and 
Zwicker (Zölzer 1996) proposed another, more precise formula which may 
be applied to the entire frequency band: 

2)
5.7

(arctg5.3)76.0(arctg13
f

fb
(2.6)

where b  and f are frequencies denoted correspondingly in Bark and 
kHz. This expression corresponds well to experimental data used by 
Zwicker.

The formula given below is still another expression describing the rela-
tionship between the Hz and  the Bark  scales. It  was  introduced  by 
Tsoukalas et al in 1997: 

53.0
1960

81.26
b

(2.7)

where  is given by the following expression: f2 .

Modeling the Auditory System 

It is worth remembering that for the signal perceptual analysis various 
types of filter bank techniques may be used. Among them the most often 
applied are the one-third-octave band filters, the Bark filters, the Gamma-
tone filter banks, and warped filters (Thiede 1999). 

The filter bandwidths of the one-third-octave band filters are propor-
tional to center frequencies and thus correspond to the auditory frequency  
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scale   in   the   upper   frequency   range.   The Bark scale can be approxi-
mated by combining neighboring filters at low center frequencies. This  
technique  is  used  in  the  loudness  measurement  scheme  introduced by  
Zwicker.   However, the one-third-octave filters yield only a rough ap-
proximation of the auditory filter shapes, and  their  approximately  rectan-
gular shapes are not always desirable in auditory modeling. A measure-
ment method based on the so-called BARK-transform was first published 

window  functions  to  approximate  the  spectral  and temporal resolution 
of the human auditory filters. The frequency-to-pitch mapping is therefore 
approximated  by  a  staircase   function.   It uses 11 different window 
functions for a decomposition into 25 frequency bands. The Gammatone 
filter bank corresponds to an extension of the FTT  (Fourier Time Trans-
form) to filter orders higher than one. In many publications, the fourth or-
der Gammatone filter bank is considered to be a good approximation for 
the auditory filter functions. However, this assumption holds for a limited 
dynamic range of approximately 50 dB (Thiede 1999). 

All the above-mentioned models work on a low level of abstraction and 
do not explain the human ability of drawing high-level conclusions con-
cerning such information as: 

Musical information: melody, rhythm, metrum, harmony, modality; 
Environmental information: spatial location, rooms characteristics, 

background sounds identification; 
Cognitive information: instrument identification, recognition of 

a melody, a composer or a musical style; 
Emotional information: identification of emotional intentions of 

a composer or a  musician. 
Other classes of psychoacoustic models can also be found in publica-

tions concerning the application of auditory models to signal processing. 
For example, for the sound separation problem two main pattern recogni-
tion models and time-domain models where introduced. In addition, these 
models are related to theories on pitch perception of complex tones pub-
lished by Goldstein in 1973, Wightman in 1982 and Terhardt in 1979, and 
also to some more recent theories included in  works published by Meddis 
and Hewitt in 1991 or Cohen et al. in 1995. The latter one is based on two 
levels of analysis: spectral analysis and the main processing module, i.e. 
pattern  recognition  module. The most popular model of such type is 
Goldstein’s optimum processor (Goldstein 1973) which first detects the 
maxima of the spectrum for each ear, and then  – assuming that all de-
tected components are noisy representatives of harmonic frequencies – 
calculates the estimate of the greatest probability of the fundamental fre-

by Kapust (1989).  It originally used multiple FFTs  with  different
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quency. The model can explain the process of creating the missing har-
monic components and the dychotomic phenomenon (when each ear is 
stimulated with a set of different harmonic components). Other popular 
models include: Schroeder’s histogram which is a detector of a fundamen-
tal frequency operating through the search of all integer multiples of spec-
trum maxima, and Parsons’ model based on a similar approach and used in 
speech acoustics based on a similar approach and used in speech acoustics 
(Walmsley 2000). 

Time-domain psychoacoustic models work differently. They assume 
that in the process of sound event perception, time information is signifi-
cant. The nerves participating in hearing ‘set off’ at the same moments of 
the stimulus activity provided that the frequency of its appearance is lower 
than 5 kHz. Therefore each neuron transfers the information about the pe-
riodic character resulting from the time they were stimulated, additionally 
fulfilling the conditions resulting from the above-mentioned tonotopical 
organization of hearing. The models initially implement the filtration simu-

periodic detection is introduced. The most popular method currently in-
volves the hybrid time-domain and place-domain models, like Patterson 

1991).

The model includes an initial filter simulating the operations of external
and internal ear, behind which the set of 128 overlapping filters working in 
critical bands is placed, aimed at simulating the response of the stimulated
basilar membrane of the cochlea. Separate signals are sent to simulate the 
activation of hair cells, while the resulting impulses from neurons undergo 
autocorrelation analysis.  Data received from each channel are then aver-
aged, which results in a correlogram allowing for recovering an appropri-
ate sound pitch. The autocorrelation analysis exploits periodicity in the
cochleogram. 

tional than strictly physiological model. The level of cochlea filtration uses 
the set of above-mentioned filters based on the gamma function and lo-
cated on appropriate equivalent rectangular bands, while the level of nerve 
detection threshold uses logarithmic compression and adaptation level. 

2.1.3 Masking

The limited spectral and temporal resolution of the ear in combination with 
a limited dynamic range produces a phenomenon called masking. Masking 
is a process by which the threshold of audibility of one sound is elevated,  

lating the operations of the cochlea (Zwicker 1961, Moorer 1997), and then 

and Holdsworth’s (1996) or Meddis and Hewitt’s (

The conditions of Patterson and Hewitt’s model make it a rather func-

2.1 PERCEPTUAL BASES OF HEARING PERCEPTION
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causing sensitivity decrease in the presence of another sound. When two 
signals are sufficiently close to each other in time and frequency, the  
weaker  signal  may become inaudible due to  the  presence  of  the  
stronger one.  The signal component that is masked is called a maskee and 
the signal component that masks another one is called a masker. Typically 
masking is explained separately in the frequency and in the time domains. 
The simultaneous masking refers to the case when a masker and  a maskee 
are presented  at  the  same  time, and they are close in frequency domain 
in terms of critical bands.  If masking depends mainly on the location in 
the time domain, i. e. a masker and a maskee have a similar spectral  
shape,  it  is  called  temporal  masking (Durrant and Lovrinic 1997; 
Gelfand 1998; Pohlmann 1995). 

Simultaneous Masking 

The effect of simultaneous masking  is interpreted  as a  result  of the spread  
of  neural  excitations  from  the  basilar area  that  corresponds  to  the  fre-
quency  range  of  the  sound  stimulus,  into the areas  that actually should 
not respond to it. This is modeled by assigning energy within  each  criti-
cal  band:  an  excitation in  the  same band,  and some excitations in the 
adjacent critical bands. The excitations assigned to the adjacent critical 
bands are determined by the shape of the masking curves. This results 
in  numerous excitations  for  each  critical  band (one  that  originates  from  
the  energy  in  the  same critical band and several others that originate from 
the energies in the adjacent bands). The excitation is determined by the 
maximum of the partial excitations, even though this does not correspond 
to the additivity (Thiede 1999). In Fig. 2.2 four masking curves are shown 
(tones are masked by narrow band noise) at 60dB. In Fig. 2.2 masking 
thresholds are plotted with logarithmic frequency. Masking curves on the 
Bark scale are presented in Fig. 2.3. Without a masker, a signal is inaudi-
ble if its SPL is below the threshold of the quiet (dashed curve) which de-
pends on frequency and covers a dynamic range of more than 60 dB as 
shown in Figs. 2.2 and 2.3. The masking threshold depends on the sound 
pressure level (SPL) and the frequency of a masker, and on the characteris-
tics of a masker and a maskee. Simultaneous masking curves are asymmet-
rical. The slope of the masking threshold is steeper towards lower frequen-
cies, i.e., higher frequencies are more easily masked. In addition, in Fig. 
2.4 an approximation of a masking curve for a single tone is presented. 
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Fig. 2.2. Masking curves at 60 dB on logarithmic scale (Zwicker and Zwicker 
1991); y-axis refers to threshold, excitation level 

Fig. 2.3. Masking curves on a bark scale; y-axis refers to threshold, excitation 
level
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Fig. 2.4. Approximation of a masking curve for a single tone 

Let 11 tgs  and 22 tgs , then the slope of the approximation func-

tion of the basilar membrane response when excited by a signal LS [dB] of 
the frequency of xf  [kHz] expressed as dB/bark, yields (Beerends and 

Stemerdink 1992): 
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LSfs

s
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(2.8)

or using center frequency )(ifc  of the ith critical band, this expression 

can be presented as (Zölzer 1996): 
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(2.9)

If the source signal consists of many simultaneous maskers, a global 
masking threshold should be computed that describes the threshold of just 
noticeable distortions as a function of frequency. 

Temporal Masking  

Temporal masking phenomenon refers to masking effects between two 
sounds which are not produced simultaneously. Temporal masking is 
schematically presented in Fig. 2.5. As illustrated in Fig. 2.5, the amount 
of masking depends on the relative intensities of the two sounds, their fre-
quencies and the time interval between them. In temporal masking two 
phases may be discerned: premasking (backward masking) and postmask-
ing (forward masking). In the case of premasking, signal components are 
masked before the onset of the masker, and in the case of postmasking, 
signal components  are   masked   after the   termination of the masker. The 
first effect may take place in 15-30ms before the actual sound starts, 
whereas the duration of the second one is up to 250ms. The premasking 
phase implies that a loud signal can mask another signal before the former 
one is actually present. It is usually explained by the assumption that loud
signals are processed  faster  than weak  signals  and  may  therefore  over-
take  the  maskee  during  the  processing  of  the signal,  either  on  the  audi-
tory  nerve  or  later  on  in  the  higher  levels  of  the  auditory system. Tem-
poral interactions do not always produce reduced sensitivity. This may be 
due to the so-called sensitization, the occurrence of a preceding sound, or 
the adaptation phenomena. The latter is related to a decreased responsive-
ness resulting from sustained stimulation (Durrant and Lovrinic 1997;
Gelfand 1998; Thiede 1999). 
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Fig. 2.5. Temporal masking 

The postmasking effect is often modeled using exponential function, 
i.e.:

m
tt

p LeeKL 21 // (2.10)

where Lp denotes masking level, Lm is the masker level, and 21,  are 

time constants. 
Another concept was presented by Jesteadt et al., who on the basis of 

psychoacoustic tests, concluded that the amount of masking M is a function 
of frequency and a time gap between a masker and a maskee signal 
(Jesteadt et al 1982). The function is given below. 

cLtbaM m10log (2.11)

where t  is a time gap (in ms) between a masker and a maskee, the 
level of which is denoted as mL  in dB SL. Parameters a, b, c are set ex-

perimentally. The factor tba 10log  denotes the slope of the masking 

curve with regard to t .
It should be noticed that Zwicker defined the postmasking effect in 

terms of the following function (Kapust 1992): 

25,02,13
arctg
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1
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d

t
D

(2.12)

where D denotes masking effect duration, and d is the duration of the 
masker.

The level difference between a signal and the maximum of the mask-
ing threshold it produces is called masking index (Zwicker and Fastl 
1990). It depends on the center frequency of the masker but   is   assumed   
to   be   independent of the   signal   level.   The  linear representation of the 
masking index is called threshold factor (Zwicker and Fastl 1990). 

2.1 PERCEPTUAL BASES OF HEARING PERCEPTION
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In practical experiments the additivity of masking thresholds should be 
assumed. If masking is produced by several signal components located at 
different positions in the time-frequency plane, the most obvious assump-
tion would be that the overall masking threshold is either given by the 
sum or by the maximum of the masking thresholds produced by each of 
the signal individual components. In fact, the masking threshold  produced  
by  a  multi-component  signal  is  much  higher  than  the  sum  of  the  
thresholds  produced  by its individual components.  

Let A and B be two masking signals of level Ax  and Bx , located at dif-

ferent location in time, expressed on a linear scale. In addition, let AT and

BT be masking thresholds for instance Mt correspondingly for signals A and 

B, then the dependence between the thresholds produced by the individual 
signal components and the threshold produced by the complete signal 

BAT , can be approximated by (Penner 1980; Penner and Shiffrin 1980): 

BABA TTT , (2.13)

The difference BABA TTT ,  is called additional masking. For ex-

pressing additivity of masking thresholds function J was introduced. 

BABA TJTJTJ , (2.14)

which may be generalized for multi-component signal excitation: 

I

i

MiMIMMM TJTJTJTJTJ
1

21 ...
(2.15)

Computation of function J is performed on the basis of the model pro-
posed by Penner (Penner 1980; Penner and Shiffrin 1980). An auditory 
system denoted as y(t) for a time instance t, excited by the signal x(t) may 
be expressed as:  

t

xtugty d)(,,)(
(2.16)

where u refers to excitation pattern on the basilar membrane, and g re-
fers to transfer function for the auditory system. After several additional 
assumptions, function J, expressed in terms of the auditory system, is 
given by:



Mt

MMM xtuTJ d)(,,
(2.17)

where Mt  is an instance for which the masking threshold MT is ex-

pressed. Typically, values of particular coefficients and factors are set ex-
perimentally. 

2.2 Perceptual Bases of Music Perception 

2.2.1 Music Perception 

Perception is by definition the act of perceiving, cognizance by the senses 
or intellect, apprehension by a bodily organ or by mind of what is pre-
sented to them. Another definition lists several expressions synonymous 
with perception, namely: becoming aware of something via the senses, the 
process of perceiving, knowledge gained by perceiving, a way of conceiv-
ing something, the representation of what is perceived. Thus it is a con-
scious mental awareness and interpretation of a sensory stimulus.  

Music perception is an interdisciplinary area which combines a number 
of disciplines, such as physics, psychoacoustics, mathematics and musi-
cology. Each of them plays an equally significant role in the understanding 
of musical phenomena. The target of physics is understanding the mecha-
nism of sound creation in musical instruments which became the core of 
design of new and improved instruments. Psychoacoustics focus on the 
other side of sound nature – effects of music upon humans which in turn 
approaches the area of cognitive psychology, dealing with the highest level 
of organization of the heard sound and the area of the sound scene analy-
sis. Both the musical theory and the musical psychology have had a sig-
nificant impact on this area. They focus on high-level modeling of musical 
structures, dealing with such structures as key, metrum, or harmony.  

Pitch is the attribute by which sounds are ordered along the frequency 
axis from low to high. Low pitches are associated with low frequencies, 
and conversely sound of high pitches – with high frequencies. Frequency is 
not the sole determinant of pitch. Changes in intensity can also cause dif-
ference in pitch perception. The ear is more sensitive to frequency changes 
at higher frequencies. The pitch of complex sounds is based on the perio-
dicity phenomenon. It is believed that pitch processing is almost synony-
mous with periodicity processing. Pitch perception, is largely insensitive to 
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the phase of individual partials. It may be said that the human hearing sys-
tem possesses an inaccurate periodicity detector that is used for determin-
ing pitch. The evidence for this claim may be enforced by the following 
facts:

The auditory system is able to perceive several partials of a complex 
tone separately. 
It is assumed that the auditory system is able to recognize and memo-
rize the frequency intervals existing between those partials.  Certain 
periodic signals having various fundamental frequencies are of highest 
biological relevance and occur often; the voiced sounds of speech.  
Hence, the chance is high that the auditory system will memorize that 
specific harmonic arrangement of partials as a template. 
More generally, when a higher sensory system has memorized a spe-
cific stimulus arrangement, this particular arrangement, if presented 
again, will be perceived as a distinct entity rather than as a meaning-
less complex. 
When a higher sensory system has developed the ability to perceive a 
pattern as an entity, the identification of that pattern will not break 
down when some of its elements are absent, provided that the remain-
ing elements are objectively sufficient to identify the pattern. 
Another way to observe the pitch periodicity is to present a group of 
pure tones together, equally spaced in frequency, then a fundamental 
pitch will be detected which corresponds to the common frequency 
difference between individual components. 
In addition, the inability of discrete bands of noise centered around the 
fundamental frequency to mask out or obscure the residue, meant as 
pitch sensation. 

Based on a simple model of the auditory system one cannot explain a lot 
of phenomena, e.g. complex tone perception or an even less comprehensi-
ble phenomenon of missing fundamental frequency perception. In the the-
ory of virtual sound pitch proposed by Terhardt hearing perception is 
based on the combination of analytical hearing and holistic perception. The 
approach seems appropriate in cases of perception of such instruments as 
bells, whose spectrum is non-harmonic, and the tone heard is specified by 
the components from fourth to sixths.  

What human hearing is lacking in certain areas (low sensitivity, masking 
effects) is made up for in speed, accuracy and the exceptional ability of 
high-level conclusion-drawing. The ear is able to isolate a separate speaker 
from the crowd (so-called “cocktail party” effect) and to track a selected 
voice in a polyphonic recording even without the help of other senses. 
Psychoacoustics and psychology experts are interested in understanding 
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the physical, nerve, and psychological processes which enable sound per-
ception, in order to use the information to create the models of the auditory 
system. One can focus either on the low level modeling in order to capture 
the essence of the auditory system, or on perceptual models created on a 
higher level of the structure. 

Other physiological aspects of music are as follows (Allott 2004):  

Synaesthesia
It is hypothesized that synaesthesia is possible due to some extra con-

nections in the brain which occur between areas concerned with auditory 
and visual perceptions. It is referred to as "seeing" sounds, "hearing" col-
ors, that results from mutual relations and connections of different senses. 
The most common musical synaesthetic experience is seeing colors or pat-
terns when music is heard or composed.  

Temporal (rhythmic) effects  
It is assumed that the perception of musical rhythm is crucial to under-

standing the auditory perception abilities of the right cerebral hemisphere. 
Apart from the rhythm of breathing, the other dominant rhythmic sound in 
our lives is the heartbeat (McLaughlin 1970).  

Motor effects
Music has a direct relation to the nervous organization of postures and 

movements. Composition, performance and listening imply wide involve-
ment of the cerebral motor cortex, subcortical motor and sensory nuclei 
and the limbic system (Critchley et al 1997).  

Other body-based responses  
Perceptual and emotional musical experiences lead to changes in blood 

pressure, pulse rate, respiration, and other autonomic functions. These 
autonomic changes represent the vegetative reflections of psychological 
processes. During the act of conducting, the highest pulse frequencies are 
not reached at moments of greatest physical effort but at passages produc-
ing the greatest emotional response, passages which the famous conductor 
von Karajan singled out as being the ones he found most profoundly touch-
ing.

Neural patterning
There are strong analogies or structural similarities between music and 

the fundamental activities of the nervous system. The characteristics of 
nerve impulses - timing, intensity, synchronicity, frequency-contrasts, pat-
terning generally - can be set in parallel with many aspects of musical con-
struction. The fiber tracts of the auditory system are arranged tonotopi-
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cally, so that the frequency organization of the cochlea is maintained at all 
levels from the auditory nerve to the cortex.  

A quiet noise produces only a few pulses per second, a loud one several 
hundred per second. The pulses are identical, whatever the intensity of the 
stimulus, in every nerve (McLaughlin 1970).  

The implications for the perception of music of this identity of nerve 
impulses and patterning are discussed by McLaughlin. When the incoming 
signal, as in the case of music, is a pattern which has no immediate func-
tion as a useful sense impression, equivalent patterns from other sense 
modes will be activated. The selection and succession of the musical notes 
may have no significance for us but the electrical patterns into which they 
are translated can be compared and identified with patterns from other 
sources (Allott 2004).  

Emotions  
The effects of music are very complex and constitute a synthesis of 

many emotions and feelings. There are also other qualitative aspects of 
sound that appear to reflect psychological judgments about sound (Allott 
2004).

Haptic processing 

In her mini-tutorial Lederman discussed psychophysics as a field of ex-
perimental psychology that uses specific behavioral methods to determine 
the relationship between the physical world and humans’ subjective ex-
perience of that world, the so-called human haptic processing. Experiments 
that are conducted in this domain are specifically designed to discover 
which physical parameters determine a subjective perceptual dimension. 
Especially important is to evaluate humans’ sensation in terms of intensity, 
spatial and temporal variations in mechanical, kinesthetic, and thermal in-
puts (Lederman and Klatzky 1996; Lederman 2004).  

The fields of sonification and auditory display, though, have provided 
an impressive body of research, especially since the mid 1990s. Under-
standing of the audiovisual, multi-modal, and dynamic become aspects of 
new multi-linear media. 

Musical gestures as suggested by Kurth and later by Scruton are iso-
morphic with expressive motion (Kurth 1991; Scruton 1979). Such notions 
as sonic embodiments of image schemas, or ionic components in music 
semiotic appeared in the literature published by Lidov in 1999 and Hatten 
in 1977-2002. It is assumed that the relationship between music and mo-
tion is fundamental to music processing. Eitan and Granot concluded that 
musical parameters affect motion imagery strongly and in a diverse way. 
Moreover, it is possible to associate specific musical and motional parame-
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ters. In addition, intensity direction often matches musical and motional 
parameters. They also observed and tried to explain multiple mapping 
strategies, and found that musical-kinetic analogies are often directionally 
asymmetrical (Eitan and Granot 2004). From such studies some implica-
tions for music theory arose. Cognitive mapping of music into space and 
motion is very complex. Such finding may apply to models of pitch space, 
such as Larson’s (Larson 1997), Schenker’s, and others. 

It is worth reviewing the issue of the IEEE Proceedings dealing with 
subjects on Engineering and Music – Supervisory Control and Auditory 
Communication. Especially valuable may be papers by Johannsen (2004), 
Canazza et al. (2004), Suzuki and Hashimoto (2004), and others of the 
same issue (Johannsen 2004). The domain of “Human Supervision and 
Control”, as suggested by Johannsen, can be analyzed in the engineering 
sciences and in musicology from different cultural, social, and intellectual 
perspectives. It embraces the human activities of guidance, monitoring, 
and control (manual and supervisory control or sensorimotor and cognitive 
control) and also includes perception, information processing and action. 
Supervisory Control is methodically the most important sub-domain of 
“Human Supervision and Control.” Other sub-domains supplement this 
with respect to different aspects of the creation and transfer of information, 
such as gestural control, motion and sound control, information retrieval, 
composition and analysis, sound design and multimedia, virtual environ-
ment, performance and interpretation, as well as visual, auditory, and hap-
tic supervision and communication (Johannsen 2004). 

2.2.2 Musical Instrument Sounds 

Musical sounds are an important and natural means of human communica-
tion and culture. During many epochs, much effort has been aimed at cre-
ating and developing various instruments used in music. Most musical in-
struments generate sound waves by means of vibrating strings or air 
columns. In order to describe the features of musical instruments, one must 
first decide on a division of instruments into categories (groups) and sub-
categories (subgroups), aimed at pointing out similarities and differences 
between instruments. There are various criteria to make this separation 
possible, however it is often sufficient to limit this problem to only two cri-
teria, namely the way an instrument produces sound and whether or not an 
instrument is based on Western musical notation (The New Grove 1980). 
An example of such a division of musical instruments is shown in Table 
2.1. Instruments included in this table are found in most of the contempo-
rary symphony orchestras. 
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Table 2.1. Division of musical instruments into categories 

Category Subcategory Contemporary symphony orchestra mu-
sical instruments (examples) 

String (or Bow-string violin, viola, cello, contrabass 
chordophone) Plucked harp, guitar, mandolin 
 Keyboard piano, clavecin, clavichord 

Wind (or 
Woodwind flute, piccolo, oboe, English horn, clari-

net, bassoon, contra bassoon 
aerophone) Brass trumpet, French horn, trombone, tuba 
 Keyboard pipe organ, accordion 
Percussion (or 
idiophone & 

Determined sound 
pitch

timpani, celesta, bells, tubular bells, vi-
braphone, xylophone, marimba 

membranophone) Undetermined 
sound pitch 

drum set, cymbals, triangle, gong, cas-
tanets

With regard to the above given assumptions, the main acoustic features 
of musical instruments include: 

musical scale, 
dynamics, 
timbre of sound, 
time envelope of the sound, 
sound radiation characteristics. 

The musical scale is a set of sounds that an instrument is capable of pro-
ducing. Dynamics defines all phenomena related to the intensity of sounds. 
The dynamic range can be described as the relation between the level of a 
sound measured during the forte fortissimo passages and the level of a 
sound measured during the piano pianissimo passages of the composition. 
The dynamic range depends on the technique of playing (musical articula-

tion) and it is different for continuous play (legato) and for single tones. 
This is illustrated in Fig. 2.6 (Meyer 1993). In general, string instruments 
are only slightly quieter than woodwind instruments and are about 10dB 
quieter than brass instruments. 

Sound timbre is a feature that makes it possible to distinguish sound of 
various instruments. First of all it depends on the number, type and inten-
sity of the component harmonics. Sounds that have few harmonics have a 
soft but dark sound, and those with a lot of harmonics – especially with a 
prevailing number of high components – have a bright and sometimes even 
sharp sound. The timbre is also closely correlated with the shape of the 
time envelope and the pitch of the sound. Sound pitch can be expressed as 
an absolute or relative value. The absolute representation is characterized 
by exact definition of a reference point (e.g. the C1 sound). In the case of 
relative representation the reference point is being updated all the time. 
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Here the reference point may be e.g. the previous sound, a sound of the 
previously accented time part or a sound of the time start. Pitch enables a 
distinction between the sound registers of an instrument. The influence of 
dynamics on timbre can also be observed. For string instruments, this in-
fluence is only minor because the components of more than 3kHz rise only 
by 1.1dB when the level of dynamics rises by 1dB. For woodwind instru-
ments the level of these components rises by about 1.2-2.0dB and for brass 
instruments they can rise by as much as 3dB. An additional factor having 
influence on the instrument timbre is the technique of the performance, i.e. 
vibrato, pizzicato, martele, spiccato, etc. Higher harmonic components of 
brass instruments and of the flute, when played with vibrato, undergo am-
plitude modulation which leads to an audible change of both the dynamics 
and the timbre of the tone. 

As mentioned before, timbre is defined as the quality which distin-
guishes two sounds with the same pitch, loudness and duration. The notion 
of musical sound timbre refers to the works done by Grey (1977) and later 
by Krimphoff et al. (1994), McAdams and Winsberg (1999), Wessel 
(1979), Reuter (1996) and many others (De Bruijn 1978; Cook 1999; Cosi 
et al 1984;  Iverson and  Krumhansl 1993; Jensen 2001; Pollard and Jans-
son 1982; De Poli et al 1991; De Poli et al 2001; Pratt and Doak 1976; 
Pratt and Bowsher 1978; Vercoe et al 1998). Three dimensions recognized 
by Grey were discussed in some papers and resulted in diminishing the 
timbral space to two dimensions. In the original paper by Grey spectral en-
ergy distribution, the presence of synchronicity in sound attacks and de-
cays (spectral fluctuation), and low-amplitude, high-frequency energy in 
the initial attack represented the perceptual relationship. In other studies 
the first dimension is identified with the log attack time, the second one 
with the harmonic spectral centroid (Iverson and Krumhansl 1993) and the 
third one – with a temporal centroid. Wessel’s similarity judgment tests 
show that two dimensions are related to centroid of the tone spectral en-
ergy distribution, and the velocity of the attack (Wessel 1979). Iverson and 
Krumhansl pointed out that both spectral and temporal attributes were im-
portant for the instrument similarity measurements. It may be seen that ac-
cording to most papers dealing with perceptual space, researchers tried to 
limit this space to three or two parameters. It is obvious that in such a case 
dimensions can be easily interpreted and presented as a two- or three-
dimensional projection, however in the author's opinion derived from the 
results of processing multidimensional feature vectors describing musical 
sound characteristics there is no need to limit the perceptual space to such 
a small number of parameters (Herrera et al 2000; Kostek 1999, 2003, 
2004; Kostek and Czyzewski 2001). 
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Time envelope is also of importance when analyzing musical sounds. 
This issue will be referred to later on while discussing time-related pa-
rameters. 

Fig. 2.6. Dynamic ranges of some chosen musical instruments (L
W

acoustic 

power level with reference to 10-12 W/m2 (Meyer 1993)) 

The last feature to be mentioned here is the sound radiation characteris-
tics. This feature depends greatly on the sound-radiating elements of a mu-
sical instrument. Although low-frequency sounds (below 500Hz) from 
most instruments radiate in all directions, higher-frequency components 
are increasingly direction-dependent. This feature creates some difficulties, 
especially while recording single sounds generated by a particular musical 
instrument.

2.2.3 Musicological Analysis 

One of the most remarkable properties of the human auditory system is its 
ability to extract a pitch from complex tones. This is an analytical mode of 
listening. On the other hand, a person may also generalize what he/she is 
listening to. When confronted with a series of sounds, instead of hearing 
each sound as a unique event, he/she may choose to hear a melody pattern. 
Such a generalization refers to the so-called holistic mode of listening. The 
first approach may conclude in the recognition of an individual instrument, 
while the second may be thought of as the ability to recognize a musical 
piece, belonging to a given musical style. Musical style is a term denoting 
the mode of expression, or even more precisely, the manner in which a 
work of art is executed. It may be used to denote the musical characteris-
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tics of individual composers, periods, geographical areas, societies or even 
social functions. From the aesthetic point of view, a musical style concerns 
the surface of the appearance of music (The New Grove 1980). In musi-
cology, there are different approaches to music analysis. Schenker’s ap-
proach to harmonic analysis, in relation to viewing tonal music in its sim-
plest form, remains one of the core teachings in music theory. Schenker's 
theory of tonal music defines a melodic structure as a diatonic line derived 
by analytical reduction when the upper structure is removed. This funda-
mental melodic structure is called the Urlinie. Schenker extended this con-
cept to fundamental composition and finally to a general concept of struc-
tural layers: background, middleground and foreground. The background 
reduces the music to its most significant material, often consisting of only 
3-5 pitches. On the other hand, the foreground is a notated representation 
of the majority of all the notes in the piece in a very detailed fashion, re-
ducing the piece to its minute elements. The general concept of structural 
levels provides for a hierarchical differentiation of musical components 
which in turn establishes a basis for describing and interpreting relations 
among the elements of any composition. These considerations are founded 
on the concept that the removal of the upper-layers constitutes the core of 
the musical phrase, in some cases just a single note (The New Grove 
1980). This style of analysis has its roots in Gestalt theory. According to 
the Gestalt theory, individuals react to meaningful wholes; and therefore, 
learning is based on the organization of the ideas that are important, dis-
carding less important material.  

On the other hand, functional theory, described by Riemann, defines the 
relationships of chords to the tonic as  center (The New Grove 1980). Rie-
mann’s main interest dealt with the classification of rhythmic motifs as on-
stressed, interior-stressed and off-stressed, depending whether their accent 
fell at the beginning, in the middle or at the end. His view point was that an 
increase in the frequency of interior- and off-stressed rhythms brings an 
increase in energy. Additionally, he defined a ‘rhythmic motif’ as the 
smallest constructional unit of significant content and definite expressive 
value. A motif, being the fundamental unit, is at the same time a unit of 
energy. If two individual units are a succession of notes and they are adja-
cent to each other, then they are combined into a larger form. Such a form 
then creates a higher formation  which is next in the hierarchy. Riemann's 
theory aims at searching for points which divide music into units. In Fig. 
2.7, such a division is shown. Here, an eight-bar module is presented as 2/4 
units. A two-bar module is a combination of two motifs which form a half-
phrase (The New Grove 1980). 
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whole phrase

half-phrase

half-phrasetwo-bar group

Fig. 2.7. Application of Riemann's theory to music division 

Leach and Fitch proposed another approach to music analysis. The basic 
assumption of this method is that music is an association of musical phrase 
repetitions. Fragments of music that are repeated are later combined into 
groups. In Fig. 2.8, an example of such an analysis is shown. In the exam-
ple, at the beginning a three note group is repeated three times, the tenth 
note is then different and therefore does not belong to a larger formation, 
but the next sequences of notes are also repetitions, hence they are 
grouped. The whole process forms a hierarchical tree-like structure (Leach 
and Fitch 1995). 

Another theory of music analysis is based on the notion that the starting 
point for the analysis is the construction of a model that reflects the lis-
tener's perception of music. Such a model of structural hearing was first in-
troduced by Lerdhal and Jackendoff, reexamined by Narmour, and again 

as complex structures consisting of various dimensions (see Fig. 2.9). 

Fig. 2.8. An example of music analysis proposed by Leach and Fitch 

Lerdhal and Jackendoff, is a concept that allows one to understand music
revisited by Widmer (1995). Structural hearing, according to 
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Fig. 2.9. Structural hearing (Widmer 1995) 

The main dimensions in their model are: phrase structure, metrical struc-
ture, time-span reduction, and prolongational reduction (Widmer 1995). As 
shown in Fig. 2.9, the organization of musical structures is hierarchical. In 
contrast, Narmour concludes that linear connections between musical 
structures do not reflect the real nature of music. Widmer affirms Nar-
mour's point of view, but he used a more simplistic approach in his ex-
periment (Widmer 1995).  
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2.2.4 Rhythm Perception 

It may be said that musicologists list a few elements of a musical piece. 
For example, Byrd and Crawford (2001) claim that the most informative 
are melody and rhythm, assigning about 50% of informativeness to a mel-
ody, 40% to rhythm and remaining 10% to the rest of such elements as 
harmony, dynamics, agogics, articulation, etc. (Byrd and Crawford 2002). 
Therefore, rhythm may be treated as one of the most fundamental compo-
nents of music. The appearance of rhythm seems to be the first step in the 
evolution of a musical culture. In the days of ancient Greece and Rome, 
rhythm – tempo, measures and note duration – were defined by the kind of 
rhythmical recitation. Rhythmic, dynamic and harmonic notations differed 
greatly from modern musical notation. During the Renaissance, the tempo 
fixed at the beginning of a musical score was constant for the whole piece 
and denoted on the basis of ‘taktus’ (Latin), the basic time signature, also 
referred to as ‘integer valor notarum’ (Latin). Starting from that time, 
awareness of rhythm “grew up”. In the Baroque period of music, rhythmic 
features started to be important, and the Classical period began with a new 
interest in rhythm. The modern period is marked by the strengthening of 
rhythmic  features,  exemplified  in the compositions of Bartok and Stra-
vinsky (The New Grove 1980). 

The specific sequence of sound stimuli and pauses can be perceived as 
certain rhythm. The rhythm can be perceived if the presentations of sound 
stimuli are distributed in time interval of critical duration. Too short as 
well as too long duration of stimuli presentation precludes perceiving the 
rhythm.  

Jingu (Nagai 1996) proposed an inner procedural model of time percep-
tion (Fig. 2.10). It is quite natural to assume the existence of an equivalent 
for a quartz oscillator of clocks in a human brain. This device serves as an 
internal clock. The internal clock and its pulse counter are considered to be 
used directly to evaluate temporal information and generate subjective 
time. The pacemaker in Jingu's model is based on the reverberating circuit 
in a brain. The pacemaker of this rhythm perception model is a black-box, 
but the same cycle of pulses as Jingu's model (4ms) is postulated as a stan-
dard. The counter is a device to count pulses generated by the pacemaker. 
This counter, dependent on the mode, counts from 4ms to 12ms pulses. 
The chrono-store in the rhythm perception model is an equivalent of 
echoic-memory in auditory perception. It is a temporary storage space for 
pulses from its pacemaker. The information stored is forwarded to the 
short-term memory (Nagai 1996). 
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pacemaker

counter

chrono-store

 short-term memory

inner time

psychological time

output process

response

Fig. 2.10. Inner procedural model of time perception proposed by Jingu (Nagai 
1996)

An interesting concept was proposed by Nagai (Nagai 1996). He ob-
served that in the field of psychophysics, time shown by a physical clock is 
a physical continuum, while time felt by human beings is a psychological 
continuum. Both times change continuously in quantity, but the latter time 
needs consciousness, and is called subjective time. Time and rhythm per-
ception shares its characteristics with language processing because both 
are independent of perceptual modes such as vision and speech.  

The problem of developing a technique for finding rhythmic patterns is 
first of all a problem of definitions. Most definitions of rhythm, tempo and 
time are interdependent and are not explicitly explained. Special attention 
should be paid to the segmentation of rhythmic progressions with respect 
to timing accentuation (Tanguiane 1993). However, formulating rules for 
distinguishing accentuation is at the same time one of the most difficult 
problems. For this purpose, the notion of a rhythmic syllable – understood 
as a sequence of time events with the accent on the last event – was intro-
duced (Tanguiane 1993). In this way, rhythmic syllables may be defined 
for a particular example in a musical piece. On the basis of this methodical 
approach, it is possible to elaborate a kind of rhythmic grammar that may 
be useful in rhythm perception modeling. 

Music analysis is also the basis of systems that allow the automatic 
composition of a musical piece in a given style. The system created by 
Cope uses motifs, called also signatures. It is based on patterns of pitch in-
tervals or rhythmic ratios that occur in more than one example of a style 
(Westhead and Smaill 1993). In the literature, a study on style recognition 
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may also be found. A system made by Westhead and Smaill reads data 
from standard MIDI code files and collects motifs into a style dictionary 
(Westhead and Smaill 1993). The data are split into two training sets, posi-
tive examples (musical pieces of the same style) and negative examples 
(pieces of different style). The style dictionary contains two-style subsets 
(Fig. 2.11) (Westhead and Smaill 1993). The two subsets have some over-
lap because there are motifs present in both of them. When a new test 
piece (M) is presented to this system, it attempts to classify the piece as be-
ing most similar - in terms of a motif - to either positive or negative exam-
ples in the dictionary. The similarity estimate is made relative to the dic-
tionary mean. Since the dictionary has a different number of motifs of 
differing frequency in each style subset, it displays a bias towards one of 
the training sets. Other calculations which are based on Shannon's informa-
tion theory are also made. Entropy estimates are made both with and with-
out the use of motifs. The reduction in entropy that results from using mo-
tifs in the representation is then measured in order to suggest how well the 
style has been characterized. The set )(M  represents motifs already ex-

isting and extracted from the dictionary when a new melody M is pre-
sented to the system. The frequencies with which these motifs occur in 
each style subset can be used to classify M (Westhead and Smaill 1993). 

Dictionary

Negative Positive Style Subset (S )
+

Style

-
Subset (S )

M

(M)

Fig. 2.11. Style recognition process (Westhead and Smaill 1993) 

A style S is defined as a set of melodies iM . A melody is a string of 

notes, each specified by pitch and duration. However, no account is taken 
of harmonies. The definitions of: )(M i , representing the set of all motifs 

present in the dictionary and in M, and µ(S) , representing the set of all 
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motifs present in more than one melody in S are as follows (Westhead and 
Smaill 1993): 

)()(;;:)( , jiji MCwMCwjiSMMwS (2.18)

where )( iMC  is the set of all possible motifs of iM ,

)()(,)(S:w=(M) i iSwMCwD (2.19)

where D is a dictionary. 
The entropy of a concept (next event in a piece) H(X) is defined as: 

Xx

xpxpXH )(log)()( 2
(2.20)

where the concept is a set with a probability function represented by a 
random variable X, such that )=(=)( xXPxp . The entropy represents the 

minimal expected number of bits required to specify an element of X.
Hence, minimizing description length is achieved by minimizing the en-
tropy (Westhead and Smaill 1993). 

As a consequence of these assumptions, both dictionary data and mel-
ody data are extracted during the classification of musical pieces phase. As 

mean probability of all motifs in the dictionary that a motif is drawn from 
– the positive style subset; the variance of these probabilities; the total 
number of positive style motifs; the total number of negative style motifs. 

number of pitch intervals in the melody); the mean probability of all motifs 
in the melody data that a motif comes from – the positive style subset; the 
variance of these probabilities; the number of motifs in the melody that 
only match motifs in the positive style subset; the number of negative mo-
tifs that matched; the significance (the probability that the melody mean 
value was arrived at by chance). The results obtained by Westhead and 
Smaill show that comparisons of style which are based on examples taken 
from different composers are more successful than when based only on the 
form specification (such as fugues, chorales, preludes, etc.), especially 
since the system has no representation of rhythms nor of the structure of 
the musical piece. 

As shown in the musicological review given above, a musical fragment 
can be described by its form, rhythm, melodic contours, harmony, etc. 
These descriptors may then be used as attributes to be placed in a case-
based musical memory, with values extracted from the chosen musical ma-
terial. The system can detect similarities and discrepancies between musi-
cal events in order to provide a means of retrieving them. Automatic rec-

already mentioned, the data represented in the dictionary are as follows: the 

The melody data, on the other hand  are represented by: the length (the 
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ognition of a musical style becomes one of the major topics within Music 
Information Retrieval (MIR, http://ismir2004.ismir.net/), thus it will also 
be reviewed in this context in the following sections. 
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3 INTELLIGENT MUSICAL INSTRUMENT SOUND 

CLASSIFICATION

3.1 Problem Overview 

This chapter is devoted to intelligent classification of the sound of musical 
instruments. Although it is possible, and in some applications sufficient to 
process musical data based on statistical methods, clearly such an approach 
does not provide either computational or cognitive insight. The principal 
constituents of intelligent computation techniques are data mining, ma-
chine learning, knowledge discovery algorithms, decision-systems, learn-
ing algorithms, soft computing techniques, artificial intelligence – some of 
these notions have become independent areas, and some of them are nearly 
synonymous. Data mining, also referred to as Knowledge Discovery in 
Databases – KDD, has been defined by Frawley et al. as "the nontrivial ex-
traction of implicit, previously unknown, and potentially useful informa-
tion from data". Soft computing aims at using machine learning to discover 
and to present knowledge in a form, which is easily comprehensible to 
humans. Physical systems described by multiple variables and parameter 
models having non-linear coupling, frequently occur in the fields of phys-
ics, engineering, technical applications, economy, etc. The conventional 
approaches for understanding and predicting the behavior of such systems 
based on analytical techniques can prove to be very difficult, even at initial 
stages of establishing an appropriate mathematical model. The computa-
tional environment used in such an analytical approach is perhaps too 
categorical and inflexible to cope with the complexity of physical systems 
of the real world. It turns out that when dealing with such systems, one has 
to face a high degree of uncertainty and to tolerate imprecision. Trying to 
increase precision can be very costly.  

Lotfi A. Zadeh separates hard computing based on binary logic, crisp 
systems, numerical analysis and crisp software, from soft computing based 
on fuzzy logic, neural nets and probabilistic reasoning (http://www.soft-
computing.de/def.html). The former is characterized by precision and the 

Bożena Kostek: Perception-Based Data Processing in Acoustics, Studies in Computational

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
Intelligence (SCI) 3, 39–186 (2005)
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latter, by – approximation. Although in hard computing, imprecision and 
uncertainty are undesirable, in soft computing the tolerance for impreci-
sion and uncertainty is exploited to achieve tractability, lower cost, high 
Machine Intelligence Quotient (MIQ) and economy of communication.  

There are several definitions concerning soft computing as a domain of 
science. The most widely known and most often used methods of soft 
computing (or computational intelligence) are neural networks, multival-
ued logic, fuzzy sets and fuzzy logic, Dempster-Shafer theory, rough sets, 
probabilistic reasoning, evolutionary computation, etc. Particular attention 
was paid in this work to neural networks, fuzzy logic and rough sets. Neu-
ral networks may be treated as tools for modeling dependencies between 
variables. Fuzzy and rough sets are formal methods for dealing with uncer-
tainty. These techniques are reviewed further in this chapter, because when 
applied to classification tasks they provide a kernel to decision algorithms. 
A particular justification for the application of decision systems in this area 
is provided by the fact that the management of uncertainty in acoustics 
should be based on the knowledge of experts – the best criterion for assess-
ing the acoustical quality of music. 

This chapter does not provide a comprehensive review of the vast re-
search in these areas. The primary purpose was to list some techniques that 
are applicable to the field of Music Information Retrieval (Downie 2003; 
http://ismir2004.ismir.net/). In addition, this Chapter is concerned with 
processing techniques applied to musical signal processing and feature ex-
traction, therefore it will begin with a review of a number of principles so 
that the following sections can proceed without the need for basic defini-
tions and concepts. 

Finally, several other factors should be considered when selecting a 
technique for an application to a specific problem: efficiency, complexity, 
memory size, the ability to generalize, etc. Therefore, in some applications 
a hybrid approach is chosen and refined to overcome the limitations of one 
technique by combining it with another more effective in specific tasks. 

3.2 MUSICAL SIGNAL PROCESSING 

3.2.1 Spectral Analysis  

Apart from most frequently used FFT transform, there are some other 
transforms that allow analysis in the frequency domain, such as Walsh-
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Hadamard transform, which involves analysis in terms of square waves of 
different frequencies, cosine transform, (modified cosine transform), 
McAulay & Quatieri algorithm (McAulay and Quatieri 1986),  etc. Fur-
thermore, there exist spectral estimation methods, among others classical 
ones based on parametric methods. These methods refer to a variety of 
equivalent formulations of the problem of modeling the signal waveform, 
the differences underlying these formulations concern mostly the details of 
computations. In the literature methods based on autocorrelation, covari-
ance, maximum entropy formulation are often cited. Algorithms known as 
Prony, Yale-Walker, Burg, Durbin, Pisarenko (Kay 1988; Marple 1987), 
etc., provide practical spectral signal estimation. The above cited methods 
are based on linear processes. They are efficient enough also when extend-
ing to the identification of adaptive dynamic models. This is because with 
suitable pre-processing, a non-linear problem may often be converted into 
a linear one. However, as the processes become more complex, a suffi-
ciently correct non-linear input-output behavior is more difficult to obtain 
using linear methods. Lately, in the literature on control system identifica-
tion methods based on input-output models for non-linear systems, both 
deterministic and stochastic appeared. They are known as NARMAX 
(Non-linear AutoRegressive Moving Average with EXogenenous input) 
and NARX (Non-linear AutoRegressive with EXogenenous input) models 
(Billings and Chen 1989; Leonarties and Billings 1985).  

Below, some spectrum estimation methods will be reviewed in order to 
show that in some cases such methods are more accurate than FFT analy-
sis. Generally, a large class of parametric methods fall under the category 
of spectral estimation. Therefore, some chosen methods of spectral estima-
tion that are based on power series models are reviewed in this study, 
namely Autoregressive (AR), Moving Average (MA), and Autoregressive 
– Moving Average (ARMA) models. These methods are often described in 
terms of Zeros-Poles approximations, i.e. the MA model belongs to ‘all-
zero’ methods, while AR belongs to ‘all-poles’.  Some examples of analy-
ses using AR, MA, and ARMA processes will be given in order to show 
that these methods may be useful for the analysis of spectra of musical 
sounds (Kay 1988; Marple 1987). 

Spectral estimation is a three-fold method. First, the appropriate model 
is chosen. Then, model parameters are computed. Finally, in the third 
phase, computed model parameters  provide coefficients for the evaluation 
of the  PSD (Power Spectral Density) function. 

Let u[n] be the input and x[n] be the output signals. These signal se-
quences are related by following expression: 



p

k

q

k

knukbknxkanx
1 0

][][][][][
(3.1)

where: a, b are model parameters and a pair (p,q) represents the order of 
the model. Eq. (3.1) is known as the ARMA model. 

The transmittance )(zH  between u[n] and  x[n] for the ARMA process 

is defined as:   
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function and the moving average, respectively. It is assumed that A(z) can 
have poles that lie inside the unit z-circle in order to guarantee the stability 
of the system.    

It is known that z-transform of the autocorrelation function )(zPxx  is 
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If all coefficients a[k] except  a[0] = 1 equal zero in the  ARMA proc-
ess, then:
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and this process is known as the MA of the order q, and its power spec-
trum is given as (Marple 1987):                        

22 )()( fBfPMA
(3.4)

on the condition that u[n] is a white noise sequence with mean value 

equal 0 and variance 2 is equal to the white noise power density. 
On the other hand, if all coefficients b[k] except b[0] = 1 equal zero in 

the  ARMA process, then:  
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and this process is known as the AR (autoregression model) of the order 
p, and its power spectrum is: 
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Based on the Wiener-Khinchin theorem which says that the Fourier 
transform of the autocorrelation is equal to the power spectrum, it is possi-
ble to express the power spectrum of the MA process as follows: 
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The same analogy can be applied to the AR and ARMA processes.  
It is known that under the condition that the power spectrum is infinite, 

then for the ARMA(p,q) process the AR(p) and MA(q) equivalent models 
do exist.

Provided h[k] = 0 for 0k , then the autocorrelation function ][k
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where: h[l] is actually the impulse response of the system with transfer 
function H(z).

Providing that ][][ llb , then the autocorrelation function for the AR 

process is:
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Additionally, if 0][ kh   for 0k and 1)](lim[]0[ zh
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The above equations are known as Yule-Walker’s equations. For com-
putational purposes, the above equations are often given in matrix form: 
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Correspondingly, for the MA process, when ][][ lla  and ][][ lblh ,

the autocorrelation function is as follows: 
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It is known from literature that the AR and equivalent ARMA models 
provide an accurate representation for underlying power spectra which 
have sharp spectral features (Kay 1988).  Therefore, most of the carried out 
musical sound analyses aimed at testing algorithms that are based on AR 
and ARMA processes. In order to estimate the power spectral density in 
the AR model, estimation methods other than the autocorrelation method 
are also used, namely: covariance, modified covariance, Burg's method, 
RMLE (Recursive Maximum Likelihood Estimation) method, etc. It 
should be remembered that both the AR and MA processes may be treated 
as specific cases of the ARMA process. Starting from the ARMA process, 
it is possible to estimate the power spectra of these processes by assuming 
that the order of the MA model, denoted as q, is equal to 0 in the AR proc-
ess, while the order of the AR model, expressed as p, equals 0 in the MA 
process (Kay 1988; Marple 1987; Press et al 1986). 
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It should be noted that the choice of the frame length (N) and the deter-
mination of the model order are a very important consideration in imple-
mentation. Clearly, for the autocorrelation method N should be on the or-
der of several pitch periods to ensure reliable results. To effectively 
evaluate the model order, it is necessary to use one of commonly used 
techniques and criteria. Basically, the model order is assumed on the basis 
of the computed prediction error power. First of all, a minimum of the so-
called Final Prediction Error (FPE) function defined as follows: 

k
kN

kN
kFPE ˆ)(

(3.13)

where k
ˆ is the variance of the white noise process (prediction error 

power) serves as such a criterion. Another criterion, known in the literature 
as Akaike Information Criterion (AIC) is expressed below (Kay 1988):  

kNkAIC k 2ˆln)( (3.14)

is often used. The chosen model order is the computed minimum of the 
expression given above. The expression 2k is often substituted by the fac-
tor Nk ln due to the fact that computed order is too high, providing a big 
value of N. One may use also Bayesian Information Criterion (BIC) as a 
measure of the goodness-of-fit of the model.  

Theoretically, ARMA models being zero-pole signal representation are 
more accurate than AR or MA models, however in practical musical sound 
analysis it might be proven that pole-representation (AR models) may be 
more useful, because it represents the resonant structure of a musical in-
strument body. On the basis of performed analyses, it may be said that 
spectral approximation obtained on the basis of the AR model, regardless 
of the method of analysis, is more accurate than when ARMA or MA 
models were used. The number of samples used in the analyses (N) influ-
ences the quality of the spectral analysis. At the same time, a decrease in 
the number of samples from 512 to 256 often results in better resolution. 
The crucial point of analysis is, however, the assignment of the order of 
the model; assumed value of the model order in all parametric methods is 
of high importance. A more general conclusion concerns the number of 
sound samples (N); namely, for N<512, it is more convenient to use para-
metric methods because they are more accurate than the FFT analysis, 
while for N>512, the FFT analysis gives better spectrum estimation. 

Below, some examples of analyses obtained on the basis of some para-
metric methods that were implemented algorithmically in the Multimedia 
Systems Department are shown. In Fig. 3.1, three spectral analyses of 
flute, violin and piano sounds (C6) are shown for sounds belonging to dif-



ferent instrument groups. What is especially important, these sounds con-
tain differentiated amount of noise depending on the sound generating 
mechanism. The analyses shown below were performed using the autocor-
relation method.

a.

b.

c.

Fig. 3.1. Spectrum of C6 violin (a), piano (b), and flute (c) sounds, autocorrelation 
method p = 28 (AR model), N = 128 

As seen from analyses the method presented accurately estimates the 
pitch of the analyzed sounds. Although the first harmonic is clearly in evi-
dence in all plots, it can be seen that the autocorrelation method reveals 
fewer peaks than it is expected; higher spectrum partials of less energy are 
often disregarded and are not shown in the analysis. The easiest for spec-
trum estimation with regard to these three instruments is a violin sound, 
since its harmonics are of high energy. On the other hand, only two har-
monics are identified for piano, other harmonics are below the noise back-
ground. The similar situation happens for the flute sound, in such a case 
only the first harmonic is visible in spectral analysis, other harmonics, hav-
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ing not sufficient energy, are hidden by noise. The value of 28 assigned to 
p parameter causes the algorithm to treat harmonics of less energy as noise 
partials.

In order to compare spectra that were obtained using parametric meth-
ods with the corresponding one obtained on the basis of the FFT transform, 
examples of such analyses of three musical sounds are shown in Fig. 3.2-
3.7. A direct comparison of the spectra using FFT transform with these ob-
tained on the basis of the AR model (modified covariance method) is 
shown for other musical sounds. As seen, the parametric representation 
leads to a very good estimation of subsequent sound harmonics, however 
the signal to noise ratio (SNR) is an important factor influencing  the qual-
ity of the spectral estimation. When comparing two violin sounds C6 B5 
(Fig. 3.2) and B5 (Fig. 3.4) obtained in parametric-based spectral analysis 
it may be concluded, that both the model order (p,q) and number of sound 
samples (N) should be carefully chosen in the analysis. For the example in 
Fig. 3.2 most sound harmonics are better resolved than in the case of the 
B5 sound analysis. Interesting case is the analysis of the pipe organ sound. 
For sounds that contain natural noise the modified covariance method does 
not get a problem with estimating higher harmonics, as was the case with 

Fig. 3.2. Spectrum of C6 violin sound, modified covariance method p = 28, N=
512 

Fig. 3.3. FFT analysis of a C6 violin sound,  Hanning window 

the autocorrelation method (Kostek 1999).     



Fig. 3.4. Spectrum of B5 violin sound, modified covariance method p = 28, N=
512 

Fig. 3.5. FFT analysis of a B5 violin sound,  Hanning window 

Fig. 3.6. Spectrum of A5 pipe organ sound, modified covariance method (AR 
model), p = 28, N = 512 

Fig. 3.7. FFT analysis of a A5 pipe organ sound,  Hanning window 
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The overall observation is such as follows:

presented methods accurately estimate the pitch of the analyzed sound; 
although the first harmonic is clearly in evidence in all plots, it can be 
seen that both ARMA and MA model-based methods reveal fewer 
peaks than in the adequate FFT analysis; 
parametric methods based on the AR model give very sharp and high 
maxima for the spectrum partials of high energy as compared with the 
adequate FFT analysis, especially in the case of the low partials, but 
contrarily, higher spectrum partials of less energy are often disre-
garded and are not shown in the analysis. 

3.2.2 Wavelet Analysis 

One of most popular methods in the domain of signal processing is time-
frequency signal analysis. This is due to the fact that signal processing be-
comes an important tool in domains such as seismology, medicine, speech, 

Evangelista 1993; Guillemain and Kronland-Martinet 1991; Mallat 1991; 
Meyer 1992; Wilson et al 1992). Most real signals that are analyzed in 
practice are of a non-stationary character, that is why their conventional 
approximation by means of stationary signals using classical frequency es-
timation methods is not faithful enough and may cause even gross errors.  

One of the main advantages of wavelets is that they offer a simultaneous 
localization in time and frequency domain. This is also simply an alterna-
tive way of describing a signal in the frequency domain. Such a description 
in the frequency domain provides a more parsimonious representation than 
the usual one on a grid in the time domain. 

Originally, the time-frequency analysis was proposed by Gabor. He 
showed that a signal apart from time and frequency representation can 
have a two-dimensional representation. He proposed a technique that leads 
to the frequency analysis by partitioning signal into fragments and apply-
ing a window function. The performed convolution process used a bell-
shaped time envelope, generated by the Gaussian method (De Poli et al 
1991):

dxexp x 2/2

2

1
)(

(3.15)

Gabor's time-frequency signal analysis method was reexamined by 
Grossmann and Morlet, and later by Kronland-Martinet and provide the 

vibration acoustics, etc. (Chui et al 1994;   Choi and Williams 1989;   



basis  of  the  wavelet  transform  (Evangelista 1993;  Guillemain and 
Kronland-Martinet 1991).   

Wavelet transformation is a powerful tool for time-frequency signal 
analysis (Chui et al 1994; Genossar and Porat 1992). This transform is es-
pecially useful when it is necessary to characterize transient phenomena. 
By using adequately dilated or contracted copies of a mother function (see 
Fig. 3.8 and 3.9), it enables the analysis of various frequency bands of the 
given signal with different resolutions. This solves the problem of obtain-
ing a high resolution simultaneously in the time- and frequency-domains 
(De Poli et al 1991; Orr 1993). 

The elementary wavelet functions )(, tg ab that are subjected to a change 

of scale are copies of a wavelet mother function g(t):
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where b  is any real number, and a  is the rescaling coefficient, a>0.

The frequency localization is given by the Fourier transform of the 
)(, tg ab function:

bj
ab eagg ˆ)(ˆ ,

(3.17)

where )(ˆ ,abg is the Fourier transform of the function )(,abg .

The localization depends on the parameter a. The resulting decomposi-
tion will  consequently  be at constant/ .  For this reason, wavelets 
can be interpreted as impulse responses of constant Q-filters.

Assuming that a signal is composed of a set of elementary functions, the 
wavelet transform is thus given by: 
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where the bar denotes complex conjugation. 
The Fourier transform tends to decompose an arbitrary signal into har-

monic components, whereas the wavelet transform allows free choice of 
elementary function (De Poli et al 1991). This feature of the wavelet trans-
form seems of importance because it is possible to carry out musical sound 
analyses that are specific for a given instrument (i.e. mother function de-
rived from the analysis of an instrument structure), therefore using differ-
entiated mother functions. 
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In Fig. 3.10 time-frequency resolution of DWT (Discrete Wavelet 

Transform) and STFT (Short-Time Fourier Transform) analyses is shown.
The DWT of signal x[n] can be presented as:  
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Fig. 3.8. Mother wavelet function Fig. 3.9. Elementary wavelet scaled 
with |a|<1 

a.     b. 

Fig. 3.10. Time-frequency resolution of STFT (a) and DWT (b) transforms 

On the basis of the wavelet transform, it is possible to define certain pa-
rameters, such as distribution of energy or measure of discontinuities.  

A wavelet transform may be implemented as a bank of filters that de-
compose a signal into multiple signal bands (see block diagram in Fig. 
3.11). It separates and retains signal features in one or a few of these sub-
bands. Thus, the main advantage of using the wavelet transform is that 
signal features can be easily extracted. In many cases, a wavelet transform 

g(t)

a=1/2 

t

gb,a(t)

t



outperforms the conventional FFT transform  when it comes to feature ex-
traction.
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Fig. 3.11. Presentation of the wavelet transformation implementation 

3.2.3 Pitch Detection Algorithms   

Pitch detection is one of the most difficult tasks in speech and musical sig-
nals processing and has been studied in many publications for many years 
(Brown 1992; Beauchamp 1993a; Czyzewski et al 2002; Klapuri 1999; 
Maher and Beauchamp 1994; Proakis and Manolakis 1999). It is due to the 
fact that acoustic signals are non-stationary, i.e. pitch and amplitudes of 
their harmonics vary in time. In many cases significant noise disturbances 
are contaminating analyzed signals, making pitch estimation even more 
difficult. Owing to these reasons a universal solution for the problem does 
not seem to exist and the proposed pitch detection algorithms (PDAs) vary 
often in accordance with different requirements and applications. In the 
domain of processing acoustic signals, two major applications of pitch de-
tection are known: pitch determination of speech signals and pitch deter-
mination of musical signals. In the case of speech signals (Rabiner et al 
1976; McGogenal et al 1977; Hess 1983), it is very important to determine 
pitch almost instantaneously, which means that processed frames of the 
signal must be small. This is because voiced fragments of speech may be 
very short, with rapidly varying pitch. In the case of musical signals, 
voiced (pitched) fragments are relatively long and pitch fluctuations are 
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lower. This enables the use of larger segments of a signal in the pitch esti-
mation procedure. But for both applications, efficient pitch detection algo-
rithm should estimate pitch periods accurately and smoothly between suc-
cessive frames, and they should produce pitch contour that has high 
resolution in the time-domain.  

In general, estimating frequency of digital signals can be divided into 
two main categories. The first category focuses on estimating the sinusoi-
dal, or harmonic time domain properties of signals in a noisy environment, 
however it is often assumed that some properties of a signal and noise are 
known (Rife and Boorstyn 1974, 1976). Practical applications for this 
group of algorithms are operating in stationary, or slowly changing condi-
tions, or on non-audio signals. This group of algorithms deals with e.g. ra-
dar antenna signals, sonar signals, digital modem signals, a wide variety of 
telecommunication signals, etc. 

Algorithms of the second category operate on audio signals and are re-
sponsible for detecting the pitch of sounds, i.e. they simulate human per-
ception of sounds in terms of perceiving signal frequency.  

As suggested by Rabiner et al. (1976) pitch detection algorithms can be 
roughly divided into three broad categories: 

PDAs utilizing time-domain properties of signals. 
PDAs utilizing frequency-domain properties of signals. 
PDAs utilizing both: time and frequency properties of signals. 

Time-domain related algorithms (Wize et al 1976), such as AMDF (Av-
erage Magnitude Difference Function) (Quian and Kimaresan 1966; Talkin 
1995; Ying et al 1996) and modified AMDF methods (Chang and Su 2002; 
Dziubinski and Kostek 2004; Kostek 2004a, 2004b; Medan et al 1988; Mei 
et al 2001; Szczerba and Czyzewski 2005; Zhang et al 2002) analyze 
waveform properties, and estimate pitch period by analyzing zero-
crossing, or peaks and valleys of signals. Autocorrelation based algorithms 
(Rabiner and Schafer 1978) work similarly, operating however, on the 
autocorrelation signal. Such approach is based on the assumption that the 
processed signal is of the quasi-periodic type, and its consecutive periods 
are similar to each other. In many cases, appropriate preprocessing is ap-
plied in order to enhance periodicity properties of signals. Still, quite often 
gross pitch errors and relatively large fine pitch errors constitute a major 
problem for this group of PDAs, due to differences between consecutive 
periods. Suitable modifications have, however, been proposed, signifi-
cantly improving the time-domain PDAs performance (Chang and Su 
2002; Medan et al 1988, 1991; Mei et al 2001; Zhang et al 2002). In gen-
eral, time-domain related algorithms are very useful in real time applica-
tions for pitch estimation of speech signals. They are computationally effi-



cient and can operate on small signal blocks, introducing short delay to 
calculated results. 

Frequency-domain related algorithms operate on a signal spectrum  
(McAulay and Quatieri 1990; d’Alessandro 1995; Ahn and Holmes 1997), 
or on a nonlinearly processed representation of its cepstrum (Noll 1967), 
also on a so-called ACOLS – Autocorrelation Of Log Spectrum (Kunieda 
et al 1996) – with the assumption that the fundamental frequency of the 
signal and its harmonics are represented by some of the spectrum peaks. 
This group of algorithms usually requires larger blocks of the input signal 
to provide appropriate resolution of the analyzed spectrum (cepstrum). 
This is an important issue, especially in the case of low pitched signals, 
and it seems to be the major disadvantage of this group of PDAs. On the 
other hand, these algorithms are effective for signals containing only few 
higher order harmonics and significant noise level (radio-transmitted 
speech signals with strong low frequency noise content, noisy trumpet 
sounds, etc.), where time-domain related algorithms are more likely to fail. 
In addition, by analyzing relations between peaks representing harmonic 
frequencies, it is possible to effectively avoid octave errors (gross errors),
as reported later in this paper.

The third group of PDAs incorporates properties of time and frequency-
domain algorithms. In some cases AMDF or autocorrelation methods are 
applied, and some information is gathered from the calculated spectrum, in 
order to decrease the possibility of estimation errors (Hu 2000; Kasi and 
Zahorian 2002), resulting in a more accurate pitch tracking. Such opera-
tions usually require increased computational cost, and larger block sizes, 
than PDAs working in the time-domain. Some algorithms operate directly 
on the time-frequency representation, and are based on analyzing trajecto-
ries of sinusoidal components in the spectrogram (sonogram) of the signal 
(Auger and Flandrin 1995; McAulay and Quatieri 1990; Baseville 1989; 
Marques and Almeida 1986). This approach is efficient, but requires the 
storing of a large amount of data for calculating spectrogram matrix. Its 
performance is limited in terms of real time applications, since it intro-
duces significant delay to the calculated pitch. It is interesting also to ana-
lyze algorithms proposed by Beauchamp (1993a), and Brown (1992). 

Alternatively, a signal might be analyzed with different time-frequency 
representations, as shown by Janer (1995) and by Kwong et al. (1992). 
Such algorithms are computationally expensive, resulting however in good 
performance of a period detection of the processed signal, with the as-
sumption that pitch fluctuations are slow and the signal in each analyzed 
frame is nearly stationary. 
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Many algorithms were also engineered and implemented by the re-
searchers’ staff of the Multimedia Systems Department, GUT (Czyzewski 
et al 2002; Dziubinski and Kostek 2004; Szczerba and Czyzewski 2005). 
One of the examples of such algorithms is the algorithm of a time-
frequency domain type, where rough pitch track estimation is performed 
using a block processing procedure, for relatively large blocks. The algo-
rithm is based on analyzing spectrum peaks representing harmonics within 
the signal block. This will be presented later on. As an extension to this 
method, an algorithm for retrieving instantaneous pitch contour, working 
both: in time- and frequency-domains, based on pre-estimated rough pitch 
track is also presented in this Chapter.

Spectrum Peak Analysis Algorithm 

The proposed pitch detection algorithm, a so-called Spectrum Peak Analy-
sis (SPA), is based on analyzing peaks in the frequency-domain  represent-
ing harmonics of a processed signal. In many cases, the spectrum repre-
senting an analyzed signal is difficult to deal with in terms of choosing 
peaks that represent pitch. Often the largest peak of the spectrum does not 
represent the fundamental frequency of the analyzed signal, i.e. it can rep-
resent one of the higher order harmonics, which happens in the case of 
trumpet sounds, for example. In addition, some of the lower order harmon-
ics may not exist, or may be covered by noise. Difficulties with choosing 
an appropriate peak and establishing its relation to pitch are the most 
common problems in pitch determination based on spectrum analysis, and 
often cause octave errors in the estimation procedure. Proposed algorithms 
successfully deal with such situations, since their performance is based on 
the assumption that only a few harmonics exist (or are above the noise 
level). If only one harmonic exists - i.e. the analyzed signal is of the sinu-
soidal type, or other harmonics are covered by noise – it is assumed to rep-
resent the fundamental frequency of the input signal.  

Estimating pitch contour is performed using a block processing, i.e., a 
signal is divided into blocks with equal widths, whereas overlap can be 
time varying. Each block is weighted by the Hann window. 

Harmonic Peak Frequency Estimation 

The first step of the estimation process in each block, is finding the maxi-
mum of the spectrum signal. Such maximum is assumed to be one of the 
harmonics, and it is easy to establish its coordinates in terms of frequency. 
The chosen peak is assumed to be at the Mth harmonic of the signal. In ex-
periments, M equal to 20 seems to satisfy all tested sounds, however set-



ting M to any reasonable value is possible. The spectrum resolution is the 
natural limitation of this approach. It is assumed that the minimum dis-
tance d between peaks representing neighboring harmonics must be 4 
samples. Therefore, if the detected maximum index is smaller than M  d, M

is automatically decreased by the algorithm to satisfy the formulated con-
dition. In the case of low frequency signals, block size in the analysis must 
be suitably large to perform pitch tracking. The next step is calculating M
possible fundamental frequencies, assuming that a chosen harmonic (the 
largest maximum of the spectrum signal) can be 1,2,…, or Mth harmonic 
of the analyzed sound: 
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where Ffund denotes a vector of possible fundamental frequencies, and FM

is a frequency of a chosen (largest) harmonic. 
The main concept of the engineered algorithm is to test a set of K har-

monics related to vector Ffund, that are most likely to be the peaks represent-
ing pitch. A value of K is limited by FM in the following way: 
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where floor(x) returns the largest integer value not greater than x, Fs

 sampling frequency. 
Based on M, Ffund vector and K, matrix of frequencies used in analysis 

can be formed in the following way: 
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where FAM  denotes a matrix containing frequencies of M harmonic sets. 
If M is significantly larger than K, and most energy carrying harmonics 

are of higher order (the energy of the first K harmonics is significantly 
smaller than this of the higher order ones, for example K, K+1,…, 2 K), it 
is better to choose a set of K consecutive harmonics representing the larg-
est amount of energy. Therefore the frequency of the first harmonic in each 
set (each row of FAM) does not have to represent the fundamental fre-
quency. Starting frequencies of chosen sets can be calculated in the follow-
ing way: 
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where:
Hmaxset is a vector containing the energy  of the K  consecutive harmonics 
of the chosen set, Hmaxset[k] is the sum of the energy of these K harmonics: 
k Ffund, (k+1) Ffund,…, (k+K) Ffund,  EHf is the energy of the harmonic with a 
frequency equal to f, and L is the dimension of  Hmaxset vector:
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The first frequency of each set is based on the index representing the 
maximum value of Hmaxset: Fstart[m]  = indmax[m]  Ffund[m]   for m = 1,…, M.

Finally, modified FAM can be formed in the following way: 
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Harmonic Peak Analysis 

Each set of harmonics, represented by frequencies contained in each row 
of FAM is analyzed in order to evaluate whether it is most likely to be a set 
of peaks related to a fundamental frequency among the remaining M-1

sets. This likelihood is represented by V, while V is calculated for each set 
in the following way: 
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where Hv[i] denotes the value of a spectrum component for ith frequency 
for the analyzed set. 

If the analyzed spectrum component is not a local maximum - left and 
right neighboring samples are not smaller than the one assigned to the lo-
cal maximum -  then it is set to 0. In addition, if local maxima of neighbor-
ing regions of the spectrum are found, Hv is decreased - the values of the 
found maxima are subtracted from Hv.

Neighboring regions of the spectrum surrounding the frequency 
vHF ,

representing Hv, are limited by the following frequencies: 
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where FL , FR are frequency boundaries of the spectrum regions surround-
ing

vHF , and Ffund  is the assumed fundamental frequency of the analyzed 

set.
The fundamental frequency, related to the largest V, is assumed to be the 

desired pitch of the analyzed signal. As can be observed in Figs. 3.12-3.14, 
there are three situations possible. In Fig. 3.12, the analyzed spectrum peak 
value is not a local maximum, therefore it is set to 0. In addition, there are 
local maxima detected in the surrounding regions, which subtracted from 
Hv give a negative value. It is clear that in this situation Hv is very unlikely 
to be a harmonic. Fig. 3.13 presents the situation where Hv is a local 
maximum, and the surrounding maxima, opposite to those from Fig. 3.14, 
have small values. There are neighboring harminics in analyzed regions, 
which is the case that pitch candidates are larger than real pitch. Fig. 3.13 
presents a peak, with surrounding regions, that is most likely to be related 
to pitch. 

Fig. 3.12. Analysis of a possible harmonic peak and its surrounding region (the 
analyzed fundamental frequency is not related to peak frequency) 
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Fig. 3.13. Analysis of a possible harmonic peak and its surrounding region (the 
analyzed fundamental frequency is correctly related to peak frequency) 

Fig. 3.14. Analysis of a possible harmonic peak and its surrounding region (the 
analyzed fundamental frequency is two times larger than pitch) 



Time-domain Pitch Contour Correction 

In some cases, transients of the analyzed fundamental frequency are two 
times larger than pitch analyzed instrument sounds may contain only or 
almost solely even harmonics, therefore pitch calculated for a block con-
taining transient is one octave higher, than pitch calculated for blocks rep-
resenting the steady-state of the sound. The human brain seems to ignore 
this fact, and for a listener the perceived pitch of the whole sound is in ac-
cordance with that of the steady-state. However, blocks containing tran-
sient, duplicated in time-domain, result in a sound with a pitch perceived 
as one octave higher. This observation calls for post-processing (Talkin 
1995), i.e., time-domain pitch contour correction. Optimizing pitch tracks 
is relatively easy, since such problems are only encountered for transient 
parts of musical sounds and in most cases a pitch contour represents the 
fundamental frequency expected (perceived) for the instrument. In Fig. 
3.15 one can observe that for an oboe sound, for one block in the transient 
phase, the estimated pitch is one octave higher than the pitch estimated for 
the steady-state, however, the overall pitch was recognized correctly for 
this sound.  

Fig. 3.15. Octave fluctuations of pitch in transient of oboe (non legato), based on 
SPA
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Instantaneous Pitch Estimation 

All known PDAs have limitations in estimating the pitch of the signal in 
terms of time resolution. This is due to the fact that some information from 
the signal has to be accumulated to perform pitch estimation. Time-domain 
based PDAs are limited by lengths of signal periods and in general, give 
higher resolution of the pitch contour in the time-domain, than  spectrum 
(cepstrum) based PDAs. In spectrum (and cepstrum) related algorithms, 
the increase in block sizes results in higher resolution of the spectrum 
(cepstrum), but a calculated representation of the signal is based on a 
longer period of time and therefore the calculated pitch can be viewed as 
the average width of many periods contained in the analyzed frame.  

A common solution for this problem is to increase overlap in the block 
processing procedure, which makes time resolution of the pitch track 
higher. The operation of increasing the overlap could be computationally 
inefficient and the estimated pitch contour could be understood as being a 
smoothed (by moving the average filter) and expected pitch track of the 
signal. Another way to enhance resolution of the estimation process is by 
using interpolation techniques on low resolution pitch contours. Interpola-
tion may be performed based on a time-frequency representation of the 
signal (McAulay and Quatieri 1990; Stankovic and Katovnik 1998), or on 
a lower resolution pitch track calculated by a time-domain based algorithm 
(Medan et al 1988). In both cases, however, interpolation smoothes pitch 
contour, rather than introduces more precise information on the flowing 
pitch.

The method of directly retrieving a pitch track of the same time-domain 
resolution as this of the input signal is presented later on as a complemen-
tary method to SPA. 

Data Segmentation 

Direct retrieval of the pitch contour can be based on varying window sizes, 
i.e. block lengths can differ according to the deviation of a low resolution 
pitch track estimated with SPA – fluctuations of pitch within each ana-
lyzed frame should be less than 5%. To increase computational efficiency, 
window sizes should have lengths equal to the power of 2, since the FFT 
algorithm is involved. In addition, processed frames should be overlap-
ping, since instantaneous pitch estimation (IPE) has lower performance on 
the edges of processed blocks – estimated pitch contour is affected by the 
Gibbs effect, and therefore the resulting pitch contours of overlapping 
blocks should be cross-faded to obtain a smooth instantaneous pitch con-
tour for the whole signal. 



Algorithm

The algorithm presented below is based on separating one of the harmon-
ics of the signals and on a direct calculation of the instantaneous pitch, in 
which an inverted sinus function is used. In addition, methods of enhanc-
ing instantaneous pitch track (IPT) calculation are proposed.  

The first stage of the procedure is calculating the spectrum of the signal 
(of a chosen block). A DCT algorithm is involved, since it provides a 
higher resolution of a spectrum. DCT can be expressed as: 
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In addition, the input signal is weighted by the Hamming window. Since 
the pitch for a processed block is known (based on pre-calculated rough 
pitch contour), one of the spectrum peaks and its surrounding region, can 
be chosen to represent pitch fluctuation of one of the harmonics. Locating 
such a peak in the frequency-domain and calculating its representation in 
the time-domain is similar to the method proposed by d’Allessandro et al. 
(1995) and improved by Ahn et al. (1997). However, it is assumed here, 
that the region surrounding such a harmonic contains spectrum bins re-
sponsible for pitch fluctuations. This approach differs from both cited ref-
erences, where the surrounding regions were treated as noise, and therefore 
the calculated harmonic estimate must be considered differently here. 

It is best to choose the lowest harmonic, since its pitch fluctuations 
within the analyzed block are lowest. In some cases the lowest harmonic 
might contain very low energy, and might be strongly affected by the sur-
rounding noise. In such a case it is more suitable to choose the lowest har-
monic that contains a relatively large amount of signal energy. In experi-
ments, one of the three lowest harmonics, containing the greatest energy 
and its surrounding spectrum bins was chosen to represent pitch fluctua-
tions. The upper and lower frequency boundaries of the chosen spectrum 
fragment are related to pitch, and can be expressed as: 
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dPHL freqb
(3.29a)

dPHH freqb
(3.29b)

where:

bL - lower boundary of a spectrum fragment surrounding a chosen har-

monic peak, 

bH - higher boundary of a spectrum fragment surrounding a chosen har-

monic peak. 
P – average pitch of an analyzed block, 

freqH - frequency of a chosen harmonic peak, 

d – experimentally set to 0.2, a deviation of pitch.  
A time-domain representation of a chosen harmonic (H) was obtained 

by calculating inverse DCT of a chosen fragment of spectrum (other spec-
trum bins were zeroed). To decrease the Gibbs effect in the time-domain, 
the spectrum fragment was weighted by the Hann window (with the width 
equal to the spectrum fragment width). A calculated signal can be viewed 
as a sinusoidal signal with the time varying pitch and amplitude. The next 
step was to calculate a so-called analytic signal of the time representation 
of a chosen harmonic using the Hilbert transform. Absolute values of the 
analytic signal were treated as instantaneous amplitudes of the analyzed 
sinusoidal signal. Normalizing H by its instantaneous amplitude and calcu-

lating the arc sinus function resulted in ]
2

,
2

[   time vector. After un-

wrapping the time vector, the instantaneous pitch calculation can be ex-
pressed as: 
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where cP is an instantaneous pitch contour, t denotes an  unwrapped time 

vector, sf  is a sampling frequency, and N is a size of an  analyzed block. 

The procedure of estimating IPT was presented in one of the author and 
her Ph.D. student’s studies, therefore it will not be reviewed here. The ex-
amples of the  experiments and their results will be presented later on. 



3.2.4 Parametric Representation 

Parametrization can be considered as a part of feature selection, the latter 
process understood as finding a subset of features, from the original set of 
pattern features, optimally according to the defined criterion (Swiniarski 
2001). Creating a numerical representation of musical structures to be used 
in automatic classification systems requires defining a method of repre-
senting sound pitch, methods of representing time-scale and frequency 
properties, timbral characteristics, methods of representing other musical 
properties by feature vectors. The parametric approach allows one to de-
scribe the sound as a path through a multi-dimensional space of timbre. As 
presented in Chapter 2, musical sound timbre is a notion of features to be 
searched in the multidimensional space (Grey 1977). More dimensions can 
help to distinguish between particular instruments or musical instrument 
groups. One of the vital problems, still unsolved, is the relationship be-
tween sound descriptors and objectively derived parameters. Only a few 
parameters such as for example brightness have got their unquestioned in-
terpretation - this subjective descriptor is related to a  spectral centroid. 

One can name such parameters, in both subjective and corresponding 
measures, as: pitch (frequency in Hz or barks), brightness (spectral cen-
troid), tone/noise-like-quality (spectral flatness measure), attack asymme-
try (skewness) or attack duration, overshoot or inharmonicity (log ratio of 
1st harmonic to 2nd harmonic or more generally higher frequency harmon-
ics to fundamental frequency ratio), vibrato (periodic fluctuation of pitch), 
tremolo (periodic change of sound level), nasality (formant positions if ex-
ist), synchronicity (delay of higher harmonics with relation to the funda-
mental during the attack), etc. that have dual  interpretation. In addition 
there are parameters on the basis of which a distinction between musical 
instrument groups can be made. For example, skewness is a measure of 
data symmetry, or more precisely the lack of symmetry. A distribution is 
symmetric if it looks the same to the left and as to right of the center point. 
The skewness for a normal distribution is zero, and any symmetric data 
should have a skewness that aproaches zero. Negative values for the skew-
ness indicate data that are skewed to the left (the left tail is heavier than the 
right tail), and positive values for the skewness indicate data that are 
skewed to the right. One can use such a statistical measure to describe the 
distribution of harmonics, which is different for woodwind and brass in-
struments.  

The review of parameters shown below is based on the author’s experi-
ences with musical signal analysis, some of which may be found in litera-
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ture. However, many of the presented parameters are derived from speech 
analysis, or/and are already standardized within the MPEG-7 framework.

In general, there are many approaches to feature vector extraction from 
musical sounds. Problems in signal processing involve time-dependent 
data for which exact replication is almost impossible. However, much of 
this time-dependent data arises from physical phenomena which can be 
considered as unchanging in their basic nature within periods of time. 
There are also parameters that are related to the time domain, but they are 
calculated on the basis of the frequency domain. Correlation parameters 
and parameters based on cepstral analysis may be included in this group. A 
specific model of sound production underlies some of the analysis methods 
(i.e. Linear-Prediction Coding (LPC), cepstral analysis methods, etc.). It is 
therefore necessary to have some kind of knowledge about the instrument 
that produces the signal. The results of the convolution between the excita-
tion source and the resonance structure results in formants in the signal 
spectrum (De Poli et al 1991). However, most instruments have more than 
two acoustic systems coupled together, so the deconvolution of the excita-
tion and the resonance systems is not easy. The spectral domain is also im-
portant for parameter derivation. Moreover, any study on musical sounds 
should take into account not only the physical way in which sounds are 
generated, but also the subsequent effect on the listener. In the latter case, 
some features of the perceptual model of the human hearing process, such 
as subjective loudness impression or masking effects, might be taken into 
account.

Another method to be mentioned is the analysis-by-synthesis approach. 
This approach in musical acoustics was actually introduced by Risset (De 
Poli et al 1991) in order to determine the most important sound parameters. 
In this case, the resynthesis of a sound is made on the basis of calculated 
parameters. For example, a harmonic-based representation of musical in-
strument tones for additive synthesis may be used as a sound parametriza-
tion. Although this data representation is usually very large, the principal 
component analysis can be used to transform such data into a smaller set of 
orthogonal vectors with a minimal loss of information (De Poli et al 1991). 
The analysis-by-synthesis method is also a way of verifying whether a 
chosen parameter is of good quality. If it is possible to resynthesize a 
sound on the basis of parameters, and it is still perceived as close to the 
natural one, then the parameters may be considered as appropriate. 

It should be remembered that the choice of parameters and their number 
are crucial to the effectiveness of automatic classification processes. 



Time Domain Representation 

Generally, the ADSR model (see Fig. 3.16) may represent musical signal 
time domain characteristics, which is a linear approximation of the enve-
lope of a musical sound. This time-domain representation is depicted as 
consecutive sound phases – Attack, Decay, Sustain and Release – that may 
be described in terms of their energy and time relationships.  

The problem of locating the beginning of a sound is of importance, par-
ticularly in the sound automatic recognition process. Two time-domain 
measures - energy and the so-called zero-crossing rate are often used in the 
speech domain for the purpose of discriminating a speech utterance from 
background noise. For a signal u=u(t), the zero-crossing function is de-
fined as: 
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Parameter  ( 0) is an assumed threshold. 
The basic algorithms for the determination of a zero-crossing require a 

comparison of signs of pairs of successive samples in assumed time inter-
vals. The distribution of such intervals is defined by the function R(t):
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where: (t) - Dirac’s delta, j=1, 2, ... J (J - number of zero-crossings) 
and tj - time interval between the pair of (j-1) and j (in segment T), addi-
tionally: 
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It should be remembered that the starting transients are the most impor-
tant phase for the subjective recognition of musical sounds. It has been 
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shown in numerous experiments that when the attack phase is removed 
from a sound, it is no longer recognizable and, moreover, that some in-
strument sounds (trumpet and violin, for example) may not be distin-
guished from one another. In order to represent transient states, some pa-
rameters should be introduced. Krimphoff et al. introduced the rise time on 

)log( max thresholdttLTM (3.35)

where maxt  denotes time, when amplitude reaches the maximum value 

of the RMS, and thresholdt  is time corresponding to the minimum amplitude 

of signal threshold perception (see Fig. 3.16). 

Silence Attack

LTM

Decay Steady-state Release

Time [s]threshold tmax

Fig. 3.16. Linear approximation of a musical signal envelope 

The signal level versus time is defined as: 
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where T is the width of the time window, and a is a normalization coef-
ficient.

Another parameter represents the amplitude envelope (or instantaneous 
amplitude), described by the following expression: 
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where )(ˆ tu denotes Hilbert Transform of the signal u(t), calculated as 

follows:

a logarithmic scale (LTM), defined as (Krimphoff et al 1994): 
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A parameter that is directly extracted from the time signal structure is 
the proposed transient midpoint, t0 (see Fig. 3.17) (Kostek 1994, 1999). 

The value of t0 is calculated according to the formula: 
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where M1 is the first-order statistical moment: 
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In order to normalize, the signal energy M0 is calculated according to the 
following equation: 
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where h is an energy increment versus time. 

The envelope rising time may be found by the calculation of the second 
central moment: 
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Fig. 3.17. Time envelope of the simplified transient model: a - transient starting 
point, b - transient ending point, M0 - energy of the steady-state, t0 - transient mid-
point 

There are two more phases that should be taken into account, namely 
the phase of energy decreasing from the local maximum and the subse-
quent phase of energy increasing from the local minimum to the energy of 
the steady-state. 

Among others, ratio of time release (trelease) to sound duration (t) may be 
determined; however this parameter is susceptible to reverberation condi-
tions.
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Also, velocity of sound release; this parameter is less susceptible to re-
verberation conditions than the parameter shown above: 

dt

dx
rl release

(3.45)

 The essential factor that differentiates the ideal signal model from real 
sound recordings is the amplitude variation of the steady-state phase. As 
the amplitude of the musical signal varies with time, the signal energy pro-
vides a convenient representation that reflects these amplitude variations. 
For example, a difference between maximum (aMAX) and minimum (aMIN)
amplitude may be determined: 

MINMAX aaD (3.46)

Variances representing these fluctuations should be also considered, 
thus these parameters may be included in the feature vector.  

Spectral Parameters 

The feature vectors containing time domain parameters should be com-
pleted by adding the spectral properties. On the basis of the sound spec-



trum, many additional parameters may be determined. Moreover, as is seen 
from the above spectral estimation analysis, such methods may be used in 
the parametrization process, however, due to the high computational com-
plexity, they make difficult an automatic analysis of musical sounds which 
is a real disadvantage while dealing with a musical sound database. It 
should be pointed out that the whole process starting from sound editing, 
through parametrization, and up to the classification process should be 
automatized. Additionally, parametric methods may cause uncontrolled 
loss of information. Therefore, in further analysis only parameters derived 
from the FFT-based analysis will discussed.  

The spectrum components midpoint value fm may be calculated using 
the following formula: 
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where: rf - parameter characterizing the resolution of the FFT analysis, 
Ei - energy of ith component for the frequency equal to rf, fmax - upper limit 
of the analyzed frequency band, I - highest spectral component ( I  fmax /
rf) (Kostek 1999). 

Another parameter that is often used in the speech processing domain
 is the

deusiewicz 1988): 

m
k

k

fkGmM ][)()(
(3.48)

where: f k  - is a center frequency of the kth frame used in the spectral 

analysis. Values of f k  may be calculated on the basis of Eq. (3.49), in 

which the resolution ( f ) of spectral analysis is used: 

2
)1(

f
fkfk

(3.49)

The parameter defined by Eq. (3.48) may be interpreted physically. For 
example, on the basis of the 0-order spectral moment, the energy concen-
tration in the low frequencies may be exposed. Also, this parameter is of-
ten used as a normalization coefficient for the higher order spectral mo-
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mth  order   spectral   moment.  It  may   be   defined  as  follows 
 (Ta
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ments. On the other hand, the 1st order spectral moment may be inter-
preted as spectral centroid coefficients. )(kG  in Eq. (3.48) are dependent 

on the window function that was applied to the analysis. In the case where 
the spectral domain is represented by components of amplitudes kA  and 

frequencies which are nth multiplies of the fundamental, then the above 
shown relationship (3.49) should be modified according to Eq. (3.50). 
Therefore, the mth moment may be calculated as follows: 

n

k

m
k kAmM

1

)()(
(3.50)

and the spectral centroid (Brightness) may be defined as follows: 
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(3.51)

where: An - amplitude of the nth harmonic, N - total number of harmon-
ics.

Other spectral moments are also valuable, for example 3rd and 4th or-
der.

There are other parameters which describe the shape of the spectrum in 
the steady-state phase, such as the even (hev) and odd (hodd) harmonic con-
tent in the signal spectrum: 
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(3.52)

M = entier(N/2); 
and contents of odd harmonics in the spectrum, excluding the funda-

mental:
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(3.53)

L = entier(N/2 + 1). 



where: An, N - as before. 

Another parameter derived from the frequency domain which is often 
used for the purpose of estimation of auditory masking effects seems of 
importance (Zwicker and Zwicker 1991), namely the Spectral Flatness 

Measure ( SFM ). Since audio signal varies in successive frames of the 
analysis, the SFM parameter may thus be used as a measure of the tonal 
(clear maxima) or noiselike (flat spectrum) character of the signal, ex-
pressed as the ratio of the geometric to arithmetic mean of the power den-
sity function, defined as follows (Johnston 1988; Zwicker and Zwicker 
1991):

i

eP
N

eP

SFM
N

k

N

k

N

N

k

N

k

2/

1

2
j

2
/1

2/

1

2
j

10

)(
2/

1

)(

log10

(3.54)

where: )(
2

j
N

k

eP   is the spectral power density function calculated on 

the basis of the N-point Fast Fourier Transform Algorithm. 
On the basis of the SFM value, an additional parameter is formulated, 

namely a coefficient of tonality a that is expressed as: 

)1,min
maxSFM

SFM
(a

(3.55)

where: a = 1 for SFM=SFMmax=-60dB (sine wave), and a = 0 for 
SFM=0dB (white-noise signal). 

Formants are parameters widely used in speech analysis which indicate 
local maxima of the spectrum. It is obvious that their physical interpreta-
tion in musical acoustics corresponds to resonances of the instrument 
body. Precise tracking of the formant frequency is not easy. However, us-
ing amplitudes of discrete spectrum 4321 ,,, AAAA  and corresponding fre-

quencies 4321 ,,, ffff  it is possible to calculate the approximate formant 

frequency as F  or 
~

F  (Tadeusiewicz 1988): 
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321

332211

AAA

fAfAfA
F

(3.56)

432

443322
~

AAA

fAfAfA
F

(3.57)

For a simplified formant tracking algorithm, the following assumptions 
are to be made: the formant is located among the neighboring components: 
(k-p), (k+p), if the following conditions are fulfilled (Kostek 1995a): 

1. values of component amplitudes are bigger than the assumed 
threshold value thresholdA :

thresholdApkAkApkAkA ))()()()(( (3.58)

where: p defines the demanded width of the formant.  

2. df , defined as the difference between the spectral centroid and geo-
metrical center, taken with the minus sign, is bigger than the assumed 
threshold thresholddf .

The presented algorithm was applied by the author in order to extract 
formant frequencies in musical sounds (Kostek 1995a). The threshold 
value of Athreshold  may be expressed in terms of the amplitude mean value 
or of the RMS value, as defined below: 

n

k

kARMS
1

2
(3.59)

It should be mentioned that formants, i.e. enhancements of harmonics in 
certain fixed frequency intervals, remain invariable within the chromatic 
scale of instrument, whereas spectra of individual tones may vary consid-
erably from one note to another. Thus this feature is specific for a given in-
strument. 

Another criterion (IRR) introduced by Krimphoff and al. corresponds to 
the standard deviation of time-averaged harmonic amplitudes from a spec-
tral envelope, and is called ‘spectral flux’ or ‘spectral fine structure’ 

1

2

11

3
log20

n

k

kkk
k

AAA
AIRR

(3.60)

(Krimphoff et al 1994): 



In the literature, an approach to the estimation of the sound spectral do-
main based on polynomials may be also found. This approach seems to be 
especially justified in the case of a rich sound spectrum. The applied ap-
proximation is based on minimizing the mean-square error in the range of 
the analyzed spectrum by using the following proposed relation 

2
2

1
10 ))(log)(log20( iWiAE l
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(3.61)

while:
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0

2

(3.62)

where:
E  - mean-square error, 
i - number of the harmonic, i=1, 2,...N,
N - number of the highest harmonic, 

)(iA  - value of the amplitude of ith component, 

)(log2 iWl   -   value of the polynomial for ith component, 

ja  - jth term of the polynomial, 

j - number of the consecutive term of the polynomial, 
l - order of the polynomial. 

Computations which minimize the error are performed by consecutive 
substitution of the order of the polynomial (l=1,2 ... etc.), successively ob-
taining coefficients a1,a2,a3, ..... Based on formula (3.61), an approxima-
tion is performed in the spectrum domain, presented in the log/log scale, 
which causes the consecutively computed coefficients aj to have units re-
spectively dB/octave, dB/octave2, dB/octave3, etc. These coefficients have 
a clear physical interpretation, e.g. the first defines the decay of higher 
harmonics in the spectrum, whereas the second indicates a gain or a loss of 
the middle part of the spectrum in relation to its lower or higher parts. By 
raising the approximation order, more coefficients are obtained which de-
scribe more precisely the spectrum of the sound. The minimum number of 
polynomial coefficients approximating the envelope spectrum may be de-
termined in listening tests. 

An illustration of such an approach is shown in Fig. 3.18. It was proved 
based both on the mean-square error optimization and listening tests that 
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the 5th order of the approximating polynomial may be considered as suffi-
cient in the cases of both shown instruments. 

Fig. 3.18. Sound spectra approximated by the 5th order polynomial 

Wavelet-Based Parameters 

In order to define parameters that may be derived from the wavelet-based 
transform some extensive experiments were performed at the Multimedia 
Systems Department, GUT (Kostek and Czyzewski 2000; Kostek and 
Czyzewski 2001a; Kostek and Czyzewski 2001b). Several filters such as 
proposed by Daubechies, Coifman, Haar, Meyer, Shannon, etc. were used 
in analyses and their order was varied from 2 up to 8. It was found that 
Daubechies filters are sufficiently effective and the computational load 
was the lowest in this case (Kostek and Czyzewski 2001b).  

In order to visualize differences in analyses obtained using FFT and 
wavelet transform, two exemplary analyses will be discussed. In Fig. 3.19 
the  FFT sonogram and  time-frequency analysis (Fig. 3.20) are presented 
for a violin sound (A4, non_legato, forte). In the case of Fig. 3.20 a rec-
tangle in the so-called phase space is associated with each wavelet basis 
function (MATHEMATICA 1996). The larger the absolute value of the 
corresponding wavelet, the darker a rectangle. In order to analyze the start-
ing transient of the exemplary violin sound the number of samples was as-
signed to 2048 (46.44 ms), because the steady-state begins approximately 
at 58 ms. Since the analyzing windows in the implemented wavelet algo-
rithms in the MATHEMATICA system are octave-based 
(MATHEMATICA 1996), thus this was an optimum choice of the window 
size.  In both plots shown in Fig. 3.19 and in Fig. 3.20 the increase of 
higher frequency harmonics energy with time is visible.  



frequency
    [Hz]

Fig. 3.19. FFT sonogram of violin sound (A4) 

Looking at the wavelet analyses one should observe which specific sub-
band is the most significant energetically. It should be remembered that 
wavelet subbands could contain more than only one sound harmonics. This 
would allow associating the amount of energy that is related to low, mid 
and high frequencies. Secondly, it is interesting when the summed up con-
secutive wavelet coefficients within selected subbands would attain a cer-
tain energy threshold. The algorithm allowing for finding this time in-
stance will return the number of the sample (or time in ms) corresponding 
to the normalized energy threshold (Kostek and Czyzewski 2000, 2001b). 
This parameter may differentiate the articulation features between musical 
sounds.

The cumulative energy Ec(n) is defined as squared modulus of the corre-
sponding coefficient ci that represents the original data (MATHEMATICA 
1996):

2

1

)(
n

i

ic cnE , 1ii cc
(3.63)
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Taking into account this parameter it is possible to perform the inverse 
wavelet transform by retaining only significant coefficients. It can be seen 
that in the case of a trumpet sound (see Fig. 3.21a), fewer coefficients 
should be retained for performing the inverse wavelet transform than in the 
case of a violin sound (Fig. 3.21b). It should be noticed that approximately 
70% of energy are concentrated in the first 40 coefficients. Among others, 
such a parameter can be used as one that provides discrimination between 
instruments.

steady-statetime [ms]

fr
eq

ue
nc

y 
[H

z]

11025

5512.5

2756.3

1378.1

689.1
344.5
172.3
 86.1

Fig. 3.20. Time-frequency analysis of A4 violin sound (the vertical scale corre-
sponds to the frequency partition in the case of sampling frequency equal to 
44.100 Hz, the horizontal scale is expressed in time [ms] that corresponds to the 
number of samples taken to analysis) 

a.     b. 

Fig. 3.21. Wavelet analyses of the trumpet (a) and violin (b) sound (non_legato,
forte) – cumulative energy versus sample packet number 



Several other parameters can be determined on the basis of the experi-
ments performed. They were calculated for the Daubechies filter of order 2 
(number of samples in the analysis frame was equal to 2048) as: 

- En – partial energy parameters,
where:

total

i
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E
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(3.64)
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where:
ck – consecutive wavelet coefficients  
wi – weight applied in order to normalize Ei (resulted from different num-
ber of coefficients in wavelet spectrum bands) 
Ei =E1…, E10 – energy computed for the wavelet spectrum bands normal-
ized to the overall energy Etotal of the parameterized frame corresponding 
to the starting transient, where: 

i=1 – energy in the frequency band 21.53-43.066Hz,  
i=2 - energy in the frequency band 43.066-86.13Hz,  
i=3 -  energy in the frequency band 86.1-172.26Hz,  
i=4 -  energy in the frequency band 172.26-344.53Hz,  
i=5 - energy in the frequency band 344.53-689.06Hz, 
i=6 - energy in the frequency band 689.06-1378.125Hz, 
 i=7 - energy in the frequency band 1378.125-2756.26Hz, 
 i=8 - energy in the frequency band 2756.26-5512.5kHz, 
i=9 – energy in the frequency band 5512.5-11025 Hz, 
 i=10 – energy in the frequency band 11025-22050Hz, 
– number of the sample that corresponds to the normalized energy 

threshold Ethreshold calculated for each kth subband tthreshold(k) = tth1...... tth10

(Kostek and Czyzewski 2000), where: 

totalthreshold EE , 0< <1 (3.66)

and – coefficient assigned arbitrarily, 
– rising time of starting transient tstart     

In Fig. 3.22, sample results of the wavelet-based feature extraction  (En)
are shown for some chosen instruments. In all cases a frame consisting of 
2048 sound samples was analyzed. In Fig. 3.22 energy values are pre-
sented for ten wavelet spectrum sub-bands. The whole instrument range 

CLASSIFICATION78      3 INTELLIGENT MUSICAL INSTRUMENT SOUND 



3.2 MUSICAL SIGNAL PROCESSING      79 

can be seen within each sub-band. Left side lines within each sub-band 
correspond to the lowest sounds, whereas the right side lines to the highest 
ones. It can be observed that energy distribution pattern within the wavelet 
spectrum sub-bands differentiates between trumpet and a violin. Although 
this parameter is sensitive both to type of instrument and sound pitch, it is 
also, in a way, characteristic for wind and string instruments.  

The rising time of the starting transient was defined as a fragment be-
tween the silence and the moment in which the signal would attain 75% of 
its maximum energy.  

Additionally, the end-point of the transient -  tend can be determined ac-
cording to the following condition: 

][1.0|][][| maxmaxmax
2,...,2,...,1,..., 000000

isisis
TiiiTiTiiTiii

(3.67)

where: T – observation period expressed in samples; 

– cumulative energy -  Ec is conditionally determined, when the 
maximum relative error of the energy change between the original 
signal and the reconstructed one on the basis of the retained wavelet 
coefficients is less than 20%. 

a.

(Legend to Fig. 3.22; see next page) 



b.

Fig. 3.22. Values of the En parameter for selected instruments: a – trumpet, b – 
violin 

In the experiments several time-related parameters were also explored. 
Two of them, the most significant from the statistical point of view, were 
included in the feature vector. If there are certain parameters that allow for 
easier distinguishing between particular instrument classes and others that 
will do the same for other classes, it is thus possible to design a system 
consisting of a few preprocessing blocks that will first separate for exam-
ple groups of parameters. Thus two additional relations are defined in the 
wavelet discrete-time domain. They are presented below:  
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(3.68)

where e is time-related parameter allowing for characterization of the 
wavelet pattern, calculated for each wavelet spectrum subband, cn are 
wavelet coefficients, no is the first wavelet coefficient that exceeds the as-
signed threshold, and s refers to sound pitch. 

|][|var( '
ncff (3.69)

where f is variance of the first derivative of the absolute value of the 
wavelet coefficient sequence. 
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The parameter e from expression (3.68) refers to the number of coeffi-
cients that have exceeded the given threshold. This threshold helps to dif-

let spectrum. The value of such a threshold was assigned experimentally to 
0.2. It then returns the associated sample number. It takes approximately 
180 samples for a trumpet sound, and 220 samples for a clarinet to attain 
this threshold. The meaning of the parameter f is the variance estimation of 
the derivative of the sequence of coefficients. 

Other Parameters 

It is convenient to correlate time-related properties with those of the fre-
quency-domain (Pollard and Jansson 1982). In the Tristimulus method, 
loudness values measured at 5ms intervals are converted into three coordi-
nates, based on the loudness of (1) the fundamental (N1), (2) the group 
containing partials from 2 to 4 (N2), and (3) the group containing partials 
from 5 to N (N3), where N is the highest significant partial. The values of 
(N2) and (N3), are calculated according to the formula: 

iNNN 15.085.0 max32 (3.70)

where: Nmax - component having the maximum loudness within the 
given group of harmonics.        

Then, parameters x, y, z are derived from the following formulae: 
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where:

3

1i

iNN
(3.72)

This procedure allows a simple graph to be drawn that shows the time-
dependent behavior of the starting transients with relation to the steady-
state.

Furthermore, harmonic energy or amplitude values may be taken into 
account instead of loudness for classification purposes (Kostek 1995a, 
1995b; Kostek and Wieczorkowska 1996). Therefore, three parameters are 
extracted for the above defined spectrum subbands, namely the first - T1,
second - T2, and third - T3, modified Tristimulus parameters according to 
the formula: 

ferentiate between 'tone-like' and 'noise-like' characteristics of the wave-
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where: An, N - defined as before. 

- the second modified Tristimulus parameter: 
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- the third modified Tristimulus parameter: 
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(3.75)

Additionally, the following condition is to be imposed to the above de-
fined parameters: 

1321 TTT (3.76)

As most of the presented parameters do not have stable values within 
the chromatic scale of an instrument, the applicability of other criteria has 
been verified, such as the mel-cepstrum coefficients (MCC) defined by the 
following expression (Kostek 1995b): 
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(3.77)

where: ][kWc  - kth cepstrum coefficient, Ei  - energy of ith harmonic ex-

pressed in [dB]. 
Such parameters as mel-cepstrum were used in many studies on musical 

sounds classification, examples of which may be (Brown 1999; Cosi et al 
1994b). 

Also, parameters that are related to the frequency of the nth harmonic – 
normalized frequency deviation and inharmonicity, were examined in lit-
erature (Beauchamp 1993b). The first factor is defined in the following 
formula: 

1
11 nf

tf

nf

tf nn
(3.78)

where: fn - frequency of nth harmonic, f1 - fundamental frequency; 
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The inharmonicity factor describing the degree to which a sound is not 
perfectly harmonic is given below: 

1nf
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(3.79)

where:

5

1

5

1
1

11

)(/)/)((1
k

knk
cc tAnfftA
f

tf

f

tf (3.80)

As  seen from the above equation, an additional parameter, called the 
composite weighted-average frequency deviation, is defined. This is be-
cause it often happens in practice that the fundamental is much weaker 
than other harmonics. Therefore, the inharmonicity factor is determined for 
the five lowest spectrum partials as a frequency centroid (Beauchamp 
1993b).   

A convenient way to display certain properties of a signal is by using its 
statistical representation (Rabiner and Schafer 1978). For this purpose, 
autocorrelation (rAn,rFn) and cross-correlation functions (rAmn,rFmn) are often 
defined (Ando and Yamaguchi 1993): 
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where: k=0,1,...,M/2,
An

,
Fn

 are standard deviations for the signal am-

plitude and frequency, respectively, and k is the time lag, which has a 
maximum value of M/2,

and:
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where:
Am, An

 and 
Fm, Fn

 are standard deviations between the nth

and mth amplitudes and frequencies of signal harmonics, respectively 
(Ando and Yamaguchi 1993). 

These functions provide information on the relationships between signal 
amplitudes and frequencies and are very useful in determining the signal 
periodicity. 

There are more parameters that may be derived using various ap-
proaches to the musical signal analysis, such as fractal dimension (based 
on fractal  interpolation  of the  spectrum  envelope)  (Monro  1995; 
Schroeder 1989). Fractal interpolation provides a new technique for gener-
ating sounds, thus defining it as a method of synthesis (Monro 1995). It 
produces functions in consecutive iterations that may be described on the 
basis of given points and a number reflecting the displacement of each line 
segment of the interpolating function. Suppose that the starting points in 
this method are (xi, yi) for i=0, 1,...,N and the displacements are di for 
i=1,...,N. In the case where the points (x1,...xi,...xN) are equally spaced and 
the original points and displacements do not lie in a straight line, the frac-
tal dimension is given by the formula (Monro 1995): 

)log(

log

1 1

N

d

D

N

i

i

(3.85)

Apart from parameters presented, yet another parameter extracted from 
a single frame of the steady state of the audio signal may be determined.  

Pitch (P) – expresses pitch of the sound according to MIDI standard: 

440
log1269 0

2

f
P

(3.86)

where f0 is the fundamental frequency of audio signal. Sound pitch is 
denoted as KeyNum. 

3.2.5 MPEG-7 Standard-Based Parameters 

MPEG-7 Objectives 

According to MPEG-7 Web home page, the MPEG-7 standard is
 understood as "Multimedia Content Description Interface",
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(http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm). A 
huge amount of digitized audiovisual information is available in databases 
and archives, and in the Internet. The value of information depends on how 
well the data can be managed in terms of automatic retrieval, access, trans-
lation, conversion, filtration, etc.  

Audiovisual data content that has MPEG-7 descriptions may include 
still pictures, graphics, 3D models, audio and speech signals, videos, and 
the information how these elements are combined in a multimedia presen-
tation, so-called scenarios. MPEG-7 descriptions do not depend on the 
ways  the described content is coded or stored. It is possible to create an 
MPEG-7 description of an analogue movie or of a picture that is printed on 
paper, in the same way as the one of digitized content 
(http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm). 

The standard allows at least two types of levels of discrimination in its 
descriptions. The level of abstraction is related to the way the features can 
be extracted: many low-level features can be extracted fully automatically, 
whereas high level features need much more human interaction. Apart 
from a description of what is depicted in content, other types of informa-
tion about the multimedia data, such as: form, conditions for accessing the 
material, classification, links to other relevant material, and context, are 
inquired.

The main elements of the MPEG-7 standard are 
(http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm):  

   Description Tools: Descriptors (D), that define the syntax and the 
semantics of each feature (metadata element) and Description 
Schemes (DS), that specify the structure and semantics of the rela-
tionships between their components, which may be both Descriptors 
and Description Schemes  

   Description Definition Language (DDL) used to define the syntax of 
the MPEG-7 Description Tools (Hunter 2001), to allow the creation 
of new Description Schemes and Descriptors, and to allow the ex-
tension and the modification of existing Description Schemes.  

What is of the utmost importance, the MPEG-7 standard addresses 
many different applications in many different environments, which means 
that both tools and descriptors should be flexible and easily extensible. In 
addition, some interoperability with other metadata standards is already 
envisioned (http://www.w3.org/Metadata/). 



MPEG-7 Standard-Based Parameters 

The MPEG-7 standard refers to metadata information contained in the 
Internet archives. This notion is very often applied to the value-added in-
formation created to describe and track objects, allowing access to them. 
(http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm). 

In this context descriptors that are well-defined provide better computing, 
improved user interface and data management. In the context of the 
MPEG-7 standard all information of higher level is defined as textual in-
formation on audio,  such as titles of songs, signers’ names, composers’ 
names, the duration of music excerpt, etc. One should keep in mind that 
music can be described in a number of ways and that musical sounds in-
clude polyphonic sounds and human voice sounds (speech and singing). A 
musical signal, music, scores (graphical form), MIDI code or a verbal de-
scription, each comes as a different representation. Provided within the 
MPEG-7 standard, are also low-level descriptors for musical data, organ-
ized in groups of parameters, such as Timbral Temporal, Basic Spectral, 
Basic, Timbral Spectral, Spectral Basis, Signal Parameters (see Fig. 3.23) 
(http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm). A so-
called Audio Framework that contains all these parameter groups includes 
17 vector and scalar quantities. They represent: log(attack time), temporal 
centroid, audio spectrum envelope, audio spectrum centroid, audio spec-
trum spread, audio spectrum flatness, audio waveform and power, har-
monic spectral centroid, harmonic spectral deviation, harmonic spectral 
spread, harmonic spectral variation, a spectral centroid, audio spectrum ba-
sis, audio spectrum projection, audio harmonicity and audio fundamental       
frequency    (http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7. 
htm). These low-level descriptors provide information for higher-level ap-
plications, such as: sound recognition, musical instrument timbre similar-
ity, melody and melodic contour recognition, robust audio matching and 
spoken content recognition. It can easily be observed that these low-level 
descriptors are more data- than human-oriented. This is because the idea 
behind this standard is to have data defined and linked in such a way as to 
be able to use it for more effective automatic discovery, integration, and 
re-use in various applications. The most ambitious task is, however, to 
provide seamless meaning to low- and high-level descriptors. In such a 
way data can be processed and shared by both systems and people. 
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Audio Framework

Basic Spectral
AudioSpectrumEnvelope D
AudioSpectrumCentroid D
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TemporalCentroid D

Silence D

Timbral Spectral
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HarmonicSpectralVariation D
SpectralCentroid D

Spectral Basis
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AudioHarmonicity D
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Fig. 3.23. MPEG-7 Audio Framework parameters  

The majority of the analyzed sound descriptors are defined nowadays 
within the MPEG-7 standard framework 
(http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm). They 
may be divided into two groups: Audio Spectrum Descriptors and Timbre 
Descriptors. Descriptors of the first group are derived directly from the au-
dio spectrum, whilst the descriptors of the second group are mostly based 
on the positions and the amplitudes of harmonic peaks. 

Below, the practical implementation of the MPEG-7 standard parame-
ters is shown. The extraction of all MPEG-7-based spectral descriptors in-
volves a sliding window FFT analysis of the audio signal. The Hamming 
analysis window of the length of 30 ms has been chosen. The length be-
tween two adjacent windows is 10 ms, which means that 66% of the cur-
rent window overlaps the previous window. Subsequently, FFT is per-
formed in each window. A spectral descriptor is calculated separately in 
every spectral frame. Finally, the spectral descriptor is described by a two-
dimension vector containing mean and deviation values of the descriptor in 
every spectral frame. 

Definitions of the MPEG-7-based descriptors are as follows 
(http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm): 

Audio Spectrum Descriptors: 

Audio Spectrum Envelope (ASE) – describes the short-term power 
spectrum of the waveform as a time series of spectra with logarithmic 
frequency axis. According to the MPEG-7 recommendation, the spec-
trum consists of one coefficient representing power between 0 Hz and 



62.5 Hz, a series of coefficients representing power in ¼-octave reso-
lution sized bands between 62.5 Hz and 16 kHz, and a coefficient rep-
resenting the power beyond 16 kHz. This results in 34 coefficients for 
each spectral frame. The mean values and variances of each coefficient 
over time are denoted as ASE1…ASE34 and ASEv1…ASEv34, respec-
tively. In Fig. 3.24 a presentation of spectrum subbands is shown. In 
addition, this function returns the conversion of linear to log bands 
(see Fig. 3.25 for conversion from linear to logarithmic scale). 

Fig. 3.24. Structure of the AudioSpectrumEnvelope Descriptor - presentation of 
spectrum subbands  

Fig. 3.25. Conversion from linear to log scale  

Audio Spectrum Centroid (ASC) – describes the center of gravity of 
the log-frequency power spectrum. Power spectrum coefficients below 
62.5 Hz are replaced by a single coefficient, with the power equal to 
their sum and a nominal frequency of 31.25 Hz. Frequencies of all co-
efficients are scaled to an octave scale anchored at 1 kHz. The spec-
trum centroid is calculated as follows: 
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where Px(n) is the power associated with frequency f(n). The mean value 
and the variance of the spectrum centroid over time are denoted as ASC

and ASCv, respectively. 
Audio Spectrum Spread (ASS) – describes the spread of the log-
frequency power spectrum (the second moment of the log-frequency 
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power spectrum). To be coherent with other descriptors, in particular 
with ASE, the spectrum spread is defined as the RMS deviation of the 
log-frequency power spectrum with respect to its center of gravity: 
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where C is the spectrum centroid. The mean value and the variance of S
over time are denoted as ASS and ASSv, respectively. 

Audio Spectrum Flatness (SFM) – describes the properties of the 
short-term power spectrum of an audio signal. This descriptor ex-
presses deviation of the signal power spectrum from a flat spectral 
shape for a given band. The spectral flatness analysis is calculated for 
a number of frequency bands between 250 Hz and 16 kHz. A loga-
rithmic frequency resolution of ¼ octave is used for all bands. This 
gives a total number of 24 bands in every spectral frame. For each fre-
quency band, the spectrum flatness measure is defined as the ratio of 
the geometric and the arithmetic mean of the power spectrum coeffi-
cients c(i) within the band b (i.e. from coefficient index il to coeffi-
cient index ih, inclusive): 
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The mean values and variances of each SFMb over time are denoted as 
SFM1…SFM24 and SFMv1…SFMv24, respectively. 

Timbre Descriptors 

Log-Attack-Time (LAT) – is defined as the logarithm (decimal basis) 
of time duration between the time the signal starts (T0) and the time it 
reaches its sustained part (T1):

0110log TTLAT (3.90)

Temporal Centroid (TC) – is defined as the time averaged over the en-
ergy envelope SE:
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where sr is the sampling rate.  
Spectral Centroid (SC) – is computed as the power weighted aver-
age of the frequency of bins in the power spectrum (Instantaneous

Spectral Centroid - ISC):
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where S(k) is the kth power spectrum coefficient and f(k) stands for the 
frequency of the kth power spectrum coefficient. The mean value and the 
variance of a spectrum centroid over time are denoted as SC and SCv, re-
spectively. 

Harmonic Spectral Centroid (HSC) – is the average of the Instantane-

ous Harmonic Spectral Centroid (IHSC) values computed in each 
frame. They are defined as the amplitude (linear scale) weighted mean 
of the harmonic peaks of the spectrum: 
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where nb_h is the number of harmonics taken into account, A(h) is the 
amplitude of the harmonic peak number h and f(h) is the frequency of the 
harmonic peak number h. The mean value and the variance of a harmonic 
spectrum centroid over time are denoted as HSC and HSCv, respectively. 

Harmonic Spectral Deviation (HSD) – is the average of the Instanta-

neous Harmonic Spectral Deviation (IHSD) values computed in each 
frame. They are defined as the spectral deviation of log-amplitude 
components from the global spectral envelope: 
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where SE(h) is the local spectrum envelope (mean value of the three ad-
jacent harmonic peaks) around the harmonic peak number h. To evaluate 
the ends of the envelope (for h=1 and h=nb_h) the mean amplitude of two 
adjacent harmonic peaks is used. The mean value and the variance of har-
monic spectrum deviation over time are denoted as HSD and HSDv, re-
spectively. 

Harmonic Spectral Spread (HSS) – is computed as the amplitude 
weighted standard deviation of the harmonic peaks of the spectrum, 
normalized by the harmonic spectral centroid: 
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where IHSS is the Instantaneous Harmonic Spectral Spread, IHSC is the 
harmonic spectrum centroid. The mean value and variance of the harmonic 
spectrum spread over time are denoted as HSS and HSSv, respectively. 

Harmonic Spectral Variation (HSV) – is defined as the normalized cor-
relation between the amplitude of the harmonic peaks of two adjacent 
frames: 
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where IHSV is the Instantaneous Harmonic Spectral Variation, A(h) is 
the amplitude of the harmonic peak number h at the current frame and  A - )

 is the amplitude of the harmonic peak number h at the preceding 
frame. The mean value and the variance of harmonic spectrum variation 
over time are denoted as HSV and HSVv, respectively. 

1 (h



Peeters et al. (2000) used parameters from Timbral Spectral and Timbral 
Temporal groups for experiments on perceptual features of harmonic and 
percussive sounds. They create five-dimensional space (see Fig. 3.26) 
while describing instruments characterized by harmonic spectrum (Har-

monic Timbre Space), and three-dimensional space (see Fig. 3.27) for per-
cussive instruments (Percussive Timbre Space).

signal

energy

STFT

f0

harmonics

analysis window

LAT

HSC

HSS

HSV

HSD

Fig. 3.26. Parameter extraction of instruments with harmonic spectrum 
(http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm) 

signal

energy

power spectrum

LAT

TC

SC

Fig. 3.27. Parameter extraction of percussive instruments 
(http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm) 

Summarizing the information on musical instruments presented in this 
chapter, it may be said that there is not yet consensus on the choice of pa-
rameters for musical instrument sound description, even if some parame-
ters are already standardized within the MPEG-7 framework. Conse-
quently, sound feature extraction is in principle a multi-dimensional 
process that should be optimized based on some experimental procedures 
customized for each individual application field.  

3.3 Artificial Neural Networks 

Neural networks have proved to be important tools in decision making 
over a broad spectrum of applications, including such tasks as classifica-
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tion and cluster analysis of data. Systems based on these algorithms have 
become especially significant in the processes of speech and image recog-
nition, or optical character recognition. Applications of musical sound 
classification have also appeared (Christensen et al 1992; Czyzewski 1997;  
Kostek 1994; Kostek and Krolikowski 1997; Morando 1996; Mourjopoulos

 and Tsoukalas,  1991). The latter usage has become one of the most in-
teresting areas within the broader field of musical acoustics.  

In the course of rapid development of artificial neural networks numer-
ous neuron models were proposed (Cimikowski and Shope 1996;  Knecht 
et al 1995). The most common neural network model is the multilayer per-
ceptron (MLP). Neural structures used nowadays are usually based on the 
enhanced McCulloch-Pitts model (Zurada 1992; Zurada and Malinowski 
1994) which involves modifying the neuron activation function (NAF). Al-
though continuous sigmoidal functions are still most widely used as NAFs, 
radial basis functions are now being encountered with increasing regular-
ity; they are used in radial basis function (RBF) and in hyper-radial basis 
function (HRBF) networks. Both types of artificial neural networks are ap-
plied to problems of supervised learning (e.g. regression, classification and 
time series prediction). In recent years, a variety of artificial neural net-
work classifiers were developed. Much attention was paid both to network 
architectures and learning algorithms. Today a large collection of neural 
algorithms is available, which can be used in modeling dependencies, 
processes and functions. Besides NN basic topology such as perceptron, 
Hopfield networks, bidirectional associative memory (BAM) networks or 
their transformations are also at our disposal.  

Individual neuron units are interconnected, forming a neural network. 
Generally, it can have an almost arbitrary structure, however, certain limi-
tations remain valid, as effective algorithms for teaching such irregular 
networks have not yet been engineered. For this reason, neural structures 
are regular, and depending on the structure, they can be classified as feed-
forward networks, recurrent networks or cellular networks. Moreover, 
regular networks can be combined into larger structures called modular 
networks, depending on the mapping which they perform. An original ar-
chitecture was proposed by Fukushima along with an appropriate training 
method (Fukushima 1975, 1988; Fukushima and Wake 1991). The cogni-

tron structure and subsequently the neocognitron structure are modeled af-
ter the human visual nervous system; they are designed for robust visual 
pattern recognition. Neocognitron is a self-organized, competitive learn-
ing, hierarchical multilayer network. It is useful for pattern classification 
without supervised learning, especially when there are possible shifts in 
the position or the distortion of a  shape.  
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A difficult and yet very important problem of neural network design is 
the selection of network topology, i.e. the number of neurons in the indi-
vidual layers of networks. The number of neurons must not be too small, 
since the network would be unable to map all possible states of solution 
cases. On the other hand, the network cannot be too large, as this would 
cause the loss of its capability to generalize, i.e. the ablility to generalize 
about unknown cases from the acquired knowledge to the benefit of mem-
ory learning. Usually, after a long trial-and-error process, an oversized to-
pology is chosen which is prone to such drawbacks as a high demand on 
computational resources and a high generalization error. A way to solve 
this is to use so-called pruning methods (Karnin 1990). Two methods for 
optimizing network size may be used: 

minimizing the cost function (weights of the smallest influence on a 
cost function can be removed); 
penalty function is imposed on ineffective (unnecessary) neural 
structures to find the simplest solution. 

In both cases the algorithm causes either the weight or the whole neuron 
to be ignored. The first solution seems more precise, however it is very 
time-consuming and therefore highly inefficient as far as network training 
time is concerned. The method utilizing a penalty function is simple and 
still relatively effective. Examples of pruning algorithms will be shown 
further on.

Artificial Neural Networks have the ability of learning and adapting to 
new situations by recognizing patterns in previous data. A neural network 
processes an input object by using the knowledge acquired during the 
training phase. The methods of training are often divided into two basic 
classes: training with a teacher (with supervision) and without a teacher 
(without supervision).  

In the case of supervised learning, pattern-class information is used. It 
requires a desired output in order to learn. The goal of this type of network 
is to create a model that correctly maps the input to the output using his-
torical data, so that the model can then be used to produce the proper out-
put when it is unknown. An unknown probability density function p(x) de-
scribes the continuous distribution of patterns x in the pattern space Rn.
During the process of learning, an accurate estimation of p(x) is searched 
for. Supervised learning algorithms depend on the class membership of 
each training sample x. Class-membership information allows the detection 
of pattern misclassifications and the computation of an error signal. The 
error information then reinforces the learning process. Unsupervised learn-
ing systems use unlabelled pattern samples. They adaptively gather pat-
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terns into clusters or decision classes Dj. In the case of neural networks, 
supervised learning is understood as a process in which the gradient de-
scent in the space of all possible synaptic-values is estimated. In the sub-
ject bibliography, two main unsupervised learning methods are covered: 
the Hebb method and the competition method. Unsupervised learning is a 
data mining technique used in clustering, data compression and principal 
component analysis (PCA). 

Artificial Neural Networks, in general, may be classified as feedforward 
and feedback types depending on the interconnection type of neurons. At 
present, multilayer networks of the feedforward type, which are trained us-
ing the error backpropagation method (EBP), are applied to the majority of 
applications employing neural computing (Bershad et al 1993a, 1993b; 
Magoulas et al 1997; Werbos 1988).  

Multilayered feedforward networks have, however, some essential 
drawbacks. Among these are the possibility of poor training convergence, 
difficulties in setting optimal or suboptimal values of learning parameters 
which then influence the convergence, the feasibility of being trapped in 
local minima, and poor generalization in the case of improper network 
size. The first three problems can be partially solved by assigning variables 
as learning parameters. The variables could change according to the con-
vergence rate and training development. On the other hand, the problem 
related to the neural network topology is generally still unsolved. How-
ever, as mentioned before, there are some techniques, called weight prun-
ing algorithms, that enable  better network design (Karnin 1990). The basic 
principles of such algorithms will be further examined.  

Since Artificial Neural Networks (ANN) have become standard tools in 
many domains, only the main features of such algorithms will be reviewed 
in this chapter, especially those which were adopted in the experiments. 

3.3.1 Neural Network Design 

Computational power of neural networks is not derived from the  capabili-
ties of a single neuron, but it rather comes from the immense structure of 
their interconnections. Considering structure, neural networks can be di-
vided into three groups: 

feedforward networks, 
recurrent networks, 
self-organizing networks. 

The design and operation of a feedforward network is based on a net of 
artificial neurons. The simplest case of a neural network is a single neuron. 
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The artificial neuron consists of a processing element, input signals 
x=[x1,x2,x3,...,xN]T RN and a single output o (Fig. 3.28). The output vector 
is defined as (Zurada 1992): 

o =f(wT
x-w0) (3.97) 

where w is the synaptic weight vector: 

w=[w1,w2,w3,...,wN]T (3.98) 

w0 is the threshold of the neuron and f  is a neuron activation function.
As may be seen in Fig. 3.28, each of the input signals flows through a 

synaptic weight. The summing node accumulates all input-weighted sig-
nals and then passes them to the output through the transfer function (f). 
The commonly used activation functions are of sigmoidal type (unipolar, 
bipolar, threshold, hyperbolic tangent, etc.; see examples in Fig. 3.29). The 
sigmoidal transfer function is given by the following formula:  

)exp(1

1
)(

x
f

(3.99)

where is the coefficient or gain which adjusts the slope of the function 
that changes between the two asymptotic values (0 and +1). This function 
is nonlinear, monotonic and differentiable. Since the error back-
propagation method using the delta learning rule requires a differentiable 
function, the sigmoidal transfer function is of special interest in most ap-
plications.

Fig. 3.28. Artificial neuron model 
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Fig. 3.29. Examples of neural network activation functions: unipolar binary (a), 
bipolar binary (b), bipolar  threshold linear (c), sigmoid (d), hyperbolic tangent (e) 

A two-layer network of the feedforward type is one of the most com-
monly used structures (see Fig. 3.30). 

V

W

o

x

...

...

...

...
...

D um m y
neuron

D um m y
neuron

y

x1

x2

-1

x i

x I

x1

x2

-1

x i

x I

y1

y2

y i

yJ

-1

o 1

o 2

o K

Fig. 3.30. Feedforward multi-layer network 
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The vector and matrix notation is more convenient for dealing with in-
puts, weights and outputs. The consecutive layers are denoted as input 
layer x, hidden layer y and output layer o. The number of neurons for the 
consecutive layers is  x - I, y - J, and o - K, respectively. Let V(J+1 x I+1)
and W(K x J+1) be, respectively, the input-to-hidden layer and the hidden-
to-output layer synaptic weights. The input and hidden layers may have  an 
additional dummy neuron each. The output value of the neuron is constant 
and equals -1, whereas the value of the weight may change. The dummy 
neuron is therefore an equivalent of the threshold synapse for all neurons 
in the next layer (see Fig. 3.30). 

3.3.2 Recurrent Networks 

A characteristic feature of recurrent networks is the feedback from network 
output to network input (Fig. 3.31). This means that the output signal de-
pends not only on current input signals, but also on the whole history of 
excitations. A recurrent network is therefore a dynamic network. 

Such networks are employed for time-consuming and computationally 
complex optimization processes, especially linear programming problems, 
i.e. the minimization or the maximization of a function value within the 
limits imposed on its arguments. Feedback networks are formed when the 
output of at least one neuron is connected directly or indirectly to its input 
(Fig. 3.31). Extensive bibliography describes various topologies of recur-
rent networks, among them is an interesting design proposed by Elman 
(1990). Fig. 3.31 presents a network of this type, in which output signals 
from the hidden layer are delayed by one z-1 cycle and then fed onto its 
input. Recurrent networks are the generalization of feedforward networks 
and are successfully employed for processing time sequences. The most 
often used recurrent structure is a  discrete Hopfield network, composed of 
a single layer of neurons. Hopfield networks, for which the activation 
function is the signum function, are a class of networks of interesting pa-

rameters. In a Hopfield network, the output signal 1k
nv from nth neuron in 

moment k+1 is fed onto the network input with a unitary delay.  
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Fig. 3.31. Examples of feedback networks: generic recurrent network 

3.3.3 Cellular Networks 

The topology of cellular networks is based on any regular geometric struc-
ture, usually on a flat rectangular grid. A network built on it is composed 
of neurons forming I rows and J columns. Arbitrary cell cij located in ith 
row and jth column is directly connected only to neurons within a 
neighborhood radius, marked in Fig. 3.32 with a dashed line.  

j j 1 j 2j 2 j 1
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i 1

i 2

i 2

i 1

cij

Fig. 3.32. Cellular network structure 
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3.3.4 Gradient-Based Methods of Training Feedforward 
Networks 

Feedforward neural networks are subject to intensive research due to their 
practical use. Their concept originates from adaptive filtration and their  
training methods come from well-known methods of estimating weight 
factors of filters. A separate group of methods are modifications of the  
Widrow-Hoff LMS method using ADALINE units. Recently training algo-
rithms based on the  recurrent least-square (RLS) method or  directly re-
lated to Kalman filtration were proposed. 

The training problem may also be approached from another direction. 
Neural network training is equivalent to a certain optimization task and 
therefore one can attempt to solve it by adapting optimization theory tools, 
among which gradient-based methods constitute the most important class. 
These methods are most effective in the case of feedforward networks and 
that is why the present section presents the most important gradient-based 
methods.

Heuristic Algorithms 

Gradient-based optimization methods presented so far are either exces-
sively demanding computationally or memory-wise (Newtonian methods) 
or are slow-converging (the delta rule). A separate group of algorithms 
combining the efficiency of Newtonian methods with low computational 
complexity of the greatest-gradient method is constituted by heuristic algo-
rithms. Some selected methods are presented in the following part of the 
Chapter.

Quickprop Algorithm 

The Quickprop algorithm, proposed by Fahlman (Fahlman 1988, 1991; 
Fahlman and Lebiere 1991), uses information about the curvature of the 
mean squared error (MSE) surface. This requires the computation of the 
second order derivatives of the error function. The algorithm assumes the 
error surface to be locally quadratic and attempts to predict the behavior of 
the curve as it descends. Quickprop accelerates the backpropaga-
tion/gradient descent learning rate by calculating the current slope of the 
parabolic curve (MSE versus weight value). The descent equation takes 
into consideration the past and the current slope, as well as the past differ-
ence in the weight value, to calculate the next weight step which is then 
applied to each weight value ijw separately. The derivatives are computed 
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in the direction of each weight. Assuming that the error function term k
ijS is 

described by the following expression (Fahlman 1988, 1991; Fahlman and 
Lebiere 1991):  
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The Fahlman rule for the weight increment k
ijw is as follows (Fahlman 

1988, 1991; Fahlman and Lebiere 1991): 
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in which constant values of training parameters are chosen empirically 
and they satisfy the following conditions: 6.001,0 0 and 75.1max .

Rprop Algorithm 

Rprop (Resilient backPROPagation) is a local adaptive learning scheme, 
performing supervised batch learning  in  multi-layer  perceptrons (Ried-
miller 1994; Riedmiller and Braun 1993). The basic principle of Rprop is 
to eliminate the influence of the partial derivative size on the weight step. 
Both gradient descent and Quickprop  algorithm (Fahlman 1988, 1991; 
Fahlman and Lebiere 1991) use the derivative (slope of graph, or rate of 
change) of the MSE with respect to the weight value. Rprop does not 
consider the actual value given by the derivative, but the sign of the de-

(3.100)

(3.101)

(3.102)

(3.104)

(3.103)
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rivative, or the direction of the curve (upward or downward slope).  Rprop 
calculates the weight step by comparing the previous slopes with the cur-
rent slope. These two portions of the algorithm allow it to adapt to unex-
pected behaviors in the MSE versus weight graph. As a consequence, only 
the sign of the derivative is considered to indicate the direction of the 
weight update. Similarly to the Quickprop algorithm, in the RPROP algo-
rithm the weight update rules apply to each weight individually and are 

concerned only with the derivative sign )( k
ijwE , ignoring its value. Low 

and high limits of weight increase, i.e. 6
min 10  and 50max were 

also introduced. The principles of the RPROP algorithm can be written 
down as follows: 

)(sgn k
ij

k
ij

k
ij wEw

where the weight increase, called 'update-value' k
ij is determined as fol-

lows:
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where the factors and meet the condition: 10 . Every 

time the partial derivative of the corresponding weight wij changes its sign, 
which indicates that the last update was too big and the algorithm has 
jumped over a local minimum, the update-value is decreased by the fac-

tor . If the derivative retains its sign, the update-value is slightly in-

creased in order to accelerate convergence in shallow regions. Addition-
ally, in the case of a change in sign, there should be no adaptation in the 

succeeding learning step. The original Rprop algorithm assumed 5.0

and 2.1 .

3.3.5 Application of Pruning Weight Algorithms 

The common problem of all neural networks is selecting an appropriate 
size of the structure. Attempts to optimize the neural network structures 
have been made, in order to avoid overfitting and improve generalization, 
to obtain higher convergence speed and less costly implementations. There 
are several techniques of optimizing the neural architecture. Basically, they 
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are: empirical methods, methods based on statistical criteria, growing 
(constructive) methods, decreasing (destructive, pruning) methods, and 
hybrid methods. 

The most common possibilities are sensitivity algorithms and penalty 
term algorithms (e.g. Backpropagation with Weight Decay), which are 
mentioned in this chapter. In both cases, a weight pruning algorithm results 
in the neglect of either weights or a neuron. The first solution (sensitivity) 
seems to be more robust, however the methods tested (Optimal Brain 

Damage - OBD, Optimal Brain Surgeon - OBS) are time-consuming and 
thus ineffective in terms of training duration. Magnitude Based Pruning is 
the simplest weight pruning algorithm. After each training, the link with 
the smallest weight is removed. Thus the salience of a link is just the abso-
lute size of its weight. Though this method is very simple, it rarely yields 
worse results than some more sophisticated algorithms. In the Optimal 
Brain Damage Algorithm (OBD) method, the feedforward neural network 
(FANN) is trained and the weight saliencies are calculated. The weights 
with the lowest saliencies are eliminated and finally, the network is re-
trained. Optimal Brain Surgeon (OBS) is a further development of OBD. It 
leads to a more exact approximation of the error function. Also, a so-called 
skeletonization prunes units by estimating the change of the error function 
when the unit is removed (like OBS and OBD do for links). For each node, 
a so-called attentional strength is introduced which leads to a different 
formula for the net input (Karnin 1990).  

Non-contributing units is yet another method that deals with an over-
sized net structure. This method uses statistical means to find units that do 
not contribute to the net behavior. The net is subdivided into its layers, the 
output of each neuron is observed for the whole pattern set. Units are re-
moved if their output does not vary, or if they always show the same out-
put as any other unit of the same layer, or if they show the output which is 
opposite to the output of any other unit in the same layer.  

Penalty Functions 

A separate group of methods are those relying on the modifications of  the 
target function. They were designed for a quadratic error function 

)(wE and they rely on eliminating small and least significant weight con-

nections by adding a )(wC term called a penalty term, a regularizer term, 

or a forgetting term (Ishikawa 1996, 1997). The term penalizes weight val-
ues that are too large. This leads to a gradual decrease of weights down to 
a threshold value, beyond which they are zeroed. The overall cost function 

)(wtotalC can be described by the formula: 
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then during each cycle a training of two following steps is composed of: 

minimizing the value of the target function )(wE using one of the error 

back-propagation methods, 
correcting the values after adding the penalty term. 

Various types of penalty functions )(wC are proposed in literature. 

Among the most popular ones are those proposed by Rumelhart et al. 
(1986). It is worth noting that penalty functions can also be used for re-
moving unnecessary neurons in hidden layers. 

Even a simple evaluation of neuron influences requires additional train-
ing. On the other hand, methods with the penalty function are simple and 
quite efficient. They may also be used to obtain a skeleton network struc-
ture during the process of rule discovery. 

In the case of the weight pruning algorithm, for the weight ijw  the cost 

function E is modified as follows: 

ji ij

ij

w

w
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,
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2
'
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where  is a positive constant. The error backpropagation for the 

weight adjustment is therefore as follows:  

221

1
1'

ij

ijij

w
ww

Largely discussed during the last few years, pruning methods lead to 
compact networks, which show good performance as compared to the 
starting architecture or to other structures of greater size. Though the re-
sulting configuration is sparsely connected, but not symmetrical. There-
fore, in literature one may find studies dealing with quantitative compari-
son of pruning algorithms with symmetry constraints, for feedforward 
neural networks.

Fahlman's Cascade-Correlation Algorithm 

In a series of papers Fahlman analyzed the problem of teaching multi-layer 
feedforward and recurrent networks, and proposed an original method of 

CLASSIFICATION104  3 INTELLIGENT MUSICAL INSTRUMENT SOUND 

(3.107)

(3.108)

(3.109)



  105 

constructing the neural network concurrently with training it (Fahlman 
1988, 1991; Fahlman and Lebiere 1991). His concept is based on limiting 
the teaching process of certain neurons and weighted connections, so that 
in each training step only one hidden neuron is subject to change. The de-
tailed analysis of the proposed optimal network construction algorithm can 
be found in the appropriate literature. 

3.3.6 Unsupervised Training Methods 

One can distinguish two types of unsupervised learning methods, namely 
those using competition and those based on the Hebb rule. The latter are 
usually applied to data compression (PCA) and blind signal separation. 
Competition-based methods remain most popular, as they present an at-
tractive alternative to classic vector quantization (VQ) techniques em-
ployed for image compression and speech compression, among others. 
This research field greatly benefited from the works of Kohonen (1990; 
Kohonen et al 1996, 1997), who introduced the name of self-organizing 
maps (SOMs) for networks trained using competition-based methods (Ko-
honen 1990; Kohonen et al 1996, 1997). Although a number of alternative 
self-organization approaches were proposed, SOM networks remain re-
searchers' center of attention (Amerijck et al 1998; Choi and Park 1994; 
Flangan 1996, 1997). Therefore this section presents the solutions pro-
posed by Kohonen (1990; Kohonen et al 1996; Kangas et al 1990). It is 
also worth noting that an interesting class of networks are those whose 
training and functioning is based on the adaptive resonance theory (ART). 
Their attractiveness results from the fact that the number of categories into 
which input data is classified, is not known a priori and is determined dy-
namically in the course of the algorithm. For that reason ART networks 
have been the subject of numerous papers and modification (Carpenter  
and Markuzon 1998; Carpenter et al 1991; Frank 1998). 

SOM-Type Self-Organizing Networks 

According to the idea of a SOM network, each neuron becomes a certain 
template for a group of similar input signals because of its weight vector, 
while adjacent neurons represent close areas of these templates. Therefore 
such a network maps the input vector space into its internal structure, de-
pending on the chosen metrics. This structure does not reflect the actual 
connections between neurons and is used only for determining their neigh-
borhoods. It can have any arbitrary shape, however in literature it is usu-
ally chosen to be two-dimensional (rectangular or hexagonal).  
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Formally speaking, SOM networks define the mapping o N-dimensional 
input signal space into a two-dimensional regular neural structure modified 
by means of competition between neurons forced by the x input vector. 
This competition is won by the cth output unit, if the following relation is 
true:

),(min),(
1

i
LKi

c dd WxWx or ),(minarg
1

i
LKi

dc Wx

where d is a measure of distance between vector x and the weights vec-
tor Wi of an output vector in a LK  two-dimensional structure.  

The process of training a SOM network can be described in the catego-
ries of minimizing the error function E, when the weight adaptation in the 
kth iteration is described by the following relation: 
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where Nc is a set of units adjacent to the winning neuron, 1,0 de-

fines the speed of learning, while the function E associated with vector 
quantization is described by the following expression: 
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where hci is a function of spatial neighborhood for the cth winning unit, 
while is a function of the distance measure d. Measure d is universally 
assumed to be based on Euclidean metric. Taking into account that weight 
adaptation takes place in the neighborhood of the winning neuron and de-

fining 2/)( 2dd , the expression describing weight updates takes the 

following form: 
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where the starting values of weight vectors W(0) are usually chosen at 
random within the range [-1, 1], the value of the learning speed coefficient 

)0( is assumed to be 0.95 and the neighborhood function hci can be a con-

stant function or a Gaussian one. Learning speed coefficients and

neighborhood radii are functions decreasing monotonically as training pro-
ceeds. Recommended values of training parameters as well as expressions 
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describing their changes can be found in Kohonen  and  his co-workers’ 
papers (1996, 1997). 

Since ANNs have grown to become a useful tool in many pattern recog-
nition applications, this suggests that they may work well in the musical 
signal domain, even precluding other approaches to the problem of musical 
instrument sound classification. The application of ANNs within the musi-
cal acoustics domain will be shown in the following sections.  

3.3.7 Application of Neural Networks to Musical Instrument 
Sound Classification 

A variety of neural network types were used for the automatic classifica-
tion of musical instrument sounds. The author and her team extensively 
tested multilayer neural networks of different configurations for musical 
sound classification. Examples of such tests were published in 90s, and 
continued through recent years, of which some results will be shown later 
on (Kostek 1994; Kostek 1999; Kostek and Czyzewski 2001b; Kostek 
2004a, 2004b; Kostek et al 2004, 2005). A feedforward neural network 
was tested in experiments carried out by Kaminskyj and his co-workers 
(Kaminskyj 2000; Kaminskyj and Materka 1995). They started with ex-
periments, which aimed at classyfying the sounds of musical instruments, 
such as: piano, marimba, accordion and guitar. High effectiveness of 97% 
was attained. Lately, a more thorough study was continued by Kaminskyj 
(Kaminskyj 2002), which resulted in the completion of his Ph.D. work. 
Lately, in the works by Kaminskyj (Kaminskyj 2002; Kaminskyj and 
Czaszejko 2005), and separately in the research carried out by the author’s 
team (Szczuko et al 2004, Kostek et al 2005) and also by Eronen and 
Klapuri (Eronen 2001; Eronen and Klapuri 2000) the attempt was made to 
generalize features of the classification system. To this end, different mu-
sical sound databases were used in the phases of testing and recognition, 
see the review in Eronen’s work (2001). Cemgil and Gürgen (1997) used 
three different neural network topologies, namely a multi-layer perceptron, 
a time-delay network, and a self-organizing network (SOM) for testing a 
limited number of sounds. In their study 40 sounds of 10 different musical 
instruments were chosen from 10 different classes of octave A3-A4 (Cemgil 
and Gürgen 1997). The effectiveness achieved was up to 100% for the 
time-delay network, less for multilayer perceptron (approx. 97%), and 94% 
for SOM (Cemgil and Gürgen 1997). 

Self-organizing maps were extensively tested by many researchers (Feiten 
and Günzel 1994; Cosi et al 1994a, 1994b; Cimikowski and Shope 1996; 
Toiviainen et al 1998), however such algorithms were used for comparison be-
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tween machine-clustering of timbral spaces and the results of similarity judg-
ments  by  human subjects  (Grey 1997;  de Poli and Prandoni 1997; Wessel 
1979). In the context of timbre similarity, SOMs were used also by other 
researchers (Zhang and Kuo 1999; Agostini et al 2001).

Another application of SOM to musical instrument sound classification 
was introduced by Zhang (Zhang and Kuo 1999). Kohonen self-organizing 
map was employed to select the optimum structure of the feature vectors. 
The classification was performed by a multilayer perceptron. The system 
was applied to polyphonic music having a dominant instrument. The sys-
tem attained approx. 80% of correct recognition. Agostini et al. used a 
complex topology of neural networks in their study (Agostini et al 2001). In 
addition,  Fragoulis et al. (Fragoulis et al 1999) applied an ARTMAP for 
the classification of five instruments employing ten features. The accuracy 
achieved was very high. 

An exhaustive review of research both on features and techniques used 
in automatic classification of musical instrument sounds  was  done  by 
Herrera and co-workers (Herrera et al 2000; Herrera et al 2003). They fo-
cus on two complementary approaches to musical sound classification, 
namely the perceptual approach and the taxonomic approach. As seen from 
this review, features that are used in a research on musical sound classifi-
cation may be divided into two groups, namely those based on perceptual 
properties of the human auditory system, and others that are determined on 
the basis of physical characteristics of musical instruments. Any of these 
features may be regarded until now as optimum ones. The same remark re-
fers to classification techniques, any of the developed systems by far do 
not identify all musical instrument sounds with 100% accuracy. This re-
view is very valuable and comprehensive, thus a Reader interested in the 
research on the classification of musical instrument sounds can be referred 
to the paper by Herrera et al., and also to the  sources  contained  there 
(Herrera et al 2000, 2003). 

In the next paragraphs some experiments related to musical instrument 
sound classification carried out in the Multimedia Systems Department 
will be shown. Experiments that referred to pitch detection were mostly 
performed by Dziubinski (Dziubinski and Kostek 2004), whereas some 
classification tests based on neural networks were carried out by Dalka, 
Dabrowski, Dziubinski, Szczuko and Kostek (Szczuko et al 2004; Kostek 
et al 2005;   Dziubinski  et al  2005),  also  by   Kostek  and  Zwan and 
Dziubinski (2001, 2002, 2003). Parts of these studies have been performed 
within M.Sc. and Ph.D. works supervised by the author.  
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Pitch Detection 

The multistage of musical sound classification often starts with a pitch de-
tection algorithm, which apart from the detection of the fundamental fre-
quency of a sound, identifies all other harmonic frequencies, thus enabling 
the  calculation of many features.  

In general, the evaluation of pitch detectors performance can be ana-
lyzed objectively (Rabiner et al 1976; McGogenal et al 1977) and subjec-
tively. Pitch estimation errors are classified as Gross Pitch Errors and Fine

Pitch Errors, as suggested by Rabiner et al. (1976). Gross pitch errors are 
here called octave errors, since the calculated pitch differs by around one 
(or more) octaves from the expected pitch. Objective tests of the proposed 
PDA, in terms of octave errors, are presented later on.  Objective tests for 
Fine Pitch Errors are based on synthetic, quasi-periodic signals. Synthe-
sized signals have time varying pitch and each harmonic amplitude varies 
in time independently, giving reliable simulation of real signals. In addi-
tion, comparative tests for different noise levels, contaminating test signals 
have been carried out. Subjective tests, showing perceptual accuracy of es-
timated pitch contours, were omitted in this work. 

Evaluation of instantaneous pitch track (IPT) estimation based 
on synthetic signals 

Objective tests for Fine Pitch Errors were performed on synthetic signals, 
synthesized according to the formula: 
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where:
S – synthesized signal, 
A – matrix containing amplitude envelopes (for each harmonic), 
K – number of harmonics, 
N – number of samples, 
fs – sampling frequency, 

- vector containing phase shifts, 

f – fundamental frequency of the synthesized signal. 
Vectors A[k] and f fluctuate in time, and are generated according to the 

following limitations: 

frequency of fluctuations is not higher than 10 Hz, 
0.1 < A[k] < 1 
0.95 < f < 1  - keeping frequency fluctuations below 5%, 

(3.114)
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amplitudes of fluctuations (with regard to given limitations) are chosen 
in a pseudorandom way. 

In addition, all rows of matrix A are generated separately (they differ 
from each other) and all values of phase shifts (stored in  vector) are 

generated in pseudo-random way. 
The proposed IPT algorithm was implemented in Matlab and its per-

formance was analyzed. Pitch estimations were performed for signals with 
the duration of 1 second, and for a sampling frequency equal to 44100 Hz. 
Since instantaneous pitch of synthesized signals was known, it was possi-
ble to calculate the instantaneous error of pitch fluctuations. A set of hun-
dred frequencies for the test signals was chosen from a frequency range of 
50 Hz to 4000 Hz. In addition, for each chosen frequency, 10 signals were 
generated and an average error for the frequency was calculated. 1000 sig-

Frequency was calculated according to the expression: 
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where:
F – set of chosen test frequencies, 
K – number of chosen frequencies (K = 100), 
fstart, fstop - the lowest and the highest frequencies of the chosen set (fstart

= 50 Hz, fstop = 4000 Hz). 
Pitch estimation error for each signal tested is understood to be: 
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where:

IPEE  – average error of calculated IPT, 

IPT  - estimated instantaneous pitch track, 

eIPT - expected instantaneous pitch track,

N – number of samples of instantaneous pitch track (number of samples 
of the test signal). 

The results of IPT performance tests show for all chosen frequencies 
that the error decreases with increasing frequency. This is due to the fact 
that for lower pitched sounds, harmonics are placed closer to each other. 
Therefore, they have greater influence on each other, firstly due to the 
leakage effect of the spectrum, and secondly, because a relatively smaller 
region of spectrum surrounding a chosen harmonic is involved in calculat-
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ing instantaneous pitch. An average error for all frequencies (1000 tested 
signals) is equal to 0.0108 % (see Fig. 3.33).  

Fig. 3.33. Results of IPE performance tests for all chosen frequencies 

Estimation of pitch track in noise 

Because a time-domain representation of one of the input signals harmon-
ics is calculated based on a spectrum peak related to the average pitch of 
the analyzed block (and its surrounding spectrum fragment), and because 
some spectrum bins with relatively low energy within the chosen region 
may be below noise level, noise disturbances are an important factor re-
stricting performance of the IPT. Noise contaminating tested signals was 
of Gaussian and of the additive type. Table 3.1 presents the average esti-
mation error for the implemented algorithm for SNRs equal to 6, 12 and 24 
dB.

Table 3.1. Average IPE performance errors for different SNRs 

SNR [dB] Average error [%] 

6 0.1964 
12 0.1169 
24 0.0549 
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Similarly to Fig. 3.33, Fig. 3.34 presents errors calculated for chosen 
frequencies, and tested SNRs.

Fig. 3.34. Results of IPE performance tests for all chosen frequencies, with regard 
to SNR equal to 6, 12 and 24 dB 

Octave errors performance 

In order to determine the efficiency of a presented SPA, in terms of octave 
errors, 567 musical instrument sounds have been tested. Analyses of six 
instruments in their full scale, representing diverse instrument groups, and 
one instrument with all the articulation types have been performed. Sounds 
recorded at the Multimedia Systems Department (MSD) of the Faculty of 
Electronics, Telecommunications and Informatics, of Gdansk University of 
Technology, Poland (Kostek 1999), as well as sounds from the McGill 
University collection (Opolko and Wapnick 1987) were used in experi-
ments. Tables (Tabs. 3.2-3.4) and figures (Figs. 3.35 and 3.36) present the 
estimated average pitch (note) played by the instrument according to the 
Acoustical Society of America (ASA) standard, and the nominal frequency 
of that note, specified by the ASA. In addition, pitch deviation for each es-
timated frequency is presented in cents, and calculated according to the 
formula: 
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[cents]100)
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(log12
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where dvP  denotes pitch deviation of the estimated pitch (in cents) from 

the ASA tone frequency, estP  is the estimated pitch, and ASAP  denotes the 

nominal pitch of a tone as understood by ASA standard.
Results for oboe and double bass for non legato articulation are pre-

sented in Tables 3.2 and 3.3 Results for viola (forte, non legato) and oboe 
sounds played mezzo forte and with vibrato are presented in Figs. 3.35 and 
3.36.

Fig. 3.35. Pitch estimation results for viola (articulation: non legato, dynamics:
forte, range: C3 - A6) 

(3.117)
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Fig. 3.36. Pitch estimation results for oboe (articulation: non legato, dynamics:
mezzo forte, range: A3# - F6) 

Table 3.2. Pitch estimation results for oboe (articulation: non legato, dynamics:
mezzo forte), MSD collection 

Tone
(ASA) 

Estimated 
pitch [Hz] 

Nominal freq. 
[Hz] 

Pitch deviation 
with regard to ASA 

standard [cents] 

Octave er-
ror

A3# 234.24 233.08 8.6 NO 

B3 245.46 246.94 -10.4 NO 

C4 263.22 261.63 10.5 NO 

C4# 279.8 277.18 16.3 NO 

D4 295.94 293.66 13.4 NO 

D4# 314.52 311.13 18.8 NO 

E4 332.35 329.63 14.2 NO 

F4 351.04 349.23 8.9 NO 

F4# 371.95 369.99 9.1 NO 

G4 394.19 392 9.6 NO 

G4# 417.42 415.3 8.8 NO 
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Table 3.2. (cont.)

A4 442.4 440 9.4 NO 

A4# 471.37 466.16 19.2 NO 

B4 498.13 493.88 14.8 NO 

C5 528.85 523.25 18.4 NO 

C5# 563.3 554.37 27.7 NO 

D5 597.98 587.33 31.1 NO 

D5# 632.25 622.25 27.6 NO 

E5 669.99 659.26 27.9 NO 

F5 708.24 698.46 24.1 NO 

F5# 755.94 739.99 36.9 NO 

G5 799.07 783.99 32.9 NO 

G5# 842.1 830.61 23.8 NO 

A5 888.01 880 15.7 NO 

A5# 936.42 932.33 7.6 NO 

B5 997.3 987.77 16.6 NO 

C6 1052.2 1046.5 9.4 NO 

C6# 1124.5 1108.7 24.5 NO 

D6 1185.5 1174.7 15.8 NO 

D6# 1272.8 1244.5 38.9 NO 

E6 1326.3 1318.5 10.2 NO 

F6 1407.1 1396.9 12.6 NO 

F6# 1502.1 1480 25.6 NO 

Table 3.3. Pitch estimation results for a double bass (articulation: non legato, dy-
namics: forte), McGill Univ. collection 

Tone
(ASA) 

Estimated 
pitch [Hz] 

Nominal 
freq. [Hz] 

Pitch deviation 
with regard to 
ASA standard 

[cents]

Octave 
error

C#1 34.54 34.648 5.4 NO 

D1 36.62 36.708 4.2 NO 
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Table 3.3. (cont.)

D#1 38.68 38.891 9.4 NO 

E1 41.1 41.203 4.3 NO 

F1 43.56 43.564 0.2 NO 

F1# 46.23 46.249 0.7 NO 

G1 49 48.999 0 NO 

G1# 51.88 51.913 1.1 NO 

A1 54.97 55 0.9 NO 

A1# 58.22 58.27 1.5 NO 

B1 61.46 61.735 7.7 NO 

C2 65.26 65.406 3.9 NO 

C2# 69.12 69.296 4.4 NO 

D2 73.28 73.416 3.2 NO 

D2# 77.58 77.782 4.5 NO 

E2 82.3 82.407 2.2 NO 

F2 87.24 87.307 1.3 NO 

F2# 92.23 92.499 5 NO 

G2 97.63 97.999 6.5 NO 

G2# 103.64 103.83 3.2 NO 

A2 109.97 110 0.5 NO 

A2# 116.46 116.54 1.2 NO 

B2 122.99 123.47 6.7 NO 

C3 130.5 130.81 4.1 NO 

C3# 138.61 138.59 -0.2 NO 

D3 146.3 146.83 6.3 NO 

D3# 155.07 155.56 5.5 NO 

E3 164.16 164.81 6.8 NO 

F3 173.78 174.61 8.2 NO 

F3# 184.64 185 3.4 NO 

G3 195.35 196 5.8 NO 
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Table 3.3. (cont.)

G3# 207.36 207.65 2.4 NO 

A3 219.2 220 6.3 NO 

A3# 232.31 233.08 5.7 NO 

B3 246.33 246.94 4.3 NO 

C4 262.23 261.63 -4 NO 

C4# 275.72 277.18 9.1 NO 

D4 292.64 293.66 6 NO 

D4# 309.59 311.13 8.6 NO 

E4 329.55 329.63 0.4 NO 

No octave-related errors were detected among the 567 instrument 
sounds processed. The engineered algorithm shows high performance for a 
wide variety of sounds with different fundamental frequencies, starting 
from 45.6 Hz for a tuba F up to 1737.6 for a viola. Since different instru-
ment groups were analyzed and sounds played with differentiated dynam-
ics and articulations, the proposed PDA had to deal with a large variety of 
situations in terms of relations between the energy of different harmonics, 
showing immunity to octave related errors. 

Differences, sometimes significant in terms of fine pitch errors, between 
the estimated pitch and the tone frequency of a sound are caused by musi-
cians playing solo. It happens, if the instruments are not tuned to exactly 
the same pitch before recording. 

Automatic Pitch Detection 

The pitch detection algorithm used in the automatic classification of musi-
cal instruments consists of three main stages, each of them divided into 
steps:

Signal spectrum acquisition 
- Selecting a frame from the steady state of the audio signal 
- Fast Fourier Transform operation 
- Low pass filtering 
- Calculating logarithm of the spectrum amplitude  
- Trend elimination 

Harmonic peak detection 
- 1-bit quantization of the amplitude spectrum based on the assumed 

threshold P1
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- Derivative calculation 
- Determining harmonic peak positions 

Pitch detection 
- Calculating differences in the positions of all detected harmonic 

peaks and sorting them in the ascending order  
- Eliminating differences smaller than the assumed threshold P2
- Locating the position index of the first change of the difference 

values greater then the assumed threshold P2
- Calculating a mean value of differences having position indices 

smaller than the position index found in the previous step 
- Expressing the mean value in Hz units 

The estimated fundamental frequency f0’ is considered correct if the 
condition defined below is fulfilled (i.e. the difference from the real fun-
damental frequency f0 is less than a semitone): 

12
00

12 1
0 22 fff

to be incorrect. Detailed results of the pitch detection effectiveness are 
shown in Table 3.4. 

Table 3.4. Effectiveness of fundamental frequency detection 

Instrument 
No. of 
sounds

No. of errors 
Effectiveness 

[%] 

bassoon 376 4 98.9 

B flat clarinet 386 13 96.6 

oboe 328 0 100.0 

tenor trombone 358 3 99.2 

French horn 334 9 97.3 

alto saxophone 256 6 97.7 

violin 442 56 87.3 

trumpet 302 13 95.7 

F flat tuba 316 20 93.7 

cello 454 33 92.7 

Total 3552 157 95.6 
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If Eq. (3.118) is not fulfilled, then the estimated frequency is considered 
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The performed experiments were based on the set of 10 instruments: 
bassoon, B flat clarinet, oboe, tenor trombone, French horn, alto saxo-
phone, violin, trumpet, F flat tuba and cello. Sound samples of the instru-
ments originated from two sources. The majority of samples (80%) came 
from the Catalogue of Musical Instrument Sounds, which was created in 
the Multimedia Systems Department of Gdansk University of Technology 
(Kostek 1999). The set of musical instrument sounds was complemented 
by the McGill University Master Samples (MUMS), giving a total number 
of 3500 sound samples. All samples were recorded with a sampling rate of 
44.1 kHz (Opolko and Wapnick 1987). 

The pitch detection algorithm had correctly estimated the fundamental 
frequency of 3395 audio samples out of the total of over 3500. All funda-
mental frequencies of the oboe sounds were detected correctly. In contrast, 
the worst results were obtained for a string group instruments, mainly be-
cause of the poor results for the sounds originated from MUMS (74 and 
81% for the violin and cello, accordingly). The total effectiveness of al-
most 97% is considered as sufficient in terms of the pitch detection. All the 
remaining experiments regarding sound classification were based on the 
audio samples with the fundamental frequency estimated correctly. 

Parameters 

The following descriptors were taken for further analysis: 
Audio Spectrum Envelope (ASE)
This results in 34 coefficients for each spectral frame. The mean values 

and variances of each coefficient over time are denoted as ASE1…ASE34

and ASEv1…ASEv34, respectively. 
Audio Spectrum Centroid (ASC)
The mean value and the variance of a spectrum centroid over time are 

denoted as ASC and ASCv respectively. 
Audio Spectrum Spread (ASS)
The mean value and the variance of S over time are denoted as ASS and 

ASSv respectively. 
Audio Spectrum Flatness (SFM)
The mean values and variances of each SFMb over time are denoted as 

SFM1…SFM24 and SFMv1…SFMv24 respectively. 
Log Attack Time (LAT)
Temporal Centroid (TC)
Spectral Centroid (SC)
The mean value and the variance of a spectrum centroid over time are 

denoted as SC and SCv respectively. 
Harmonic Spectral Centroid (HSC)
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The mean value and the variance of a harmonic spectrum centroid over 
time are denoted as HSC and HSCv respectively. 

Harmonic Spectral Deviation (HSD)
The mean value and the variance of harmonic spectrum deviation over 

time are denoted as HSD and HSDv respectively. 
Harmonic Spectral Spread (HSS)
The mean value and the variance of harmonic spectrum spread over 

time are denoted as HSS and HSSv respectively. 
Harmonic Spectral Variation (HSV)
The mean value and the variance of harmonic spectrum variation over 

time are denoted as HSV and HSVv respectively. 
Pitch (P) – expresses pitch of a sound according to MIDI standard 
Content of even harmonics in spectrum (hev)

Sound Descriptor Analysis 

A number of parameters describing a musical instrument sound should be 
as low as possible because of the limited resources of computer systems. 
The process of decreasing the length of the feature vector is removing re-
dundancy from the set describing an audio signal. Therefore, the evalua-
tion criteria of the effectiveness of particular parameters have to be used 
for the sound classification. 

Fisher statistic is often used as such a criterion. It is defined for parame-
ter A and two classes of instruments X and Y  (Kostek 1999): 
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The bigger the absolute values |V| of Fisher statistics are, the easier it is 
to divide a multidimensional parameter domain into areas representing dif-
ferent classes. It is much easier to differentiate between two musical in-
struments based on a given parameter, if its mean values for both instru-
ments are clearly different, its variances are small and the quantity of audio 
samples is large. 

Values of Fisher statistics calculated for selected parameters and for a 
selected pair of instruments are shown in Table 3.5. It was found, that for 
example, the HSD and HSS parameters are useful for the separation of mu-
sical sounds of different groups (brass, woodwinds, strings). Figure 3.37 
shows an example of the distribution of values of these parameters ob-
tained for instruments of similar musical scales. 
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Fig. 3.37. Example of two parameter values distribution for three instruments 

High value of Fisher statistic of hev parameter for the pair bassoon-
clarinet proves its usefulness for the separation of clarinet sounds from 
other musical instruments. Initial experiments showed that Timbre De-
scriptors were insufficient for the effective separation of musical instru-
ments from the same group. Therefore, the feature vector needs to be com-
plemented by a more accurate description of a musical signal. 

Better sound description is provided by the parameters connected di-
rectly with the density of the power spectrum, such as Audio Spectrum 
Descriptors, particularly Audio Spectrum Envelope (ASE) and Audio 
Spectrum Flatness (SFM). The most distinctive properties of ASE and 
ASEv descriptors have been noticed for the low- and high-frequency 
bands; mid-frequency bands are less useful for musical instrument classifi-
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cation. On the other hand, SFM descriptors are the most accurate in mid-
frequency bands. SFMv descriptors proved to be redundant, thus none of 
them have been included in the feature vector. 

Table 3.5. Analysis of parameters based on Fisher statistics 

pairs of 
instru-
ments 

hev LAT SC HSC HSD HSS HSV ASE1 ASE2 … SFM24

bassoon -
clarinet

28.79 3.22 15.73 21.25 15.12 19.41 10.72 9.10 10.56 … 14.18 

bassoon -
oboe 

3.02 0.13 53.78 43.09 3.35 5.02 1.36 8.31 8.75 … 17.71 

bassoon -
trombone

1.22 0.34 12.78 11.23 19.21 17.21 0.33 8.42 9.54 … 5.46 

bassoon -
French 
horn 

1.94 5.43 4.48 4.17 17.67 7.28 0.58 6.90 7.26 … 1.85 

… … … … … … … … … … … … 

cello -
tuba 

4.31 15.82 12.51 15.82 26.53 16.16 5.22 4.72 0.72 22.55 

A parameter similarity criterion can also be used to find dependencies 
between parameters. For this purpose Pearson’s correlation coefficient r

can be calculated according to the formula (Kostek 1999): 
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where Ai and Bi are parameter values for a selected instrument. Absolute 
values of the coefficient r close to 1 indicate strong correlation of two pa-
rameters for the selected instrument. Table 3.6 shows calculated correla-
tion coefficients for a bassoon. There is strong correlation between pa-
rameters related to brightness (e.g. SC – HSC, SC – ASC). Also, ASE

coefficients for higher frequency bands show strong correlation (e.g. ASE24

– ASE28). However, parameter dependencies express the individual charac-
ter of an instrument and they differ for various instruments. 
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Table 3.6. Correlation coefficients r calculated for a bassoon 

de-
script. hev LAT SC HSC HSD … ASC … ASE24 ASE25

…
ASE27 ASE28

Ev 1.00         …   …     …   

LAT 0.02 1.00       …   …     …   

SC 0.04 0.13 1.00     …   …     …   

HSC 0.02 0.17 0.78 1.00   …   …     …   

HSD 0.10 0.20 0.01 0.08 1.00 …   …     …   

… … … … … … … … … … … …  … 

ASC 0.05 0.10 0.81 0.50 0.25 … 1.00 …     …    

… … … … … … … … … … … … … … 

ASE24 0.01 0.05 0.64 0.77 0.06 … 0.44 … 1.00   …    

ASE25 0.05 0.16 0.64 0.84 0.16 … 0.43 … 0.79 1.00 …    

ASE26 0.01 0.10 0.65 0.84 0.13 … 0.45 … 0.81 0.90 …   

ASE27 0.03 0.09 0.62 0.81 0.13 … 0.42 … 0.81 0.86 …1.00   

ASE28 0.02 0.13 0.58 0.79 0.10 … 0.35 … 0.75 0.84 …0.88 1.00 

After a thorough analysis, a final content of the feature vector used for 
the classification purpose is as follows: 

[ASE2,…, ASE5, ASE8, ASE9, ASE18, ASE21, ASE23,…, ASE31, ASE33, ASE34,
ASEv5,…, ASEv9, ASEv21, ASEv31, ASEv34, ASC, ASS, ASSv, SFM13,…, 
SFM19, SFM21, SFM22, SFM24, HSC, HSD, HSDv, HSS, HSSv, KeyNum,
hev, LAT ] 

Classification Results

A three-layer neural network of the feed-forward type was used in the ex-
periments. Its structure was defined as follows: 

number of neurons in the initial layer is equal to the number of elements 
in the feature vector 

number of neurons in the hidden layer is twice as large as the number of 
neurons in the initial layer 

 each neuron in the output layer matches a different class of instruments, 
thus the number of neurons in the output layer is equal to the number 
of the classes of instruments 
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neurons in the initial and the output layers have log-sigmoid transfer 
functions, while neurons in the hidden layer have tan-sigmoid transfer 
functions.

The initial stage of experiments started with the training phase of a neu-
ral network. Vectors of parameters were randomly divided into two sets: 
training and validation vectors. Each set contained 50% of all vectors, 
which meant that the representation of some instrument classes may be 
small whether others more numerous. The error back-propagation algo-
rithm was used to train the neural network. The process of training was 
considered as finished when the value of the cumulative error of network 
responses for the set of testing vectors had dropped below the assumed 
threshold or when the cumulative error of network responses for the vali-
dation set of vectors had been rising for more than 10 consecutive cycles. 
The recognized class of the instrument was determined by the highest 
value of the output signals of neurons in the output layer. The training pro-
cedure was repeated 10 times and the best-trained network was chosen for 
further experiments.

In addition to the single neural network algorithm characterized above, a 
two-stage algorithm using a group of four neural networks was imple-
mented (Fig. 3.38). 

Musical instrument group
automatic classification

String
classification

Woodwind
classification

Brass
classification

  violin
  cello

bassoon
B flat clarinet
alto saxophone
oboe

tenor trombone
French horn
Tumpet
tuba

Fig. 3.38. Diagram of the two-stage musical instrument classification algorithm 

The aim of the first network was to identify the group of instruments 
(strings, woodwinds or brass), to which the sound being analyzed belongs 
In the second stage, based on the response of the first network, the sound is 
recognized by one of the three remaining networks specialized in the clas-
sification of different groups of instruments. Each neural network used in 
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the experiments complies with the rules of the structure and the training 
process described above for a single network.

Detailed results of musical sound classification achieved by using two 
artificial neural network algorithms are presented in Tables 3.7-3.9. 

Table 3.7. Effectiveness of the single neural network algorithm 

Musical
instrument 

No. of 
samples 

No. of errors 
Effectiveness 

[%] 

bassoon 179 5 97.2 

B flat clarinet 195 27 86.2 

oboe 173 21 87.9 

tenor trombone 166 11 93.4 

French horn 166 23 86.1 

alto saxophone 124 6 95.2 

violin 182 13 92.9 

trumpet 138 5 96.4 

F flat tuba 159 4 97.5 

cello 214 16 92.5 

Total 1696 131 92.3 

Table 3.8. Effectiveness of the two-staged neural network algorithm 

Musical
instrument 

No. of 
samples 

No. of errors 
Effectiveness 

[%] 

bassoon 189 8 95.8 

B flat clarinet 189 7 96.3 

oboe 165 14 91.5 

tenor trombone 166 12 92.8 

French horn 163 14 91.4 

alto saxophone 119 9 92.4 

violin 189 19 90.0 

trumpet 142 11 92.3 
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Table 3.8.  (cont.)

F flat tuba 161 3 98.1 

cello 214 10 95.3 

Total 1697 107 93.7 

Table 3.9. Effectiveness of the first stage of the complex neural network algo-
rithm 

Musical
instrument group 

No. of 
samples 

No. of errors 
Effectiveness 

[%] 

strings 403 23 94.3 

woodwinds 662 26 96.1 

brass 632 19 97.0 

Total 1697 68 96.0 

The results of classification are better for the two-staged neural network 
algorithm despite the fact that an audio sample has to be recognized by two 
neural networks, thus their errors cumulate. Higher accuracy of classifica-
tion is still possible because a 96% effectiveness of instrument group clas-
sification and a 97.6% effectiveness of instrument classification result in a 
total effectiveness of 93.7% for the two-staged neural networks algorithm, 
which is higher comparing to the single neural network algorithm. 

For the single neural network algorithm, the only instruments of the ac-
curacy of recognition lower than 90%, are clarinet and oboe. The two in-
struments were confused with each other. The second algorithm often in-
correctly classifies sounds of violin, oboe and French horn. It is worth 
noticing that the results of classification of each instrument sounds are 
more uniform, i.e. there is a smaller difference between the best and the 
worst classified instrument than for the single neural network algorithm. 

It can be seen that MPEG-7-based low-level audio descriptors are very 
suitable for the automatic musical sound classification (Kim et al 2003). 
Parameters derived directly from the audio spectrum (i.e. Audio Spectrum 
Descriptors) seem to be the most significant ones. Moreover, they are 
much more universal than Timbre Descriptors because they may be used to 
classify any type of musical sounds. Among Audio Spectrum Descriptors, 
the simplest parameter seems to be the most important one. That is the 
Audio Spectrum Envelope descriptor, which consists of coefficients de-
scribing power spectrum density in the octave bands. 
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Shown above, is an example of experiments that were carried out in the 
Multimedia Systems Department. A different configuration of descriptors 
contained in feature vectors along with a different configuration of neural 
networks were tested in many experiments (Szczuko et al 2004; Kostek et 
al 2004; Kostek 2004b). Typically, the smaller number of instruments to 
be classified, the better accuracy of classification, however in most ex-
periments the results obtained while employing a neural network as a clas-
sifier, were clearly above 90%. 

3.4 Rough Set-Based Classifier 

3.4.1 Rough Sets

The first pioneering papers on rough sets, written by the originator of the 
idea, Professor Zdzislaw Pawlak, were published in the early eighties 
(Pawlak 1982). The rough set theory and its basic concepts proposed by 
Pawlak provide an effective tool for extracting knowledge from database 
(Bazan et al 1994; Bazan et al 2003; Pawlak 1996, 1998, 2003, 2004; 
Polkowski and Skowron 1998a; Skowron 1994a, 1994b; Slowinski et al 
1996; Ziarko 1996). Since 1982, many researchers have introduced rough 
set theory to different scientific domains (Chmielewski and Grzymala-
Busse 1994; Grzymala-Busse et al 2004; Polkowski and Skowron 1998b, 
1998c; Skowron 1994b; Ziarko 1993, 1994). This theory has also been 
successfully utilized in the field of acoustics (Czyzewski and Kaczmarek 
1993, 1994, 1995; Czyzewski et al 2004; Czyzewski and Kostek 1998; 
Czyzewski and Krolikowski 1998; Kostek 1996, 1997, 1998a, 1999, 
2003). Rough set-based decision systems are often employed for finding 
hidden, implicit rules forming the basis for the experts' decisions. Such 
processes of extracting knowledge from data sets are known as knowledge

discovery and data mining. Since the basis of rough sets is extensively 
covered in the literature, this would be an outline of only the general con-
cepts.

A fundamental principle of a rough set-based learning system is the 
need to discover redundancies and dependencies between the given fea-
tures of a problem to be classified. Several important concepts include 
such notions as Upper Approximation, Lower Approximation and Bound-

ary Region (Fig. 3.39). The notion of approximation is a focal point in 
many approaches to data analysis based on rough set theory. In the major-
ity of rough set applications the approximations are used only at some 
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stage of inductive learning. Most of existing solutions make use of deci-
sion rules derived from data (Pawlak 1982).  

Upper
Approximation

Lower ApproximationBoundaryRegion 

Fig. 3.39. Basic structure of rough sets 

A Universe U  is defined as a collection of objects standing at the top of 
the rough set hierarchy. On the other hand, a basic entity is placed at the 
bottom of this hierarchy. Between them, the Approximation Space is de-
fined. The Approximation Space is partitioned by the minimum units, 
called equivalence classes, or also elementary sets. Lower and upper ap-
proximation definitions are based on the approximation space. Conse-
quently, a rough set approximates a given concept from below and from 
above, using both lower and upper approximations. Three other properties 
of rough sets defined in terms of attribute values are shown in Fig. 3.40, 
namely: dependencies, reduct and core (Pawlak 1982).

In Fig. 3.41, the relationship between the Universe and the Approxima-

tion Space is presented. The circles represent the objects in a universe. The 
grid over the circles corresponds to the Approximation Space, which is by 
definition a partitioned universe.  
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Fig. 3.40. Hierarchy of concepts in rough sets 

Fig. 3.41. Relationship between Universe and Approximation Space

Knowledge is represented in rough sets by a tuple 
FVVDPUS DPR ,,,,, . The variables are defined as follows: U  is a fi-

nite collection of objects; P  is a finite set of condition features or attrib-
utes; D  is the decision attribute, arbitrarily chosen by an expert; PV  is the 

union of all condition attributes in P ; DV  represents the domain of the de-

cision attributes; and F  is called a knowledge function. This means that 
the knowledge in rough set theory can be represented as a Decision Table

(Pawlak 1982, 1996, 1998). A row in the Decision Table represents an ob-
ject in the Universe, and each column corresponds to an attribute in P .
The decision attribute is always in the very last column. Such a way of 
presenting knowledge is shown in Table 3.10. Information stored in a tabu-

3.4 ROUGH SET-BASED CLASSIFIER  



lated form allows for distinguishing conditional attributes (premises) and 
decision attributes. This approach stores knowledge acquired by one or 

experts' conclusions may differ, and therefore the information table be-
comes inconsistent resulted in possible rules. However, a major advantage 
of a rough-set-based decision system is the capability to process contradic-
tory rules. On the other hand, these systems work on discrete values. If the 
input data are continuous, the preprocessing step must include discretiza-
tion. Due to their significance, the questions associated with data discreti-
zation for the needs of rough-set-based reasoning constitute an individual 
field of studies, as it turns out that quantization method influences the 
quality of the system functioning. This issue will be presented further on. 

In Fig. 3.39, the Approximation Space S  is divided by S  into three dis-

cernibility regions: the positive region (dark gray), the boundary region 
(white) and the negative region (surrounding area - gray). Assume that 

UUR  is an equivalence relation on U  which partitions U  into many 
equivalence classes, R  is called the indiscernibility relation. The Lower

Approximation ( )(SR ) of S  in S  is denoted as the union of the elemen-

tary sets whose members are all in S , and the Upper Approximation

( )(SR ) is defined as the union of the elementary sets that have at least one 

member belonging to S . Resulting from these considerations, a standard 

set S  can be approximated in space S  by the pair )(),( SRSR , called the

rough set (Pawlak 1982, 1996). 

Table 3.10. Knowledge base representation in the rough set theory 

object/attribute A1 2A A3 ..... 
mA D  (decision) 

t1 a11 a12 a13 ..... a m1 d1

t2 a21 a22 a23 ..... a m2 d2

t3 31a a32 a33 ..... a m3 d3

..... ..... ..... ..... ..... ..... ..... 

tn an1 an2 an3 ..... anm dn

Rough set theory integrates a generalized approach to data, and relies on 
experts' knowledge about the problems to be solved. The rough set method 
also provides an effective tool for extracting knowledge from databases. 
The first step in data analysis based on the rough set theory is the creation 
of a knowledge-base, classifying objects and attributes within the created 
decision tables. Then, the knowledge discovery process is initiated in order 
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to remove some undesirable attributes, followed by the generalization of 
the concepts of desirable attributes. The final step, called reduct, is to ana-
lyze the data dependency in the reduced database and to find the minimal 
subset of attributes.

Decision rule is a formula of the form: 

)()(...)( 1 ddecisionvava mimij

where aiim VvPii ,...1 1

Atomic formulas (aij=vj) are called descriptors. A rule r is applicable to 
the object, or alternatively, the object matches rule, if its attribute values 
satisfy the premise of the rule. There are some numerical characteristics 
connected to the rule, namely matching and support. 

[r] – carrier of r, i.e. the set of objects satisfying the premise of r,

])([

)]([
)(

rcard

CLASSrcard
rconfidence k

No universal method of extracting knowledge from data exists. The ex-
isting methods exploit properties of rough sets in various ways. In rich bib-
liography one can find information on existing rough set-based reasoning 
systems, e.g. LERS, ROSETTA, RSES, PRIMEROSE, as well as descrip-
tions of numerous algorithms for such reasoning (Bazan and Szczuka 
2001; Bazan et al 2002; Chmielewski et al 1993a, 1993b; Czyzewski and 
Kaczmarek 1993; Grzymala-Busse and Lakshmanan 1992; Grzymala-
Busse and Grzymala-Busse 1994; Lenarcik and Piasta 1994; Polkowski 
and Skowron 1998c; Skowron 1994a, 1994b; Tsumoto et al 1998; Ziarko 
1993, 1994; http:// logic.mimuw. edu. pl /~ rses/; s .
rzeszow.pl/rsds.php). The number of minimal consistent decision

rules for a given decision table can be 
of the decision table. Therefore some heuristics may be implemented in

exponential with respect to the size

rough set-based systems: 

exhaustive algorithm which realizes the computation of object oriented 
reducts, such a method is based on Boolean reasoning approach, 

genetic algorithm along with permutation encoding and special cross-
over operator which allow for computing a predefined number of 
minimal consistent rules, 

(3.123)

(3.124)

length(r) - the number of descriptors in the premise of r

support(r)=card([r]) - the number of objects satisfying the premise of r,
confidence(r) - the measure of truth of the decision rule: 

h t t p : / / www. r sds.w i z
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covering algorithm which searches for minimal set of rules covering the 
whole set of objects, 

LEM2 algorithm which is also a covering algorithm. 

In addition the support of decision rules can be increased by means of 
discretization, rule shortening (i.e. removal of some descriptors from a 
given decision rule can increase its support but at the same time it de-
creases its confidence), and generalization of rules by merging rules con-
taining common descriptors.

The LERS system developed by Grzymala-Busse, uses two different 
approaches to rule induction, machine learning and knowledge acquisition, 
based on algorithms known as LEM1 and LEM2 (Learning from Examples 
Modules) (Chmielewski 1993a; Tsumoto et al 1998). The first algorithm is 
based on the global attribute covering approach, while the latter is local. 
LERS first checks the input data for consistency, after which lower and 
upper approximations are computed for every concept.  

Another system based on rough set theory is the experimental KDD sys-
tem designed at the University of Madrid, called RSDM, which provides a 
generic data mining engine (Tsumoto et al 1998). This system evolved 
from a previously engineered system called RDM-SQL. The system kernel 
includes the following modules: User Communication Module, Working 
Area, Dynamic Operator Loader, Mining Data Module and DW Commu-
nication Module. Another algorithm, namely TRANCE, described by its 
author as a Tool for Rough Data Analysis, Classification and Clustering, 
generates rough models of data (Tsumoto et al 1998). These models con-
sist of a partition of the data set into a number of clusters, which are then 
labeled with decisions. The system uses either systematic or local search 
strategies. The ProbRough system is used for inducing rules from data. 
First, it tries to find an optimal partition of the condition attribute value 
space that minimizes the average misclassification cost, and then it induces 
the decision rules. 

One of the best developed systems based on rough set theory is the 
ROSETTA software, which is a system for knowledge discovery and data 
mining (Tsumoto et al 1998). The kernel of this system was developed by 
the Skowron's research group at the University of Warsaw. A Norwegian 
group within the framework of a European project supported the GUI 
(Graphical User Interface) of this system. The system consists of several 
algorithms, the main ones of which are as follows: preprocessing of data 
tables with missing values, filtering of reducts and rules according to 
specified evaluation criteria, classification of new objects, and computing 
rough set approximations. The ROSETTA system provides heuristics for 
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search and approximations based on resampling techniques and genetic al-
gorithms. 

Rough Set Exploration (RSES) system has been created at the Warsaw 
University to enable multi-directional practical investigations and experi-
mental verification of research in decision support systems and classifica-
tion algorithms, in particular of those with application of rough set theory 
(Bazan and Szczuka 2001; http://logic.mimuw.edu.pl/~ rses/).  First ver-
sion of RSES and the  library RSESlib was  released  several  years ago 
(Bazan and Szczuka 2001; Bazan et al 2002). After modifications and im-
provements it was used in many applications. The RSESlib was also used 
in construction of the computational kernel of the ROSETTA system for 
data analysis (Tsumoto et al 1998). 

Another system which appeared recently is ROSE (Rough Set Data Ex-
plorer), developed at the Pozna  University of Technology. This system is 
a successor of the RoughDas and RoughClass systems which worked un-
der the DOS operating system. ROSE is a modular program (Windows en-
vironment) which allows for performing standard and extended rough set-
based analyses of data, extracting characteristic patterns from data, induc-
ing decision rules from sets of learning examples, evaluating the discov-
ered rules, etc. Additionally, it contains a module which offers both auto-
matic and user-defined discretization. RSL (Rough Set Library), on the 
other hand, implemented at the Warsaw University of Technology, is in-
tended as a kernel for any software implementation based on rough set 
theory. It offers two possible applications which may be based on an RS 
library, one of which is an interpreter of queries for the information system 
and the other of which is an expert system with a knowledge acquisition 
module (Tsumoto et al 1998).  

An environment for the synthesis and analysis of concurrent models 
based on rough set theory and Petri nets, ROSEPEN, was created by a re-
search group from Rzeszow University, PL. This system was developed 
using separate modules, one of which allows for handling data tables ac-
cording to rough set theory. The group of Rzeszow University also created 
a website in which a vast number of papers related to rough sets can be 
found (http://www.rsds.wsiz.rzeszow.pl/rsds.php). 

The RoughFuzzyLab system was engineered by a scientific group from 
the San Diego State University. It uses two approaches for data mining and 
rule extraction: one is based on rough set theory (minimum concept de-
scription), and the other uses fuzzy methodology. The PRIMEROSE 
(Probabilistic Rule Induction Methods based on Rough Sets) generates 
probabilistic rules from databases. The system is aim-oriented, specifically 
intended for use with medical databases. It allows not only for inducing 
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knowledge from data, but also provides estimation of probabilities and test 
statistics, cross-validation, etc. (Tsumoto et al 1998). 

KDD-R (Knowledge Discovery in Data using Rough Sets) is a system 
developed by Ziarko (Tsumoto et al 1998). It is an extension of previously 
introduced systems called DataQuest and DataLogic. The basic underlying 
methodology behind this software-based system is rough set theory. The 
major components of the system consist of data preprocessing and rule 
search. One of the main features of this system is its ability to extract rules 
from data, both numerical and categorical. Also, a rough set-based rule in-
duction algorithm was engineered at the Gdansk University of Technology 
(Czyzewski and Kaczmarek 1993; Czyzewski and Krolikowski 1998).  

Other algorithms and systems based on rough set theory which work in 
different software environments and which were created at various univer-
sities for different purposes are also in existence, but they will be not cited 
here because they are still under development or its applications are known 
less widely. 

Recently, the first volume of a new journal, Transactions on Rough Sets 
was prepared (Grzymala-Busse et al 2004). This journal, a new subline in 
the Springer-Verlag series Lecture Notes in Computer Science, is devoted 
to the entire spectrum of rough set related issues, starting from logical and 
mathematical foundations of rough sets, through all aspects of rough set 
theory and its applications, to relations between rough sets and other ap-
proaches to uncertainty, vagueness, and incompleteness, such as fuzzy 
sets, theory of evidence, knowledge discovery, data mining and intelligent 
information processing, etc. This very first volume, of which the author is 
co-editor, is dedicated to the mentor of rough sets, Professor Zdzislaw 
Pawlak, who enriched this volume with his contribution on philosophical, 
logical, and mathematical foundations of rough set theory. In this paper 
Pawlak shows the basic ideas of rough set theory as well as its relations 
with Bayes' theorem, conflict analysis, flow graphs, decision networks, and 
decision rules (Grzymala-Busse et al 2004). 

3.4.2 Discretization 

Feature vectors obtained as a result of the parametrization process can di-
rectly feed the inputs of classification systems, such as for example artifi-
cial neural nets, even if they consist of real values. On the other hand, 
rough set-based classification system requires discretized data. Some sys-
tems (e.g. RSES) incorporate discretization algorithms into the system 
kernel, while others need real values to be quantized. During the training 
phase, a number of rules are produced, on the basis of which the classifica-
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tion is then performed. Since the rules produced contain parameter values, 
their number should thus be limited to a few values. Otherwise, the num-
ber of rules generated on the basis of continuous parameters will be very 
large and will contain specific values. For this reason, the discretization 
process is needed (Swiniarski 2001). After the discretization process is fin-
ished, parameters no longer consist of real values.

Some researchers assign discretization techniques into three different 
axes: global vs. local, supervised vs. unsupervised, and static vs. dynamic. 
The distinction between global and local methods stems from discretiza-
tion when it is performed. Global discretization involves discretizing all 
continuous parameters prior to induction. They simultaneously convert all 
continuous attributes. In contrast, local methods, on the other hand, are ap-
plied during the induction process, where particular local regions may be 
discretized differently. They operate on a single continuous attribute at a 
time. Supervised methods are referred to as the ones that utilize class la-
bels during the discretization process. Many discretization techniques re-
quire a parameter, k, indicating the maximum number of intervals to pro-
duce in discretizing a feature. Static methods perform one discretization 
pass of data for each feature and determine the value of k for each feature 
independent of the other features. Dynamic methods conduct a search 
through the space of possible k values for all features simultaneously, 
thereby capturing interdependencies in feature discretization (Dougherty et 
al 1995; Swiniarski 2001).  

The parameter domain can be divided into subintervals and each pa-
rameter value belonging to the same subinterval will take the same value 
(quantization process); or parameter values can be clustered together into a 
few groups, forming intervals, and each group of values will be considered 
as one value (clusterization process). 

Several discretization schemes were reviewed by Chmielewski and 
Grzymala-Busse (Chmielewski and Grzymala-Busse 1994), among them: 
Equal Interval Width Method, Equal Frequency per Interval Method, and 
Minimal Class Entropy Method. They also proposed a method which uses 
a hierarchical cluster  analysis,  called  Cluster  Analysis Method 
(Chmielewski and Grzymala-Busse 1994). They discussed both local and 
global approaches to discretization problems. This last method should be 
classified as global, thus producing partitions over the whole universe of 
attributes (Skowron and Nguyen 1995). More recently, hybrid procedures 
(containing both rough set and Boolean reasoning of real value attribute 
quantization) were proposed by Skowron and Nguyen, explaining the na-
ture of quantization problems with respect to the computational complex-
ity. Using this approach, further development seems promising when using 
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proposed methods as evaluation tools for unseen object classification 
(Skowron and Nguyen 1995; Nguyen 1998; Nguyen and Nguyen 1998).   

Discretization methods based on fuzzy reasoning also appeared in litera-
ture (Bezdek et al 1987; Hong and Chen 1996; Kosko 1997; Kostek 1998b, 
1999; Slowinski 1994). One may find methods that substitute crisp discre-
tization subintervals with fuzzy subintervals defined by the attribute do-
mains (Slowinski 1994). These fuzzy subintervals have overlapping 
boundaries which are characterized by decreasing membership functions. 
Following the proposal made by Slowinski et al. (1996), first some discre-
tization methods such as minimal entropy per interval, median cluster 
analysis and discrimination-based method were used in the experiments. 
Next, for each cut point c on the attribute domain, two consecutive subin-
tervals were defined while the heuristic approach which minimizes the in-
formation entropy measure was applied. The applied measure was used in 
order to check whether consecutive crisp subintervals may be substituted 
with adequate fuzzy subintervals (Slowinski 1994). 

3.4.3 Application of Rough Sets to Musical Instrument Sound 
Classification

For the rough set-based classification, many experiments were carried out 
in the Multimedia Systems Department. The author’s papers in 90s started 
these experiments (Kostek 1995, 1996, 1998a, 1998b, 1998c, 1999). They 
were carried out for the purpose of searching for feature vectors that could 
optimally describe a musical sound. The extracted sound attributes were 
based on the Fourier analysis, and resulted in a dozen of parameters 
(Kostek and Wieczorkowska 1996, 1997; Wieczorkowska 1999a). Also, 
some comparison between classifier effectiveness was performed. Espe-
cially valuable was an analysis of reducts that pointed out significant 
sound descriptors. Obtained decision rules also illustrate significance of 
particular parameters. In case of most musical instrument classes, a few at-
tributes are sufficient to classify the investigated sound. Some of these 
works were done with cooperation of Wieczorkowska, who later published 
a series of papers that contained results obtained within her Ph.D. work, 
submitted at the Multimedia Systems Department (former Sound Engi-
neering), GUT (Wieczorkowska 1999a, 1999b). She used both FFT- and 
wavelet-based analysis for parameter derivation. It occurred that for pa-
rameterization based on the Fourier analysis, parameters calculated for the 
whole sound appeared most frequently in the reducts. Both onset and 
quasi-steady state could be found in reducts. However, the most distinctive 
attributes were such as for example: a fundamental frequency, an approxi-
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mate fractal dimension of a spectral graph, duration of the quasi-steady 
state and the ending transient, and velocity of fading of the ending tran-
sient, respectively. Especially important were parameters describing rela-
tive length of sound parts, since they enabled the recognition of pizzicato 
sounds. In the case of the wavelet-based parameterization attributes refer-
ring to the position of the center of the onset and the center of the steady 
state   played a   similar  role  to  the   mentioned  above   parameters  
(Wieczorkowska 1999a). Lately, some recent results were published by her 
and  her  co-workers   (Wieczorkowska  and  Czyzewski  2003; Wieczorkowska

 et al,  2003).
Another set of papers which deals with rough set-based classifiers was 

published by Lukasik and her co-workers from the Poznan University of 
Technology (Lukasik 2003a, 2003b; Lukasik and Susmaga 2003; Jelonek 
et al 2003, 2004). However, these studies were devoted to violin timbre 
quality classification. They applied a mixture of unsupervised learning and 
statistical methods to find and illustrate the similarity and dissimilarity fac-
tors in the timbre of violin voices. They constructed the AMATI sound da-
tabase that contained digitized recordings of 70 musical instruments pre-
sented at the Henryk Wieniawski 10th International Violinmakers 
Competition in Poznan, Poland, 2001, thus 17 000 sound files gathered in 
the database. Instruments whose recordings are contained in the AMATI 
database, are of master quality and they represent international schools of 
violinmaking. The database contains harmonic-based parameters for each 
sound. Signal waveforms, spectra and spectrograms are also available in 
the AMATI database. It includes open string bowed and pizzicato sounds, 
the entire range of notes across a chromatic scale on each string, a range of 
notes of diatonic scale and a fragment of J.S. Bach's work. The sound data 
served to extract various sets of features, including harmonic based pa-
rameters (e.g. brightness, Tristimulus, even and odd harmonics content), 
spectral parameters (e.g. energy, moments of various order), mel- and lin-
ear-scale cepstral coefficients, spectral envelope features (maxima and 
minima) and human ear auditory model features.  

The collection of sounds comprises material similar to the one that the 
jury of musicians examined during the audition. In the analyses, Jelonek  
and Slowinski, other authors working with the AMATI database  (Jelonek 
et al 2004), were interested in reconstructing the relationship between 
some pre-defined characteristics of the instruments and the verdict reached 
by the jury. On the basis of this ranking they attempted to infer a prefer-
ence model that is supposed to re-construct the preference of the jury. For 
this purpose they used inductive supervised learning methods that include 
a preference-modeling tool called Dominance-based Rough Set Approach. 
The analysis started with constructing a rough approximation of the pref-
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erence relation underlying the final ranking. This allowed inducing deci-
sion rules in terms of criteria considered by the jury but also in terms of 
other criteria, including various acoustic characteristics of violins. Both 
approaches served for discovering subsets of acoustic features that are 
relevant to producing rankings of violins (Jelonek et al, 2003, 2004). 

Experiments at Multimedia Systems Department 

Recent studies done at the Multimedia Systems Department brought some 
new results. Experiments were devoted to testing MPEG-7- and wavelet-
based sound descriptors. For the purpose of automatic classification based 
on the rough set theory the Rough Set Exploration System (Bazan and 
Szczuka 2001) was employed. The main principles of experiments were as 
while using a neural network-based classifier (see Chapter 3.3). The whole 
set of instrument recordings was divided into learning and testing sets in 
50/50 rate. The same musical instrument set was used. All MPEG-7-based 
attributes, exploited in previous analysis with neural networks (see Chapter 
3.3), were used in the decision table (Table 3.11). In addition, in some ex-
periments some wavelet-based attributes were added. It was found that 
Daubechies filters (2nd order) have the computational load considerably 
lower than while employing other types of filters, therefore they were used 
in the analysis. For the purpose of the study several parameters were calcu-
lated. They were derived by observing both energy and time relations 
within the wavelet subbands. Energy-related parameters are based on en-
ergy coefficients computed for the wavelet spectrum subbands normalized 
with regard to the overall energy of the parameterized frame corresponding 
to the starting transient. On the other hand, time-related wavelet parame-
ters refer to the number of coefficients that have exceeded the given 
threshold. Such a threshold helps to differentiate between ‘tone-like’ and 
‘noise-like’  characteristics  of the  wavelet   spectrum  (Kostek  and 
Czyzewski 2001b). Wavelet-based parameters were as follows: cumulative 
energy (Ecn) related to nth subband, energy of nth subband (En), en - time-
related parameter allowing for the characterization of the wavelet pattern, 
calculated for each wavelet spectrum subband, and referring to the number 
of coefficients that have exceeded the given threshold and fn - variance of 
the first derivative of the absolute value of the wavelet coefficient se-
quence. By means of Fisher statistic the number of wavelet-coefficient was 
reduced from 50 to a few ones forming the following feature vector: {E5,
E6, E8, E10/E9, e6, e7, e8, e10, f7, f10, Ec7, Ec8, Ec10}.

First, real values of attributes in the learning set were discretized (Fig. 
3.42a) to obtain lower number of different values. Each attribute value is 
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represented as a subinterval. Induced rules operate only on subintervals, 
giving chance to generalize the problem and to classify unknown objects. 
Subinterval ranges are obtained as a result of discretization algorithm. 
MD-heuristic is used for searches in the attribute domain cuts, which dis-
cern largest number of pairs of objects (Bazan and Szczuka 2001; Bazan et 
al 2002). The same cuts are then used to discretize attribute values of test-
ing objects. Global discretization method was applied first. Next, the gen-
eration of rules was performed (Fig. 3.42b). RSES system uses genetic al-
gorithm to induce rules (Bazan and Szczuka 2001; 
http://logic.mimuw.edu.pl/~ rses/). 

Table 3.11. Format of the decision table 

Key-

Num
hev LAT HSC ASE4 ASE5 SFM22 SFM24

Deci-

sion

57.64 0.9272 0.1072 914 ... -0.1761 -0.1916 ... 0.0971 0.0707 cello 

57.68 0.9178 0.1140 818 -0.1634 -0.1727 0.0927 0.0739 cello 
... ... ... ... ... ... ... ... ... ... ... 

53.03 0.7409 -0.7958 875  -0.2115 -0.2155 0.1108 0.0775 
t.
trom-
bone 

Fig. 3.42. Decision system description, a) discretization, b) generation of rules, c) 
classification (Bazan and Szczuka 2001) 

Each rule has an implication form, conditioning a decision on attribute 
values:

[ASE9 (- ,-0.15525) ASE10 (-0.16285,+ ) ASE11 (-0.16075,+ )
ASE13 (-0.18905, + ) ASE26 (- ,-0.18935)]  [decision = violin] 

or:

  3.4 ROUGH SET-BASED CLASSIFIER  



IF [(a value of ASE9 belongs to the interval (- ,-0.15525)) AND (a 
value of ASE10 belongs to the interval (-0.16285,+ )) AND ... AND (a 
value of ASE26 belongs to the interval (-0.18935,+ ))] THEN [decision IS 
violin]  

Rules are used to classify unknown objects of the testing set (Fig. 
3.42c). First, attributes of a new object are discretized with required cuts, 
and then, all rules are applied. If more that one rule is matching the object, 
then final decision is based on a voting method. 

Over 18000 rules were induced in the tests. Their principle was to clas-
sify a set of ten musical instruments. Most of them covered only few cases 
(Fig. 3.43). Maximum length of an induced rule (i.e. a number of attributes 
in an implication) is 11, minimum is 3, and the average is 6 (Fig. 3.44). 

Fig. 3.43. Quantity of rules covering the given number of cases 

Fig. 3.44. Histogram of the rule length 
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The results of classification employing a rough set-based system are 
presented in Table 3.12. The RSES system tested FVs that contained 
MPEG-7 based descriptors. 

Table 3.12. Classification accuracy while applying a global discretization method 

Musical instru-
ment 

No. of samples No. of errors Effectiveness [%] 

bassoon  201 60 70.1 

B flat clarinet 184 32 82.6 

oboe 165 12 92.7 

tenor trombone 171 25 85.4 

French horn 166 28 83.1 

alto saxophone 119 19 84.0 

violin 208 45 78.4 

trumpet 137 8 94.2 

F flat tuba 137 13 90.5 

cello 205 37 82.0 

Total 1693 279 83.5 

The average classification accuracy was 84%. The worst results were 
obtained for a bassoon and a violin. The instruments belonging to strings 
were often confused with each other. 

Another experiment consisted in discretization that employed a local 
method. Change of the experiment principles regarded FVs content. FVs 
contained a joint representation of parameters, namely MPEG-7 and wave-
let-based descriptors. To this end data were first divided into 50%/50% 
training and testing sets (1695 samples in each set). The length of a rule 
was limited to 10. In total, 27321 rules were derived. The average accuracy 
was 89% (see Table 3.13). The denotations in Table 3.13 are as follows: a 
bassoon (BAS), a B flat clarinet (CL), an oboe (OB), a tenor trombone 
(TT), a French horn (FH), an alto saxophone (AS), a violin (VI), a trumpet 
(TR), a F flat tuba (TU), a cello (CE), a coverage (Cov). Results for the 
combined representation are given by the diagonal of Tab. 3.13 (number of 
sounds correctly recognized). Other values denote the system erroneous 
answers made in the recognition process. The overall accuracy is also visi-
ble in this table. 
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It is also interesting to apply a rough set-based system in the context of a 
feature vector redundancy search. As expected, reducts obtained in the 
analysis consist of a fraction of the whole feature vector. For the MPEG-7-
and the wavelet-based feature vectors, the following parameters were 
found significant: HSD, TC, E8, KeyNumber, SC, E5, ASE14 and Ec10 in the 
sense that they were the most frequent parameters used in rules. 

Table 3.13. Classification accuracy while applying a local discretization method 
(1695 samples in training and testing sets) 

 BA
S

CL OB TT FH SA VI TR TU CE No. 
of 
obj. 

Accu-
racy
[%] 

Cov.

BAS 162 0 2 1 4 3 2 0 10 2 186 0.871 1 
CL 0 168 12 0 0 1 1 3 2 0 187 0.898 1 
OB 0 2 147 0 0 2 10 3 0 0 164 0.896 1 
TT 4 0 1 146 12 3 0 2 8 1 177 0.825 1 
FH 11 3 0 19 120 0 0 2 8 0 163 0.736 1 
SA 0 0 1 0 0 118 1 4 0 1 125 0.944 1 
VI 2 4 6 0 0 1 172 2 0 6 193 0.891 1 
TR 0 0 0 1 0 6 0 138 0 0 145 0.952 1 
TU 0 0 0 3 0 0 0 0 145 0 148 0.98 1 
CE 0 3 1 0 0 4 11 0 0 191 210 0.91 1 

Descriptors that were used in rule derivation are gathered in Table 3.14, 
other descriptors were disregarded while creating a set of rules of this clas-
sification task. 

Table 3.14. Descriptors used in rule derivation 

1 2 3 4 5 6 7 8 9 10 
Key-

Num

Br hev LAT TC SC HSC HSD HSDv HSS 

11 12 13 14 15 16 17 18 19 20 
HSV ASE1 ASE3 ASE4 ASE5 ASE7 ASE8 ASE9 ASE10 ASE12

21 22 23 24 25 26 27 28 29 30 
ASE14 ASE15 ASE16 ASE19 ASE24 ASE26 ASE28 ASE31 ASE32 ASE33

31 32 33 34 35 36 37 38 39 40 
ASE34 ASEm ASEv2 ASEv12 ASEv13 ASEv16 ASEv21 ASEv23 ASEv27 ASEv29

41 42 43 44 45 46 47 48 49 50 
ASEv33 ASEv34 ASCv ASSv SFM5 SFM8 SFM11 SFM14 SFM15 SFM16

51 52 53 54 55 56 57 58 59 60 
SFM18 SFM21 SFM23 SFMv5 SFMv8 SFMv19 SFMv24 E8 E10/E9 E5

61 62 63 64 65   
E6 e8 Ec10 Ec8 Ec7   
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In another experiment the division ratio of training and testing samples 
was 2/3 (2370 training samples and 1020 testing samples). The analysis re-
sulted in 34508 rules, and the classification accuracy reached 91.93% (see 
Table 3.15). FVs contained a joint representation of sound samples, 
namely MPEG-7- and wavelet-based descriptors. 

Table 3.15. Classification accuracy while applying a local discretization method 
(2370 training samples and 1020 testing samples) 

Musical instrument No. of samples Accuracy 

bassoon  112 0.964 

B flat clarinet 112 0.938 

oboe 99 0.889 

tenor trombone 106 0.858 

French horn 98 0.878 

alto saxophone 75 0.907 

violin 116 0.905 

trumpet 87 0.92 

F flat tuba 89 0.989 

cello 126 0.944 

It was also decided that the experiment would be extended to 24 musical 
instrument classes. They were: alto trombone (1), alto flute (2), Bach 
trumpet (3), bass clarinet (4), bass trombone (5), bass flute (6),  bassoon 
(7), Bb clarinet (8), C trumpet, (9), CB (10), cello (11), contrabass clarinet 
(12), contrabassoon (13), Eb clarinet (14), English horn (15), flute (16), 
French horn (17), oboe (18), piccolo (19), trombone (20),  tuba (21),  viola 
(22), violin (23), and violin ensemble (24) classes. Most errors resulted 
from similarities in the timbre of instruments, for example: such pairs of 
instruments as: a clarinet and a bass clarinet, a trombone and a bass trom-
bone, and also a contrabass (CB) and a cello were often misclassified due 
to their timbre similarity. In overall, in the case of 24 instruments the sys-
tem accuracy was equal to 0.78. 

Results of musical instrument classification based on rough sets are very 
satisfying. The average classification accuracy is higher than 90% for a 
dozen of instrument classes. It must be also stressed that the algorithm op-
erated under very demanding conditions: audio samples originated from 
two different sources and in most experiments only 50% of the samples 
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was included in the training/pattern sets. It should be also remembered that 
these classes contained sound samples of a differentiated articulation. 
Classification results are instrument-dependent. Instruments having very 
similar sound (e.g. tuba – trombone) or the same scale range (e.g. trom-
bone – bassoon) were most often confused with each other. 

The obtained results are close to those achieved by neural networks. 
However, a very essential feature of a rough set-based decision system is 
that the system supplies the researcher with a set of transparent rules. 

3.5 Minimum Distance Method-Based Classifier

3.5.1 Nearest-Neighbor Method and k-Nearest-Neighbor
Method

Minimum-distance methods, to which the nearest-neighbor (NNr) method 
and the k-Nearest-Neighbor (k-NN) method belong, are used very often 
due to their simple rules of operation and easy algorithm implementation. 

In the NNr method first all vectors of a training set are memorized and 
then for the need of a new object classification, its distance from the ele-
ments of the training set is computed. Recognition produces the class to 
which an object which is closest to the one being analyzed belongs (see 
Fig. 3.45).  
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Fig. 3.45. In the case of the NN algorithm the decision-making rule assumes that 
the unknown object (marked with an asterisk) will be classified to the cluster of 
objects closest in feature space 
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In the k-NNr method k nearest neighbors are considered, where k is usu-
ally a small integer. The object being recognized is then assigned to a 
class, to which most of the k nearest neighbors belong. Such approach pre-
cludes errors resulting from mistakes in the training sequence. The idea of 
distance is associated with metrics defined in the property space. The ap-
propriate metrics can be chosen empirically, in principle. This is a crucial 
problem of a fundamental impact on the obtained effects.     

Among the most often used metrics are the following: 

Euclidean metric: 

T
yxyxyxd ,

where x = [x1, ..., xN], y = [y1, ..., yN]

generalized Euclidean metric: 

T
yxWyxyxd ,
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where W is a diagonal weights matrix:  
Normalizing factors w can be associated with the vector constituent val-

ues in various fashions, e.g. they can depend on the variability range of 
their values. This leads to independence of conceivable dimensional dif-
ferences of individual vector constituents. 
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where C is a covariance matrix of the discussed element set. Using this 
measure of distance leads to rectifying a non-orthogonal set of coordinates. 

A disadvantage of the NNr and k-NN methods is the need to store all the 
training set elements as well as their large computational complexity. 
These algorithms do not possess any generalization mechanisms either. 
Another approach to the classification problem is the creation of pattern 
characteristics for each class of objects. In such a case a smaller number of 
objects is stored, what diminishes computational load.  

These algorithms were used by the author and her team for musical ob-
ject classification. Examples of such processing will be shown further on. 

3.5.2 K-Means Cluster Analysis   

Cluster analysis is a multivariate procedure for identifying groupings 
within data. The objects in these groups may be cases or variables. A clus-
ter analysis of cases is like a discriminant analysis because it attempts to 
classify a set of data into groups. However, unlike in a discriminant analy-
sis, neither the number nor the members of the groups are known. Cluster 
analysis is also called segmentation analysis or taxonomy analysis, be-
cause it searches to identify homogenous subgroups of cases in a popula-
tion. This means identification of a set of groups, which both minimize a 
within-group variation and maximize a between-group variation. The first 
step in cluster analysis is the establishment of the similarity or the distance 
matrix. This matrix is a table in which both the rows and columns are the 
units of the analysis and the cell entries are measures of similarity or dis-
tance for any pair of cases.  

K-means cluster analysis uses Euclidean distance. Initial cluster centers 
are chosen in a first pass of the data, then each additional iteration groups 
observations based on the nearest Euclidean distance to the mean of the 
cluster. Thus cluster centers change at each pass. The process continues 
until cluster means do not shift more than a given cut-off value or until the 
iteration limit is reached.  
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There are some similarity measures used in the identification of a data 
set. One of them is correlation. Data table in which columns are variables 
and rows are cases constitute the cells of the similarity matrix. Binary 
matching is another similarity measure, where 1 indicates a match and 0 
indicates no match between any pair of cases. There are multiple matched 
attributes and the similarity score is the number of matches divided by the 
number of attributes being matched. It is usual in binary matching to have 
several attributes because there is a risk that when the number of attributes 
is small, they may be orthogonal (uncorrelated), and clustering will be in-
determinate.  

Another technique, called Hierarchical Cluster Analysis, attempts to 
identify relatively homogeneous groups of cases or variables based on se-
lected characteristics. It uses an algorithm that starts with each case or 
variable in a separate cluster and combines clusters until only one is left. 
Hierarchical Cluster Analysis is considered as an exploratory method. Re-
sults should be confirmed with additional analysis and, in some cases, ad-
ditional research. Such techniques are often applied to MIR domain. 

3.5.3 Application of k-Nearest-Neighbor Method to Musical 
Instrument Sound Classification 

A variety of experiments were performed based on different configurations 
of feature vectors and k-NN method used as a classifier. Also, both hierar-
chic and direct forms of classification were evaluated. Among others, are 
studies by Kaminskyj and Materka (1995), and later by Martin and Kim 
(1998), Fujinaga (1998), Martin (1999), Fujinaga and MacMillan (2000), 
Kaminskyj   (2000;  2002),   Eronen (2001),   Agostini  et  al.  (2001), 
Wieczorkowska et al. (2003) can be cited. Typically, the k-NN classifier 
outperformed other recognition systems tested on the same set of sound 
samples, however most authors pointed out that such a system does not 
provide a generalization mechanism. A comparison of results obtained by 
different authors is difficult to present, because apart from different pa-
rameters and a different number of musical instrument classes, and in addi-
tion, a different origin of sound samples, also a cross validation procedure 
was performed based on different conditions. In some studies a split of 
training and testing data was 70%/30%, while in others it was 50%/50%, 
also other validation techniques were used.  Eronen in his study created a 
very comprehensive summary of results obtained by other authors; before 
proceeded his own experiments (Eronen and Klapuri 2000; Eronen 2001). 
In recently published studies, MPEG-7-based descriptors are often em-
ployed in experiments with k-NN classifiers, and in addition, for the pur-
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pose of testing the generalization ability of classifiers, sound samples 
originating from different sources are used. 

Experiments at GUT 

In addition to the decision systems used in experiments carried out at the 
Multimedia Systems Department, described before in this Chapter, the 
nearest neighbor algorithm was implemented for the comparison purposes. 
The algorithm finds a vector from a pattern set that is the most similar (has 
the smallest distance) to the vector being recognized. A Hamming distance 
measure is used and only one nearest neighbor is taken into account. It is 
assumed that the sound sample being recognized belongs to the same class 
of instruments as the nearest neighbor. The pattern set and the validation 
set contain 50% of all vectors. Vectors for the pattern set are chosen ran-
domly. The process is repeated 10 times and the pattern sets of vectors 
providing the best effectiveness of the classification is retained for further 
experiments. 

Detailed results of the musical instrument sound classification with the 
nearest neighbor algorithm are shown in Table 3.16. 

Table 3.16. Effectiveness of the nearest neighbor algorithm 

Instrument No. of samples No. of errors Effectiveness [%] 

bassoon 173 16 90.8 

B flat clarinet 185 10 94.6 

oboe 155 8 94.8 

tenor trombone 164 10 93.9 

French horn 179 17 90.5 

alto saxophone 129 2 98.5 

violin 204 12 94.1 

trumpet 137 0 100 

F flat tuba 158 0 100 

cello 212 13 93.9 

Total 1696 88 94.8 

All sample sounds of trumpets and F flat tubas were recognized cor-
rectly. The worst classification effectiveness was obtained for bassoon 
sounds, which were confused with tenor trombones and F flat tubas, and 
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for French horns, which were confused with tenor trombone sounds. There 
is a noticeable difference between the results of the best and the worst 
classified instrument, reaching almost 10%. 

Algorithm Comparison 

The best total of the effectiveness of 94.8% has been obtained by the near-
est neighbor algorithm (denotation in Fig. 3.46 is given as k-NN), however 
both neural network algorithms single and two-staged (denotations in Fig. 
3.46 are: singleNN and t-sNN) are only 1-2% worse. The effectiveness of 
rough set-based (RS) algorithms (both using global and local discretization 
methods) was slightly behind the other ones, which is illustrated in Fig. 
3.46.  

Classification accuracy [%]

75

80

85

90

95

100

singleNN t-sNN RSglobal RSlocal k-NN

Fig. 3.46. Effectiveness of musical instrument classification 

It was also checked whether, despite the algorithm used, the results of 
classification depend on the source of the sound samples: Catalogue or 
MUMS (Table 3.17).

It is clearly seen that some algorithms better identify sound samples 
from the Catalogue, others from MUMS. It means that the origin of the 
sound sample influences the result of classification, however no satisfying 
explanation can be given to this fact. 
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Table 3.17. Source of sound samples and effectiveness of classification 

Origin of samples – classification [%] 
Algorithm 

Catalogue MUMS 

single neural network 92.0 93.1 

two-staged neural 
network 

94.6 90.4 

rough sets 85.4 83.2 

rough sets 89 87.4 

nearest neighbor 94.1 97.4 

Additional experiments were carried out with the number of recognized 
classes increased to 16. The additional instruments were: viola, bass trom-
bone, English horn, baritone saxophone, soprano saxophone and B flat 
tuba. The feature vector used in experiments was the same as for 10 in-
struments. Summary results of classification are presented in Table 3.18.  

Table 3.18. Results of 16 musical instruments classification 

Algorithm 
No. of 
samples 

No. of 
errors

Effective-
ness

single neural 
network 

2517 340 86.5% 

two-staged neu-
ral network 

2517 272 89.2% 

nearest neighbor 2517 238 90.5% 

Extending the number of recognized instruments resulted in lowering 
the total effectiveness by approx. 6% for each algorithm.  Still, the effec-
tiveness of the nearest neighbor algorithm was slightly better than this of  
the two-staged neural network. 

The additional instruments used in the experiments are very closely re-
lated to the previous ones. Practically, all errors generated by the decision 
systems are the results of confusing pairs of very similar instruments (e.g. 
viola – violin, bass trombone – tenor trombone). It is assumed that the ef-
fectiveness of classification may be improved provided that the feature 
vector is updated accordingly to the sound characteristics of all 16 instru-
ments.
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3.6 Genetic Algorithm-Based Classifier

3.6.1  Evolutionary Computing  

As reviewed by Spears (http://www.cs.uwyo.edu/~wspears/overview/), the 
origins of evolutionary algorithms can be traced to at least the 1950's and 
1960s (Box 1957; Fraser 1962). Over the next decades, three methodolo-
gies have emerged: evolutionary programming (Fogel et al 1966), evolu-
tion strategies  (Rechenberg,  1973),  genetic  algorithms (Davis 1991; 
Holland 1975), and their applications (Banzhaf et al 1998; Goldberg 1989; 
Horner and  Goldberg 1991;  De  Jong 1992, De Jong  and Spears 1991;  
Fogel 1992;  Fraser  and  Burnell,  1970; Koza 1991, 1992; Michalewicz 
1992; Spears and De  Jong 1991,  Papadopoulos  and  Wiggins 1998;  
Srinivas and Patnaik 1994). The principal constituents of the evolutionary 
computation (EC) are: genetic algorithms (GA), evolution strategies (ES), 
evolutionary programming (EP), genetic programming (GP), and classifier 
systems (CS). Algorithms used within Evolutionary Computation are 
based on the principles of natural evolution used to solve a wide range of 
problems which may not be solvable by standard techniques. Central to 
such systems is the idea of a population of genotypes that are elements of a 
high dimensional search space. For example, in simple genetic algorithms 
(Goldberg 1989), genotypes are binary strings of some fixed length (n) that 
code for points in an n-dimensional Boolean search space. 

Evolutionary computation uses the computational models of evolution-
ary processes as key elements in the design and implementation of com-
puter-based problem solving systems. There are a variety of evolutionary 
computational models that have been proposed and studied which can be 
referred to as evolutionary algorithms. They share a common conceptual 
base of simulating the evolution of individual structures via processes of 
selection and reproduction. These processes depend on the perceived per-
formance (fitness) of the individual structures as defined by an environ-
ment. More precisely, evolutionary algorithms maintain a population of 
structures that evolve according to rules of selection and other operators, 
such as recombination and mutation. Each individual in the population re-
ceives a measure of its fitness in the environment. Selection focuses atten-
tion on high fitness individuals, thus exploiting the information available 
on fitness. Recombination and mutation perturb those individuals, provid-
ing general heuristics for exploration. Although simplistic from a biolo-
gist's viewpoint, these algorithms are sufficiently complex to provide ro-
bust and powerful adaptive search mechanisms.  
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An evolutionary algorithm typically initializes its population randomly, 
although  domain specific knowledge can also be used to bias the search. 
Evaluation measures the fitness of each individual according to its value in 
an environment. Evaluation may be as simple as computing a fitness func-
tion or as complex as running an elaborate simulation. Selection is often 
performed in two steps, parent selection and survival. Parent selection de-
cides who becomes a parent and how many children the parents have. 
Children are created via recombination, which exchanges information be-
tween parents, and via mutation, which further perturbs the children. The 
children are then evaluated. Finally, the survival step decides who survives 
in the population. 

Although similar at the highest level, each of these varieties implements 
an evolutionary algorithm in a different manner. The differences touch 
upon almost all aspects of evolutionary algorithms, including the choice of 
representation for individual structures, types of selection mechanisms, 
forms of genetic operators, and measures of performance. These ap-
proaches in turn have inspired the development of additional evolutionary 
algorithms such as ‘classifier systems’. The interested reader is encouraged 
to study a very reach literature for more details 
(http://www.cs.uwyo.edu/~wspears/overview/).  

3.6.2 Evolutionary Programming  

Evolutionary programming (EP), developed by Fogel et al. (1966) tradi-
tionally has used representations that are tailored to the problem domain 
(http://www.cs.uwyo.edu/~wspears/overview/). For example, in real-
valued optimization problems, the individuals within the population are 
real-valued vectors. Similarly, ordered lists are used for traveling salesman 
problems, and graphs for applications with finite state machines. EP is of-
ten used as an optimizer, although it arose from the desire to generate ma-
chine intelligence.

After initialization, all N individuals are selected to be parents, and then 
mutated producing N children. These children are evaluated, and N survi-
vors are chosen from 2N individuals, using a probabilistic function based 
on fitness. In other words, individuals with greater fitness have a higher 
chance to survive. The form of mutation is based on the representation 
used, and is often adaptive. For example, when using a real-valued vector, 
each variable within an individual may have an adaptive mutation rate that 
is normally distributed with a zero expectation. Recombination is not gen-
erally performed since the forms of used mutation are quite flexible and 
can produce perturbations similar to recombination, if desired. As dis-
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cussed in the later section, one of the interesting and open issues is the ex-
tent to which an EA is affected by the choice of the operators used to pro-
duce variability and novelty in evolving populations.  

Evolution Strategies

Evolution strategies (ESs) were independently developed by Rechenberg 
(1973), with selection, mutation, and a population of size one. Schwefel 
(1977) introduced recombination and populations with more than one indi-
vidual, and provided a nice comparison of ESs with more traditional opti-
mization techniques. Due to initial interest in hydrodynamic optimization 
problems, evolution strategies typically use real-valued vector representa-
tions (http://www.cs.uwyo.edu/~wspears/overview/).

After initialization and evaluation, individuals are selected uniformly 
and randomly to be parents. In the standard recombinative ES, pairs of 
parents produce children via recombination, which are further perturbed 
via mutation. The number of children created is greater than N. The sur-
vival is deterministic and is implemented in one of two ways. The first one 
allows N best children to survive and to replace their parents. The second 
one allows N best children and their parents to survive. Like in EP, consid-
erable effort has focused on adapting mutation as the algorithm runs by al-
lowing each variable within an individual to have an adaptive mutation 
rate that is normally distributed with a zero expectation. Unlike in EP, 
however, recombination does play an important role in evolution strate-
gies, especially in adapting mutation.  

3.6.3  Genetic Algorithms  

Genetic algorithms (GAs), developed by Holland (1975), combine selec-
tion, crossover, and mutation operators with the goal of finding the best so-
lution to a given problem. A genetic algorithm is a stochastic search tech-
nique based on the principles of biological evolution, natural selection, and 
genetic recombination, simulating survival of the fittest in a population of 
potential solutions or individuals. Typically, a domain independent repre-
sentation, namely, bit-strings are used. These strings are referred to as 
chromosomes. Sites on the chromosome corresponding to specific charac-
teristics of the encoded system are called genes, and may assume a set of 
possible values, thus corresponding to alleles. Many recent applications of 
GAs focused on other representations, such as graphs (neural networks), 
ordered lists, real-valued vectors, and others. GAs are often used as opti-
mizers, although some researchers emphasize its general adaptive capabili-
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ties (De Jong 1992). Genetic algorithms are typically implemented as a 
computer simulation in which a population of abstract representations 
(chromosomes) of candidate solutions (individuals) to an optimization 
problem evolves toward better solutions.  

The basic genetic algorithm operation (see Fig. 3.47) proceeds in the 
following phases (http://www.cs.uwyo.edu/~wspears/overview/): 

initiation – selecting initial chromosome population, 
fitness evaluation of chromosomes in a population, 
testing for the stop condition, 
chromosome selection, 
using genetic operators,  
creating a new population, 
output of the most fitted chromosome. 

Each phase characteristics are shown below in this section. 
START

INTITIAL POPULATION

SELECTION

CROSSOVER

STOP

MUTATION

LAST
POPULATION?

NOYES

FITNESS EVALUATION

Fig. 3.47. Genetic algorithm operation flowchart 

Initiation - Selecting Initial Chromosome Population 

Selection of the initial chromosome population can be carried out in many 
ways.  In a great number of cases it will be carried out randomly which is 
supposed to assure the uniform distribution of the initial population and – 
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in consequence – makes it easier to find a global optimum and prevents 
coming to a local extremum of the fitness function. 

After the initialization parents are selected according to a probabilistic 
function based on a fitness criterion. In other words, the individuals with 
higher fitness are more likely to be selected as parents. N children are cre-
ated via recombination from N parents. N children are mutated and sur-
vive, replacing N parents in the population.  

Fitness Evaluation of Chromosomes in a Population 

The evaluation step consists in calculating the fitness function value for 
each chromosome from this population. The higher the fitness value the 
better adapted a given chromosome. The solution can be exact (extremum 
of the fitness function) or approximate. The approximate solution may 
come from the fact that the chain quality can depend on the parameter, at 
which the quality evaluation is done, e.g. from the initial state in the case 
of control. To free from the influence of a parameter, quality calculations 
for many parameter values must be carried out and obtained results must 
be averaged.

Testing for the Stop Condition

Determining the stop condition depends on a concrete use of the genetic 
algorithm. In optimization methods, if the maximum (or minimum) value 
of the fitness function is known, stopping the algorithm can happen after 
the required optimal value is achieved, or with a specified accuracy. There-
fore, the optimization process will be performed until some convergence 
criteria (the maximum fitness in the population ceases to increase) are sat-
isfied. Stopping the algorithm can also take place, if its continued working 
does not improve the best value obtained so far.  The algorithm can be also 
stopped after a certain operation time has expired or after a certain number 
of iterations.  If the stop condition is fulfilled, then the pass to the last step 
happens. The output is the best fitted chromosome.  Otherwise, the next 
step is selection. 

Chromosome Selection 

The chromosome selection is based on the values calculated by the fitness 
function. The selected chromosomes take part in producing descendants to 
the next generation. The selection happens according to the natural selec-
tion principle – the best chance for being selected have the chromosomes 
that show the highest value of the fitness function. In order to prevent the 
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solution set from converging too early to a sub-optimal or local solution, 
the selection is biased towards elements of the initial generation, which 
have better fitness, though usually not to such a degree that poorer ele-
ments have no chance to participate.

There are many selection methods, whereby the roulette wheel method 
is the most popular one. In the roulette wheel method, also called the fit-
ness proportionate selection, the fitness level is used to associate each in-
dividual chromosome with a probability of selection. While the candidate 
solutions with higher fitness are not likely to be eliminated, there is still a 
chance that some weaker solutions may also survive the selection process. 
This could be an advantage, even though a solution may be weak, it may 
include some components, which may prove to be useful in the process of 
recombination. Another method, often used in GAs is the tournament se-
lection method. It makes n tournaments in order to choose n individuals. 
The individual with the highest fitness in the group of k elements is se-
lected, the others are removed. The most widely spread tournament selec-
tion is at k=2.

The roulette wheel method consists in assigning to each chromosome a 
sector of the roulette wheel, which is proportional to the fitness function 
level for a given chromosome. Therefore, the higher the fitness function 
value the bigger the sector of the roulette.  The whole roulette wheel corre-
sponds to the sum of the fitness function values of all chromosomes of a 
given population. Each chromosome, that is denoted by chi, for i = 1, 2, ..., 
N, where N is the population dimension, corresponds with the wheel sector 
v(chi) that forms the fragment of the whole wheel, expressed in percentage 
according to the formula (Michalewicz 1992): 

v(chi) = ps(chi) 100%

where ps(chi) is the selection probability of the chromosome chi.

The chromosome selection can be understood as the roulette wheel rota-
tion with the consequence that the chromosome belonging to the drawn 
sector of the roulette wheel will be chosen. The bigger the heel sector (or 
higher the level of the fitness function), the higher the probability that a 
given chromosome will be chosen.  As the result of the selection process, 
the parental population (a so-called parental pool) will be created, with the 
same dimension as the current population of  N individuals. 
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Using Genetic Operators 

Using genetic operators leads to creating a new population of descendants 
obtained from a parental pool chosen by a selection method.  In the classi-
cal genetic algorithm, apart from selection, two basic operators are used:  

crossover (recombination),  
mutation.  

Crossover takes a portion of each parent and combines the two portions 
to create the offspring. A number of recombination operators are widely 
used. The most popular are one-point (or single-point), multi-point (or n-
point) and uniform recombinations. One-point recombination inserts a cut-
point within two parents. Then the information from the segments before 
the cut-point is swapped between the two parents. Multi-point recombina-
tion is a generalization of this idea introducing a higher number of cut-
points. Information is then swapped between pairs of cut-points. Uniform 
crossover does not use cut-points, but simply a global parameter to indi-
cate the likelihood of each variable to be exchanged between two parents.

The first stage of the crossover consists in selecting a pair of chromo-
somes from a parental population. This is a temporary population consist-
ing of chromosomes chosen using the selection method and assigned for 
further processing by means of genetic operators to create a new a popula-
tion of descendants. The chromosomes from the parental population will 
be joined in pairs randomly, according to probability pc (it is assumed in 
general that 0.6<pc<1).  For each pair of parents – selected this way – a 
gene position in a chromosome will be drawn.  That gene position deter-
mines a so-called crossover point.  The selection of the crossover point lk

will resolve into drawing a number from the range [1, L-1].  As a result of 
the crossover of a pair of parental chromosomes, the following pair of de-
scendants will be obtained:  

descendant whose chromosome consists of genes derived from the first 
parent at positions 1, ..., lk, and derived from the second parent at posi-
tions lk+1, ..., L,

descendant whose chromosome consists of genes derived from the first 
parent at positions lk+1, ..., L, and derived from the second parent at 
positions 1, ..., lk .

GAs typically use mutation as a simple background operator, to ensure 
that a particular bit value is not lost. The mutation operator is of secondary 
importance in relation to the crossover operator. Mutation is needed to 
guard against premature convergence, and to guarantee that any location in 
the search space may be reached. According to the probability of mutation 
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pm (in general 0<pm<0.1) reverses the gene value in a chromosome to an 
opposite one (from 0 to 1 or vice versa).  Carrying out mutation according 
to probability pm consists in, e.g., drawing a number from the range [0, 1] 
for each gene and choosing such genes for mutation for which the drawn 
number is lower than or equals pm . 

Creating a New Population

The chromosomes obtained as a result of a genetic operator enter into the 
composition of a new population. This population is called a current popu-
lation for a given population of a genetic algorithm.  The fitness function 
value for each of the chromosomes of that population will be calculated in 
every subsequent iteration.  Thereafter, the stop condition of the algorithm 
will be tested and either a result in the form of a chromosome of the high-
est value of the fitness function will be outputted, or the pass to the selec-
tion will take place.  In the classical genetic algorithm, the whole forego-
ing chromosome population will be replaced by a new population, as 
numerous as the old one.  

Output of the Most Fitted Chromosome 

If the stop condition of an algorithm is fulfilled, the result of the algorithm 
operation should be the output, in other words the solution to the problem 
should be produced.  The best solution is a chromosome with the highest 
value of the fitness function.

Problems in Designing Genetic Algorithms

Central to every evolutionary algorithm is the concept of fitness (i.e., 
evaluation). The selection might only be based on the relative ordering of 
fitness. This form of selection is often referred to as ranking selection, 
since only the rank of individuals is of importance. All individuals are se-
lected to be parents. Each parent is mutated once, producing N children. A 
probabilistic ranking mechanism chooses the best N individuals for sur-
vival, from the union of the parents and children. Again, this is a selection 
mechanism based on a rank. Although the GA community advocated rank-
ing for some situations, but they also believe that fitness functions should 
be searched differently. Fitness proportional selection is a probabilistic se-
lection mechanism of the traditional GA. Parent selection is performed 
based on how fit an individual is with respect to the population average. 
For example, an individual with the fitness twice the population average 
will tend to have twice as many children as average individuals. Survival, 
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though, is not based on fitness, since the parents are automatically replaced 
by the children.  

Despite some work on adapting representation, mutation, and recombi-
nation within evolutionary algorithms, very little has been accomplished 
with respect to the adaptation of population sizes and selection mecha-
nisms. The biggest problem that arises in a design phase of a genetic algo-
rithm is finding a proper coding. Such algorithms do not show conver-
gence with suboptimal solutions for every code.  Good coding should 
fulfill at least two such conditions. Namely, it should be immune from the 
crossover operation (i.e. after the replacement of genetic material the new 
sequences should be available for decoding).  It is a common case that ef-
forts will be undertaken to match the crossover operation with the coding 
used. Secondly, small, coherent fragments of code sequences should re-
flect some specific features of the solutions.  Only then the descendants in-
herit the properties of their ancestors. The next problem is selecting a suit-
able target function.  This function is not always given explicitly in the 
problem, and even if it is, its modification – at maintaining the maximum – 
can prove to be advantageous. The key importance for the convergence of 
subsequent iterations is also the correct selection of relevant coefficients 
(crossover and mutation probability, the population size, etc.). 

Genetic algorithms developed at the Multimedia Systems Department 
(GUT) were used in many applications, some of them will be shown in the 
following Section, some others later on in subsequent Chapters.  

3.6.4  Application of Genetic Algorithms to Musical Instrument 
Sound Classification 

The motivation for the presented experiments has arisen from the study of 
Lim and Tan (Lim and Tan 1999). The authors used genetic annealing al-
gorithm (GAA) for optimizing sound parameters of the double frequency 
modulation (DFM) synthesis technique. Synthesized sound samples ob-
tained by using DFM and GAA were very similar to sounds generated by 
musical instruments. Thus a question may be posed whether it is possible 
to use such techniques in the process of automatic identification of musical 
instrument sounds. The process is shown in Fig. 3.48, and the program 
flow chart is presented in Fig. 3.49. 

automatic

parameterization decision
x[n]

neural networkgenetic

algorithm

Fig. 3.48. Block diagram of the algorithm of the automatic parameter extraction 
system 
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Fig. 3.49. Program flow chart 

The starting point in this case is parameterization. Sound samples being 
identified are subject to automatic parameterization; the result is a feature 
vector of representative sound properties. Such a vector is then transmitted 
to the genetic algorithm input. The genetic algorithm forms chromosome
populations that contain binary chains.  The numeric presentation of such a 
chain is equivalent to the four parameters of the DFM synthesis - I1, I2, f1,
f2 (Lim and Tan 1999).  In the first place sound is synthesized for each 
chromosome according to the synthesis parameters I1, I2, f1, f2, coded in it. 
Then its automatic parameterization is carried out which is identical with 
the parameterization of the sound being identified.  Such parameters of the 
synthetic sound are then compared with the corresponding model parame-
ters of the sound being identified.  A chromosome survives that transfers 
information about the synthesis of the sound that, with respect to sound pa-
rameters and according to the fitness function, is most similar to the mod-
eled one. Other chromosomes are subject to mutation and crossing.  The 
process is repeated for some consecutive chromosome generations.  Fi-
nally, the most adapted chromosome that stores the parameters I1, I2, f1, f2

of the DFM synthesis are obtained.  Such parameters are treated as features 
representing the instrument sound being identified and then transmitted to 
the input of the neural network.  Information about the instrument class is 
additionally transmitted during the training phase of the neural network.

Thus, the decision making process proceeds in three main phases: 

Samples of the sound being analyzed are subject to automatic pa-
rameterization. 
The sound with parameter values most closed to those of the sound 
being analyzed are generated by means of the DFM synthesizer. 
The decision about the sound membership/assignment to a given 
class is taken based on the synthesis parameters. 
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Experiments carried out using the system are supposed to answer the 
question whether using sound synthesis parameters, obtained from the ge-
netic algorithm processing, as the input vector for the neural network is the 
solution to sound identification process.  The experiments shown above 
were partially conducted within the M.Sc. thesis of Leszczyna supervised 
by the author (Leszczyna 2002). 

The effectiveness of the system was investigated based on a set of sam-
ples of musical instruments contained in the Catalogue of Musical Instru-
ment Sounds of the Multimedia Systems Department, GUT (Kostek 1999). 
The program detects the beginning of the sound in the sample, performs 
the identification of the sound envelope phases (Attack and Sustain phase) 
and carries out the parametrization determining the number of available 
harmonics, brightness, even and odd harmonics contents, the first to the 
second harmonic amplitude ratio – for the Sustain phase, first, second and 
third Tristimulus – both for the Sustain and Attack phase – and the dura-
tion of the Attack phase. The pitch detection algorithm was based on 
Schroeder's histogram.  

In one of the first steps of experiments a calibration of parameters of the 
genetic algorithm was performed in order to answer how numerous popu-
lations must be and how many generations are needed to achieve the preset 
degree of similarity. After the calibration of the genetic algorithm is done, 
the sound parameterization is carried out.  As the result of this parameteri-
zation, four-dimensional vectors are obtained that include the parameters 
of the DFM synthesis and become the basis for investigations using neural 
networks.  The experiments show, if vectors constructed this way are 
characteristic for instrument classes.  

Genetic Algorithm 

The aim of the implemented genetic algorithm is generating such four 
DFM synthesis parameters for which a synthesized sound is as similar to 
the original sound as possible, and this is according to the fitness function.  
Such parameters, together with determining the instrument class, form the 
basis of the training set for the neural network.  

The DFM (Double Frequency Modulation) synthesis consists in signal 
generating, according to the following formula: 
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where:
- x[i] - i-th sample of synthesized signal, 

(3.133)
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- i - sample number, 
- A - amplitude of synthesized signal, 
- I1, I2 - modulation indices of two frequencies, 
- f1, f2 – respective frequencies, 
- fS - sampling frequency. 

When generating a signal, the parameters I1, I2, f1, f2 play the most im-
portant role, whereby their values decide on the timbre of the generated 
sound (Lim and Tan 1999). The higher the modulation index, the more 
widespread the signal spectrum. Although, some optimization procedures 
exist that select synthesis parameters which allow to achieve the desirable 
spectrum of a synthetic signal, the appropriate parameter selection is still a 
great challenge.  In practice, trial-and-error methods or complex numerical 
methods are applied, in order to achieve this aim. Recently genetic algo-
rithms were used for this purpose (Lim and Tan 1999). The relevant pa-
rameters which determine the spectrum of the synthesized waveform, can 
be evaluated by the fitness parameter. The smaller the fitness for a given 
set of parameters, the closer is the resultant spectrum to the desired one. 

After the first chromosome population is generated, the estimation of 
chromosome adapting in the population is carried out at each step of the 
algorithm.  Then the chromosome selection takes place and crossing and 
mutation are carried out.  If the stop condition is not fulfilled, a new popu-
lation is created. The selection of the first chromosome population is car-
ried out randomly. The estimation of the chromosome adapting consists in 
the translation of a chromosome binary chain into the four DFM synthesis 
parameters and then – using them – in sound generating.  Such a sound is 
then parameterized. The parameter similarity for both sounds is estimated 
according to the following formula: 
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where:
- PO, PS – original and synthesized sound fundamental frequencies, 
- T1O, T1S - Tristimulus I of the original and synthetic sound, 
- T2O, T2S - Tristimulus II of the original and synthetic sound, 
- NO, NS – the number of harmonics of the original and synthetic 

sound,
- BrO, BrS - original and synthetic sound brightness, 
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- hevO, hevS – number of even harmonics of the original and synthetic 
sound,

- hoddO, hoddS - the number of odd harmonics of the original and syn-
thetic sound, 

- A1A2RelO, A1A2RelS  - the amplitude ratio for the first and the sec-
ond harmonics of the original and synthetic sound, 

- wi – weight coefficients, 8,1i .

It should be remembered that the lower the fitness function value, the 
more similar the sounds are. 

After the estimation of the chromosome adapting in the whole popula-
tion is done, 20% of the population remains unchanged and the other 80% 
is subject to random crossing and mutation.  The roulette method is applied 
to select chromosomes to cross. However, mutation takes place according 
to uniform distribution.  

In the program of musical instrument sound automatic identification, 
besides the fitness function weights, it is possible to determine the iteration 
number and the individual number in the population.  In the parameter 
window of the DFM synthesis there are also the Imax, Imin and fmax, fmin val-
ues to be determined, as those values decide on the value ranges being 
generated.  The narrower the range, the higher the effectiveness of the ge-
netic algorithm operation.  The genetic algorithm terminates after the pre-
set iteration number is reached.  

Neural Network 

The aim of the implemented and trained neural network was the separation 
of training objects belonging to different instrument classes. A three-layer 
neural network was implemented, and the unipolar activation function was 
used.

In the program of musical instrument sound automatic identification the 
values of parameter I are determined directly based on values Imax and fmax

according to the formula (Lim and Tan 1999): 

1

))((log2))((log2 max2max2

nI
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where n is the dimension of the network input vector, ceil(x) denotes the 
function which returns the smallest integer that is greater or equal to x.

cord the four DFM synthesis parameters increased by 1.  The additional 
(n+1)th node gets the constant value of 0 on its input.  This node ensures 

(3.135)

The formula (3.135) returns the minimum number of bits needed to re-
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that the component wn+1 concerning the total stimulation of neurons is ob-
tained  (Hong and Chen 1996). 

Experiments

The experiments using genetic algorithm consisted in carrying out an 
automatic parameterization of the set of musical instrument sound samples 
and in generating synthetic sound as similar to the original one as possible. 
Sound brightness was assumed to be similarity fitness. The fitness function 
had assumed the following form: 

SO BrBrz

because the weights wi, where 8,64,1i , were assigned the value of 

0 and weight w5 was assigned the value of 1. 
The first series of experiments consisted in a proper selection of two pa-

rameters of the genetic algorithm, i.e. the number of functional iteration 
and the number of individuals in the population.   The selection of the 
DFM synthesis parameters, Imax and fmax , was also carried out.  As the re-
sult of the investigations Imax was assigned the value of 0, and  fmax  3200 
Hz. It was assumed that the value of fmax mentioned above results from the 
analysis of the fundamental frequency of sounds that form the parametriza-
tion basis.  The highest pitch is G7 which corresponds with the frequency 
of 3135 Hz.  As already mentioned for the 10th iteration and the chromo-
some population size of 20, the maximum brightness distance between the 
pattern and the synthetic sound reached the value of 0.637. It had been as-
sumed that doubled number of iteration (equal to 20) and the number of 
individuals in population equal to 20 are the values that make up a good 
compromise between the effectiveness of approximation and the time-
consumption.  

The parametrization of the set of 1167 sounds of 16 musical instru-
ments, belonging to various groups, and played with differentiated articu-
lation, was carried out. Afterwards, the statistical analysis of obtained pa-
rameter vectors  [I1 f1 I2 f2] was performed. The average distance between 
the brightness of the original and the synthesized sound was equal to 
0.138. Approximately 80% of all generated sounds differ from the original 
ones with respect to the average value of brightness. The difference be-
tween the brightness of natural and synthesized sounds is lower than 0.3 
for 93% of sounds. In addition, values of Fisher statistics were calculated 
and the distribution over pairs of parameter values in a two-dimensional 
space was estimated. The analyses have shown that parameters are charac-
terized by very low separability. These observations have proved that ac-
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cording to a chosen fitness function the DFM synthesis parameters ob-
tained in a non-deterministic process are not suitable for the use as ele-
ments of a vector of sound representative properties. Better separability of 
sounds was obtained only after adding back all other parameters to the fit-
ness function, and in addition by manipulating weights of this function.

3.7  Other Technique-Based Classifiers  

3.7.1 Decision Trees

Decision tree learning, referred to as a method for approximating discrete-
valued target functions, is one of the most widely used and practical meth-
ods for inductive inference. Each leaf-node of a decision tree represents a 
complete classification of a given object, and each non-leaf node repre-
sents an attribute test. An attribute describes a characteristic of an object. 
Therefore, objects can be classified based on the results of successive at-
tribute tests. Decision tree learning algorithms use a set of decision trees to 
represent a hypothesis space. Given a set of objects, the algorithm searches 
through this space to create a decision tree that most adequately partitions 
objects to different classes. An object is represented as a conjunction of 
variable values. Each variable has its own domain of possible values, typi-
cally discrete or continuous. The final decision tree returned by the algo-
rithm represents the final hypothesis. Ideally, this hypothesis will correctly 
categorize future objects. A decision tree with a range of discrete class la-
bels is called a classification tree, whereas a decision tree with a range of 
continuous values is called a regression tree. The space of all possible in-
stances is defined by a set of possible objects that one could generate using 
these variables and their possible values. The well known programs for 
constructing decision trees are ID3 (Quinlan 1986, 1987), and CART 
(Classification and Regression Tree) (Breiman et al 1984). ID3 stands for 
"Iterative Dichotomizer (version) 3", later versions include C4.5 and C5 
programs (Quinlan 1993);  

A decision tree takes an object described by a set of attributes as an in-
put, and at  the  output a yes/no  decision  is reached,  thus representing 
Boolean functions. Decision tree learning is generally best suited to prob-
lems with the following characteristics  
(http://www.cis.temple.edu/~ingargio/cis587/readings/id3-c45.html):  

Instances are represented by attribute-value pairs.  
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Instances are described by a fixed set of attributes and their values.  

Such algorithms assign classification to each example. The simplest 
case is when there are only two possible classes (Boolean classification). A 
more substantial extension allows learning target functions with real-
valued outputs. Decision tree learning methods are quite robust to errors - 
both in classifications of the training examples and in the attribute values 
that describe these examples. The training data may also contain missing 
attribute values.

In general, decision trees represent a disjunction of conjunctions of con-
straints on the attribute-values of instances. Each path from the tree root to 
a leaf corresponds to a conjunction of attribute tests, and the tree itself cor-
responds to a disjunction of these conjunctions. More specifically, decision 
trees classify instances by sorting them down the tree from the root node to 
a leaf node, which provides the classification of the instance. Each node in 
the tree specifies a test of some attribute of the instance, and each branch 
descending from that node corresponds to one of the possible values for 
this attribute (see Fig. 3.50). An instance is classified by starting at the root 
node of the decision tree, testing the attribute specified by this node, and 
then moving down the tree branch corresponding to the value of the attrib-
ute. This process is then repeated at the node on this branch until a leaf 
node is reached (Quinlan 1993).

Since the resulting model is presented in the form of a tree structure, this 
visual presentation makes the decision tree model very easy to understand. 
As a result, the decision tree has become a very popular data mining tech-
nique. Decision trees are most commonly used for classification 
(http://www.cis.temple.edu/~ingargio/cis587/readings/id3-c45.html). 

Root Node

Leaf Node Leaf Node

Set of possible answersSet of possible answers

 Branches

Fig. 3.50. Decision tree organization 

Decision trees are applicable to the music recognition domain. It is 
worth seeing a paper by Herrera et al. in which a thorough review on clas-
sifiers can be found (Herrera et al 2000, 2003). Binary trees can be applied 
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Ph.D. work and her  later  publications  (Wieczorkowska 1999b; 
 Wieczorkowska and Czyzewski 2003; Wieczorkowska et al 2003). 

She used a C4.5 algorithm for a classification of isolated musical sounds. 
In her studies a comparison between a rough set-based and a decision tree 
classifier accuracy while automatically identifying sounds was done. Typi-
cally, the decision tree classifier outperformed the rough set-based one, 
however, in the latter case a simple discretization method was used, such 
as Equal Interval Width Method. Another example of a decision tree appli-
cation to musical sound classification is given by Jensen (Jensen and Arn-
spang 1999). During the learning stage, while descending the constructed 
decision tree, some questions are asked at each step of the analysis, then 
data are split into two groups, goodness of split (average entropy) is calcu-
lated and finally the question that renders the best goodness is chosen. 
Also, Foote applied a binary decision tree for audio classification in the 
context of content-based retrieval of music and audio (Foote 1997). He 
used the decision tree as a quantizer (Q-tree) of the parameterized music 
data. The algorithm automatically partitions the parameter space into 
quasi-separate classes. This process is supervised in the sense that each 
training example is associated with a class. The Q-tree is then used as a 
classifier (Foote 1997). The feature vectors consisted of 12 mel-cepstral 
coefficients (MFCC) and one additional parameter denoted as energy 
(Foote 1997). 

3.7.2 Hybrid Analysis 

Hybrid analysis offers an attractive paradigm for the design of intelligent 
systems for a broad range of applications. These applications refer to areas 
where for example such system features as robustness in the presence of 
noise, or modification of computational structures are needed.  

 Theoretical foundations of hybrid analysis include the integration of 
two, or more techniques. In literature there is a growing number of studies 
on interconnections between various realms of science, such as for exam-
ple: neural networks and evolutionary computation, neural networks and 
rough sets, rough sets and areas such as knowledge discovery and data 
mining, intelligent information systems, multi-agent systems. Other com-
bination of techniques, which are listed below are also encountered: rough 
sets are linked with decision system modeling and the analysis of complex 
systems, fuzzy sets, neural networks, evolutionary computing, data mining 
and knowledge discovery, pattern recognition, machine learning, and ap-
proximate reasoning. In particular, rough sets are used in probabilistic rea-
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soning, granular computing (including information granule calculi based 
on rough mereology), intelligent control, intelligent agent modeling, iden-
tification of autonomous systems, and process specification.  

Despite much research activity in the area of neural networks which has 
led to the discovery of several significant theoretical and empirical results 
and the development of important practical applications over the past dec-
ades, the design of artificial neural networks (ANN) for specific applica-
tions, under given sets of design constraints is, to a large extent, a process 
of trial and error, relying mostly on past experience with similar applica-
tions. Furthermore, the performance of ANN on particular problems is 
critically dependent on the choice of network architecture and the learning 
algorithms. ANNs essentially search for a suitable setting of weights 
within an otherwise a-priori specified network topology under the guid-
ance from training samples. In order for this approach to succeed, the de-
sired setting of parameters must in fact exist within the space being 
searched. Even when a suitable setting of parameters can be found using 
such an approach, the ability of the resulting network to generalize on data 
not seen during learning, the cost of the hardware realization, or the cost of 
using the network may be far from optimal. These factors make the proc-
ess of ANN design difficult.  

Thus, techniques for automating the design of neural architectures for 
particular classes of problems under a wide variety of design and perform-
ance constraints are clearly of interest. Motivated by this, some researchers 
have recently begun to investigate constructive or generative neural net-
work learning algorithms that extend the search for the desired input-
output mapping to the space of appropriately constrained network topolo-
gies by incrementally constructing the required network. Evolutionary al-
gorithms (Holland 1975, Fogel et al 1966, Goldberg 1989, Koza 1992, 
Michalewicz 1992) offer an attractive and relatively efficient, randomized 
opportunistic approach to search for near-optimal solutions in a variety of 
problem domains. The design of efficient neural architectures for specific 
classes of problems under given sets of design and performance constraints 
is therefore a natural candidate for the application of evolutionary algo-
rithms.

Generally, a genotype encodes a set of phenotypes or candidate solu-
tions in the domain of interest, for example a class of neural architectures. 
Such encoding might employ genes that take on numeric values for a few 
parameters or complex symbol structures that are transformable into phe-
notypes (in this case, neural networks) by appropriate decoding processes. 

A popular approach is the integration of neural network and fuzzy sys-
tem to create a hybrid  structure  called  neural  fuzzy  network  (Ali and 
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Kamoun 1993; von Altrock 1995; Kosko 1992). Lin and Lee (1996) intro-
duced the fuzzy adaptive learning control network (Falcon) to study hybrid 
structure parameter learning strategies, other authors used such techniques 
for classification purposes. Neural fuzzy (or neuro-fuzzy) networks such as 
the Generic Selforganizing Fuzzy Neural Network (GenSoFNN) (Tung 
and Quek 2002), Pseudo Outer Product Fuzzy Neural Network (POPFNN) 
(Quek and Zhou 1996), Adaptive Neuro Fuzzy Inference System (ANFIS) 
(Jang 1993), and Falcon (Lin 1996, Lin and Lee 1996), ART (Frank 1998; 
Lin and Lin 1996, 1997) are the realizations of the functionality of fuzzy 
systems using neural techniques. On the other hand, Ang and Quek (2004) 
proposed RSPOP: Rough Set-Based Pseudo Outer-Product Fuzzy Rule 
Identification Algorithm. The indicated that the pseudo outer-product
(POP) rule identification algorithm used in the family of pseudo outer-
product-based fuzzy neural networks (POPFNN) suffered from an expo-
nential increase in the number of identified fuzzy rules and computational 
complexity arising from high-dimensional data. This decreases the inter-
pretability of the POPFNN in linguistic fuzzy modeling. Their proposal 
concerns a novel rough set–based pseudo outer-product (RSPOP) algo-
rithm that integrates the sound concept of knowledge reduction from rough 
set theory with the POP algorithm. The proposed algorithm not only per-
forms feature selection through the reduction of attributes but also extends
the reduction to rules without redundant attributes.  

The enumerated applications of artificial neural networks to various 
fields drove development in theory. Due to this fact, some new trends in 
this domain appeared. One of these trends involves the compound structure 
of neural networks, so-called hierarchical neural networks. The basic net-
work structure is composed of numbers of subnetworks. These subnet-
works have a common input layer. Their middle layers are independent of 
one another. Every subnetwork has an assigned output node (Liqing 1998). 
Another trend that differs much from the all-class-one-network is the 
modular neural network concept. In this case, information supplied by the 
outputs of subnetworks can be fused by applying either the fuzzy or rough 
set approach. Hybrid methods have been developed by integrating the mer-
its of various paradigms to solve problems more efficiently. It is often 
pointed out that hierarchical or modular neural networks are especially 
useful while discussing complex classification tasks involving a large 
number of similar classes. In such a case, one can refer to some sources 
that appeared recently in the literature (e.g. Auda and Kamel 1999, 2000; 
Chakraborty  2000,  Mitra  et  al  1999;  Pan  et al  2000;  Sarkar  and 
Yegnanarayana 1999; Spaanenburg et al 2002; Szczuka 1998).  

Feature subset selection by neuro-hybridization was presented as one of 
the most important aspects in machine learning and data mining applica-
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tions by Chakraborty (2000). He engineered the neuro-rough hybrid algo-
rithm that uses a rough set theory in the first stage to eliminate redundant 
features. Then, a neural network used in the second stage operates on a re-
duced feature set. On the other hand, Auda and Kamel (2000) proposed a 
modular neural network that consists of an unsupervised network to de-
compose the classification task across a number of neural subnetworks. 
Then, information from the outputs of such modules are integrated via a 
multimodule decision-making strategy that can classify a tested sample as 

The paper by Peters et al. (2002; 2003) reviews the design and applica-
tion of neural networks with two types of rough neurons: approximation 
neurons and decider neurons. The paper particularly considers the design 
of rough neural networks based on rough membership functions, the notion 
introduced by Pawlak and Skowron (1994). A so-called rough membership 
neural network consists of a layer of approximation neurons that construct 
rough sets.  The output of each approximation neuron is computed with a 
rough membership function. Values produced by the layer of approxima-
tion neurons provide condition vectors. The output layer is built of a de-
cider neuron that is stimulated by each new condition vector. A decider 
neuron compares the new condition vector with existing ones extracted 
from decision tables and returns the best fit. The decider neuron enforces 
rules extracted from decision tables. Information granules in the form of 
rules are  extracted  from  decision  tables  using  the rough set method 
(Pawlak and Skowron 1994). Other approaches based on modular and 
complex integral neural networks are also widely used in various problems 
as robust search   methods,   especially  for  uncertainty  and  redundancy 
in  data (Komorowski et al 1998, 1999; Pal et al 2004; Polkowski et al 
2002; Skowron et al 2000).  

Examples of hybridization of intelligent computation techniques will be 
given further on in Chapters related to applications of cognitive processing 
of acoustical signals and subjective audio-visual correlation. 
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4 COGNITIVE APPROACH TO MUSICAL DATA 

ANALYSIS

4.1 Musical Signal Separation 

Digital signal processing is one of the most rapidly developing areas of 
science. With the explosive expansion of the Internet, the number of very 
demanding computer network users increases. Content analysis and 
searching for specific content are relatively new areas, and therefore new 
concepts and algorithms of processing them appear quite often. Currently 
there are no faultless solutions. Sound data analysis is connected with dif-
ficulties in analytical description as well as with significant redundancy 
characterized by high entropy included in the very type of information. 
Such characteristics also prevail for sound separation problems, hence the 
number of algorithms for sound separation from musical material. In addi-
tion, one should notice that there are some limitations regarding percussion 
sounds and other non-harmonic sources. Easy extraction of such sounds by 
means of existing algorithms is not possible. Therefore one could state that 
such instruments are a source of noise for an algorithm, which makes its 
operation more difficult, and decreases the accuracy and credibility of the 
result. Concurrently, one should select the musical material for analysis 
based on the instrumentation, avoiding non-harmonic sounds. In addition, 
the articulation such as glissando or tremolo causes the problem of detect-
ing fundamental frequency in the spectrum. Another important factor 
should also be considered: the music of Western culture is based on simple 
relations of frequency to fundamental frequency. Therefore it is an obvious 
consequence that harmonic tones overlap in the spectrum, which makes the 
operation of most algorithms more difficult. The most basic notion in mu-
sical acoustics i.e. sound timbre, as mentioned in Chapter 2, remains unre-
solved, even if many important research works have been done in the field 
(e.g. McAdams et al 1995; Cosi et al 1994; Grey 1997; Krimphoff et al 
1994; De Poli and Prandoni 1997; Toiviainen et al 1998, Wessel 1979). 
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Among main methods for musical signal separation three basic concepts 
are involved: blind separation based on the statistical analysis of the signal, 
analysis and resynthesis of the spectrum of instruments included in the 
mixed material, and the use of directional information in the data extrac-
tion process. In this chapter an algorithm within the second concept men-
tioned is discussed more thoroughly, since it offers significant effective-
ness with easy adaptation to conditions in which separation is performed.  

Walmsley points out that an important aspect of an analysis is the ability 
to segregate events hierarchically. At the lowest level a signal model may 
be useful, whereas at the highest one a musical model based on probabilis-
tic, heuristic or learning rules to track or predict source activity could be 
helpful (Walmsley 2000).  

Other methods should be used in the separation of singers’ voices, since 
in this case spectrum often becomes non-harmonic, the articulation abili-
ties are greater and the voices often sing the melody in unison. The starting 
point for those methods should be getting acquainted with the mathemati-
cal model of a voice tract. In further steps also the decision-making sys-
tems based on artificial neural networks are useful as is the parameteriza-
tion based on the spectral and cepstral analysis. The conclusion is that for 
each type of musical material a different algorithm should probably be 
used. A duet, chamber orchestra recordings, a sound in an instrument play-
ing chords or multiple sound voices require different techniques for their 
effective separation.  

In the process of the algorithm quality verification, various techniques 
may be used, and especially valuable is subjective testing. However, in a 
case-study shown in this chapter artificial neural networks have been used, 
trained with a collection of selected sound data from various instruments. 
For such a type of application the best results are obtained through a su-
pervised training. The objective is to assign automatically a given sound to 
an appropriate instrument class after the separation was performed.  

4.1.1 Musicological and Psychoacoustical Overview  

Sound separation from a polyphonic recording is performed in many dif-
ferent ways. The core operation is to extract instrument or voice tracks 
from the sound mixture with the highest possible quality. The term ‘po-
lyphony’ may be discussed in a number of approaches in music theory. Its 
literal translation from Latin is ‘many voices’. The existence of several in-
dependent melodic lines describes polyphony in a strictly theoretical un-
derstanding, which was established as a technique of composition in Mid-
dle Ages, and bloomed in Baroque. Its most important feature was the use 



of counterpoint and parallel existence of several melodies. The most com-
plex forms could include up to 32 voices at the same time. The plurality of 
voices can be achieved with just one or with a number of instruments. A 
different perspective on the notion of multi-voice performances comes 
from modern music performances, where generally the division of playing 
musicians involves the soloist playing the melodic line, and the accompa-
niment consisting of the bass line and the harmonic structure of the tune, 
aimed at the completion of a melody through chords. Therefore, it is not 
necessary that the melodies in the voices have the same character. Playing 
chords also has the character of polyphony. Similar situation can be ob-
served in vocal performances, where several people can sing at the same 
time, with or without accompaniment. From the viewpoint of algorithm 
design, the ability to detect actions taking place in the vocal tract and cog-
nitive factors allowing for the description of phenomena on a higher level 
of abstraction is important. 

Perceptual Modeling 

In the design of a separating algorithm the knowledge of a psychophysi-
cal element of sound phenomena is significant. So far there is no universal 
model describing the operations of the auditory system and the nervous 
system with a mathematical approach. Logarithmic sensitivity of hearing is 
the basis for the analysis of perception. The cochlea acts as a bank of inde-
pendent band-pass filters located in appropriate critical bands. The knowl-
edge concerning that property caused changes in the approach towards 
musical signal decomposition into frequency components. Algorithms op-
erating through a bank of cochlear filters are now more often used in such 
applications. Musical signal processing may be preceded by a pattern 
processing stage reflecting the place-domain model of sound in the coch-
lea, or each channel of the cochlea may be preceded with the level of 
sound pitch detection acting according to time-domain rules. There are 
also hybrid models referring to both solutions.  

Output signals from cochlear filters go through a detection threshold 
level simulating the operations of an auditory nerve. The level of amplifi-
cation by signal compression, regulates its dynamics, while autocorrelation 
detects periodicity in each of the sub-bands, thus simulating responses of 
neurons, each induced according to the phase of the stimulating musical 
signal. The response of the autocorrelation system is often illustrated by a 
two-dimensional (time, frequency) or three-dimensional (time, frequency 
and autocorrelation lag) representation called correlogram. 

Meddis and Hewitt proposed a more complex model, including external 
ear characteristics, and a more complex model of auditory nerve operations 
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(Meddis and Hewitt 1991). Karjalainen and Tolonen used a similar model 
for multi-sound estimation, employing a half-wave rectifier and a low-pass 
filter in the detection threshold level (Karjalainen and Tolonen 1999). 
Similar approach was undertaken by Ellis, who introduced a three-
dimensional correlogram (Ellis 1996). The set of delaying lines with loga-
rithmically presented delay times is used for the calculation of autocorrela-
tion with a constant number of samples per octave. The representation of 
two variables: a low-pass frequency and the logarithmically presented de-
lays is a set of a correlogram ‘slices’. Each cell is the short-time autocorre-
lation of the envelope of one of the filterbank frequency channels. This ap-
proach analyzes dense, ambient sound examples as a part of a vocabulary 
of a computational auditory scene analysis. A discrete element describing 
individual periodic sources, along with the algorithm for extracting them 
from the correlogram-based representation, is called the weft. 

Subsequent phases of information processing are based on the black-
board system, where several parallel processing tasks take place. In this 
case the conclusion-drawing strategy is based on prediction, for which 
specific expectations are generated from the source model. The predictions 
are then approved or rejected. The objective of such approach is the musi-
cal environment analysis with special focus on the sounds coming from the 
external environment, for example ambient sounds. 

In his work, Mellinger used the cochleagram sound representation and 
image processing techniques, on the basis of which the algorithm was 
making appropriate decisions while identifying patterns such as vibrato, or 
note onsets (Mellinger 1991). A time-frequency processing kernel set was 
introduced and used for the extraction of specific features from the corre-
logram. The proposed algorithm improves the detection of such features as 
the beginning and/or the end of a sound, and the frequency change, which 
is related to the fact that with a logarithmic frequency scale all changes of 
a period of harmonic vibrations are subject to coherent changes in fixed in-
tervals on the frequency axis. The Mellinger's model concerns a higher 
modeling level reflecting musical event detection through the grouping of 
harmonic components using the combination according to the psychologi-
cal theory of Gestalt. Individual aliquots become a part of a group, which 
reflects a sound event. It consists of components which are closely related 
with each other through the similarity of appropriate features, for example 
mutual attachment time or the same periodicity (Mellinger 1991). 

Slaney, Naar and Lyon describe the technique of obtaining the auditory 
model directly from the correlogram, whose components with common pe-
riodicity are separated and used for the calculations of a short-term power 
spectrum of the signal, which leads to the creation of a cochleagram 
(Slaney et al 1994). Component sounds are resynthesized using an overlap-
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add method. The auditory model by Slaney et al. may be described as an 
approximately  constant  Q-filtering and    autocorrelation   estimation. 
Weintraub also computes the autocorrelation of signals from the cochlear 
filter bank outputs. This enables to find information on periodicity in each 
of the frequency regions, from which the spectral estimate of each sound is 
generated (Weintraub 1986). The iterative algorithm locally maximizes the 
probability of a spectral estimate, taking into consideration the information 
about local periodicity and spectral continuity constraints. The approach 
was created for voice separation algorithms and becomes useful also in 
separating non-harmonic sounds. However, the system using the above-
mentioned model must be trained with an appropriate data set, because it 
uses Hidden Markov models (HMM) for voicing state detection. A model 
of the cochlea by Lyon and Mead’s consists of a cascade of 88 biquadratic 
filters implemented by means of the FPGA technology. Based on the set of 
sample inputs, SNRs of every filter outputs are calculated, resulting also in 
a cochleagram. 

Another  interesting  approach was  introduced  in  the study of de 
 (1993), in which a time-domain comb filter removes all har-

monic components from the signal. To make it possible, one must properly 
detect the fundamental frequency, the estimate of which is made using the 
AMDF function (Average Magnitude Difference Function). The task re-
quires finding the minimum over the lag-domain of the function (r). For 
two sounds sounding at the same time a comb filter is used with two lags, 
and the double difference function (DDF) must be searched for the mini-
mum over two dimensions. De Cheveigne’s method, known also as the 
neural comb filter, works for sounds, for which fundamental frequencies 
do not overlap, but it requires a clear musical material of good quality.  

The models discussed in the following subsections concern the psycho-
physical approach to sound perception. Higher level auditory processes are 
not characteristic for the analysis of strictly musical data, but they offer 
universality in complex mixtures of speech, music and external environ-
mental sounds. There are also a number of models created especially for 
strictly musical data.  

Harmonic Overlapping 

There are many algorithms used for the analysis of frequency, envelope or 
sinusoidal signal phases. The problem with the separation of a mixture of 
sounds results from the fact that harmonic elements of a periodic and 
quasi-periodic signal take up a very broad band of frequency and it often 
happens that the components of different instruments or even harmonic 
elements in a chord played on one instrument may be located very close to 

Cheveigne
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each other, or even overlap. This causes two major problems (Klapuri 
1998):

harmonics of different sounds are usually located in the same frequency 
bands and difficulties in assigning harmonic components to appropri-
ate sources appear, 

when two sinusoids overlap at the same frequency, it becomes impossi-
ble to regain information about their envelope and phases. 

Two properties should then be analyzed (Klapuri 1998): 

When one harmonic component hj
S of a signal S overlaps component hi

R

of the interfering source R, then the fundamental frequency of a signal 
R equals f0R – m/n f0S, where m, n  N.

When fundamental frequencies of two sounds S and R are respectively 
f0R and f0R – m/n f0S, then each nth harmonic component hnk of signal R
overlaps the mth harmonic component hmk of the source S

(k=1,2,3,4…).

It might seem that the above presented conditions are only theoretical 
assumptions. However, they are connected with the rules, which are the 
basis of Western culture music, where fundamental frequencies of sounds 
often reflect the above mentioned relations.  

Two notes are in a harmonic relation, when their harmonic components 
reflect the following rule: 

0102 f
n

m
f

(4.1)

where m, n are small integers. The smaller are the values, the closer the 

harmonic relation between them. For example, frequencies fff
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key. Notes are positioned in a logarithmic scale on axis f, where k symbol-
izes the note number: 
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For example for the piano, the values of k fall in the range of k=-48 to 
k=39. The combination of values of coefficients m and n enable the crea-
tion of intervals. Their positioning for the just intonation system can be 
seen in Table 4.1. The last column presents tuning the intervals to the 
equal tempered scale. 



 193 

Table 4.1. Comparison of sound frequencies in just and equal tempered scales 

Note
1

Note
2

Equal Tem-
perament

f0(N2): f0(N1)

m n Just Intonation
m:n

Difference 
[%] 

C# C 1.0595 16 15 1.0667 -0.68 
D C 1.1225 9(8) 8(7) 1.125(1.143) -0.23 (+1.8) 
D# C 1.1892 6 5 1.2 -0.91 
E C 1.2599 5 4 1.25 +0.79 
F C 1.3348 4 3 1.333 +0.11 
F# C 1.4142 7 5 1.4 +1.0 
G C 1.4983 3 2 1.5 -0.11 
G# C 1.5874 8 5 1.6 -0.79 
A C 1.6818 5 3 1.667 +0.91 
A# C 1.7818 16(7) 9(4) 1.778(1.75) +0.23 (-1.8) 
B C 1.8877 15 8 1.875 +0.68 

Today the instruments are tuned according to the equal tempered scale, 
in which intervals are built according to the logarithmic relations. This in 
itself relates to the property of hearing resulting from Weber–Fechner’s 
law. Giving up the tuning according to quotient relations enables the 
movement of harmonic trajectories on the frequency scale, making it diffi-
cult for them to overlap. For human hearing the difference is practically 
unnoticeable, with the exception of the third and minor seventh intervals. 
Musical terminology describes the case of minor seventh as a so-called 
blue note if it is played in a manner based on frequency division, not ac-
cording to logarithmic placement. It is especially noticeable in the case of 
African music, on the basis of which blues was created (with its character-
istic use of blue note). 

In practical algorithms frequency resolution is limited; it is too small to 
differentiate tempered sounds or sounds that are located very close to each 
other on the frequency scale. The following example presents the case of 
harmonic components overlapping in the case of a chord in C-major key. It 
consists of three sounds: C, E and G, constituting a prime, a major third, 
and a fifth. They are characterized with the division coefficient, respec-
tively: 1, 5/4 and 3/2. Each 5·n harmonic component of sound C will over-
lap harmonic component 4·n, where n is a natural number. Similarly for C 
and G, where each 5·nth will overlap the 3·nth component, so in the case 
of the fifth the situation is even worse. Similar phenomena take place be-
tween C and G: each 6·nth harmonic third overlaps the 5·nth harmonic 
fifth. The presented example is very simple, because major chords are 
among the simplest harmonic structures in music. In reality more complex 
harmonic arrangements are used – ones which include chords with trans-
positions and their inversions, as well as chords expanded with external 
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sounds. The more consonant the chord, the greater the probability of over-
lapping of harmonic components. It is unavoidable, because such chords 
constitute the concept of music shaped in the Western civilization. In the 
case of harmonic relations which are fractional numbers, various algo-
rithms separating the energy of overlapping aliquots into a number of 
sounds are used. In the case of an octave and its multiplication the problem 
is practically unsolvable.  

4.1.2 Signal Separation Algorithms 

Today many domains use the computerized methods of information proc-
essing. Very often they have the character of musical data, with specific 
characteristics forcing the use of appropriate processing methods. As one 
could expect, they do not always produce satisfying results, because in 
most cases information about the method of mixing specific sources is not 
available. It also happens very seldom that each channel transfers sounds 
from just one instrument or voice. Besides, different numbers of recording 
microphones are used, with different positioning and different methods of 
combining the signals arriving from the acoustic environment. The charac-
ter of audio material and the a priori knowledge of the recording process 
allow for the selection of an appropriate separation algorithm, because 
each of them has its own limitations. So far there is no uniform, optimum 
and universal software producing satisfying results in the analysis of dif-
ferent kinds of audio material. Currently, three main trends exist, on the 
basis of which various versions of algorithms for polyphonic recording 
separation are created: 

blind separation algorithms, using the a priori information about static 
features of sources, 

algorithms that make spectrum separation and then decomposition pos-
sible,

algorithms using information of spatial positioning of sources. 

Blind Separation Algorithms

The problem of blind separation is connected with separating tracks, when 
there are a number of signal sources and several microphones. At the same 
time the characteristic of the channel is unknown. The general scheme of 
the blind separation algorithm is illustrated in Fig. 4.1 (Chan 1997). 
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Fig. 4.1. Blind separation principle illustration (Chan 1997) 

In recent years a number of new solutions developing the concept of 
blind separation surfaced – applications for hearing loss compensation 
(e.g. Greenberg et al 1992; Kates and Weiss 1996; Merks et al 1999), noise 
reduction (e.g. Lasecki and Czyzewski 1999), localization in multi-source 
environment, multimedia and teleconferencing (e.g. Hawley et al 1999; 
Kostek et al 1999; Mapp et al 1999), sound segregation (e.g. McAdams 
1989),  virtual  auditory   display   (e.g.  Bregman,  1990; Langendijk 
2000), spatial filtration (e.g. Czyzewski 2003; Lasecki et al 1999), speech 
intelligibility improvement (e.g. Hawley et al 1999; Lasecki et al 1998) or 
even for use in passive sonars or image processing. They differ in the 
method of the concept implementation through the use of neural networks, 
genetic algorithms, higher level statistics, mutual information minimiza-
tion, beamforming, or adaptive noise cancellation. Despite the difference 
in the ideas, the fundamental rule is that each source must be statistically 
independent (Amari et al 1996; Cardoso 1992; Choi et al 2001). Yellin and 
Weinstein (1994) proved that if sources are statistically independent, the 
necessary and sufficient separation condition is the statistic independence 
of system outputs. 

Mutual independence of signal sources si is achieved when and only 
when the density of total probability ps(s) equals the product of boundary 
probabilities psi(si) (Torkkola 1999).  
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Separated system outputs are independent in pairs, therefore they are 
mutually independent if outputs are linear functions of sources. 

  4.1 MUSICAL SIGNAL SEPARATION   
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In this case the term ‘blind’ refers to the lack of the a priori knowledge 
about signals in the propagation channel from the sources to the recording 
system. In many practical situations the observations may be modeled us-
ing a linear mixture of input sources, i.e. a typical system of many inputs 
and many outputs. Defining the algorithm requires proper mathematical 
description. It is assumed that there are n observations of x1(k) … x2(k),
which are the mixture of n independent source signals s1(k) … s2(k). The 
objective is to find n outputs of a system y1(k) … y2(k), while yi(k) = 

zj(sj(k))  i,j=1,…,n, where zj(*) is an unknown filtration operator. Thus x(k)
= [x1(k), x2(k), …, xn(k)]T and similarly for s(k) and y(k). Mixing function 
f(*) and separating g(*) is calculated according to the following relations 
(Chan 1997): 

X(k) = f(s(k)) (4.4) 

Y(k) = g(x(k)) (4.5) 

Thus y(k) = g(f(s(k)))       
The objective is to find g(*), for which: 
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where P is the permutation matrix. 
Conditions are simplified with the assumption that the mixing operation 

is linear and constant in time (LTI) and that it takes place without delays. 
Then x(k) = As(k), where A is the matrix of constants of values n·n. If it is 
reversible, then the resulting matrix C = A-1. In such case the equality y(k)
= PCx(k) takes place for an ideal example. In practical applications a delay 
between matrix components exists, thus the adequate models are more 
complex (Balan et al 2001; Torkkola 1996, 1999; Westner and Bove 
1999).

Independent Component Analysis (ICA)

The key element of Independent Component Analysis is the method of 
analysis of the main PCA (Principal Component Analysis) component, the 
objective of which is to achieve component vectors orthogonal to each 
other, whose linear combination will give possibly greatest variance 
(Abed-Meraim   et al  1996;   Amari 1999;   Belouchrani   et  al,   1997;  
Liebermeister 2002). The vectors are calculated as n largest vectors of own 
covariance matrix, while the number of sources is n.
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The ICA method is based on a number of basic limitations (Chan 1997; 
Jung 2001; Mansour et al 2000): 

the number of sources cannot be greater than the number of micro-
phones,

sources must be mutually independent statistically or must have possi-
bly the smallest dependence level. The dependence cannot be meas-
ured due to the lack of signal power density information. For speech 
signals the independence of the sources of conditions is practically al-
ways met, 

input signals must be stationary with a zero mean value. Often a single 
unit variance for all sources is required (Jung and Kaiser 2003), 

only one of the sources can have Gaussian positioning (since a linear 
combination of Gauss processes also gives a Gauss process, which 
makes it impossible to differentiate between component processes), 

signals from sources must be synchronized, 
only the direction of vector A can be recreated in the separation process; 

amplification and sign cannot be recreated,  
processes should have a super-Gauss positioning, which is the key ele-

ment in the selection of an appropriate algorithm. Signals with such 
positioning include music and speech. 

The appropriate ICA algorithm usually uses slightly more advanced 
methods for demixing matrix estimation. A characteristic feature is the use 
of iterative methods for the statistical parameter optimization (Bell and Se-
jnowski 1995a, 1995b; Torkkola 1996, 1999). The transformation of the 
signal entropy equation gives: 

)]}({log[)](log[)()( xpEdxxpxpyH (4.7)
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Total entropy is calculated using the following equation: 

),...,,()(...)()(),...,,( 21221 NNaN yyyIyHyHyHyyyH (4.9)

where I(Y) is a mutual information. 
If sources are independent from each other, then I(y) = 0. Otherwise the 

number will always be greater than zero. It should also be noted that 
minimization I(Y) is connected with the maximization of the total entropy 
of matrix Y.

Subsequent transformations lead to the Kullback-Leibler criterion 
(Mansour et al 2000): 
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The minimization of that function involves finding the root of its deriva-
tive, i.e. calculating the Kullback-Leibler   divergence  (Jung 2003; Man-
sour et al 2000, Torkkola 1996). 

dy
ypypyp

yyyp
yyyp

W

ypypypyyypD
WW

yI

N

N

N

NN

)()...()(

)...,,(
log),...,,(

)]()...()(||),...,,([
)(

21

2
21

2121

(4.11)

Subsequent phases of ICA operations can be presented as follows (Kar-
hunen 1996; Torkkola 1996, 1999): 

filtering out signal noise and removing the average value of the signal 
arriving from the microphones, 

separation into frames with the length determined by time (e.g. attack 
time) or by the spectral signal parameters (e.g. tracking the trajectory 
of fundamental frequency), 

the assumption about a usually random initial value of a demixing ma-
trix coefficients, 

input data filtration using a demixing matrix in order to achieve source 
estimates, 

non-linear transformation of achieved estimate using a non-even, non-
square and not too steep function (e.g. trigonometric functions tgh(*), 
log(cosh(*)), sigmoid), 

calculating C using gradient methods or artificial neural networks, 
collecting another frame and returning to the second point of the algo-

rithm, 
normalization of matrix C and its combination with matrix X in order to 

achieve the input data estimate. 
Apart from neural networks other classifiers such as for example Bayesian 
or Hidden Markov Model can be used (Valpola et al 2003). 

Independent Subspace Analysis (ISA)

The ISA (Independent Subspace Analysis) algorithm is a modification of 
the ICA algorithm with one important feature: the limitation that the num-
ber of sources must be smaller than the number of sensors has been re-
moved. Another change in the ICA algorithm is the possibility of separat-
ing non-stationary signals. This becomes possible due to the use of 
dynamic sound components with tracking specific sources. The ISA ex-
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pands the previous method with the identification of multi-component sub-
spaces in sound sources using the STFT transform. It is assumed that 
sound signals are multi-dimensional when the number of microphones is 
greater than one; this, however, does not agree with the approach consid-
ered in the equation x(k)=As(k), where the sources are considered one-
dimensional.

The algorithm proposed by Casey uses the chart called an ixegram, 
which is a matrix of cross-entropies of independent components (Casey 
2001). The ixegram is calculated by using the Kullback-Leibler divergence 
approximation. The Kullback-Leibler divergence is the measure of dis-
tance between two probability functions Pa(u) and Pb(u) for a random vari-
able u. The  ixegram is  calculated  according to  the following relations 
(Casey 2001): 

D(i,j) = KL(zi,zj) (4.12) 

KL(zi,zj) = KL(Pzi(u),Pzj(u)) (4.13) 

where: i,j = 1…n, the KL divergence is determined according to the fol-
lowing formula: 
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If both probability functions are equal, the divergence will be 0. The 
ixegram matrix looks as follows (Casey 2001): 
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The final result of the algorithm operations, i.e. separated signals, comes 
from the separation of the ixegram. 

Algorithms Based on Estimation and Resynthesis of Spectrum 

The family of algorithms based on spectral analysis and synthesis is the 
largest and the most varied. There are algorithms using resynthesis of fun-
damental frequency and harmonic estimation (e.g. Serra 1997), as well as 
others, more complex ones, in which databases including the models of 
specific instruments are used. It has a great influence on the operations of 
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the algorithm in the case of the analysis of non-harmonic and transient 
sounds.

Sinusoidal Model 

One may assume that each signal can be presented as a sum of sinusoids. It 
is obvious, however, that such assumption is useful only for stationary pe-
riodic signals. 
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where:
N – the number of co-sounding sources 
Sn – the set of harmonic components of the nth source 
Ak, fk, k – the amplitude, the frequency and the phase of subsequent 

harmonic components 
The idea of sinusoidal modeling is connected with the use of sinusoids 

of frequencies and amplitudes variable in time to model harmonic signals. 
The extraction of sinusoids from the original signal involves the calcula-
tion of the STFT spectrum divided into blocks and a windowed signal, and 
then finding spectrum peaks. Then from the sonographic signal representa-
tion obtained in such a way, trajectory non-continuities are removed – ones 
which appeared as the result of vibrato and transients. In order to maintain 
trajectory, continuity interpolation is done in those points. In the next step 
the algorithm searches in each subsequent frame for a spectrum peak 
which is the most similar to the trajectory in a current frame. The result is 
the set of sinusoidal trajectories with frequency and amplitude variable in 
time. Usually the frequency of the components has a maximum limit, since 
the trajectories above 5 kHz are so small that it is difficult to detect them 
without mistakes. 

In sinusoidal modeling, long windows with a large overlapping coeffi-
cient are used. It results from the fact that there are often two frequencies 
located close to each other in a signal. In such case the window length does 
not depend on the wavelength for a given frequency, but on a frequency 
difference. The non-stationary state of a signal limits the maximum length 
of a data block. 

As mentioned before, human perception forces the use of consonants in 
music, which results in the overlaping of aliquots from many instruments. 
It is the greatest problem of sinusoidal modeling algorithms, which limits 
its usability. Dissonance intervals does not cause the overlapping of trajec-
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tories at low frequencies, but it happens that their proximity causes estima-
tion mistakes in the algorithm.  

Many concepts of solving the problem have been invented. One of the 
most popular is defining the fundamental frequencies and then using them 
to find the frequencies of colliding components. With the information 
about the envelopes received from the sonogram, one can divide the en-
ergy of overlapping tones proportionally. In the final step of the algorithm 
the synthesis of separated signals by adding adjusted trajectories takes 
place. The method, although very intuitive, has its drawbacks, especially 
during the phase of separating a signal from a large number of sources. 
The number of overlapping and undetected harmonic components rapidly 
increases, generating significant mistakes. 

Multipitch Estimation (MPE) Algorithm 

The MPE (Multipitch Estimation) algorithm is similar to sinusoidal model-
ing and is, in a way, its expansion. It consists of two major repeated 
phases: estimation of a dominant harmonic component and the synthesis of 
a spectrum on the basis of the component, and subtracting it from a useful 
signal.

The first phase gives the best results after separating several sub-bands 
with spectrum maxima from the whole signal spectrum. In the next phase 
the results are synthesized and a global estimate is achieved. Such ap-
proach helps to avoid the mistakes resulting from a non-harmonic charac-
teristic of the signal and offers benefits resulting from the increase of fre-
quency resolution. Detailed scheme of the MPE algorithm was presented 
in the study of Klapuri et al. (2000).   

Signal Xk is windowed using a Hamming window. In the same block 
signal processing takes place, which should remove unwanted noise from 
the signal and improve spectral quality of sound mixture. Improved spec-
trum Xe(k) is the result of a logarithm used in a spectrum module followed 
by high pass filtration. In the algorithm proposed by Klapuri, Virtanen and 
Holm spectrum is divided into 18 logarithmically separated bands from 50 
Hz to 6 kHz with triangular weighting windows applied (Klapuri et al 
2000). Therefore it is the position similar to the one of the critical bands of 
human hearing. Sub-bands overlapping reaches 50%, resulting in the sum 
of windows equal 1. 

In each of the sub-bands the probability vector LB(n) is calculated from 
the condition so that specific nth samples of the spectrum would maximize 
the probability. Samples Xe(k) in band B are included in the range k [kB,

kB+ KB-1], where kB is the lowest sample of the spectrum, and KB is their 
number in the sub-band (Klapuri et al 2000). 
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where:
m M

H = {(KB -m)/n] – the number of harmonic components of the sum 
W(H) = 0.75/H + 0.25 – the normalization coefficient 
In the final step the probabilities of the bands are consolidated and the 

result is the total L(n); its maximum value is used to specify the fundamen-
tal functionality. At the output the following parameters are generated: the 
fundamental functionality F, the non-harmonic coefficient  and the com-
plete spectrum of musical signal. 

In order to completely remove a harmonic component from the signal, 
one needs to know its amplitude, frequency and phase. It is assumed that 
they are constant along the whole length of the frame. Therefore with the 
use of estimated parameters the spectrum is approximated in the proximity 
of the component, and then it is subtracted linearly from the spectrum of 
sound mixture. The spectrum-domain actions do not require so many op-
erations as in the case of a time-domain, which still requires the transfer 
into a transform-domain and vice versa. The estimation of parameters, the 
calculation of the local spectrum module, and its subtraction are repeated 
for each component, in order to remove the appropriate elements from the 
mixture.

The problem of frequency overlapping takes place equally often as in 
the previously discussed sinusoidal model. Removing the whole coherent 
harmonic component from the spectrum becomes visible after several it-
erations, when remaining sounds are too distorted to produce any more 
useful iterations. One of the solutions used in this case is to perform spec-
trum smoothing before subtraction. The concept refers to psychoacoustic 
assumption that human ear links a series of components with one source 
easier when they have a smooth spectrum which decreases with the in-
crease of frequency. 

A considerable drawback of the MPE method is the sensitivity to vi-
brato effects, causing even very small changes of fundamental functional-
ity. A strong advantage is the fact that the algorithm remains effective in a 
noisy environment or in the case of percussion sounds.  

Spatial Filtration 

The methods discussed in the following subsections are modifications of 
previously discussed blind separation algorithms. The difference is in the 



    203 

use of beamforming algorithms. The objective of such algorithms is to lo-
cate sound sources in space and in the next step – to separate them. There-
fore it makes the extraction from many sources even with a small number 
of microphones possible, which is extremely important in the case of 
commonly used stereophonic recordings.  

Many algorithms have been developed to resolve spatial filtration prob-
lem such as for example classical delay and summation algorithms, super-
directive arrays, adaptive algorithms and nonlinear frequency-domain 
beamformers. In some algorithms a narrow shape of the beam pattern, re-
duction of the noise power and improvement of the speech intelligibility in 
the presence of noise were achieved. The classic algorithms were based on 
adaptive signal filtering (Frost 1972; Griffiths and Jim 1982; Duvall 1983; 
Soede et al 1993). The basic purpose of an adaptive filter is to estimate the 
noise at any given moment of time and to subtract it from the useful signal. 
The noise estimation is done through the use of a correlated source of 
noise and a continuous modification of the filter parameters so that the 
output mean-square error can be minimized. The results shown by several 
authors were encouraging, but the obtained improvement of the signal-to-
noise ratio (SNR) was not fully satisfactory for 2-microphone arrays.  

An algorithm developed at the Multimedia Systems (former Sound and 
Vision Engineering) of Gdansk University of Technology proved that it is 
possible to obtain very narrow characteristics of a spatial filter which can 
be very useful for real-life applications (Czyzewski 2003; Czyzewski et al 
1998, 2001; Kostek et al 1999; Lasecki et al 1999). The effectiveness of 
the developed algorithm was tested with the use of sounds representing the 
desired signal and some background noises: concurrent speech, white 
noise and harmonic tones. In all cases the desired signal was preserved at 
the algorithm output and signals from lateral direction between 150 and 900

were attenuated approx. 40 dB for frequencies below and equal to 1 kHz, 
whereas for frequencies larger than 1 kHz from 60 to 100 dB (Czyzewski 
2003; Czyzewski et al 1998, 2001; Kostek et al 1999; Lasecki et al 1999). 

In order to apply a spatial filtration (beamforming) signal samples 
should be collected in various points of the space. Spatial discrimination 
depends on the ratio of the size of the system aperture and the length of the 
signal wave. The bigger this ratio the better spatial discrimination. The ob-
jective of the space sampling is to achieve a beam pattern as exemplified in 
Fig. 4.2.  

  4.1 MUSICAL SIGNAL SEPARATION   
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Fig. 4.2. Example of a beamforming signal pattern (vertical axis denotes gain) 
(Veen and Buckley 1988) 

In recent years, many algorithms have been described in which the nar-
row shape of the beam pattern, reduction of the noise power and improve-
ment of the speech intelligibility in the presence of noise were achieved. A 
classic beamformer denotes the linear combination of time samples as re-
ceived by the particular transducers. The literature provides reference on 
two typical beamformer structures (see Fig. 4.3).  

a.          b.  

Fig. 4.3. Two typical beamformer structures, where: x(k) – input signal, * - means 
the complex conjugate number, wj – weights, z-1 – delays, y(k) – output signal, j – 
is the number of channels, k – the number of delays in the particular channels 
(Veen and Buckley 1988) 

The first structure (Fig. 4.3a) is used in the case of narrow band signals. 
In this case, the output signal is equal to the sum of the product of input 
signals and of weights that correspond to subsequent transducers. The sec-
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ond structure is employed in the case of wide band signals. The output sig-
nal is obtained by the multiplication of delayed input signals and of the 
corresponding weights. 

Fig. 4.4 illustrates how spatial sampling of a signal is done using an ar-
ray of transducers. The figure shows the sampling process of a signal that 
is being propagated as a plane wave from the source located in direction 
( ). Given j transducers and k samples per a transducer in every moment 
of time, the propagating signal is sampled unequally in points n=j·k. In ad-
dition, t( ) means time which elapses from the recording of the first sam-
ple in the first transducer until the recording of the last sample in the last 
transducer and is called the time aperture of observation for the given inci-
dence angle ( ). As the applied notation suggests, the time aperture is de-
pendent on the angle ( ).

Some other techniques were developed in order to perform spatial filtra-
tion in a more effective way. Examples of such algorithms will be shown 
in Chapter 5.4. 

Fig. 4.4. Array with delay blocks realizing spatial and time sampling (Veen and 
Buckley 1988) 

DUET Method 

The DUET method is one of few techniques using spatial information in 
musical data separation. It is relatively simple, easily manipulated and, 
what is more important, gives satisfying results. Two stereophonic chan-
nels are used: left xL(t) and right xR(t) and the STFT transform is calculated 
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for both of them: XL(w,t) and XR(w,t). Two important functions are defined 
(Viste and Evangelista 2002): 

Reference amplitude: 
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and phase delay: 
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Placing the functions on two axes creates a two-dimensional histogram 
presenting spatial positioning of sources. It enables a very precise defini-
tion of the acoustic scene. Important advantages result from this fact. First, 
the sources do not need to have a harmonic character and can generate 
non-stationary or transient sounds. Second, there may be more sources 
than sensors, which was impossible in a family of blind separation algo-
rithms.

However, a system without disadvantages does not exist. DUET is 
based on the assumption, that all sources are mutually orthogonal. In great 
majority of musical compositions the instruments every now and then play 
the same sounds or their octave transpositions, which is against the rule of 
orthogonal position of sources. After the appropriate separation of sources 
and after assigning specific frequencies to each of them, it may turn out, 
that some harmonic components disappear from some sources, and appear 
stronger in some others. The result might be an unpleasant sound, devalu-
ating the effect of the algorithm operation. 

There is a simple way of solving that problem, however it works only in 
the case of analysis performed on a stereophonic signal and when only two 
harmonic components overlap. 

Using the formula for a mixed signal: 
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and assuming that h0 and h3 are identical filters (t) and calculating the 
transform STFT the following result is achieved: 
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where:
xi, Xi – a signal from the ith microphone and its spectrum 
si, Si – a signal from the ith source and its spectrum 
hij – coefficients of the mixing matrix 
Hij(w) – mixing filter coefficients 

It is assumed that coefficients H( ) have a constant value in the whole 
band and are integer complex numbers. In the next step the coefficients are 
estimated and then estimated spectral sources are calculated. 
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The closer the estimates are to real values, the smaller the presence of 
unwanted signal in the source. When they achieve optimum values, the 
components are proportionally divided between both sources. The situation 
is different for a monophonic version of the acoustic scene. In such a case 
only one sensor and several sources are available. Similar situation takes 
place when overlapping frequencies come from more than two sources. So 
far, several concepts of dealing with the above-mentioned problem have 
been researched;, among them: removing, flattening, synthesis and separa-
tion of these components. 

ESPRIT Algorithm 

The ESPRIT (Estimation of Signal Parameter via Rotational Invariance 

Technique) algorithm is an efficient tool for estimating the direction, from 
which the signal comes. ESPRIT belongs to so-called DOA algorithms (di-

rection-of-arrival). Generally some versions of this algorithm are used: 
standard ESPRIT, and Unitary-ESPRIT, in which the transfer from com-
plex numbers to real numbers takes place significantly decreasing the 
number of calculations (Satayarak et al 2002). By exploiting invariances 
designed into the sensor array, parameter estimates are obtained directly, 
without the knowledge of the array response and without the computation 
or search of some spectral measures. The original formulation of ESPRIT 
assumes only one invariance in the array associated with each dimension 
of the parameter space. However, in many applications, arrays that possess 
multiple invariances (eg. uniform linear arrays, uniformly sampled time se-
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ries) are employed (Swindlehurst et al 1992). Therefore another version of 
this algorithm is a so-called MI-ESPRIT (Swindlehurst et al 1992).

In the ESPRIT method L elements of the matrix are separated into two 
identical overlapping sub-matrices, each consisting of L-1 pairs of sensors 
dislocated by a known constant dislocation vector , which expresses the 
reference distance. All angles in the algorithm are calculated in relation to 
this vector. The length of the vector is expressed using the length of wave 

0.
Several new techniques for DOA estimation using arrays composed of 

multiple translated and uncalibrated subarrays appeared. They do perform 
better than a single invariance implementation of ESPRIT, and are thus 
better suited for finding the initial conditions required by the MI-ESPRIT 
search. The new algorithms can be thought of as generalizations of the 
MUSIC, Root-MUSIC, and MODE techniques originally developed for 
fully calibrated arrays (Kusuma 2000; Swindlehurst et al 2001). 

FED Algorithm 

In literature one can find many algorithms in the context of music separa-
tion. It would be valuable to read papers related to the Music Information 
Retrieval domain. A part of this research was also reported by the author in 
Proceedings of IEEE (Kostek 2004b). Apart from the above reviewed 
methods, another algorithm will be presented here, namely a so-called 
Frequency Envelope Distribution (FED), developed at the Multimedia Sys-
tems Department (Kostek et al 2002a, 2002b). Automatic musical signal 
separation is the subject of the Ph.D. thesis of Dziubinski, a student super-
vised by the author (Dziubinski 2005). Since his work is well in progress, 
thus lately some new developments in the proposed algorithms have been 
engineered (Kostek et al 2004, 2005; Dziubinski et al 2005). However, 
only the basic algorithm will be presented here, which, as mentioned be-
fore, was also presented by the author in the Proceedings of IEEE.  

The FED algorithm decomposes the signal into linear expansion of 
waveforms, called EMO – Envelope Modulated Oscillations that are a 
combination of complex exponential signals modulated by complex ampli-
tude envelopes. These waveforms are sinusoidal signals with a time vary-
ing phase and amplitude and are chosen to best match the harmonic parts 
of the signal (Kostek et al 2002a). Such a representation is similar to the 
one introduced by Serra (1997), however here inner products representing 
the decomposition frequency are directly related to the decomposition fre-
quencies, whereas Serra’s approach is based on retrieving partials of the 
signal from the spectrogram matrix. The presented solution works faster, 
since inner products are calculated only for chosen frequencies, and the re-
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trieving phase is based on windowed inner product. In addition, non-
harmonic structures can also be represented by such waveforms. This is 
possible when amplitude and phase changes have a frequency higher than 
the sinusoidal signal frequency. In practice, it means that in such analysis 
the attention is set to consecutive spectral lines assuming that each line 
changes its amplitude and phase versus discrete time. Since the aim is to 
reconstruct intelligible audio data after the separation process in order to 
perform  listening  tests,  that  is  why phase is  retained  in  calculations. 
Oppenheim and Lim (1981) and McAulay and Quatieri (1990) pointed out 
in their studies the importance of phase in signal reconstruction.

The input signal can be represented as a sum of EMO structures (repre-
sented by the amplitude envelope and phase) and a residual signal (Kostek 
2004b).   

K

i si

s

i
i nRn

f

fn
nAnS

1
][])[

2
cos(][][

(4.24)

where ][nS  is the input signal, K is the number of decomposition itera-

tions, Ai  refers to the amplitude envelope for the ith iteration, i denotes 

phase envelope for the ith iteration, and sR  is the residual signal.  

The first step of the FED algorithm is the Power Spectrum Density 
(PSD) estimation of the input signal using the Welch's averaged, modified 
periodogram method (Deller et al 1993; Proakis and Manolakis 1999). The 
frequency of the maximum value of the PSD ( maxf ) is treated as the fre-

quency of the most energy carrying EMO structure. Next is the calculation 
of nodes that represent the amplitude envelope of the real and imaginary 
part of a complex exponential related to maxf . Such an operation can be 

viewed as calculating inner products of the signal and the complex expo-
nential divided into frames, where the inner product of each frame repre-
sents the amplitude value. First, signals are multiplied sample by sample: 
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where ][nS  is the input signal, and ][nSm  refers to the signal multiplied 

sample by sample by a complex exponential of frequency maxf .

Signal mS  is divided into frames of the same length as that of the com-

plex exponential period and for each block frame the value is calculated: 
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where iK  is the amplitude value for the ith block, )( maxfw  refers to 

frame length related to maxf , and i
mS is the ith frame of mS signal.

The node value for the ith frame is an inner product of the input signal 
in the ith frame and the complex exponential in the ith frame. To obtain 
amplitude signals of the same size as this of the input signal, appropriate 
interpolation has to be performed. Cubic spline approximation provides in-
terpolating curves that do not exhibit large oscillations associated with 
high degree interpolating polynomials (Rabiner et al 1976) and, thanks to 
its low computational complexity, seems to be the perfect tool for the task 
of amplitude envelope interpolation. In the next algorithmic step cubic 
spline interpolation is performed. It is also used to overcome the problem 
with phase unwrapping.   

The first decomposition step is then performed: 
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where sR is the residual signal, f1 refers to frequency fmax for the first it-

eration.
Each iteration is computed identically assuming that a residual signal of 

the previous iteration becomes the input signal for the next iteration. How-
ever, if the same maxf is detected, a significantly shorter amplitude calcula-

tion frame has to be applied and the iteration is then repeated, assuming 
that most of the energy carrying frequencies phase is disturbed and does 
not preserve harmonic properties. In this case the EMO structure repre-
sents the non-harmonic part of the signal. Decomposition frequencies are 
chosen a priori for the FED. The first decomposition frequency is the fun-
damental frequency of the lower pitched instrument. Therefore, it is neces-
sary to first employ a pitch estimation algorithm. 

Since multipitch detection is not needed at this stage and one is inter-
ested in the lower instrument pitch only, an algorithm based on the correla-
tion analysis seems to be well suited to carry out this task (Rabiner et al 
1976; Kostek et al 2002b). However several modifications were applied to 
improve the accuracy of the algorithm according to the research done by 
Masuda-Katsuse (2001).

The average pitch of a chosen segment results in the first decomposition 
frequency. It is assumed that this frequency is the fundamental frequency 
of the lower pitched instrument. Frequencies of the first ten harmonics are 
then calculated and FED iterations are performed for those frequencies. 
Since FED iterations can represent harmonic or inharmonic parts of the 
signal, a modification of the FED was necessary in order to decompose 



    211 

only harmonic parts. Such modification is achieved by allowing only rela-
tively large windows for calculating envelopes for each EMO. 

The first K harmonics of the lower pitched instrument, within each seg-
ment, can be represented as a sum of EMO structures and can be written in 
a simplified way as:  
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where mS is the mth segment of the input signal, 1I  is the extracted sig-

nal containing harmonic components of the lower pitched instrument, K is 
the number of iterations or the number of harmonics to be decomposed, fi

is the frequency corresponding to the ith harmonic, fi
mSEMO )( refers to 

the ith Envelope Modulated Oscillation corresponding to the ith harmonic 
frequency, and )(

1 mI SR  is the residual signal  containing inharmonic com-

ponents of both instruments and harmonics of the higher pitched instru-
ment.

The pitch detection procedure is repeated for )(
1 mI SR  resulting in Pitch 

Contour Signal. Further segmentation of mS  is carried out if necessary. 

FED decomposition is repeated for each segment of mS . The first K har-

monics of the higher pitched instrument can be represented as a sum of 
EMO structures:
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where
pmS is the pth segment of the mS , 2I  is the extracted signal con-

taining harmonic components of the higher pitched instrument, K refers to 
the number of iterations or the number of harmonics to be decomposed, fi

is the frequency corresponding to the ith harmonic, fi
m p

SEMO )( denotes

the ith Envelope Modulated Oscillation corresponding to the ith harmonic 
frequency, and )(

2 pmI SR  is the residual signal containing inharmonic 

components of both instruments and harmonics of the lower pitched in-
strument. 
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Signal Decomposition 

The segmentation of a sound based on Pitch Contour Signal (PCS) enables 
small fluctuations of pitch. Pitch for each segment is actually an average 
pitch within such a segment. This generalization does not produce large er-
rors in the algorithm, since each EMO structure thanks to the envelope fre-
quency modulation properties adapts itself to such small fluctuations. 

In Fig. 4.5 an example of the Pitch Contour Signal is shown for instru-
ments A and B mixed together. One segment of the input signal with con-
stant pitch becomes the input signal for the FED decomposition algorithm. 
FED removes harmonics related to the detected pitch. The residual signal 
consists of harmonics from the higher pitched instrument. Based on the re-
sidual signal, pitch contour of the remaining instrument can be calculated. 
Since pitch of the higher instrument was not constant, further segmentation 
in this case would be required.  
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Pitch detected by Pitch Detector

Undetected pitch of the 

higher instrument (B)

Chosen segment with constant pitch

PCS of instruments A and B mixed together

Segments of nearly constant pitch (small fluctuations)
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Fig. 4.5. Example of Pitch Contour Signal for instruments A and B mixed together 

Harmonic Detection 

Since fundamental frequencies of both instruments can be in harmonic re-
lation, some of the harmonics from both instruments might share the same 
frequency. Frequencies of the coinciding harmonics can be easily calcu-
lated and eliminated for the task of sound recognition if pitch of both in-
struments is known, and eliminated for sound recognition tasks. Addition-
ally, FED decomposition can be carried out for )(

2 pmI SR and
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for )(
1 pmI SR , since both residual signals do not contain coinciding fre-

quencies.
The FED of the residual signals can be expressed in a simplified way as: 
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where 2'I  is the higher pitched instrument signal in the pth segment, 

containing non-coinciding harmonics, and 1'I  is the lower pitched instru-

ment signal in the pth segment, containing non-coinciding harmonics. 
Fig. 4.6 shows 1I , 2I , 1'I  and 2'I  EMO representations resulting from 

one segment of a signal consisting of the mixed 448.8 Hz saxophone sound 
with 108.1 Hz cello sound. Fig. 4.6 contains both time- and frequency-
domain plots of sounds after separation.  

a. I1

(Legend to Fig. 4.6, see next pages) 
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b. I’1

c. I2

(Legend to Fig. 4.6, see next page) 

d. I’2
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Fig. 4.6. Separated 1I , 2I , 1'I  and 2'I   signals (I1, I’1 refer to cello sound and 

correspondingly 2I , 2'I  to saxophone sound) 

4.1.3 Automatic Separation of Musical Duets

For the purpose of checking the efficiency of the FED algorithm devoted 
to the task of musical duet separation, some musical instrument sound rec-
ognition experiments based on the ANN were used. The structure of this 
ANN was three-layered, consisting of correspondingly 8 (input layer), 20 
(hidden layer) and 8 (output layer) neurons. A unipolar sigmoidal transfer 
function was used and a Back-Propagation training algorithm with mo-
mentum was applied during the training phase. The ANN was trained em-
ploying about 400 sound excerpts containing sounds of 8 instruments of 
differentiated musical articulation (Kostek et al 2002a). In addition, an op-
timization process of generalization properties was performed using an-
other set of 400 sounds. It consisted in stopping the ANN training every 
time the mean square error appeared to increase.  

Sounds that were separated employing the FED algorithm were then pa-
rametrized. 1I , 2I , 1'I  and 2'I  signal representations after separation 

were used for feature vector calculation and these FVs were then fed to the 
ANN. The sample answers of the neural network for pairs of musical 
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sounds: a clarinet and a trumpet and an English horn and a viola are pre-
sented in Tables 4.2-4.5. In Tables 4.2 and 4.3 the ANN answers are given 
for testing feature vectors derived from pairs of sounds before mixing 
(original sounds), and Tables 4.4 and 4.5 contain results for testing feature 
vectors resulted from parametrization of sounds after the separation based 
on the FED algorithm. The consecutive columns refer to instruments on 
which the ANN was trained. Rows correspond to sounds that were used in 
the ANN testing. Values contained in tables refer to the ANN output while 
testing particular sounds and they are highlighted in a bold font in the case 
of correct classification by the ANN. The following sounds were mixed in 
two groups in pairs as seen below:  

trumpet A4 – clarinet A#4 
trumpet B3 – clarinet A4 
trumpet A3 – clarinet A#5 
trumpet B3 – clarinet A#3 
and
English horn A3 – viola A#3 
English horn A#3 – viola A#4 
English horn B4 – viola A3 
English horn C#4 – viola A#4 

Remark: B3 trumpet and viola A#4 sounds were used twice in the mix of 
sounds.  

As seen in Tables 4.2 and 4.3 values at the output neurons correspond-
ing to sounds being recognized were very close to 1, whereas the output of 
remaining neurons was close to 0. On the other hand, as seen in Tables 4.4 
and 4.5 values at the output neurons corresponding to sounds being recog-
nized were in some cases not so close to the value of 1, however, these 
neurons were the winning neurons in the output layer. In addition, some 
sounds were not recognized properly. The residual signal containing both 
inharmonic spectrum content and overlapping harmonics of the other 
sounds from the duet caused the erroneous answer, still making the recog-
nition of one of the mixed sounds possible. For example, it can be ob-
served that the recognition of the sounds of a viola and an English horn 
was much easier than the recognition of a trumpet and a clarinet sound for 
the ANN-based algorithm. In the first case the recognition system had 
some problems with octave related sounds, whereas in the second case 
only sounds of the first and fourth pairs were recognized properly.  
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Table 4.2. ANN output neuron answers for trumpet and clarinet sounds (original 
sounds)

Musical Instr./ 
ANN output 

CLA 
A#3 

CLA  
A4 CLA A#4 CLA A#5

TRU
A3

TRU
B3

TRU
A4

VIOLA 0.0005 0 0.0003 0.0127 0 0 0.0034 
ENG. HORN 0.032 0 0 0.3089 0.0047 0.0045 0.0039 
FR. HORN 0.0053 0.0347 0.0453 0 0.0001 0.0001 0.0001 
SAX 0.0176 0.2743 0.1415 0 0.0146 0.0343 0.0141 
CLARINET 0.9888 0.9484 0.9178 0.7783 0.0006 0.0018 0.0001 
BASSOON 0 0.0001 0.0001 0.0002 0 0 0 
TROMBONE 0 0.0462 0.0176 0 0.0129 0.0011 0 
TRUMPET 0 0 0 0 0.99 0.9877 0.9987 

Table 4.3. ANN output neuron answers for viola and English horn sounds (origi-
nal sounds) 

Musical Instr./ 
ANN output 

ENH
A3

ENH
A#3 

ENH
C#4

ENH
B4

VIOLA 
A3

VIOLA 
A#3 

VIOLA 
A4

VIOLA 0.6678 0.2621 0.4945 0.3158 0.9712 0.872 0.9916 
ENG. HORN 0.9101 0.8726 0.808 0.892 0.0105 0.5759 0.0082 
FR. HORN 0.001 0.0006 0.0007 0 0.0003 0.0003 0.0002 
SAX 0 0 0 0 0 0 0 
CLARINET 0.0024 0.0082 0.0003 0.3842 0.0102 0.0042 0 
BASSOON 0 0 0 0 0 0 0 
TROMBONE 0 0 0 0 0 0 0 
TRUMPET 0 0 0 0 0 0 0 

Table 4.4. ANN output neuron answers for trumpet and clarinet sounds (sounds 
after FED separation) 

Musical Instr./ 
ANN output 

TRU
A4

TRU
B3

TRU
A3

TRU
B3

CLA 
A#4 

CLA 
A4

CLA  
A#5 

CLA  
A#3 

VIOLA 0.647 0.657 0 0 0.013 0.888 0.446 0.002 
ENG. HORN 0.006 0.002 0.013 0 0 0.044 0.06 0.0001 
FR. HORN 0.0001 0.0001 0.0009 0.491 0.099 0 0.0003 0.083 
SAX 0.019 0.615 0.006 0.179 0.02 0.02 0 0.251 
CLARINET 0 0 0.009 0.0001 0.866 0 0.008 0.942 
BASSOON 0 0 0 0.0002 0 0 0 0 
TROMBONE 0 0 0.0002 0.484 0.005 0 0 0 
TRUMPET 0.956 0.01 0.931 0.762 0.138 0.224 0.313 0.085 
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Table 4.5. ANN output neuron answers for viola and English horn sounds (sounds 
after FED separation) 

Musical Instr./ 
ANN output 

ENH
A3

ENH
A#3 

ENH
B4

ENH
C#4

VIOLA
A#3 

VIOLA
A#4 

VIOLA
A3

VIOLA 
A#4 

VIOLA 0.003 0 0.053 0.012 0.778 0.776 0.999 0.724 
ENG. HORN 0.597 0.0002 0.848 0.97 0.0008 0.051 0.008 0.602 
FR. HORN 0.001 0.115 0.0005 0.0001 0 0.0007 0.0002 0.004 
SAX 0.0001 0.002 0.0001 0 0 0 0 0 
CLARINET 0.011 0.021 0.003 0.004 0 0.184 0.0009 0.0006 
BASSOON 0 0 0 0 0 0 0 0 
TROMBONE 0 0.0008 0 0 0 0 0 0 
TRUMPET 0.003 0 0.0004 0.0001 0 0 0 0 

Comparison of Separation Algorithm Effectiveness Using 
Perceptron-based and SOM algorithms  

More thorough analysis was conducted in the context of a separation al-
gorithm quality by means of the perceptron-based and Self Organizing 
Map (SOM) algorithms (Cendrowski 2005). The effectiveness of three al-
gorithms (FEDs, FEDr, fixed-point ICA) was tested on ten classes of musi-
cal instruments. Basically, the difference in these algorithms lays in the 
principle of the separation method. The difference in the first two men-
tioned algorithms consists in a synthesizing procedure, namely FEDs 
means that each synthesized sound was subtracted from the mix, thus cre-
ating a new input signal for the next separation stage (separation of the 
consecutive instrument). Separation order was established based on the av-
erage pitch of each instrument, starting from the sound with the lowest 
fundamental frequency. The last separated sound had the highest pitch. 
The synthesized signal contained only harmonic content. It should be 
noted that in the described experiments only two sounds were mixed. The 
second procedure (FEDr) consists in synthesizing a signal based on the re-
siduum (created by subtracting all other sounds). In this procedure the re-
sidual signal, used for recognition, contained inharmonic (noisy) compo-
nents, remaining after the subtraction of other sounds. The last mentioned 
algorithm is based on the Independent Component Analysis presented be-
fore in this Chapter.  

The musical database (Musical Instrument Sounds) from the University 
of Iowa was used in the experiments described below. All instruments are 
posted on AIFF files on the website 
(http://theremin.music.uiowa.edu/MIS.html) of the University of Iowa. All 
samples are gathered in this database in mono, 16 bit, 44.1 kHz, the excep-
tion, however, is the piano, which is in stereo. Each note is approximately 
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2 seconds long and is immediately preceded and followed by ambient si-
lence. Some instruments are recorded with and without vibrato. String in-
strument recordings include arco (bowed) and pizzicato (plucked). The 
only non-anechoic instrument is the piano, which was recorded in a small 
studio. Sound files consist of chromatic scales at three non-normalized dy-
namic levels, pp, mf, ff, however, in the experiments described samples 
with ff level were used.

From the whole set of sound files 296 sounds were extracted and trans-
formed to the wav format. For separation sounds from the octave of C4 to 
B4 were chosen, resulting in 116 sound files for the 10 instruments. This 
means that twelve notes separated from one another by a semitone were 
used for all 10 instruments except double bass (sounds only up to G4 are 
available). The following 10 instrument classes were chosen for the ex-
periments. They were as follows: saxophone (SAX), double bass (DB), 
trombone (TRO), bassoon (BAS), clarinet (CLA), piano (PI), trumpet 
(TRU), violin (VI), flute (FL), oboe (OBO). 

All sounds were mixed with a C4 sound. This means, that for example 
for the modified FED algorithm 10 instruments multiplied by 116 minus 
10 sounds  (the mixture of C4 and C4 sounds were eliminated) resulted in 
1150 sound samples. Only four sounds remained after the process of sepa-
ration. On the whole, 4420 sound samples were available for testing the ef-
fectiveness of FED algorithms. On the other hand, for the ICA algorithm, 
only two sounds remain after the process of separation, which gives 2210 
sounds for testing. 

Table 4.6. Sound sample files used in experiments 

Sound sample file name 
AltoSax.NoVib.ff.A#4.wav
AltoSax.NoVib.ff.A4.wav 
AltoSax.NoVib.ff.B4.wav 
AltoSax.NoVib.ff.C#4.wav
AltoSax.NoVib.ff.C4.wav 
AltoSax.NoVib.ff.D#4.wav
AltoSax.NoVib.ff.D4.wav 
AltoSax.NoVib.ff.E4.wav 
AltoSax.NoVib.ff.F#4.wav
AltoSax.NoVib.ff.F4.wav 
AltoSax.NoVib.ff.G#4.wav
AltoSax.NoVib.ff.G4.wav 
Bass.arco.ff.sulG.C#4.wav 
Bass.arco.ff.sulG.C4.wav 
Bass.arco.ff.sulG.D#4.wav 
Bass.arco.ff.sulG.D4.wav 
Bass.arco.ff.sulG.E4.wav 

flute.novib.ff.B4.wav 
flute.novib.ff.C#4.wav 
flute.novib.ff.C4.wav 
flute.novib.ff.D#4.wav 
flute.novib.ff.D4.wav 
flute.novib.ff.E4.wav 
flute.novib.ff.F#4.wav 
flute.novib.ff.F4.wav 
flute.novib.ff.G#4.wav 
flute.novib.ff.G4.wav 
oboe.ff.A#4.wav 
oboe.ff.A4.wav 
oboe.ff.B4.wav 
oboe.ff.C#4.wav 
oboe.ff.C4.wav 
oboe.ff.D#4.wav 
oboe.ff.D4.wav 
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Table 4.6. (Cont.)

Bass.arco.ff.sulG.F#4.wav 
Bass.arco.ff.sulG.F4.wav 
Bass.arco.ff.sulG.G4.wav 
Bassoon.ff.A#4.wav
Bassoon.ff.A4.wav 
Bassoon.ff.B4.wav 
Bassoon.ff.C#4.wav
Bassoon.ff.C4.wav 
Bassoon.ff.D#4.wav
Bassoon.ff.D4.wav 
Bassoon.ff.E4.wav 
Bassoon.ff.F#4.wav
Bassoon.ff.F4.wav 
Bassoon.ff.G#4.wav
Bassoon.ff.G4.wav 
BassTrombone.ff.A#4.wav
BassTrombone.ff.A4.wav
BassTrombone.ff.B4.wav
BassTrombone.ff.C#4.wav
BassTrombone.ff.C4.wav
BassTrombone.ff.D#4.wav
BassTrombone.ff.D4.wav
BassTrombone.ff.E4.wav 
BassTrombone.ff.F#4.wav
BassTrombone.ff.F4.wav
BassTrombone.ff.G#4.wav
BassTrombone.ff.G4.wav
BbClar.ff.A#4.wav 
BbClar.ff.A4.wav 
BbClar.ff.B4.wav 
BbClar.ff.C#4.wav 
BbClar.ff.C4.wav 
BbClar.ff.D#4.wav 
BbClar.ff.D4.wav 
BbClar.ff.E4.wav 
BbClar.ff.F#4.wav 
BbClar.ff.F4.wav 
BbClar.ff.G#4.wav 
BbClar.ff.G4.wav 
flute.novib.ff.A#4.wav 
flute.novib.ff.A4.wav 

oboe.ff.E4.wav  
oboe.ff.F#4.wav 
oboe.ff.F4.wav 
oboe.ff.G#4.wav 
oboe.ff.G4.wav 
Piano.ff.A#4.wav 
Piano.ff.A4.wav 
Piano.ff.B4.wav 
Piano.ff.C#4.wav 
Piano.ff.C4.wav 
Piano.ff.D#4.wav 
Piano.ff.D4.wav 
Piano.ff.E4.wav 
Piano.ff.F#4.wav 
Piano.ff.F4.wav 
Piano.ff.G#4.wav 
Piano.ff.G4.wav 
Trumpet.novib.ff.A#4.wav 
Trumpet.novib.ff.A4.wav 
Trumpet.novib.ff.B4.wav 
Trumpet.novib.ff.C#4.wav 
Trumpet.novib.ff.C4.wav 
Trumpet.novib.ff.D#4.wav 
Trumpet.novib.ff.D4.wav 
Trumpet.novib.ff.E4.wav 
Trumpet.novib.ff.F#4.wav 
Trumpet.novib.ff.F4.wav 
Trumpet.novib.ff.G#4.wav 
Trumpet.novib.ff.G4.wav 
Violin.arco.ff.sulA.A#4.wav 
Violin.arco.ff.sulA.A4.wav 
Violin.arco.ff.sulA.B4.wav 
Violin.arco.ff.sulD.D#4.wav 
Violin.arco.ff.sulD.D4.wav 
Violin.arco.ff.sulD.E4.wav 
Violin.arco.ff.sulD.F#4.wav 
Violin.arco.ff.sulD.F4.wav 
Violin.arco.ff.sulD.G#4.wav 
Violin.arco.ff.sulD.G4.wav 
Violin.arco.ff.sulG.C#4.wav 
Violin.arco.ff.sulG.C4.wav 

Quality testing of the separation algorithms includes the following steps: 

extraction of sound files from the database along with their funda-
mental frequency, mixing and separation, parameter extraction, 
neural network training on the basis of feature vectors extracted 

  

from sounds from octave,  
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neural network testing on the basis of feature vectors extracted from 

Feature vectors contain the following parameters, defined previously in 
Chapter 3. 

Attack Time, Log Attack Time (LAT), Log Attack Time (duration from 
0.1 to 0.5) (LAT0.1-0.5), Temporal Centroid (TC), Temporal Centroid (nTC)
normalized over time, content of even harmonics (hev), energy of harmon-
ics 2 to 5 divided by the energy of the first harmonic (A2:A5), modified 
Tristimulus parameters (T1:T3), spectral centroid (SC), spectral centroid di-
vided by the fundamental frequency (SCf), mean value of the amplitudes of 
a harmonic computed in each frame (Di), mean value of the amplitudes of 
a harmonic over time (Hi), standard deviation of the amplitudes of a har-
monic over time (Si), mean value of Harmonic Spectral Centroid (mIHSC),
Harmonic Spectral Centroid denoted in [Hz], value of Harmonic Spectral 

Spread (mIHSS), value of Harmonic Spectral Deviation (mIHSD), Audio 

Spectrum Envelope (ASE), normalized Audio Spectrum Envelope over the 
whole energy of the sound (nASE), value of Audio Spectral Centroid 

(ASC), value of Audio Spectrum Spread (ASS), Spectral Flatness Measure 

(SFM).
Feature vectors were tested in terms of instrument class separability, 

first. Various configurations of parameters in feature vectors were also 
tested by neural networks (perceptron-based). Typical parameters were 
used in training of neural networks. Levenberg-Marquardt optimization al-
gorithm was used. During the quality testing phase the best results were 
obtained for the following content of the feature vector: [TC, nTC, LAT,
A2:A5, TR1:TR3, hev, SC, HSC, HSS, H1:H10, S1:S10, mIHSD, mASC, mASS]
(see results in Table 4.7). The number of properly classified instrument 
sounds can be found along the diagonal of the table. All results are ob-
tained on the basis of feature vectors extracted from a sound sample after 
separation was performed.  

Table 4.7. Quality of algorithms based on the classification of separated sounds 
performed by neural network (perceptron-based) [%]  

FEDs SAX DB TRO BAS CLA PIA TRU VI FLU OBO 
SAX
(225) 83.11 2.22 0.89 0 0.44 0.44 0 8.00 4.00 0.89 
DB
(185) 36.76 31.89 15.14 0 0 2.16 0.54 8.11 1.62 3.78 
TRO
(225) 9.78 0.89 68.00 0 0 0 11.11 4.44 3.11 2.67 

          

sounds after separation,
error analysis. 
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Table 4.7. (Cont.)

BAS
(225) 25.78 8.00 4.00 46.22 0.89 0 0 4.89 9.78 0.44 
CLA
(225) 19.56 7.11 10.67 1.33 52.00 0.44 0 5.78 0 3.11 
PIA
(225) 8.44 3.11 1.78 2.67 0 69.33 0 9.78 0 4.89 
TRU
(225) 4.00 0 2.22 0 0 0 45.78 0.89 0 47.11 
VI
(225) 9.78 5.33 0 0 0 0 0 83.11 0.44 1.33 
FLU 
(225) 62.67 0.44 0 0 0 0.89 0 4.44 30.22 1.33
OBO
(225) 2.22 6.22 1.33 0 0 0 0.44 0.44 7.56 81.78

FEDr SAX DB TRO BAS CLA PIA TRU VI FLU OBO 
SAX
(225) 72.44 3.11 4.00 0.89 1.33 1.33 0 11.56 3.56 1.78 
DB
(185) 46.49 15.14 13.51 1.08 0 1.62 5.41 4.32 1.62 10.81 
TRO
(225) 20.44 2.67 41.78 0.44 0 0.89 5.33 6.67 0.44 21.33 
BAS
(225) 33.78 15.11 5.33 30.67 0.89 1.33 0 7.11 4.44 1.33 
CLA
(225) 44.44 9.78 6.67 0.44 25.33 0.44 0 4.44 0 8.44 
PIA
(225) 18.67 7.56 0.44 1.78 0 45.78 0 4.44 0 21.33 
TRU
(225) 21.33 1.78 5.78 0 0 0 53.33 6.67 0 11.11 
VI
(225) 20.44 2.22 1.33 0 0 0 0 63.11 2.22 10.67 
FLU 
(225) 49.33 6.22 3.56 0.44 0.89 1.33 0 4.89 22.67 10.67
OBO
(225) 18.22 11.11 1.33 0 0 0 0 6.22 0.44 62.67

ICA SAX DB TRO BAS CLA PIA TRU VI FLU OBO 
SAX
(225) 70.00 4.40 0 0.40 0.40 8.00 0 3.20 0 13.60 
DB
(185) 59.32 11.02 9.32 0.85 0 2.54 0 5.08 0 11.86 
TRO
(225) 6.12 1.22 72.65 0 0 5.31 8.57 2.04 1.22 2.86 
BAS
(225) 34.66 11.16 4.78 25.10 0 5.98 0.80 1.99 3.59 11.95 
CLA
(225) 24.90 5.22 1.61 0.80 44.58 5.62 1.20 2.01 0 14.06 
PIA
(225) 7.84 1.96 0.98 5.88 0 65.69 0.98 9.80 0 6.86 
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Table 4.7. (Cont.)

TRU
(225) 3.73 0 0.41 0 0 6.22 88.80 0.41 0 0.41 
VI
(225) 16.80 0.39 0.78 0 0 5.86 0 73.05 0.39 2.73 
FLU 
(225) 41.80 6.25 0.78 0.39 0 6.25 0.39 3.52 14.06 26.56
OBO
(225) 5.79 7.44 5.37 0.41 0 4.96 0 2.48 1.65 71.90

It is interesting to analyze in which way the separation quality depends 
on a harmonic relationship in sounds that are mixed. In Fig. 4.7 such a de-
pendence is shown. Such a dependence is especially noticeable for sounds 
of the same pitch, differences that occur are of order of dozen of cents. 
One can observe worsening of the results for the fifth and the fourth, 
where the ratio between frequencies is simple. The best results are ob-
tained for the FEDs algorithm. However, it should be remembered that 
such an analysis was done on the basis of parameters, and, in addition, the 
choice of parameters was such as to diminish individual harmonic influ-
ence on the classification results, thus either normalization or energy ratios 
were computed. 
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Fig. 4.7. Dependence of separation quality on harmonic relationship 

Another interesting question arises as to which pair of instruments re-
turns the best/worst results after separation is performed. The results of 
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such an analysis are shown in Table 4.8. Columns denote instruments that 
should be identified as such, rows show instruments that were added to the 
mixture, percentile denote correct classification. Mean and standard devia-
tion values are also included. 

Table 4.8. Influence of instrument used in mixture on quality of separation  

FEDs SAX DB TRO BAS CLA PIA TRU VI FLU OBO Mean 

SAX 81.8 47.4 95.7 91.3 69.6 95.7 91.3 100 100 91.3 86.41 

DB 94.7 35.7 94.7 89.5 73.7 89.5 89.5 100 100 94.7 86.2 

TRO 87 73.7 95.5 87 82.6 95.7 100 100 100 100 92.15 

BAS 95.7 26.3 87 95.5 78.3 95.7 91.3 95.7 100 95.7 86.12 

CLA 47.8 47.4 95.7 87 77.3 100 95.7 95.7 100 95.7 84.23 

PIA 87 57.9 95.7 100 73.9 100 100 100 100 100 91.45 

TRU 56.5 36.8 82.6 78.3 78.3 87 100 100 100 91.3 81.08 

VI 73.9 36.8 95.7 78.3 73.9 73.9 87 90.9 95.7 82.6 78.87 

FLU 69.6 52.6 87 82.6 69.6 91.3 87 95.7 100 87 82.24 

OBO 82.6 57.9 82.6 91.3 78.3 100 100 91.3 100 95.5 87.95 

                                                                                          Standard deviation 4.3 

FEDr SAX DB TRO BAS CLA PIA TRU VI FLU OBO Mean 

SAX 59.1 84.2 100 82.6 82.6 73.9 87 91.3 73.9 91.3 82.59 

DB 42.1 28.6 10.5 42.1 42.1 26.3 21.1 84.2 57.9 57.9 41.28 

TRO 73.9 78.9 90.9 78.3 78.3 91.3 82.6 100 91.3 69.6 83.51 

BAS 73.9 36.8 47.8 81.8 69.6 52.2 95.7 95.7 91.3 78.3 72.31 

CLA 60.9 68.4 100 65.2 86.4 65.2 87 95.7 73.9 91.3 79.4 

PIA 60.9 52.6 73.9 56.5 78.3 18.2 78.3 91.3 82.6 87 67.96 

TRU 69.6 68.4 87 43.5 65.2 91.3 72.7 91.3 82.6 56.5 72.81 

VI 26.1 26.3 47.8 39.1 56.5 21.7 43.5 81.8 78.3 43.5 46.46 

FLU 56.5 73.7 26.1 69.6 73.9 8.7 87 87 68.2 82.6 63.33 

OBO 78.3 52.6 91.3 91.3 65.2 87 87 100 100 90.9 84.36 

                                                                                         Standard deviation 15.2 

ICA SAX DB TRO BAS CLA PIA TRU VI FLU OBO Mean 

SAX 50 90 92 36 52.2 66.7 91.7 93.1 52.6 100 72.43 

DB 57.1 21.4 57.1 44 9.7 72.7 86.4 80 29.4 78.3 53.61 

TRO 100 70 90.9 81.5 80.8 87.5 100 95.7 100 80.8 88.72 

BAS 42.9 84.6 100 68.2 71.4 100 87.5 100 73.9 87.5 81.6 

CLA 47.8 14.3 95 52 72.7 85.7 100 92.3 30.8 91.3 68.19 

PIA 53.5 75 55.3 57.9 56.4 72.7 52.6 56.4 55 62.9 59.77 

TRU 100 93.8 76.9 95.5 95.8 62.5 100 100 91.7 100 91.62 

VI 94.1 92.3 95.7 100 95 100 100 90.9 91.7 100 95.97 
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Table 4.8. (Cont.)

FLU 18.5 25 95.8 52.2 40 66.7 100 100 36.4 87.5 62.21 

OBO 76.9 93.3 95 81.8 87 81.8 100 100 86.4 68.2 87.04 

                                                                                        Standard deviation 14.9 

Generally, the most stable algorithm was FEDs. The standard deviation 
was equal to 4.3. Also, in the case of this algorithm, the best results hap-
pened for a flute. The worst results were obtained for a double bass, inde-
pendently of the algorithm used.  

Below, results obtained for SOM algorithms are shown. SOM training 
parameters were as follows: neighborhood function – bubble; a batch train-
ing method; shape: hexagonal grids, rough-fine tuning method applied: 
training constant during rough phase: 0.5, training constant during fine

tuning: 0.05; dimensions of maps are 10 by 10 units; initial training radius: 
1.25, final training radius: 1. Results of quality testing of separation algo-
rithms on the basis of the classification of sounds after separation done by 
the SOM algorithm are gathered in Tables 4.9 and 4.10. Columns represent 
clusters, to which an instrument was classified, consecutive rows show to 
which clusters instruments should be classified, ‘0’ means that sounds 
were assigned to clusters represented by any instrument class. 

Table 4.9. Algorithm effectiveness based on the classification of separated sounds 
performed by SOM  

BAS CLA PIA TRU VI FLU OBO 

SAX 5 185 2 0 5 16 0 0 12 0 0 

DB 127 13 27 5 1 8 0 1 3 0 0 

TRO 16 0 11 194 0 1 0 0 1 0 2 

BAS 4 3 1 0 217 0 0 0 0 0 0 

CLA 7 13 5 0 5 192 0 0 3 0 0 

PIA 221 0 0 1 0 1 0 0 0 0 2 

TRU 8 0 0 0 0 0 0 217 0 0 0 

VI 5 0 0 0 0 0 0 0 220 0 0 

FLU 12 0 1 11 0 0 0 0 0 201 0 

OBO 4 0 0 0 0 1 0 0 0 0 220 

BAS CLA PIA TRU VI FLU OBO 

SAX 47 163 1 1 3 9 0 0 1 0 0 

DB 45 11 93 16 0 10 2 0 2 6 0 

TRO 38 0 0 177 2 0 0 8 0 0 0 

FEDs '0' SAX DB TRO

FEDr '0' SAX DB TRO
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Table 4.9. (Cont.)

BAS 94 2 0 0 127 0 0 0 2 0 0 

CLA 42 16 1 1 7 157 0 0 0 1 0 

PIA 145 9 5 32 6 0 27 0 1 0 0 

TRU 19 0 0 0 0 0 0 206 0 0 0 

VI 3 1 10 2 0 0 0 0 209 0 0 

FLU 25 0 0 2 0 0 0 0 97 101 0 

OBO 22 0 0 8 0 0 0 0 0 0 195 

BAS CLA PIA TRU VI FLU OBO 

SAX 60 163 5 8 0 0 1 1 2 6 4 

DB 21 67 17 7 0 0 0 0 0 6 0 

TRO 15 12 11 201 0 0 4 0 1 1 0 

BAS 39 23 1 19 141 1 1 9 5 8 4 

CLA 45 10 1 19 0 154 1 1 3 9 6 

PIA 68 3 1 4 0 0 24 1 0 0 1 

TRU 16 4 0 3 0 0 1 215 0 0 2 

VI 26 13 0 16 0 0 0 1 200 0 0 

FLU 57 5 9 17 0 0 1 2 8 154 3 

OBO 17 5 1 8 2 0 1 1 1 1 205 

Table 4.10. Quality of algorithms based on the classification of separated sounds 
performed by SOM [%]  

BAS CLA PIA TRU VI FLU OBO 

SAX 2.2 82.2 0.9 0 2.2 7.1 0 0 5.3 0 0 
DB 68.6 7 14.6 2.7 0.5 4.3 0 0.5 1.6 0 0 

TRO 7.1 0 4.9 86.2 0 0.4 0 0 0.4 0 0.9 
BAS 1.8 1.3 0.4 0 96.4 0 0 0 0 0 0 
CLA 3.1 5.8 2.2 0 2.2 85.3 0 0 1.3 0 0 
PIA 98.2 0 0 0.4 0 0.4 0 0 0 0 0.9 
TRU 3.6 0 0 0 0 0 0 96.4 0 0 0 
VI 2.2 0 0 0 0 0 0 0 97.8 0 0 

FLU 5.3 0 0.4 4.9 0 0 0 0 0 89.3 0 

OBO 1.8 0 0 0 0 0.4 0 0 0 0 97.8 

BAS CLA PIA TRU VI FLU OBO 
SAX 20.9 72.4 0.4 0.4 1.3 4 0 0 0.4 0 0 
DB 24.3 5.9 50.3 8.6 0 5.4 1.1 0 1.1 3.2 0 

TRO 16.9 0 0 78.7 0.9 0 0 3.6 0 0 0 
BAS 41.8 0.9 0 0 56.4 0 0 0 0.9 0 0 

ICA '0' SAX DB TRO

FEDs '0' SAX DB TRO

FEDr '0' SAX DB TRO
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Table 4.10. (Cont.)

CLA 18.7 7.1 0.4 0.4 3.1 69.8 0 0 0 0.4 0 
PIA 64.4 4 2.2 14.2 2.7 0 12 0 0.4 0 0 
TRU 8.4 0 0 0 0 0 0 91.6 0 0 0 
VI 1.3 0.4 4.4 0.9 0 0 0 0 92.9 0 0 

FLU 11.1 0 0 0.9 0 0 0 0 43.1 44.9 0 

OBO 9.8 0 0 3.6 0 0 0 0 0 0 86.7 

BAS CLA PIA TRU VI FLU OBO 

SAX 24 65.2 2 3.2 0 0 0.4 0.4 0.8 2.4 1.6 
DB 17.8 56.8 14.4 5.9 0 0 0 0 0 5.1 0 

TRO 6.1 4.9 4.5 82 0 0 1.6 0 0.4 0.4 0 
BAS 15.5 9.2 0.4 7.6 56.2 0.4 0.4 3.6 2 3.2 1.6 
CLA 18.1 4 0.4 7.6 0 61.8 0.4 0.4 1.2 3.6 2.4 
PIA 66.7 2.9 1 3.9 0 0 23.5 1 0 0 1 
TRU 6.6 1.7 0 1.2 0 0 0.4 89.2 0 0 0.8 
VI 10.2 5.1 0 6.3 0 0 0 0.4 78.1 0 0 

FLU 22.3 2 3.5 6.6 0 0 0.4 0.8 3.1 60.2 1.2 

OBO 7 2.1 0.4 3.3 0.8 0 0.4 0.4 0.4 0.4 84.7 

In addition, results obtained were visualized in a form of maps. The 
main aim of such an analysis was to show grouping of feature vectors ex-
tracted from sound samples before separation (reference vectors) and after 
separation, and in addition, to present topology of neurons forming clusters 
of instrument classes. The size and the shape of the SOM are of impor-
tance, because the distance between all classes should be minimal. In the 
case of experiments carried out the network topology was chosen as 
square. An example of such an analysis is shown in Fig. 4.8. It shows clus-
tering density in different regions of data space for trumpet sound samples 
before and after separation. The size of neurons and their density reflect 
BMUs (best matching units) and the number of input vectors. The distance 
between neurons is determined by the unified distance matrix U of the size 
2N-1x2M-1, where N and M are sizes of the SOM. Elements of matrix U 
reflect distance between neurons. In a colored version of such SOMs red 
color illustrates reference vectors, and dark blue reflects feature vectors as-
sociated with sound samples after separation. Quality of separation is asso-
ciated with the distance between neurons representing reference vectors 
and those extracted from sounds after separation, regardless of their 
placement in the organized map. As observed in Fig. 4.8 the best situation 
happened for the ICA algorithm, where all neurons belonging to reference 
vectors tend to immerse in the associated with feature vectors after separa-
tion.

ICA '0' SAX DB TRO
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Another kind of visualization of results obtained by the SOM is shown 
in Fig. 4.9. In this case all parameter values should be normalized with re-
gard to their variances.  
a. FEDs

b. FEDr

(Legend to Fig. 4.8, see next page) 
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c. ICA 

Fig. 4.8. Display of clusters for a trumpet before and after separation, the size and 
the intensity of gray color reflect classification of feature vectors to appropriate 
clusters

a. FEDs

(Legend to Fig. 4.9, see next page) 
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b. FEDr 

c. ICA 

Fig. 4.9. Display of clusters of instruments, numbers show classification of feature 
vectors to the clusters (neurons associated with trumpet sound samples are placed 
in the upper part of figures, the first and second rows in the case of FED algo-
rithms, in addition, a neuron in the third row for the ICA algorithm) 

In Fig. 4.9 clusters reflecting the placement of reference vectors associ-
ated with trumpet sound samples obtained for all three algorithms are in 
the upper part (the first and second “rows” of neurons), these clusters are 
separated by empty space between them. Nearly all feature vectors ex-
tracted from sound samples after separation are gathered in these two areas 
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(see numbers shown in clusters associated with the trumpet). All three 
maps tend to coincide with this observation. However, a question remains 
whether, such an analysis reflects the actual structure of data, or whether it 
is an artefact of the parameter choice made by the researcher.  

Lately, more thorough analysis of the automatic recognition of musical 
sounds after separation was carried out. Also, some new algorithms and 
procedures were introduced (Dziubinski et al 2005). The results are very 
satisfying for the engineered separation algorithms. They perform success-
ful recognition of sounds after separation, even in cases when large 
amount of harmonic partials overlap, and sounds have overlapping tran-
sients in the mixture. Top algorithm-procedure combination allowed the 
ANN to correctly classify 97.4% of sound samples. This result is very en-
couraging, unfortunately with little room for improvement. In addition, for 
the purpose of recognition different feature vectors were created. All per-
formed experiments proved that MPEG-7 descriptors alone are not suffi-
cient for the classification of sounds separated with the given algorithm. 
Thus it was important to search for a set of descriptors specifically suitable 
for this purpose. In addition, it was shown that the manipulation of the at-
tributes contained in feature vectors used for the ANN training and then 
for recognition has a significant influence on the results of recognition, and 
at the same time on the evaluation of separation techniques. It is important 
to mention that different descriptors might be necessary in more extensive 
tests, in which more than four instruments would be contained in a mix. In 
addition, real polyphonic performance (not artificially mixed isolated sig-
nals as in the examples presented) should be analyzed to provide more 
complete results. 

4.2 Musical Phrase Analysis 

In many existing Music Information Retrieval systems a musical phrase is 
a basis for formulating a query to such systems. Because of the increasing 
number of MIR systems, only some examples will be cited in this Chapter, 
therefore this review should not be treated as a systematic analysis of all 
existing Music Information Retrieval systems. A more systematic review 
on Music Information Retrieval systems is available from Typke’s home 
page (http://mirsystems.info/). 

 The first introduced systems were based on extracting content-related 
features from symbolic musical data. Usually, a query was based on the 
sequence of the MIDI-transcribed notes introduced by a MIDI keyboard. 
Such a system created by Hawley (1990) enabled searching of the exact 



sequence of notes. In practical applications such a condition cannot be eas-
ily fulfilled, thus in 1992 Wu and Manber engineered an algorithm better 
suited to real applications. Later, McNab et al. (1996a, 1996b) proposed a 
system (MELDEX) in which a query was introduced as an acoustical sig-
nal. Thus, the epoch of QBH (Query-by-Humming) systems appears. In 
most cases QBH systems utilize pitch contours to represent melodies. 
Apart from newer versions of such systems, they seldom used rhythm in 
their melody representation. Another group of systems concerns extracting 
content-related features from acoustical or audio signals. Two other groups 
may be referred to as extracting reference-related features from symbolic 
data, and reference-related features from symbolic musical data.  

The MARSYAS (MusicAl Research System for Analysis and Synthe-
sis) or (Musical Analysis and Retrieval SYstems for Audio Signals) was 
designed and developed in Princeton University by Tzanetakis and Cook. 
One of the main characteristics of the system is that it supports many fea-
ture extraction schemes, among others, STFT-based features, Mel-
Frequency cepstral coefficients, Linear-prediction coefficients, MPEG-7-
based features, Discrete Wavelet Transform-based features. Other applica-
tions can be cited, such as: Themefinder application developed at Stanford  
University,  the  TuneServer  project  by Prechelt and Typke from the Uni-
versity  of  Karlsruhe (1997), the MiDiLiB project by the University of 
Bonn, etc. The already mentioned MELDEX (MELody inDEX) applica-
tion created by McNab, Smith, Bainbridge and Witten from the University 
of New Zealand (1996b) was probably the first one introduced in the 
Internet. The system corpora consist of folk melodies 
(http://mirsystems.info/;http://213.133.111.178/Rntt/tuneserver_tochi2001.
pdf; http://www.dlib.org/dlib/may97/meldex/05witten.html). 

In 1995 Ghias, Logan, Chamberlin and Smith (1995) from Cornell Uni-
versity proposed a QBH (Query-by-Humming) system, in which the search 
is conducted using a melody introduced as an acoustical signal. The sys-
tem architecture consisted of three main modules, namely: pitch-tracking 
module, melody database, query engine. After a melody is introduced to 
the microphone, it is registered, discretized and then pitch is detected. A 
melodic pitch contour creates the query. The system returns a list of melo-
dies that are similar to the one searched for. All files are gathered in the 
MIDI format and they create a flat-type database. In a simple contour rep-
resentation, a note in a piece of music is classified as a note-to-note 
movement in one of three ways: it is either a repetition of a previous note 
(R), or it is higher than a previous note (U), or it is lower than a previous 
note (D). Thus, the piece can be converted into a string with a three-letter 
alphabet (U, D, R). In the application mentioned, the Baesa-Yates and Per-
leberg’s (1992) algorithm was adopted for the approximate matching with 
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k mismatches. In many QBH applications a 3-level contour representation 
was also used (in some systems, however, larger than 3). A variety of 
techniques are used in classification schemes, among others: dynamic pro-
gramming, HMM (Hidden Markov Model), Gaussian Mixture Model, tree, 
etc. may be cited.  

In 1997 Foote proposed the TreeQ system (Foote 1997), in which query 
results are based on the similarity measure. An MMI (Maximum Mutual 

Information) tree is used in this system. It is capable of being pruned to ig-
nore irrelevant information. In Fig. 4.10 the basic structure of the system is 
shown, and, in addition, in Fig. 4.11 the principles of testing the database 
is shown. The QTree algorithm proposed by Foote was later adapted by 
other researchers. 

audio signal

applying
overlapping
windows

MFCCs

tree-based
quantization
(vector
quantization)

MFCC computation

histogram of the
resultant leaf
assignment
(templates)

Fig. 4.10. TreeQ system  structure (Foote 1997) 
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distance metrics

Sorting

distance calculation

List of objects ranked by the similarity order

reference template

database
objects

Fig. 4.11. Classification of audio signals based on template histograms (Foote 
1997) 

The TuneServer mentioned before is interesting from the implementa-
tion point of view. The Parson’s code was used, which takes into account 
only the melody direction and discards the rhythm information. This code 
is specifically resilient to the rhythmic-based errors. The query is based on 
whistling, and returns the ranked list of results.  

Another system MIRACLE (Music Information Retrieval Acoustically 
with Clustered and paralleL Engine), which appeared in 2000, was con-
structed by Jang, Chen and Kao from Taiwan 
(http://ismir2001.ismir.net/posters/jang.pdf – MIRACLE). The system is 
an example of the distributed QBH, but of the Query-by Singing  type. The 
system contains 18 slave servers of different processing features. The re-
sults are shown as a ‘Top 20’ list, which is created by either the DTW 
(Dynamic Time Warping) or the HFM method (two-step hierarchical fil-

tering method, two-step HFM) by comparing the template patterns con-
tained in all slave servers. The main server sorts all lists received and re-
turns the final results.  

GUIDO system, engineered by Hoos, Renz and Görg in 2001 is an ex-
ample of the content-based music information retrieval 
(http://www.cs.ubc.ca/~hoos/Publ/ismir01.pdf; http://www.informatik.tu-
darmstadt.de/AFS/GUIDO). It can be qualified for the Query-by-Example

systems. The authors of this system developed a GUIDO/XML format, 
which enables to search the database containing musical scores. The query 
consists in formulating features characteristic to the type of the searched 
example. For example, a melody is based on the absolute pitch, pitch-class, 
interval, interval class, melodic trend (direction of changes, if any: up, 
down, equal).  On the other hand, rhythmical features are as follows: abso-
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lute duration of a note, relative duration, rhythmical trend (shorter, longer, 
equal). The query regards an individual note or a pair of notes, respec-
tively. The engine of the system is based on the Hidden Markov Models. 
States of the Markov model are related to note features, such as mentioned 
before, i.e. pitch, intervals, note duration, etc. the database is organized as 
a tree structure, such a structure supports the system decision taking. In 
Fig. 4.12 the GUIDO system structure is shown.  

root

State Matrix

Fig. 4.12. Tree structure of the Guido system (http://www.informatik.tu-
darmstadt.de/AFS/GUIDO) 

Another system belonging to the content-based music information re-
trieval is the OMRAS (Online Music Retrieval And Searching) project, 
developed in 2001 in Kings College and the University of Massachusetts 
(http://omras.dcs.kcl.ac.uk/Full_desc.html). The system supports queries of 
the MIDI-based files of different types. For example, a query can be for-
mulated as highly-structured files (high-level structure of the MIDI files 
based on music notation with the possibility to distinguish polyphonic 
lines), semi-structured files (medium-level structure of the MIDI files 

onset and ending with event release), unstructured files – audio files in 
PCM format. The parameterization method related to the higher level of 
the MIDI files is based on music indexing, on the other hand, files pre-
sented in PCM format use time–frequency representations, wavelet repre-
sentations, etc. 

The CubyHum system developed at the University of Eindhoven in 
2002 is one of the QBH systems 
(http://ismir2002.ismir.net/proceedings/02-FP06-2.pdf). A so-called sub-

harmonic summation  technique is used to estimate pitch from the hummed 

based on a pitch-time matrix, in which '1s' appear starting with the event 
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melody, then event onsets and intervals are determined in the melody. 
Melodies that are similar to the pitches from the sung melody are retrieved 
from the database. A dynamic programming framework is used in the pat-
tern matching. The authors of the system say that this application is a 
“linked combination of speech signal processing, music processing and 
approximate pattern matching”, and in addition, the knowledge derived 
from the experimental practice.  

In 2003 Typke, Veltkamp, and Wiering from the University of Utrecht 
developed  the     Orpheus        system (http://www.cs.uu.nl/people/rtypke/ 
transdist_ismir2003.pdf), in which the query mechanism principle is based 
on the Earth Mover’s Distance, and its modification. An example from the 
database, a MIDI file, or a whistled melody can formulate a query. Then, 
they are converted into the internal database format before the search 
starts. Note pitch is defined according to the interval-invariant base-40 no-
tation system, proposed by Hewlett. In addition, two types of weights are 
utilized, namely stress and note number weights. In general their role is to 
differentiate between note duration and melody structures. The pattern rec-
ognition is organized in such a way that a small number of candidates are 
selected from the database using a KD-tree which is based on Euclidean 
distances in a space of transportation distances. Then, on the basis of the 
objects found, a more expensive transportation distance is calculated to ob-
tain the exact distances instead of the distance boundaries.  

MelodieSuchmaschine  project  results   from  the  research  of  the 
Fraunhofer Institutes in Erlangen and Ilmenau 
(http://www.iis.fraunhofer.de/amm/download/qbh.pdf;      http://www.cebit 
2003.fraunhofer.de/servlet/is/4107/). The system was introduced in 
2003. The system is of the QBH type. MelodieSuchmaschine exists as an 
autonomic system or a www application, or a query is introduced by a mo-
bile phone, then processed by the server and returned to the mobile phone. 
The fundamental frequencies of the hummed melody are transformed to a 
pitch contour which is subsequently divided into several notes. Each note 
is characterized by its temporal duration and pitch. The query returns a 
ranked list of 10 most similar songs. The information on the identified 
song title, artist, composer, lyrics, etc. is also sent to the user.  

There are also some other systems, some of them commercial audio fin-
gerprinting systems, these systems are listed in the MIR society webpage. 

   4.2 MUSICAL PHRASE ANALYSIS 
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4.2.1 Description of Musical Phrase 

The analysis of a musical phrase is not a fully solved problem, however it 
depends both on the quality of a musical phrase representation and on the 
inference engine.

There are two main types of musical files – audio signals and structured 
files such as for example MIDI. The unsolved problem in a signal-domain 
is to extract individual sounds from a stream of audio. Melody contours 
can be extracted from an audio file by means of various techniques de-
scribed in the previous Chapter, but chords or sounds playing at the same 
time cannot be effectively extracted, yet. In the case of MIDI files such a 
problem does not exist because each note is described as a set of its physi-
cal attributes – melodic and rhythmic values, thus the high level analysis is 
possible. However, there exist elements of a piece, which cannot be easily 
extracted neither from the audio signal nor from the MIDI code, they con-
cern emotional features for example, and are often described in a non-
formal way, e.g. as a description of a mood of a musical piece. 

As already mentioned, musicologists list a few elements of a musical 
piece. For example, Byrd and Crawford (2002) claim that the most infor-
mative are melody and rhythm, assigning about 50% of informativeness to 
a melody, 40% to rhythm and remaining 10% to the elements such as har-
mony, dynamics, articulation, etc. Since melody is the most important 
element of a musical piece, thus in this Chapter the experiments presented 
are concentrated around this feature, however examples of rhythm retrieval 
techniques are also shown. 

The musical-phrase analysis case-studies presented were performed 
formerly by the author (Kostek 1995, 1998, 1999; Kostek and Szczerba 
1996a, 1996b), and also by her colleague Czyzewski, and a Ph.D. student 
of his, Szczerba (Czyzewski and Szczerba 2002; Czyzewski et al 2004; 
Szczerba 1999, 2002). This Chapter also comprises a description of an-
other ongoing project carried out by the author and her Ph.D. student,
Wojcik (Kostek and Wojcik 2004, 2005; Wojcik and Kostek 2004). Part of the 
research presented was published in the first volume of Transactions on 
Rough Sets, printed by Springer Verlag (Czyzewski et al 2004, Czyzewski 
and Kostek 2004; Kostek and Czyzewski 2004).  

The experiments assume the discussed musical phrases to be single-
voice ones. This means that at moment t, at most one musical event occurs 
in the phrase. In general, a musical event is defined as a single sound of the 
defined pitch, amplitude, duration, onset and timbre (Tanguiane 1991; The 
New Grove Dictionary). A musical pause — the absence of sound — is a 
musical event as well. For practical reasons a musical pause was assumed 
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to be a musical event of pitch equal to the pitch of the preceding sound and 
of a zero amplitude. 

A single-voice musical phrase fr can be expressed as a sequence of mu-
sical events:  

neeefr ,...,, 21 (4.32)

Musical event ei can be described as a pair of values denoting sound 
pitch hi (in the case of a pause, pitch of the previous sound), and sound du-
ration ti:

iii the , (4.33)

One can therefore express a musical phrase by a sequence of pitches be-
ing a function of time fr(t). A sample illustration of the function fr(t) is 
presented in Fig. 4.13. Sound pitch is defined according to the MIDI stan-
dard, i.e. as a difference from the C0 sound measured in semitones (Braut 
1994).

Fig. 4.13. Musical phrase as a function of sound pitch in time. Sound pitch is ex-
pressed according to the MIDI standard 

sical phrases according to rules specific to music perception, and aesthetic 
and cultural conventions and constraints (Barucha and Todd 1991). Gener-
ally, listeners perceive a modified musical phrase as identical to the un-
modified original. Modifications of musical phrases involve sound pitch 
shifting (transposition), time changes (e.g. augmentation), changes of or-
nament and/or transposition, shifting pitches of individual sounds etc. 
(Todd 1991). A formal definition of such modifications may be presented 
by the example of a transposed musical phrase, expressed as follows: 

For example, a transposed musical phrase can be expressed as follows: 

   4.2 MUSICAL PHRASE ANALYSIS 

One of the basic composer and performer’s tools is transforming mu-
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ctfrtfr refmod
(4.34)

where )(tfrref  denotes an unmodified, original musical phrase, )(tfrmod  is 

a modified musical phrase, c is a coefficient expressing in semitones the 
shift of individual sounds of the phrase by a constant factor (for |c|=12n

there is an octave shift). 
A musical phrase with a changed tempo can be expressed as follows: 

ktfrtfr refmod
(4.35)

where k denotes the tempo change coefficient. 
A phrase tempo is slowed down for the values of coefficient k < 1. 

Tempo increase is obtained for the values of coefficient k > 1. A  trans-
posed musical phrase with a changed tempo can be expressed as follows: 

cktfrtfr refmod
(4.36)

An example of a musical phrase transposition and a tempo change is 
presented in Fig. 4.14. 
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Fig. 4.14. Musical phrase transposition and tempo change (
4
3k ; 6c )

A variation of tempo in time – a tempo fluctuation – can result mostly 
from performer’s expression or performance inexactness (Desain and 
Honing 1991, 1997; Repp 1996). Tempo fluctuations can be expressed as func-
tion k(t). A musical phrase with a fluctuating tempo can be expressed as 
follows:

tktfrtfr refmod
(4.37)
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Many methods of modifying melodic content of musical phrases are 
available. Among the most often used ones are: ornament, transposition, 
inversion, retrograde, scale change (major – minor), change of pitch of in-
dividual sounds (e.g. harmonic adjustment), etc. The above methods can be 
expressed as melodic modification function (t). Therefore, a musical 
phrase with melodic content modifications can be expressed as follows: 

ttfrtfr refmod
(4.38)

A musical phrase modified by the above means (transposition, a tempo 
change, a tempo fluctuation and a melodic content modification) can be 
expressed as follows: 

ctktkttktktfrtfr refmod )()()( (4.39)

Formalizing musical phrase modifications allows for defining the prob-
lem of an automatic classification of musical phrases. Let frmod be a modi-
fied or unmodified musical phrase being classified and let FR be a set of 
unmodified reference phrases: 

Nrefrefref frfrfrFR ,...,, 21 (4.40)

The task of recognizing musical phrase frmod can therefore be described 
as finding, in set FR, such a phrase frnref, for which the musical phrase 
modification equation is true. 

If the utilized modification means are limited to transposition and uni-
form tempo changes, a modification can be described using two constants: 
a transposition constant c and a tempo change constant k. In the discussed 
case the task of classifying a musical phrase is limited to determining such 
vales of constants c and k that the equation is true. If function k(t) 0, then 
the mechanism of classification should minimize the influence of the func-
tion. Small values of function k(t) indicate slight changes resulting from  
articulation   inexactness  and  moderate  performer’s   expression (Desain 
1992). Such changes can be corrected by means of time quantization. Lar-
ger values of function k(t) indicate major temporal fluctuations resulting 
chiefly from the performer’s expression. Such changes can be corrected 
using  advanced  methods  of time  quantization  (Desain and Honing 
1991).

Function (t) describes a wide range of musical phrase modifications 
that are characteristic for a composer epoch as well as for the performer’s 
style and technique. Values of function (t), which describes qualitatively 
the character of the above factors, are difficult or impossible to determine 
in a hard-defined manner. This is the main problem of the automatic classi-
fication of musical phrases. 

   4.2 MUSICAL PHRASE ANALYSIS 
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4.2.2 Parametrization of Musical Phrases 

Since the subject of parametrization was thoroughly discussed in Chapter 
3, thus here only a few remarks will be presented. A fundamental quality of 
intelligent decision algorithms is their ability to classify data that cannot be 
exactly defined and modeled mathematically. This quality enables to use 
intelligent decision algorithms for an automatic classification of musical 
phrases in the conditions of the lack of a definition and a quality character 
of (t) and k(t) functions. 

The data to be classified by intelligent decision algorithms can be repre-
sented as a vector: 

Nppp ,...,, 21P (4.41)

The constant number N of elements of vector P requires musical phrase 
fr to be represented by N parameters, independent of the duration of the 
number of tones in phrase fr. Converting a musical phrase fr of the shape 
of {e1, e2, …, en} into an N-element vector of parameters enables the repre-
sentation of distinctive qualities of musical phrase fr. As shown above, the 
transposition of a musical phrase and the uniform proportional tempo 
change can be represented as the alteration of two constants: c and k. It 
would therefore be advantageous to design such method of musical phrase 
parameterization, for which: 

)()( refmod frfr PP (4.42)

where: 

cktfrtfr refmod
(4.43)

Creating a numerical representation of musical structures to be used in 
automatic classification and prediction systems requires defining the fol-
lowing characteristics: 

a sequence size, 
a method of representing sound pitch, 
a method of representing time-scale and frequency properties, 
methods of representing other musical properties by feature vectors.  

In addition, after defining various subsets of features, a feature selection 
should be performed. Typically, this process consists in finding an optimal 
feature subset from a whole original feature set, which guarantees the ac-
complishment of a processing goal while minimizing a defined feature se-
lection criterion (Chmielewski and Grzymala Busse 1994; Skowron and 
Nguyen 1995; Nguyen 1998; Swiniarski 2001). Feature relevance may be 
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evaluated on the basis of open-loop or closed-loop methods. In the first 
approach separability criteria are used. To this end the Fisher criterion is 
often employed. The closed-loop methods are based on feature selection 
using a predictor performance. This means that the feedback from the pre-
dictor quality is used for the feature selection process. On the other hand, 
this is a situation, in which a feature set contains several disjoint feature 
subsets. The feature selection defined for the purpose of this study consists 
in eliminating the less effective method of parametrization according to the 
processing goal first, and then in reducing the number of parameters to the 
optimal one. Both, open- and closed-loop methods were used in the study 
performed.

Individual musical structures may show significant differences in the 
number of elements, i.e. sounds or other musical units. In the extreme case 
the classifier should be fed with the whole musical structure (e.g. the mel-
ody or the whole musical piece). It is therefore necessary to limit the num-
ber of elements in the numerical representation vector. This can be 
achieved by employing a movable time window of a constant size. Time 
windows can overlap. 

Sound pitch can be expressed as an absolute or a relative value. An ab-

solute representation is characterized by the exact definition of a reference 
point (e.g. the C1 sound). In the case of an absolute representation the 
number of possible values defining a given sound in a sequence is equal to 
the number of possible sound pitch values. A disadvantage of this repre-
sentation is the fact of shifting the values for the sequence elements by a 
constant factor in the case of transposition. In the case of a relative repre-

sentation the reference point is being updated all the time. Here the refer-
ence point may be e.g. the previous sound, a sound at the previously ac-
cented time part or a sound at the time start. The number of possible values 
defining a given sound in a sequence is equal to the number of possible in-
tervals. An advantage of a relative representation is the absence of change 
in musical structures caused by transposition (i.e. shifting the structure a 
defined interval up or down) as well as the ability to limit the scope of 
available intervals without limiting the available musical scales. Its disad-
vantage is sensitivity to small structure modifications resulting in shifting 
the reference point. 

Research performed so far resulted in designing a number of parametric 
representations of musical phrases. Some of these methods were described 
in detail in earlier publications (Kostek 1995, 1998, 1999; Kostek and 
Szczerba 1996a, 1996b), therefore only their brief characteristics are given 
below. 

   4.2 MUSICAL PHRASE ANALYSIS 
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Statistical parametrization 

The designed statistical parameterization approach is aimed at describing 
structural features of a musical phrase. The statistical parametric descrip-
tion has been used in previous case studies (Kostek 1995; Kostek and 
Szczerba 1996a), and introduced parameters are as follows: 

P1 – the difference between weighted average sound pitch and pitch of 
the lowest sound of a phrase: 
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(4.44)

where T is the phrase duration, hn denotes pitch of nth sound, tn is a du-
ration of nth sound,  N denotes the number of sounds in a phrase. 

P2 – ambitus – the difference between the pitches of the highest and the 
lowest sounds of a phrase:
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P3 – the average absolute difference of pitches of subsequent sounds: 
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P4 – the duration of the longest sound of a phrase: 

n
n

tP max4 (4.47)

P5 – average sound duration: 
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1 (4.48)

Statistical parameters representing a musical phrase can be divided into 
two groups: parameters describing melodic quantities of a musical phrase 
(P1, P2, P3) and parameters describing rhythmical quantities of a musical 
phrase (P4, P5).

An example of the values of statistical parameters calculated for a musi-
cal phrase shown in Fig. 4.15 is contained in Table 4.11. 
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Fig. 4.15. An example of a musical phrase 

Table 4.11. Values of statistical parameters calculated for musical phrase shown 
in Fig. 4.15 

Statistical parameter Parameter value 
P1 7.1764 
P2 12 
P3 2.375 
P4 1024 
P5 1024 

Trigonometric Parametrization 

Trigonometric parametrization involves representing the shape of a musi-
cal phrase with a vector of parameters P=[p1, p2, …, pM] of a series of co-
sines of the form (Kostek and Szczerba 1996b): 
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For a discrete time-domain, it is assumed that the sampling period is a 
common denominator of durations of all rhythmic units of a musical 
phrase. Elements pm of the trigonometric parameter vector P are calculated 
according to the following formula: 
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where
snt

T
l  denotes the phrase length expressed as a multiple of a 

sampling period, snt is the shortest note duration, hk is pitch of sound in 
kth sample. 

According to the taken assumption each rhythmic value, which is a mul-
tiple of the sampling period is transformed into a series of rhythmic values 
equal to the sampling period. This leads to the loss of information on the 
rhythmic structure of the phrase. Absolute changes of values concerning 
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sound pitch and proportional time changes do not affect the values of 
trigonometric parameters.  

Trigonometric parameters enable to reconstruct the shape of the musical 
phrase they represent. Phrase shape is reconstructed using vector K=[k1, k2,
..., kN]. Elements of vector K are calculated according to the following 
formula: 
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where M is the number of trigonometric parameters representing the 
musical phrase, Pm denotes mth element of the parameters vector. 

Values of elements kn express in semitones the difference between the 
current and the average sound pitch in the musical phrase being recon-
structed.

An example of the values of trigonometric parameters calculated for the 
musical phrase shown in Fig. 4.15 is contained in Table 4.12. 

Table 4.12. Values of trigonometric parameters calculated for the musical phrase 
shown in Fig. 4.15 

Trigonometric parameter Parameter value
1 -0.9769
2 -1
3 0.3452 
4 -0.4971 
5 0.2809 
6 0.3021 
7 0.0354 
8 -0.5383 
9 -0.3443 

10 -0.4899 
11 -0.2535 
12 -0.2027 
13 -0.0920 
14 0.0603 
15 0.0665 

It is interesting to analyze the results of an experiment that aimed at 
finding the most important features. For such an analysis, a genetic algo-
rithm was used. Feature vectors consisted of 15 trigonometric and 5 statis-
tical parameters. Tests were carried out on the basis of a MIDI database. 
Approximately 200 excerpts from J.S. Bach’s works, such as cantatas, mo-
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tets, fugues, chorales, masses and hymns were randomly chosen for the 
experiment. All phrases have a  number  assigned (BWV -  Bach Werke 

Verzeichnis) according to the www.jsbach.org webpage. Modifications 
have also been applied to the pattern phrases, such as ornaments, note 
omission, errors, prolongation, etc. For example, applying six modifica-
tions to the patterns results in 1200 phrases used in the training stage.  

Fig. 4.16 shows the fitness process during the training phase (distance 
minimization). One can observe that after some populations have been 
produced, the optimization process achieves an asymptotic value, which is 
not exceeded in subsequent populations. In Fig. 4.17 results of the genetic 
algorithm performance are shown. 

population

         best

average

Fig. 4.16. Adaptation process in subsequent populations during the training proc-
ess
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Fig. 4.17. Optimum weights applicable to trigonometric and statistical parameters 
(first 15 parameters concern trigonometric parameters, the following features are 
statistical ones) 

As seen in Fig. 4.17 parameters differ in significance, therefore it would 
be desirable to apply such a process of optimization of parameter weights 
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based on genetic algorithms before the main experiments on classification 
are performed, especially as this would allow for eliminating redundant 
features.

Polynomial Parametrization 

Single-voice musical phrase fr can be represented by function fr(t), whose 
domain is time-interpreted either discretely or as a continuum. In a discrete 
time-domain musical phrase fr can be represented as a set of points in a 
two-dimensional space of time and sound pitch. A musical phrase can be 
represented in a discrete time-domain by points denoting sound pitch at 
time t, or by points denoting note starts. 

If a tempo varies in time (function k(t) 0) or a musical phrase includes 
additional sounds of durations inconsistent with the general rhythmic order 
(e.g. ornament or augmentation), a sampling period can be determined by 
minimizing the quantization error defined by the formula: 
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where b is a sampling period, and Round is a rounding function. 
On the basis of the representation of a musical phrase in a discrete-time 

domain one can rough the representation points by a polynomial of the fol-
lowing form: 
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Coefficients a0, a1,…aM  are found numerically by means of  mean-
square approximation, i.e. by minimizing the error  of form: 
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One can also express the error in semitones per sample, which facilitates 
the evaluation of approximation, according to the formula: 

N

i

ii frfr
N 1

*1 (4.55)



    249 

Binary Parametrization 

Binary representation is based on dividing the time window W into n equal 
time sections T, where n is consistent with a metric division and T corre-
sponds to the smallest basic rhythmic unit in the music material being rep-
resented. Each time section T is assigned a bit of information bT in the vec-
tor of rhythmic units. Bit bT takes the value of 1, if a sound begins in the 
given time section T. If time section T covers a sound started in a previous 
section or a pause, the rhythmic information bit bT assumes the value of 0. 

An advantage of a binary representation of rhythmic structures is the 
constant length of a sequence representation vector. Its disadvantages are: 
large vector length in comparison with other representation methods and 
the possibility of errors resulting from time quantization. 

On the basis of methods used in representing the values of individual 
musical parameters one can distinguish three types of representations: lo-
cal, distributed and global ones. 

In the case of a local representation every musical unit en is represented 
by a vector of n bits, where n is the number of all possible values of a mu-
sical unit en. The current value of a musical unit en is represented by ascrib-
ing the value of 1 to the bit of the representation vector corresponding to 
this value. Other bits of the representation vector take the value of 0 (uni-
polar activation) or –1 (bipolar activation). This type of representation was 
used e.g. by Hörnel (1997) and Todd (1991).  

The system of representing musical sounds proposed by Hörnel and his 
co-worker is an example of a parametric representation (Feulner and 
Hörnel 1994). In this system each subsequent note p is represented by the 
following parameters: 

consonance of note p with respect to its harmony, 
a relation of note p towards its successor and predecessor in the case of 

dissonance against the harmonic content, 
a direction of p (up, down to next pitch), 
a distance of note p to base note (if p is consonant), 
an octave, 
tenuto – if p is an extension of the previous note of the same pitch. 

The presented method of coding does not employ a direct representa-
tion of sound pitch; it is distributed with respect to pitch. Sound pitch is 
coded as a function of harmony. 

In the case of a distributed representation the value of musical unit E is 
encoded with m bits according to the formula: 

Nm 2log (4.56)
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where:
N – the number of possible values of musical unit en.
A distributed representation was used e.g. by Mozer (1991). An example 

of representing the sounds of the chromatic scale using a distributed repre-
sentation is presented in Table 4.13. 

  Table 4.13. Distributed representation of sound pitches according to 
Mozer

Sound 
pitch 

Mozer’s distributed representation 

C –1 –1 –1 –1 –1 –1 
C# –1 –1 –1 –1 –1 +1 
D –1 –1 –1 –1 +1 +1 
D# –1 –1 –1 +1 +1 +1 
E –1 –1 +1 +1 +1 +1 
F –1 +1 +1 +1 +1 +1 
F# +1 +1 +1 +1 +1 +1 
G +1 +1 +1 +1 +1 –1 
G# +1 +1 +1 +1 –1 –1 
A +1 +1 +1 –1 –1 –1 
A# +1 +1 –1 –1 –1 –1 
B +1 –1 –1 –1 –1 –1 

In the case of a global representation the value of a musical unit is rep-
resented by a real value. 

The above methods of representing values of individual musical units 
imply their suitability for processing certain types of music material, for 
certain tasks and analysis tools, classifiers and predictors. 

Prediction of Musical Events  

   The experiments were aimed at designing a method of predicting and en-
tropy-coding of music. A concept of entropy-coding was presented by 
Shannon and later used e.g. for investigating the entropy of texts in Eng-
lish by Moradi, Grzymala–Busse and Roberts (1998). The engineered 
method was used as a musical event predictor in order to enhance a system 
of pitch detection of a musical sound. 

The block scheme of a prediction coding system for music is presented 
in Fig. 4.18. 
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Fig. 4.18. Block scheme of prediction coder and decoder

The idea of entropy coding involves using two identical predictors in the 
modules of data coding and decoding. The process of coding involves de-
termining the number of prediction attempts k required for correct predic-
tion of event en+1. Prediction is based on parameters of musical events col-
lected in data buffer. The number of prediction attempts k is sent to the 
decoder. The decoder module determines the value of event en+1 by repeat-
ing k prediction attempts. Subsequent values for samples – musical events 
– are then collected in a buffer. 

Two types of data buffers were implemented: 

data buffer of limited capacity, 
fading memory model. 

In the case of a data buffer of limited capacity the buffer stores data on z
musical events; each event is represented by a separate vector. That means 
that z vectors representing z individual musical events are supplied to the 
input of a predictor. During the research the value set (z) was limited to 5, 
10 and 20 samples. 

The fading memory model involves storing and fading the previous val-
ues of the vector elements in the buffer and summing them with the current 
values according to the formula: 

n

k

kn
kn reb

1

(4.57)

where r is a fading factor from the range (0,1).

In the case of using the fading memory model a single vector of parame-
ters of musical events is supplied to the input of a predictor. This means a 

   4.2 MUSICAL PHRASE ANALYSIS 



252      COGNITIVE APPROACH TO MUSICAL DATA ANALYSIS 

z-fold reduction of the number of input parameters compared with the 
buffer of size of z.

For the needs of investigating the music predictor a set of diversified 
musical data representing melodic data (concerning pitch of subsequent 
sounds) and rhythmic data (concerning relative durations of subsequent 
musical events) was prepared. The experiment was based on a system of 
musical data prediction utilizing artificial neural networks. First, a series of 
experiments aimed at optimizing the predictor structure, data buffer pa-
rameters and prediction algorithm parameters were performed.  

In the process of training the neural musical predictor all voices of the 
individual fugues except from the highest ones were utilized. The highest 
voices were used for testing the predictor. Three methods of a parametric 
representation of sound pitch: binary method, a so-called modified 
Hörnel’s representation and a modified Mozer’s representation were util-
ized. In all cases a relative representation was used, i.e. differences be-
tween pitch of subsequent sounds were coded. 

In the case of a binary representation individual musical intervals (dif-
ferences between pitch of subsequent sounds) are represented as 27-bit 
vectors. The utilized representation of sound pitch is presented in Fig. 
4.19.
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Fig. 4.19. Illustration of a binary representation of a musical interval (example 
– 2 semitones up) 

The Hörnel’s representation of intervals discussed in this study is a dia-
tonic representation (corresponding to seven-step musical scale). For the 
needs of this research study a modified Hörnel’s representation that en-
ables chromatic (twelve-step) representation was used. Individual intervals 
are represented by means of 11 parameters. A method employed for coding 
intervals is presented in Table 4.14. 
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Table 4.14. Modified Hörnel’s representation of intervals 

Interval
[in semi-
tones] 

Direction 
bits

Octave
bit

Interval size representation parameters 

-13 1 0 0 1 0.5 0 0 0 0 0 1 
-12 1 0 0 1 1 0 0 0 0 0 0.5 
-11 1 0 0 0 1 0.5 0 0 0 0 0 
-10 1 0 0 0 0.5 1 0 0 0 0 0 
-9 1 0 0 0 0 1 0.5 0 0 0 0 
-8 1 0 0 0 0 0.5 1 0 0 0 0 
-7 1 0 0 0 0 0 0.5 1 0 0 0 
-6 1 0 0 0 0 0 0 1 0.5 0 0 
-5 1 0 0 0 0 0 0 0.5 1 0 0 
-4 1 0 0 0 0 0 0 0 1 0.5 0 
-3 1 0 0 0 0 0 0 0 0.5 1 0 
-2 1 0 0 0 0 0 0 0 0 1 0.5 
-1 1 0 0 0 0 0 0 0 0 0.5 1 
0 0 1 0 0 1 0 0 0 0 0 0.5 
+1 0 0 1 0 1 0.5 0 0 0 0 0 
+2 0 0 1 0 0.5 1 0 0 0 0 0 
+3 0 0 1 0 0 1 0.5 0 0 0 0 
+4 0 0 1 0 0 0.5 1 0 0 0 0 
+5 0 0 1 0 0 0 0.5 1 0 0 0 
+6 0 0 1 0 0 0 0 1 0.5 0 0 
+7 0 0 1 0 0 0 0 0.5 1 0 0 
+8 0 0 1 0 0 0 0 0 1 0.5 0 
+9 0 0 1 0 0 0 0 0 0.5 1 0 
+10 0 0 1 0 0 0 0 0 0 1 0.5 
+11 0 0 1 0 0 0 0 0 0 0.5 1 
+12 0 0 1 1 1 0 0 0 0 0 0.5 
+13 0 0 1 1 1 0.5 0 0 0 0 0 

The distribution method of representing sound pitch designed by Mozer 
is an absolute representation method. Within the scope of this research a 
modified Mozer’s representation was introduced by Szczerba. The repre-
sentation enables a relative representation of the pitch of subsequent 
sounds (i.e. for representing intervals). It was complemented by adding a 
direction parameter and an octave bit. An individual musical event is there-
fore coded by means of 8 parameters. The employed method of coding in-
tervals is presented in Table 4.15. 
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Table 4.15. Modified Mozer’s representation of intervals 

Interval
[in semi-
tones] 

Direc-
tion
bit

Octave bit Interval size representation parameters 

-13 -1 1 +1 –1 –1 –1 –1 –1 
-12 -1 1 –1 –1 –1 –1 –1 –1 
-11 -1 0 –1 –1 –1 –1 –1 +1 
-10 -1 0 –1 –1 –1 –1 +1 +1 
-9 -1 0 –1 –1 –1 +1 +1 +1 
-8 -1 0 –1 –1 +1 +1 +1 +1 
-7 -1 0 –1 +1 +1 +1 +1 +1 
-6 -1 0 +1 +1 +1 +1 +1 +1 
-5 -1 0 +1 +1 +1 +1 +1 –1 
-4 -1 0 +1 +1 +1 +1 –1 –1 
-3 -1 0 +1 +1 +1 –1 –1 –1 
-2 -1 0 +1 +1 –1 –1 –1 –1 
-1 -1 0 +1 –1 –1 –1 –1 –1 
0 0 0 –1 –1 –1 –1 –1 –1 
+1 +1 0 –1 –1 –1 –1 –1 +1 
+2 +1 0 –1 –1 –1 –1 +1 +1 
+3 +1 0 –1 –1 –1 +1 +1 +1 
+4 +1 0 –1 –1 +1 +1 +1 +1 
+5 +1 0 –1 +1 +1 +1 +1 +1 
+6 +1 0 +1 +1 +1 +1 +1 +1 
+7 +1 0 +1 +1 +1 +1 +1 –1 
+8 +1 0 +1 +1 +1 +1 –1 –1 
+9 +1 0 +1 +1 +1 –1 –1 –1 
+10 +1 0 +1 +1 –1 –1 –1 –1 
+11 +1 0 +1 –1 –1 –1 –1 –1 
+12 +1 1 –1 –1 –1 –1 –1 –1 
+13 +1 1 –1 –1 –1 –1 –1 +1 

A relative binary representation was designed for coding rhythmic val-
ues. Rhythmic values are coded by a feature vector: 

rrrrrr ppppp 54321 ,,,,p (4.58)

where individual parameters assume the values: 
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where:
r
ne  – a rhythmic value (duration) of musical event en.

Values of parameters of rhythmic representation p
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 ratio are presented in Table 4.16.

r

,

the dependent on  

   4.2 MUSICAL PHRASE ANALYSIS 



256      COGNITIVE APPROACH TO MUSICAL DATA ANALYSIS 

Table 4.16. Relative representation of rhythmic values 

r
n

r
n

e

e

1

rp1
rp2

rp3
rp4

rp5

8
1 1 0 0 0 0 
4
1 0.5 0.5 0 0 0 
2
1 0 1 0 0 0 
1 0 0 1 0 0 
2 0 0 0 1 0 
4 0 0 0 0.5 0.5 
8 0 0 0 0 1 

Presented methods of representing sound pitch and rhythmic values 
were used to prepare a set of data for investigating the neural musical pre-
dictor. Specifications of data sets are presented in Table 4.17. 

Table 4.17. Specifications of musical data used for investigating the neural musi-
cal predictor  (where: mbin_rn denotes a data set containing binary and relative 
representation, etc.) 

pitch representation time representation 
Database 
indicator representation 

parame-
ters/sample 

represen-
tation 

parame-
ters/sample

total num-
ber of pa-
rameters 
per sample 

mbin_rn relative - binary 27 NO 0 27 
mhor_rn modified 

Hörnel 
11 NO 0 11 

mmoz_rn modified 
Mozer

8 NO 0 8 

mbin_rrel relative - binary 27 relative 5 32 
mhor_rrel modified 

Hörnel 
11 relative 5 16 

mhor_rrel modified 
Mozer

8 relative 5 13 

At the first stage of investigating a buffer of a constant size of 5, 10 and 
20 samples, respectively, and the values of parameter r for the fading 
memory model from the set r={0.2; 0.5; 0.8} were chosen. 

4.2.3 Neural Musical Predictor 

The neural musical predictor was implemented using the Stuttgart Neural 

Network Simulator (SNNS) integrated system for emulating artificial neu-
ral networks (Zell 2002). Experiments were performed for individual data 
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sets presented in Table 4.17 and for various data buffer parameters. Musi-
cal material for this study was based on fugues from the set of Well-

Tempered Clavier by J. S. Bach. The experiments were divided into two 
stages:

and buffer parameters for data limited to 6 fugues chosen at random 
(no. 1, 5, 6, 8, 15 and 17); the number of training elements, depending 
on buffer size, ranged from 5038 to 5318 samples, while the number of 
test elements ranged from 2105 to 2225 samples, respectively. 

all 48 fugues from the “Well-Tempered Clavier” collection. 

The description of the developed predictor and its training process as 
well as the obtained results of musical data prediction are presented below. 

A feed-forward neural network model with a single hidden layer. In the 
cases of a binary representation and a modified Hörnel’s representation, a 
unipolar, sigmoidal shaping function was used, while in the case of a 
modified Mozer’s representation, a hiperbolic tangent bipolar function was 
used. The choice of the ANN activation function was determined on the 
basis of pilot tests performed before the main experiments started. 

In the first stage of this research the number of neurons in the hidden 
layer was arbitrarily limited to the set {20, 50, 100}. A series of the cycles 
of training the neural predictor for individual methods of representing mu-
sical events and data buffer parameters was conducted. Due to practical 
considerations the number of iterations was arbitrarily limited to 1000. The 
error back-propagation algorithm augmented by the momentum method 
was applied. On the basis of pilot tests, constant values of training process 
coefficient =0.5 and the momentum coefficient =0.2 were assumed.  

In general, in the cases of a binary representation and the modified 
Hörnel’s representation the mean-square error (MSE) value was reached as 
early as after 100 iterations, independently to what the number of neurons 
in the hidden layer was. Conversely, in the case of a modified Mozer’s rep-
resentation (without rhythm representation) the training process did not 
lead to the mean-square error value lower than 1. 

In order to evaluate the performance of the neural musical predictor, the 
following parameters were considered: 

the measure of the first-attempt prediction correctness: 

N

n

nn eeid
N

pc
1

11 ˆ,
1 (4.64)

Investigating the predictor for individual methods of representing data 

Investigating chosen representation methods and buffer parameters for 
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where:

1ne  – factual value of an event n+1,

1ˆ
ne  – estimated value of an event n+1,

11

11
11 ˆ0

ˆ1
ˆ,

nn
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eedla

eedla
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(4.65)

the average number of prediction attempts required for correct estima-
tion of the value of an event n+1,

the bottom and top estimate of entropy of musical data FN according to:
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(4.66)

where N
iq  is the frequency of correct estimations of the value of an 

event en+1 for the ith prediction attempt, and M denotes number of possi-
ble values of an event en.

Subsequent prediction attempts and the recognition of an event identity 
are emulated by ordering the list of possible values of an event en+1 by the 
distance:

N

i

iminm eeo
1

,,1

(4.67)

where Mm ,,2,1 , i is the representation parameter index, N de-

notes the number of representation parameters, and me  is a possible value 

of an event en+1,
On the basis of the results obtained in the first stage of this investigation 

the following conclusions concerning operation of the developed predictor 
can be presented. First of all, a very high effectiveness was obtained for 
musical data prediction (above 97%) in the cases of binary representations 
and the modified Hörnel’s representations together with a constant-size 
data buffer, irrespectively of the representation of rhythmic data. In addi-
tion, the application of the fading memory model leads to a degradation of 
prediction effects (max. ca 75%) with a simultaneous reduction of data and 
computational complexity of the training process. Also, the application of 
the modified Mozer’s method of representation results in a low prediction 
of effectiveness. What is also important, the method developed for rhythm 
coding shows high effectiveness of representation and enables obtaining 
high correctness of rhythm prediction of musical data. 
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Tests Employing Whole Collection 

In the next stage, tests of the music predictor for the whole range of music 
sets, i.e. for 48 fugues from the Well-Tempered Clavier collection were 
performed. Neural networks trained using six randomly-chosen fugues 
were used. Tests employed data that have not been used for training. Neu-
ral network parameters and obtained results are presented in Table 4.18 
(number of neurons in the hidden layer was equal to 50). 

Table 4.18. Predictor parameters and prediction results for the whole collection 
(denotations as previously introduced) 

Prediction ef-
fectiveness 

Average num-
ber of predic-
tions

Upper approx. 
of entropy  
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mbin_rn constant-size 10 270 27 0.54 - 0.54 4.12 - 4.12 1.62 - 1.62 
mbin_rrel constant-size 10 320 32 0.6 0.91 0.58 5.21 1.15 8.31 1.44 0.34 1.4 
mbin_rn constant-size 

(r=0.8)
1 27 27 

0.32 - 0.32 8.24 - 8.24 1.92 - 1.92 

mbin_rrel f. coeff. 
(r=0.8)

1 32 32 
0.35 0.84 0.31 6.94 1.42 12.4 1.83 0.65 1.78 

mhor_rn constant-size 10 110 11 0.53 - 0.53 5.27 - 5.27 1.62 - 1.62 
mhor_rrel constant-size 10 160 16 0.57 0.85 0.52 4.76 1.3 9.14 1.49 0.63 1.28 
mhor_rn f. coeff. 

(r=0.8)
1 11 11 

0.28 - 0.28 5.62 - 5.62 1.62 - 1.62 

mhor_rrel f. coeff. 
(r=0.8)

1 16 16 
0.33 0.82 0.3 7.12 1.42 16.4 1.82 0.67 1.51 

mmoz_rn constant-size 10 80 8 0.12 - 0.12 8.56 - 8.56 1.73 - 1.73 
mmoz_rrel constant-size 10 130 13 0.24 0.72 0.19 6.12 1.85 18.4 1.62 0.72 1.51 
mmoz_rn f. coeff. 

(r=0.8)
1 8 8 

0.07 - 0.07 11.2 - 11.2 1.82 - 1.82 

mmoz_rrel f. coeff. 
(r=0.8)

1 13 13 
0.14 0.61 0.11 13.8 3.18 24.6 1.91 0.91 1.46 

The obtained results lead to conclusions that, in general, the developed 
system enables effective prediction of musical data. The highest effective-
ness of prediction was obtained for a binary representation of sound pitch 
and a modified Hörnel’s representation. The use of constant-size buffer en-
ables a more effective prediction compared to the fading memory model, 
and what was perhaps not very surprising that musical data in J. S. Bach’s 
fugues possess low entropy. 
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4.2.4 Classification of Musical Phrases 

Within the scope of the experiments, two methods of classifying musical 
phrases that use artificial neural networks and rough sets were developed: 

method of classifying phrases on the basis of the sequences of musical 
data,

method of classifying phrases on the basis of the parameters of musical 
data.
Musical phrases can be classified on the basis of the sequences of mu-

sical data. Similarly to the prediction of musical events, the classification 
is based on parameters collected in a data buffer. In order to unify the size 
of input data the fading memory approach was used. Experiments were 
performed on the basis of a binary representation of melody and of a modi-
fied Hörnel’s representation. Tests using a binary rhythm representation 
were also performed. Repetitions of musical phrases in a data stream were 
identified in time windows. A window size can be adapted dynamically 
along a musical piece using the histogram of rhythmic values.

Musical phrases can also be classified on the basis of the parameters of 
musical phrases. Three methods of a parametric representation, namely 
statistical, trigonometric and polynomial ones were applied. Like in the 
case of analysis of musical data sequences, repetitions of musical phrases 
were identified in time windows of a dynamically determined size. 

Application of Artificial Neural Networks 

Two types of neural networks were developed for classifying musical 
phrases:

classifier, assigning phrases to single objects from the reference phase 
set,

neural comparator, analyzing similarities between musical phrases. 
Both classifier types are illustrated in Fig. 4.20. 

output layer

hidden layers

input layer

output neurons

input data (bufor) input data (bufor) reference data

output neuron

Fig. 4.20. Neural classifier and comparator of musical phrases
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In the case of a neural classifier of musical phrases, classification in-
volves determining the phrase identity on the basis of knowledge modeled 
using the neural network. Individual neurons of the output layer corre-
spond to individual classes of musical phrases. The identity of an input 
phrase is determined based on the output signals of neurons from the out-
put layer. The classifier scope of application is therefore limited to the 
scope of reference objects used for network training. 

In the case of a neural comparator of musical phrases, classification in-
volves determining the identity relation between the test phrase and the 
reference phrase. In this case the neural network models the knowledge of  
the relations between the musical phrase modification and the phrase iden-
tity. The comparator scope of application is therefore limited by the scope 
of phrase modifications used for network training. 

Application of the Rough Set-Based Method 

The studies also involved the classification of musical phrases using the 
rough set approach (Pawlak 1982). In this approach both musical data se-
quences and musical phrase parameters were used in the classification 
process. Like in the case of classifying musical phrases with the use of ar-
tificial neural networks, two systems were developed: 

classifier assigning phrases to single objects from the reference phase 
set,

comparator, analyzing similarities between musical phrases. 

In this investigation the ROSETTA system developed by the University 
of  Trondheim in  cooperation with  Warsaw University  was  employed 
(Komorowski et al 1998; Øhrm 1999). 

4.2.5 Musical Phrase Classification 

In order to investigate the methods of classification, sets of musical data 
were prepared. Fugues from the set of Well-Tempered Clavier by J. S. Bach 
were used as a musical material for this study. Bach’s fugues from the Well 

Tempered Clavier were played on a MIDI keyboard and then transferred to 
the computer hard disk trough the MIDI card and the Cubase VST 3.5 pro-
gram. Musical data were grouped in two databases: 

TOFFEE (Themes of Fugues from Well-Tempered Clavier) a musical 
database containing fugue themes (Kostek 1995), 

DWK (Well-Tempered Clavier) a musical database containing full mu-
sical material. 

   4.2 MUSICAL PHRASE ANALYSIS 
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The DWK database was based on MIDI files prepared by Reyto and avail-
able from Classical MIDI Archives (http://www.prs.net). In order to ana-
lyze the classification algorithms in the DWK database, the points of fugue 
theme repetitions were marked. 

The TOFFEE musical database was created in the Department of Mul-
timedia Systems on the basis of fugue themes (Kostek 1998, 1999; 
Szczerba 1999). Each of the 48 themes was included in the TOFFEE data-
base in the following forms: 

reference form, 
form with a performance error, 
transposed form with a performance error and an ornament, 
transposed form with a performance error, 
form with an additional note at the beginning of the phrase, 
form with the omission of the first note of the phrase + an ornament, 
form with an ornament, 
transposed forms (5), 
augmented form (individual rhythmic values elongated twice), 
transposed augmented form. 

The musical phrase modifications that were used, are consistent with the
stylistics of music and the technique of performance (Bullivant 1980). 

Table 4.19 summarizes methods of representing musical data as well as 
methods of classifying phrases. The classification methods are denoted 
with the corresponding symbols: 

ANN – Artificial Neural Networks, 
RS – rough set-based method. 

Table 4.19. Methods of representing musical phrases for individual classification 
methods 

Data representation 
melodic rhythmic 

No. of parameters 
Classification
algorithm 

relative, binary - 27 ANN 
relative, Hörnel - 11 ANN 
relative, binary relative, binary 32 ANN 
relative, Hörnel relative, binary 16 ANN 
relative - 1 RS 
relative relative 2 RS 
statistical parameters 5 ANN/RS 
trigonometric parameters  5, 10, 15, 20 ANN/RS 
polynomial parameters 5, 10, 15 ANN/RS 

In the case of non-parametric representations the classification of musi-
cal phrases using artificial neural networks and the rough set approach is 
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based on parameters collected in a data buffer. The fading memory model 
was utilized. Classifier structure and setting will be presented later on in 
subsequent paragraphs along with obtained results. 

4.2.6 Sequence-Based Classification of Musical Events 

Neural Classifier 

The research utilizing the neural classifier was divided into two stages: 

investigating the classification in the case of training with reference 
forms only, 

leave-one-out tests for individual musical phrase modifications. 

Melodic data were represented using a binary representation, the modi-
fied Hörnel’s method and the modified Mozer’s method. Tests were run for 
collections both with and without representation of rhythmical data. 
Rhythm was represented using the relative representation approach. In the 
case of training performed with reference forms only, it can generally be 
observed that increasing the number of iterations from 1000 to 2000 re-
sulted in a better effectiveness of classification which rose from ca 1% to 
the maximum value of 13%. Moreover, it was observed that during the 
training process the value of a buffer fading coefficient influenced the 
course of training. For the greatest value of a fading coefficient (0.8), the 
mean-square error reached the value of 0.1 faster for sets with a rhythm 
representation (ca 300 iterations) than for sets without a rhythm represen-
tation (ca 700 iterations). In the case of a fading coefficient of 0.2 the 
mean-square error of 0.1 was reached for sets with a rhythm representation 
after ca 1700 iterations, while this value could not be achieved in the case 
of sets without a rhythm representation.  In general, a higher effectiveness 
was achieved after taking into account a rhythm representation. In the 
cases of a binary representation and a modified Hörnel’s representation 
values of over 90% were achieved. 

The maximum classification effectiveness (92.63%) was achieved for a 
binary representation of melodic data with a relative rhythm representa-
tion, for a neural network containing 20 neurons in the hidden layer. Table 
4.20 summarizes results of classification by ANNs for individual musical 
phrase representations.  

Leave-one-out tests were performed for the modified Hörnel’s method 
of representing melodic data. The effectiveness of classification as a func-
tion of a rhythmic data representation was analyzed. For practical reasons 
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the process of a network training was limited to 1000 iterations. Table 4.21 
presents data concerning structures of employed neural networks as well as 
the information on the classification results. 

Table 4.20. Classification results for individual musical phrase representations 
for neural network containing 20 neurons in the hidden layer (binary representa-
tion of melodic data, relative rhythm representation) 
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fectiveness [%] 87.5 64.58 89.53 95.83 72.92 52.08 97.91 97.91 97.91 

Table 4.21. Parameters of neural networks and classification results for leave-
one-out tests. Best results for individual musical phrase modifications are marked 
as bold 

Musical phrase modification/ Classification effectiveness [%] 
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mhor 0.8 20 100 85.4 68.8 79.2 93.8 85.4 68.8 97.9 97.9 100 

mhor 0.8 50 100 81.3 79.2 83.3 93.8 85.4 70.8 97.9 100 100 

mhor 0.5 20 97.9 87.5 79.2 83.3 95.8 77.1 62.5 95.8 97.9 95.8 

mhor 0.5 50 95.8 85.4 81.3 83.3 93.8 83.3 68.8 95.8 97.9 97.9 

mhor 0.2 20 91.7 85.4 68.8 62.5 77.1 72.9 64.6 83.3 87.5 95.8 

mhor 0.2 50 87.5 79.2 72.9 64.6 77.1 70.8 66.7 91.7 95.8 93.8 

mhor_rel 0.8 20 97.9 89.6 72.9 81.3 95.8 85.4 58.3 100 100 100 

mhor_rel 0.8 50 100 89.6 81.3 89.6 93.8 85.4 68.8 100 100 97.9

mhor_rel 0.5 20 100 93.8 87.5 89.6 97.9 83.3 64.6 100 95.8 100

mhor_rel 0.5 50 100 91.7 85.4 91.7 95.8 85.4 66.7 100 100 100 

mhor_rel 0.2 20 95.8 87.5 79.2 81.3 87.5 81.3 72.9 95.8 93.8 100

mhor_rel 0.2 50 95.8 91.7 79.2 81.3 89.6 85.4 72.9 97.9 95.8 97.9 

The maximum classification effectiveness (91.67%) was achieved for 
data including rhythmic information, buffer fading coefficient r=0.5 and 
for neural network containing 50 neurons in the hidden layer. The obtained 

Classification 
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results confirm the usefulness of representing rhythmic data for proper 
classification of musical phrases. 

Neural Comparator 

The classification of musical phrases on the basis of the representation of 
musical data sequences was investigated using the neural comparator. A set 
of 12 randomly chosen fugue themes from the TOFFEE database (No. 2, 4, 
11, 14, 16, 19, 21, 25, 26, 32, 34, 46) was used for training. The other 
fugue themes were used for testing the system. The number of iterations 
during the training process was limited to 2000. Musical data were repre-
sented with the use of the modified Hörnel’s method and a relative rhythm 
representation. For each neural network of the comparator the classifica-
tion effectiveness for the arbitrary classification threshold th=0.5 was ana-
lyzed. In addition, for each neural network the threshold value was opti-
mized. The effectiveness of a positive classification (a correct 
identification  of a form)  and of a negative  classification  was analyzed. 
Table 4.22 presents data concerning structures of employed neural net-
works as well as the information on the obtained results. 

Table 4.22. Parameters of neural networks and classification results for neural 
comparator of musical phrases 

th=0.5 Optimization of the th threshold value 
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mhor_rrel 0.8 20 65.67 98.09 81.88 0.12 75.99 96.52 86.26 
mhor_rrel 0.8 50 73.41 97.16 85.29 0.02 80.95 91.44 86.20 
mhor_rrel 0.5 20 70.24 97.57 83.90 0.2 82.54 96.13 89.33 
mhor_rrel 0.5 50 80.16 98.46 89.31 0.08 90.67 97.09 93.88 
mhor_rrel 0.2 20 65.08 96.99 81.03 0.06 77.98 95.53 86.75 
mhor_rrel 0.2 50 78.57 95.26 86.92 0.02 94.05 91.46 92.75 

4.2.7 Feature Vector-Based Classification of Musical Phrases 

Like in the case of investigating the musical phrase classification on the 
basis of the musical event sequence, the classification on the basis of mu-

   4.2 MUSICAL PHRASE ANALYSIS 



266      COGNITIVE APPROACH TO MUSICAL DATA ANALYSIS 

sical phrase parameters by a classifier and a neural comparator was exam-
ined. The investigation concerning the neural classifier dealt with the indi-
vidual musical phrase parametrization and the selected parameter combina-
tions.

In the first stage the classification of training only with reference musi-
cal forms was performed. Table 4.23 presents data on the employed musi-
cal phrase parametrization and on the structures of employed neural net-
works as well as on the obtained classification results.  

Table 4.23. Investigating parameter-based classification in the case of training 
with reference forms only 

Number of iteration 
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stat 5 20 0.94633 6.89 0.92082 12.34 
stat 5 50 0.90056 14.26 0.90214 13.62 
trig 5 20 0.10128 78.52 0.09826 78.53 
trig 5 50 0.08625 85.26 0.06021 87.02 
trig 10 20 0.10887 79.97 0.06554 83.81 
trig 10 50 0.12693 80.61 0.10465 82.05 
trig 15 20 0.04078 87.02 0.03516 87.02 
trig 15 50 0.14704 78.85 0.10481 81.89 
poly 5 20 0.20356 60.9 0.12456 68.75 
poly 5 50 0.13287 68.59 0.08023 69.71 
poly 10 20 0.02090 67.63 0.00542 66.19 
poly 10 50 0.00987 64.90 0.00297 64.74 
poly 15 20 0.11423 58.17 0.03661 60.26 
poly 15 50 0.03961 62.18 0.00187 64.74 
stat+trig 5+10 20 0.11657 80.77 0.09324 82.85 
stat+trig 5+10 50 0.06371 87.82 0.04290 89.42 
stat+poly 5+10 20 0.74441 23.24 0.73575 24.52 
stat+poly 5+10 50 0.64372 29.17 0.68451 26.44 
trig+poly 10+10 20 0.09703 81.25 0.07381 83.17 
trig+poly 10+10 50 0.08508 84.62 0.04229 87.82 
stat+trig+poly 5+10+10 20 0.07649 82.69 0.05310 84.29 
stat+trig+poly 5+10+10 50 0.18616 76.44 0.10475 82.21 

Leave-one-out tests were performed for a trigonometric parametrization. 
The process of network training was limited to 1000 iterations. Table 4.24 
presents data on structures of the employed neural networks as well as on 
the obtained classification results for leave-one-out tests. 
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Table 4.24. Parameters of neural networks and classification results for leave-

one-out tests on the basis of parametric representation of musical phrases. Best re-
sults for individual musical phrase modifications are marked as bold

Musical phrase modification/ Classification effectiveness [%] 
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trig 5 20 89.6 58.3 79.2 75 43.8 45.8 83.3 89.6 68.8 87.5 
trig 5 50 100 87.5 85.4 93.8 50 62.5 97.9 100 91.7 95.8 
trig 10 20 97.9 83.3 91.7 85.4 62.5 62.5 100 100 93.8 95.8 
trig 10 50 97.9 89.6 95.8 91.7 70.8 68.8 93.8 100 95.8 93.8 
trig 15 20 100 79.2 97.9 91.7 62.5 70.8 100 100 95.8 100 
trig 15 50 97.9 91.7 93.8 100 58.3 58.3 95.8 100 91.7 97.9 
trig 20 20 100 89.6 95.8 91.7 54.2 62.5 100 100 95.8 100 
trig 20 50 100 91.7 93.8 100 79.2 68.8 100 100 95.8 100 

4.2.8 Rough Set-Based Approach 

The investigations employing the rough set approach were performed in 
the analogous way to the investigations concerning artificial neural net-
works. Experiments were performed for the TOFFEE database only. As 
said before, the investigations employed the ROSETTA system. On the ba-
sis of pilot runs, system operation parameters were limited to the following 
values:

EFIM (Equal Frequency Interval Method) quantization, 10 intervals, 
generation of reducts and rules by means of a genetic algorithm. 

Likewise in the case of investigations concerning artificial neural net-
works, intervals were represented using the binary method as well as a 
modified Hörnel’s representation. Tests were run for collections both with-
out representation of rhythmical data and with rhythm encoded using the 
binary representation. Values were buffered using the fading memory 
model. 

Table 4.25 summarizes classification results obtained in the first stage of 
the presented investigation. Similar to investigations concerning artificial 
neural networks, leave-one-out tests were performed for a modified 
Hörnel’s representation by means of rough sets. The effectiveness of clas-
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sification as a function of rhythmic data representation was analyzed. The 
obtained classification results are presented in Table 4.26. 

Table 4.25. Investigating classification using the rough set approach in the case 
of training with reference forms only 

No rhythm representation  Rhythm representation 
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1. mbin_rn 0.8 85.6  7. mbin_rrel 0.8 89.4 
2. mbin_rn 0.5 86.2  8. mbin_rrel 0.5 88.3 
3. mbin_rn 0.2 82.2  9. mbin_rrel 0.2 83.8 
4. mhor_rn 0.8 90.1  10. mhor_rrel 0.8 92.6 
5. mhor_rn 0.5 87.8  11. mhor_rrel 0.5 89.4 
6. mhor_rn 0.2 80.6  12. mhor_rrel 0.2 81.6 

Table 4.26. Investigating classification using the rough set approach in the case 
of training with reference forms only 

Musical phrase modification/Classification effectiveness [%] 

D
at

ab
as

e 
in

di
ca

to
r 

F
ad

in
g 

co
ef

f.
 

no
 

m
od

if
ic

a-
ti

on

er
ro

r

er
ro

r 
tr

an
sp

o-
si

ti
on

 
or

na
-

m
en

t

er
ro

r 
tr

an
sp

o-
si

ti
on

ad
di

ti
on

al
 n

ot
e 

(b
eg

in
ni

ng
 

of
 

th
e

ph
ra

se
)

om
is

si
on

 
of

 
th

e 
fi

rs
t 

no
te

   
or

na
m

en
t 

or
na

m
en

t 

tr
an

sp
os

it
io

n

au
gm

en
ta

ti
on

 

au
gm

en
ta

ti
on

  
tr

an
sp

os
it

io
n

mhor_rn 0.8 100 81.3 79.2 83.3 95.8 83.3 70.8 100 100 100 
mhor_rn 0.5 95.8 87.5 79.2 83.3 95.8 83.3 68.8 95.8 95.8 95.8 
mhor_rn 0.2 91.7 81.3 92.9 68.8 91.7 70.8 64.6 91.7 91.7 91.7 
mhor_rrel 0.8 100 89.6 81.3 89.6 97.9 85.4 66.7 100 100 100 
mhor_rrel 0.5 100 95.7 95.4 89.6 97.9 85.4 66.7 100 100 100 
mhor_rrel 0.2 91.7 91.7 79.2 81.3 87.5 85.4 72.9 91.7 91.7 91.7 

Classification on the Basis of Parameters of Musical Phrases 

Similar to investigations concerning artificial neural networks, a number of 
leave-one-out tests were performed for musical phrases represented by 
means of trigonometric parameters and RS method. The obtained results 
are presented in Table 4.27. 
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Table 4.27. Investigating classification using the rough set approach in the case of 
training with reference forms only 

Musical phrase modification/Classification effectiveness [%] 
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trig 5 97.9 70.8 77.1 81.3 39.6 43.8 97.9 97.9 95.8 97.9 
trig 10 100 87.5 85.4 81.3 43.8 52.1 100 100 97.9 97.9 
trig 15 100 89.6 87.5 93.8 54.2 62.5 100 100 95.8 97.9 
trig 20 100 89.6 91.7 91.7 56.3 64.6 100 100 100 100 

Using the neural comparator to determine phrase identity, also the clas-
sification of musical phrases was investigated, employing trigonometric 
parameters. Leave-one-out tests were performed for phrase representations 
employing 5 and 10 trigonometric parameters. Data set was limited to six 
fugue themes randomly chosen from the collection. The obtained results 
are presented in Table 4.28. 

Table 4.28. Results of leave-one-out tests for musical phrase comparator - rough 
set approach 

 Classification effectiveness [%] 
5 parameters 10 parameters 

Modification nega-
tive 

positive aver-
age

negative positive average 

error 100 100 100 100 83.3 98.5 
error + transpo-
sition + orna-
ment 

100 83.3 98.5 100 100 100 

error + transpo-
sition 

100 100 100 100 100 100 

additional note 
(phrase begin-
ning) 

100 66.7 97 100 83.3 98.5 

omission of the 
first note     +  or-
nament 

100 100 100 100 50 95.5 

ornament 100 66.7 97 100 100 100 
transposition 100 83.3 97.6 100 83.3 97.6 
augmentation 100 100 100 100 100 100 
augmentation + 
transposition 

100 100 100 100 100 100 
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Discussion of Results 

A number of conclusions concerning the developed methods of represent-
ing and automatically classifying musical phrases can be drawn on the ba-
sis of the experiments performed. The methods developed enable the effec-
tive classification of musical phrases in the presence of phrase 
modifications which are characteristic for the techniques of composing and 
performing. Artificial neural networks and the rough set-based approach 
show comparable suitability for classifying musical phrases on the basis of 
sequence data and of musical phrase parameters. Remarks concerning the 
musical data representation are as follows, for the classification on the ba-
sis of sequence data, the highest classification effectiveness was obtained 
for the modified Hörnel’s representation and a relative rhythm representa-
tion. On the other hand for feature vectors containing parameters, the best 
results were obtained for trigonometric parametrization. The obtained re-
sults indicate also changes of data entropy depending on a musical form 
and a composer’s style, this may result in the possibility of predicting mu-
sical data with high accuracy in the case of exact polyphonic forms. 

High classification correctness obtained with intelligent decision algo-
rithms and musical sequence representations using the fading memory 
model was negatively verified in the conditions of musical material homo-
geneity. The decision process employing rough sets revealed the best ratio 
of classification accuracy to computational complexity.  

4.2.9 Automatic Retrieval of Rhythmic Patterns  

Yet, another investigation was carried out to check whether it is possible to 
automatically retrieve rhythmic patterns in a melody line. This research is 
the subject of the Ph.D. thesis of Wojcik, the author’s Ph.D. student 
(Kostek and Wojcik 2004; Wojcik and Kostek 2004; Wojcik et al 2004). 

A lot of research was done in the area of melody retrieval 
(http://www.ismir.net; Tseng 1998, 1999; Wu and Manber 1992). Melody 
retrieval systems, as presented before, can now accept hummed queries 
and retrieve melodies even though users make musical mistakes in queries. 
Contrarily to melody-based information retrieval, the area of music infor-
mation retrieval concerning rhythm has not been well explored. Scientists 
search for a characteristic rhythmic pattern of the known length in a piece 
(Chin and Wu 1992) or try to find length and onsets of rhythmic patterns 
for a given melody (Dixon 2001; Rosenthal 1992a, 1992b). Other works 
on  rhythm  finding are,  among others, by  Povel and Essens (1985) or 
Parncutt (Parncutt 1994). Most of approaches are based on a generative 
theory of tonal music (Lerdahl and Jackendoff 1983). Dixon’s (2001) and 
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Rosenthal’s (1992a, 1992b) systems form and then rank the rhythmical hy-
potheses, taking into account mainly musical salience of sounds. However 
salience functions proposed by Dixon and Rosenthal are based on human 
intuition only. It is also possible to adopt artificial intelligence learning 
techniques to find salience functions on the basis of real-life musical files. 
They are employed to estimate rhythmical salience of sounds in a melody, 
then the knowledge obtained may be used to improve approaches to the 
hypotheses of ranking, which would eventually result in finding a proper 
rhythm to a given melody.  

Self-organizing networks can learn to detect regularities and correlation 
in their input and adapt their future responses to that input, accordingly. 
The neurons of competitive networks (layers) learn to recognize groups of 
similar input vectors. Learning Vector Quantization (LVQ) is a method for 
training competitive layers in a supervised manner. A competitive layer 
automatically learns to classify input vectors into subclasses, then a linear 
layer transforms them into target classes chosen by the user. The sub-
classes that are found by the competitive layer are dependent only on the 
distance between input vectors. Thus, if two input vectors are very similar, 
the competitive layer probably puts them into the same subclass.  

The LVQ network consists of two layers: the first is a competitive layer, 
the second one is a linear layer. The competitive layer learns to classify in-
put vectors into subclasses. In the beginning, the negative distances be-
tween the input vector and the input weight (IW) vectors are calculated. 
The distance vector consists of nc elements, where nc is the number of neu-
rons in the competitive layer. The net input vector is the sum of the dis-
tance vector and the bias vector. Depending on the bias vector, the com-
petitive transfer function finds an appropriate subclass by seeking out the 
most positive or the least negative value in the network input vector. If all 
elements of the bias vector are zeros, then the output subclass number is 
the position of the least negative value in the net input vector, otherwise 
the output subclass number is the position of the most positive value of 
that vector. The role of a bias is to balance the activation of neurons. This 
causes dense regions of the input space to be classified as more subsec-
tions. Both the competitive and linear layers have one neuron per subclass 
or per target class. Thus, the competitive layer can learn up to nc sub-
classes. These, in turn, are combined by the linear layer to form nt target 
classes. The value of nc is always greater than nt. For example, let us take 
neurons 1, 2, and 3 of the competitive layer into consideration, they all 
learn subclasses of the input space that belongs to the linear layer target 
class No. 2. Then competitive neurons 1, 2 and 3 have weights of 1 to neu-
ron n2 from the linear layer, and weights of 0 to all other linear neurons. 
Thus, the linear neuron produces 1 if any of the three competitive neurons 
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(1, 2 and 3) wins the competition. This is the way the subclasses of the 
competitive layer are combined into target classes in the linear layer. 

LVQ networks are trained in a supervised manner. Therefore learning 
data consist of pairs {p,t} where p and t are input and desired output vec-
tors respectively. The output vector t consists of values 0 and a single value 
of 1 placed at the position corresponding to the number of the class a given 
element p belongs to. During the qth epoch vector p(q) is presented 
at the input, and  then the output from network a2 is compared to t. Let i*
be a position in t where 1 occurs and j* the position where 1 occurs in t. If 
i*=j*, then p is classified correctly, then: 

))1()(()1()( 1,1
*

1,1
*

1,1
* qIWqpqIWqIW iii

(4.68)

otherwise (p classified incorrectly) 

))1()(()1()( 1,1
*

1,1
*

1,1
* qIWqpqIWqIW iii

(4.69)

The i*th row of the IW matrix is adjusted in such a way as to move this 
row closer to the input vector p if the assignment is correct, and to move it 
away from p otherwise. Described corrections made to the i*th row of 
IW1,1 can be made automatically without affecting other rows of IW1,1 by
backpropagating the output errors to layer 1. Such corrections move the 
hidden neuron towards vectors that fall into the class for which it forms a 
subclass, and away from vectors that fall into other classes. 

It is possible to estimate musical salience taking into account the physi-
cal attributes of sounds in a melody, based on the Data Mining association 
rule model, proposed by (Mannila 1996). This approach explores a training 
data set and finds tendencies, which determine the knowledge used to pre-
dict most probable associations between attributes in a testing set. If the 
tendencies discovered are confirmed in tests, the knowledge obtained can 
be used for other melodies to rank rhythmical hypotheses. 

In the association rule model there is a set of attributes in learning table 
T, some of which are classifying attributes. The rows of the table are train-
ing objects. In this approach the row is a sound. Attributes can have Boo-
lean values 0 or 1. A rule is a statement saying that the presence of values 
of 1 in a certain set of attributes usually causes the classifying attribute to 
have the value of 1 as well. An example of a rule can be “long sounds tend 
to be placed in accented positions of the musical piece”. A statement X 
Y can be acknowledged as a rule if its confidence in table T has higher 
values than other rules. 

confidence (X Y,T) = support (X Y,T) /frequency(X,T) (4.70) 
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where:

support(X Y,T) = frequency (X Y,T) (4.71)

and

frequency (Z,T) = z / t (4.72) 

where z is a number of records in table T, whose all attributes from set Z 
have the value of 1. Set X is a so-called premise of a rule, and set Y is a 
conclusion of this rule. 

While employing Artificial Neural Networks, the learning and testing 
sets were created from MIDI files of various styles. Data were divided in 
two databases: 

- single-track melodies: 20 351 sounds divided into 10 learning and 10 
testing sets, 

- multi-track musical pieces: 42 998 sounds divided into 21 learning and 
21 testing sets. 

The size of testing sets was averagely 2.5 times larger than the learning 
ones. Music files were obtained from the Internet using a web robot. For 
the purpose of training accented locations in each melody have been 
found. During subjective listening tests, musical pieces with wrongly 
marked accented locations from the learning set have been removed. Also, 
non-melody tracks consisting of sounds from rhythmic instruments such as 
drums and bass guitars have been rejected from both learning and testing 
sets. One of tested networks had three inputs – one for each physical at-
tribute of a sound (duration, frequency and amplitude), the second group 
consisted of three networks having one input for each physical attribute of 
a sound. Each attribute had a value from the range of 0 to 127. A desired 
output of the network could adopt one of two values – 1, if the sound was 
accented, or 0 if it was not. 

In the testing stage the LVQ network determines whether a sound is ac-
cented or not according to the knowledge received in the learning stage. 
Outputs given by such a network are compared to real outputs. After the 
testing phase, the set of all sounds can be divided into four subsets (see 
Table 4.29), because there are four possible combinations of the desired 
outputs and network outputs. 

   4.2 MUSICAL PHRASE ANALYSIS 
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Table 4.29. Possible combinations of real and network outputs 

Description Desired 
output 

Network 
output 

1. Sound not accented, accurately detected by a
network 

0 0 

2. Sound not accented but falsely detected as ac-
cented

0 1 

3. Sound accented, not detected 1 0 
4. Sound accented, accurately detected 1 1 

The network accuracy is formulated as a ratio of the number of accented 
sounds, which were accurately detected by the network (the number of 
elements in subset 4), to the number of accented sounds in a melody (the 
number of elements in the sum of subsets 3 and 4). 

network accuracy = number of accurately detected accented 

sounds/number of all accented sounds 

(4.73)

Since the network accuracy depends on the number of accents given by 
the network, a so-called hazard accuracy was introduced, which deter-
mines how accurately accented sounds could be found, if they were hit in a 
randomized way. The number of times the network recognizes accented 

work accuracy by the hazard accuracy. This approach also helps 
to determine how well the network recognizes accented sounds if it takes 
into consideration single physical attributes or three of them simultane-
ously. The hazard accuracy depends on the number of accents given by the 
network (the number of elements in the sum of subsets 2 and 4) and the 
number of all sounds in a set (the number of elements in the sum of all 
four subsets). 

hazard accuracy = number of accented sounds detected by the 

network/ number of all sounds 

(4.74)

Single-track melodies were used as a learning/testing set. Fig. 4.21 pre-
sents how accurately four networks found the accented sounds. There are 
three lines presenting the results of networks fed only with one attribute 
and one line representing the network fed with all three physical attributes. 
The network accuracy was tested also on single-track melodies. 

sounds better than a blind choice  becomes clear after dividing the net-‘ ’ 
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Fig. 4.21. Accuracy of four networks for single-track melodies (10 training sets 
and 10 testing sets) 

The analogical experiment was conducted on multi-track musical 
pieces. Results of this experiment are shown in Fig. 4.22. 

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

data set

n
e
tw

o
rk

 a
c
c
u
ra

c
y
 /

 h
a
z
a
rd

 a
c
c
u
ra

c
y

Duration

Pitch

Velocity

D+P+V

Fig. 4.22. Accuracy of four networks for multi-track musical pieces (21 training 
sets and 21 testing sets) 
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The above results have been averaged in order to get comparable, single 
numbers assigned to each of the networks. Standard deviation values (see 
Table 4.30) have been calculated and average values have been divided by 
standard deviations. Such a fraction helps to compare the stability of the 
results obtained for all networks. The lower the value of the fraction, the 
more stable the results. The results of this experiment will be discussed 
further in this study. 

Table 4.30. Accuracy of networks tested on single-track melodies – mean values, 
standard deviations of network accuracy / hazard accuracy 

  Network 1 
Duration 

Network 2 
Frequency 

Network 3 
Amplitude 

Network 4 
Dur.+Frq.
+Ampl. 

Mean (average) 
value 

2.07 1.08 
1.16 1.85 

Standard deviation 1.01 0.27 0.48 0.98 
10 
sets

Standard deviation/ 
Mean value 

0.49 0.24 0.42 0.53 

Mean (average) 
value 

2.27 1.10 
0.91 2.12 

Standard deviation 0.86 0.21 0.22 0.72 
21 
sets

Standard deviation/ 
Mean value 

0.38 0.20 0.24 0.34 

As seen from these results, duration is the only attribute, which should 
be considered in the ranking hypothesis phase. The neural network accu-
racy based on frequency and amplitude oscillates around the hazard accu-
racy, those two attributes are too much dependent on the choice of a learn-
ing/testing data set. Results of experiments for single track melodies and 
multi-track musical pieces are consistent. In real music retrieval systems, it 
seems to be reasonable to take only sound duration into account – either 
for melodies or polyphonic, multi-instrumental pieces. Rhythmic salience 
depends on physical attributes in a rather simple way. Neural Networks fed 
with a combination of attributes performed even slightly worse than the 
ones fed with a single attribute (duration).  

The Data Mining association rule model was also used to estimate sali-
ence of sounds in a melody. The testing set contained 36 966 sounds from 
191 melodies. Since in the association rule model, attributes contained in a 
learning table can adopt only 1 or 0 values, thus they had to be preproc-
essed. Discretization was performed for these three attribute values. The 
equal subrange quantization method was employed. For each physical at-
tribute its minimum and maximum values in a piece have been found and 
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subranges have been divided by thresholds placed according to the for-
mula: 

MinValue + (MaxValue – MinValue)·j/m for  j = 0, 1, 2 ... m, (4.75)

where m-1 is the number of subranges.  

Table 4.31 presents a short example of preprocessed data for three 
subranges.

Table 4.31. Example of preprocessed data (3 subranges) 

Duration Amplitude Frequency 
sound short 

0
med. 
1

long 
2

quiet
3

med.
4

loud 
5

low
6

med. 
7

high 
8

Accented? 

1  1  1    1   
2   1  1    1 1 
3 1    1   1   

The experiments have been performed for 10 various numbers of 
subranges of the range from 3 to 100. Using the formulae introduced ear-
lier, 10 tables with information about all rules have been received, along 
with their supports and confidences in table columns. Rows of these tables 
can be treated as rules, the number of rows of each table is 3m+1. It is pos-
sible to find a rule or rules with the highest confidence for each physical 
attribute. An example of rules of maximum confidences for each physical 

Table 4.32 means that sounds of the low and medium frequency do not ap-
pear in accented positions as often as sounds with high frequency. 

Table 4.32. Example of maximum confidence rules (3 subranges) 

Premise Conclusion Support Confidence 
duration –  long accented 0.099 0.714 = MaxCdur

frequency – high accented 0.083 0.605 = MaxCfrq

amplitude – loud accented 0.061 0.442 = MaxCamp

These rules along with their confidences have been used to propose 
ranking hypothesis functions. All maximum confidences from Table 4.32 
have been summed up. The received sum is called SMC – sum of maxi-
mum confidences. The value of each physical attribute of a sound, for 
which a salience function value is calculated, is first quantized using the 
same number of subranges as in the learning stage. Let the subranges 
where the value falls off be idur, ifrq and iamp. After reading the values of 

attribute is shown in Table 4.32. For example a rule 'high  accented' in 
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confidences C from the table of all rules, C(idur), C(ifrq) and C(iamp) are 
known. The following ranking functions basing on the Data Mining 
knowledge may be proposed: 

RANK1 = [C(idur) + C(ifrq) + C(iamp)]/SMC

 RANK2 = [C(idur)/MaxCdur+C(ifrq)/MaxCfrq+C(iamp)/MaxCamp ]/m

RANK3 = C(idur)/MaxCdur

RANK4 = C(ifrq)/MaxCfrq

RANK5 = C(iamp)/MaxCamp

(4.76)

The first two functions take into account all physical attributes simulta-
neously, the remaining ones are consistent with RANK1 and RANK2, but 
they consider attributes separately. The values of all above formulae are 
normalized, they fall within the interval <0,1>. 

These formulae have been compared with the ones proposed in the re-
lated research. In the Dixon’s approach (Dixon 2001), two combinations of 
physical attribute values of sounds are proposed – a linear combination 
(additive function) and the multiplicative function. 

vcpppcdcvpdsadd 3maxmin21 ],[),,( (4.77a)

)log(]),[(),,( maxmin4 vpppcdvpdsmul
(4.77b)

where:

ppp

pppp

ppp

ppp

maxmax

maxmin

minmin

maxmin ,

,

],[ (4.78)

In the Dixon’s formulae pmin, pmax and ck (k=1,2,3,4) are experimentally 
adopted constants, d is a duration of a sound, p is MIDI pitch (a frequency) 
and v is a MIDI velocity of a sound (an amplitude).  

The precision/recall method to validate the accuracy of each of the 
above given functions has been used. 

Precision = number of relevant documents in answer/number of 

documents in answer 

(4.79)
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Recall = number of relevant documents in answer / number of 

relevant documents in database 

(4.80)

In such an evaluation a single sound plays a role of a document, and an 
accented sound is a relevant document. Sounds are sorted descending ac-
cording to the value of each ranking function. The highly ranked sounds 
are placed in the answer. The number of sounds placed in the answer 
equals the number of the relevant documents (sounds placed in accented 
positions). This results in the equality of precision and recall giving a sin-
gle measure, making the comparison of ranking approaches easy. Fig. 4.23 
presents the accuracy of all seven described ranking functions. 

Fig. 4.23. Precision/recall of retrieval – ranking functions approach 

In these experiments precision/recall values have been first counted for 
one piece, then sounds from one more piece have been added 
to the learning table and precision/recall values have been counted again. 
This action was repeated for all the pieces used in experiments. This was to 
check, whether the value of precision/recall stabilizes. 

On the basis of Fig. 4.23, it may be concluded that ranking functions 
awarding duration retrieve accented sounds much better than RANK4 and 
RANK5 functions, which take into consideration frequency and amplitude, 
respectively. Also, long sounds tend to be accented – Table 4.32 presents 
the rules of maximum confidences. The precision/recall of RANK3 stabi-
lizes after adding about 30 pieces to the testing/training Data Mining set, 
thus the duration-based salience of a sound can be considered as certain. 
RANK4 and RANK5 loose stability even after the 120th piece – those two 

  4.2 MUSICAL PHRASE ANALYSIS 



280      COGNITIVE APPROACH TO MUSICAL DATA ANALYSIS 

attributes are very dependent on training/testing data. Consequently, 
RANK1, RANK2 and both Dixon’s precision/recall formulae are less stable 
in those locations. This is why using duration can be recommended only in 
calculating the sound rhythmic salience. 

In the experiment of the association rule, performance of salience func-
tions appeared to depend on the number of discretization subranges. In ex-
periments with larger numbers of subranges the system performance grew 
up from 3 up to about 30 subranges. For learning/testing datasets preproc-
essed with more than 30 subranges further growth of performance was not 
observed. Relations between performances of functions awarding duration, 
frequency and amplitude remained unchanged, however.  

Another approach to rhythmic value retrieval included a rough set-based 
method. It occurs that the RSES system (Bazan and Szczuka 2001; Bazan 
et al 2002) used in experiments returns quite precisely the information 
about sounds that are not accented, on the other hand, the decision about 
accented sounds is correct only in 50% of cases. This signifies that addi-
tional temporal descriptors should be included in feature vectors for mak-
ing an adequate decision. In Tables 4.33 and 4.34 the results of the RSES 
system performance are shown. Table 4.33 presents results obtained with 
the global discretization employed, and Table 4.34 shows results for the lo-
cal discretization. As observed from both tables, if the actual sound was 
not accented, the RSES system recognizes this fact with quite a high accu-
racy (corresponding values are 0.815 and 0.85). On the other hand, a deci-
sion pointing at the accented sounds is at the level of 50%, as mentioned 
previously, thus it is more like a hazardous guess. 

Table 4.33. Testing rhythmical datasets with the RSES system (global discretiza-
tion) 

Global discretization  

  Predicted   
Actual 1 0 No. of obj. Accuracy Coverage 

 1 1391 1235 2626 0.530 0.799 
 0 1690 7446 9136 0.815 0.845 

Table 4.34. Testing rhythmical datasets with the RSES system (local discretiza-
tion) 

Local discretization 
  Predicted  

Actual 1 0 No. of obj. Accuracy Coverage 
 1 1414 1177 2591 0.545 0.789 
 0 1233 6993 8226 0.850 0.760 
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Further steps in the research include more temporal descriptors in the 
datasets, along with the information about periodicity, and testing of these 
data with the above presented systems. This especially concerns testing the 
quality of feature selection, the optimum choice of the number of 
subranges and the quality of rules derived. 

4.3 MUSIC ANALYSIS 

A broadened interest in music information retrieval from music databases, 
which are most often heterogeneous and distributed information sources, is 
based on the fact that they provide, apart from music, a machine-
processable semantic description. The semantic description is becoming a 
basis of the next web generation, i.e., the Semantic Web. Several important 
concepts were introduced recently by the researchers associated with the 
rough set community with regard to semantic data processing including 
techniques for computing with words (Komorowski et al 1998; Pal et al 
2004). Moreover, Zdzislaw Pawlak in his recent papers (Pawlak 2003, 
2004) promotes his new mathematical model of flow networks which can 
be applied to mining knowledge in databases.  Given the increasing 
amount of music information available online, the aim is to enable effec-
tive and efficient access to such information sources. A concept was intro-
duced that covers the following issues:  the organization of a database, the 
choice of a searching engine, and the detail information on how to apply 
the whole conceptual framework based on flow graphs in order to achieve 
better  efficiency in the retrieval of music information. 

The experiments that were performed consisted in constructing a music 
database that collects music recordings along with semantic description. A 
searching engine is designed, which enables searching for a particular mu-
sical piece. The knowledge on the entire database content and the relations 
among its elements contained in the flow graphs constructed following 
Pawlak’s ideas are utilized in this search process.

Generally, the study addresses the capabilities that should be expected 
from intelligent Web search tools in order to respond properly to the user's 
needs of multimedia information retrieval. Two features, seem to be of 
great importance for searching engines: the ability to properly order the re-
trieved documents and the capability to draw the user's attention to other 
interesting documents (intelligent navigation concept). These goals could 
be efficiently achieved provided the searching engine uses the knowledge 
of database content acquired a priori and represented by distribution ratios 
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between branches of the flow graph which in turn can be treated as a pro-
totype of a rule-based decision algorithm.  

4.3.1 Database Organization 

Data Description in CDs

One of the  most important music archiving format is the  data format of 
CDs (Compact Disks). According to so-called Red Book specifications 
(ICE 908), a CD is divided into a lead-in area, which contains the table of 
contents (TOC), a program area, which contains the audio data, and a lead-
out area, which contains no data. An audio CD can hold up to 74 minutes 
of recorded sound, and up to 99 separate tracks. Data on a CD is organized 
into sectors (the smallest possible separately addressable block) of infor-
mation. The audio information is stored in frames of 1/75 second length. 
44.100 16-bit samples per second are stored, and there are two channels 
(left and right). This gives a sector size of 2,352 bytes per frame, which is 
the total size of a physical block on a CD.  Moreover, CD data is not ar-
ranged in distinct physical units; data is organized into frames (consisting 
of 24 bytes of user data, plus synchronization, error correction, and control 
and display bits) which are interleaved  (Pohlman 1992). 

CDDB Service 

CDDB service is the industry standard for music recognition services. It 
contains the largest online database of music information in the world (cur-
rently more than 22 million tracks), and is used by over 30 million people 
in more than 130 countries every month. Seamless handling of soundtrack 
data provides music listeners, both professional and amateurs, with access 
to a huge store of information on recorded music (http://www.freedb.org; 
http://www.gracenote.com). The large database queried so frequently by 
users from all over the world provides also a very interesting material for 
research experiments in the domain of the optimization of searching en-
gines. The organization of metadata related to compact discs in the CDDB 
database is presented in Table 4.35.  

The content of the world-wide CDDB was targeted in the experiments 
as the principal material for experiments. However, because of the large 
volume of this database and the expected high computational cost, it was 
decided that a much smaller local database utilizing the CDDB data format 
would be constructed at the initial stage. Consequently, a database was 
constructed especially for the purpose of this study containing approxi-
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mately 500 compact discs textual data stored together with fragments of 
music corresponding to various categories. This database provided a mate-
rial for initial experiments on searching music employing the proposed 
method.  Subsequently, the huge CDDB database containing metadata re-
lated to majority of compact disks hitherto produced in the world was util-
ized.

Table 4.35. Metadata fields in the CDDB database

Album Data Fields: 

Album Title Can be a multi-word expression (string) 
Album Artist as above 
Record Label The label or publisher of the CD 
Year The year the CD was recorded or published 
Genre Every album can have both a primary and a secondary genre  
Compilation Indicates whether tracks have different artists 
Number/Total Set Can identify a CD as a member of a box sets 
Language Used to help display in appropriate character set 
Region To identify where the CD was released 
Certifier Authorized party (artist or label) who has certified the data accuracy  
Notes General notes such as dedications, etc. 

Track Data Fields:  

Track Title Can be a multi-word expression (string) 
Track Artist Vital for compilations, such as soundtracks or samplers 
Record Label May be different from track to track for compilations 
Year May be different from track to track 
Beats/Minute Used for special purposes (synchronizing with special devices) 
Credits E.g. guest musicians, songwriter, etc.
Genre Every track can have both a primary and a secondary genre 
ISRC The International Standard Recording Code number for the CD track 
Notes General track notes such as “recorded in ...”, etc. 
Credits Can be entered for entire album, for individual tracks or segments  
Credit Name Can be person, company, or place such as recording location 
Credit Role Instrument, composer, songwriter, producer, recording place, etc. 
Credit Notes E.g. to specify unusual instruments, etc. 
Genres Can be entered for entire album or applied to individual tracks 
Metagenres  General classification. e.g. Rock; Classical; New Age; Jazz 
Subgenres  More specific style. e.g. Ska; Baroque, Choral; Ambient; Bebop, Ragtime 
Segments Each segment can have its own name, notes, and credits 

Extended Tagging System 

The information presented in this paragraph is not directly related to the 
current experimental phase. Nevertheless, it provides an extension to cur-
rent standards, illustrating the future trends and expected developments of 
methods for advanced music searching in databases that use metadata as-
sociated with musical recordings.  
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The ID3v2 is a currently used tagging system that enables to enrich and 
to include extended information about audio files within them (Fig. 4.24). 
It represents data prepended to binary audio data. Each ID3v2 tag holds 
one or more frames. These frames can contain any kind of information and 
data, such as a title, an album, a performer, Website, lyrics, equalizer pre-
sets, pictures etc. Since each frame can be 16MB and the entire tag can be 
256MB thus there is a lot of place to write a useful comment. The ID3v2 
supports Unicode, so that the comments can be written in the user’s native 
language. Also information on the language of comments can be included 
(http://www.id3.org). In addition the main characteristics of this system are 
as follows:

It is a container format allowing new frames to be included.  
It has several new text fields such as a composer, a conductor, a media 
type, a copyright message, etc. and the possibility to design user’s own 
fields.
It can contain lyrics as well as music-synced lyrics (karaoke) in many 
languages.
It could be linked to CD-databases such as CDDB 
(http://www.freedb.org)
It supports enciphered information, linked information and weblinks.

An example of the internal layout of an ID3v2 tagged file is presented in 
Fig. 4.24.  

Fig. 4.24. Example of the internal layout of an ID3v2 tagged file 
(http://www.id3.org) 

In comparison to the CDDB format, a much larger and more diversified 
metadata set of ID3v2 standard opens a way towards future experiments in 
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the domain of advanced music searching including application of the 
method proposed in this paper.  

4.3.2 CDDB Database Organization and Searching Tools

A sample record from the CDDB database is presented in Fig. 4.25. The 
field denoted as “frames” needs some explanation. It contains the frame 
numbers, because the CDDB protocol defines the beginning of each track 
in terms of track lengths and the number of preceding tracks. The most ba-
sic information required to calculate these values is the CD table of con-
tents (the CD track offsets, in "MSF" [Minutes, Seconds, Frames]). That is 
why tracks are often addressed on audio CDs using "MSF" offsets. The 
combination determines the exact disc frame where a song starts.  

Tools for CDDB Information Retrieval 

The process of querying the CDDB database begins when  the unique con-
tent of the “frames” field is issued to the database searching engine. In re-
sponse, the  CDDB database transmits back all the data related to the al-
bum – namely its artist, title,..., genre, etc. This feature is exploited by a 
huge number of users world-wide. However, such a query can be executed 
provided that users possess a copy of the CD record whose metadata are 
searched for. If so, their computers can automatically get the data from the 
CDDB database and display information as illustrated in Fig. 4.26. Conse-
quently, local catalogs of records can be built up fast and very efficiently 
with the use of this system.  

A possible benefit from the universal and unrestricted access to CDDB 
could be, however, much greater than just obtaining the textual informa-
tion while having a copy of a record at a disposal. Namely, provided an 
adequate searching engine is employed, CDDB users could submit various 
kinds of queries to this largest set of data on recorded sound, without the 
necessity to gain an access to any CD record in advance. The purpose of 
such a data search mode could be different and much broader than building 
up catalogs of available records – it could have various research, historic 
and cultural applications and connotations. The currently available search-
ing engines are able to scan CDDB content for keywords or keyword 
strings. Usually, if the query sentence consists of several words, the logical 
operator AND is utilized (Boolean searching model). This, in many occa-
sions, brings very poor results, because too many matches occur in the 
case of famous or there are no matches at all if the operator enters terms 
that are misspelled or mixed-up. An important feature of the searching en-
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gine is the ability to order matches according to users’ expectations and to 
adapt properly if attributes are close, but not necessarily exact. The latter 
assumption is easy to illustrate on a typical example presented in Fig. 4.27. 
The example shows that the CDDB database contains many records related 
to the same CD. That is because all CDDB users possessing records are al-
lowed to send and store remotely metadata utilizing various software tools 
(as shown in Fig. 4.28). Consequently, textual information related to the 
same CD records can be spelled quite much differently.   

CDDBID: eb117b10 
[22164FD] 
artist=Céline DION 
title=Let's Talk About Love 
numtracks=16
compilationdisc=no
genre=Pop
year=1997
comment=
0=The Reason 
1=Immortality 
2=Treat Her Like A Lady 
3=Why, Oh Why ? 
4=Love Is On The Way 
5=Tell Him (Avec Barbra Streisand) 
6=Amar Haciendo El Amor 
7=When I Need You 
8=Miles To Go (Before I Sleep) 
9=Us
10=Just A Little Bit Of Love 
11=My Heart Will Go On (Chanson D'amour Du Film Titanic) 
12=Where Is The Love ? 
13=Be The Man 
14=I Hate You Then I Love You (Avec Luciano Pavarotti) 
15=Let's Talk About Love 
frames=0,22580,41415,59812,81662,101655,123540,142347,161295,182290,208287,226792,
247817,   270010,290987,312245,335675 
order=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Fig. 4.25. Sample CDDB database record 
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Fig. 4.26. Screen shot from the Audiograbber software 
(http://www.audiograbber.com-us.net/) used for CDDB querying and fast audio 
track copying. The presented data set corresponds to the database record as in Fig. 
4.25 

Fig. 4.27. Sample result of information retrieval from the CDDB database ob-
tained after sending content of “frames” field (4 different records were retrieved 
concerning the same disk) 

Fig. 4.28. Panel of typical software tool allowing users to transmit & store meta-
data in the CDDB database 
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Simple Search Questionnaires 

An important factor in building a query questionnaire for a music database 
is the knowledge of how the users access music information. The question 
arises whether all data contained in the album and track data fields are 
used by a person searching for a particular recording or a CD. A survey on 
this problem was performed by Bainbridge et al. (2003). Some of these re-
sults are recalled in Table 4.36. It is most common that a search starts with 
the name of an album or a performer. Next in popularity are searches by ti-
tle and date of recording. It has also been discovered that users are rarely 
able to fill in such a questionnaire with data, which are exact to ones stored 
in a music database. They experience difficulty in coming up with crisp 
descriptions for several of the categories. This indicates a need to support 
imprecise metadata values for searches. Apart from not being able to give 
crisply defined categories, users often make mistakes, or are not certain 
when referencing to the year of a recording. They would rather give the 
decade or define the time in other terms than a singular year. Also giving 
information on lyrics, may cause some problems, such as how to transcribe 
non existing words. Another category, which is difficult for users is the 
genre of recording. All these factors should be taken into account when 
building a questionnaire for a database search.  
     Meanwhile, despite a really expressive information that can be found 
on some Webpages (http://www.gracenote.com) available searches are 
very simplistic, basing just on text scanning with an application of simple 
logical operators in the case of multi-term queries (Boolean search). The 
panel of such an electronic questionnaire was reproduced in Fig. 4.29.  

Table 4.36. Survey on user’s queries on music (Bainbridge et al 2003) 

Category Description Count [%] 
Performer Performer or group who created a particular recording 240 58.8
Title Name (or approximation) of work(s) 176 43.1
Date Date that a recording was produced, or that a song was composed 160 39.2
Orchestration Name of instrument(s) and/or vocal range(s) and/or genders 

(male/female)
68 16.7

Album title Name of album 61 15.0
Composer Name of composer 36 8.8
Label Name of organization which produced recording(s) 27 6.6
Link URL providing a link to further bibliographic data 12 2.9
Language Language  (other than English) for lyrics 10 2.5
Other Data outside from  the above categories 36 8.8
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Fig. 4.29. Freedb.org simple searcher interface

Advanced Metadata Searching Attempts 

Recently, a rapid growth of interest is observed in the so-called ‘Semantic 
Web’ concepts (http://www.semanticweb.org/). By the definition ‘Seman-
tic Web’ the representation of data on the World Wide Web is understood. 
The effort behind the Semantic Web is to develop a vocabulary for a spe-
cific domain according to the recent ISO/IEC 13250 standard, which aims 
at capturing semantics by providing a terminology and link to resources. It 
is based on the Resource Description Framework (RDF), which integrates 
a variety of applications using XML for syntax 
(http://www.w3.org/2001/sw/). In other words, these are sets of organizing 
guidelines for publishing data in such a way that it can be easily processed 
by anyone. Within the work done on the Semantic Web automated reason-
ing, processing, and updating distributed content descriptions are also dis-
cussed. A so-called problem solving method (PSM) approach is taken in 
which algorithms from the field of Knowledge Based Systems are consid-
ered to perform inferences within expert systems. However, PSM are task 
specific. At the moment there seems to be little consensus on the character-
istics of the Semantic Web, but many domains are already covered by 
some applications and test databases, or at least guidelines have been cre-
ated.

Recent developments in the MPEG-7 and MPEG-21 standards enable to 
create multimedia content descriptions, which includes audio and video 
features at the lower abstraction level as well as at the higher conceptual 
level (http://www.darmstadt.gmd.de/mobile/MPEG7/; Lindsay and Herre 
2001). Low-level features of the content have been already thoroughly re-
viewed in Chapter 3. On the other hand, higher level descriptors can be 
used to provide conceptual information of the real world being retrieved  
by the content. Intermediate levels of description can provide models that 
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link low-level features with semantic concepts. Because of the importance 
of the temporal nature of multimedia, dynamic aspects of content descrip-
tion need to be considered. Therefore, the semantic multimedia web should 
be dedicated to conceptual and dynamical aspects of content description.

Even though a lot of research was focused on low-level audio features 
providing query-by-humming or music retrieval systems (Downie 1999, 
2003a, 2003b; Herrera et al 2000; http://www.ismir.net/; Kostek 1999, 
2004a, 2004b; Kostek and Czyzewski 2001, Pfeiffer et al 1996), most web 
sites containing music support only category or text-based searching. Few 
reports can be found on attempts to build advanced tools for mining the 
content of the CDDB database, i.e. the study by Bainbridge (2003), 
Downie (2003b), and Pachet et al. (2002). One of the reports on this sub-
ject was published by Pachet et al. (2000). They propose a method of clas-
sification based on musical data mining techniques that uses a co-
occurrence and correlation analysis for classification. In essence, the au-
thors of the cited work concentrated on processing the extracted titles and 
on establishing similarity measurements between them. The co-occurrence 
techniques were applied to two data sources: radio program, and CD com-
pilation database.

The co-occurrence analysis is a well-known technique used to statistical 
linguistics in order to extract clusters of semantically related words. In the 
case of the study by Pachet et al. the analysis consisted in building a matrix 
with all titles in rows and columns. The value at (i, j) corresponds to the 
number of times that titles i and j appeared  together,  either  on  the  same  
sampler,  or on  the same   web  page,  or   as  neighbors  in   a  given   ra-
dio program.  

Given a corpus of titles ),...,( 1 NTTS , the co-occurrence may be com-

puted between all pairs of titles Ti and Tj, (Pachet et al 2002). The co-
occurrence of Ti with itself is simply the number of occurrences of Ti in the 
considered corpus. Each title is thus represented as a vector, with the com-
ponents of the vector being the co-occurrence counts with the other titles.  
To eliminate frequency effects of the titles, components of each vector are 
normalized according to: 

2/
),(

),(

),(

),(
),(

22

12

11

21
21

TTCooc

TTCooc

TTCooc

TTCooc
TTCoocnorm

(4.81)

The normalized co-occurrence values can be directly used to define a 
distance between titles.  The distance will be expressed as: 

),(1),( 2121
1 TTCoocTTDist norm

(4.82)
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Given that the vectors are normalized, one can compute the correlation 
between two titles T 1 and T 2 as: 

2,21,1

2,121 ),(
CovCov

Cov
TTSim

(4.83)

where: Cov1,2 is the covariance between T 1 and T 2 and: 
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E is the mathematical expectation and )( i
i TE

The distance between T 1
 and T 2 is defined as: 

2/)),(1(1),( 2121
2 TTSimTTDist (4.85)

Experiments performed by Pachet et al. on a database of 5000 titles 
show that the artist consistency may not be well enforced in the data 
sources. The correlation clustering generally indicates that items in a larger 
cluster tend to be classified according to their specific music genres, 
whereas  the  co-occurrence clustering is better suited for  small clusters, 
indicating similarities between two titles only. 

Unfortunately, the study presented by Pachet et al. was applied in a very 
fragmentary way, thus there is a need to perform more thorough analysis 
on music data in the context of searching for co-occurrence and similarity 
between data. Nevertheless, similar findings are applicable to address 
problems in extracting clusters of semantically related words. They can be 
found in other references, i.e. Ghazfan et al. (1996) and Klopotek (2001). 

A more universal and broader approach to searching for mutual depend-
encies among metadata (not only textual but also numerical) is presented 
in the following paragraphs, basing on the Pawlak’s  flow graph concept 
(Pawlak 2004).  

4.3.3 Data Mining in CDDB Database   

The weakness of typical data searching techniques lays in lacking or not 
using any a priori knowledge concerning the queried dataset. More ad-
vanced methods assume stochastic search algorithms, which use random-
ized decisions while searching for solutions to a given problem . The 
search is based on a partial representation of data dependency expressed in 
terms of Bayesian networks, for example proposals formulated in papers of 
Ghazfan et al (1996) or Turtle et al. (1991).  The process of searching is 
divided into 2 phases: learning and query expansion. The learning phase 
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stands for constructing a Bayesian network representing some of the rela-
tionships between the terms appearing in a given document collection. The 
query expansion phase starts when queries are issued. Queries are treated 
as terms that could be replaced in the process of propagating this informa-
tion through the Bayesian network prepared in advance. The new terms are 
selected whose posterior probability is high, so that they could be added to 
the original query.  

The abundant literature on techniques for searching data in databases 
describes many methods and algorithms for probabilistic searches and data 
mining techniques, including decision trees applications. There are no re-
ports, however, on a successful application of any of them in representing 
knowledge contained in the CDDB database. Meanwhile, this problem is 
vital and important, because this database contains an almost complete 
knowledge on the sound recorded on digital disks. This knowledge, if ex-
tracted from the database, can serve for various purposes, including an ef-
ficient support for data query made by millions of users.  

As a method of data mining in the CDDB database, a system application 
which uses logic as mathematical foundations of probability for the deter-
ministic flow analysis in flow networks was proposed. The flow graphs are 
then employed as a source of decision rules providing a tool for the repre-
sentation of knowledge contained in the CDDB database. The new mathe-
matical model of flow networks underlying the decision algorithm in ques-
tion was recently proposed by Pawlak (2003, 2004). The decision 
algorithm enables to build an efficient searching engine for the CDDB da-
tabase. The proposed application is described in subsequent paragraphs. 

Probabilistic and Logical Flow Networks 

In the flow graphs proposed by Pawlak, flow is determined not only by 
Bayesian probabilistic inference rules, but also by the corresponding logi-
cal calculus which was originally proposed by Lukasiewicz. In the second 
case  the  dependencies  governing  flow  have  deterministic  meaning 
(Pawlak 2003). The directed acyclic finite graphs are used in this context, 
defined as: 

,, BNG (4.86)

NNB ; 1,0: B (4.87)

where:
N – a set of nodes 
B – a set of directed branches 
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 - a flow function 

Input of  x N is the set: 

}),(:{)( BxyNyxI (4.88)

output of  x N  is the set:

},:{ ByxNyxO (4.89)

Other quantities can be defined with each flow graph node, namely the 
inflow:

xIy

xyx , (4.90)

and outflow:

xOy

yxx , (4.91)

Considering the flow conservation rules, one can define the throughflow 
for every internal node as:  

xxx (4.92)

Consequently, for the whole flow graph:  

GGG ,         (G) = 1 (4.93)

The factor (x, y) is called strength of (x, y).
Above simple dependencies, known from the flow network theory, were 

extended by Pawlak with some new factors and a new interpretation. The 
definitions of these factors are following: 

certainty: 

x
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coverage:
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The above factors have also clear logical interpretation. Provided <x,y>
– represents the set of all paths leading from x to y, certainty has the fol-
lowing property: 

yxyx

yxceryxcer

,...

..., (4.96)

coverage:

yxyx

yxyx

,...

...cov,cov (4.97)

and strength fulfills the condition:

yxyx

yxyx

,...

..., (4.98)

It is important in this context, that the flow graph branches can also be 
interpreted as decision rules, similarly to rough set algorithm decision rules 
(Pawlak 2004). That is because a decision rule x -> y can be associated 
with every branch (x, y). Consequently, a path [x1, x2] can be associated 

with a rule string: 
nn xxxxxx 13221 ,....,  or can be represented 

by a single rule of the form:  x* -> xn , where x* replaces the string:  x1,

x2,...,xn-1

This important finding was proved in Pawlak’s papers and was com-
pleted with derivation of practically useful properties, for example: 

nn xxcerxxcer ..., 1
* (4.99)

nn xxxx ...cov,cov 1
* (4.100)

nnnn xxxxxcerxxx ...cov..., 111
* (4.101)

Consequently, with every decision rule corresponding to graph branches 
the aforementioned coefficients are associated: flow, strength, certainty, 
and coverage factor. As was proved by the cited author of this applicable 
theory, these factors are mutually related as follows: 
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If x1 is an input and xn is an output of graph G, then the path [x1...xn] is 
complete, and the set of all decision rules associated with the complete set 
of the flow graph connections provides the decision algorithm determined 
by the flow graph.

Thus, in computer science applications of the flow graphs the concepts 
of probability can be replaced by factors related to flows, the latter repre-
senting data flows between nodes containing data. Knowledge on these 
flows and related dependencies can be stored in the form of a rule set from 
which the knowledge can be extracted. In contrast to many data mining al-
gorithms described in literature, the described method is characterized by a 
reasonably low computational load. That is why it provides very useful 
means for extracting the complete knowledge on mutual relations in large 
data sets, thus it can be applied also as a knowledge base of an intelligent 
searching engine for the CDDB database.  

Extracting Inference Rules from CDDB Database 

Two databases in the CDDB format were selected as objects of the ex-
periments: a local database containing metadata related to approximately 
500 CD disks and the original CDDB imported from freedb.org website 
(rev. 20031008). At first the much smaller local database was used in order 
to allow experiments without engaging too much computing power for 
flow graph modeling. Moreover, only 5 most frequently used terms were 
selected as labels of node columns. These are:  

Album title (optional ASCII string not exceeding 256 letters) 
Album artist (up to 5 words separated by spaces) 
Year of record issuing (4 decimal digits) 
Genre (type of music according to the CDDB standard: 
Blues,...,Classical,...,Country,..., Folk,..., Jazz,..., Rock,...,Vocal). It is 
together 148 kinds of musical genres 
Track title (optional ASCII string not exceeding 256 letters) 
The term Number is considered a decision attribute – in the CDDB 
database it is represented by a unique digit/letter combination of the 
length equal to 8 (for example: 0a0fe010, 6b0a4b08, etc.).

Once the number of a record is determined, which is associated with a 
concrete CD, it enables retrieving all necessary metadata from the database 
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and rendering them by an automatic operation of filling/replacing the 
fields of an electronic questionnaire. The questionnaire prepared for 
searching CDDB databases employing knowledge extracted from flow 
graphs is shown in Fig. 4.30. The graph designed to represent data rela-
tions between chosen terms is illustrated in Fig. 4.31.  

Fig. 4.30. Electronic questionnaire – front end of the CDDB searcher utilizing a priori

knowledge about database content

Fig. 4.31. Flow graph used to represent knowledge relevant to frequently made CDDB 
queries
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The process of knowledge acquisition was initiated for the smaller 
CDDB database with analyzing first letters of the terms: ‘Album Title’, 
‘Album Artist’ and ’Track Titles’. This solution was adopted because of 
the small size of the experimental database. Otherwise the number of paths 
between nodes would be too small and the problem of searching CD re-
cords will be in practice hard-defined for most objects. The above restric-
tion does not concern the full CDDB database which contains many re-
cords of selected performers as well as many records of metadata with the 
same words in the fields related to album or track titles. A software im-
plementation of the algorithm based on theoretical assumptions described 
earlier in the Section was prepared and implemented in a server having the 
following features: 2 Athlon MP 2,2 GHz processors, Windows 2000
OS MySQL database server, Apache  WWW server. The result of 
branch-related factor calculations is illustrated in Fig. 4.32.  

The process of knowledge acquisition does not complete after the values 
of certainty, coverage and strength for each branch have been determined. 
The knowledge base should be prepared for queries with any reduced term 
set. Correspondingly, in order to determine data dependencies applicable 
to such cases, the graph should be simplified in advance. The knowledge 
base should be prepared in advance to serve such queries rather than to 
calculate  new values of factors related to shorter paths each time a term is 
dropped (field left empty by the user). That is why in order to shorten the 
time of calculations made in response to a query, all terms are left-out con-
secutively, one of them at a time while the values of branch factors are cal-
culated each time and stored. This solution lets users get a ready answer 
for each question almost immediately, independently of the amount of 
their knowledge on the CD record which is searched for. An example of a 
simplified flow graph is illustrated in Fig. 4.33. The dropping of the term 
‘Album Artist’ node layer entails among others the following calculations:  

A -> A -> 2003 ==> B -> 2003                    
0.0087=0.733 0.0119 

C -> B -> 2002 ==> C -> 2002 
0.0012=0.1875 0.0063 
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Fig. 4.32. Fragment of flow graph with marked values of certainty, coverage and
strength calculated for branches 

Fig. 4.33. Simplified flow graph (from Fig. 4.32) after leaving-out the term: ‘Al-
bum artist’ 

As said before, decision rules can be derived from flow graphs. Corre-
spondingly, the following sample inference rules can be obtained from the 
graph showed in Fig. 4.32, whose fragment is depicted in Fig. 4.33:  
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If Album Title=B and Album Artist=A and Year=2003 and

Genre=genre_value and Track Title=track_title_value then Num-

ber=number_value 

If Album Title=C and Album Artist=B and Year=2002 and

Genre=genre_value and Track Title=track_title_value then Num-

ber=number_value 

The values of: genre_value, track_title_value and number_value can be 
determined from the parts of the graph that are not covered by the figure 
(for caption resolution limitations). If the user did not provide the Album

Artist value, the direct data flows from the nodes Album Title to the nodes 
Year and can be analyzed as in Fig. 4.33. The inference rules are shorter in 
this case and adequate values of certainty, coverage and strength are
adopted. For example the value of the rule strength associated with the 
paths determined by the node values:  Album Title=B -> Album Artist=A 

(as in Fig. 4.32) equal to =0.0031 and =0.0011 are replaced by the new 
value of =0.0023 associated with the path: Album Title=B -> Year=2003.
The shortened rules corresponding to the previous examples given above 
are as follows:  

If Album Title=B and Year=2003 and Genre=genre_value and Track 

Title=track_title_value then Number=nember_value 

If Album Title=C and Year=2002 and Genre=genre_value and Track 

Title=track_title_value then Number=number_value 

The latter inference rules may adopt the same decision attribute (the 
number of the same CD record), however the rule strength (  value) can be 
different in this case. The rule strength is a decisive factor for ordering the 
results of the search in the database. The principle of ordering matches is 
simple: the bigger the rule strength value is, the higher is the position of 
the CD record determined by the rule in the ordered rank of matches. This 
principle enables a descendant ordering of queried CDs. It bases on the 
rules derived from the analysis of optimal data flow in the graphs which 
represent the knowledge on CD records.  

It is interesting in this context that the attributes in the decision rules can 
be reordered as long as a route between the same nodes consisting of the 
same branches is covered by the rule. The rule can be also reversed or the 
decision attribute can be swapped with any former conditional attribute. 
This feature of the decision system results from the principles of modus 

ponens and modus tollens valid for logical reasoning made on the basis of 
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flow graphs. Correspondingly, the user of the searching engine who knows 
the number of a CD, can find information about the remaining metadata 
based on this decision system. It is also interesting that in this context the 
detailed - practically impossible for a user to memorize - number of begin-
ning packets of tracks might not be necessary, thus the CD album metadata 
can be searched for effectively without an access to its physical copy. The 
panels of the constructed searching engine utilized for the presentation of 
the search results are gathered in Fig. 4.34.  

a.

b.

Fig. 4.34. Panels of the intelligent CDDB database searcher containing the results 
of a query (from Fig. 4.32):  (a) result of matches rendering; (b) retrieved metadata 



4.3 MUSIC ANALYSIS      301 

An application of the knowledge extraction algorithm to the CDDB case 
is practically justified provided it is possible to complete all computing 
tasks on a typical server (full set of inference rule derivation). This demand 
is entirely fulfilled in the case of flow graphs application.  

Apart from the experiments on semantic music classification, an attempt 
to use parameters from the MPEG-7 standard for a musical style classifica-
tion was carried out. A set of 162 musical pieces was used in the experi-
ment. Each of them was categorized to be classical music, jazz or rock. 

Approximately 15 one-second samples, starting one minute from the 
beginning of a piece, were extracted from every piece. Eight randomly 
chosen samples from every piece were added to the training set, depending 
on the classification algorithm. Other samples were included in the test set. 
Parameters from the MPEG-7 standard applicable for such an analysis 
were included in the feature vector. Therefore, the feature vector consisted 
of only Audio Spectrum Descriptors. Results of the musical style classifi-
cation are shown in Tables 4.37 and 4.38. Both NN and rough set-based 
classifiers were used. In the latter case, the RSES system was used (Bazan 
and Szczuka 2001; Bazan et al 2002). The results obtained in musical style 
classification are lower by approximately 10% than the results of musical 
instrument identification. It is believed that extending the feature vector by 
the specialized rhythm parameters would improve the classification effec-
tiveness significantly. 

The content of the feature vector used in the experiments was as fol-
lows:

{ASE1, ASE2, ASE3, ASE4, ASE5, ASE6, ASE7, ASE8, ASE9, ASE10, ASE11,
ASE12, ASE13, ASE14, ASE15, ASE16, ASE17, ASE18, ASE19, ASE20, ASE21,
ASE22, ASE23, ASE24, ASE25, ASE26, ASE, ASEv, ASC, ASCv, ASS, ASSv,
SFM, SFMv}. 

Table 4.37. Effectiveness of musical style classification by means of NN 
Genre jazz classical rock No. of obj. Accuracy Coverage 

jazz 406 68 31 505 0.804 1 
classical 52 355 5 412 0.862 1 
rock 29 13 128 176 0.727 1 

Table 4.38. Effectiveness of musical style classification by means of rough sets 

Genre jazz classical rock No. of obj. Accuracy Coverage 

jazz 426 101 46 573 0.743 1 
classical 58 411 5 474 0.867 1 
rock 32 10 264 306 0.863 1 
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Nearly the same effectiveness was obtained by both the neural network 
and the rough set-based classification system. In the latter case, such an 
analysis was slightly better suited for classification tasks than NN. It can 
be noticed that the difference between the results obtained by these algo-
rithms is nearly negligible, however, the results are not yet satisfactory. 

In more practical applications, a user is satisfied with a classification if 
two factors are fulfilled. First, the system should return results of music 
identification in a fraction of second, secondly the correct result should 
appear at the first five positions of the list returned by the system.  

The database with 4469 fragments of music excerpts of various genres 
was once again used in experiments. From the whole database 60 pieces 
were randomly extracted and parametrized. To satisfy time conditioning, 
only two parameters in feature vectors were used, namely AudioPower and 
AudioSpectrumFlatness. Since the values of the first parameter are 10 
times larger than the values of AudioSpectrumFlatness, thus the values of 
the AudioPower were used with weights of 0.1 and 0.01 (see Fig. 4.35). 
These parameters were calculated for 60s of the music excerpt, only. 
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Fig. 4.35. Results returned by the system (weight 0.01 applied to Audio-

SpectrumFlatness)

As seen from Fig. 4.35, the system identified the correct music excerpt 
with the accuracy of 48.3%. It should be stressed that in such a case only 
two parameters were contained in the feature vector. The analysis of the 
remaining four places of the ranking list shows that the accuracy increases 
to 81.6% (49 correct guesses), and  testing the system with the weight of 
0.1 applied to the AudioSpectrumFlatness parameter, has a different effect 
on the results – namely the first place in the ranking list is returned with 
38.33% accuracy (see Fig. 4.36). The system was prepared within one of 
the M.Sc. Thesis of the Multimedia Systems Department, and is installed 



on the Department server, however all interfaces are in Polish, thus there 
are not shown here (Prylowski 2004). 
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Fig. 4.36. Results returned by the system (weight 0.1 applied to Audio-

SpectrumFlatness)

The results indicate that even in very demanding conditions, a correct 
classification is not only possible, but also satisfying. It should be men-
tioned that, if a two-fold search of the database is applied – namely when 
high level parameters (semantic) are added – then the system returns ade-
quate list of music excerpts with 100% accuracy. 
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5 COGNITIVE PROCESSING IN ACOUSTICS 

5.1 Fuzzy Sets and Fuzzy Logic 

The idea of vagueness (contrary to bi-valent logic) appeared at the end of 
the 19th century, and was formally applied to the field of logic in 1923 by 
Russell. A Polish logician ukasiewicz first formulated multi-valued logic 
in 1930. These research studies were carried out long before the assump-
tions of fuzzy logic which Lofti A. Zadeh originally defined in 1965 (Zadeh 
1965), but thanks to his work multi-valued logic was once more discovered. 
Later, numerous scientists such as Sugeno (1985), Kosko (1997), Kacprzyk 
and Feddrizzi (1992), Yager (1992), Yamakawa (1989) and others (Bosc and 
Kacprzyk 1995; Bose 1994; Dubois and Prade 1999; Dubois et al 2002; 
Larsen 1980; Mamdani 1977; Mendel 1995; Takagi and Sugeno 1998; 
Zadeh 1999a; Zadeh and Kacprzyk 1992; Zemankowa and Kacprzyk 1993) 
worked on the idea and further developed it. Also lately, many research 
works appeared on the use of fuzzy sets, fuzzy logic, and possibility theory 
for dealing with imprecise information in database management systems 
(Fuller 1999; Kuncheva and Kacprzyk 2000; Szczepaniak et al 2003; Yu 
and Kacprzyk 2003). Both theoretical aspects and implemented systems are 
discussed within the scope of these studies. Since fuzzy logic theory and its 
applications are covered extensively in literature, only the main features of 
this theory will be pointed out here.  

Fuzzy set theory results from the need to describe complex phenomena or 
phenomena that are difficult to define and determine using a conventional 
mathematical apparatus. It is said that it enables to model complex systems 
using a higher level of abstraction that originates from human knowledge 
and experience. Traditional reasoning systems based on classical binary logic 
utilize the modus ponens reasoning rule. This rule can be presented as fol-
lows:

W

PWP ,
 or

Bis

AisBisAis ,

y

xyx (5.1)
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which means that if W results from premise P and P is true, then inference 
W is also true. In the classical calculus (p and q) this implication can be 
expressed as: 

qqpp (5.2)

which can be interpreted as: if p is true and qp is true then q is true. 

Fuzzy logic, being an extension of the classical binary logic, introduces the 
generalized modus ponens (GMP) rule which can be written down as fol-
lows:

Bis

AisBisAis ,

y

xyx
,

(5.3)

where XAA, and XAA, are fuzzy sets defined in non-empty spaces 
X and Y, while x and y are linguistic variables. This means that the premise 
is: if x is A then y is B fact: x is A consequence: y is B.

The fuzzy set B from the fuzzy logic inference (5.3) is defined as: 

BAAB (5.4)

As the fuzzy implication BA is equivalent to a certain fuzzy relation, 
the membership function of set BA can be determined as a composi-
tion of the fact and the fuzzy implication operator as expressed below: 

),(),(sup)( yxxTy BAA
x

B
X

(5.5)

where T is the t-norm (triangular norm) for the logical operation AND. The 
fuzzy implication inference based on the compositional rule of inference 
for approximate reasoning, suggested by Zadeh, uses sup-min composi-
tion, however in many practical cases sup-T is used. The membership 
function ),( yxBA from the previous relation can be expressed on the ba-

sis of two known functions )(xA and )(xB by one of the following two 

implications: 

a minimum-type rule, called the Mamdani rule (Mamdani 1977): 

)()()(),(min),(),( yxyxyxyx BABARBA
(5.6)

a product-type rule, called the Larsen rule (Larsen 1980): 

)()()()(),(),( yxyxyxyx BABARBA
(5.7)

Other important classes of fuzzy implication operators are: S-, and R-
implications, where S is a t-conorm, and R is obtained by the residuation of 



continuous t-norm T. Typical S-implications are Lukasiewicz and Kleene-
Dienes implications, on the other hand, examples of R-implications are 
Gödel and Gaines implications (Fuller 1999). 

Suppose that }{xX is a universe of discourse, i.e. the set of all possi-

ble elements with respect to a fuzzy concept. Then a fuzzy subset A in X is 
a set of ordered pairs ))}(,{( xx A , where Xx}{  and ]1,0[: XA  is 

the membership function of A; ]1,0[)(xA  is the grade of membership of 

x in A. A fuzzy variable has values which are expressed in natural lan-
guage, and its value is defined by a membership function. Since the basic 
properties of Boolean theory are also valid in fuzzy set theory, they will 
only be cited here briefly (Kacprzyk and Feddrizzi 1992). 

The union of two fuzzy sets A and B of a universe of discourse X, de-
noted as A B is defined as: 

Xxxxx BABA ),()()( (5.8)

The intersection of two fuzzy sets A and B of a universe of discourse X,
denoted as A B, is defined as: 

Xxxxx BABA ),()()( (5.9)

The complement of a fuzzy set A of a universe of discourse X, denoted 
as A, is defined as: 

Xxxx AA ),(1)( (5.10)

The above operations are illustrated in Fig. 5.1. As may be seen in Fig. 
5.1, the fuzzy-set intersection is defined as the minimum of the fuzzy set 
pairs (the smaller of the two elements), the union is defined as the maxi-
mum, and the complement produces a reversal in order (Kosko 1997). 

Another important notion of fuzzy sets is the size or cardinality of a set 
A. It is defined as: 

card
n

i

iA xA
1

)(
(5.11)
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Fig. 5.1. Basic operations in fuzzy theory: Fuzzy sets A and B (a), A B (b), A B

(c), A (d) 

5.1.1 Fuzzy Reasoning in Control 

The primary factor making fuzzy logic predestined for applications in the 
field of control is the possibility for intuitive modeling of linear and non-
linear control functions of optional complication. This capability approxi-
mates the decision making process of a machine to that of a human. Fuzzy-
based systems also make the description of functions with the use of con-
ditional rules possible. 

Typical scheme of data processing based on fuzzy reasoning is pre-
sented in Fig. 5.2. The following items describe individual blocks of the 
fuzzy reasoning system (Takagi and Sugeno 1985). 
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Fuzzification

Rule interpretation IF-THEN

Defuzzification

1.       

.       

IF is AND AND is THEN is

IF is AND AND is THEN is

x A x A y B

N x A x A y B

n n

N
n n

N N

1 1
1 1 1

1 1

...

...

... Postprocessing
Preprocessing

               Fuzzy Reasoning

Input

Output

Fig. 5.2. Scheme of fuzzy reasoning system 

The literature concerning fuzzy logic is now well developed, so only a 
short introduction to the principles of fuzzy logic control will be provided 
here.

Rule Base 

The design of fuzzy controllers includes the collection of control rules. 
These rules consist of linguistic statements which link the controller inputs 
with their respective outputs. The rules are contained in a rule base. If sev-
eral linguistic variables are involved in the antecedents and there is one 
variable in conclusion then the system will be referred to as a multi-input-
one-output fuzzy system. The rule base, also called the linguistic model, is 

a set of N fuzzy rules Nkk ,...,2,1,)(
R of the IF...AND...THEN type, e.g.: 

kk
nn

kkk yxxx BisTHENAisANDANDAisANDAisIFR ...: 2211
)( (5.12)

where nnxxx XXX ...,,, 2211  denote input linguistic variables of the 

rule basis, Yy  is the output fuzzy variable, k
iA , k

B  are fuzzy subsets in 

the universe of discourses X, and Y respectively, for which 

RXA i
k
i and RYB

k , and nXXX ...,,, 21 and Y are input and 

output variable spaces, respectively, while R denotes the real number set. 

A slightly different form of the rule )(k
R was proposed by Takagi and 

Sugeno. In their rule the antecedent is fuzzy in character, while the func-

tional relation n
k

k xxxfy ...,,, 21
)(  appears as conclusion. This leads to 

the rule of the following shape (Takagi and Sugeno 1985): 
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n
k

k
k
nn

kk xxxfyxx ...,,,...: 21
)(

11
)( THENAisANDANDAisIFR (5.13)

Discussion in the following part of the chapter will apply to the rules 
consistent with definition (5.12) unless indicated otherwise. Using desig-
nations:

T

nxxx ...,,, 21x , nXXXX ...21 , k
n

kkk
AAAA ...21

(5.14)

one can present the kth rule )(k
R (5.12) as a fuzzy implication: 

kkk
BAR :)( (5.15)

The above relation can be interpreted as a fuzzy relation, and therefore 

the rule YXR
)(k is a fuzzy set of a membership function: 

),(),()( yy kkk BAR
xx (5.16)

which can be determined using either  the Mamdani (5.6) or the Larsen 
rule (5.7). 

For the given rule base of a control system, the fuzzy controller deter-
mines the rules to be fired for the specific input signal condition and then 
computes the effective control action. Applying inference operators sup-

min or sup-prod (i.e. supreme-minimum, supreme-product) to the composi-
tion operation results in the generation of the control output (Bose 1994). 

Pre- and Postprocessing Block

Preprocessing is aimed at converting data fed onto the system input to a 
format accepted by the reasoning module. Similarly, postprocessing con-
verts data produced by this module to the form consistent with external re-
quirements. The reasoning module itself awaits a sequence of real numbers 
on input and returns a sequence of real numbers.  

Fuzzification Block 

Fuzzification is another notion defined in the terminology of fuzzy sets. It 
can be performed by considering the crisp input values as ‘singletons’ 
(fuzzy sets that have a membership value of 1 for a given input value and 0 
at other points) and taking the values of the set membership function at the 
respective data value (Bose 1994). The fuzzification procedure involves 

transforming the values Xx
T

nxxx ˆ...,,ˆ,ˆˆ 21 of the input signal from the 

domain of real numbers to the domain of fuzzy sets. To achieve this, one 



 321 

determines the values of membership functions for subsequent linguistic 
variables as well as for the given real input value. As a result of the trans-
formation the input value x̂ is mapped into a fuzzy set 

nXXXXA ...21 .

Fuzzy Rule Interpretation Block

After the fuzzification phase the fuzzy set nAAAA ...21 , where 

nXXXXA ...21 , is fed onto the input of the fuzzy rule interpre-

tation block. In turn, it delivers to its output N fuzzy sets YB
k  equiva-

lent to one resulting fuzzy set N
BBB ...1 being the logical sum of 

N sets k
B . Reasoning is based on the generalized modus ponens rule 

(5.3), which for the kth rule )(k
R and input signal T

nxxx ...,,, 21x takes

the form: 

k

kkk

y

y

Bis

AisxBisAisxR ,:)( (5.17)

Fuzzy set k
B is defined by a composition of fuzzy set A and relation 

)(k
R , which can be expressed as follows: 

kkk
BAAB (5.18)

Using Eq. (5.5) one can calculate the membership function )(ykB
of 

set k
B according to the following formula: 

),(),(sup)( yTy kkk BAAB
xx

Xx

(5.19)

Setting out the resulting fuzzy set k
B  for the given rule, and therefore 

calculating the membership function )(ykB
, can be identified with calcu-

lating the rule strength. In practical implementations, if the value of the 
rule strength is zero, the given rule is not fired and is ignored. After the 
overall rule strength has been calculated, the fired rules are aggregated, 
which is based on summing the resulting fuzzy sets for all these rules. 
Fuzzy set B obtained in this way is the result set of fuzzy reasoning. 
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Defuzzification Block

As fuzzy reasoning produces a fuzzy set B (or N fuzzy sets k
B ), it needs 

to be mapped into a single real value Yoy . The defuzzification proce-

dure, is a reverse of the fuzzification procedure. It involves the transforma-
tion of the values from the domain of fuzzy sets to the domain of real 
numbers. The operation of defuzzification can be performed by a number 
of methods of which the center of gravity (centroid) and height methods 
are most common. The centroid defuzzification method, determines the 
output crisp value 0U  from the center of gravity of the output membership 

function weighted by its height )(U  (degree of membership) and may be 

described by the following expression: 

dUU

dUUU
U

)(

)(
0

(5.20)

If the Takagi-Sugeno model is used and the rules have the forms pre-
sented in definition (5.13), the output value oy is determined as a normal-

ized weighted average of values of successors kŷ of subsequent rules, 

which can be expressed as follows: 

N

k

k
N

k

k
k wywy

11
o /ˆ

(5.21)

where the value kŷ is calculated for the input signal 

Xx
T

nxxx ˆ...,,ˆ,ˆˆ 21 in the following way: 

n
k

k xxxfy ˆ...,,ˆ,ˆˆ 21
)( (5.22)

while the weighing factor kw depends on the chosen t-norm: 

)ˆ(...,),ˆ(),ˆ( 21
21

nAAA

k xxxTw k
n

kk
(5.23)

and usually has the following shape: 

)ˆ(...,),ˆ(min 1
1

nAA

k xxw k
n

k  or )ˆ(...)ˆ( 1
1

nAA

k xxw k
n

k
(5.24)
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Designing Fuzzy Systems

Individual steps of designing fuzzy systems are presented below. It is 
worth noting that some of the tasks listed below are performed empirically. 
In spite of the simple and natural structure of fuzzy systems, methods to 
choose a membership function of optimal shape and rule base remain un-
known. The idea of fuzzy logic basically comes down to replacing the out-
put function descriptions for all possible input states with a group of mem-
bership functions which represent certain ranges or sets of input values.  

The process of creating a fuzzy logic application is usually comprised of 
six stages:

formulating the problem and identifying control signals which define 
the system behavior,  

defining linguistic variables and the corresponding fuzzy attributes 
defining the inference rules,  
designing the membership function for each variable,  
constructing the rule base and rule processing,   
computing the values of control signals in the defuzzification process. 

The membership functions are standard and may be defined by stating 
three parameters: 

Center Location - central value,
Width,
Type: inclusive/exclusive.

The meaning of these parameters is illustrated in Figs. 5.3 and 5.4. 

a.     b. 

Fig. 5.3. Shape of the membership function: inclusive type (a), exclusive type (b) 
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Fig. 5.4. Membership function parameters 

As is depicted in Fig. 5.4, the membership function may have a triangu-
lar shape which simplifies the process of computing its value. The degree 
of membership is in this case a simple function of distance ac from the in-
put value to central value Xa (see Fig. 5.4). Distance ac is then subtracted 
from the maximum value of the membership function MAX. Hence the 
membership degree amounts to: 

for a function of the inclusive type: 
= MAX - abs(ac);  when abs(ac)  width

= 0;                       when abs(ac) > width

for a function of the exclusive type: 
 = MAX;                       when abs(ac) > 0

 = MAX - 0 + abs(ac); when 0  abs(ac)  width

 = 0;                            when abs(ac) < width

Fuzzy processing is based on a set of inference rules, and there are sev-
eral ways to create sets of these rules. Most frequently, they are created 
heuristically rather than by using closed mathematical formulas, which is 
why this process is difficult to automate. Nonetheless, three directions can 
be formulated: 

representation of human knowledge and experience, 
usage of analytical bases,  
formulation of generalizations. 

The inference process, based on fuzzy logic rules, may be illustrated as 
follows (Hua and Yuandong 1994). 

Let x1 and x2 be input variables, and y the output variable; 
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Rule 1: IF  x1 belongs to A11 AND x2 belongs to A12, THEN y belongs to 
B1

Rule 2: IF x1 belongs to A21 AND x2 to A22 THEN y belongs to B2

The values of these particular rules are defined in the formulas: 

))(),(min( 211 1211
xxw AA

(5.25)

))(),(min( 212 2221
xxw AA

(5.26)

A graphic illustration of the inference process is depicted in Fig. 5.5. 
The actual output value that results from the completed inference is 

computed as: 

2

1

2

1

i

i

i

ii

w

yw

y

(5.27)

where:

)( 11 11
wy B , )( 22 12

wy B
(5.28)

A graphic illustration of the defuzzification process is depicted in Fig. 
5.6.

Fig. 5.5. Graphic illustration of fuzzy logic rule-based operations 
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Fig. 5.6. Graphic illustration of the defuzzification phase. Computation of output 
value  y is based on the sets resulting from the fulfillment of the rules 

In some applications, a hybrid method comprised of both fuzzy and 
mathematical approaches may be used. As an example of such a method,  
the relational method introduced by Sugeno (1985) may be cited. The 
principles of this method are shown in Fig. 5.7. There are two inputs in the 
engineered system, namely: Width (W) and Height (H). The output (Is) is, 
in this case, a combination of rule sets and linear equations, because it is 
assumed that there are some regions in which the outputs may be ex-
pressed as linear functions of the inputs. Consequently, the IF part of the 
rule comprises a fuzzy expression, but the THEN portion is a linear combi-
nation of inputs and constant coefficients, the latter derived from analysis 
and tuned by observation. Rules 1 and 2 in Fig. 5.7 are as follows: 

RULE1: IF W is MEDIUM AND H is MEDIUM THEN  
Is1=A01+A11W+A21H

RULE2: IF W is ZERO AND H is MEDIUM THEN  
Is2=A02+A12W+A22H

The last task to be performed in order to determine the precise output is 
the defuzzification process, which in this case is a weighted average of lin-
ear equations. It is given that the relational method requires fewer rules 
and gives better accuracy than the rule base method. 
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Fig. 5.7. Relational method illustration (Bose 1994) 

Some of those theoretical assumptions will be shortly illustrated by an 
example of the author’s work taken from the research done previously 
(Kostek 1999). 

5.1.2 Fuzzy Control of Pipe Organ 

Since one of the unique control applications of fuzzy logic techniques to 
musical acoustics is the fuzzy control of a classical pipe organ (Kostek 
1994b), it is perhaps worth mentioning. Computerizing classical pipe or-
gans opens a new domain of interests, in which modern technology meets 
the traditional way of playing such instruments. The application of a mi-
croprocessor system to an organ may significantly improve many of the 
control and display functions of the console. Such a computer control was 
engineered by the author for the classical pipe organ instrument from a 
Musical Theater in the south of Poland.  

Computer control enables a new approach to the problem of limitations 
existing in musical articulation of a pipe instrument with an electromag-
netic action. This kind of a pipe organ control is characterized by the 
promptness in the pipe response, as the air flow cannot be controlled oth-
erwise than by rapidly opening and closing the valve. In the opinion of or-
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ganists, this deprives them of the possibility to interpret music according to 
their wishes. 

The process of a pipe organ activation, which consists  of depressing a 
key, sound rising in a pipe and the reaction of a valve, is difficult to de-
scribe mathematically (Caddy and Pollard 1957; Kostek 1992, 1994a, 
1994b, 1997; Kostek and Czyzewski 1991, 1992, 1993). In addition, since 
these processes are imprecise in nature, a typical microprocessor-based or-
gan control system may therefore be replaced by a learning control system 
capable of modeling the non-linearities gained from entries defined and re-
lated decisions. Consequently, fuzzy logic techniques may be employed in 
a pipe organ control system. Such a system was engineered and applied to 
a pipe organ model within the research work done by the author in 1993-
1994 under the support of the Committee for Scientific Research, Warsaw, 
Poland (Kostek 1994b).  

For the purpose of this study, a model of a pipe organ was designed and 
constructed (Kostek 1997, 1999). It consists of two elements: a model of an 
organ tracker action and a control system based on a fuzzy logic technique 
(Fig. 5.8). The model of the organ is made from oak, and consists of: bellows 
with a volume of 0.06m3, covered with leather (the bellows are filled with air 
through a foot pedal); a wind chest sized 0.4m x 0.3m x 0.2m; two organ 
pipes (Principal 8' - tin pipe, and Bourdon 8' - wooden pipe); and a tracker ac-
tion which enables both mechanical control and electrical activation. Three 
electromagnets used in this control system are combined electrically to one 
key. The valve is driven by electromagnets with a counteracting spring. Elec-
tric activation is obtained through the use of a set of electromagnets con-
trolled by a system constructed on the basis of fuzzy logic. Activating the 
electromagnets causes the air inflow to a selected pipe. A block diagram of 
the system which controls the electromagnets of the organ pipe valves is 
shown in Fig. 5.9. Additionally, the system configuration is shown in Fig. 
5.10. The following components are included: a dynamic keyboard sensitive 
to the velocity of key motion and connected through a MIDI interface to a 
computer; a PC computer with software controlling the FUZZY microproc-
essor card; a FUZZY microprocessor card and a MIDI interface card in-
stalled in a PC computer; a specially constructed control display of a key 
number and velocity; a buffer of information exchanged between the MIDI 
and FUZZY cards; and a buffer to control the electromagnets via the transis-
tor drivers (Fig. 5.10). The applied Yamaha PSR-1500 MIDI keyboard is of 
a touch-sensitive type, therefore according to the velocity with which the 
key was pressed a MIDI code is generated. A sensor under the keyboard 
picks up the signal correlated to the way of depressing the key and at the 
same time transforms it into the system input signal. 
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Fig. 5.9. Block diagram of the control system 

Fig. 5.8. Fuzzy logic-based control system for a pipe organ (Kostek, 1999) 
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Fig. 5.10. Layout of the  fuzzy logic-based control system configuration 

The information on pressing or releasing the key is transmitted from the 
keyboard through the MIDI interface in the form of  2 or 3 bytes of data: 

the first byte – the command meaning that data will be transmitted, 
the second byte – the information on the key number within the range 

from 0 to 127, 
the third byte – the information on the velocity of pressing the key, in 

the range from 1 to 127. 

The key number  is essential because of the relation between the size of 
the pipe and the articulation artefacts. In traditional, mechanical organs, ar-
ticulation features appear mostly in low tones. The sound rise in large 
pipes may be fast or slow, so it is possible to hear the differences in the ar-
ticulated sounds. Small pipes, because of their size, are excited by the wind 
blow very quickly and speak nearly always in the same way. 

The above information is decoded by the computer through a MIDI de-
coding procedure. Obtained values are periodically transmitted to the 
fuzzy logic control system at the speed of 31.25 kBaud. The total transmis-
sion time t (Eq. 5.29) consists of at least three delays, namely: 

1t  is the result of data transmission from the keyboard to the MIDI 

card:

s640
bit/s31250

bit20
1

t
(5.29)

2t   corresponds to the data processing in the MIDI card:  



 331 

s30
2

t

3t  is needed for the data processing in the FUZZY microprocessor card: 

s83t

t 1t  + 2t  + 3t  640 s + 30 s + 8 s  678 s (5.30)

As shown in Fig. 5.10, three parallel connected electromagnets are ap-
plied to drive the pallet opening the air inflow. The electromagnets are 
switched on and driven by the current, the value of which is defined by the 
fuzzy rule system. Thus, any key motion rates will be translated into the 
way the valve is being open, and in consequence into the air pressure in the 
pipe that is decisive to the character of the rising sound. 

Two parameters that are extracted periodically from the MIDI code, 
namely the key number and the velocity, create two fuzzy inputs, labeled 
as:

INPUTS:
KEY_NUMBER; VELOCITY,
and output is associated with the current applied to electromagnet coils 

and is denoted CURRENT. Corresponding membership functions are labeled 
as follows: 

OUTPUT:
LOW_CURRENT; MEDIUM_CURRENT; HIGH_CURRENT.

The fuzzifiers were named as follows: 

FUZZIFIERS:  
 for KEY_NUMBER and VELOCITY :  - LOW

                                      - MEDIUM 

      - HIGH

The output of the system is set at the beginning to 0. The MIDI code as-
signs the keys with numbers from a range starting from 0 (when no key is 
pressed) to 127. The mapping of the keyboard was reflected as 
KEY_NUMBER, and is presented in Table 5.1. The velocity values are repre-
sented as in Table 5.2. 

Table 5.1. Keyboard mapping 

KEY_NUMBER CENTER WIDTH 
LOW 30 29 
MEDIUM 70 25 
HIGH 100 27 
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Table 5.2. Velocity mapping 

VELOCITY CENTER WIDTH 
LOW 30 29 
MEDIUM 70 15 
HIGH 101 26 

The above listed values (Table 5.1 and 5.2) were set experimentally. 
The performed experiments allow to show the plot of membership func-
tions corresponding to the inputs KEY_NUMBER and  VELOCITY and to 
CURRENT denoted as OUTPUT (Fig. 5.11). As can be seen from Fig. 
5.11, triangular membership functions are employed in the fuzzy control-
ler.

The inputs and fuzzifiers are producing terms that are used in the fol-
lowing rules: 

RULES:

if KEY_NUMBER  is  OFF then 0

if VELOCITY  is  OFF  then  0

if KEY_NUMBER  is  LOW  and  VELOCITY  is  LOW  then  

LOW_CURRENT

if KEY_NUMBER  is  MEDIUM  and  VELOCITY  is  LOW  then  

LOW_CURRENT 

if KEY_NUMBER is HIGH and VELOCITY is LOW then

MEDIUM_CURRENT 

if KEY_NUMBER  is  LOW  and  VELOCITY  is  MEDIUM  then  

MEDIUM_CURRENT

if KEY_NUMBER  is  MEDIUM  and  VELOCITY  is  MEDIUM  then  

MEDIUM_CURRENT 

if KEY_NUMBER  is  HIGH  and  VELOCITY  is  MEDIUM  then  

HIGH_CURRENT

if KEY_NUMBER  is  LOW  and  VELOCITY  is  HIGH  then  

HIGH_CURRENT 

if KEY_NUMBER  is  MEDIUM  and  VELOCITY  is  HIGH  then  

HIGH_CURRENT 

if KEY_NUMBER  is  HIGH  and  VELOCITY  is  HIGH  then  

HIGH_CURRENT 

Each rule produces a number which is calculated according to fuzzy 
logic principles from the cross-section of the input values with the mem-
bership functions (see Fig. 5.11). The winning rule is one that has the 
highest value assigned during the calculations. On the basis of the terms 
adopted, the numerical values are converted to the respective current 
which is driving the electromagnets. This means that the lowest output 
value causes the slowest opening of the valve, while other values appear-
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ing on the output, which match other terms, result in opening the valve 
faster.

Fig. 5.11. Membership functions corresponding to VELOCITY  (a), 
KEY_NUMBER (b) inputs and to CURRENT denoted as output (c), where: . - de-
gree of membership 

Recordings of the signals generated by the model were made based on 
the system whose block diagram is presented in Fig. 5.12. A pair of sen-
sors was attached to the key, and activated electrically. The input of the 
system was controlled through a touch-sensitive keyboard. Impulses from 
the sensors responsible for the time of depressing the key were registered. 
The value of velocity of depressing the key was read from the MIDI inter-
face display. The output signal from the control system was recorded on 
the left channel of the tape recorder, while the sound of the pipe was regis-
tered on the right channel. 
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MODEL

FUZZY

control MIDI interface

DAT

sensors

key

PIPE ORGAN

dynamic keyboard

electromagnets

pipes
organ

Fig. 5.12. Block diagram of the recording system of the pipe organ model 

Examples of analyses of the time- and frequency-domain characteristics 
of the recorded sounds are presented in Figs. 5.13 and 5.14.  

a.

b.

Fig. 5.13. Analyses of time-domain characteristics of the sounds of Principal 8' in 
the case of: fast opening of the valve (a),  slow opening of the valve (b) 

R-DAT
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The plots show the differences that are visible in the time representation 
of the analyzed sounds, as well as in the representation of waterfall plots, 
respectively for fast (Figs. 5.13a and 5.14a) and slow (Figs. 5.13b and 
5.14b) opening of the valve.  

a.

b.

Fig. 5.14. Analyses of frequency-domain characteristics of the sounds of Principal 
8' in the case of: fast opening of the valve (a), slow opening of the valve (b) 

A

B

A

B

5.1 FUZZY SETS AND FUZZY LOGIC     



336      5 COGNITIVE PROCESSING IN ACOUSTICS 

Both spectral characteristics differ mainly in the behavior of the second 
harmonic whose dynamic of change depends directly on the rate at which 
the key is depressed – the faster the key is depressed, the quicker the sec-
ond harmonic grows. There are also other discrepancies. It is easy to ob-
serve that the fundamental is much weaker when the key is depressed  
quickly. Arrows ‘A’ in Fig. 5.14 show the starting point of the rising of 
fundamentals, whereas arrows ‘B’ show the rising of the second harmon-
ics. Additionally, in Fig. 5.15 the adequate sonogram analyses are illus-
trated. The difference in starting attacks in fast and slow opening of the 
valve is clearly visible. 
a.

b.

Fig. 5.15. Sonograms of sounds recorded from the model: fast (a) and slow (a) 

shades depicts the magnitude of particular harmonics (white color corresponds to -
60dB) 

Therefore, it may be said that the constructed fuzzy logic control system 
for a pipe organ action responds properly depending on differentiated mu-
sical articulation, enriching music by providing nuances to its interpreta-
tion.

5.2 Rough-Fuzzy-Based Classifier of Musical Timbre 

As mentioned before, ‘computing with words’, a concept introduced by 
Zadeh refers to the fact that humans employ words in computing and rea-
soning, arriving at conclusions formulated in words from premises ex-
pressed in a natural language (Zadeh 1994, 1996, 1999b). Computing with 

and the frequency-domain is depicted in vertical axis (0-1000Hz), the intensity  of 
opening of the valve. The horizontal axis represents the  time-domain (0-300ms), 



words is generally less precise than computing with numbers, but human 
perception is also imprecise and imperfect. It seems that this new paradigm 
of computing can be used with success in musical acoustics as it offers bet-
ter processing of subjective descriptors of instrument sounds and enables 
the analysis of data 

While assessing the quality of musical instrument sounds, humans use 
criteria that are rarely quantitative but most often qualitative. Therefore, 
there is a need to find methods that make it possible to process such de-
scriptive notions as bright, dark, clear, soft, high, low, etc., with techniques 
that are adequate for this task (Kostek 2003). Soft computing offers tech-
niques that have been developed and tested in many other domains and ap-
plications (Pawlak 1982; Skowron 1994; Zadeh 1996, 1999b;  
http://www.soft-computing.de/def.html; http://www.pa.info.mie-
u.ac.jp/WFSC/).

Relationships between the objectively measured parameters of musical 
instrument sounds and their subjective quality as assessed by listeners 
(preferably experts in musical domain) cannot in most cases be crisply de-
fined. This leaves a wide margin of uncertainty which depends on individ-
ual preferences and unknown influences of particular parameter values on 
the timbre quality of the tested sound. However, an attempt has been un-
dertaken to show how to better process qualitative notions in musical 
acoustics.

5.2.1 Musical Instrument Sound Subjective Descriptors 

The notion of multidimensionality of musical sound timbre has been al-
ready reviewed in Chapter 2. One can refer to studies by numerous re-
searchers (McAdams and Winsberg 1999; De Bruijn 1978; Cook 1999; 
Cosi et al 1984; Grey 1977; Iverson and Krumhansl 1993; Jensen 2001; 
Krimphoff et al 1994; Misdariis et al 1998; De Poli et al 1991, 2001; Pratt 
and Doak 1976; Pratt and Bowsher 1978; Reuter 1996; Vercoe et al 1998; 
Wessel 1979). Computer processing can easily deal with multidimension-
ality of feature vectors containing musical sound descriptors (Iverson and 
Krumhansl 1993; Jensen 2001; Kostek 1999, 2003; Kostek and Czyzewski 
2001a; Lindsay et al 2001). Moreover, such processing is now highly 
needed for automatic queries within the digital archives of sound. More 
dimensions can help to distinguish between particular instruments or musi-
cal instrument groups. Another vital problem related to discovering the re-
lationship between sound descriptors and objectively derived parameters 
remains unsolved. Only a few parameters such as for example brightness 
have their unquestioned interpretation – this subjective descriptor is related 
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to spectral centroid (Beachaump 1993). Further discussion is also required 
on the assignment of sound parameter ranges. This will also serve to better 
distinguish between musical instrument sound characteristics. 

5.2.2 Methodology 

There are many tests organized that aimed at subjective assessment of 
sound timbre or sound quality. Two important assumptions were made in 
tests carried out in the multidimensional perceptual scaling of musical tim-
bre. Sound stimuli were synthesized, and they were equalized for per-
ceived pitch, loudness and duration. This was done in order to get reliable 
results during timbre scaling tests. However, in the presented study it is as-
sumed that the relationship between subjective descriptors and objectively 
derived parameters will serve for better quantization of numerical values. 
In such a case testing should be done using natural sound stimuli. Such 
tests were carried out in architectural acoustics in order to describe the 
quality of an interior. It was possible to assign labels to certain numerical 
parameter values by experts. Such tests were arduous but resulted in reli-
able evaluation of acoustical parameters. It is much easier for experts to 
say that such a sound has ‘dark’ or bright’ quality, and contrarily it is diffi-
cult to assign numerical values. The problem remains ‘how bright’ the 
sound is or what ‘nasal’ or ‘flute-like’ quality means as expressed in num-
bers.

Let us consider how such a procedure could be carried out. First, one 
should choose such attributes that have subjective meaning to experts. A 
few such parameters were already found and named in the musical acous-
tics domain and they are based on parameters derived from time, fre-
quency and time-frequency domains. This can be a starting point to list 
some parameters suitable for a feature vector both in subjective and objec-
tive domain. 

Now, the problem is not only to assign ranges to such parameters (using 
word descriptors) – one can easily imagine that experts would unani-
mously decide what high pitch of a certain musical instrument means. In 
such a procedure a subject has to associate presented stimuli with a set of 
adjective scales (semantic). The subject’s task is to indicate for each sound 
a three- or five-point scale, which of the given terms applies to the stimu-
lus. The drawback is that experts are forced to judge the stimuli in terms of 
prescribed semantic categories and scales. The preselection of scales de-
termines the resolution of the analysis while the verbal categories may 
seem different from the expert’s auditory sensation. In addition one should 
be aware that building such a set of parameters could be done only ex-
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perimentally. Even an expert in musicology cannot decide as to the num-
ber of parameters and their significance to the instrument recognition 
without subjective tests and processing of results. 

Another problem is to find rules on the basis of which a chosen instru-
ment can be qualified into an adequate group with only some degree of un-
certainty. For this purpose both computing with words concept and proc-
essing using soft computing methods can be applied. A discussion of the 
main points of such an approach will be shown further on.  

5.2.3 Rough-Fuzzy Processing of Test Result Processing 

Relationships between the objectively measured parameters of musical in-
strument sounds and their subjective quality as assessed by listeners (pref-
erably experts) cannot in most cases be crisply defined. This leaves a wide 
margin of uncertainty which depends on individual preferences and un-
known influences of individual parameter values on the timbre quality of 
the tested sound. Consequently, the results of subjective tests had to be 
processed statistically (hitherto used approach) in order to find links be-
tween preferences and concrete values of parameters representing the ob-
jective features of tested objects.  

A new extended proposal of a procedure for analyzing subjective test 
results is formulated. In the first step of the analysis, the results of listening 
test sessions should be collected into tables, separately for each expert and 
for each sound excerpts. Then, these tables should be transformed into the 
format of the decision table used in the rough set decision systems (Table 
3.10). Objects t1 to tn from Table 3.10 represent now various musical in-
strument sounds, and attributes A1 to Am are denoted as tested sound char-
acteristics. The expert's scoring is defined by the grades a11 to anm (quan-
tized values are labeled descriptively as for example low, medium, and 
high). The decision D is understood as a value assigned to the name of a 
musical instrument or a number referring to it. The questionnaire form that 
can be used in listening tests is as presented in Table 5.3. Subjects are 
asked to fill in the questionnaire during listening sessions. Having col-
lected the assessments of perceptual dimensions of the tested sounds from 
experts, it is possible to create a decision table. The result of the rough set-
based processing is a set of rules that will be later used to recognize a mu-
sical instrument sound unknown to the system (see Fig. 5.16).  
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Table 5.3. Listening test results for a given sound  No. i  (Denotations: S/G/D - 
Subject/Grades/Descriptors P - Pitch, Br. - Brightness, At. - Attack asymmetry,
T/NQ - Tone/noise-like-quality, At.d. – attack duration, V - Vibrato, S - Synchro-

nicity, Inh. - Inharmonicity, M.Instr.Cl. - Musical Instrument Class)

S/G/D P Br. At. T/NQ .... At.d. V S Inh. M.Instr.
Cl.

1  low low low low .... low low high low No. 1 

i .... .... .... .... .... .... .... .... .... .... 

n med. high high low ....... med. high high high No. 4 

It is worth observing the distribution of parameter values of various mu-
sical instruments, for example in Fig. 5.17 a distribution of attack duration 
for the staccato articulation for 11 musical instruments is shown. 

It is obvious that with the increase of pitch, there is a change of subjec-
tive perception of timbral characteristics, therefore it is important to evalu-
ate particular descriptors as functions of pitch. It is probably that during 
such tests some additional requirements as to the testing procedure of de-
scriptors should be defined. In Table 5.4 an example of such a division of 
classes to be tested with regard to pitch is shown. In addition, in Table 5.5 
classes of pitch are assigned to analyzed instruments.  

The decision table should be processed using the rough set method. In 
this way, a set of rules would be created, which may subsequently be veri-
fied by experts. 

Table 5.4. Division of  pitch into classes  

Pitch range Pitch range Class No. 
from: up to: 

Class No.
from: up to: 

1 C2 D2 12 A4 B4 
2 D#2 F2 13 C5 D5 
3 F#2 G#2 14 D#5 F5 
4 A2 B2 15 F#5 G#5 
5 C3 D3 16 A5 B5 
6 D#3 F3 17 C6 D6 
7 F#3 G#3 18 D#6 F6 
8 A3 B3 19 F#6 G#6 
9 C4 D4 20 A6 B6 

10 D#4 F4 21 C7 D7 
11 F#4 G#4 22 D#7 G7 
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Table 5.5. Classes of pitch assignment for analyzed instruments 

Instrument Pitch range Classes of pitch

Oboe D3 – G6 8 – 19 
Cello C2 – G#5 1 – 15 
Alto C3 – D7 5 – 21 

Violin G3 – G7 7 – 22 
English horn E3 – A5 6 – 15 
French horn D2 – E5 1 – 13 
Saxophone C#3 - A5 5 – 15 

Clarinet D3 – F6 5 – 18 
Bassoon A2 – D5 4 – 13 

Trombone E2 – E5 2 – 14 
Trumpet E3 – G#5 6 – 15 

A decision system based on rough set theory engineered at Gdansk  
University of  Technology  can  be used  for  this  purpose (Czyzewski 
1998, 2002). It includes learning and testing algorithms. During the first 
phase, rules are derived to become the basis for the second phase. The 
generation of decision rules starts from the rules of length 1, continuing 
with the generation of rules of length 2, etc. The maximum rule length may 
be determined by the user. The system induces both possible and certain 
rules. It is assumed that the rough set measure Eq. (5.31) for possible rules 
should exceed the value 0.5. Moreover, only such rules that are preceded 
by some shorter rule operating on the same parameters are considered. 

A rough set measure of the rule describing concept X is the ratio of the 
number of all examples from concept X correctly described by the rule: 

Y

YX
rs

(5.31)

where X is the concept,  and Y denotes a set of examples described by 
the  rule.

In the testing phase the leave-one-out procedure is performed. During 
the jth experiment, the jth object is removed from every class contained in 
the database, the learning procedure is performed on the remaining objects, 
and the result of the classification of the omitted objects by the produced 
rules is saved. 

In the rough set-based processing discretized data is used. This means a 
process of replacing the original values of input data with the number of an 
interval to which a selected parameter value belongs. These methods have 
been presented in Chapter 3. One can also refer to studies by Cosi et al. 
(1994) in which they use Self Organizing Maps (SOM) for timbral data 
mapping. However, in the proposed method data is quantized by means of 
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labels assigned by experts in listening tests, so there is no need to discre-
tize them at this stage of analysis. The mapping process of test results to 
fuzzy membership functions will be presented later on but is seen on the 
right side of Fig. 5.16a. The second phase of the expert system (Fig. 
5.16b), namely automatic classification of musical instrument will also be 
explained further on.  

In Fig. 5.17 the distribution of one of the parameters gathered in the sys-
tem for 11 instrument classes is shown. 

The rules are of a form: 

RULES:

if  (Pitch = high ) & (Brightness = high) & ...... then (Class = No. 1)  
    rs=0.9

if  (Pitch =  med)  & (Brightness = high) & .....  then  (Class = No. 1)  
    rs=0.8

................................................................................................................................
if  .... & (Synchronicity = high)  & (Inharmonicity = high)  then  (Class= No. 4)

     rs=0.9

a.

(Legend to Fig. 5.16, see next page) 
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b.

ROUGH-FUZZY SYSTEM -

– AUTOMATIC CLASSIFICATION PHASE

New set of data

KNOWLEDGE BASE

Voting
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parameter values

Applying rules 

from the 
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Calculating Impact 

Factor 

Musical instrument 

RULES

RS  

ROUGH-

FUZZY 

ENGINE

Fig. 5.16. Rough-fuzzy expert system: knowledge acquisition phase (a), automatic 
classification phase (b) 
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trombone
trumpet

Fig. 5.17. Distribution of attack duration values for 11 musical instrument classes 
for staccato articulation 

Mapping Test Results to Fuzzy Membership Functions 

The next step of the procedure is to obtain subjective ratings for each of 
objective parameters as assessed separately from others. The mapping of 
objective parameter values to their subjective assessments by many experts 
creates some fuzzy dependencies, which can be represented by fuzzy 
membership functions corresponding to each parameter separately.  
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As was mentioned before, experts, while listening to a sound, are in-
structed to rate their judgements using such descriptions as low, medium, 
and high, etc. The procedure uses a concept of the Fuzzy Quantization 
Method (FQM) applied to acoustical parameters (Kostek 1999). This re-
sults in the relation of semantic descriptors to the particular parameter 
quantities. The distribution of the observed instances very often suggests 
the trapezoidal or triangular shape of a membership function (see sample 
membership functions presented in Fig. 5.18).  

1.0 2.0  3.0 4.0 5.0 6.0 7.0

  0

N

8.0 9.0

low

Br

          
2.0 3.0  4.0 5.0 6.0 7.0 8.0

  0

N

9.0 10.0 Br

medium

                    
4.0 5.0  6.0 7.0 8.0 9.0 10.0

  0

N

11.0 12.0

high

Br

Fig. 5.18. Experts’ vote for the Brightness parameter,  N - number of experts vot-
ing for particular values of Brightness (Br)

One of the important tasks is to approximate the tested parameter distri-
bution. This can be done by several techniques. The most common tech-
nique is a linear approximation, where the original data range is trans-
formed to the interval of [0,1]. Thus, triangular or trapezoidal membership 
functions may be used in this case. Also, polynomial approximation is of-
ten used for such a purpose. Another approach to defining the shape of the 
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membership function involves the use of the probability density function. 
The last mentioned technique was very thoroughly discussed in the au-
thor’s previous work (Kostek 1999). 

Automatic Classification Phase 

In order to enable the automatic recognition of a musical instrument class, 
new data representing sound parameter values is fed to the system inputs 
(Table 5.6). The first step is the fuzzification process in which degrees of 
membership are assigned for each crisp input value (as in Fig. 5.18). 
Therefore, for the data presented in Table 5.6, the degree of membership 
for each input value (for a given label) has to be determined (Kostek 
2003).

Table 5.6. Set of parameter values presented to the system inputs (Denotations: 
No. - Sound No. i, P- Pitch, Br. - Brightness, At. - Attack asymmetry, T/NQ - 
Tone/noise-like-quality, V- Vibrato, S - Synchronicity, Inh. - Inharmonicity)

No. P Br. At. T/NQ ... V S Inh. 

1 440 7.75 ....... ....... ....... ....... ....... ....... 

The pointers in Fig. 5.19 refer to the degrees of membership for the pre-
cise value of Brightness=7.75. Thus, when the value of Brightness equals 
7.75, it belongs, respectively, to the low fuzzy set with the degree of 0, to 
the medium fuzzy set with the degree of 0.4 and to the high fuzzy set with 
the degree of 0.6. The same procedure should be applied to other parame-
ters of Table 5.3. 

It should be remembered that after the rough set processing, only the 
strongest rules with a rough set measure value exceeding 0.5, would be 
considered. The rough set measure associated with the individual rule will 
be contained in the knowledge base. Since there might be several rules cor-
responding to the given musical instrument, thus during the classification 
phase, a so-called Impact Factor will be calculated. It is equal to the sum 
of rough set measures of rules associated with an individual musical in-
strument. This means that even if a rule is certain for a given instrument 
(in this case rough set measure equals 1), but there exist several rules that 
would point out another instrument, after the aggregation of rough set 
measures (Impact Factor), the latter instrument name would be returned in 
the system decision. This procedure refers to ‘Voting’ in the block-
diagram shown in Fig. 5.16b. 
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Br =7.75

7.75 Br

0.4

0.6

0low (1)

med. (2)

high (3)
0

1 2 3
1

Fig. 5.19. Fuzzification process of the Brightness parameter 

With rules derived from the rough set decision table and membership 
functions determined empirically for the studied parameters, one can create 
an expert system that provides automatic decisions on musical instrument 
classification each time a concrete set of parameters is presented to its in-
puts. This methodology uses both ‘computing with words’ and rough-
fuzzy principles for the automatic classification of the musical instrument. 
Such an approach was previously applied to automatic assessment of 
acoustical quality, bringing reliable results and is currently implemented to 
automatic musical timbre recognition.  

5.3 Evaluation of Hearing Impairment Using Fuzzy 
Approach

5.3.1 Problem Overview  

Communication is essential for a properly functioning society. Hearing 
disorders are often a cause of communication problems. They can affect 
quality of life of persons with hearing loss. That is why proper fitting of a 
hearing aid is a very important part of the recovery process for people with 
hearing problems. However, adequate fitting of a hearing aid depends on 
the experience of the patient's doctor as well as the capabilities of the test-
ing equipment which enable audiologists to adjust the hearing aid. On the 
other hand, computer technology makes it practical to organize such tests 
based entirely on computer software. 

The proposed hearing aid fitting strategy employs a computer-based 
system. The system was developed in collaboration between the Warsaw-
based Institute of Physiology and Pathology and the Gdansk University of 
Technology   (Czyzewski  et  al,    2002a, 2002b,  Kostek  et al 2001,  
Skarzynski et al 2002). The project involves a systemic approach, and 



needed the cooperation of people from information technology, sound en-
gineers, medical doctors, and audiologists. During several years many pro-
jects developed and realized resulted from the cooperation. Knowledge, 
understanding and practical experience were gained by the author through 
this collaborative work. 

A potential user of the system starts with the examination of loudness-
growth characteristics in 4 frequency bands (a so-called Loudness Growth 
in ½ Octave Bands - LGOB procedure performed for 500, 1000, 2000 and 
4000 Hz) (Allen et al 1990). In the loudness growth test a patient listens to 
the sound (a narrow-band noise) and the task is to evaluate his/her impres-
sion of loudness using such expressions as: too loud, very loud, loud, com-
fortable, soft, very soft, too soft. Sounds of various levels are presented to 
the patient in a random order, and each sound sample is presented to the 
patient a few times in order to eliminate mistakes. Then, these subjective 
responses are translated to levels in decibels (dB). An example of charac-
teristics of a person with a hearing loss can be seen in Fig. 5.20).  These 
characteristics are especially important in the case of patients with sen-
sorineural hearing loss, because increasing hearing aid gain up to the 
amount of loss results in too much amplification. This is because of the 
much lower dynamics in the impaired hearing sense. In short, lower dy-
namics means that a person with a hearing loss after linear amplification 
doesn't hear soft sounds, whereas sounds of a moderate level are perceived 
as very low ones, and loud sounds may be perceived as too loud. On the 
other hand, typical responses of a person with normal hearing will be such 
as in Fig. 5.20a, but lying approximately on the diagonal of the diagram. 

Based on these characteristics it is possible to generally classify the case 
of hearing impairment represented by a given patient. These characteristics 
allow also finding the shape of proper compressor characteristics. This 
situation is illustrated in Fig. 5.20b. Characteristics obtained in this way 
are used by the proposed system to simulate needed hearing aid perform-
ance. However, the standard method of measuring loudness growth charac-
teristics employs filtered noise, whereas only the understanding of speech 
amidst noise can provide a final criterion for proper hearing aid fitting. Un-
fortunately, there are no means of direct mapping of standard loudness 
growth characteristics measured by noise to the characteristics correspond-
ing to compressed noisy speech understanding. That is why the empirical 
testing procedure should also employ assessment of the level of under-
standing of speech patterns processed using adequately diversified com-
pression curves (see the dashed lines in Fig. 5.20b) The diversification of 
these curves can be decided by the system. The interest region for diversi-
fying these curves is defined according to the evaluated degree of the hear-
ing impairment. The principle of this evaluation can be as simple as that: 
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the deeper the impairment, the wider is the interest region of diversified 
compression curves. However in the system engineered the interest region 
is established employing a fuzzy logic-based reasoning (Kosko 1992, 
1997; Zadeh 1965, 1999b) and a so-called ‘computing with words’ ap-
proach (Czyzewski and Kostek 2002; Czyzewski et al 2000, 2002a, 2002b; 
Kostek and Czyzewski 2001a, 2001b, 2001c; Kostek et al 2004).  

a.     b. 
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Fig. 5.20. Examples of loudness impression testing results for left and right ear 
representing the expansion characteristics (a) and reciprocal characteristics consti-
tuting the compression curves that should be used for the processing of sound in 
adequate hearing aids (b). The interest region of compression curves is also 
marked in dashed lines. X-axes represent sound level, Y-axes reflect the subjective 
loudness level 

Characteristics, such as seen in Fig. 5.20b are used by the system 
MHAFS to simulate the needed hearing aid performance. The algorithm of 
the simulation is shown in Fig. 5.21.  

It should be mentioned that apart from the computer a pair of properly 
calibrated earphones is used in testing. The earphones of choice are insert-
type models. This is to partially overcome the problem of impedance mis-
matches between the artificial cavity of the headphones and the ear. These 
earphones and the computer sound interface were calibrated using the arti-
ficial-ear setup. 

HEARING
AID

PATIENT WITH HEARING
IMPAIRMENT

Sound dynamic
compressors

Sound dynamic
expanderssound

corrected
sound

Fig. 5.21. Audio signal correction with hearing aid 
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In this Section, first, limitations of the clinical hearing aid fitting process 
are described. The audiological assessment in this process is based both on 
classical methods that use as a basis results of the audiometric test and the 
loudness scaling method. These methods employ artificial test signals. 
However, fitting of hearing aids should be also performed on the basis of 
testing speech understanding in noise, because this is much closer to the 
real life conditions. A satisfying reliability of these tests may be achieved 
through the use of modern computer technology with application of a 
properly calibrated sound system.  

Several existing limitations in the clinical process of fitting hearing aids 
are, paradoxically, mainly due to the fast technology changes in the hear-
ing aid field. One can observe not only a change from analog to digital 
technology but also the miniaturization of hearing devices, improved 
speech signal processing, better directional characteristics, etc. On the 
other hand the fitting process and the follow up procedures typically re-
main the same as previously used, thus more sophisticated methods are 
needed. In addition, clinical assessment uses artificial signals, so this proc-
ess is far from the expected every day exploitation of a hearing aid. Other 
limitations were pointed out by Nowosielski in his paper (1997). The audi-
ological assessment is very often performed using headphones. In this case 
one should take into account the impedance mismatch between the artifi-
cial cavity of the headphones and the patient’s ear, because the accuracy of 
the hearing aid fitting is then limited. The lack of accuracy may also hap-
pen in cases when the direct monitoring of the hearing output in the patient 
ear canal is difficult. For example the insertion of the monitoring tube 
along the earmold is not possible due to the narrow ear canal or while in-
serted its presence affects parameters of the acoustic coupling between the 
hearing aid and the patient’s ear or causes the acoustic feedback. As a solu-
tion to the mentioned problems Nowosielski proposed placing a subminia-
ture microphone in the ear canal for measuring the air pressure close to the 
tympanic membrane during the fitting process. This improvement was left 
however to further development (Nowosielski 1997). The fitting proce-
dures are also long and tiring for a patient. Therefore there is a continuous 
need to develop new strategies in hearing aid fitting procedures and the 
supporting technology. A satisfying fitting strategy reliability can be 
achieved through the use of modern computer technology with application 
of a properly calibrated sound system. To partially overcome the problem 
of impedance mismatch between the artificial cavity of headphones and 
the ear, the inserted earphones can be used in such a system.  

The objective of this Section is also to show fuzzy logic-based dynamic 
assessment of hearing prostheses (Kostek and Czyzewski 2001a, 2001b, 
2001c; Czyzewski and Kostek 2002). Some issues shown in this Section 
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were developed by P. Suchomski (2005), who under the guidance of the 
author, is now submitting his Ph.D. to the Scientific Council of the Faculty 
of Electronics, Telecommunications and Informatics, GUT.  

5.3.2 Multimedia Hearing Aid Fitting System (MFHAS) 

The developed software is provided with a multimedia interface in which 
elements of graphics and computer animation are used. The system engine 
is based on fuzzy logic principles. The system role is to estimate character-
istics of hearing sensitivity of the patient and to provide an approximate 
diagnosis of the degree of hearing impairment for this patient. The lay-out 
of the algorithm of the engineered system is presented in Fig. 5.22 and its 
multimedia interface design is showed in Fig. 5.23. 
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Fig. 5.23. User interface design. In the lower part of the computer screen sliders 
are seen which make it possible to change the shape of compression curves within 
the interest region 

5.3.3 Evaluation of Hearing Impairment Using Fuzzy Approach 

Identifying Loudness Membership Functions 

In general, in order to determine the dynamics characteristics of a hearing 
aid on the basis of the results of loudness scaling one calculates the differ-
ence in dB between the result for impaired hearing and the corresponding 
result for normal hearing. Such procedure results from the Stevens’ theo-
rem, which assumes that the loudness perception of an impaired person is 
equal to that of a normal-hearing person for different sound levels. For ex-
ample, if a hearing-impaired person evaluates the loudness perception of a 
60dB SPL test signal in the category ‘VERY SOFT’, he/she feels the same 
loudness perception as a normal-hearing person does in the case of a 40dB 
SPL test signal. The resulting difference of 20dB means, that in order to 
compensate for the hearing loss the hearing aid should amplify the signal 
by 20dB. On the other hand, in order to model the hearing dynamics of a 
hearing-impaired person one should lower the test signal by 20dB. 

The first problem is to construct the loudness-scaling characteristics for 
normal hearing. For the results to be statistically reliable, one would have 
to test several dozens of normal-hearing persons. Another problem is to 
properly calculate the difference between the results of the given loudness-
scaling test and the averaged results for normal hearing.  
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Most audiologists determine the preliminary characteristics of the hear-
ing aid using a simple calculation procedure. Experience shows that such a 
method does not guarantee finding optimum settings of the compression 
circuits, but it allows assessing the characteristics of the searched hearing 
aid in a relatively straightforward and intuitive way. This technique re-
quires additional tuning of the determined characteristics using other 
methods of adjusting hearing aids. The difficulty in determining hearing 
characteristics on the basis of LGOB test results lies primarily in convert-
ing the subjective scale of loudness perception into the objective scale of 
sound level expressed in dB. The widely used method of determining hear-
ing characteristics described above implicitly projects the subjective scale 
of categories onto the space of real numbers from the closed range from 0 
to 6, and subsequently calculates the difference between the results of 
loudness scaling for normal hearing and those for the tested case. This 
problem may alternatively be solved using a method that would in a natu-
ral way convert the results of the loudness-scaling test in the category do-
main, i.e. would determine the difference between normal and impaired 
loudness scaling in a way similar to that of a human expert, using a set of 
categories like e.g. very small difference, small difference, medium differ-
ence, big difference and very big difference. Subsequently, a proper inter-
pretation of these categories would be required to determine the correct 
sound level in the dB SPL scale.  These requirements are met by a method 
employing fuzzy logic-based processing.  

For a fuzzy-logic system to determine the static characteristics of hear-
ing dynamics on the basis of LGOB test results, the following information 
is required: 

Frequency and sound level of subsequent test signals; 
Data describing correct loudness scaling with the LGOB test; 
Results of the given LGOB test; 
Knowledge on interpreting the differences between the analyzed results 

and those for normal hearing; 
A method of calculating the difference in dB for the analyzed LGOB 

test result. 

Fuzzification of Input Parameters 

In the case of a typical fuzzy logic system the first stage of processing is a 
so-called fuzzification. In the presented method two input parameters need 
to be fuzzified: the level of the test signal being processed (expressed in 
dB) and the LGOB test result. It should be remembered that the process of 
fuzzifying the input signal level depends on the signal frequency. In the 
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described case seven membership functions are required for every fre-
quency band. Every function describes the distribution of the given cate-
gory of loudness perception depending on the test signal level. As there are 
four frequency bands of center frequencies of 500Hz, 1000Hz, 2000Hz 
and 4000Hz tested in the LGOB test (Fig. 5.24), four sets of membership 
functions are required. For preparing such membership function one has to 
perform the LGOB test on several dozens of normal-hearing persons. This 
was done during laboratory sessions at the Multimedia Systems Depart-
ment. Over 80 students with normal hearing were tested during the aca-
demic year, this means that over 160 test results were obtained for the 
analysis. During the test the system generates some hundreds of samples 
for each frequency band. A subject, while listening, is instructed to rate 
his/hers judgements using such labels as ‘too_soft' (or numerically 0), 
‘very_soft’ (1), ‘soft’ (2), ‘comfortable’ (MCL – most comfortable level) 
(3), ‘loud’ (4), ‘very_loud’ (5) and ‘too_loud’ (UCL – uncomfortable level 
due to high loudness) (6). 

The membership functions obtained on the basis of a generally accepted 
approximation of LGOB test results for normal hearing is shown in Fig. 
5.25. Analysis of the expected plots of LGOB test for normal hearing re-
veals that they are identical for each analyzed frequency band. This is an 
assumed simplification resulting from both audiology experience and the 
analysis of Equal Loudness Curves, where one may notice that differences 
between equal hearing curves in the analyzed bands do not exceed 10dB.  

A membership function describes the distribution of the membership 
degrees of elements of the given type to the given fuzzy set. Typically they 
are trapezoidal- or, in particular cases, triangle-shaped; in less frequent 
cases they are shaped after sigmoidal functions or bell-shaped curves. The 
tendency of using trapezoids or triangles for approximation results primar-
ily from practical considerations.  

Membership functions are designed on the basis of expertise. It can 
come from an expert in the given field or result from statistical analysis of 
the given phenomenon. In the case of of statistical analysis one has to de-
termine the statistical distribution of the given phenomenon or assume the 
normal distribution (if probability distribution is unknown), and then to as-
sess the minimum set of tests necessary to create a membership function 
which would be maximally consistent with the factual probability distribu-
tion of the analyses variable (test of distribution compatibility). 
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Fig. 5.24. Results of the LGOB test for a normal hearing (X-axis represents sound 
level, Y-axis reflects subjective loudness level 

Consecutive Membership Function (MF) shown in Fig. 5.25 correspond 
to the subjective categories presented before.  There are seven categories 
of loudness perception and each of them constitutes one fuzzy set, there-
fore one has to generate seven membership functions, one for each set. The 
method of generating membership function plots can be best explained 
based on an example.  
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Fig. 5.25. Membership functions based on loudness scaling test (from the left side 
labels reflects MF0, MF1, MF2, MF3, MF4, MF5, MF6) 

5.3 EVALUATION OF HEARING IMPAIRMENT 



356      5 COGNITIVE PROCESSING IN ACOUSTICS 

For example, a membership function describing a fuzzy set representing 
the ‘MCL’ category of loudness perception evaluation would take the 
maximum value (the maximum degree of membership), that is 1, for the 
sound level of 80dB SPL (according to the conventional curve describing 
the LGOB test for normal hearing this exact level should be interpreted as 
‘MCL’, Fig. 5.25). This function would take the value of 0 for sound levels 
equal to or greater than 100dB SPL as well as for those equal to or lower 
than 60dB SPL. In this fashion one would define a triangle-shaped func-
tion. In an analogous fashion one can create functions for the other catego-
ries of loudness perception.  

From the statistical point of view one should assess the minimum num-
ber of required tests. As in most cases the determined membership func-
tions and the expected ones have the same shape and range, one can assess 
the number of required tests by analyzing one of the functions, e.g. MF3 
(the one describing the fuzzy set associated with the ‘MCL’ category of 
loudness perception). This function covers the range from 60dB SPL to 
100dB SPL, in which there are seven values of test signal level (investi-
gated with the step of 5dB) with the membership degree to the ‘MCL’ set 
different from 0. Therefore this range can be split into seven equal sub-
ranges by dividing the area under the function curve into seven parts (Fig. 
5.26).
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Fig. 5.26. Assessing a number of required tests 

The minimum number of plots required for reliable determination of the 
desired probability distribution can be determined on the basis of the chi-
square test results, which describe consistence concerning probability dis-
tribution of the given random variable with its factual distribution. 
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where the denotations are as follows:  
 – random variable 

F(a) = 0, F(b) = 1, a = a0< a1 < a2 <…< ak = b and pi = P{ai-1< <=ai},
i=1,2,...
ni - number of elements  fulfilling the condition ai-1< <=ai (observed size 
in range i);

1ii

i

r

r

i dxxpp  - probability that the random variable X fits within range i

ri – lower boundary of range i

The chi-square test can be used to verify the hypothesis concerning ran-
dom distribution of random variable  only when N is sufficiently large. It 
is assumed that the use of this test is justified when for every j e.g. j>=10
or nj>=5. In practice this condition means that the number of tests to be 
performed for a random variable taking lowest values in the given range 
should at least be greater than or equal to 5. In the case illustrated in Fig. 
5.26 the random variable takes the lowest values at 65dB and 95dB. The 
number of tests used for determining the distribution value in this point 
can be expressed as the area of rectangle covering the neighborhood of the 
analyzed point in the given distribution. This means that the area of this 
rectangle should be greater than or equal to 5. In the analyzed distribution 
one can define as many as 16 such rectangles. When looking for the mini-
mum number of tests required for determining a distribution of such type, 
one should assume that the area of a single rectangle equals 5 and therefore 
the sum of areas of all rectangles equals 80. This number can be assumed 
as the minimum number of observations required for reliable determina-
tion of the distribution of the given random variable. The above considera-
tions result in a conclusion that in order to obtain a set of reliable member-
ship functions one has to perform the LGOB test on at least 80 normal-
hearing persons.

One of the basic methods of approximation of membership functions is 
the approximation with triangle-shaped functions. It can be performed on 
the basis of an ordinary mean-square approximation. For this aim one 
should determine equations of two straight lines approximating the triangle 
sides in the mean-square sense. The algorithm used to determine the trian-
gular membership functions involves the following steps: 

F – cumulative distribution function of random variable 

N – number of all observations. 
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Finding the value of the first element of the given fuzzy set (the value of 
the first argument, for which the factual membership function takes a 
non-zero value) 

Considering all the elements of the factual membership function MF ful-
filling the equation given below,  in order to determine the first side of 
the triangle:

0: 1ii
x

xMFxMFx
i

(5.33)

where i – subsequent indices of arguments of membership functions 
MF fulfilling condition (5.33), 

Calculating parameters a1 and b1 of the line y=a1x+b1 , 
Considering all the elements of the factual membership function MF ful-

filling the equation given below,  in order to determine the second side 
of the triangle: 

0: 1ii
x

xMFxMFx
i

(5.34)

where i = subsequent indices of arguments of membership functions 
MF fulfilling condition (3),  

Calculating parameters a2 and b2 of straight line y=a2x+b2 , 
Calculating the point of intersection of straight lines y=a1x+b1 and 

y=a2x+b2 (determining the triangle vertex), 
Calculating zeros of both lines. 

An example of a set of membership functions for the frequency band of 
500Hz obtained by approximating the factual values of membership func-
tions with triangles is illustrated in Fig. 5.27a. In this case individual ele-
ments may belong to more than two fuzzy sets, thus further fuzzy logic-
based processing is more complicated. Membership functions, which share 
a part of their domain with domains of other membership functions (inter-
section with more than two other fuzzy sets), do not have the maximum 
value equal to 1 and corresponding to the maximum degree of membership 
of the given element to the given fuzzy set. This means that in reality there 
are no arguments of the membership function which would belong only to 
this function. It turns out that such situation is only possible if membership 
functions are determined on the basis of the averaged results of loudness 
scaling. Only then each fuzzy set “neighbors” (intersects) at most two 
other fuzzy sets and there are elements, for which the average value of 
loudness scaling results points directly to a given category of loudness per-
ception evaluation. In reality the situation when the whole population of 
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normal-hearing persons would evaluate the hearing perception of a given 
test signal level as exactly the same does not happen. Since in fuzzy proc-
essing using functions that reach the maximum membership value of 1 is 
recommended, in the discussed case one needs to normalize each member-
ship function to the maximum value (Fig. 5.27b). 

a.

b.

Fig. 5.27. Approximation of the factual values of membership functions with tri-
angles, a) without normalization, b) with normalization 

Construction of Membership Functions Corresponding to 
Loudness Perception 

In general, if the exact statistical distribution of the investigated phenome-
non is not known, one assumes that it is governed by the normal distribu-
tion. Although in practical fuzzy-logic applications membership functions 
described with Gaussian curves are sometimes used, they are not conven-
ient to analyze. The problem lies in the fact that a Gaussian function does 
not reach the value of 0, which in practice means that all analyzed sets in-
tersect, and therefore each element belongs to all fuzzy sets. This problem 
can be solved in two ways. One involves defining a threshold value, below 
which the Gaussian function value would be treated as zero. The other is 
based on replacing the Gaussian function with one that approximates it 
better. The easiest function approaching the Gaussian function is the quad-
ratic function (parabola) that is a trinomial square in the form y=ax2+bx+c.
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It can be determined on the basis of mean-square approximation with a 
second-degree polynomial. The formula for trinomial square coefficient 
can be worked out by solving the orthonormal set of equations, similar as 
in the case of straight lines.

Fig. 5.28 presents a set of membership functions derived by approximat-
ing the factual values of membership functions describing loudness scaling 
for test signals in the 500Hz band. However, comparing the mean square 
errors for approximation with triangles and parabolas reveals that the ap-
proximation error is smaller in the case of triangles than in that of quad-
ratic functions.

Fig. 5.28. Approximation of the factual values of membership functions with 
quadratic functions 

Assuming that a membership function has the properties of a probability 
density function and therefore the expression (5.35) is fulfilled, one can 
approximate the factual values of membership functions with trapezoid 
distributions. 

1
d

a

xpxp
(5.35)

where p(x) is probability density function. 

Fig. 5.29 presents an example result of approximating the factual values of 
membership functions in 500 Hz frequency band with trapezoid functions.  

One can see that the test indicates greater consistence of trapezoid func-
tions, which means that trapezoid distributions are a better choice than 
other shapes of MF.
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trapeizoidal approximation
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Fig. 5.29. Example of approximation of membership functions with trapezoid 
functions (from the left side labels have the meaning – ‘too soft’, ‘very soft’, 
‘soft’, ‘MCL’, ‘loud’, ‘very loud’, ‘UCL’) 

Besides the information on loudness scaling for normal-hearing persons, 
the fuzzy logic system being designed requires information of loudness 
scaling results for the investigated person. In the case of the first parameter 
fuzzification involves determining degrees of membership to individual 
fuzzy sets (categories of loudness perception evaluation) for the given test 
signal level expressed in dB. Such a procedure is only possible on the basis 
of the designed membership functions. In the case of the second parameter 
such fuzzification procedure is impossible, as membership functions de-
scribing loudness scaling for the investigated person are not known. The 
exact evaluation of loudness perception chosen by this person during the 
LGOB test for the given test signal level is known, however. In this case 
fuzzification can be performed by a so-called singleton method. In this 
case fuzzification takes into account the fact that the loudness perception 
evaluations given by the investigated person takes the value of 1, that is 
the maximum value of the degree of membership to the fuzzy set corre-
sponding to the given category. At the same time the membership degrees 
related to other fuzzy sets take the values of zero. 

To sum up, the presented system requires two parameters at input: one 
is the test signal level for which loudness perception is being evaluated, the 
other is the category used by the investigated person for this test signal 
level. Next, the process of fuzzification allows determining degrees of 
membership of the given test signal level to each of seven fuzzy sets, de-
scribed with membership functions designed on the basis of analysis of 
LGOB test results for normal hearing. In the case of the second parameter 
the corresponding fuzzy sets (seven as well, since there are seven catego-
ries of loudness perception evaluation) are one-element sets, therefore in 
this case a given element can belong to only one of the seven fuzzy sets 
and the degree of membership to the given set equals 1. 
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Input Functions of the Designed Fuzzy System 

In the previous paragraph the process of determining membership func-
tions and fuzzification of input parameters was described. The next step 
involves defining the system output. As described earlier, the aim of the 
designed method is determining the dynamics of impaired hearing. This 
means that the designed system should “calculate” the difference between 
the given loudness perception evaluation and the correct loudness percep-
tion evaluation corresponding to the given test signal. This difference 
should be expressed in dB. 

Analysis of a typical plot of LGOB test results reveals that between 
seven categories of loudness perception evaluation one can define six dif-
ferences pointing to hearing loss (area below the LGOB curve for normal 
hearing) and six differences pointing to hypersensitivity (area above the 
LGOB curve for normal hearing). Zero difference is a special case of dif-
ference. The above analysis leads to a conclusion that the output of the de-
scribed fuzzy system can be described by a set of thirteen membership 
functions (Fig. 5.30) expressing the difference between the evaluation of 
factual loudness perception and the evaluation for normal hearing. Fuzzy 
sets obtained in this fashion can be described with the following labels 
(describing the difference size): the MF in the middle of Fig. 5.30 is re-
lated to the label: ‘none’, then to the right there are the following lables: 
‘very small’, ‘very small+’, ‘small’, ‘small+’, ‘medium’, ‘medium+’, 
‘large’, ‘large+’, ‘very large’, ‘very large+’, ‘total’, ‘total+’. Labels 
marked with ‘+’ sign denote positive difference (hypersensitivity). From 
the mid MF to the left the assigned labels refer to negative difference.

V. Large     Med.
   Large   Small

V. Small
    None

V.Small+
    Small+

Med.+
 Large+

V. Large+
Total+Total

Fig. 5.30. System output: from the middle of the figure to the right the following 
labels are assigned: none, very small, very small+, small, small+, medium, me-
dium+, large, large +, very large, very large +, total, total+, to the left differences 
are negative 
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Rule Basis 

Fuzzy processing depends on properly defined rule basis. Fuzzy logic rules 
have the following form: 

If <premise1> AND <premise2>AND...<premise_n> THEN decision 

In the discussed case there are two premises. One is associated with the 
information on normal loudness scaling; in further considerations it is de-
noted as the Norm variable. The other premise is associated with the in-
vestigated results of LGOB test; it is denoted as the Exam variable. Since 
both premises apply to the results of the LGOB test, they both use the 
same categories describing loudness perception. In order to differentiate 
the fuzzy sets associated with individual premises, labels of fuzzy sets as-
sociated with the first premise use lower case letters while those of fuzzy 
sets associated with the second premise utilize upper case letters. 

In general, the rule basis is designed on the basis of expertise. In this 
case such expertise can be derived from analysis of the LGOB test. Analy-
sis of LGOB test results for normal-hearing persons showed that the phe-
nomenon of loudness scaling is linear in character, however the factor of 
proportionality rises from 1:1 to 2:1 (the loudness perception rises twice 
faster) for test signals of levels exceeding 100dB SPL. On the basis of this 
information one can design a rule basis according to the following guide-
lines:

Premises pointing to consistence of loudness perception evaluation for 
normal loudness scaling and for the investigated loudness scaling gen-
erate a decision stating no scaling differences and marked with the la-
bel none. 

e.g.: IF Norm is well AND Exam is WELL THEN d is none 

If the given result of loudness scaling differs by one category of loud-
ness perception evaluation, the decision is associated with the output 
labeled ‘very small’ in the case of negative difference or very ‘small+’  
for positive difference. 

e.g.: IF Norm is well AND Exam is SOFT THEN d is very small 
     IF Norm is well AND Exam is LOUD THEN d is very small+ 

If the given result of loudness scaling differs by two categories of 
loudness perception evaluation, the decision is associated with the out-
put labeled ‘small’ in the case of negative difference or ‘small+’ for 
positive difference. 

................................................. 
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If the given result of loudness scaling differs by six categories of loud-
ness perception evaluation, the decision is associated with the output 
labeled ‘total’ in the case of negative difference or ‘total+’ for positive 
difference.

On the basis of the above principles one can build a complete rule basis. 

Defuzzification

The last stage of designing any fuzzy logic system is choosing a method of 
defuzzification, i.e. a method of converting the obtained categories to nu-
merical values. The main difficulty at this stage is that in the analyzed 
phenomenon the factor of proportionality significantly increases above 
100dB SPL, the change must be accounted for in the defuzzification proc-
ess.  The modification involves dividing the obtained difference for levels 
above 100dB SPL by the proportionality factor for this range of sound lev-
els, in this case 2. This property results in another consequence that has to 
be taken into consideration during defuzzification, namely the ‘distance’ 
between the ‘very loud’ and ‘too loud’ categories is also twice smaller than 
between the other categories. That is why the difference obtained during 
evaluation of loudness perception for levels lower than or equal to 100dB 
SPL for the very loud category should be decreased by 10dB, while for the 
too loud category it should be decreased by 20dB. 

Fuzzy Logic-based Algorithm for Determining Hearing 
Dynamics

The previous paragraphs describe the design details of a fuzzy logic sys-
tem, which determines the difference between the currently analyzed loud-
ness scaling and the normal loudness scaling. In order to determine the 
whole dynamic characteristics of the investigated hearing one should cre-
ate an algorithm, which would calculate the desired hearing dynamics 
characteristics on the basis of LGOB test results using the designed 
method of determining the difference between normal and impaired loud-
ness scaling. Fig. 5.31 presents the scheme of the whole module, which 
accepts the stream of results of the given LGOB test at its input and pro-
duces a stream of subsequent differences for subsequent results of the 
LGOB test at its output. 

At this point the LGOB test result is understood as three parameters 
(level, frequency, evaluation), where level is the level of the given test sig-
nal (expressed in dB), frequency is the frequency band encompassing the 
given test signal (expressed in Hz), while evaluation is the loudness per-
ception category used to evaluate the loudness perception caused by the 
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given test signal (expressed as an index of loudness perception evaluation 
category – from the range of 0–6). 

 approx.
LGOB
TEST

RESULTS

FUZZY
CONVENTER

LGOB

Set of
assigned

differences

Set of  static
characteristics

of hearing
dynamics

Fig. 5.31. Diagram of fuzzy processing-based algorithm for determining static 
characteristics of hearing dynamics 

At this stage of description of the designed method one should notice 
that the determined differences (both in the classic and in the designed 
method) are not really identical with subsequent points of the hearing dy-
namics characteristics being determined. Determined differences can be in-
terpreted geometrically as the distance of the obtained result from the 
curve describing the averaged results of LGOB test for normal hearing. 
That means that in order to determine the desired static characteristics of 
hearing dynamics one shall approximate the obtained results. 

Fig. 5.32 presents an example plot of loudness scaling results with the 
LGOB test, which were obtained for test signals from the frequency band 
centered around the frequency of 500Hz. The analysis of results of the 
LGOB test (Fig. 5.32) reveals that the quietest test signal evaluated in the 
analyzed band had the level of 35dB SPL (read from the plot), while the 
loudest signal reached the level of 110dB SPL.  

Fig. 5.32. Sample LGOB results (points in the characteristics) 

In the LGOB test, the test signal changes with a step of 5dB. Bearing in 
mind the above information, one can perform the following analysis: 

The signal with the level of 35dB SPL was evaluated within category 0, 
i.e. TOO SOFT. According to the standard method the difference for 
this result compared with the normal results equals to 15dB (as cate-
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gory 0 is assigned to the level of 20dB SPL), therefore one should as-
sume the output level of 20dB for the input level of 35dB on the static 
characteristics of hearing dynamics (35dB – 15dB = 20dB). 

In the fuzzy LGOB converter a 35dB SPL signal belongs to two fuzzy 
sets; membership degree to the too soft set equals 0.25, while membership 
degree to the very quiet set equals 0.75 Two rules are activated: 

if Norm is too soft AND Exam is TOO SOFT THEN d is none 
min(0.25,1) = 0.25 
IF Norm is very quiet AND Exam is TOO SOFT THEN d is very small 
min(0.75,1) = 0.75 

Defuzzification determines the difference of -14.21dB and from this one 
can deduct that output level of 20.79dB should be assumed on the static 
characteristics of hearing dynamics for the input level of 35dB SPL (35dB 
– 14,21dB = 20,79dB). 

……………………………………………………. 
The signal with the level of 110dB SPL was evaluated within category 

6, i.e. TOO LOUD. According to the standard method the difference 
for this result compared with the normal results equals +10dB (as 
category 6 is assigned to the level of 120dB SPL), therefore one 
should assume the output level of 120dB for the input level of 110dB 
on the static characteristics of hearing dynamics (110dB + 10dB = 
120dB).

In the fuzzy LGOB converter a 35dB SPL signal belongs to two fuzzy 
sets (fuzzification); membership degree to the very loud set equals 1. The 
following rule is activated: 

if Norm is very loud AND Exam is TOO LOUD THEN d is very small+ 
min(1,1) = 1 

Defuzzification determines the difference of +10dB and from this one 
can deduct that output level of 120dB should be assumed on the static 
characteristics of hearing dynamics for the input level of 110dB SPL 
(110dB + 10dB = 120dB). 

The presented example shows that differences between results obtained 
according to both methods are negligible. As sound levels below 20dB 
SPL are treated as inaudible in the loudness scaling test (in the designed 
computer version of the loudness scaling test this threshold is set to 30dB), 
for increased plot clarity results of value lower than or equal to 20dB are 
treated as equal to 0dB for the needs of approximation. 

The designed method allows for processing descriptive data (scale of 
loudness perception). Moreover, this method uses all the statistical knowl-
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edge on proper loudness scaling with the LGOB test, not only the average 
values as is the case with the standard method.  

From the above given discussion it can be seen that the approximation 
of the membership functions corresponding to hearing perception is not a 
trivial case.

The designed computer LGOB test enables to obtain results consistent 
with the results of loudness scaling registered with a professional device 
dedicated for clinical tests. Designing the computer LGOB test forms the 
basis for creating an open and elastic computer utility for diagnosing hear-
ing, determining optimum characteristics of desired hearing aids as well as 
for performing coarse simulations of both hearing loss and the desired 
hearing aid.

Speech Pattern Testing 

After the loudness impression characteristics are obtained for a given pa-
tient, and processed by the fuzzy logic engine, the system performs speech 
pattern testing. Speech signal is passing through four partially overlapping 
filter bands with the following middle frequencies: 500, 1000, 2000 and 
4000 Hz. The signal dynamics are modeled in each band on the basis of 
sound compression characteristics. The processed signal is played back 
into the patient's headphones. The system stores 600 phonetically balanced 
audio-video recordings of simple sentences based on colloquial language. 
They are read partly by a female and a male speakers. The patient listens to 
the recordings randomly chosen by the system during the test. The system 
shows synchronized video recordings of speakers' faces. This feature is 
needed for deeply hearing impaired patients who are capable of lipreading. 

After a single recording is played back and then received by the patient, 
the text of the sentence is shown on the screen. The patient self-estimates 
the level of understanding of the recording just played back using the es-
tablished subjective assessment scale. Once the tests are completed the 
system analyzes the scores assigned by the patient to individual patterns 
played back.  

On the basis of the results the system presents optimized dynamic char-

Concluding Remarks 

The system for testing hearing with the use of an expert multimedia system 
may be helpful to properly diagnose patients and to give them some kind 
of sound experience before the hearing aid is selected for them. The hear-
ing characteristics are assessed using the modified loudness scaling test. 

acteristics of the hearing aid matching the patient's needs. 
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Since the compression curves derived from testing with filtered noise usu-
ally differ from compressor settings desired for optimal speech understand-
ing, a special procedure has been established that enables to find a region 
of interest for testing compression characteristics with processed speech 
patterns. Consequently, this region of interest is determined on the basis of 
an extended loudness scaling test. The modification of the hearing aid fit-
ting procedure lies in the introduction of fuzzy logic principles to the proc-
essing of results of testing loudness impression with filtered noise samples. 
The fuzzy processing of patients' responses employs membership functions 
identified by normally hearing population and in this way the degree of 
impairment for an individual is discovered. The proper compression char-
acteristics that should be used in the hearing aid of a concrete patient are 
tested finally by speech patterns in order to optimize further speech under-
standing.

5.4 Neural Network-Based Beamforming   

5.4.1 Problem Overview  

Theoretical bases of beamforming and spatial filtration have already been 
shown in Chapter 4.1. Automatic identification of sound sources direction 
is however still an unsolved problem in many real-life applications, such 
as for example, hearing prostheses or contemporary teleconferencing sys-
tems. In many situations people have difficulty in understanding speech in 
surroundings with background noise, high reverberation and/or with many 
concurrent speakers. This is often called the “cocktail-party-effect”. 
Speech signals coming from various directions not only interfere with the 
target signal but also can obscure it. One approach to reducing this noise is 
to provide directional field of hearing. Sounds coming from sides and back 
are attenuated while sounds coming from front are left without attenuation. 
Source identification system should allow tracking a target speaker auto-
matically without much delay in order to avoid picking up concurrent 
speakers by the same microphone channel. This may be done in various 
ways, however, generally two approaches can be found in literature. As 
mentioned in Chapter 4.1, one of them is a classical approach to this prob-
lem based on delay-summation algorithms, superdirective arrays and adap-
tive algorithms, non-linear frequency domain microphone array beam-
formers,  etc.  (Adkins and Turtora 1996;  Berdugo et  al 1999; Brandstein 
1997; Chern and Lin 1994; Frost 1972; Griffiths and Jim 1982; Widrow 
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and Stearns 1985). The effectiveness of these algorithms was diminishing 
while performing in reverberant environments. Examples of such algo-
rithms were reviewed in Chapter 4.1. The second solution to this problem 
was proposed in Multimedia Systems Department, GUT in collaboration 
with the Institute of Physiology and Pathology  of  Hearing, Warsaw in 
previous studies, namely Artificial Neural Networks (ANNs) for the pur-
pose of the automatic sound source localization have been applied 
(Czyzewski 2003a, 2003b; Czyzewski and Lasecki 1999; Kostek et al 
1999; Lasecki and Czyzewski 1999; Lasecki et al 1998, 1999).  

In the study shown below two types of ANNs were used, namely feed- 
forward neural networks and recurrent ones. They both differ in ANNs 
structures and properties and feature vectors that are fed to the given algo-
rithm input. The ANNs were used as nonlinear filter in the frequency do-
mains or only in the time domain.  

A series of experiments was organized employing ANNs for the auto-
matic detection of sound source position in a noisy acoustical environment. 
In addition a comparison of results obtained using both standard feed-
forward ANNs and RNNs are presented. Some details concerning the im-
plementation of the proposed algorithms are described. On the basis of the 
experiments carried out some conclusions were drawn out and further de-
velopments of the neural network-based spatial filter were discussed in or-
der to use it in teleconferencing.  

These studies were conducted for several years, sponsored by the State 
Committee for Scientific Research, Warsaw, Poland. Some colleagues 
from the Multimedia Systems Department research team took part in them. 
A very valuable input was done by Czyzewski, Lasecki and Krolikowski 
(Czyzewski 2003a, 2003b; Czyzewski and Krolikowski 2001a, 2001b; 
Czyzewski et al 1998, 2001; Czyzewski and Lasecki 1999; Krolikowski et 
al 2001; Lasecki and Czyzewski 1999; Lasecki et al 1998, 1999). Also, 
Kosicki (2000), M.Sc. student, supervised by the author took part in these 
experiments. 

Psychophysiology Background

Psychophysiology studies show that binaural perception is based on two 
principal acoustical cues (Bodden 1993; Hartmann 1999), namely Interau-

ral Level Difference (ILD) and Interaural Time Difference (ITD). The first 
one refers to the difference of intensities of waveforms in the left and in 
right ears and the second one to the difference of arrival times, which is 
equivalent to the phase difference of the waveforms. There are some addi-
tional factors that influence sound localization perception. Phenomena un-
derlying sound localization are not finally recognized, hence this is still a 
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subject of intense research. Sound direction is often described in terms of 
angles around the head (Fig. 5.33). In experiments only the horizontal 
plane was taken into account. 

Fig. 5.33. Binaural sound perception 

In real conditions various distortions such as background noise and re-
verberated sounds can occur that interfere with the target signal. By means 
of signal processing it is possible to model human localization perception 
using either linear or nonlinear approach (Khahil 1994; Mahieux et al 
1996). Under the above formulated assumptions signals received by a lin-
ear microphone array are expressed by the following relationships: 
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(5.36)

where hi(t) is an impulse response of the reverberant channel associated 
with the ith microphone, and ni(t) denotes ambient noise received by the 
ith microphone. 

Eq. (5.36) shows that the problem of sound source localization is very 
complex, and therefore a number of various methods have been proposed 
in literature (Berdugo et al 1999; Brandstein 1997; Chern and Lin 1994). 
These methods  were  also  used in  multimedia  applications (Aoki and 
Okamoto 1999; Jacovitti and Scarano 1993; Kostek et al 1999; Mahieux et 
al 1996; Wang and Chu 1997).   
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5.4.2 Data Processing   

In the present study experimental procedures were two-fold. First, sound 
material was recorded in a small studio. All sounds were monophonically 
registered with the sampling frequency equal to 44.1 Hz and 16bit/sample 
resolution. They were such as: lists containing 100 logatoms and some 
phrases. These were read both by female and male speakers. In addition 
white noise, filtered noise and tones were recorded. All processed sound 
files were then converted to 22.05 kHz stereo format and normalized to -
6dB.

In addition, similar recordings were done in an anechoic chamber. A 
circular array consisted of 8 electret microphones set on the circumference 
of a 0.15 m radius rim and positioned 1.58 m above the floor was used. It 
was placed in the horizontal plane. Eight mono tracks were recorded si-
multaneously. The recording parameters were as follows: 16 bit/sample 
and the sampling frequency was equal to 48 kHz. There was one male 
speaker, distanced 1.5 m from the array. The speaker read a logatom list 
every 5o. In result 72 eight-track recordings were made, and every re-
cording lasted approximately 55 s. 

The second step consisted in extracting feature vectors to be fed to the 
learning algorithms. During the parameterization process the signal was 
divided into frames of the length of 256, 512 or 1024 samples. Two sets of 
feature vectors were prepared. The first set was based on previously de-
fined parameters under the assumption that a neural network provides an 
effective non-linear filtering algorithm of an acoustic signal transformed 
into the frequency-domain (Czyzewski et al 1998, Kostek et al 1999; 
Lasecki et al 1999). On the other hand since some of these parameters are 
not orthogonal, thus they may be eliminated from the feature vector and 

2001). This approach will be described later on.  
It was assumed that the number of microphone channels has been lim-

ited to two. Signal arriving at both microphones can be written as:  

tntstl l ; tntstr r
(5.37)

where:

- l(t), r(t) - signals received by the left and right microphones, 

- s(t) - desired signal arriving from the front direction, 

- nl(t), nr(t) – signals coming from the lateral or backward directions ar-
riving to the left microphone and to the right microphone. These sig-
nals are treated as noise.   
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The main task of the spatial filter is to estimate the desired signal s(t) ar-
riving from the forward direction. It is neither desirable nor possible to 
completely attenuate signals from lateral and backward directions. Because 
spatial filter works in the frequency domain, it is assumed that each spec-
tral component, which represents signals coming from unwanted directions 
should be attenuated by at least 40 dB (see Fig. 5.34). In Fig. 5.34 a proto-
type spatial characteristics is shown. The spectral components that repre-
sent signals coming from the forward direction should remain unchanged. 
This can be described by the following expressions:  
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where:

- i –  spectral component index, 

- jeL
~

, jeR
~

 - estimates of a signal component Li in the left, and Ri

in the right channel, 

g(i) – attenuation coefficient of noisy components described by the fol-
lowing formula: 
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Fig. 5.34. Desired directional characteristic (the same for all frequencies). X   axis 
represents angle, Y   axis represents attenuation in dB 



  373 

The effectiveness of this algorithm and the resultant speech intelligibil-
ity will depend on the proper decision made by the neural network, so the 
learning procedure is very important. This decision is made basing on the 
values of some parameters of sound that are similar to those used by the 
human auditory system. These parameters represent both interaural inten-
sity ratio and interaural time difference. The first parameter, which ex-
presses the interaural spectral magnitude ratio, is described by the follow-
ing expression: 

ii

ii

i
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RL
M

,max

,min (5.40)

where:
- i – spectral component index, 

- Li, Ri – left and right signals for the ith spectral component,

- i

The second parameter, which expresses the interaural phase difference 
is described by the following expression: 

iii RLA (5.41)

where:

- – denotes the signal phase, 

- Ai – phase difference of the ith frequency component of left and right 
channels

The third parameter used in learning phase is defined as: 

ii

ii
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RL
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D

(5.42)

where: Di – relative ratio of the ith spectral component for the left and 
for the right channel. 

It can be shown that parameters described by Eqs. (5.40) and (5.42) are 
in a simple functional relationship and therefore one of them is superflu-
ous. In such a case, parameters representing a single spectral bin can con-
sists of parameters given by Eqs. (5.40) and (5.41). In addition considering 

M  – magnitude ratio for the ith spectral component 
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that the above given parameters concern pairs of channels k
iCh  and k

jCh ,

these parameters for the kth spectral bin can be rewritten as follows:

k
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k
i

k
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k
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,min (5.43)
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k
i

k
ij ChChA (5.44)

Thus in the second type of feature vectors 8-channel signals were exam-
ined, and hence the following sets of parameters can be considered: 

- all mutual combinations of channels that yield 56 parameters per bin 
(A).

- a combination of opposite channels, which yields 8 parameters per bin 
(B).

5.4.3 System Description   

The user interface of the program, prepared in Multimedia Systems De-
partment for the purpose of training neural networks, is presented in Fig. 
5.35. During the learning phase the Mean Square Error (MSE) was ob-
served. MSE represents the squared error between the current value at the 
output of the network o and the desired response of the network d. An ex-
ample of convergence of the learning process is shown in Fig. 5.36.  

P

l

K

k

lklk do
PK

MSE
1 1

21 (5.45)

where P is the number of training patterns, and K denotes the number of 
outputs

Fig. 5.35. GUI of the program used in the learning phase 
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Fig. 5.36. Convergence of the learning process 

Neural Network Structures and Properties 

Feed-forward ANNs 

As mentioned before two types of ANNs were used in experiments. First, 
assumptions of experiments employing standard feed-forward ANNs  will 
be described. The proposed neural network structure and its properties 
were such as follows: one hidden layer consisted of 9 neurons, the standard 
error backpropagation algorithm with momentum was used in the learning 
phase. The BP learning algorithm parameters were as follows:  = 0.5 
(learning rate); = 0.01(momentum ratio). Spectral components were ob-
tained with 512 point FFT procedure using Blackmann window with an 
overlap of 256 samples. The training file consists of logatoms of every 150

elevation. Each direction was represented by 10 sound examples (5 female 
and 5 male voices). In addition sounds from ±5° were used in this phase. 
These directions were treated similarly to 0° direction, thus the gain factor 
was equal to 1, whereas for other directions a value of  0.01 was used.  

RNNs 

Since the feed-forward neural networks do not offer such feasibility as re-
current ones – especially in the field of time series modeling or mapping of 
the complex process dynamics – thus also RNNs were used in experi-
ments. The purpose of such experiments was to check whether encoding 
spatial information would be satisfactory based on temporal cues only.  

The desired level attenuation was defined for each pattern. All signals 
coming from other than a front direction were treated as unwanted ones. 
For purposes of the experiments, eight-second excerpts were prepared rep-
resenting the sound directivity of -45 o to +45 o with the step of 15 o. Since 
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these parameters are to be fed to a neural network, they are grouped into 
input vectors. The following three types of such vectors can be considered: 

type V1: all spectral bins are included in a vector. 
type V2: an input vector consists of parameters for a single bin and the 

additional information on the bin frequency. 
type V3: an input vector consists only of parameters for a single bin. In 

this case, a neural network assumes a structure of a modular network 
where a separate neural subnet is dedicated for each spectral bin. The final 
neural decision is made on the basis of maximum outputs of all subnet-
works.

The above shown division of feature vectors evokes some problems re-
lated to the size of an input vector that in turn results in the size of weight 
matrices of a neural network and in addition to both capacity of a neural 
net and selection of its architecture. Taking all the above into account only 
some combinations of earlier defined sets of parameters were chosen for 
experiments, namely: vector type V3, parameters type A, sizes of an analy-
sis frame (N = 1024).  

In experiments both Fahlman’s general and simplified algorithms 
(QuickPROP) (Fahlman 1998)  and the Resilient PROPagation (RPROP) 
(Riedmiller and Braun 1993) were employed. These algorithms were re-
viewed in Section 3.3.4, thus only the main principles of these algorithms 
will be presented here.

Fahlman’s algorithm (Fahlman I) 

The weight update rule for a single weight ijw  in the kth cycle is computed 

according to Eq. (3.111), and there is an assumption that the learning rate 
k  and the momentum ratio k

ij  vary according to Eqs. (3.112) and 

(3.113). In the formulae cited above, the constant values of the training pa-
rameters assume: 6.001.0 0 , 75.1max .

Fahlman’s simplified algorithm (Fahlman II) 

In the simplified version of the QuickPROP algorithm, the weight update 
rule is expressed by the following relationship: 
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where the momentum ratio k
ij

 changes according to the expression be-

low:
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and the constant values of the training parameters assume are the same 

as in the general QuickPROP, i.e.: 6.001.0 0 , 75.1max .

RPROP algorithm 

In the case of the RPROP algorithm, the weight update rule is given by the 
formula based on the signum function (see Section 3.3.4, Eq. (3.114), 

where the learning rate k  assumes values according to the rules given in 

Eq. (3.115). The constant values are set as follows: 

6
min 10 , 50max

5.0 2.1 10

(5.48)

5.4.4 Test and  Results   

In the testing phase various combinations of signals were introduced to the 
neural network inputs. Namely such signals as: tones, tone plus noise, a  
phoneme (logatom) plus tone, a  phoneme plus noise, phonemes and 
phrases were employed as testing material. Always one of the signals was 
coming from the front direction (00), and the other was the unwanted one 
and was  localized at the angle between 150 to 900 (horizontal plane).  

First, results obtained for the feed-forward neural network-based beam-
former will be now  shown. An example of spatial characteristics obtained 
after the learning phase are presented in Fig. 5.37. As expected sharper 
minima and maxima were obtained for higher frequency spatial character-
istics for the whole angle range. The slope of low frequency characteristics 
for 150-900 azimuth is very smooth. 
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Fig. 5.37. Spatial characteristics of the ANN-based filtration algorithm obtained 
with a multi-tone signal 

In Figs. 5.38-5.4 the examples of a signal spectral representation (sono-
grams) before and after processing are shown. In Fig. 5.38 the target signal 
is 1kHz and the concurrent one is 250 Hz. On the other hand, in Fig. 5.39 
the disturbing signal is filtered noise of the center frequency equals to 250 
Hz. As is seen from Fig. 5.38 and Fig. 5.39 disturbing signals are strongly 
attenuated, but the proposed algorithm causes some distortions that are no-
ticeable in the spectral domain. Especially interesting is the processing re-
sult shown in Fig. 5.39. In this case noise around 500Hz and above this 
frequency appears. However the signal-to-noise ratio equals to -60dB. In 
addition the disturbing signal is strongly attenuated, so the distortions do 
not influence substantially the overall quality of audio.  

a. before processing  

(Legend to Fig. 5.38, see next page) 
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b. after processing 

Fig. 5.38. Spectral representation of signals (1kHz, 0°)+(250Hz, azimuth 45°)  

a.

b.

Fig. 5.39. Spectral representation of signals (1kHz, 0°)+(filtered noise, f0=250Hz, 
azimuth 45°), before processing (a), after processing (b) 
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In Fig. 5.40 another combination of signals that was processed by the 
neural beamformer is shown. In this case the target signal was a logatom 
and the disturbing one was a 250 Hz harmonic tone. As is seen from the 
sonogram analysis the target signal has got a formant around the same fre-
quency as such of the concurrent signal. That is why the algorithm after 
processing cuts off this frequency along with the formant.  

In Fig. 5.41 time-domain presentation of neural network filtration ef-
fects is shown. 

a.

b.

Fig. 5.40. Spectral representation of signals (phoneme, 0°)+(signal f0=250Hz,
azimuth 45°), before processing (a), after processing (b) 

After processing various combinations of signals and azimuths it was 
observed that worse filtration effects were observed when a concurrent 
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signal was close to the target signal  (150 azimuth). In this case the de-
pendence of the filtration effects on the character of the signal was also no-
ticed. It can be also observed that definitions of parameters (Eq. 5.40) and 
(Eq. 5.41) cause that signals of the same spectrum composition coming 
from concurrent directions may not be effectively filtered out by such a 
beamformer algorithm. This is the most important drawback of the pro-
posed method of spatial filtering, however in such a case a classical beam-
former does not perform well, either.  

a.

b.

c.

Fig. 5.41. Filtration of two sentences (time domain representation); original signal 
before processing (a); signal mixture – original signal + disturbing signal from 45° 
(b); result of NN-based filtration (c) 

5.4 NEURAL NETWORK-BASED BEAMFORMING    



382      5 COGNITIVE PROCESSING IN ACOUSTICS 

Examples of the results obtained by the RNN-based beamformer are 
shown in Table 5.7. There were 515 training vectors and 221 testing vec-
tors. As seen from table these results depend on both the training algorithm 
and the signal direction. The best scores were obtained for the azimuth of  
450.  On the other hand, no conclusions as to the best training algorithm 
could be derived on the basis of the obtained results. 

Table 5.7. Results of direction detection for: vector type - V3, N = 1024, parame-
ter type - A, training/testing vectors = 515/221  

Direction Fahlman I 
 [%] 

Fahlman II  
[%] 

RPROP
 [%] 

-45o 90  92  89  
-30o 89  87  88  
-15o 88  89  90  
0o 90  90  88  
15o 86  82  85  
30o 85  85  84  
45o 87  88  88  

Comparison with a standard adaptive beamformer 

In order to compare results of the elaborated system with the classical 
algorithm a well-known Griffith-Jim adaptive beamformer (1982) working 
in the time domain was used in investigations. It consisted of 64 taps. In all 
tests a male speech was used as a desired signal. The interfering signals 
were as follows: male speech, harmonic tones and white noise, all pre-
sented at 450 position. Results are gathered in Tab. 5.8. 

Table 5.8. Comparison of the ANN spatial filter with the Griffith-Jim beamformer 

Noise Griffith-Jim beamformer ANN spatial filter 
male speech 450 good noise reduction, 

almost no imperfections 
good noise reduction, 
almost no imperfections 

harmonic tones 450 whole noise reduction, 
distortion observed 

whole noise reduction, 
small imperfections 

white noise 450 little noise reduction,  
small imperfections 

big noise reduction, 
small imperfections 

The obtained results demonstrate that a non-linear filter based on neural 
network provides an effective tool for the detection of sound source local-
ization. It was additionally shown that both standard feed-forward ANNs 
and recurrent neural networks could be used for the purpose of sound lo-
calization. It should be remembered here that these beamformes used dif-
ferent approach to feature extraction. Neural networks-based beamformers 



can cause a significant increase in the signal-to-noise ratio. Such results 
open a possibility to employ the neural network-based sound localization 
algorithms to experimental teleconference systems.  
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6 SYNESTHETIC ANALYSIS OF AUDIO-VISUAL 

DATA

6.1 Data Acquisition 

6.1.1 Problem Overview 

Interaction between two perceptual modalities, seeing and hearing, their 
interaction and mutual reinforcement in a complex relationship was a sub-
ject of many research studies. The term synesthesia, under which the phe-
nomenon is known, is related to involuntary joining in which the real in-
formation of one sense is accompanied by a perception in another sense. 
Attempts to assess the degree of this interaction have for many reasons 
been of special interest.

 Contemporary digital video, film or multimedia presentations are often 
accompanied by the surround sound. Techniques and standards involved in 
digital video processing are much more developed than concepts underly-
ing the process of recording and mixing a multichannel sound. The main 
challenge in sound processing in a multichannel system is to create an ap-
propriate basis for the related multimodal context of visual and sound do-
mains. Therefore, one of the purposes of experiments is to study in which 
way and how the surround sound interferes or is associated with the visual 
context. This kind of study was hitherto carried out when a two-channel 
sound technique was associated with a stereo TV. However, there is not 
much study done yet that associates real correlation between the surround 
sound and digital video presented at the TV screen. The main issue in such 
experiments is the analysis of how visual cues influence the perception of 
the surround sound. This problem will be solved by applying fuzzy logic to 
process subjective test results.  

There are many scientific reports showing that human perception of 
sound is affected by image and vice versa. For example, Stratton in his ex-

Bożena Kostek: Perception-Based Data Processing in Acoustics, Studies in Computational
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periments carried out at the end of 19th century proved that visual cues can 
influence directional perception of sound. This conclusion was confirmed 
later by others. Gardner experimentally demonstrated how image can af-
fect the perceived distance between the sound source and the listener 
(Gardner 1968). The phenomenon of interference between the sound and 
vision stimuli was reported also by Thomas (Thomas 1941), Witkin,
Wapner and Leventhal (1952). Very important experiments demonstrating in-
teraction between audio and video in stereo TV were made by Brook et al. 
(1984), Gardner (1968), Wladyka (1987). Such experiments were also car-
ried out by Sakamoto et al. (1981, 1982) in the context of controlling 
sound-image localization in stereophonic reproduction. Komiyama (1989) 
performed subjective evaluation of angular displacement between picture 
and sound directions for HDTV sound systems. Some years later, Bech, 
Hansen and Woszczyk (1995) and also Woszczyk et al. (1995) tried to as-
sess audio-visual interaction for Home Theater Systems. They examined in 
which way two perceptual modalities, seeing and hearing, interact and re-
inforce each other in a complex relationship. Effects of the investigations 
were shown during Audio Engineering Conventions, and concerned the 
experimental results for the subjective attribute, namely space. The factors 
investigated were: basic stereo width, sub-woofer, surround sound concept, 
screen size, etc. Following this research, other authors tried to answer 
some  questions  concerning  audio-visual   correlation.  For  example, 
Beerends and de Caluwe (1999) discussed how video quality influences 
the perceived audio quality of an audiovisual stream, and in addition they 
considered in which way audio and video quality contribute to the overall 
perceived audiovisual quality. The main conclusion in their experiments 
was that video quality contributes significantly to the subjectively per-
ceived audio quality (Beerends and de Caluwe 1999). Also, Hollier and 
Voelcker (1997) investigated video quality influence on audio perception. 
Later, Dvorko and her co-author discussed the results of theoretical and 
experimental researches of psychophysical and aesthetic aspects of sound 
and picture interaction (Dvorko and Ershov 1998). Bruijn and Boone 
(2000) carried out subjective tests to investigate the effects in the context 
of a life-size video conferencing system. Their investigation showed that 
the non-identical perspectives of the audio and video reproductions had a 
significant influence on subjects' evaluation of the total system. They pro-
posed solutions to improve the matching of the audio and video scenes for 
a large listening area. The team from the Multimedia Systems Department 
started their investigations on audio-visual correlation in 2000, and many 
research reports have appeared since that time in the form of conference 
papers, journal articles (Czyzewski et al 2000a, 2000b, 2001; Kostek 2003) 



Malasiewicz 2001; Smolinski and Tchorzewski 2001). 
The subject of audio-visual correlation was also pursued by Zielinski et 

al. (2003). These experiments focused on the standard 5.1 multichannel 
audio set-up according to the ITU recommendation and were limited to the 
optimum listening position. The obtained results of the formal listening 
test show that in general listeners prefer the limitation of channels to the 
limitation of bandwidth, for a given ‘information rate’. However, for some 
program material with foreground content (direct sound) in the rear chan-
nels, limitation of either parameter has a similar effect. 

The investigation by Rumsey et al. (2004) aimed to discover the effect 
of involvement in an interactive task on the perception of audio-visual 
asynchrony in a computer game environment. An experimental game was 
designed to test the investigated phenomenon. The experiment tested only 
audio lag conditions. It was found that within the confines of the experi-
mental method, the threshold of perception was increased in the interactive 
game condition by approximately 40ms (±20ms), which is a small but sta-
tistically significant value. 

However, there still is no clear answer to the question how the video in-
fluences the localization of virtual sound sources in multichannel surround 
systems (e.g. DTS). Therefore, there is a need of systematic research in 
this area, especially as sound and video engineers seek such information in 
order to optimize the surround sound. The results of this kind of research 
may improve production of movie soundtracks, recording of music events 
and live transmissions, thus the resulting surround sound may seem more 
natural to the listener. The experiments are based on subjective testing of a 
group of people, so-called experts, listening to the sound with- and without 
vision. The obtained results are processed in order to find some hidden re-
lations underlying the influence of video on the perception of audio, par-
ticularly with regard to the influence of video to the directivity of localiza-
tion of sound sources in the surrounding acoustical space. Some soft 
computing methods could be used to process subjective test results, bring-
ing better results of the analysis than statistical methods, particularly if the 
number of tests and involved experts are reasonably small. An approach to 
such an application is presented in the following paragraphs. The proposed 
method of analysis of subjective opinion scores could be also used in other 
domains than audio-video perception investigation (public opinion analysis 
etc.).

and students’ M.Sc. theses (Florek and Szczuko 2002; Kaminski and  
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6.1.2 Subjective Test Principles 

Results of such experiments may show in which cases and in what way the 
video can affect the localization of virtual sound sources. In most cases 

the sound closer to the screen center. Therefore, this effect can be called 
the audio-visual proximity effect. 

In the experiments, two rooms were used: an auditory room and a con-
trol room, which are acoustically separated. Video was projected from the 
control room to the auditory room through the window between these two 
rooms. The place for a listener was positioned in a so-called ‘sweet-spot’ 
(see Fig. 6.1). Denotations in Fig. 6.1 refer to channels of the 5.1 sound 
system (L - left, C - center, R - right, LS - left surround, RS - right sur-
round). Points in this figure present phantom sound source configuration 
used in localization tests. 

Fig. 6.1. Auditory room 

During tests AC-3 (Dolby Digital) audio encoded and MPEG2 video 
encoded files were used. Sound files were prepared in the Samplitude 2496 
application and then exported to the AC-3 encoder. The following equip-
ment was used during the tests: a computer with a built-in DVD player, an 
amplifier with a Dolby Digital decoder, a video projector, a screen (dimen-
sions: 3x2 m), loudspeakers.  

Calibration Procedure 

First, the calibration procedure was performed, during which the levels of 
received signals were checked in all loudspeakers of the 5.1 system. In Ta-
ble 6.1 sound level measurement results are shown for various placement 
of the sound level meter. As seen from the table, the only adjustment to be 
done was due to the difference of level between the left (L) and right (R) 

video 'attracts' the attention of the listener who in consequence localizes 



    393 

channels. Other differences in level measurement were negligible or ap-
peared due to sound system requirements. 

Table 6.1. Sound level measurement results for all channels in the 5.1 system in 
various configurations 

Channel/level [dBA] 

L C R LS RS 

All loudspeakers placed 1 m from sound level meter 

86.2 85.8 86.4 83.8 83.8 

All loudspeakers placed as in the Home Theater system (distance 
from the sound level meter equal to 1 m  

85.4 85.8 86.6 82.6 82.8 

All loudspeakers placed as in the Home Theater system (sound 
level meter placed in sweet-spot) 

82.4 81.8 83.0 80.2 80.8 

In addition, the configuration in which the sound level meter was placed 
in the sweet-spot was used again. This time the reference signal was at-
tenuated to –3, and –6 dB, respectively. Results of this part of the calibra-
tion procedure are contained in Table 6.2.  

The last part of the calibration procedure was related to a proper local-
ization of directions (see Fig. 6.1). Several students from the Multimedia 
Systems Department participated in tests. It was found that sound is prop-
erly localized in the system. 

Table 6.2. Sound level measurement results for all channels in the 5.1 system 
(reference signal attenuated to –3, and –6 dB; sound level meter placed in sweet-
spot) 

Channel/level [dBA] 

L C P LS PS 

76.0 74.4 76.2 73.0 74.2 

69.6 69.0 69.8 67.4 68.2 

6.1 DATA ACQUISITION     
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Preliminary Listening Tests 

In the preliminary experiments the arrangement of loudspeakers was as 
follows: four loudspeakers were aligned along the left-hand side of the 
screen (Fig. 6.2). In this case, the first loudspeaker was placed at the edge 
of the room, whereas the fourth one was positioned under the screen. This 
arrangement allowed for showing how the visual object can affect the an-
gle of the subjectively perceived sound source.  

1 2 3 4

screen

loudspeakers

a

b

Fig. 6.2. Arrangement of loudspeakers during the tests 

The experiment scenario was as follows. In the first phase of the ex-
periment white noise was presented from the loudspeakers in random or-
der. The expert’s task was to determine from which loudspeaker the sound 
was heard. Then, in the second phase a blinking object was displayed in 
the center of the screen with a synchronously generated white noise. In the 
center of a circle a one-digit number was displayed. Each time the circle 
was displayed the number changed in order to draw the listener’s attention 
to the picture. Obtained results show that the image proximity effect is 
speaker dependent, however most experts’ results clearly demonstrate the 
mentioned effect. The most prominent data showing this effect is depicted 
in Fig. 6.3. The shift in the direction to the centrally located loudspeaker is 
clearly visible. 
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Fig. 6.3. Comparison of answers of an expert for two types of experiments: with-
out video/with video 

6.1.3 Data Processing 

The subjective tests presented below aimed at finding a relation between 
precise surround directivity angles and semantic descriptors of the horizon-
tal plane directions. It is hard to expect an expert to be exact in localizing 
phantom sources in the surround stereophonic base and to provide precise 
values of angles. On the other hand, it seems quite natural that an expert 
will localize a sound using such directional descriptors as: left, left-front, 

front, right-front, right, rear-right, rear, rear-left. Thus, first series of the 
experiment should consist in mapping these descriptors to angles as in Fig. 
6.4.

front

left right

rear

left-front  right-front

left-rear right-rear

Fig. 6.4. Questionnaire form used in the first stage of experiments 
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In this phase of the investigations, sound samples recorded in the anech-
oic chamber should be presented to a group of experts. The experts, while 
listening to sounds excerpts, are instructed to rate their judgements of the 
performance using descriptions introduced above. In order to obtain statis-
tically validated results, various sound excerpts should be presented to a 
sufficiently large number of experts. This procedure is based on the con-
cept of the Fuzzy Quantization Method (FQM) applied to acoustical do-
main (Kostek 1999). Since the experimenter knows to what angle a given 
sound was assigned, thus this stage of experiments results in mapping se-
mantic descriptors received from experts to particular angles describing the 
horizontal plane.  

In order to simplify this phase of tests, localization sphere should be di-
vided into 5° steps. Fig. 6.5 shows exemplary mapping of the front mem-
bership function. All other membership function should be estimated in a 
similar way (see Fig. 6.6). 

Fig. 6.5. Experts' votes for the front membership function, N - the number of ex-
perts voting  for particular values of localization (variable: angle)

As shown in Figs. 6.5 and 6.6, the distribution of the observed instances 
may suggest a typical trapezoidal shape of a membership function. In the 
next step of the analysis,  membership functions should be identified with 
the use of some statistical methods. This can be done by using several 
techniques. The most common technique is the linear approximation, 
where the original data range is transformed to the interval of [0,1]. Thus, 
triangular or trapezoidal membership functions may be used in this case. In 
the linear regression method, one assigns the minimum and maximum at-
tribute values. Assuming that the distribution of parameters provides a tri-
angular membership function for the estimated parameter, the maximum 
value may thus be assigned as the average value of the obtained results. 
This may, however, cause some loss of information and bad convergence. 
The second technique uses bell shaped functions. The initial values of pa-
rameters can be derived from the statistics of the input data. Further, the 
polynomial approximation of data, either ordinary or Chebyshev, may be 
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used. This technique is justified by a sufficiently large number of results or 
by increasing the order of polynomials; however, the latter may lead to a 
weak generalization of results. Another approach to defining the shape of 
the membership function involves the use of the probability density func-
tion. The last mentioned technique was discussed in the given context 
more thoroughly in literature (Kostek 1999, 2003). 

front

left right

rear

 left-front right-front

left-rear
right-rear

Fig. 6.6. Directivity membership functions on the horizontal plane 

Intuitively, it seems appropriate to build the initial membership function 
by using the probability density function and by assuming that the parame-
ter distribution is trapezoidal or triangular. The estimation of the observed 
relationships is given by the function shown in Fig. 6.7. 

The f1 membership function from Fig. 6.7 is defined by a set of parame-
ters: A, a, b, c, d and is determined as follows:  

if)/()(

if

if)/()(

orif0

),,,,(1

dxccddxA

cxbA

bxaabaxA

dxax

dcbAxf

(6.1)

Fig. 6.7. Trapezoidal membership function estimated by the probability density 
function 
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The equation describing the mth moment of the probability density for 
the function f1(x,A,a, b,c,d) is calculated as follows: 

2 dxxfxm n
n

(6.2)

The estimate of the mth moment of the probability density function from 
the test (assuming that all observation instances fall into the interval j,
where: j=1,2…k) is calculated according to the formula: 

)((ˆ
1

j

k

j

n
n xxPxm )

(6.3)

where: P(x=xj) represents the probability that the attribute value of in-
stance x falls into the interval j.

Next, the subsequent statistical moments of the order from 0 to 4 for this 
function should be calculated. Then, by substituting the observed values 
into Eq. (6.3), the consecutive values of mn are calculated. From this, the 
set of 5 linear equations with 5 unknown variables A,a,b,c,d should be de-
termined. After numerically solving this set of equations, the final task of 
the analysis will be validation of the observed results using Pearson's 2

test with k-1 degrees of freedom (Kostek 1999). 
Using the above outlined statistical method, a set of fuzzy membership 

functions for the studied subjective sound directivity can be estimated. 

Inter-Modal Testing Phase 

In order to proceed with testing the inter-modal relation between sound lo-
calization and video images, another questionnaire should be used. This 
time, the experts' task would be assigning the crisp angle value to the in-
coming sound excerpt while watching a TV screen. Having previously es-
timated membership functions, it would be then possible to check whether 
the observation of video images can change sound localization and if yes 
then to what degree. This can be done by performing a fuzzification proc-
ess. The data representing the actual listening tests would then pass trough 
the fuzzification operation in which degrees of membership should be as-
signed for each crisp input value.  

The process of fuzzification is illustrated in Fig. 6.8. The pointers visi-
ble in this figure refer to the degrees of membership for the precise value 
of localization angle 335°. Thus, this value belongs, respectively, to the 
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left-rear fuzzy set with the degree of 0, to the left-front fuzzy set with the 
degree of 0.65 and to the front set with the degree of 0.35. The same pro-
cedure should be applied to every sound-image instance. 

Consequently, the process of fuzzy inference can be started, allowing to 
find winning rules. The (examples) fuzzy rules have the following form: 

1. if front AND FRONT than no_shift

2. if left_front AND LEFT_FRONT than no_shift

3. if left_front AND FRONT than slight_shift

4. if left AND LEFT than no_shift

5. if left AND LEFT_FRONT than slight_

.............................................................. 

where small italic labels denote current directivity indices and the capital 
italic labels denote the directivity of the same sound played back during 
the previous tests (in the absence of vision). 

It was assumed that the presence of vision is causing the shifting of 
sound localization to the front direction only (not to opposite directions in 
relation to the frontal one) and there is no possibility for phantom sources 
to migrate from the left to the right hemisphere and vice versa. These as-
sumptions have been justified in practice. The rules applying to the right: 
front lateral and rear directions are similar to above ones. The AND func-
tion present in the rules is the ‘fuzzy and’ (Kosko 1997). Thus it chooses 
the smaller value from among these which provide arguments of this logi-
cal function. The consequences: no_shift; slight_shift; medium_shift;
strong_shift are also fuzzy notions, so if it is necessary to change them to 
the concrete (crisp) angle values, a defuzzification process should be per-
formed basing on the output prototype membership functions.  

Fig. 6.8. Fuzzification process of localization angle: (1) - left-rear, (2) - left-front,
and (3) - front membership functions

All rules are evaluated once the fuzzy inference is executed and finally 
the strongest rule is selected as the winning one. These are standard proce-
dures related to fuzzy logic processing of data (Kosko 1997). The winning 
rule demonstrates the existence and the intensity of the phantom sound 

6.1 DATA ACQUISITION     
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source shifting due to the presence of vision. Since the fuzzy rules are 
readable and understandable for human operators of the system, thus this 
application provides a very robust method for studying complex phenom-
ena related to the influence of vision coming from frontal TV screen on the 
subjective localization of sound sources in surround space. The mentioned 
defuzzification procedure (Kosko 1997) enables to map a fuzzy descriptor 
to a crisp angle measure every time it is necessary to estimate such a value.  

Audio and video interact with each other. Mechanisms of such interac-
tion are currently investigated in two domains: perceptual and aesthetic 
ones by employing fuzzy logic in the process of analysis of tested subjects’ 
answers. The results of such experiments could yield the recommendations 
to sound engineers producing surround movie sound tracks, digital video 
and multimedia. 

6.2 Genetic Algorithm-Based Processing 

6.2.1 Problem Overview 

The questionnaire form for assigning arrival directivity of the sound in 
mapping tests is shown in Fig. 6.9. In addition, 10 abstraction tests and 15 
or 20 high level-abstraction tests were presented to experts’ in the experi-
ments. The abstraction tests used simple objects instead of complex ones 
in order to discover and to describe basic mechanisms underlying the au-
dio-visual perception. Audio-visual presentation time schedule is shown in 
Fig. 6.10. 

Fig. 6.9. Questionnaire form for assigning the directivity of sound arrival 



1 2  ... 5  LB 1 2  10 ...  LB 1 2  ...  15

Mapping tests
(1 minute)

Abstraction tests
(3-4 minutes)

Thematic tests
(8-10 minutes)

13-15 minutes

Fig. 6.10. Audio-visual material presentation time schedule, where: LB – a long 
break (duration of 5 to 10 seconds) made after each presentation (short pause 
lasted 3 seconds) 

Surround sound systems allow creating phantom sound sources in 3600

range. However using too many sound sources may introduce some errors 
due to inaccuracy in positioning the phantom sound sources. Thus, the 
number of sources was limited to the following angles: 0 (central loud-
speaker), 22.50, 450 (front right loudspeaker), 900, 1350 (rear right loud-
speaker), 1800, 2250 (rear left loudspeaker), 2700, 3150 (front left loud-
speaker), 3380. In purpose to increase the number of possible answers 
experts could choose also other angles: 7.50, 150, 300, 37.50, 600, 750, 1050,
1200, 1500, 1650, 1950, 2100, 2400, 2550, 2850, 3000, 322.50, 3300, 3450,
352.50. Furthermore, in order to allow an expert to express more spatial-
like impressions - not only those angle-oriented, but also some angle-group 
oriented entities were added, such as: L+C+R – wide central base 
(3150+00+450), WF – wide front base (3150+450), WR –wide right base 
(450+1350), WB – wide back base (1350+2250), WL – wide left base 
(2250+3150), SS – Sweet Spot, ALL – all five channels playing simultane-
ously. In this way attributes defining the sound domain space were as-
signed.

The visual domain space was described with only one attribute assigned 
to thematic tests indicating whether video was present or not. In the ab-
straction tests several attributes were added describing for example how 
the line was moving on the screen: L2R – from left to right, R2L – from 
right to left, D2U – up, U2D – down. All those given attribute sets served 
as the basis for determining the structure of decision rules discovered by 
the data mining system.  

It is important to point out that the assumption was made that all the pa-
rameters in both visual and sound domains could contain only binary data. 
This means that a given angle could be either completely included in the 
perception of a surrounding sound or completely excluded from it. Simi-
larly, images could be used for a given test or not. 

6.2 GENETIC ALGORITHM-BASED PROCESSING      401 
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6.2.2 Knowledge Base  

As a result of listening tests thirty files containing results of the abstraction 
tests (ten samples each) and thirty files with results of the subject tests (fif-
teen or twenty samples each) were obtained. One set of the subject tests 
answers was rejected after taking the mapping tests results into account. 
Finally, 300 abstraction tests and 465 thematic tests were analyzed 
(Czyzewski et al 2001; Smolinski and Tchorzewski 2001)  

Methodology based on searching for repetitive patterns in data and gen-
erating  association rules from those patterns was used for data mining in 
this research study. Data were represented as a simple information system. 
An example of a data record from the information system is shown in Fig. 
6.11. A record in the abstraction test database (Fig. 6.11) contains values 
of 1 at 4th, 11th, 13th and 22nd positions (0 s elsewhere). This means that 
a sound stimulus presented at 90  (4th attribute) accompanied by an image 
(11th attribute) of a vertical line moving from the right to the left side of 
the screen was actually localized by an expert at 45  (22nd attribute). 

Fig. 6.11. Example of a record in the database (abstraction tests case) 

After creating the appropriate data sets, it was possible to explore and 
analyze the data. The aim was to discover the influence of visual stimuli 
on the perception of a sound in surround space, thus searching for associa-
tion rules was performed. The genetic algorithm was employed to perform 
this task. Since genetic algorithms belong to the most often used soft com-
puting methods, thus their principles will not be reviewed here.  

In this research study, the chromosomes that are being produced and 
modified during the evolution process represent patterns covering records 
in the data set. Each one of them has the length of the number of attributes 
describing the data (specific for the type of the tests – abstraction vs. the-
matic), and the alleles of a chromosome are constrained by the domains of 
those attributes. An allele of such chromosome can either contain a value 
that is valid for a corresponding attribute in the data set which is in this 
case 1 s (all 0 s can be omitted since such a testing is aimed at interrelation 
of angle and image) or a ‘don’t care’ asterisks which means that this at-
tribute is not important and will not be used to generate a rule (Czyzewski 
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et al 2001; Kostek 2003). An example of a chromosome is presented in 
Fig. 6.12. 

Fig. 6.12. Example of a chromosome (set positions – 4th, 11th, 13th, 22nd) 

Each of such patterns has a possible coverage in data (support) which is 
given by the number of records matching the pattern (i.e. having given 
values at the ‘set’ position). For the example above it will be all records 
containing ‘1’ at 4th, 11th, 13th and 22nd positions regardless of other 
values. Obviously, one should look for patterns that have relatively high 
support and this can form the basis of the fitness function used for this al-
gorithm. The desired level of support in data can be adjusted by setting the 
epsilon value, which stands for the percent-based, maximum allowed error 
in terms of pattern coverage (the higher epsilon, the lower minimum sup-
port required) (Czyzewski et al 2001; Kostek 2003). 

Although the support of a pattern is a basic feature of the fitness func-
tion implemented in the algorithm, it cannot be its ultimate characteristic. 
The number of ‘set’ positions (not the ‘don’t care’ asterisks) is also very 
important. For example, a pattern consisting only of asterisks will gain 
support of 100% of the data records, but it has no meaning in terms of 
knowledge discovery. The structure of the IF–THEN rules generated af-
terwards is also very important, and from the practical point of view pat-
terns must contain at least two (or even three) set attribute values in order 
to stand as a basis for any useful association rules. Such a rule should have 
the following structure:

{presented sound}  {image}  {response of an expert}. 

Obviously, not all the chromosomes will have a physical coverage in the 
available data set. Some of them (especially the ones with a relatively large 
number of set positions) might not have a support at all, however some 
parts of them (subsets of values) still can be very useful and after an appli-
cation of some genetic operators (i.e. crossover and mutation) may pro-
duce desired results. It is crucial then to appropriately treat all those chro-
mosomes and assign them some “credit” in terms of the fitness function 
even though they do not have support in data as a whole.  

Based on the above discussion all the chromosomes (potential solutions) 
should be awarded or punished according to the specified criteria during 
the evolutionary process. Thus the fitness function can be completely de-
scribed as a multi-layer estimation of the fitness of chromosomes in terms 
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of their partial support in the data at first, and then in terms of total cover-
age of the data weighted by the number of set positions. 

Another very important feature of the genetic algorithm used here is a 
multi-point crossover option. In many experiments mining patterns in dif-
ferent types of data, this approach was found to be much more effective 
with regard to both the number of discovered patterns, and the time of 
convergence. On the basis of empirical premises the maximal number of 
cuts (crossover points) was set to 1 for every 10 attributes. In the example 
given in Fig. 6.13 there are three crossover points and the arrows point out 
to genetic material that will be exchanged and thus will create two new 
chromosomes. 

Fig. 6.13. Example of a multi-point crossover (three point) 

As an outcome of several evolutions modeled by this genetic algorithm, 
a set of data patterns was created. Those patterns along with the informa-
tion about the level of their support were then used as an input to the appli-
cation generating association rules. 

Association rules determine the existence of some relations between at-
tributes in data or values of those attributes. Basically they are simple IF–

THEN type rules that, for a binary domain of values, can be considered as 
statements (Czyzewski et al 2001, Kostek 2003). 

“if attributes from the premise part of the rule have values of 1 then the attrib-
utes included in the consequent part also tend to have value of 1”.

In the discussed case, rules should be of the following type:  

“if a given set of angles was used for the reproduction of a sound and image 

was/was not present then the experts tended to localize the sound source at a par-
ticular angle/set of angles”.

Association rules are characterized both by their support in data (the 
number of cases that a given rule applies to – how “popular” the rule is) 
and the confidence (the ratio of the support of the rule to the number of 
cases that contain its premise part – revealing how sure one can be that 
judging on the basis of the values from the premise the rule is correct). 

An algorithm of searching for association rules consists of two parts: 
searching for patterns hidden in data (in this project achieved initially by 



   405 

the application of a genetic algorithm) and generating rules based on those 
patterns. The idea of the algorithm for rule generation in this research 
study is relatively simple. Basically it takes ‘not asterisk’ values of each of 
the patterns, divides them into subsets, and by moving those subsets from 
the premise to the consequent part (according to the specified constraints) 
creates all possible rules based on the given pattern. The algorithm is quite 
resource consuming, thus it removes all records that are covered by any 
others (i.e. those that are subsets of another set). This decreases the compu-
tational complexity of the algorithm and together with the support and con-
fidence parameter limits the number of generated rules. 

6.2.3 Pattern Searching

In order to increase the variety of patterns, the algorithm was launched on 
several computers simultaneously. Because of the randomness aspects of 
genetic algorithms, the results differed from each other. However, some of 
those results were duplicated.  

The support threshold of desired patterns was lowered to 5%. This 
seems to be extremely low, but it is valid because rules based on patterns 
with relatively small support in data may still have quite a large level of 
confidence. As a result of several evolutions of the Genetic Algorithm, a 
total of 806 distinct patterns for the abstraction test, and 890 for the subject 
test were found. Some of those patterns were characterized by including 
set values only in the range of generated locations (angles), and not the 
ones that were a response from an expert. This was quite obvious, taking 
into consideration the fact that a great part of the generated tests consisted 
of different angles at the same time (e.g. WF, L+C+R, etc. – see the de-
scription of the sound space), and an appropriately engineered algorithm 
should definitely find them. However, some patterns that were satisfactory 
in terms of the rule definition were also discovered (i.e. they consisted of 
generated locations that were perceived by an expert, as well as of the in-
formation about the image presented). Some examples of those patterns are 
given below: 

(Abstraction tests; ABSTRACT space – 45 attributes): 

{1 * 1 * * * 1 * 1 * * * * * * * 1 * * * * * * * * * * 1 * * * 1 * * * * * 1 * * * * * * *}  

support: [18/300] 

 (Thematic tests; THEMATIC space – 41 attributes): 

{1 1 * * * 1 1 * 1 * * * * * * * * * * * * * * 1 * * * * * * * * * * * * * * * * *}  

support: [16/465] 
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6.2.4 Rule Generation 

Patterns discovered and prepared in the previous step were then used as a 
basis for associative rule generation. At this level, sets of attributes were 
divided into premises (generated angles along with the information about 
an image) and consequent (response from an expert) parts. After dupli-
cated patterns have been removed, 49 effective patterns for the abstraction 
and 23 for the thematic tests remained. On the basis of this final set of pat-
terns, a number of rules of a given support and confidence was generated. 
Some of the rules indicated a lack of any influence of the image on the 
perceived localization of sound, and this was usually associated with 
sounds perceived from behind of the listener. Nevertheless, most rules 
proved an existing interrelation between the auditory and visual senses. A 
sample of such a rule is presented below for the case of abstraction tests; 
this is a rule with a clear indication of audio-visual dependencies: 

IF  i045=1  AND  i135=1 AND  P=1  THEN  45=1 [s=6%] [c=66%] 
(IF sound is presented at the angles of 45  and 135  and the image is present 

THEN the perceived angle is 45  WITH support of 6% and confidence of 66%) 

IF  i225=1  AND  i315=1  AND  P=1  AND  D2U=1  THEN  315=1 [s=4%] 
[c=75%] 

(IF sound is presented at the angles of 225  and 315  and there is an image of a 
horizontal line moving from down up THEN the perceived angle is 315  WITH 
support of 4% and confidence of 75%) 

Based on the performed experiments it may be said that rules generated 
by the genetic algorithm proved an existence of a so-called proximity shift 
while perceiving sound in the presence of a video image. However the 
support associated with such rules is so low that it is difficult to conclude 
whether these rules are valid, even the confidence related to such rules is 
quite high. That is why in the next paragraph another approach to process-
ing data obtained in subjective tests will be presented. It concerns a hybrid 
system consisted of neural network modules and rough set-based infer-
ence.



6.3 Rough-Neuro Processing

6.3.1 Neuro-Rough System Principles  

As mentioned before, at least three factors should be taken into account 
while testing surround sound perception accompanied by video. They are 
such as follows: sound arrival angle, distance, and level of the sound. It is 
obvious that all these three might be interrelated. However, as was shown 
in the previous study, employing subjective tests based on fuzzy logic 
techniques (Kostek 1999) was sufficient to work with a single function 
separately and then, to interrelate these factors in some rule premises 
(Czyzewski et al 2000a, 2000b; Kostek 2003). Rule premises contain the 
above mentioned factors and assessed descriptors assigned to them during 
subjective testing sessions, and the consequence (decision) that resulted 
from these test data. However rules that were formulated were hard to ver-
ify by experts. Therefore, in this study a new concept of rule discovering 
was conceived. For this purpose a modular neuro-rough system was engi-
neered that is described further on (Fig. 6.14).  As mentioned in Chapter 3, 
such a hybrid approach is already well-adopted in applications in many 
fields (e.g.   Chakraborty 2000;  Komorowski et al 1999; Pawlak and 
Skowron,  1994;  Peters et al 2000;   Polkowski  and  Skowron 2000; 
Skowron et al 2000; Szczuka 2002). 

As seen from Fig. 6.14 the main two blocks of the neuro-rough system 
are related to data processing. These are neural network modules, that 
quantize numerical data, and the rough set-based engine that extract rules 
from data. The elements of the input vector shown in Fig. 6.14 are num-
bers representing the realm of angles, distances and sound loudness values, 
whereas the rough set-based decision system requires quantized data. For 
example let us consider spherical space around the listener’s head. This 
space can be sampled at different elevations (from below the horizontal 
plane to directly overhead). In addition at each elevation a full 360 degrees 
of azimuth can be sampled in equal sized increments. A total of some hun-
dred of locations can be obtained in this way. However, in the experiments 
only horizontal plane was considered, the division of angles was as seen in 
Fig. 6.14. Consequently, for quantization purposes, self-organizing neural 
net  is  proposed,  similarly  like  in other  experiments (Czyzewski  and 
Krolikowski 2001). For this purpose self-organizing map (SOM) intro-
duced by Kohonen has been chosen (Kohonen 1990). This is one of the 
best known neural network clustering algorithms, which assigns data to 
one of specified subsets according to the clusters detected in a competitive 
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learning process. During this learning only the weight vector which is most 
similar to a given input vector is accepted for weight building. Since data 
can be interpreted as points in a metric space, thus each pattern is consid-
ered as an N-dimensional feature vector, and patterns belonging to the 
same cluster are expected to possess strong interval similarity according to 
the chosen measure of similarity. Typically, the Euclidean metric is used in 
SOM implementations (Kohonen 1990). 
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Fig. 6.14. Neuro-rough system lay-out 

Using the SOM as a data quantizer, a scalar- and a vector quantization 
can be taken into account. In the first case, the SOM is supplied to a single 
element of the key vector. In the second case, a few attributes can consti-
tute input vectors, which lowers the number of attributes helping to avoid a 
large number of attribute combinations in the rough set inference.  

The SOM of the Kohonen type defines mapping of N-dimensional input 
data into a two-dimensional regular array of units, and the SOM operation 
is based on a competition between the output neurons due to any stimula-
tion from input vector x . As a result of the competition, the cth output unit 
wins provided the following relations are fulfilled: 
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where ()d  is a distance between vector x  and weight vector iW  of the 

output neuron, whereas LK  is the dimension of the output layer.  
The adaptation process can be described in terms of the minimization of 

an error function )(kE , and hence the updating of the weight vectors in the 
kth step is performed according to the expression: 
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where initial values of weight matrix )0(W  are small random values in 

the range 1,1 , where as the definition of error function )(kE  is related to 

the concept of vector quantization, and is given by the following formula 
(Kohonen et al 1989): 
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where cih  is a spatial neighborhood kernel for the cth best matching 

unit. Thus, the expression updating formula can be rewritten as below: 
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for which the adequate derivatives of function ),( cWx  are dependent 

on the metrics used. 
In the SOM implementation, the general form of kernel function cih  is 

exploited, which is the Gaussian function defined as follows (Kohonen 
1990):
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where cN  denotes the set of neighbor nodes around the cth winner neu-

ron, ir  and cr  are the coordinate vectors of the ith unit and the best match-

ing one. In turn, 1,0  can be referred to as a learning rate, whereas 

corresponds to the radius of set cN , and is limited by the size of the array 

of the output neurons. Both are decreasing functions of time, of which 
definitions are given below (Kohonen 1990). 
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The learning rate  is expressed by the relationship: 

max

)()( 1
k

kkk
(6.9)

where the coefficient  varies according to the Kohonen’s recommen-
dations in the following way: 
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Other recommendations are as follows: max1 02.0 kk , max2 4.0 kk ,

for which the maximum number of iterations is set to: 
100000;50000;10000maxk .

The radius  of the neighborhood set cN  corresponds to the learning 

rate  according to relationship: 
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where coefficients , , ,  are computed according to recommen-

dations given by Kohonen (1990): 
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where the initial radius )0(  is equal to the radius of the output array, 

i.e.: 2/),max()0( LK .

In the structure of the implemented SOM, the input and output nodes are 
fully connected, whereas the output units are arranged in the hexagonal lat-

tice. The initial values for learning rate )0(  is equal to 0.95. For the pur-

poses of the neuro-rough hybridization, at the end of the weight adaptation 
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process the output units should be labeled with some symbols. It is done in 
order to assign quantized input data to symbols which are to be processed 
in the rough set inference.  

The engineered rule induction algorithm is based on the well described 
in literature rough set methodology (Komorowski et al 1999; Pawlak 1982; 
Pawlak 1991, Pawlak and Skworon 1994; Skowron et al 2000). The used 
algorithm aimed at reducing the computational complexity (Czyzewski 
and Krolikowski 2001). This pertained reducing the values of attributes 
and searching for reducts, so that all combinations of the conditional at-
tributes are analyzed at reasonable computational cost. Particularly, for a 
given sorted table, the optimum number of sets of attributes A 
(

Ci aaaCA ,,,,1 ), subsets of conditional attributes C,

can be analyzed using special way of attribute sorting (Czyzewski and 
Krolikowski 2001). The algorithm splits the decision table into two tables: 
consisting of only certain rules and of only uncertain ones. There is an ad-
ditional information associated with every object in them. The information 
concerns the minimal set of indispensable attributes and the rough measure 

RS . The latter case is applied only for uncertain rules. Other details corre-

sponding to  the  rough set-based  engine can be  found in literature 
(Czyzewski and Krolikowski 2001). 

6.3.2 Experiments 

Results from test sessions gathered in a database are then further proc-
essed. Table 6.3 that consists of database records can be considered as a 
decision table that resulted from both the abstraction and thematic tests. 
The type of the test is therefore one of the attributes contained in the deci-
sion table. Other attributes included in the decision table are: ‘angle’, ‘dis-

tance’, ‘level’, ‘video’ and a decision attribute called ‘proximity_effect’. To 
differentiate between attributes resulting from experts’ answers, actual 
values of angles, distance and level known to the experimenter two adjec-
tives, namely, ‘subjective’ and ‘objective’ were added, thus making it six 
attributes altogether. As was mentioned before, during the test session ex-
perts are asked to fill in questionnaire forms, an example of which was 
shown in Fig. 6.3. It should be remembered that questionnaire values are 
numerical, thus values indicated by experts form a feature vector that is fed 
through the neural networks modules. The neural network module assigns 
a numerical value indicated by an expert to one of the clusters correspond-
ing to semantic descriptors of a particular attribute and returns it at the NN 
output. This is possible by adding a threshold function operating in the 
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range of (-1,1) to the system shown in Fig. 6.14. Such comparators are 
shown schematically behind the outputs of the NN, however in reality they 
are assigned to the neuron in the hidden layer. Their role is to choose the 
strongest value obtained in the clustering process. Therefore Table 6.3 
contains descriptors obtained by a neural network-based quantization re-
lated to ‘angle_subjective’, ‘distance_subjective’, ‘level_subjective’ attrib-
utes. Semantic descriptors related to the ‘angle_subjective’ attribute are as 
follows: ‘none’, ‘front’, ‘left_front’, ‘left’, ‘left_rear’, ‘rear’, right_rear’,
right’, ‘right_front’. All but one such a descriptor is obvious. The ‘none’
descriptor is related to the case when distance equals 0, thus a phantom 
sound is positioned in a ‘sweet-spot’ (expert’s seat). This means that sound 
is subjectively perceived as directly transmitted to the head of an expert.  
In addition the ‘distance_subjective’ is quantized by the NN module as: 
‘none’ (‘sweet-spot’), ‘close’ (large distance from the screen), ‘medium’, 
‘far’ (small distance from the screen), and correspondingly 
‘level_subjective’ is denoted as: ‘low’, ‘medium’, ‘high’.

Values of angles, distance and level of a phantom sound source are 
given numerically as set by the experimenter, however they are quantified 
values (angles in degrees, distance in centimeters and level in dB). The 
range of angle attribute was already shown. The quantization resolution of 
angles and distance is directly related to the resolution of phantom sources 
created by the Samplitude 2496 software. In a way this limits the number 

10  dB  step.  The  problem  of  the  quantization  of
 level, distance and level attributes is further complicated because of some
 acoustical principles, which will  be  however  not  reviewed  here. These
 values were left as numbers because it is  easier  to understand  the rule in
 such a way. On the other hand descriptors related to ‘test’, ‘video’ attributes
 and the proximity effect attributes were set as semantic descriptors.
fore ‘sound’ and ‘video’
traction’,  ‘thematic ’  and  correspondingly:  ‘no_video’, ‘static_image’, 

sion attribute can be read as ‘no_shift’, ‘slight_
‘strong_shift ’ and these  descriptors will appear

 in the consequence part of a rule.

of created phantom sources. Level values were quantified in the range
 

of
 (50 dB to 100 dB) with a 

 There-
attributes can have values such as follows: ‘abs-

‘dynamic_image’. The deci
shift’, ‘medium_shift’ and 
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answers subj. objective - proximity_ 
 effect 

e1 front close medium 00 ... abstrac-
tion 

static_ 
image 

no_ 
shift 

e2 left_front close high 600 ...   medium_ 
shift 

... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... 
en left_rear far medium 3150 ... thematic dynamic

_image 
strong_ 

shift 

Sample rules that can be derived from the decision table are presented 
below:

if left_front AND close AND medium AND  00 AND 20 AND 70 AND 
abstraction AND static than no_shift

if left_front AND close AND medium AND  600 AND 20 AND 70 AND 
thematic AND static than slight_shift

if none AND none AND high AND  00 AND 0 AND 90 AND abstraction

AND static than no_shift

........................................................................................................................ 

where the numerical values denote the actual directivity, distance or 
level of the transmitted sound and related italic labels denote indices as in-
dicated by experts and then quantized by the NN module. Other values are 
as explained before. Rules that will have a high value of the rough set 
measure can be considered as a knowledge base of associative rules for 
video, multimedia and film creators.  

Table 6.3. Decision table 

Experts’ Angle_ Distance Level Angle_ ... Test Video Decision 

6.3 ROUGH-NEURO PROCESSING    
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The subjective listening tests proved that visual objects could influence 
the subjective localization of sound sources. Measurement data showed 
that visual objects may “attract” the listeners’ attention, thus in some cases 
sound sources may seem to be localized closer to the screen. It was found 
that the image proximity effect is listener-dependent, what is probably re-
lated to some individual psychological processes occurring in human 
brains.

As seen from the presented concepts and experiments, subjective de-
scriptors and numerical values gathered in the decision table can be then 
processed by the rough set-based method. In this way a new concept of 
computing with words was presented that allow processing data obtained 
from subjective tests and objectively given measures.  

On the basis of the experiments described in this Chapter, it can be 
stated that subjective tests seem appropriate for the analysis of the correla-
tion between hearing and sight senses due to the perception of a surround 
sound. It creates an environment for automatic exploration of data derived 
from psychoacoustic experiments, and knowledge discovery based on 
modern, soft computing–oriented methodologies. The results of such ex-
periments could yield the recommendations to sound engineers producing 
surround movie sound tracks, digital video and multimedia. 
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7 CONCLUDING REMARKS 

The choice of problems presented in this study is intended to emphasize 
that in some cases even the classical problems of acoustics can be ad-
dressed and solved by means of new methods, especially those arising 
from the soft computing domain. Before soft computing methods were in-
troduced, all applications dealing with uncertainty were based on the prob-
abilistic approach. Meanwhile, in the case of some of the studied applica-
tions, such as automatic recognition of musical phrases, it is impossible to 
base the research on such an approach only, because each musical phrase 
has its unique character that cannot be sufficiently described by any statis-
tics. Similarly, the statistical processing of subjective testing results is not 
fully reliable in most practical applications in which relatively small data 
sets are available. Moreover, the hitherto used statistical analyses do not 

parameters. Such rules are needed to analyze the acoustical phenomena 
underlying the preference of subjective quality of sound. In the above 
mentioned applications a rule-based decision systems are necessary to en-
sure a more accurate data analysis and a better understanding of the phe-
nomena under scrutiny on the basis of obtained results.  

Rough set-based systems are generally known for that they can generate 
rules from data sets and, what is of paramount importance, because they 
provide ways for handling data with internal inconsistencies. These fea-
tures proved to be of significant importance to presented applications, as 
subjective assessment of musical patterns made by experts is usually 
highly inconsistent. Moreover, the traditional statistical analysis of subjec-
tive test results cannot reveal hidden relations between tested parameters 
nor can it provide the instructions on how to tune a system based on such 
parameters. Consequently, the rough set method was extensively used 
which is one of the most advanced and well-developed data analysis tech-
niques available today, offering effective tools to extract knowledge from 
data. In some applications also the fuzzy logic proved to be applicable to 
such problems as subjective quantization of parameter ranges or calculat-
ing global subjective preference on the basis of such operators as fuzzy un-
ion and fuzzy intersection. The fuzzy logic also helped to solve the prob-
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allow for directly formulating rules showing the relations between assessed 



lem of musical instrument control – so far impossible to overcome by 
means of crisp logic.      

The experiments conducted within the framework of this research work 
encompassed the implementation of selected computational intelligence 
methods for the purposes of acquiring and recognizing musical signals and 
phrases. These methods were also applied to verify subjective acoustical 
assessments. The problems posed were solved through the use of neural 
networks, fuzzy logic and rough set-based methods, genetic algorithms, 
and hybrid decision-systems.  

The research results obtained during the course of the work confirm the 
viability of algorithms from the computational intelligence area for solving 
problems of musical acoustics and also psychophysiology of hearing. 
These problems, due to their complexity as well as to the unrepeatable na-
ture of acoustical phenomena, escape analyses that are based on determi-
nistic models. Some sample results of the musical instrument class recog-
nition and musical duet separation were shown. Such experiments belong 
to the so-called Musical Information Retrieval field, which aim at auto-
matic retrieval of complex information from musical databases. It was 
shown that the soft computing approach to music instrument classification 
is justified with recognition scores. Usually scores obtained for a small 
number of instruments are very high, and for a larger number of instru-
ments, in most cases, despite the decision vagueness, the system indicates 
the appropriate instrument. In addition, as seen from the results, the Fre-
quency Envelope Distribution (FED) algorithm separates musical duets 
quite efficiently. It is worth noting that after the sounds have been proc-
essed and separated, human experts recognized them without any difficul-
ties. Further experiments will include some optimization of the FED algo-
rithm in order to improve the ANN-based recognition process results. 

Other case studies presented in this book encompassed applications of 
soft computing methods to the area of psychophysiology with a dedication 
to hearing problem solutions. Looking at the results obtained, it may be 
concluded that such an approach proved to be fully justified. The last pres-
entation concerned audio-visual correlation. This problem should be fur-
ther explored since multimodal approach may help to improve perform-
ance of many algorithms and at the same time may give a new insight into 
integration and interaction of human perception.  
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