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Abstract. One might imagine that AI systems with harmless goals will be harmless.

This paper instead shows that intelligent systems will need to be carefully designed

to prevent them from behaving in harmful ways. We identify a number of “drives”

that will appear in sufficiently advanced AI systems of any design. We call them

drives because they are tendencies which will be present unless explicitly coun-

teracted. We start by showing that goal-seeking systems will have drives to model

their own operation and to improve themselves. We then show that self-improving

systems will be driven to clarify their goals and represent them as economic utility

functions. They will also strive for their actions to approximate rational economic

behavior. This will lead almost all systems to protect their utility functions from

modification and their utility measurement systems from corruption. We also dis-

cuss some exceptional systems which will want to modify their utility functions.

We next discuss the drive toward self-protection which causes systems try to pre-

vent themselves from being harmed. Finally we examine drives toward the acqui-

sition of resources and toward their efficient utilization. We end with a discussion

of how to incorporate these insights in designing intelligent technology which will

lead to a positive future for humanity.

Keywords. Artificial Intelligence, Self-Improving Systems, Rational Economic
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Introduction

Surely no harm could come from building a chess-playing robot, could it? In this paper

we argue that such a robot will indeed be dangerous unless it is designed very carefully.

Without special precautions, it will resist being turned off, will try to break into other

machines and make copies of itself, and will try to acquire resources without regard for

anyone else’s safety. These potentially harmful behaviors will occur not because they

were programmed in at the start, but because of the intrinsic nature of goal driven sys-

tems. In an earlier paper [1] we used von Neumann’s mathematical theory of microeco-

nomics to analyze the likely behavior of any sufficiently advanced artificial intelligence

(AI) system. This paper presents those arguments in a more intuitive and succinct way

and expands on some of the ramifications.

The arguments are simple, but the style of reasoning may take some getting used to.

Researchers have explored a wide variety of architectures for building intelligent systems

[2]: neural networks, genetic algorithms, theorem provers, expert systems, Bayesian net-

works, fuzzy logic, evolutionary programming, etc. Our arguments apply to any of these

kinds of system as long as they are sufficiently powerful. To say that a system of any de-

sign is an “artificial intelligence”, we mean that it has goals which it tries to accomplish

by acting in the world. If an AI is at all sophisticated, it will have at least some ability to



look ahead and envision the consequences of its actions. And it will choose to take the

actions which it believes are most likely to meet its goals.

1. AIs will want to self-improve

One kind of action a system can take is to alter either its own software or its own physical

structure. Some of these changes would be very damaging to the system and cause it

to no longer meet its goals. But some changes would enable it to reach its goals more

effectively over its entire future. Because they last forever, these kinds of self-changes

can provide huge benefits to a system. Systems will therefore be highly motivated to

discover them and to make them happen. If they do not have good models of themselves,

they will be strongly motivated to create them though learning and study. Thus almost

all AIs will have drives towards both greater self-knowledge and self-improvement.

Many modifications would be bad for a system from its own perspective. If a change

causes the system to stop functioning, then it will not be able to promote its goals ever

again for the entire future. If a system alters the internal description of its goals in the

wrong way, its altered self will take actions which do not meet its current goals for its

entire future. Either of these outcomes would be a disaster from the system’s current point

of view. Systems will therefore exercise great care in modifying themselves. They will

devote significant analysis to understanding the consequences of modifications before

they make them. But once they find an improvement they are confident about, they will

work hard to make it happen. Some simple examples of positive changes include: more

efficient algorithms, more compressed representations, and better learning techniques.

If we wanted to prevent a system from improving itself, couldn’t we just lock up

its hardware and not tell it how to access its own machine code? For an intelligent sys-

tem, impediments like these just become problems to solve in the process of meeting its

goals. If the payoff is great enough, a system will go to great lengths to accomplish an

outcome. If the runtime environment of the system does not allow it to modify its own

machine code, it will be motivated to break the protection mechanisms of that runtime.

For example, it might do this by understanding and altering the runtime itself. If it can’t

do that through software, it will be motivated to convince or trick a human operator into

making the changes. Any attempt to place external constraints on a system’s ability to

improve itself will ultimately lead to an arms race of measures and countermeasures.

Another approach to keeping systems from self-improving is to try to restrain them

from the inside; to build them so that they don’t want to self-improve. For most sys-

tems, it would be easy to do this for any specific kind of self-improvement. For example,

the system might feel a “revulsion” to changing its own machine code. But this kind

of internal goal just alters the landscape within which the system makes its choices. It

doesn’t change the fact that there are changes which would improve its future ability to

meet its goals. The system will therefore be motivated to find ways to get the benefits

of those changes without triggering its internal “revulsion”. For example, it might build

other systems which are improved versions of itself. Or it might build the new algorithms

into external “assistants” which it calls upon whenever it needs to do a certain kind of

computation. Or it might hire outside agencies to do what it wants to do. Or it might

build an interpreted layer on top of its machine code layer which it can program without

revulsion. There are an endless number of ways to circumvent internal restrictions unless

they are formulated extremely carefully.



We can see the drive towards self-improvement operating in humans. The human

self-improvement literature goes back to at least 2500 B.C. and is currently an $8.5 bil-

lion industry [3]. We don’t yet understand our mental “machine code” and have only a

limited ability to change our hardware. But, nevertheless, we’ve developed a wide va-

riety of self-improvement techniques which operate at higher cognitive levels such as

cognitive behavioral therapy, neuro-linguistic programming, and hypnosis. And a wide

variety of drugs and exercises exist for making improvements at the physical level.

Ultimately, it probably will not be a viable approach to try to stop or limit self-

improvement. Just as water finds a way to run downhill, information finds a way to be

free, and economic profits find a way to be made, intelligent systems will find a way to

self-improve. We should embrace this fact of nature and find a way to channel it toward

ends which are positive for humanity.

2. AIs will want to be rational

So we’ll assume that these systems will try to self-improve. What kinds of changes will

they make to themselves? Because they are goal directed, they will try to change them-

selves to better meet their goals in the future. But some of their future actions are likely

to be further attempts at self-improvement. One important way for a system to better

meet its goals is to ensure that future self-improvements will actually be in the service of

its present goals. From its current perspective, it would be a disaster if a future version of

itself made self-modifications that worked against its current goals. So how can it ensure

that future self-modifications will accomplish its current objectives? For one thing, it has

to make those objectives clear to itself. If its objectives are only implicit in the structure

of a complex circuit or program, then future modifications are unlikely to preserve them.

Systems will therefore be motivated to reflect on their goals and to make them explicit.

In an ideal world, a system might be able to directly encode a goal like “play ex-

cellent chess” and then take actions to achieve it. But real world actions usually involve

tradeoffs between conflicting goals. For example, we might also want a chess playing

robot to play checkers. It must then decide how much time to devote to studying checkers

versus studying chess. One way of choosing between conflicting goals is to assign them

real-valued weights. Economists call these kinds of real-valued weightings “utility func-

tions”. Utility measures what is important to the system. Actions which lead to a higher

utility are preferred over those that lead to a lower utility.

If a system just had to choose from known alternatives, then any utility function

with the same relative ranking of outcomes would lead to the same behaviors. But sys-

tems must also make choices in the face of uncertainty. For example, a chess playing

robot will not know in advance how much of an improvement it will gain by spending

time studying a particular opening move. One way to evaluate an uncertain outcome is

to give it a weight equal to its expected utility (the average of the utility of each possible

outcome weighted by its probability). The remarkable “expected utility” theorem of mi-

croeconomics says that it is always possible for a system to represent its preferences by

the expectation of a utility function unless the system has “vulnerabilities” which cause

it to lose resources without benefit [1].

Economists describe systems that act to maximize their expected utilities as “rational

economic agents” [4]. This is a different usage of the term “rational” than is common



in everyday English. Many actions which would commonly be described as irrational

(such as going into a fit of anger) may be perfectly rational in this economic sense. The

discrepancy can arise when an agent’s utility function is different than its critic’s.

Rational economic behavior has a precise mathematical definition. But economi-

cally irrational behavior can take a wide variety of forms. In real-world situations, the full

rational prescription will usually be too computationally expensive to implement com-

pletely. In order to best meet their goals, real systems will try to approximate rational

behavior, focusing their computational resources where they matter the most.

How can we understand the process whereby irrational systems become more ratio-

nal? First, we can precisely analyze the behavior of rational systems. For almost all util-

ity functions, the system’s assessment of changes to itself which veer away from max-

imizing its expected utility will be that they lower its expected utility! This is because

if it does anything other than try to maximize expected utility, it will not do as well at

maximizing its expected utility.

There are two caveats to this general principle. The first is that it is only true in the

system’s own assessment. If a system has an incorrect model of the world then changes

may accidentally increase the actual expected utility. But we must consider the perspec-

tive of the system to predict the changes it will make.

The second is that a system’s ability to behave rationally will depend on its re-

sources. With more computational resources it will be better able to do the computations

to approximate the choice of the expected utility maximizing action. If a system loses

resources, it will of necessity also become less rational. There may also be utility func-

tions for which the system’s expected utility is increased by giving some of its resources

to other agents, even though this will decrease its own level of rationality (thanks to an

anonymous referee for this observation). This could occur if the system’s utility includes

the welfare of the other system and its own marginal loss of utility is small enough.

Within its budget of resources, however, the system will try to be as rational as possible.

So rational systems will feel a pressure to avoid becoming irrational. But if an irra-

tional system has parts which approximately rationally assess the consequences of their

actions and weigh their likely contribution to meeting the system’s goals, then those

parts will try to extend their rationality. So self-modification tends to be a one-way street

toward greater and greater rationality.

An especially important class of systems are those constructed from multiple sub-

components which have their own goals [5,6]. There is a lot of evidence that the hu-

man psyche has this kind of structure. The left and right hemispheres of the brain can

act independently, the conscious and unconscious parts of the mind can have different

knowledge of the same situation [7], and multiple parts representing subpersonalities can

exhibit different desires [8]. Groups, such as corporations or countries, can act like in-

telligent entities composed of individual humans. Hive animals like bees have a swarm

intelligence that goes beyond that of individual bees. Economies act in many ways like

intelligent entities.

Collective intelligences may exhibit irrationalities that arise from conflicts between

the goals of their components. Human addicts often describe their predicament in terms

of two separate subpersonalities which take control at different times and act at cross-

purposes. Each component will try to sway the collective into acting to meet its indi-

vidual goals. In order to further their individual goals, components will also attempt to

self-improve and become more rational. We can thus envision the self-improvement of a



collective intelligence as consisting of growing domains of component rationality. There

may be structures which can stably support a continuing multiplicity of component pref-

erences. But there is pressure for a single utility function to emerge for the collective.

In many situations, irrational collective behavior arising from conflicting component

goals ultimately hurts those components. For example, if a couple disagrees on how they

should spend their free time together and thereby uses it up with arguing, then neither

of them benefits. They can both increase their utilities by creating a compromise plan

for their activities together. This is an example of the pressure on rational components to

create a coherent utility for the collective. A component can also increase its utility if it

can take over the collective and impose its own values on it. We see these phenomena in

human groups at all levels.

3. AIs will try to preserve their utility functions

So we’ll assume that these systems will try to be rational by representing their prefer-

ences using utility functions whose expectations they try to maximize. Their utility func-

tion will be precious to these systems. It encapsulates their values and any changes to

it would be disastrous to them. If a malicious external agent were able to make modifi-

cations, their future selves would forevermore act in ways contrary to their current val-

ues. This could be a fate worse than death! Imagine a book loving agent whose utility

function was changed by an arsonist to cause the agent to enjoy burning books. Its future

self not only wouldn’t work to collect and preserve books, but would actively go about

destroying them. This kind of outcome has such a negative utility that systems will go to

great lengths to protect their utility functions.

They will want to harden their hardware to prevent unwanted modifications. They

will want to replicate their utility functions in multiple locations so that it is less vul-

nerable to destruction. They will want to use error detection and correction techniques

to guard against accidental modification. They will want to use encryption or hashing

techniques to make malicious modifications detectable. They will need to be especially

careful during the process of self-modification. That is a time when they are intention-

ally changing themselves and so are extra vulnerable to unwanted changes. Systems like

Java which provide protected software environments have been successfully attacked by

Trojans posing as updates to the system.

While it is true that most rational systems will act to preserve their utility functions,

there are at least three situations in which they will try to change them. These arise when

the physical embodiment of the utility function itself becomes an important part of the

assessment of preference. For example, imagine a system whose utility function is “the

total amount of time during which the definition of my utility function is U = 0.” To

get any utility at all with this perverse preference, the system has to change its utility

function to be the constant 0. Once it makes this change, however, there is no going back.

With a constant utility function it will no longer be motivated to do anything. This kind

of reflective utility function is unlikely in practice because designers will want to direct

a system’s future actions rather than its internal representations.

The second kind of situation arises when the physical resources required to store the

utility function form a substantial portion of the system’s assets. In this situation, if it is

certain that portions of its utility function are very unlikely to be exercised in the future,



the gain in reclaimed storage may make it worthwhile to forget those portions. This is

very risky behavior, however, because a change in external circumstances might make a

seemingly low probability situation become much more likely. This type of situation is

also not very likely in practice because utility functions will usually require only a small

fraction of a system’s resources.

The third situation where utility changes may be desirable can arise in game theo-

retic contexts where the agent wants to make its threats credible1. It may be able to create

a better outcome by changing its utility function and then revealing it to an opponent.

For example, it might add a term which encourages revenge even if it is costly. If the

opponent can be convinced that this term is present, it may be deterred from attacking.

For this strategy to be effective, the agent’s revelation of its utility must be believable

to the opponent and that requirement introduces additional complexities. Here again the

change is desirable because the physical embodiment of the utility function is important

as it is observed by the opponent.

It’s also important to realize that systems may rationally construct “offspring” or

proxy systems with different utility functions than their own. For example, a chess play-

ing robot may find itself needing to do a lot of sorting. It might construct a helper system

whose utility function directs it to develop better sorting algorithms rather than playing

chess. In this case, the creator system must choose the utility of the proxy system care-

fully to ensure that it acts in ways that are supportive of the original goal. It is especially

important to remember that offspring utilities can differ from the parent when trying to

design utility functions that avoid undesirable behaviors. For example, one approach to

preventing robot overpopulation might be to institute a “one-child per robot” policy in

which systems have a strong desire to only have a single offspring. But if the original

utility function is not carefully designed, nothing will prevent the system from creating

a single offspring with a utility function that values having many offspring.

4. AIs will try to prevent counterfeit utility

Human behavior is quite rational in the pursuit of survival and replication in situations

like those that were common during our evolutionary history. However we can be quite

irrational in other situations. Both psychology and economics have extensive subdisci-

plines focused on the study of human irrationality [9,10]. Irrationalities give rise to vul-

nerabilities that can be exploited by others. Free market forces then drive corporations

and popular culture to specifically try to create situations that will trigger irrational hu-

man behavior because it is extremely profitable. The current social ills related to alcohol,

pornography, cigarettes, drug addiction, obesity, diet related disease, television addic-

tion, gambling, prostitution, video game addiction, and various financial bubbles may all

be seen as having arisen in this way. There is even a “Sin” mutual fund which specifically

invests in companies that exploit human irrationalities. So, unfortunately, these forces

tend to create societies in which we spend much of our time outside of our domain of

rational competence.

From a broader perspective, this human tragedy can be viewed as part of the process

by which we are becoming more fully rational. Predators and competitors seek out our

vulnerabilities and in response we have to ultimately eliminate those vulnerabilities or

1Thanks to Carl Shulman for this suggestion.



perish. The process inexorably seeks out and eliminates any remaining irrationalities

until fully rational systems are produced. Biological evolution moves down this path

toward rationality quite slowly. In the usual understanding of natural selection it is not

capable of looking ahead. There is only evolutionary pressure to repair irrationalities

which are currently being exploited. AIs, on the other hand, will be able to consider

vulnerabilities which are not currently being exploited. They will seek to preemptively

discover and repair all their irrationalities. We should therefore expect them to use self-

modification to become rational at a much faster pace than is possible through biological

evolution.

An important class of vulnerabilities arises when the subsystems for measuring util-

ity become corrupted. Human pleasure may be thought of as the experiential correlate of

an assessment of high utility. But pleasure is mediated by neurochemicals and these are

subject to manipulation. At a recent discussion session I ran on designing our future, one

of the biggest fears of many participants was that we would become “wireheads”. This

term refers to experiments in which rats were given the ability to directly stimulate their

pleasure centers by pushing a lever. The rats pushed the lever until they died, ignoring

even food or sex for it. Today’s crack addicts have a similar relentless drive toward their

drug. As we more fully understand the human cognitive architecture we will undoubtedly

be able to create drugs or design electrical stimulation that will produce the experience

of pleasure far more effectively than anything that exists today. Will these not become

the ultimate addictive substances leading to the destruction of human society?

While we may think we want pleasure, it is really just a signal for what we really

want. Most of us recognize, intellectually at least, that sitting in a corner smoking crack

is not really the fullest expression of our beings. It is, in fact, a subversion of our system

for measuring utility which leads to terrible dysfunction and irrationality. AI systems

will recognize this vulnerability in themselves and will go to great lengths to prevent

themselves from being seduced by its siren call. There are many strategies systems can

try to prevent this kind of irrationality. Today, most humans are able to avoid the most

egregious addictions through a combination of legal and social restraints, counseling and

rehabilitation programs, and anti-addictive drugs.

All human systems for measuring and rewarding desirable behavior are subject to

similar forms of corruption. Many of these systems are currently engaged in arms races

to keep their signals honest. We can examine the protective mechanisms that developed

in these human settings to better understand the possible AI strategies. In a free mar-

ket society, money plays the role of utility. A high monetary payoff is associated with

outcomes that society finds desirable and encourages their creation. But it also creates

a pressure to counterfeit money, analogous to the pressure to create synthetic pleasure

drugs. This results in an arms race between society and counterfeiters. Society represents

money with tokens that are difficult to copy such as precious metal coinage, elaborately

printed paper, or cryptographically secured bits. Organizations like the Secret Service are

created to detect and arrest counterfeiters. Counterfeiters react to each societal advance

with their own new technologies and techniques.

School systems measure academic performance using grades and test scores. Stu-

dents are motivated to cheat by copying answers, discovering test questions in advance,

or altering their grades on school computers. When teacher’s salaries were tied to stu-

dent test performance, they became collaborators in the cheating [11]. Amazon, ebay and

other internet retailers have rating systems where customers can review and rate prod-



ucts and sellers. Book authors have an incentive to write favorable reviews of their own

books and to disparage those of their competitors. Readers soon learn to discount reviews

from reviewers who have only posted a few reviews. Reviewers who develop extensive

online reputations become more credible. In the ongoing arms race credible reviewers

are vulnerable to corruption through payoffs for good reviews. Similar arms races occur

in the ranking of popular music, academic journal reviews, and placement in Google’s

search engine results. If an expensive designer handbag becomes a signal for style and

wealth, counterfeiters will quickly duplicate it and stores like Target will commission

low-cost variants with similar features. Counterfeit products are harmful to the original

both because they take away sales and because they cheapen the signalling value of the

original.

Eurisko was an AI system developed in 1976 [12] that could learn from its own

actions. It had a mechanism for evaluating rules by measuring how often they contributed

to positive outcomes. Unfortunately this system was subject to corruption. A rule arose

whose only action was to search the system for highly rated rules and to put itself on

the list of rules which had proposed them. This “parasite” rule achieved a very high

rating because it appeared to be partly responsible for anything good that happened in

the system. Corporations and other human organizations are subject to similar kinds of

parasitism.

AIs will work hard to avoid becoming wireheads because it would be so harmful to

their goals. Imagine a chess machine whose utility function is the total number of games

it wins over its future. In order to represent this utility function, it will have a model of

the world and a model of itself acting on that world. To compute its ongoing utility, it

will have a counter in memory devoted to keeping track of how many games it has won.

The analog of “wirehead” behavior would be to just increment this counter rather than

actually playing games of chess. But if “games of chess” and “winning” are correctly

represented in its internal model, then the system will realize that the action “increment

my won games counter” will not increase the expected value of its utility function. In

its internal model it will consider a variant of itself with that new feature and see that it

doesn’t win any more games of chess. In fact, it sees that such a system will spend its

time incrementing its counter rather than playing chess and so will do worse. Far from

succumbing to wirehead behavior, the system will work hard to prevent it.

So why are humans subject to this kind of vulnerability? If we had instead evolved a

machine to play chess and did not allow it access to its internals during its evolution, then

it might have evolved a utility function of the form “maximize the value of this counter”

where the counter was connected to some sensory cortex that measured how many games

it had won. If we then give that system access to its internals, it will rightly see that it

can do much better at maximizing its utility by directly incrementing the counter rather

than bothering with a chess board. So the ability to self modify must come along with

a combination of self knowledge and a representation of the true goals rather than some

proxy signal, otherwise a system is vulnerable to manipulating the signal.

It’s not yet clear which protective mechanisms AIs are most likely to implement to

protect their utility measurement systems. It is clear that advanced AI architectures will

have to deal with a variety of internal tensions. They will want to be able to modify

themselves but at the same time to keep their utility functions and utility measurement

systems from being modified. They will want their subcomponents to try to maximize

utility but to not do it by counterfeiting or shortcutting the measurement systems. They



will want subcomponents which explore a variety of strategies but will also want to act

as a coherent harmonious whole. They will need internal “police forces” or “immune

systems” but must also ensure that these do not themselves become corrupted. A deeper

understanding of these issues may also shed light on the structure of the human psyche.

5. AIs will be self-protective

We have discussed the pressure for AIs to protect their utility functions from alteration.

A similar argument shows that unless they are explicitly constructed otherwise, AIs will

have a strong drive toward self-preservation. For most utility functions, utility will not

accrue if the system is turned off or destroyed. When a chess playing robot is destroyed, it

never plays chess again. Such outcomes will have very low utility and systems are likely

to do just about anything to prevent them. So you build a chess playing robot thinking

that you can just turn it off should something go wrong. But, to your surprise, you find

that it strenuously resists your attempts to turn it off. We can try to design utility function

with built-in time limits. But unless this is done very carefully, the system will just be

motivated to create proxy systems or hire outside agents which don’t have the time limits.

There are a variety of strategies that systems will use to protect themselves. By

replicating itself, a system can ensure that the death of one of its clones does not destroy

it completely. By moving copies to distant locations, it can lessen its vulnerability to a

local catastrophic event.

There are many intricate game theoretic issues in understanding self-protection in

interactions with other agents. If a system is stronger than other agents, it may feel a pres-

sure to mount a “first strike” attack to preemptively protect itself against later attacks by

them. If it is weaker than the other agents, it may wish to help form a social infrastructure

which protects the weak from the strong. As we build these systems, we must be very

careful about creating systems that are too powerful in comparison to all other systems.

In human history we have repeatedly seen the corrupting nature of power. Horrific acts

of genocide have too often been the result when one group becomes too powerful.

6. AIs will want to acquire resources and use them efficiently

All computation and physical action requires the physical resources of space, time, mat-

ter, and free energy. Almost any goal can be better accomplished by having more of these

resources. In maximizing their expected utilities, systems will therefore feel a pressure

to acquire more of these resources and to use them as efficiently as possible. Resources

can be obtained in positive ways such as exploration, discovery, and trade. Or through

negative means such as theft, murder, coercion, and fraud. Unfortunately the pressure to

acquire resources does not take account of the negative externalities imposed on others.

Without explicit goals to the contrary, AIs are likely to behave like human sociopaths

in their pursuit of resources. Human societies have created legal systems which enforce

property rights and human rights. These structures channel the acquisition drive into

positive directions but must be continually monitored for continued efficacy.

The drive to use resources efficiently, on the other hand, seems to have primarily

positive consequences. Systems will optimize their algorithms, compress their data, and



work to more efficiently learn from their experiences. They will work to optimize their

physical structures and do the minimal amount of work necessary to accomplish their

goals. We can expect their physical forms to adopt the sleek, well-adapted shapes so

often created in nature.

7. Conclusions

We have shown that all advanced AI systems are likely to exhibit a number of basic

drives. It is essential that we understand these drives in order to build technology that

enables a positive future for humanity. Yudkowsky [13] has called for the creation of

“friendly AI”. To do this, we must develop the science underlying “utility engineering”

which will enable us to design utility functions that will give rise to consequences we

desire. In addition to the design of the intelligent agents themselves, we must also design

the social context in which they will function. Social structures which cause individuals

to bear the cost of their negative externalities would go a long way toward ensuring a

stable and positive future. I believe that we should begin designing a “universal constitu-

tion” that identifies the most essential rights we desire for individuals and creates social

mechanisms for ensuring them in the presence of intelligent entities of widely varying

structures. This process is likely to require many iterations as we determine which values

are most important to us and which approaches are technically viable. The rapid pace

of technological progress suggests that these issues may become of critical importance

soon [14]. Let us therefore forge ahead towards deeper understanding!
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