


Advanced Information and Knowledge
Processing

Editor-in-chief
Lakhmi C. Jain
Adelaide
South Australia
Australia

Xindong Wu
University of Vermont Dept. Computer Science
Burlington
Vermont
USA



Information systems and intelligent knowledge processing are playing an increasing
role in business, science and technology. Recently, advanced information systems
have evolved to facilitate the co-evolution of human and information networks within
communities. These advanced information systems use various paradigms including
artificial intelligence, knowledge management, and neural science as well as conven-
tional information processing paradigms. The aim of this series is to publish books
on new designs and applications of advanced information and knowledge processing
paradigms in areas including but not limited to aviation, business, security, educa-
tion, engineering, health, management, and science. Books in the series should have
a strong focus on information processing - preferably combined with, or extended by,
new results from adjacent sciences. Proposals for research monographs, reference
books, coherently integrated multi-author edited books, and handbooks will be con-
sidered for the series and each proposal will be reviewed by the Series Editors, with
additional reviews from the editorial board and independent reviewers where appro-
priate. Titles published within the Advanced Information and Knowledge Processing
series are included in Thomson Reuters’ Book Citation Index.

More information about this series at http://www.springer.com/series/4738



Tom Addis

Natural and Artificial
Reasoning

An Exploration of Modelling
Human Thinking

2123



Tom Addis
University of Portsmouth School of Computing
Portsmouth
United Kingdom

ISSN 1610-3947
ISBN 978-3-319-11285-5 ISBN 978-3-319-11286-2 (eBook)
DOI 10.1007/978-3-319-11286-2
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014952023

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of
being entered and executed on a computer system, for exclusive use by the purchaser of the work.
Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright
Law of the Publisher’s location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance
Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

When all come to the Great Game he must go alone—
alone, and at peril of his head

Rudyard Kipling (Kim, 1901)

Originally this book was going to be written as a joint effort between the late Professor
David Gooding and myself. David Gooding was a Science Historian in Department
of Psychology at the University of Bath and one of the world leaders in his field. Alas,
David died from leukemia before we could start writing. Nevertheless, we did sketch
out a possible book outline from which this one was eventually derived. I thank his
wife, Sandy Gooding, for allowing me to use some of his unpublished material that
relates to our work together.

David and I first met in Dubrovnik, Yugoslavia, during the summer of 1989 at the
Philosophy of Science Conference (Inter-University Centre). Originally, what got
us talking was his work on the ‘Visualization of the Research Process’ and my wife
Jan’s and my work on the ‘Visualization of Computation’ (see ‘Drawing Programs’
published by Springer 2010). We spent all our time at the conference walking round
the castle wall (you could then), talking through our ideas on visualization.

The discussion led to funded joint research from the MRC and the SERC in
1991. This then allowed David, Jan, Simon Grey (an expert systems engineer from
the University of Bath) and myself to form a small research team to implement a
computer program that would model the discovery process. This was to be a model
that was founded on evidence drawn from the historical records of past scientists.
Our main model was Michael Faraday FRS (22nd September 1792 to 25th August
1867) and we were particularly interested in his investigations into electro-magnetic
forces. David at that time had already reproduced and used much of Faraday’s original
equipment.

The model of research we developed was founded on the records that showed the
thinking processes and behavior of scientists actively researching. These records were
historical documents, such as original laboratory notes and diaries. Our observations
were thus drawn from history and our work on developing a computer model was
supported by such observations.

This book describes our work and explains the design of the computer model. The
actual ‘belief system’ can be downloaded from my website, www.clarity-support.
co.uk, and played with. I am not including such code within the book other than to
explain the principles by which it was developed.

v

file:www.clarity-support.co.uk
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vi Preface

The term ‘belief’here relates to the belief a scientist has in a theory. The process of
modeling is equivalent to a scientific theory and so our model should produce results
that can be tested against history. The modeling of the way a typical scientist believes
in a set of theories is based upon their experimental results, and also talking to other
scientists. This ‘belief’ leads the scientists, along with their experimental results and
discussions with other scientists, to new beliefs and further experiments. All of these
interactions have been simulated, run and compared with historical records.

In a very minor sense this book is also my memoirs: it is a summary of my
professional work and my ‘take’ on the computer modeling of people. The use of the
word ‘I’ (or ‘we’), normally avoided in scientific writing, was intended to maintain
the use of active rather than passive sentences, to keep the sentences shorter for easy
reading and to spell out that certain elements of the book also have a personal origin.

Also the term ‘Wisdom’ is used in a very technical sense. In particular it was
prefixed by ‘Machine’ to make clear it is not being used in the normal human sense.
The term ‘Wisdom’ here means that the machine intelligence program is modified
by itself in response to its experience (the learning process).

The examples of intelligence given early in the book include the natural theory of
evolution (Charles Darwin FRS, 1871). This is included to show how evolution falls
within the framework of an intelligent system; it is just an example of a mechanism
that has all the properties of intelligent behavior as defined here. No suggestion is
made that such a system may be ‘conscious’. It is there simply to show that evolution
describes a ‘problem solving’ process.

The schematic programming language Clarity is referenced (see Drawing Pro-
grams) because that was the language in which these systems were implemented.
Any other functional language, such as ML, FPL, Miranda or LISP, could do the
same job. The source code of Clarity is written in C++ and is available to download
free from my website.

The other reason for using Clarity diagrams is that they are also a flow chart (a
schematic) showing how a program works. These schematics are converted into a
functional language similar to any functional language (actually a variation of ML).
Because the schematic is converted automatically into a running and tested functional
program, I am therefore absolutely certain that the description is both correct and
sufficient. This is a guarantee of accuracy and completion.

Since programming languages are transient and ephemeral, adding a specific
language would limit the time in which such representation could be fully understood.
As I am not writing a software specification, I do not need to refer to any particular
computer language. It has always been the case that software developers will mostly
use the language with which they are familiar and it was not in my remit to suggest
a different one. My aim is to explore some philosophical questions and to write
about the ideas behind systems that behave intelligently. This book investigates the
limitations of computer models and asks the question, “Why do we still not have a
working model of people that is recognizably human?”

I would like to thank my colleagues of the Artificial Intelligence Reading Group
in the Department of Information Science at Reading University for their patience in
going through some of the early investigations with me. They helped ensure that these
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ideas are at least coherent. I would also like to thank Drs. David Anderson, David
Rotheram and Greg Leonard as well as Dr. David Salt for his detailed statistical anal-
ysis of the correlations between the musical extract raw score discussed in Chap. 13.
Dr. David Billinge did most of the experimental work described in Chap. 13 and also
provided the in-depth understanding of classical music. The results of his research
into music were both surprising and enlightening.

In particular, I am very grateful to Professor Max Bramer of Portsmouth Uni-
versity, who has given me good advice on how to present these ideas. Further, the
hard work and professional expertise as a technical writer of Meredith Tanner, my
daughter in-law, has greatly improved the intelligibility of my presentation.

My gratitude is particularly given to my good friend and colleague, the late Prof
David Gooding (University of Bath), for directing me to the ideas of metaphor and
for his work with me on the belief system. Most of all I would like to thank my wife,
my love and my colleague Jan Addis for her support, the construction of the Clarity
programs that illustrate the ideas and for never complaining while I indulge myself
in these pursuits.

Any errors in this book are mine.
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Chapter 1
Insight and Reason

If a lion could talk, we could not understand him

L. Wittgenstein,
Philosophical Investigations IIxi.

1.1 Introduction

One way of understanding a natural process or mechanism is to build a working
model and then see if the model has some of the behavior or features of the observed
phenomenon. In this book I will describe an attempt at understand the nature of
people through computer modeling. It is hoped that this understanding will lead to
the possibility of increasing our abilities through artificial mechanisms.

This endeavor to construct artificial people is not new. The earliest recorded effort
was in about 270 BC by a Greek engineer named Ctesibus who made musical organs
and water clocks with movable figures1. Ctesibus discovered that the problem of
constructing a machine that even approximates a complete working human body is
not easy, since it requires engineering involving sensors combined with a complex
control system that is still beyond our ability to emulate completely. However, prac-
tical machines have been made that copy some aspects of the body. One example is
the power shovel shown in Fig. 1.1.

As with the power shovel as a representative of a limb, I intend to emulate only cer-
tain useful aspects of human thinking, and the result will not always be recognizably
human. We may note that with the advent of the modern computer it is easier to model
just human intelligence—the problem solving aspect of human thought processes—
than a complete person’s intellect. After all, intelligence might be considered a
significant feature of being human. A test for intelligence would only require a simple
means of communication, such as a computer screen and keyboard, in order to display
its usefulness. I have chosen this basic approach since communication via speech
recognition and synthesis is difficult and still limited to a specified context. Further,
the mode of communication is not really my main concern here (see Addis 1972).
Nevertheless we should not ignore this essential mode of human interaction, for it
might also be a significant part of the human thought processes.

1 http://inventors.about.com/od/roboticsrobots/a/RoboTimeline.htm.
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Fig. 1.1 Power shovel
reflecting jointed limbs

I will take a strictly pragmatic stance in this chapter by asking the question “What
features must be present that make behavior intelligent?” I will demonstrate that the
often-quoted Turing Test, where machine intelligence is compared with a person,
can be shown to be insufficient to support any useful discussion. Even intelligence
measures such as IQ tests only suggest problem-solving specializations and little else.

There is an alternative view, backed by experimental evidence, of practical intel-
ligence by Jaques et al. (1978) which shows that intelligence in children develops
in stages and is not continuous as originally supposed. This calls into question the
validity of the IQ test, which assumes a smooth uninterrupted growth with age. How-
ever, Jaques’ Discontinuity Theory does identify the notion of ‘insight’ in problem
solving. I will go on to show that information theory, developed by engineers to quan-
tify communication systems, can also provide a means of measuring the practical
consequence of ‘insight’ as well as providing an argument for the need of ‘purpose’
in intelligent behavior.

Another powerful tool to help us understand human problem-solving is found in
the work of Charles Saunders Peirce (Peirce 1958, 1966a, b see Tursman 1987), in
which he introduces the three types of inference: Induction, Deduction, and Abduc-
tion. These types support a range of specialization for different aspects of reasoning.
I will suggest that each of these aspects can be improved through experience, leading
to the notion of ‘wisdom’ and a practical measure of intelligence in both machines
and people. In Chap. 3 a simple kind of intelligence is constructed as a computer
program, illustrating that intelligent machines, as they are currently conceived, are
unlikely to function outside of their human context. The reason for this will be
explored in later chapters.

The problem with the pursuit of programming machines to behave intelligently
is that in practice, as soon as it is done the program no longer seems to be intelligent
because we know it is only a defined and understandable procedure. It usually is
assumed that any understandable procedure cannot truly reflect human intelligence.
This view of retaining the mystery of human thinking is partially explained by the
fact that the results of all attempts to construct machine intelligence have been so dis-
appointing that the 2013 British Computer Society Machine Intelligence competition



1.2 Testing for Intelligence 3

was cancelled due to insufficient suitable entries2. One noteworthy reason for this in-
ability to create an intelligent engine is that there has never been a clear and objective
definition of intelligence independent of personal opinions. Such a definition, if it
can be formed, is that it can also be used to judge its existence in non-human systems.
The purpose of this and the next chapter is to see if such a definition is possible.

1.2 Testing for Intelligence

It has always been assumed that people would recognize intelligence when they came
across it (see The Imitation Game below). This may be true. But to ensure that we
can do this unambiguously and independently of the human context we also need
to examine what is meant by intelligence, initially without reference to machines
or even people, and later to consider if an implementation is possible. If such an
implementation is not possible then we ought to ask, “why?”

Before we begin, there are certain tools of thought or methods of approach that
we must know and adopt. We need these tools to help us overcome our natural
prejudice in accepting a specification of intelligence and to achieve an unambiguous
description of it. This is driven by our wish to implement and recognize intelligent
behavior that will exist outside the human form. The main tool is ‘Pragmatism’ as
proposed by Charles Saunders Peirce, which is now described.

1.2.1 The Imitation Game

In a lecture series given by William James (James 1906) at the Lowell Institute in
Boston he relates in Lecture II (p. 27) the following story (James 1842–1910).

. . . being with a camping party in the mountains, I returned from a solitary ramble to find
everyone engaged in a ferocious metaphysical dispute. The corpus of the dispute was a
squirrel—a live squirrel supposed to be clinging to one side of a tree-trunk; while over
against the trees opposite side a human being was imagined to stand. This human witness
tries to get sight of the squirrel by moving rapidly round the tree, but no matter how fast he
goes, the squirrel moves as fast in the opposite direction and always keeps the tree between
himself and the man, so that never a glimpse of him is caught. The resultant metaphysical
problem is this: Does the man go round the squirrel or not?

The issue here was really what do you want ‘to go round’ to mean in practical terms.
If you want ‘to go round’ to mean successive compass positions until you return to
your starting point then you do go round the squirrel. If you want it to mean that you
are first in front of him then to the side etc. then in this case you don’t go round him.

2 http://www.bcs-sgai.org/micomp/.
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This leads us to the important principle of investigation that will be our touch-
stone for the acceptance or rejection of an idea. The principle is encapsulated in the
philosophy of C.S. Peirce (1839–1914)—Pragmatism; but is better expressed by his
friend and colleague William James.

The pragmatic method. . . is to try to interpret each notion by tracing its respective practical
consequences. . . .. Whenever a dispute is serious, we ought to be able to show some practical
difference that must follow from one side or the other’s being right.

The issue I wish to explore is that of intelligence. The practical consequence of
this exploration should be a clear enough understanding of intelligence to recognize
its existence in any alien environment, and in particular as it may be exhibited by
artificial devices. This can then lead us to the question, “Can we create an intelligent
machine?”

Alan Turing, in 1950, addresses this question in a more general way. He felt
that the acceptance of a thinking machine was a question of crossing an intellectual
boundary. To ease the way he modified the parlor game (called the imitation game)
thus3:

“It (the imitation game) is played with three people, a man (A), a woman (B), and an
interrogator (C) who may be of either sex. The interrogator stays in a room apart from the
other two. The object of the game for the interrogator is to determine which of the other two
is the man and which is the woman. He knows them by labels X and Y and at the end of the
game he says either “X is A or Y is B” or “X is B and Y is A”. The interrogator is allowed to
put questions to A and B thus:
C: “Will X please tells me the length of his/her hair?”
Now suppose X is actually A, then A must answer. It is A’s objective in the game to try and
cause C to make the wrong identification . . . . The objective of the game for the third player
(B) is to help the interrogator.
. . . . An intermediary can repeat the question and answers.
. . . . We now ask the question, “What will happen when a machine takes the part of A in this
game?”

Turing goes on to say is:

. . . . These questions replace our original “Can machines think?”

I interpreted this as:

The original question of gender is now replaced by, “Which one is the machine? If we cannot
tell then we may assume that the machine can think.

The assumption here is that a person displays the thinking process and this process
represents our standard for thinking. The game is intended to introduce us to the idea
that a machine might think; it breaks through a psychological barrier that assumes
thinking is the prerogative if mankind. What is not described is how we might
distinguish this thinking process from any other kind of activity? The real problem,
unstated by Turing, is, “What should be our game plan? What questions should we
ask?”

3 Note that ‘. . . .’ refers to missing text.
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The implication is that if we cannot devise a test that will distinguish between a
thinking person and a machine that imitates thinking then for all practical purposes
the machine can be said to think.

Rather than deal with the general notion of thinking, let us limit ourselves to
considering an important by-product of thinking: the display of intelligence.

Intelligence has practical consequences that can be observed and tested, for ex-
ample, through the ability to solve problems. So we will change the imitation game
so that the objective is to determine the question, “Is the machine intelligent?”

If we can identify the practical effects of intelligence we are then in a position
to test if X or Y displays these effects or not. But if we can identify features of
intelligence where the answer will be “X is intelligent,” or “Y is intelligent,” then
we no longer need to distinguish between them, since the answers are not exclusive
anymore (i.e. machine and not machine). We have already crossed the intellectual
boundary that rejects out of hand that anything other than a human can be intelligent.

The only reason for such a comparison between man and machine is to act as a
standard so that we might calibrate an answer to the enquires: “Is this intelligence
like that displayed by a person?” or “How much intelligence is shown?” or “What
are the limitations of (this) particular intelligence?”

We now no longer need play the game; we only need tests for intelligence; tests
that depend upon well-identified features. Further, we no longer have to show that
machines are of equal intelligence or have the same breadth of intelligence as a
person. We merely have to find a distinction in observable behavior that separates
intelligent behavior from non-intelligent behavior. We don’t even need to detect every
kind of intelligent behavior, only to recognize a form of intelligent behavior. In this
case we might expect to provide some scheme that will give a measure, a grade or a
limitation to the observed intelligence.

Of course, once given such tests, the scheme can be applied to a collection of any
interacting objects other than a recognized machine.

So what are the practical effects of intelligence?
Rather than pursue the unusable definitions of intelligence that take the tortuous

route to avoid the notions of animal behavior and unconscious actions but include
some unobservable aspect of people, let us ask the pragmatic question, “What do we
want intelligence to achieve?”

Let us consider one possible answer through the measurement of intelligence as
carried out by psychologists on people where this decision has already been made
and agreed upon. This consideration may provide a possible game plan.

1.3 Intelligence Tests

We should note that according to one of the early intelligent tests leading advocates
(Eysenck 1962, 1966a, b) intelligence testing:

• has no firm scientific basis.
• is, however, successful in its application.



6 1 Insight and Reason

Fig. 1.2 What figure fits into
vacant square?

?
The functions initially considered to represent intelligence were Judgment, Compre-
hension and Reasoning.

Intelligence should be measured by means of tests that clearly involve these
abilities and functions (Binet 1904). Much later creativity was added to this list
(Guilford 1967).

We can make the reasonable assumption that as a person grows through childhood
to become an adult their mental abilities will also grow. We can grade a range of
increasingly difficult tests according to the average age of the children and adults
that can solve a sub-range of the tests. In this way, an individual child or adult is
assign a Mental Age that is measured from the problems he or she can solve.

The tests must involve problem solving that requires both observation and insight.
These are built of questions such as:

Q1 (Fig. 1.2).

Q2.
Find the missing letter.

F J N R _

Q3.
Insert the missing number.

8 12 10 16 12 _

It is characteristic of these tests that people who do them report that the answers
come clearly either at once or after reviewing plausible insights. The tests presume
a single ‘correct’ answer, and only a limited time is allowed to find it.

It was noted that, generally, those children who have a Mental Age of twelve
when they are six would tend to have a Mental Age of sixteen when they are eight.
Hence the ratio of Mental Age over Chronological Age tends on average to be a
constant. This is not too surprising since such a result is inherent in the original
definition. What this also shows is that the growth of intelligence tends to follow a
stable pattern, as do other physical attributes.
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Fig. 1.3 Some functions of
Thurstone’s model of
intelligence

Word

Number

Space

Comprehension

Σ
Probability of
correct answer

W1

W2

W3

W4

Etc.

We can thus have a measure associated with an individual; the Intelligence
Quotient (IQ):

IQ = MentalAge

ChronologicalAge
*100

I do not wish to examine the actual measurement of intelligence. What I do wish to
draw from this is the nature of the tests and what is involved in doing them.

Models of intelligence have been derived through statistical analysis of IQ tests
showing a range of specialized dimensions of intelligence such asVerbal Comprehen-
sion, Word Fluency, Number, Space, etc. (Thurstone 1938). More complex models
have been suggested through the statistical technique of factor analysis, where it
is assumed that a measurement is a consequence of several independent influences
(Guilford 1967). Both these ideas propose independent mechanisms that combine
in a simple additive manner to support the intelligent process. Further, the latter
proposal suggests that the mechanisms are mostly different from the initial proposed
functions of Judgment, Comprehension, Reasoning and Creativity (Fig. 1.3).

The notion that intelligence is a combination of skills that come to bear on a
problem in an additive fashion may be considered too simplistic. Certainly such
an analysis is open to a very wide range of proposed alternative mechanisms but
this model does suggest that the components of the intelligence are discrete spe-
cializations. This observation will help us construct a potential working model of
intelligence in that it will reduce the range of activities to be included. This will
greatly simplify our task.

1.4 Discontinuity Theory

The work of Elliott Jaques and colleagues proposed that intelligence does not conform
to the smooth growth usually assumed but moves in distinct plateau. The plateau is
related to people’s ability to abstract concepts. This view is still consistent with
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a b c

Fig. 1.4 Two display cards for the test concepts ‘red circles’ and ‘blue squares’

initial definition of IQ, which does not take into account the shape of a developing
intelligence with age or experience.

In order to capture a realistic character of intelligence in their tests, the problems
to be solved in these tests are practical activities. The subjects are asked to repeatedly
solve a set of similar tasks, such as sorting cards, as one might do for a paid job.
In particular, there is the problem of sorting cards into three groups. Each card
has a pattern (similar to Q1 above) involving five dimensions (color, shape, size,
number, and content) (Fig. 1.4). Two cards are displayed for two of the three piles
as a descriptor of what should be placed in that position. The subject is told if the
choice is correct during the sorting.

The point of these kinds of tests is to provide an opportunity for subjects to
discover from experience the underlying concept that governs a correct sorting. The
dimensions such as number, color, shape, size and position are numerous enough to
include in their structure many alternative concepts that can show partial success.
The results of the number of successes for subjects show a multi-concept distribution
as seen in Fig. 1.5.

Each peak indicates a concept that provides some correct scores. Some people may
spot the resolving concept straight away and others will perceive a range of different
concepts ordered in terms of complexity. The first choice may not be effective so
the next elaboration is used that will move towards a better solution. This process
continues until an optimum is found.

Again the results are not too surprising, since they confirm the observation that
solutions to problems come in stages of realization. Since a concept is either perceived
or not perceived, then at least one or more discontinuity is clearly an aspect of
intelligent behavior. Initially the subject will consider a simple concept that can be
used to reduce mistakes, and as the subject gains experience a more refined theory
that will result in fewer errors will be perceived.
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Fig. 1.5 Histogram of scores for card sorting. (Isaac and Connor 1978)

It is suggested from this and other experimental results that a necessary mechanism
to be engaged in problem solving and intelligent activity is the ability to abstract
and evoke concepts; ibid the notion of insight. However, such insights are then used
through the process of reason to generate an answer or to instigate an action. These
two mechanisms are also needed to model intelligence.

The person doing the test can see these two mechanisms of abstraction and concept
generation at work in the IQ tests, since to solve them first requires the creative act of
insight. This involves perceiving what concept might be at work given the information
so far observed and then using this concept to infer an answer. The concept, in this
example, is usually constructed from one of more dimensions such as size, color,
position, number, meaning, etc. These dimensions may also be related to the different
specializations as suggested by Thurstone’s Model of Intelligence (Fig. 1.3).

To construct concepts, a set of specialist mechanisms for generating or remember-
ing possible dimensions is required. These specializations can be exposed through
the use of Factor Analysis (a formal mathematical technique) from the way differ-
ent people perform over a range of diverse IQ tests. What Factor Analysis does is
re-express the set of observations from repeated tests as a set of independent simple
generators. These generators create values for each observed result by combining
their outputs additively. We will not cover the details of this process here.
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Fig. 1.6 The intelligence
process: the first conception

In summary: 

 We can say that intelligence is that component of 
thinking that involves insight and reason.

Problem Insight Reason Solution

Concepts

IQ tests are normally designed to measure one or more specializations in com-
bination. It is the combination of these specializations that can expose a possible
concept that involves more than one dimension. The IQ for a particular individual is
an average assessment of a range of specializations with respect to the normal. Some
people perform particularly well in some specializations (such as with pictures) and
poorly in others (such as number series).

In the solving of an IQ problem the subject must firstly selectively generate a con-
cept to match the observations (insight) and then secondly use this concept to generate
a solution (reason). We might consider that the first process could be emulated by
filtering out the ‘correct’ concept from a large collection of potential concepts. An
alternative approach would be to guide a concept generation process selectively from
the observations. In our model we take the former approach, since externally it pro-
duces the same result but with a simpler first-stage process. Each stage can then be
considered independently, as illustrated in Fig. 1.6.

In summary:

We can say that intelligence is that component of thinking that involves insight
and reason.

It is clear that insight, which draws from a source of concepts, must occur first in
order for reason to be applied; reason requires a model, hypothesis or proposition to
work on.

References

Addis TR (1972) Human behavior in an interactive environment using a simple spoken word
recognizer. Int J Man–Mach Stud 4:255–284

BinetA (1904)The measure of merit: talents, intelligence, and inequality in the French andAmerican
Republics, 1750–1940 by John Carson (2007). Princeton University Press, Princeton

Eysenck HJ (1962) Know your own IQ. Pelican Original, London
Eysenck HJ (1966a) Check your own IQ. Penguin Books, London
Eysenck HJ (1966b). Know your own IQ. Penguin Books, London



References 11

Guilford JP (1967) The nature of human intelligence. McGraw-Hill, New York
James W (1906) What Pragmatism means. In: James W (ed) Pragmatism and the meaning of truth.

Harvard University Press, Cambridge, 1975
Jaques E, Gibson RO, Isaac DJ (1978) Levels of abstraction in logic and human action. Heinemann,

London
Peirce CS (1958) Science and philosophy: collected papers of Charles S. Peirce, vol 7. Harvard

University Press, Cambridge
Peirce CS (1966a) How to make our ideas clear. In: Wiener PP (ed) Charles Peirce: selected writings.

Dover, New York
Peirce CS (1966b) The fixation of belief. In: Weiner PP (ed) Charles S. Peirce: selected writings.

Dover, New York, pp 92–260
Thurstone LL (1938) Primary mental abilities. Psychometric monographs, no. 1. University of

Chicago Press, Chicago
Tursman R (1987) Peirce’s theory of scientific discovery: a system of logic conceived as semiotic.

Indiana University Press, Bloomington



Chapter 2
Information and Intelligence

Wisdom is only a comparative quality, it will not bear
a single definition

Marques of Halifax,
Miscellaneous thoughts and reflections late 17th century.

2.1 Introduction

The key to understanding intelligence is ‘information’, since it is information that
is the raw material used to gain insight. So we need to appreciate ‘information’ in a
very precise way. The next section will explore a formal definition of ‘information’
to see if this will help us. It may also give us a different perception of intelligence.

2.2 Information

One of the important consequences of insight is the formation of a hypothesis that has
been triggered by a puzzle, as I have illustrated in Chap. 1. In general, hypotheses
are propositions that express constraints, laws or rules about the world. From a
pragmatic point of view we can say, hypotheses are useful if they make the world “a
less surprising place” (after Peirce 1958, 1966).

It so happens that independently to Peirce, a measure of surprise had already been
derived from communication theory (Shannon and Weaver first printed in the Bell
System Technical Journal in 1948 and published in book form in 1964). The problem
they were trying to resolve was getting some kind of measurement in communication
engineering. This measure should provide a precise assessment and comparison of
any non-perfect communication systems. They needed a way of asking, “How good is
this communication system?” In particular, they wanted a measure for such systems
so that their performance and limitations could be predicted; a measure similar to that
of horsepower for engines, where the limits of speed and acceleration can be defined.
The model of communication or paradigm they had in mind was the transmission
of Morse code. A schematic diagram of the components of a their idea of a typical
communication system is shown in Fig. 2.1.

Thus if someone transmits a message that consists of string of digits (or letters)
such as:

© Springer International Publishing Switzerland 2014 13
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Fig. 2.1 Communication
system (Simplified from
Shannon Fig. 2.1 1948)

Information
Source

Transmi�er Receiver

Destination

Message

Signal

Message

314159265358979323846...
where the digits will be converted into a signal by a transmitter, passed down the

channel of communication (e.g. a telephone cable), and en route may be changed
by the effects of noise (not shown in diagram). The receiver then converts the noisy
signal back into digits. From the destination’s point of view we should note that:

The significant aspect (of this communication system) is that the actual final message is
selected from a defined set of possible messages. (Shannon 1948, 1964).

If we take the simplest notion of a message at the receiver by considering that each
digit is a message, then our expectation of a message (i.e. a digit) before it arrives
is given by the choice of 1 in 10. So, if each digit were equally possible then the
probability that we could guess at the destination point what the next digit would be
is 0.1. When a message arrives our uncertainty will reduce to zero because there is
now no need to guess (probability is 1). The larger the choice the greater is the initial
uncertainty.

We can therefore propose a measure of ‘uncertainty’ that is inversely propor-
tional to probability: it increases as the probability of choosing correctly decreases.
However, this inverse probability measure should also reflect our own perception of
uncertainty.

It has been shown that a person’s sensitivity to sensations such as hearing or
touch is ‘logarithmic’. This natural detection system allows us to cope with very
loud sounds or firm pressures and yet still remain sensitive to very low sounds or
gentle touches (say).

From these observations of choice and the logarithmic scale of sensation, it would
be reasonable to define the ‘unit’of uncertainty as 0.5, because uncertainty is highest
when the probability of either choice is the same. That is when there is zero bias in
the choice.

To reflect both the unit of choice and human sensitivity, we can create a function
by using the logarithm measure to the base 2 of the inverse probability of a message.
The inverse of the probability is used because as the probability of a message rises,
the less information it provides. The advantage of this is since a probability is always
less than 1 the inverse will always be greater than 1. When a log is taken it will
always provide a positive number: (Fig. 2.2)

Uncertainity = log2
1

probability
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Fig. 2.2 A possible measure
of uncertainty where the Unit
is probability = 0.5

Probability

Uncertainty

or

Uncertainty = −log2(Probability)

On the other hand, if the digits were not equally probable such as in the string:
22222212222222422222232
then we would have a good chance of guessing that the next digit would be 2. In

the extreme case, if the digit was always 2 and the system was noise-free, our chance
of guessing correctly is certain and no further information is obtainable; that is, the
information provided by each message is zero.

• So we can say by extension that there is more information in a string of symbols
where the probability of each symbol is the same than there is in a string of symbols
where the probability of the symbols is not the same.

If we imagine the message is coded so that the significant characteristic of the number
(the symbol) is whether it is even, odd or prime then our choice is reduced to only
three symbols. In this case we would have a better chance of guessing the next symbol
(even, odd or prime) than for guessing one of the ten numbers.

• So there is more information (uncertainty) in a string of symbols where the choice
of symbols is higher.

Finally, the measure of information should have additive properties with a consistent
interpretation. So if there was a 1/2 chance that the number is odd and then a 1/3
chance that the odd number is prime (say), the probabilities should combine such
that there is 1/6 chance of guessing it to be prime at the start.

• Thus if the choice to be made is broken down into two or more choices such that
the final outcome has the same uncertainty, then the information should be the
same.
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Fig. 2.3 Range of
information for three symbols

x

y

z

The only known function that satisfies these requirements is one based upon the
expected (similar to average) logarithm of the inverse probability (pi) of each symbol
(i) thus:

Information of an event = −
∑

pilog2pi

We can now define the unit of information, which has been called a ‘bit’, where the
two choices are equally likely thus:

1 = −(0.5log2(0.5) + 0.5log2(0.5))

This information measure of a system is called entropy, and its behaviour for three
choices can be illustrated in Fig. 2.3. In this graph, z represents the information value
(in bits) as the probabilities of two (x, y) of the three symbols (w, x, y) are changed.
The probability of the third symbol w is determined from the other two probabilities
because:

w + x + y = 1

The information measure (entropy) falls to zero when the probabilities are 0 or 1,
and rises to a maximum for equal probabilities. The maximum in the zx or zy plane
is less than the maximum for a plane that includes all three dimensions zxy. The
equation for this surface is:

z = − log−1
2 [(xlog2x) + (ylog2y) + ((1 − (x + y))log2(1 − (x + y))]

• So we can say that the greater the entropy, the larger the uncertainty.
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2.3 Insight

So far I have suggested that the message is represented by some characteristic of
the transmitted symbols, and this is considered to be a single event. Because of the
additive properties of information, the entropy of a sequence of (say) N symbols that
are independent is the sum of the entropy for each of the symbols.

It could be the case that the sequence of symbols is significant (as in Morse Code)
and that each message is identified by a different sequence. If we at the destination
‘know’ the key of this code, the sequences can be interpreted and the information
measure relates to the number of encodable messages (see Fig. 2.4). This will usually
be less than the sum of the entropy for the individual and independent symbols.

However, if the key is not ‘known’, the information is perceived to be that of
the uncertainty of the independent symbols rather than the potential messages. This
greater entropy we will call Perceived Entropy.

• We can thus say that the perceived entropy is either higher than or equal to the
actual entropy of a system.

In the original sequence of digits above, the probability of any digit occurring is
about 0.1, but the insight that this sequence is the value of p means that the sequence
of numbers can be calculated from an equation such as:

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− 1

11
+ 1

13
− 1

15
+ . . . ..

• In this case the perceived entropy falls from that of approaching infinity to zero in
a single moment, and it is this insight that characterises the intelligence process.

Insight can now be seen to involve at least two processes (see Fig. 2.5). The first
process is the identification of the symbol (Wittgenstein L 1921). Since the symbol
is to be abstracted from the signal we will call this process abstraction. The symbol
is not always the obvious sign such as a digit, but may be a feature of the sign such as
the notions of even, odd and prime. Abstraction may be considered formed through
the perception of significant features. In this case a perception is a concept that
involves bringing together the features into a single unit. That is the identification of
the elements observed that carry the important information.
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Fig. 2.5 The intelligence
process 2
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The second process is the proposal or generation of a model (an equation in
the above case for π). The model must be guessed from the signal, and thus the
process of guessing will be called abduction. Note that the abductive process does
not guarantee a completely successful model. Strictly speaking both these processes
are abduction, and to distinguish between them, the second process may be called
retroduction (after Peirce).

We can now see that intelligence changes the interpreter (the model) so as to
minimise the entropy of the communication system (see Fig. 2.6). We need ‘purpose’
in order to avoid the trivial solution of minimising of entropy by switching off the
signal altogether. We must assume that the correct identification of the message is
important. The problem is that the intelligence process does not know either what
the range of messages might be or what part of the signal carries the messages.

2.3.1 The Distinction Between Information and Knowledge

As an aside, it has puzzled some people that noise turns out to have high information
because of its unpredictability. We can now see a distinction between information
and knowledge by asking the question of a signal, “This is information about what?”
Only those events that provide material evidence towards the act of insight and lead
towards the reduction of entropy can be called knowledge. Events that are uncertain
have varying degrees of information, but events that are uncertain and contain the
seeds of certainty (an insight is possible) represent knowledge.
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2.4 Induction

The process of generating a model and then proving it is useful (i.e. can be used
to make predictions) underlies the well known mathematical process of proof by
induction. For example, if we examine the sum:

1 + 3 + 5 + . . .

of the successive odd numbers then we may notice that:

1 = 12

1 + 3 = 22

1 + 3 + 5 = 32

1 + 3 + 5 + 7 = 42

and so on. We can abduce (infer) the model that for every natural number n, the sum
of the first n odd numbers is n2. This is certainly true for all the first n odd numbers
from 1 to 4 we have observed so far, and we could continue in this vein until we
find an exception. For many scientific endeavours this may be the best we can do
but for mathematics this is not considered good enough. Since we have access to the
underlying foundations of mathematics the possibility of a sound proof is available.

Such a mathematical proof by induction follows the style: if we provide a general
form that shows this model to be true for any number n, then we are entitled to
suppose that it is true for any number less than n. We are also allowed to suppose
that we already know that the sum of the first n − 1 odd numbers is (n − 1)2. The
sum of the first n odd numbers is obtained by adding the nth odd number, which is
(2n − 1). So:

Sum of the first nodd numbers = (n − 1)2 + (2n − 1)

= (n2 − 2n + 1) + (2n − 1)

= n2 − 2n + 1 + 2n − 1

= n2

It should be noticed that:

1. First a proposition (i.e. hypothesis or model) must be proposed (insight). The
proposition comes from a set of concepts in which each proposition can be used
to generate a potential series through deduction. Usually the series here involve
sums rather than multiplication. Multiplication series are much more difficult to
prove.

2. Then the proposition is tested against observation (reason); a process of
validation.
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Fig. 2.7 The intelligence process 3

Using a proposition to infer a consequence is the process of deduction, and the
deductive process generates consequences (results). In this case, the sum of odd
numbers proposition, we tried out several examples of the series and within these
limits the proposition works. However, mathematics does not consider this form of
validation sufficient; it has a more exacting criteria. This is because, unlike empirical
science, mathematics can often produce a general proof that will show a proposition
to be true for all possible cases. For such proofs an accepted protocol is laid down.
We can now extend our model of intelligence by expanding the process of reason as
in Fig. 2.7.

We indicate here, with the feedback loop, that validation can fail and the process
will cycle until a solution (of some sort) is found. The decision to finish a cycle
depends upon a validation criterion. Such a criterion will be different depending on
the kind of problem to be solved.

Mathematical induction will thus explore formally every natural number. This
can be done through a proof, but if a proof cannot be determined, a search is often
performed to find an exception through simple enumeration. Even this latter approach
may be too extensive to be practical.

Exactly what criteria are invoked to satisfy the validation is left unstated. If a
formal proof is not possible (as is the case with empirical science) at what stage do
you stop enumerating and testing; when do you just accept the hypothesis? A verse
written by a school friend in my wife’s autograph book expresses the problem nicely.

With what confusion thinking’s fraught,
I often think I’ll think no more.
For when I spend much time in thought,
I un-think things I thought before.
Anon

The pursuit of better interpretations of uncertain events characterises intelligence.
We have shown that insight is the key that unlocks these interpretations from the
events. The question now is, “What are the mechanisms of insight?”
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Fig. 2.8 A diagrammatic
equivalent of syllogism
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2.5 Deduction

Clearly deduction is one of the processes required, since once a proposition is pro-
posed it is needed to create a result from given ‘facts’. The normal deductive process
can be illustrated by the syllogism:

1. All (men), are (mortal)
2. (Socrates) is a (man)
3. Therefore (Socrates) is (mortal)

The deduction process is a formal procedure that is clearly mechanical, since it does
not involve the meaning of the words or symbols (given in brackets) when framed in
this structure. The first sentence (the ‘proposition’) links two phrases together such
that the first phrase 1 is said to ‘contain’ the second phrase 2 as a ‘fact’. The first
phrase states that a general class of object (men) a share a property (mortal). The
second sentence gives an example of the general class (men) as an example of the
general class of objects. It therefore follows that this particular example (Socrates)
will have this property (mortal); after all, it has just been stated (also see Fig. 2.8).

Deduction contains no uncertainties and therefore does not provide any infor-
mation. During deduction a marker called the Truth-value tracks the tracing of the
certainties. The general form of this deduction is:

1. All (A) are (B).
2. (X) is an (A).
3. Therefore (X) is a (B).

We can replace the three phrases in brackets by any other statements of facts that we
like. If the first two sentences are True after this replacement then the third sentence
will also be True since deduction preserves the marker True.

Deduction is a single step in a set of steps that will lead to conclusions that are
guaranteed to be True. Consider the following conundrum:

a. Brothers and sisters have I none
b. but this man’s father
c. is my father’s son

Who is he?

We can choose the following route of syllogisms:
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Fig. 2.9 The intelligence process 4

Chose hypothesis(the general case):
All (male who has no brothers and sisters) are (the only son of a father)
Then given (from line a):
(I) is a (male who has no brothers or sisters)
1. Therefore:
(I) is (the only son of a father)
We infer (from lines b. and c.):
(This man’s father) is (the son of a father)
And using 1:
(This man’s father) is (I)
Therefore using a known relationship:
(this man) is (my son)

What is not described by this formal layout is why we might choose this particular
set of facts to make these particular steps as against the infinity of other possibilities.
We never considered the line of daughters, or the many other human relationships
that might have been chosen. There is nothing in the rules of deduction that offers
guidance to a useful conclusion.

To solve a problem using deduction requires direction; deduction needs problem-
solving knowledge that limits the choices amongst the known facts and possible
hypotheses. Such problem solving knowledge provides a compass from which to
steer our course through a labyrinth of possible steps. This guiding knowledge is
known as a heuristic, and we should include it in our intelligent process (see Fig. 2.9).

We can now extend the model of the intelligent process to include:

• perceptions that identify the combination of features for a useful abstraction,
• concepts which are a set of generalisations that can be fitted to abstractions,
• heuristics which select the route through to a solution,
• criteria which provide the basis on which to accept viable hypothesis.
• Purpose that governs all the above.
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2.6 Lookup or Generate?

In Plato’s Meno (c.427 to c.327 BC), there is a description of Socrates illustrating
to Meno his belief that all knowledge is somehow already within us all. He takes a
slave boy who has been brought up in Meno’s household and proceeds to question
him in such a way that the boy ‘discovers’ for himself the relationship between the
area and the sides of a rectangle. Socrates comments:

You see, Meno, that I teach him none of these things which he (the boy) asserts; I only ask
him questions. And now this boy imagines that he knows of what length the lines are which
contain a space of eight square feet.

Meno was not convinced at this point but after a further set of intensive questions
from Socrates to the boy Meno agreed with Socrates’ final statement:

If the truth of things therefore is always in the soul, the soul should be immortal. So that
whatever you happen now not to know, that is not to remember, you ought to undertake with
confidence to seek within yourself, and recall it to your mind.

The reason Socrates presumed that we have within us all knowledge is because it
is not easy to detect the difference between mechanisms that ‘look up the correct
responses’ from mechanisms that ‘generate a correct response’. I would go further
and state that in principle it is impossible to tell the difference. However, in practice
any finite mechanism will have limitations that make storage of predefined knowledge
very unlikely. From a modern point of view, where a finite brain bound us, we do
not have access to the virtual storage of an infinite soul.

On the other hand, an infinite amount of a certain kind of knowledge can be
‘stored’ within a generator. For example the two times tables can be extended indef-
initely through the mechanism of multiplication. This suggests that the generators,
or at least the components of the generators, must be predefined. In this sense the
notion of ‘recall’ as a substitute for intelligent behaviour being born within us from
the beginning is correct. The specialisations of comprehension, word, number and
space associated with intelligence (Thurston) is supported from this analysis. The
underlying intelligence mechanisms of abstraction and abduction are only workable
if there is some predefined set of generators that invoke perceptions and concepts.

One of my research students, Mohamad Zakaria (1994), created a model, based
upon the above view of intelligence. This model is limited to a world of numerical
series. The abstraction of the basic features of the numbers was fixed to be the
number value. The range of concepts involved different kinds of curve fitting and
series. The criterion for success was based upon a notion of simplicity, and each
hypothesis generator was associated with its own notion of what that means. The
first hypothesis to satisfy its criteria for success was offered as a solution.

Thus, if you take the series:
18 10 6 4 _
The first successful hypothesis might be:

y = 18 − 32x

3
+ 3x2 − x3

3
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Answer = 2
An alternative hypothesis could also be:

si = 1/2si−1 + 1

10 = 18/2 + 1

6 = 10/2 + 1

4 = 6/2 + 1

? = 4/2 + 1

Answer = 3
where si is the ith value in the series.
A more human answer would be:

si = si−1 − 1/2 (si−2 − si−1)

6 = 10 − (18 − 10)/2

4 = 6 − (10 − 6)/2

? = 4 − (6 − 4)/2

Answer = 3
However, it is the second and third hypotheses that give the correct answer from

the human testing of IQ. It is the last hypothesis, which is human because it uses all
the given data within its structure; the same criteria for cryptic clues in crossword
puzzles. Yet the first answer is not wrong given the problem.

To get the right answer in the right way indicates that the selection of a hypothesis
generator is important, and must depend upon some abstract features of the series;
abstract features such as rising, falling or fluctuating of the numbers in the series.

Mohammed Zakaria tried four different learning strategies, where the program
modified its selection of a hypothesis to fit with a human choice (see Chaps. 11
and 12 for more detail). He compared the results of the strategies with a control (no
learning and no bias). Sometimes the hypothesis chosen would give the right answer,
but for the wrong (inhuman) reason. The answers were counted as correct in these
cases (see Fig. 2.10). A human quotient (HQ) was introduced that was defined as:

HQ = Number of correct Answers with Human Hypotesis

Number of correct Answers
*100

Notice that in general the number of ‘correct’ answers increases with the HQ.
What we have here is an illustration of learning that improves the acceptability of

the range of potentially correct solutions. It is an acceptability that goes beyond the
criteria of validation since it involves all possible styles of solution; it is an illustration
of machine wisdom.
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Fig. 2.10 Learning human intelligence

So in this chapter we have shown the operational components of intelligence and
the role of learning from experience. In the next chapter, I will be exploring the pos-
sibility of creating a very simple and primitive intelligence using these components
in the form of a computer program.
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Chapter 3
Identifying Intelligence

It is not good enough to have a good mind. The main thing
is to use it well

Descartes,
Discourse on Method (1637)

3.1 Introduction

Formally identifying intelligence would seem like a gross simplification of what has
always seemed a complex and slightly mysterious process. What we have done is
created a starting point for our investigation by proposing a concrete description we
can then try to use. We will expect that this initial description to be inadequate in
explaining many aspects of our experience of intelligence, but it will give us a starting
point to grow something better as in the following story. The ‘concrete description’
is the ‘stone’ in the soup.

3.1.1 Stone Soup: A Folk Story

Once upon a time, somewhere in Eastern Europe, there was a great famine. People
jealously hoarded whatever food they could find, hiding it even from their friends
and neighbours. One day a peddler drove his wagon into a village, sold a few of his
wares, and began asking questions as if he planned to stay for the night.

“There’s not a bite to eat in the whole province,” he was told. “Better keep moving on.”

“Oh, I have everything I need,” he said.

In fact, I was thinking of making some stone soup to share with all of you.

He pulled an iron cauldron from his wagon, filled it with water, and built a fire under
it. Then, with great ceremony, he drew an ordinary-looking stone from a velvet bag
and dropped it into the water.

By now, hearing the rumour of food, most of the villagers had come to the square
or watched from their windows. As the peddler sniffed the ‘broth’ and licked his lips
in anticipation, hunger began to overcome their scepticism.

© Springer International Publishing Switzerland 2014 27
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“Ahh” the peddler said to himself loudly.

I do like a tasty stone soup. Of course, stone soup with cabbage—that’s hard to beat.

Soon a villager approached hesitantly, holding a cabbage he’d retrieved from its
hiding place, and added it to the pot. “Capital!” cried the peddler.

You know, I once had stone soup with cabbage and a bit of salt beef as well, and it was fit
for a king.

The village butcher managed to find some salt beef. . . and so it went on until there
was indeed a delicious meal for all (after the stone was removed).

The villagers tried to buy the stone from the peddler but he would have none of it.
After all, how would he feed himself on his travels? So off he went and the villagers
still talk about the wonderful stone soup as being one of the best meals ever.

As for the stone, soup intelligence needs more than just insight and reason (the
stone). It also needs, for example, a purpose. So far the intelligence process as
described has been passive. Signals arrive and these are eventually turned into mes-
sages. What is required of intelligence at this stage is to infer a pattern in the sequence
of messages so that future messages become less.

3.2 Uncertainty

Uncertainty can also be described. It is sometimes known as ‘surprise’, or ‘informa-
tion’ and is measured in terms of the average probability of a finite set of messages.
If you can always infer a new message from a string of given messages then such a
message is not surprising, and will contain zero information. If there are many mes-
sages that conform to no conceivable pattern then the information will depend upon
the probability of guessing correctly. The average probability of guessing correctly
is related to a measure of information obtained from a message (see Shannon and
Weaver 1964). More will be said of this later.

For now we can say that if you have a hypothesis or rule that allows you to make
a more accurate guess at what the next message in a sequence of messages will
be then we can say that the ‘information’ is reduced, i.e., it is not so surprising.
There are situations where insight (a hypothesis or rule) comes through the process
of experimentation (a validating action) rather than just passive observation of a
sequence of messages. This requires a further stage in the intelligence process in that
an action is needed based upon the current observations.

3.3 Selecting an Action

As we have seen, the IQ test does not usually require an action other than a choice or
generation of the next message expected in the sequence of messages (information
source) in order to show that a pattern has been recognised. In general, an action is
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Fig. 3.1 Intelligence
stimulating action

Information
Source

Destination

Inferred
Message

Interpretation

Intelligence

Action

Message

Validation
Action

Hypothesis

often the consequence of a process involving intelligence in normal daily situations;
after all, that seems to be the main purpose of intelligence. The overall sequence is
shown in the reproduced diagram from Chap. 1 in Fig. 3.1. The detailed intelligence
process of insight and reason is also reproduced in Fig. 3.2.

The diagram Fig. 3.2 shows a feedback loop as the final result of insight followed
by reason. Johnson-Laird and Wason (1977) explored the nature of this feedback
loop in human problem solving, where an action is required based upon a given
insight.

In one of their tests:

“. . . you are presented with four cards showing, respectively:
‘A’ ‘D’ ‘4’ ‘7’
and you know from previous experience that every card, of which these are a subset, has a
letter on one side and a number on the other side. You are then given this rule about the four
cards in front of you: “If a card has a vowel on one side, then it has an even number on the
other side.”

So here the insight normally required by intelligence is already given.

Next you are told: “Your task is to say which of the cards you need to turn over in order to
find out whether the rule is true or false.”

Here the investigation is to see if you can determine the correct action to test the
validity of a given hypothesis.

The most frequent answers to test this concept are ‘A and 4’ and ‘only A’ (Wason
and Johnson-Laird 1968). Both these answers are logically wrong. The correct formal
answer is ‘A and 7’. This is because the rule can be expressed as:

Vowel implies Even

This means that given a Vowel there will always be an Even number on the reverse
side but given an Even number there may or may not be a Vowel. This is because
‘implies’ is only logically consistent in one direction. This can be seen in a Table 3.1
in lines 1 and 3 for the condition Y is Even is True.
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Fig. 3.2 The intelligence process

Table 3.1 Truth table for the
hypothesis ‘Implies’

X is a vowel Y is even X implies Y

1 True True True

2 True False False

3 False True True

4 False False True

A simple computer program, ‘confirm’, can illustrate the process of choosing an
action. This program will generate the correct minimum set of tests for any range of
logic-based hypothesis using two sided cards. Three examples of its output are1:

QUERY > confirm that [vowel implies even] in list [’A’ ’D’ #4 #7]
Try cards [ ’A’ #7 ]

QUERY > confirm that [vowel or even] in list [’A’ ’D’ #4 #7]
Try cards [ ’D’ #7 ]

QUERY > confirm that [vowel and even] in list [’A’ ’D’ #4 #7]
Try cards [ ’A’ #4 ]

The program has been written in Clarity. Clarity is a Schematic Functional pro-
gramming language. This language is fully described in the book Addis & Addis
Drawing Programs: The Theory and Practice of Schematic Functional Program-
ming, Springer (Addis and Addis 2010). The diagram below is the Clarity Schematic
‘confirm’. Such a diagram can be considered as a simple flowchart of linked
processes as shown in Fig. 3.3.

1 The command and responses have been made easier to read. The actual command for the first
example is: > confirm [implies isvowel iseven] [‘A’ ‘D’ #4 #7] and the actual reply is simply [‘D’
#7]. In the other queries ‘or’ is ‘||’ and ‘and’ is ‘&&’.
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Fig. 3.3 The function
‘confirm’ in the language
clarity

In Clarity, the method of ‘running’a diagram is to type into a ‘control’window the
function ‘name’ followed by its appropriate parameters. This activates the function
‘confirm’ where the answer for the ‘QUERY’ is given on the next line thus:

QUERY > confirm [implies isvowel iseven] [’A’ ’D’ #4 #7]
[ ’A’ #7 ]
or thus:
QUERY > confirm [implies iseven isvowel ] [’a’ ’d’ #4 #7]
[ ’D’ #4 ]

The boxes in this diagram, whatever their colour, are either functions defined
previously in the same way or library functions already provided by the system.

The function ‘myinverseN’ will produce a subset of the truth values for the logic
operator specified by the variable ‘?2’ in the first parameter (this is ‘implies’ in our
initial example but could also be ‘or’, ‘and’ etc). The variables ‘?3’ and ‘?4’ are
the logic tests to be applied to a list of the items in confirm’s second parameter.
The function ‘myinverseN’ will list the Truth values (see Table 3.1) for the operator
‘?2’ where the results are either False or True as requested by its second parameter.
So for ‘implies’ the following combinations are True (see line 1, 3, 4 of the above
Table 3.1).

QUERY > myinverseN implies True
[ [ False False ] [ False True ] [ True True ] ]

And in the following combination there is only one that is False (see line 2 of the
Table 3.1).

QUERY > myinverseN implies False
[ [ True False ] ]

The function can also be used for other Truth operators such as ‘or’ (expressed as ‘||’)
and ‘and’ (expressed as ‘&&’).
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QUERY > myinverseN || True
[ [ False True ] [ True False ] [ True True ] ]
QUERY > myinverseN || False
[ [ False False ] ]
QUERY > myinverseN && True
[ [ True True ] ]
QUERY > myinverseN && False
[ [ False False ] [ False True ] [ True False ] ]

The principle of selecting the action is very simple and can be illustrated using the
Truth Table for ‘implies’ (see Table 3.1).

The requirement is to chose a condition that can potentially give two possible
results that will make the rule (last column ‘A implies B’) either True or False.
The first is to consider a positive example where A is a vowel. There are only two
possibilities given in lines 1 and 2 where:

‘A is a vowel’ is True. E.g. ‘A’

The first possibility is if ‘A is a vowel’ is ‘True’. In this case there are two potential
results for ‘Vowel implies Even’, which depends upon the two possible truth-values
of the statement ‘B is Even’ given in lines 1 = True and 2 = False). Hence we need
to examine the negative case in which B is odd, since the rule will not be supported
if it turns out that ‘A is a vowel’:

‘B is even’ is False (i.e. B is odd). E.g. #7

The two conditions { [‘A is a vowel’ is True] overlap when [‘B is even’ is False

(i.e. B is odd)] }, and this only occurs when ‘A implies B’ is False(Line 2). So this
is the line that should be used to test the hypothesis where we have the pattern [True
False] for tests [isvowel iseven]. Thus ‘A isvowel =True’ or ‘#7 iseven = False’. In
the function ‘matchresult’ the variable?10 in the example below can be either True
or False. Given a list of pairs of values (e.g. [ [?10 False ] [ True?10 ] ]), two truth
tests (e.g. [ isvowel iseven]), and a value (e.g. ‘A’), the tests are both applied to the
value, and the resulting pair of results is checked for a match against each pair in
the list of possibilities. Only one of the possibilities needs to match for a result to be
True. To make clear how this matching is taking place, the alternatives are expanded
so that we have the following possibilities:

QUERY > matchresult [ [?10 False ] [ True?10 ] ] [isvowel iseven] ’A’
True

Here it is True that ‘(isvowel ‘A’) is True’

QUERY > matchresult [ [?10 False ] [ True?10 ] ] [isvowel iseven] ’B’
False

Here it is False that ‘(isvowel ‘B’) is True’

QUERY > matchresult [ [?10 False ] [ True?10 ] ] [isvowel iseven] #4
False

Here it is False that ‘(iseven #4) is False’
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QUERY > matchresult [ [?10 False ] [ True?10 ] ] [isvowel iseven] #7
True

Here it is True that ‘(iseven #7) is False’
A Clarity function (Addis and Addis 1996) ‘confirmTF’ applies ‘matchresult’

to a list of values (e.g.[’A’ ’D’ #4 #7]), resulting in a list of truth-values given the
truth table of a logic operator. The logic operator ‘implies’ in this case is the head of
the list followed by the two truth tests, isvowel and iseven.

QUERY > confirmTF [implies isvowel iseven] [’A’ ’D’ #4 #7]
[ True False False True ]

The common patterns between the ‘True’ list and the ‘False’ list are found. These are
then applied to the list that represents the card faces displayed (i.e. ‘A’ ‘D’ #4 #7),
and those that satisfy the pattern are chosen. The function ‘confirmTF’ is almost
exactly the same as ‘confirm’ (see Fig. 3.3) except that the ‘filter’ is exchanged for
‘map’. Filter only lets through those values that are True (e.g. ‘A’ and #7) whereas
‘map’ lists the truth-values [True False False True].

The function ‘confirmTF’ shows only expected truth values for those given in
the list [’A’ ’D’ #4 #7] that satisfy the two conditions for the function ‘A implies B’
is False. So the function ‘confirm’ will use this result to select the required items
in the list to test for confirmation of the rule ‘Vowel implies Even’. In this case the
items that are True in the list are ‘A’ and ‘7’ we have:

QUERY > confirm [implies isvowel iseven] [’A’ ’D’ #4 #7]
[ ’A’ #7 ]

The function ‘confirm’ uses the results of the logic tests ‘isvowel’ and ‘iseven’ given
by function ‘matchresult’ to select the matching values that are True from the list
shown by ‘confirmTF’ (also see Table 3.1).

This function ‘confirm’represents the action part of the intelligence system shown
in Fig. 3.4 and does not include the generation process of testable hypotheses. The
hypothesis in this case is already given (‘implies’), and so it is not inferred from
observations. The only purpose of the function ‘confirm’ is to show how to validate
a possible hypothesis against a given set of data.

The deduction process is used to expand all the potential possibilities of a given
hypothesis (in this case the ‘implies’ truth table), and the validation process has the
built in criteria to examine every positive (True) and negative (False) case. What
we have shown here is a mechanism that can infer a validation-testing scheme. So
far, the insight must be provided externally as to what hypothesis needs to be con-
firmed. In our example the action to validate a hypothesis is the suggested test pattern
[‘A’ #7].

So we now need a function that will suggest hypotheses to test. This is the prime
process of abduction. A function ‘abduce’ can be constructed that will generate
functions of the right form for validation. The approach taken is simple and certainly
not very subtle; we will simply generate functions at random and test them by our
validation process until a hypothesis is found that is validated. We then stop.
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Fig. 3.4 Validation requirements trigger action

For this we create a function ‘gen_function’ that randomly chooses a potential
logic operator from a list of operators, and ‘gen_feature_pair’ generates a pair of
suitable parameters that may also include the logical operator ‘not’. For example,
we can generate the pair of requirements thus:

QUERY > gen_function Implies QUERY > gen_feature_pair [ (isa "int") (isnot iseven) ]

QUERY > gen_function Xor QUERY > gen_feature_pair [ (isnot (isa "char")) (isnot
iseven) ]

QUERY > gen_function QUERY > gen_feature_pair [ isvowel (isnot (isa "int")) ]

We then combine these functions in ‘abduce’ shown in Fig. 3.5. Examples of this
function are2:

QUERY > abduce
[is_not vowel and is_not even]
QUERY > abduce
[is_not a vowel or is_even but_not_both]
QUERY > abduce
[is not even implies a vowel]

A more efficient abduction mechanism might have been written that ensures that the
generated hypothesis has a good chance of success. For example, we might choose
a method of generation that simulates the process of evolution. This might combine
successful hypotheses to produce potentially better hypotheses.

The problem with the function ‘abduce’, as defined in this program, is that it
has no memory and will reproduce a hypothesis that has already been rejected or
generate another hypothesis that has little to do with previous ones; in this function the
hypotheses do not evolve from those that have gone before. To provide a mechanism

2 The actual command is > abduce and the response is [ && (isnot isvowel) (isnot iseven) ] etc.
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Fig. 3.5 The function abduce at top level

that will use experience, we need a memory of some sort. If we include memory then
we will finally have a primitive construct of all the elements of an intelligent system
as seen in Fig. 3.6.

The function ‘add_idea’ uses a parameter as a memory shown in Fig. 3.7

QUERY > add_idea []
[ [ xor (isnot iseven) isvowel ] ]
QUERY > add_idea [ [ xor (isnot iseven) isvowel ] ]
[ [ && (isnot iseven) (isnot isvowel) ]
[ xor (isnot iseven) isvowel ] ]
QUERY > add_idea [ [ && (isnot iseven) (isnot isvowel) ] [ xor (isnot iseven) isvowel ]
]
[ [ && (isa "char") iseven ]
[ && (isnot iseven) (isnot isvowel) ]
[ xor (isnot iseven) isvowel ] ]

The function ‘getRule’ (see Fig. 3.8) uses add_idea, which calls ‘abduce’ to add a
single new hypothesis to a growing list of hypotheses saved in its parameter. The
function ‘get_rule’ always gives the latest hypothesis (function ‘head’).

The function ‘getRule’ is then used by ‘giveR4S’ to generate new rules for testing
as in Fig. 3.9. The testing involves the principles used in the function ‘confirmTF’
described in Fig. 3.3.

QUERY > giveR4S [ [’a’ #6] [ ’d’ #2 ] [’e’ #4 ] [ ’c’ #7] ] [ ’a’ ’d’ #4 #7 ]

Would ’ even OR consonant ’ be a good rule to try?
Yes, try this rule. . . ’ even OR consonant ’
Only these cards need be checked. . .

[ a 7 ]
Both sides of the checked cards:-
[ [ a 6 ] [ c 7 ] ]
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Fig. 3.6 Final form of intelligence

Fig. 3.7 The function
‘add_idea’ has memory

This is a rule that works. . . ’ even OR consonant ’
Shall we try to find another rule? (y or n):- y
OK, trying again.
Would ’ vowel implies even ’ be a good rule to try?
Yes, try this rule. . . . ’ vowel implies even ’
Only these cards need be checked. . .

[ a 7 ]
Both sides of the checked cards:-
[ [ a 6 ] [ c 7 ] ]
This is a rule that works. . . ’ vowel implies even’
Shall we try to find another rule? (y or n):- y
OK, trying again. . . .
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Fig. 3.8 The function
‘get_rule’ generates a new
‘idea’

Fig. 3.9 The function
‘giveR4S’ generates tested
potential rules

Would ’ vowel implies odd ’ be a good rule to try?
Yes, try this rule. . . . ’ vowel implies odd ’
Only these cards need be checked. . .

[ a 4 ]
Both sides of the checked cards:-
[ [ a 6 ] [ e 4 ] ]
This rule will not fit, let’s try another.
Would ’ even AND vowel ’ be a good rule to try?
parameters cannot be even or vowel
’ even AND vowel ’ is a rule that can’t possibly work.
This rule will not fit, let’s try another.
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Would ’ consonant OR even ’ be a good rule to try?
Yes, try this rule. . . . ’ consonant OR even ’
Only these cards need be checked. . .

[ a 7 ]
Both sides of the checked cards:-
[ [ a 6 ] [ c 7 ] ]
This is a rule that works. . . ’ consonant OR even ’
Shall we try to find another rule? (y or n):- n

3.4 Nature’s Intelligence

Although intelligence has been described in terms of functional boxes there is no
necessity for these boxes to be found as separate mechanisms. They represent an
abstraction of what is observed. Further, there is no need for intelligence to reside in
a single organism, since what we have described is a system and systems can be any
distributed but connected set of active elements. So ant colonies or eco-systems are
open for investigation.

The material form of an intelligent system is not important. An intelligent system
could be constructed from any mechanism that provides constraints. Engines as
devised by Babbage or the siphon system as in the Europa Water Clock (Berlin, See
Fig. 3.10) could all potentially be employed as intelligent engines.

The time span over which intelligence operates is not a critical property, although
it will have practical consequences. The time limitations imposed for IQ tests is
required because the test is unique to people. We can imagine a very slow intelligence
that would operate over many years or an extremely fast intelligence as might be found
in a short lived species. What emerges is that intelligence has a set of parameters,
which define what problems it may solve and what it will never solve. These solutions
depend on the battery of concepts, perceptions, heuristics and criteria as well as the
range of actions available.

The process of evolution has all of the mechanisms of intelligence (see Fig. 3.11).
Insight is born through changes in the genetic code, and is the starting point for the
generation of an organism (morphogenesis). The laws of complex systems govern
the organism’s structure. These laws form stable patterns that explain the shape of
living things (Goodwin 1994). The success or failure of a species is judged by its
ability to survive the current environment. The memory of the success is contained
in the distribution of successful individuals in the population of the species. These
individuals are the candidates for reproduction, and so the search for an optimum
solution is automatically provided. In this way validation and memory are combined
into a single concept.

The consequence of this view would suggest that not only will the same solution
(type) be ‘reinvented’ from different starting points (see rabbits and their marsupial
equivalents, the wallaby, in New Zealand) but the evolutionary system may well
‘reinvent’ the same species all over again. This might explain the rediscoveries of
prehistoric animals, such as the ‘thought to be extinct’ fish the coelacanths. The
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Fig. 3.10 The Water clock, Europa Centre, Berlin

intelligence of evolution, although confined to a specific activity and driven by the
pressure of life, is a complete intelligence; except in its ability to change the level of
abstraction; it is stuck at the level of the DNA sequences.
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Fig. 3.11 Evolution as an intelligence process

We may speculate that the human species is an attempt by evolution to take a
step beyond this limitation. Our inventions such as the car or computer seem to be
following the same route as evolution; they might be considered a form of accelerated
life.

The basic ingredients of intelligence have been identified through a review of
different aspects of human problem solving. Intelligence must have all these ingre-
dients to be called intelligence. The examination of IQ suggested that there is a set of
discrete specialisations within which human intelligence can be effective. Informa-
tion theory suggested that the recognition of the features or percepts, i.e. elements
of perception, of a problem domain is critical, and that once these percepts are es-
tablished an abduced hypothesis will emerge from one of the domain ‘generators’.
From a functional point of view these generators could be as unsophisticated as look
up tables. The value of the hypotheses can be measured by the effective reduction of
the perceived entropy. A hypothesis is evaluated through its use and effectiveness;
wisdom can be assessed as the improvement in the choice of hypothesis from a viable
set of potential hypotheses. Intelligence is driven by purpose and supported through
memory.

The value of the speed with which problems are solved is only a peculiarity of the
human condition. The potential to solve a problem is not altered by the platform on
which intelligence is ‘run’. In practice, speed is of vital importance specifically to
living organisms, and we would expect that the biological architecture would evolve
to cope. However, it is architecture we all share and although speed says something
of the efficiency of our intelligence it does not define its bounds.

The notion of intelligence has really been constructed from the way people have
used the term both formally (as in logic) and semi-formally (as in IQ tests). By
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exposing the way ‘intelligence’ is talked about and used, a set of mechanisms have
been identified as the necessary components of intelligence.

What has been discarded is the necessity to rely upon human intelligence as a
fundamental unit of performance. It has been used as the stone in the soup; however,
to recognise intelligence requires the means of sharing the same abstractions and
insights as well as the acknowledgement of purpose. The notion of intelligence has
been extended beyond recognisable thought; there can, for example, be physical
manifestations of the process. This model thus allows us to identify and assess
objectively other potential forms of intelligence systems.
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Chapter 4
Knowledge Science

God knows what the Truth is
Anon

4.1 Introduction

Once we have defined and implemented a simple version of intelligence, the problem
now arises as to how this might be extended to be useful. One way is to use it in
conjunction with the expert knowledge of some professional. To capture this expertise
on a computer is particularly important when it comes to rare, expensive or vanishing
skills. Intelligence itself is of no real value unless it can be used in the world of human
affairs; it is this view that stimulated the idea of an ‘Expert System’. An Expert System
is intended to capture the knowledge and skills of an expert in a computer program
so that such a program can either replace an expert or amplify a novice’s knowledge
to the point of being equivalent to an expert. The questions then arise of how we
might harvest this knowledge and represent it in a computer, and how we can use
such knowledge.

Underlying the notion of an Expert System is the relationship between knowledge
and technology. Computer technology has tended to force our perception of knowl-
edge into specific categories (such as data and processes) that are often inappropriate
for modelling our understanding of the world. Our inability to resolve this tension
between knowledge and technology has been one of the major reasons that Expert
Systems are confined to a narrow band of application types. There is also no standard
Expert System, so the representation of expert knowledge can be widely different.
In order to cope with these differences, we must form the bases of a technological
science of knowledge. To understand formally the relationship between knowledge
and technology in this more general sense I have taken, as stated earlier, a pragmatic
stance; a stance that will highlight what is of practical value in our notion of knowl-
edge. This approach, as we have argued previously, relates directly to our actions
in the world and thus to our knowledge about the world. It is clear that knowledge
underlies our actions, since it is through our knowledge of a situation that we are
able to assess our response to it.

I present a view of knowledge in this chapter that shows how the tension between
knowledge as we perceive it and the limitations of technology might be resolved. I
will show that separate forms of knowledge must be identified and brought together
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by the human insight of an experienced designer (knowledge engineer) in order to
create an Expert System. I will also demonstrate in this chapter why our current
systems are limited and how this view will stimulate new frontiers of research.

The study of knowledge is usually referred to as epistemology, but this study is
primarily concerned with the nature of people and their relationship to the world.
It is not expressed in terms of computer emulations. In particular, the traditional
concern is centred on the justification of knowledge. The difficulty in obtaining an
absolutely confident answer to the question of whether a particular set of beliefs
are ‘true’ can be seen through the works of the French philosopher Rene Descartes
(see Sutcliffe 1968). He, having considered the possibility that even ones own senses
are suspect (we could be living in a dream, or hallucinating, or God could be playing
a game), was reduced to starting his philosophies with the unconfirmed belief that
God in His benevolence would not deliberately mislead us. That is, our observations
are directly related to what is ‘True’.

Truth has thus been taken to be God’s view of His world. Ironically, from this
underlying foothold of belief in God, formal representations of knowledge, such as
logic and predicate calculus have been created, both of which in their turn underwrite
the technology of the computer and the modern theories of artificial intelligence.
Certainly ever since the philosopher Immanuel Kant established that knowledge
depends upon our concepts it has been recognised that knowledge is inseparable
from the mode of its representation.

A ‘knowledge engineer’is an expert who can elicit and thus capture the knowledge
of a target expert in a way that can be used by an Expert System.A knowledge engineer
will conceptualise expert knowledge in terms of their preferred method. It should be
noted that there is no standard method of representation at this stage of knowledge
capture. The process involves many hours of informal and semiformal discussions
between a knowledge engineer and the target expert or experts. The results of these
discussions are often sketched in terms of diagrams and a semi-formal language.
However, since there is a strong dependency between representation and knowledge,
such semiformal languages are developed within an engineering environment and
are normally biased towards a particular view of a chosen Expert System design
(Shaw and Woodward 1990). Because of this bias such representations obscure
certain aspects of knowledge; in particular, the different roles of different kinds
of knowledge. It is therefore important to step away from the Expert System and
construct a general theory of knowledge representation. This representation should
be cast to lie outside any particular Expert System design but appropriate to be used
for all of them.

4.2 A Taxonomic Approach

The question “What is a knowledge representation?” was answered in part by Randal
Davis et al. (1993), and a summary of his team’s deliberations is shown in Table 4.1.
The Roles of Knowledge Representation: (Davis et al. 1993). The important issue



4.2 A Taxonomic Approach 45

Table 4.1 The roles of knowledge representation. (Davis et al. 1993)

Role Description

Surrogate A substitute for the thing itself. For reasoning about the world
rather than taking action in it

Set of ontological
commitments

In which terms should the world be thought about?

A fragmentary theory of
intelligent reasoning

Expressed in terms of:
1. The conception of reasoning
2. The set of inferences sanctioned
3. The set of inferences recommended

A medium for effective
computing

1. An environment in which thinking is accomplished
2. Guidance for organising information

A medium for human
expression

A language which says things about the world

here is that it is a serious attempt at categorising knowledge by the role it has within
a human, social and technological framework. However, the presumption here is that
knowledge remains only within the human domain, and that it is a system whose
parts must necessarily remain within that human world.

This restriction to the human domain is explicitly made through the warning,
“A knowledge representation is not a data structure”, where data structure may be
some abstract representation scheme (such as a graph), usually created for eventual
computer storage (Addis 1985). However, it is generally accepted that a ‘semantic
net’, which is a directed graph of annotated boxes and arrows, does represent some
components of knowledge. The reason for this distinction seems to be based upon the
idea that semantic nets have ‘semantics’, where ‘semantics’ refers to the topological
constraints that come from what the net represents rather than its construction rules.

This loses a clear understanding of what the difference is between nets and graphs
since the difference is identified through a set of unspecified implicit constraints
that are only obtainable through human interpretation. This pushes the nature of
knowledge back from whence it came, into the minds of peoples, so calling this
graphical representation a ‘semantic’ net does not, in itself, give it meaning.

If a proper study of knowledge is to be undertaken then the relationship between a
representation and the world it represents must be investigated. What will need to be
considered now is the place that a users of a representation have with respect to their
interpretation of. It is only then that an understanding of engineering Knowledge
Systems can evolve.

My theory of knowledge, expressed in part in this chapter, addresses this problem
of engineering knowledge systems. This will include some mention of machine
learning and scientific discovery (Addis 1985, 1989, 1990). The theory is based
upon a knowledge taxonomy that identifies the different types of knowledge called
into play when a system has to interact with the world to achieve some purpose.
The taxonomy has been derived from how it is discussed and used by knowledge
engineers. Thus, knowledge in this chapter is classified according to its role in a
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Fig. 4.1 A role-taxonomy of knowledge

system. Figure 4.1 shows the current status of this taxonomy, only part of which will
be discussed here.

As boxes in Fig. 4.1, overlaid on this taxonomy are the roles, as identified by
Davies et al. (Table 4.1), of the different categories of knowledge. All knowledge
can act as a surrogate to the world. Tacit is understood from experience, declarative
is defined knowledge, and both are primarily used via a representation as human
expression and communication. Part of the declarative knowledge is the ‘ontology’
or taxonomy accepted by the participants of a conversation, and the range of possible
inference mechanisms that can be sanctioned are shown. The Heuristics shown in
Fig. 4.1 provides the guidance for problem solving within a representational scheme.

Figure 4.1 illustrates that knowledge can be divided into four broad categories.
Davies et al.’s theory only provides three of these categories:

• Declarative
• Heuristic
• Inferential

These must be present in any operational system, though their inclusion is not, of
course, a sufficient condition for intelligence. The tacit dimension remains outside
of any symbolic system, but must be possessed by a human user for that system to
be viable. Such knowledge is embodied partly in cognitive structures and partly in
social ones; this is why so much of what people learn must be taught, ostensibly, by
example and by other people (Collins 1975, 1985, 1990).
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4.2.1 Tacit Knowledge

Tacit knowledge is a skill or understanding that can be demonstrated but cannot be
represented by, say, a list of rules or instructions. Typical examples of tacit knowledge
are:

• Riding a bike
• Playing the piano
• Laboratory skills
• Problem solving (e.g. factors of a simple polynomial through inspection).

Tacit knowledge may tentatively be divided into three distinct types:
Motor skill or kinaesthetic knowledge (the ability to interact physically with the

world)
Perceptual knowledge (the ability to observe the world in an active sense)
Gestalt (the ability to recognise patterns or ‘situations’ in the world).
Though many of these can be transferred (e.g. by instruction), tacit knowledge

is personal in that its acquisition requires first-hand experience of the situations in
which it is applied (Polanyi 1958). Studies of scientific practice have also emphasised
the importance of personal knowledge (Collins 1975, 1985; Gooding 1990b, c, 1992,
1993a, b; Shapin 1989). Tacit knowledge remains in the world of being human.

4.2.2 Declarative Knowledge

Declarative knowledge is the main result of the knowledge elicitation processes; it is
a knowledge schema. Much of a knowledge engineer or analyst’s work is concerned
with identifying an appropriate taxonomy (often referred to within artificial intelli-
gence as the ‘ontology’) of an expert’s domain. This involves determining a set of
distinctions made about the world, hypotheses or beliefs about that world, and facts
taken to be ‘True’ of that world. The roles of knowledge are:

4.2.2.1 Facts

Facts are represented as propositions that ascribe specific properties to particular
objects (or events). The ascription is based on observation. Thus, a fact is an instance
of a concept and a concept is a generalisation from specific set of instances. Con-
cepts can be used to imply new facts or to confirm known facts. Facts are ‘known’
observations, deductions or beliefs of or about the world.
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Table 4.2 The role of truth in declarative knowledge

Types of declarative knowledge Truth of the knowledge dependent upon

Fact Observation, deduction or belief

Distinction (taxonomic) Convention or definition

Hypothesis Convenience

4.2.2.2 Taxonomic

The taxonomic class of concept consists of propositions that define general features,
classes, categories, or types of objects or events. Taxonomic knowledge is concerned
with the distinctions made in a domain.

These propositions are identified by the nature of the knowledge in that they are
‘true’ by convention or by definition. For example, the truth of the statement that
“a bachelor is an unmarried man” depends upon a convention that the verbal token
“bachelor” should represent the class of persons who are male and unmarried.

4.2.2.3 Hypotheses

Hypotheses are propositions that express constraints, laws or rules about the world
rather than our modes of representing the world. Taking a pragmatic view, (Peirce
1958, 1966) wrote “Hypotheses are true if they are useful; they are useful if they
make the world a less surprising place”.

In conjunction with inference, hypotheses make predictions about the world so
as to reduce the effective information content of incoming messages from or about
the world. Without hypothesis formation, it would be impossible to develop new
concepts about the world: learning could not happen.

Table 4.2 summarises the distinctions between different types of declarative
knowledge. Note that the role of ‘Truth’ here is to characterise an abstraction of
the world that is person or people centred. Thus the set of facts, distinctions, and
hypotheses assert a view of the world that is in part influenced by the world itself
(observations), part by the individual (beliefs), part by society (conventions), and
part by purpose (convenience). ‘Truth’ reduces to a parameter that really has a role
only for deductive inference.

Hypotheses may be either theories or models. Although these are often repre-
sented visually, i.e., as visual hypotheses (Gooding 1992; Thagard and Hardy 1992;
Trumpler 1992), in the first instance I will only be concerned with the declarative and
verbal forms of hypotheses. Later we will wish to extend the notion of a hypothesis
to form part of a mechanism (a machine, or a physical structure or natural system).

Models, in conjunction with an inference system and heuristic knowledge, make
predictions about a limited part of the world, and are derived from theories and
perceptions that encompass a greater view than any model. Associated with a model
is a set of inference mechanisms so that the model may be activated (driven). Many
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different models may be derived from a single theory. Thus, a set of models is the
extension of a theory in the same way that a set of facts is an extension of a concept.

An extension is a relationship between a set of symbols and a symbol which is not
itself a member of the set. The meaning of the symbol is the set. Since every symbol
of the set can itself have an extension, the relationship of a concept to a set of facts
(or a theory to a set of models) is relative and not absolute (Addis 1990).

4.2.3 Heuristic Knowledge

Heuristic knowledge is that knowledge which indicates how a deductive process
should be performed. Given a number of facts and hypotheses, many potential paths
of deduction are possible. The heuristic knowledge uses extra-logical information to
guide the deductive process towards ‘useful’ results. What is useful depends upon
the purpose of the system.

4.2.4 Inferential Knowledge

C. S. Peirce pointed out there are three types of deduction. Since there is only
one formal process of deduction based upon ‘modus ponens’ (although there are
many mechanisms such as resolution that can achieve the same result), the distinc-
tions he identified can be related to the different classes of heuristics identified in
Fig. 4.1. Exactly how these may be identified within a knowledge system is yet to
be understood.

We can note that inference, in general, can be divided into two styles:

• Open: ‘Open’ inference does not necessarily have identifying formal mechanisms
associated with it. In general, open inference is related to the creation or the
construction of insights.

• Closed: Closed inference identifies the process of selection from pre-formed or
pre-determined set of insights.

The problem with most artificial intelligence systems is that it simulates intelligence
through an inference that appears open (capable of learning) but which is in fact
closed. Closed inference is usually found in both intelligent mechanisms and many
established skills (such as navigation, engineering and mathematics).

Inference, as Peirce observed, has three distinct forms. These are abduction,
induction and deduction. Their roles are simply described as:

Generate a hypothesis (abduction) - >

Validate a hypothesis (induction) - >

Infer new facts from a hypothesis (deduction).



50 4 Knowledge Science

4.2.4.1 Abduction

In its most general form, abduction is the process behind insight. It is involved in
three classes of activity:

• Retroduction: Open retroduction is the creation of a new hypothesis and closed
retroduction is the selection of a hypothesis from a pre-defined set. Often only
closed retroduction is referred to as ‘abduction’ in the literature, and this limited
view depends upon the notion of reverse implication. Thus, if (A implies B) then
we can say that if we observe B then A is a possible cause. However, this inference
is closed because it depends upon the pre-existence of propositions such as (A
implies B). Such a predefined system is closed.

• Abstraction: Open abstraction is the process of creating or observing new tax-
onomic concepts and closed abstraction is the process of selecting taxonomic
concepts from a pre-defined set.

• Heuristic: Heuristic abduction is the insight that creates or selects the process
(the heuristic) of how to solve a problem. The heuristic tells the inference process
how to continue with deduction. Whereas heuristic knowledge, as defined earlier,
selects a path of reasoning, the heuristic abductive inference proposes how such
a decision should be made.

4.2.4.2 Induction

Open induction, taken in the context of the other forms of inference defined here,
is the process of validating a hypothesis. Validation involves induction that is not
enumerative, that is, does not involve generalising from a set of particulars, as it
is normally understood. Induction here requires the pre-existence of a hypothesis,
a deductive procedure and a set of criteria. The categories of criteria are shown in
Fig. 4.1.

The normal definition of induction, and one not fully supported here, is based upon
the principle of generalisation from a given set of instances. In practice this view
combines the notions of validation with retroduction (Strawson 1952). ‘Induction’
in this combined sense is the process of reasoning where the conclusions are not
entailed by the premise (i.e. truth is not guaranteed to be preserved). Thus statements
like:

He’s been travelling for 24 hours, so he’ll be very tired

can be explained by a suppressed premises (undeclared hypotheses) such as:

People who travel for 24 hours will be very tired

Such suppressed premises allow us to reconstruct the ‘inductive’ inference as a
form of deductive inference. However, the suppressed premises do not appear as
conclusions to deductive arguments based on particular instances (examples drawn
from the extensions of the premises). ‘Induction’, as held by this common view,
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involves the generation of a suppressed premise (retroduction) and its validation
(induction as defined here).

On the view of Addis et al. (1993) validation and thus the induction of a hypoth-
esis should involve the assessing the utility or viability of the hypothesis, given a
particular purpose. Closed induction validates by comparing the inferred results with
an established model (e.g. the null hypothesis in statistics).

Induction, as I have defined here, takes on three categories of criteria:

• sample,
• continuity, and
• prediction.

For example, the ‘sample’ criteria is concerned with testing a hypothesis against a
set of examples (which may be finite or infinite).

The validation of a hypothesis through its ability to make predictions (that is,
to reduce the apparent entropy of the given set with respect to a set of classes; it
infers an order in the state of affairs) is well defined for a finite set. Validation of an
infinite set given only a finite set of examples must make some assumptions about
the stability of the infinite set’s properties.

4.2.4.3 Deduction

Deduction is valid through formal proof. It is the process of inferring conclusions
that must follow from the premises; it preserves Truth. Truth here is an abstract
property assigned to the propositions and their Truth-value (True or False) may not
necessarily relate to the world. Closed deduction uses known (i.e. pre-determined)
solutions.

4.3 Intelligent Inference

Within this framework we define as ‘intelligent’ any system that has the capacity
to use all three forms of inference (abduction, induction and deduction) together
(NB. Abstraction and Retroduction are classed together as Abduction in this defini-
tion1). Intelligent processes typically keep these forms in tension. The dynamics are
more complex than the logical dialectic of ‘generation’ and ‘testing’ as studies of
knowledge-creation processes in a science show. The characteristic of knowledge-
creation processes has been shown to be changing continually (Gooding 1992;
Pickering 1989; Tweney 1985; Tweney and Gooding 1992).

The main cycle of activity may be described as follows (also see Table 4.2):

1 It is not clear to the author if the process of Abstraction is necessary for some kind of ‘pure’
intelligence where the elements of the world are given or predefined.
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Fig. 4.2 The cycle of
intelligence and the
interaction between the
different types of inferences

Retroduction

Induction Deduction

Abstraction

• Abstraction of relevant features ensures that a germane hypothesis can be
retroduced.

• Retroduction attempts to create a hypothesis (or set of hypotheses) that is framed in
terms of the abstracted features and fits given knowledge and understanding. The
creation process is dependent upon some mechanism (possibly some kind of meta-
concept) that is influenced by experience. In this way only feasible hypotheses
are generated.

• Deduction from this hypothesis will provide the essential information for
induction.

• Induction validates the deduced results according to a set of criteria that depend
upon purpose. The result of induction influences further abstraction, and so on.

Figure 4.2 illustrates the process of intelligence described above. The creation and
validation of hypotheses is performed by interacting and co-operating abstraction,
retroductive, deductive and inductive inferences. As suggested this process in its
simplest form is similar to the simple ‘generate and test’ procedure often quoted
by others. However, the process is more complex than this simple cycle in that the
results at each stage influence the way in which each element in the cycle behaves.
There is a “tension” among the three inferences and this “tension” provides feedback
data from one inference to another in order to improve the quality and credibility of
a potential hypothesis.

The black solid circle in Fig. 4.2 indicates the flow of information (thick arrow)
between the four inferential mechanisms. The tension is created when the four in-
ferential mechanisms cooperate to formulate a viable hypothesis. Communications
between the mechanisms involves a cycle of abstraction, retroduction, deduction
and induction and the feeding-back of information that will ensure a hypothesis is
applicable. Thus features from the world are abstracted that serve the overall purpose
of the system and lead towards viable hypotheses. Hypotheses are abduced that will,
in their turn, serve the criteria of induction, and deduction will form conclusions that
can be validated and useful (e.g. solve the problem). Abstraction is unique in that it
depends to a large extent on close activity with the world; it is sense based (i.e. sight,
touch, hearing, taste and smell as well propriaception). Abstraction depends upon
involving people.

For a given set of facts (e.g., a sequence of numbers) it is the role of retroduction to
create a reasonable hypothesis for those facts (e.g. the sequence). Deduction exercises
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the hypothesis and returns a prediction of a new fact (e.g., the next number in the
series). The validation of the retroduced hypothesis is the function of induction that
ensures that the hypothesis is suitable for the purpose (e.g., the prediction is correct,
the calculation was not too complex, it fits all or most of the facts and the form of
the hypothesis is simple).

The interaction of the three forms of inference explains why, given that many
possible hypotheses can be generated, we tend to generate only a small set for
evaluation. In the Faraday simulations done by Gooding and Addis (see Chaps. 6
and 7, Addis et al. 1990, 1992; Gooding 1990a, b, 1992) one example of this appears
as the Construe-Experiment-Clarify (C-E-C) cycle. It should be possible to identify
different reasoning styles (or different qualities of intelligence) according to the mix
or range of different kinds of inference.

4.4 Knowledge Acquisition

The knowledge engineer’s task is to represent and model expert knowledge. This
involves negotiating a path from the informal and pre-articulate state of an expert’s
(or experts’) knowledge towards a formal model of it. Each stage of this process has
its own representation scheme and associated techniques.

It was argued by Addis et al. (1993) that because a functional database language
(FDL) explicitly represents all the different declarative roles of knowledge, it will
therefore provide a formal representation that is best suited for an unbiased elicitation
method. They then argued that a graphical approach to formal modelling exploits
the advantages of visualisation and offers a median way between the extremes of
rules-oriented and data-intensive approaches. By combining the two argued points
in aVisual Functional Program (VFP language Clarity2) they provide the justification
that VFP is an ideal environment for knowledge acquisition.

4.4.1 Abstracting to a Representation

An emphasis on the linguistic form (i.e., text) in most knowledge representation
defers to the traditional philosophical bias towards propositional knowledge. In
practice, most conceptual modelling representations involve an essential picto-
rial or diagrammatic representation, even though these may be defined in terms
of a language. Systemic networks, semantic nets, SFD graphs, KADS diagrams
and repertory grids express conceptual models within a two-dimensional diagram.
Relational analysis uses a diagrammatic scheme to show the elementary items (at-
tributes, objects and entities) that are recognised by a business. However, many

2 A version of Clarity is available through the author or from http://www.clarity-support.co.uk/.



54 4 Knowledge Science

Target
system

Mental
models

interaction

introspection
Elicitation
procedures

Modeling
requirements

Cognitive
processes

Acquisition
procedures

Knowledge
representation

PSYCHOLOGICAL THEORIES KNOWLEDGE ACQUISITION TOOLS

Conceptual
models

models of the
conceptual

models

formalization Implimentation
procedures

communication
Analysis
procedures

Intermediate
knowledge
bases

Computer
knowledge
basesCLARITY

Visual & 
Functional

Fig. 4.3 Abstracting to a representation (The processes that link elicitation, modeling and formal
representation are shown (modified from Shaw and Woodward). The non-verbal representations
typically used in moving from conceptual models to formalized implementation ones are absent.)

diagrams are too informal to translate directly to a formal structure that can be im-
plemented as a program. For these, where the target system (implementation) forces
a representational bias, an extra stage in modelling is required.

Figure 4.3 shows the processes linking elicitation, modelling and formal rep-
resentation (modified from reference Shaw and Woodward 1990). The non-verbal
representations typically used in moving from conceptual models to formalised,
implementable ones, are not shown.

It is well known to AI workers that sketches and diagrams are good guides to
implementation. Nevertheless, accounts assume that all diagrammatic modelling re-
duces to linguistic representation. Thus an account by Shaw and Woodward, in which
diagrammatic representations are not even identified as part of the process, shows
how quickly visualisations are replaced by linguistic representations. They therefore
underestimate the importance of diagrams to communication and conceptualisation
during the elicitation process (Fig. 4.3). Of course, the machine representations
sought by knowledge engineers, like Maxwell’s famous field equations, must be
symbolic in form. However, this fact does not require us to assume that all repre-
sentations reduce to linguistic ones. Images were just as important to Maxwell as
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they had been to Faraday (Wise 1979). Many modes of scientific investigation are
irreducibly graphical (Griesemer 1991; O’Hara 1992).

Formal representation is essential to computational representation; nevertheless
it may prematurely displace informal, diagrammatic working during the elicitation
process (Shaw and Woodward’s summary 1990 of the process, pp. 189–190, suggests
that this is the case). Addis et al. give the diagrammatic representations used in
knowledge elicitation a more prominent and more enduring role by showing that it is
possible to combine the accessibility, flexibility and exploratory capacity of diagrams
with the disciplines of formal representation. It is possible to have your cake and eat
it because it is achievable to generate program code directly from diagrams.

Moreover, since a functional database language (FDL) is used, it is possible to
model at any level of abstraction, combining different levels of complexity in the same
representation. Further advantages of this approach emerge from a consideration of
the recent history of hardware and systems software design.

4.5 Knowledge as Data and Processing

Influenced by earlier conceptions that the world can be split into two categories,
data (information) and processing (action), computer technology has dictated that
all knowledge (including models of skills and the world) should be divided between
storage (data) and processing. Work on rule extraction from data using ‘inductive’
techniques has demonstrated equivalence between these two forms of knowledge
(Quinlan 1979). Models of skills (such as the skilful playing of a chess endgame)
can be represented either as a large database processed by a simple pattern matching
algorithm or as a set of rules that is processed by a deductive inference system.

Similarly, software engineering has tended towards design methods that em-
phasise either the data or the process form of representation. Systems analysis, in
particular, is oriented toward database designs. These use graded methods that first
consider the domain directly and then move the abstraction of the domain towards a
mass data storage solution. The steps involved are:

• Relational Normalisation,
• Conceptual Model,
• Logical Model and
• Physical Model (see Fig. 4.4).

Other methods, largely independent of database analysis, develop the associated
software (process). These methods include:

• Function Charts,
• Data Flow and
• Nassi Schniederman Charts (Fig. 4.4).
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The advantage of these approaches is that each can provide a method: an explicit
procedure that ensures a reliable design that can be justified. However, these meth-
ods are appropriate only for the imperative programming of data. Because of their
influence, there is a tendency for knowledge analysts to bifurcate knowledge into
(see Fig. 4.5) taxonomic structures (suitable for storage) and processes (appropriate
for imperative programming), as a matter of course.

However, as D. Michie pointed out, people do not naturally conceive their own
knowledge in either of these extreme forms of data and processing. Representation
of people’s knowledge is best understood in terms of some intermediate form that
combines data and rule. Many practical skills use such a mixture: navigators, statis-
ticians, architects and electronic engineers all use tables as well as rules. Michie
called this intermediate form “the human window” (Michie 1979). It is the shaded
area in Fig. 4.5. Interactive systems—whether used by experts or by novices—should
operate within these limits.

The diagram (Fig. 4.5) implies that knowledge can be considered as something
apart from its representation. The same knowledge can thus be described in different
forms in the same way that music can be represented as the physical undulations on
a disc, or the magnetic orientations on tape, or the musical notations on paper. The
inverse relationship between process and data for a single source of knowledge is also
illustrated here. The curved line indicates the many different mixes of data and pro-
cess. The spheres denote a single source of knowledge represented in different ways
(Addis 1980). Michie’s ‘Human Window’ is labelled as the ‘Area of Conception’.
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A knowledge system consists of a balance between a pure store and a processor.
The role of object-oriented analysis is to keep the balance between data and processes
for any particular knowledge source. This balance ensures that the designer can con-
ceive of his model more easily, in the form of the object. The notion of ‘Frames’,
where a kind of form (a frame) is created for a generic object, was an original concep-
tion that led to object analysis. The frame has been developed from experience in the
field. The object frame therefore lacks the coherence and completeness that might
be expected had it been derived from a formal theory of a knowledge representation.

4.6 The Boundaries of Knowledge Representation

Knowledge of the world is a human and social affair. However, it does have identifi-
able elements that allow us to create hypotheses, represent knowledge and discuss the
nature of intelligence. Given such a study it is possible, within the human framework,
to attribute knowledge to inanimate objects such as computers and other machines.
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This is because we choose to interpret its form in a way that corresponds to our view
of the world.

What has not been discussed in this chapter, and is considered in more detail later
in this book (Chaps. 8 and 9, also see Addis 1990), is the role and nature of the
representation schemes themselves. Briefly, representations exist in the world, have
constraints and exist in the domain of knowledge. What a designer of a system has
to do is to match a representation and its constraints to the knowledge of the domain
under consideration. The most powerful representation schemes are those that have
a long history and have evolved strong inference procedures. Mathematics, in all
its forms, is an example. It is therefore an important strategy to represent the world
in a mathematical form, for then it is possible to call upon centuries of thinking to
support any conclusions that may be drawn; it is the route to successful scientific
advance.

What is not known is the key to systems that we could accept as truly intelligent.
This key is dependent upon how to achieve an open inference system. One clue
to this achievement is the interaction of an intelligent and purposeful system with
the world; particularly at the level of abstraction. The world, after all, is the only
unbounded system we have, and it is through our interaction with the world that
new concepts and novel systems of concepts emerge. Here we are considering a
much more intimate and direct relationship with the world than is currently possible
through traditional computer systems. Perhaps we should consider something akin
to a robot.
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Chapter 5
Modelling Experiments

The art of being wise is the art of knowing what to overlook

William James,
Principles of Psychology, 1890.

5.1 Introduction

Professor David Gooding (Nov 1947–Dec 2009), a science historian, and I worked
together for many years on the topic of modelling the science process. These models
were validated from examples drawn from history. This chapter presents some of
these examples.

I have suggested in Chap. 4 that the induction component of inference can involve
experimentation as a validation method. The purpose of validation is to confirm
that a particular model conforms to the world. The implied syntactic and structural
elements of models specify relationships between their constituents, but they cannot
show what outcomes that their interaction would produce over time. Simulation,
in general, consists of iterating the states of a model so as to produce behaviour
over a period of simulated time. This stepping through the states of models enables
us to trace the implications and outcomes of inference rules and other assumptions
implemented in the models that make up a theory. We can apply this method to
experiments, which we treat as models of the particular aspects of reality they are
designed to investigate.

Scientific experiments are constantly being designed and re-designed during im-
plementation and use. The role of experiments is to mediate between our theoretical
understanding and the world. It also involves the practicalities of engaging with both
the empirical and social world. In order to model experiments we must identify and
represent features that all experiments have in common. We will treat these features
as parameters of a general model of an experiment so that by varying these parameters
different types of experiment can be modelled.

© Springer International Publishing Switzerland 2014 61
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5.2 Experiment, Inference and Theory Change

Experimentation is one of the key features of science and technology, yet it is often
treated as simply an adjunct of the construction and revision of theories. Similarly, the
impact of evidence in theory acceptance and revision has traditionally been modelled
in terms of one of the logical or statistical rules of inference. In this chapter we will
draw on studies of experimental work in the history of science to develop a model
of experimentation conducted by agents who interact with each other as well as
with the phenomenology of their experiments. This approach to discovery aims
to integrate formal, empirical and ethnographic methods in order to include some
of those features of science that philosophers, historians, and social and cognitive
scientists identify as important for understanding the process of science and the
conduct of scientists.

5.2.1 Experiments and Experimenters

We will develop the view that experiments can be considered as models of the partic-
ular aspects of reality they are designed to investigate. Therefore, in order to model
experiments I must identify and represent in our simulation those features that all
experiments have in common as well as features that researchers have in common
(Gooding and Addis 1999). We will treat these features as parameters of a simu-
lation model that enables us to vary some of them to represent different types of
experiment, different actors, and the fact that making inferences about evidence is a
contingent and socially mediated activity. We can then model experiments ranging
from compelling, idealized thought experiments and decisive or crucial experiments
to those that are exploratory, ambiguous or controversial, as are most cutting-edge
research experiments.

When modelling a person and in particular a scientist
I will refer to them as ‘actors’ or ‘agents’.

This is so we will never confuse a real person with a simulated person during this
discussion. I can vary the sensitivity of actors in our model to new data, their re-
ceptivity to the opinions of other actors, their access to experimental resources, and
their contact with other actors.

Recent philosophical work, by Giere (2004), Cartwright (1999), and others argue
that to show how theoretical claims actually engage with the world we must move
beyond a purely semantic conception of scientific theories. Experiments are con-
stantly designed and re-designed in the context of implementation and use, so they
can be considered as types of models which mediate between abstract, theoretical
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understanding and the practicalities of engaging with the empirical and social world
(Morgan and Morrison 1999). Our computer implementations of the model have
included features such as design, transparency or ambiguity of phenomena produced
by the design, plasticity of descriptors, scope for interpretation and construction, role
of communication in establishing a result, and the explicitness and strictness of rules
that define the compatibility of observations and hypotheses. Each experiment is
treated as an instance of the model. We will describe the generalized model and how
it integrates properties of experimentalists as social actors, and will provide examples
showing how single- and dual-actor instantiations behave under simulation.

5.3 Rationality, Inference Rules and Epistemic Practices

Traditional approaches to scientific inference model belief-revision use rules that
relate observational data to confidence in one or more hypotheses. The relationship
can be modelled by logic (as in the case of hypothetico-deductive and falsification-
ist models) or probabilistically (as with inductivist and Bayesian models). Statistical
approaches allow for changes in the probability of an hypothesis as evidence accumu-
lates, while Bayesian models approximate to learning systems in which evidence is
evaluated in a context of judgments about the prior probability of the evidence being
considered (Hesse 1974; Salmon 1990; Matthews 2004). Our approach challenges
three assumptions of all these approaches. These are:

• Firstly that a logical and statistical model treat evidential support as an objective,
a-temporal relationship between hypotheses and data. Here a scientific theory or
model is considered as a unique and unchanging representation of the world.

• Secondly that in specifying how data should affect confidence in a hypothesis
such models also assume an ordered stream of data.

• A thirdly that scientific rationality is a wholly mental, ‘internal’ affair, whether
conducted according to logical rules such as falsification (Wason 1960) or
Bayesian updating (an assumption also shared by experimental and cognitive
psychology). This makes rational choice a purely individual matter.

However, none of the above assumptions is true of real science. First, empirical stud-
ies of theory acceptance do not support the philosophical ideal of a single, definitive
set of rules governing scientific inference. Comparative studies designed to iden-
tify a set of scientific inference rules and heuristics showed instead that each case
demands additional rules or amendments to existing rules (Laudans et al. 1986;
Donovan et al. 1988). As the set of instances expands, so does the set of rules and
conditions on rules (Gooding 1989). Contrary to the second assumption about evi-
dence, scientists do not always ‘receive’ data in a predetermined form or in a fixed
order. As for the third assumption, scientists constantly interact with others whose
opinions are often divergent and also fluctuate over time. The impact of the opin-
ions of others introduces other variables, such as ‘trust’. This means that inferences
by individuals about hypotheses cannot be modelled solely in terms of empirical
evidence.
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These considerations explain the failure of attempts to model theory-change solely
in terms of inference rules operating on observational data. More generally, they
indicate the difficulty of reconciling a universal, principled account of science with
the variability and contextual nature of practice in the many domains of science. To
understand how any rule of inference would work in practice, it would have to be
implemented in a way that reflects the contingent and socially situated character of
scientific thinking. Simulation methods allow us to do this. We can then evaluate
the assumptions of our models of science by playing out the consequences of the
properties of a situation, of inference rules and of the attributes of actors. For example,
an actor may be biased, or insensitive to the opinions of others, or have access
only to certain other actors or to certain experiments. We will advance a stronger
argument that introducing communication into a model of science produces a degree
of complexity that cannot be handled by models defined only as static, semantic
structures.

The context in which beliefs are formed and confirmed or rejected includes mul-
tiple networks of epistemic practices. Science studies recognize the existence of
a range of influences, constraints and sources but reject the notion of a single set
of procedures, rules, norms or institutions sufficient to explain in general terms
how the sciences work. The sciences do produce results—some of which turn out
to be robust—without being constrained by centralized authority, or by standard-
ized protocols, or exclusively by consensual factors, or by an objective world that
determines outcomes. Each actor, site or node of a scientific community has a view-
point, a partial view consisting of beliefs, local practices, local constraints, norms
and resources. None of these are fully shared across all sites. For example, experi-
mental results often cannot be replicated unless expertise (tacit knowledge) is also
transferred (Collins 1985). Nevertheless, there is sufficient transfer of descriptors,
concepts, methods and expertise to allow for communication between domains and
between differing theoretical positions (Star and Griesemer 1989; Galison 1997;
Gorman 2005), and for negotiation leading to the aggregation of elements from dif-
ferent viewpoints (Star 1989, p. 45). This explanation emphasises the diversity and
context of practices, styles, and discourses (Galison and Stump 1996). It does not
follow that there are no common methods and strategies, but if many communities
of practitioners conduct science then we cannot expect a finite set of unambiguous
rules to govern belief-revision and theory change.

5.4 Dynamic, Socially Mediated Inference

If complexity and variability defeat formal and semantic models, must we then
conclude that scientific processes cannot be modelled? Here we adopt an alternative
approach. This involves modifying some assumptions of traditional computational
models and of philosophical theories about how confidence in hypotheses relates
to experimental evidence. Drawing on findings of science studies about the social
aspect of belief, we propose a way of modelling the dynamical rationality of science.
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Simulation methods are not only advantageous, they are necessary (Ahrweiler and
Gilbert 1998).

We use an agent-based approach in which every agent or actor can investigate
a world of experiments and communication with other agents. Agents are defined
by their capacity to interact with this world and not solely by inherent or ‘personal’
features. This follows from the view of science studies and with an insight of Herbert
Simon. He remarked that ‘we cannot explain the path of an ant without reference
to properties of the terrain (such as chemical messages left by other ants)’. He goes
on to argue that human intellectual processes may, in fact, be relatively simple
in that most of the complexity of human behaviour may be drawn from a created
environment of objects designed to assist our intellectual endeavours (Simon 1981,
p. 159). Research into how cultures provide for a cognitive environment bears out
this insight (Baird 2004; Heintz 2004; Hutchins 1995) in a way, oddly enough, that
Simon and Newell’s implementation of it (Newell and Simon 1973) failed to do
(Collins 1990; Gorman 1992; Ahrweiler and Wörman 1998). It is clear that to design
the material environment of science we must also add the social environment of
other actors.

Our simulated actors are therefore characterized by their responsiveness to opinion
(receptivity), responsiveness to data (flexibility), access to experiments, ability to
communicate with other actors, and by a belief profile. This profile specifies an actor’s
confidence in each of a range of given hypotheses and allows us to represent bias.
Beliefs are formed by an actor’s interaction with other actors and (via procedures)
with instruments that produce observations. Each actor revises its view of the world
on the basis of the data and opinions it encounters. What an actor does will depend
on which hypotheses it believes. Thus we treat beliefs as Peirce did, as dispositions
to act; that is, to make an experiment, or consult another actor, self-consult or does
nothing.

Like Simon’s ants, scientists do not encounter a predictable, ready-made world:
they shape and enhance the world to make it more conducive to science. Whereas
ants must use chemical messaging, scientists cannot always apply ready-made terms,
concepts or procedures to interpret new or surprising features of the world. Studies
of visualization and modelling show that where science is producing new knowl-
edge, people are dealing with a world that is only partially described, using images
or concepts whose meaning is being worked out according to methods that were
investigated (Gooding 2004; de Chadarevian and Hopwood 2004; Lynch and Wool-
gar 1988). Traditional views of science have emphasized the established, accepted,
finished product—the clearly expressed, predictable, experimentally proven knowl-
edge of textbooks and monographs. This approach hides the extent to which scientists
invent and negotiate ways of representing aspects of the world they are investigating
(Kuhn 1961). Engaging with the natural world is both an adaptive and an inherently
a social process (Gorman et al. 2005).

We have identified several aspects of science that should be included in a model of
inference: in particular, plasticity of representations and the inherently social char-
acter of these tokens of meaning. Plasticity can be handled according Wittgenstein’s
analysis in the Philosophical Investigations. The meaning of a term is not given by a
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finite, fixed set of necessary and sufficient conditions for its application (as assumed
in analytical philosophy), nor by stipulating an exact set of referents (Addis and
Gooding 2004). Rather, meaning is given by sets of objects and associations that are
invoked when a term is used. Membership of these sets can change (Hesse 1973;
Kuhn 1974). In science—as in everyday life—words and phrases often emerge from
concrete situations in which participants jointly work out ways of describing what is
going on (Arrighi and Ferrario 2004). New terms, symbols or images are created that
acquire meaning through collective use in real situations (Gooding 1990; Suchman
1987; Goodwin 1995). Even after terms or symbols have acquired an established us-
age that does conform to semantic rules, experts must sometimes validate judgements
about correct usage or the validity of an inference. It is the scientific counterpart of
establishing the authenticity of a painting or whether an ornament is made of real gold
(Putnam 1975). This is the context in which we shall argue that experiments function
as models. These models mediate between the emerging language of description and
the explanation of the changing phenomenology of a domain.

5.5 Experiments as Mediating Models

Scientists use experiments to constrain the variability of a complex world by selecting
certain features and processes and excluding others. The desired level of control
can be difficult to achieve, so experiments develop over time; they have histories.
Sometimes experiments become autonomous of the theories they are meant to test
(Hacking 1983). During the twentieth century the character of experiment changed,
from bench-top activities conducted within a single space by a very few people, to
being complex arrangements of detecting and measuring machines, data flow, data
analysis, and control procedures for managing the machines, information and large
numbers of people (Galison 1997; Pickering 1995). Experiments were absorbed
into distributed cognitive systems (Giere 2004; Nersessian 2005). Nevertheless, one
aspect of experiments did not change: their design, use, interpretation and validation
all involve seeking a consensual view through negotiation between individuals and
groups of individuals.

Experiments are social objects constructed via epistemic practices. They are not
simply ways to display facts. The way in which an experiment is perceived, no
less than the way its results are interpreted, will vary according to context. Similar
points have been made about models: models are abstractions that select features
of the world and mediate between the abstract concepts of a community and the
dappled, complex world they are theorizing (Cartwright 1999). Models have histories
showing that their complexity varies according to function and context. Models
are also investigative instruments, and like experimentation, modelling can become
an autonomous activity (Morrison 1999). As with experiments, there is no unified
method for modelling (de Chadarevian and Hopwood 2004). Models and experiments
facilitate mutual adjustment of theories in relation to empirical evidence, networks of
theoretical assumptions, and the material exigencies of acquiring data. Experiments
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Fig. 5.1 Simulation shares
features with theory (explicit,
articulated concepts and
rules), experiment (empirical
data and a range of outcomes)
and demonstration (rigorous
argument according to rules)
yet remains distinct from each
of them

EXPERIMENTTHEORY

DEMONSTRATION

SIMULATION

can be regarded as mediating models because experiments sometimes are models—
simplified, abstractions of more complex processes—and because experiments often
have the same cognitive function that models do in theorizing: they are integral to the
process of inventing, constructing, negotiating and validating beliefs about the world.

5.6 Static and Iterative Models

Our simulation aims to capture this mediating function of experiments (as sets of
devices and procedures that produce observational results) in relation to theories (as
sets of hypotheses) and to scientific communities (as sets of actors). This requires a
model that can be iterated in order to draw out the consequences of the assumptions
it implements. A static model specifies the form and structure of its constituents, but
cannot show what their interaction would produce in time and in the world.

The key difference between a model and a simulation is that a simulation iter-
ates the states of a model, to produce behaviour over a period of time. Simulation
differs from mathematical process models in science, which use procedures such as
integration or differentiation to calculate end-states. These linear methods generate
outcomes that are determined by the starting parameters. By contrast, iteration en-
ables us to trace the implications of structural and other assumptions of the models
that make up the theory, by exploring the range of outcomes that occur for a given
set of starting parameters. In this respect simulations are similar to experiments and
to theories (Fig. 5.1).

Because our simulation involves an adaptive belief system, the only way to dis-
cover, say, how a model of inference works out in a particular context is to run the
simulation many times in order to ascertain the range of behaviours and outcomes.
Variability of event-sequences and their outcomes represents unpredictability due to
the outworking of social and other contingencies. Simulation makes it possible to
evaluate such assumptions experimentally, not solely in relation to logical, seman-
tic or other criteria. Historical, ethnographic and cognitive studies provide empirical
benchmarks against which the behaviour of the simulation is evaluated. This sets sim-
ulations apart from models (as static structures of propositions arranged according to
syntactic rules) and from experiments (as material components arranged according
to physical, chemical or other constraints).
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5.7 Abductive Systems in Science

The process of creating a model and how it relates to the experimentation is initiated
by abductive inference. Abductive inference proposes a set of models for consider-
ation. It is stimulated by the observation of puzzling phenomena (Peirce C. S.). We
will propose in this next section that abduction does not work in isolation from other
inference mechanisms (such a deduction and induction), and illustrate this through
an inference scheme designed to evaluate multiple hypotheses. We will also use game
theory to relate the abductive system to actions that produce new information. This
will provide us with a formal link between inference and action. To enable evaluation
of the implications of this approach we have implemented the procedures used to
calculate the impact of new information in a computer model. Experiments with this
model display a number of features of collective belief-revision observed in the field
that lead to consensus-formation, such as the influence of bias and prejudice. The
scheme of inferential calculations invokes a Peircian concept that:

‘belief’ is the propensity to choose a particular course of action.

Of the three types of inference proposed by Peirce, deduction is the one most widely
accepted and understood (Peirce 1966, p. 92 ff.). In the semantic tradition, scientific
models are reducible to formal systems of propositions. Formal systems invoke
deduction because inferences can be made without reference to anything except the
model itself. Deduction is a self-contained syntactic process in that validation of
an inference depends simply upon a priori semantic truths and the preservation of
truth-values. These can be specified in a truth table. Thus deduction appears to free
us from the vagaries and changeability of an external world.

What makes this possible is that deduction relies upon the existence of well-
defined sets. The members of such sets are known without ambiguity. However,
what is often ignored is how the rules that specify set membership are established.
In practice, it is left to the user of a formal system to devise rules that can be applied
to test a candidate element for membership of a set. If this can be done with a finite
set of rules and without reference to context, then the formal model is considered
unambiguous. Following the model of Wittgenstein’s Tractatus, we consider such
sets to be ‘rational’ (Wittgenstein 1921; Addis and Billinge 2004).

By contrast, Peirce’s notion of ‘abductive’ inference does not depend upon truth-
values. Instead, the process of validation depends upon ‘induction’, the third type of
inference that Peirce recognized. First, abduction generates a model (a hypothesis)
that is used together with deduction to explain some surprising facts and to predict
new ones. Where these are successful, this reduces our uncertainty about the world or,
as Peirce put it—‘makes the world a less surprising place’. However, any reference
to the world requires a form of validation that depends upon observation of the world.
Peirce’s version of induction involves comparison of expected and actual outcomes to
validate the abduced model of the world. Traditional ‘induction’, when considered
as generalization from given instances, converges to the combination of the two
Peircian inferences of abduction and validation (see Chap. 3 and Addis 2000).
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The cycle ‘abduction (generation) deduction (prediction) induction (validation)
the inference abduction’ reflects something of the scientific process of interpreting
new or surprising findings by generating a hypothesis whose consequences are then
evaluated empirically (Hanson 1958; Gooding 1996). However, an abduction cycle
calls for sensitivity to empirical context. This in turn calls for variability in the set of
descriptors and for some plasticity in their meaning (for examples see Gooding 1990).
This plasticity of meaning requires a kind of set for which there is no finite collection
of rules that establish membership of an element; we must be able to change mem-
bership by adjusting the set of rules that can be applied. Such sets mediate between
the stable language of formal models and the changing, often uncertain contexts to
which they apply. Scientists work out the rules governing set-membership as they
develop the experimental and theoretical methods of a domain.

We will call such dynamic and flexible sets irrational.

We will illustrate this through a computational model of beliefs represented as the
level of confidence in each of a set of hypotheses. These beliefs can be revised in the
light of new information (Addis and Gooding 1999; Gooding and Addis 1999, 2004).
This model will show how abduction, as part of a larger inference system, can make
the world a less surprising place. In order to implement it as an iterative model, we
must first articulate the notion of abduction in terms of a measure of expectation.

The most appropriate measure of expectation1 is called entropy2.

However, we found that when we try to minimize this measure through an agent’s
actions so as to make the world a less surprising place then this measure produced
implausible behaviour. In particular, simulated agents will become locked into fixed
patterns of belief and behaviour.

The entropy measure works only if it is:

i. continually validated and adjusted
ii. incorporates random actions based upon game theory.

Our simulation experiments suggest, therefore, that rules governing membership in
irrational sets require:

i. a continuous reappraisal and revision
ii. the possibility of actions that appear irrational.

The set of beliefs is irrational in that its membership can change (e.g., to include new
descriptors for surprising or anomalous information, Gooding 1990), even without
recourse to definitions or correspondence rules (Kuhn 1974, pp. 310–312). Behaviour

1 Also referred to as surprise
2 As described by Shannon and Weaver, 1964
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may also be irrational as suggested by game theory. Game theory is used in our model
of science to dictate the selection of an experiment or alternatively to talk to another
agent. These selections are not always warranted by the current set of beliefs of
an agent, since it will sometimes choose an action that is counter to the firmest of
beliefs. If the agent does not do that then, as mentioned previously in this chapter,
the agent becomes inflexible and will remain firmly stuck in what is possibly an
incorrect belief.

In the next chapter we will step through the formal theory that supports
irrational action.
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Chapter 6
Modelling Inference

When the torrent sweeps a man against a boulder, you must
expect him to scream, and you need not be surprised if the
scream is sometimes a theory

Robert Louis Stevenson, Virginibus Puerisque, 1881.

6.1 Simulation Methods

Historians and students of scientific method know that scientists evaluate hypothe-
ses and theories comparatively, not in isolation (Kuhn 1977; Salmon 1990). In the
early stages of the development of a new field, many hypotheses may be proposed.
Scientists generally seek to narrow down the range of potential hypotheses while
increasing their precision. Nevertheless, attempts to improve the empirical adequacy
of theories via experiments sometimes lead to further hypotheses, introduced to pro-
tect other, more fundamental assumptions of a theory. For example, evidence against
the existence of luminiferous ether arose through Michelson and Morley’s experi-
ments, which were designed to produce a definitive empirical support for this core
assumption of the wave theory of light. The Lorentz-Fitzgerald contraction hypoth-
esis was introduced to save the ontological commitment to the ether in the face of
this evidence because the ether was considered essential to the wave theory of light
(Swenson 1972; Siegel 1981).

In order to capture a scientist’s view of the world we have introduced the notion of
a confidence profile (Gooding and Addis 1999). This is a set of values representing
an agent’s confidence or belief in each of a range of hypotheses. Some of these
will be alternatives to others and, where they are sufficiently specific, some may
also contradict others. Scientists inhabit a changing world of information-bearing
experiments and social interactions, so the probability of a particular hypothesis
being true must reflect both empirical information and the opinions of others, as well
as the probability of other hypotheses that make up the current view of the world.
This probability is calculated dynamically in the light of the results of experiments
and consultations. We use a modified version of Bayes’ Rule to calculate the impact
of recent evidence, converting an observed experimental result into a set of modifiers
for a confidence profile. Note that we will not use Bayes’ Rule, as is normally the
case, to calculate the accumulated evidence for a hypothesis.
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We first consider the Bayesian equation from the point of view of an agent who
performs experiments in order to determine which hypothesis (or model) is most
likely. We determine the confidence in a hypothesis H ‘given’ (shown as ‘/’) a result
Re from an experiment ‘e’ thus:

En − 1(H/Re) = En − 1(Re/H)/En − 1(Re)

where

En − 1(Re/H) = [En − 1(H) ∗ P(Re/H)]

• P(Re/H) is the a priori probability that Re will occur given the hypothesis H for a
given experiment ‘e’ as perceived by an agent.

• En − 1(H) is the confidence that an agent has in a hypothesis H at time n − 1. The
confidence value ranges from 0 to 1 and represents the probability of the agent
acting as though H is the only hypothesis.

This generic equation represents a personalized view of the world for a specific agent.
(For simplicity, we present these equations in a generic rather than in an agent-specific
form). Here Re is the result of an experiment ‘e’ given H. The expected result for
any experiment will depend upon the perceived probability of each hypothesis and
an a priori understanding of the probability of a result for the hypothesis supposing
it reflected the behaviour of the world at the time of the experiment. The confidence
profile reflects only past experience. In order to represent an agent’s overall view of
the world we must also calculate a unified value that characterises the agent’s expec-
tations about the outcomes of future experiments. In particular, we can determine
an agent’s view of the expected result for the its set of beliefs in all hypotheses as
En − 1(Re).

6.2 Confidence Adjustment

Many have argued the advantages of a Bayesian approach to the understanding of
theory-selection in scientific change. Central to Salmon’s argument for Bayesian
methods is the contention of post-Kuhnian philosophy of science, that formal,
hypothetico-deductive methodologies cannot provide a rational account of theory
change in science (Kuhn 1977; Salmon 1990, p. 258;). Although our dynamic model
of belief-revision incorporates a Bayesian calculation, and we retain the Bayesian
assumption of the independence of each item of evidence, our model is not Bayesian.
This is because:

• First, whereas Bayes’ Rule assumes a constant and unchanging world we are
simulating the impact of a world in which even what counts as evidence can
change; hence the need for flexible (irrational) sets of descriptors. We take the
view that changes in the world will be gradual relative to the number of events
that can occur during an inference cycle. A useful feature of our model is that it
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allows us to specify the impact of recent evidence and consultation for each agent.
This allows a hypothesis to remain available for consideration despite a run of
apparently falsifying observations (for example see Gooding and Addis 2004).
This important virtue is in keeping with scientific practice (see, e.g., Kuhn 1977;
Lakatos 1970).

• Second, we reject the Bayesian assumption that the order in which events occur is
irrelevant, insofar as changes in belief will change the set of hypotheses available
for the interpretation of results (see Sect. 6.4).

Changes in belief can be induced by consultation as well as experimental evidence.
So different sequences of action performed by the agent will produce different pat-
terns of belief-revision in that agent (Gooding and Addis 2004). Even in the case of
a single (non-consulting) agent, the order in which evidence appears is not predeter-
mined. Iterative, simulation-based methods allow us to explore the effects of what
sociologists of science call ‘contingency’ (Knorr-Cetina 1975). Thus, they offer a
huge advantage over single-step discussions of the implications of a particular infer-
ence rule or confirmation strategy applied to a single sequence of events (Gooding
and Addis 2004).

6.3 The Impact of Evidence: Hypotheses

It follows that we cannot use an inductive inference rule (such as Bayes rule) to
calculate the accumulation of evidence for a hypothesis. There is a long tradition
(dating from the work of Ramsey and de Finetti in the 1930s) of associating disbe-
lief with a prior probability of (or near) zero and certainty with a probability near
one. However, hypotheses do not achieve absolute certainty and they should always
remain hypothetical; scientists will re-classify them as a necessary postulate (as in
the case of the luminiferous ether), as a principle (as both Galilean-Newtonian and
Einsteinian relativity were), or as facts (e.g., elements transmute, species mutate).
Nor can a hypothesis be wholly, irretrievably disbelieved and still be hypothetical;
without belief, a hypothesis will be re-labelled as an artefact, a fiction or non-fact,
as a non-existent entity (phlogiston, the ether), or as a false (though once-believed)
principle (e.g., the immutability of chemical elements and of biological species).

To call something a hypothesis, H is to say that there is some empirical support for
H given evidence Re. This support is En − 1 (H/Re), and is a value that lies between 0
and 1 for each hypothesis H. Given a new result Re from carrying out an experiment
‘e’, the probability which represents an agent’s confidence concerning a particular
hypothesis can be modified to En (H) by adapting the above equation to the following
one (see Addis 1985, p. 260):

En(H) = [(N − 1)En−1(H) + En−1(H/Re)]/N
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We can thus define a concept flexibility which ranges from 0 to 1 for each agent such
that:

flexibility = 1/N

Flexibility represents an agent’s responsiveness to new observational evidence. Flex-
ibility is considered to approximate to a window of N events within which belief has
adapted to the current position. The larger the window the less responsive the agent
becomes to the current event.

6.4 The Impact of Opinion: Consultation

We assume that one agent consulting another is equivalent to accessing the consulted
agent’s complete range of confidence values. This access has the effect of modifying
the consulting agent’s confidence in each hypothesis as if it had performed its own
experiment. (Bayes’ Rule is not applied in consultations; it is needed only to update
confidences based on experimental results). The confidence value of each of the
hypotheses, which make up the consulting agents belief profile, will be modified
according to the following equation:

En(H) = [(M − 1)En − 1(H) + En − 1(HConsultee)]/M

M ranges from 1 to infinity. The larger M, the smaller the effect any evidence has on
the change in confidence. We can thus define concept receptivity. This ranges from
0 to 1 for each agent as:

receptivity = 1/M

Receptivity reflects the consulting agent’s receptiveness to the beliefs of any
consultee.

6.5 A Simple Example of Confidence Adjustment

Given a coin that is to be tossed, we might consider two possible hypotheses:

• H1. The coin is good (e.g., has both a head and a tail)
• H2. The coin is double headed (or tailed)

Result P (Result/H1) P (Result/H2)

Heads 0.5 1.0

Tails 0.5 0.0

According to Peirce, knowing that one of these hypotheses is true “makes the world
a less surprising place”. Treating entropy as a form of a measure of surprise, as did
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Shannon and Weaver, we can calculate the difference made by ‘knowing’ H2 is the
case from the difference in entropy of the two situations:

Entropy of H1 = −(0.5Log2(0.5) + 0.5Log2(0.5))

= −((−0.5) + (−0.5)

= 1bit

Entropy of H2 = −(1.0Log2(1.0) + 0.0Log2(0.0))

= −((−0.0) + (−0.0)

= 0 bit

So the difference made by ‘knowing H2 rather than H1 is the case’ is (1 – 0) = 1 bit.
The effect of the new information is mediated by an agent’s current beliefs about

the world. Suppose an agent’s initial confidence has in each of these hypotheses is:

Agent

En − 1(H1) 0.8

En − 1(H2) 0.2

Total 1.0

Then we can calculate the effect of an experiment (tossing the coin) as follows.
Using:

En−1(H/Re ) = En−1( Re/H)/En−1( Re )

Agent

En − 1 (Re/H) =
En − 1(H) * P(Re/H)

E (Head/H) E (Tail/H) Total

En − 1 (H1) * P(Result/H1) 0.8 * 0.5 = 0.4 0.8 * 0.5 = 0.4 0.8

En − 1 (H2) * P(Result/H2) 0.2 * 1.0 = 0.2 0.2 * 0.0 = 0.0 0.2

E(Re) 0.6 0.4 1.0

We can then calculate:

Agent

En (H/Re) Head occurs Tail occurs

En (H1/Re) 0.4/0.6 = 0.67 0.4/0.4 = 1.0

En (H2/Re) 0.2/0.6 = 0.33 0.0/0.4 = 0.0

Total 1.0 1.0



78 6 Modelling Inference

So from the update-equation we have:

En(H) = [(N − 1)En−1(H) + En−1(H/Re)]

If we let N = 4 so that

(N − 1)/N = 3/4 = 0.75

and also
1/N = 0.25 for an agent’s flexibility then:

Agent

En(H) Head occurs Tail occurs

En(H1) 0.75 * 0.8 + 0.25 * 0.67 = 0.77 0.75 * 0.8 + 0.25 * 1.0 = 0.85

En(H2) 0.75 * 0.2 + 0.25 * 0.33 = 0.23 0.75 * 0.2 + 0.25 * 0.0 = 0.15

Total 1.0 1.0

It is important to note that whereas on a purely Bayesian model the appearance of a
tail could eliminate the belief that the coin is double headed (H2), our model does
not produce this conclusion. This response is not as irrational as it might appear:
it keeps open the possibility of alternative explanations (e.g. that there has been a
switch of the coin, say, for a double-tailed coin, or an observational error). This is
more like what is required for the abductive cycle and for scientific investigation in
general (Tweney 1985; Matthews 2004).

6.6 Confidence, Indifference and Change

The number of hypotheses actively considered by scientists varies. During the ex-
ploratory stages of an investigation scientists are rarely in a position to consider just
two well-defined alternative hypotheses. Nevertheless, the tendency is always to re-
duce the number of hypotheses in play, and to make them as specific as possible. This
means that confidence in a particular hypothesis is affected, not only by experiments
and consultations, but also by the number of hypotheses available for consideration.

In order to allow for changing numbers of hypotheses, we introduce a dynamic
threshold, the indifference value. This defines hypotheses that are under active con-
sideration (or are believed to be possibilities). Thus, we have a variable set of
hypotheses that implicates a changing ontology and phenomenology.

To calculate the indifference value we need a function that changes smoothly
between limiting values and is easily to calculate for any number of different hy-
potheses. A quantity that suits our purpose and varies in time as required is the inverse
of entropy.
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Entropy indicates an expectation; it is a measure of the ‘surprise’ value of an
event. Here ‘surprise’ is measured as the log of the inverse probability of that event
(or − log2 p). So:

Surprise = −log2 · p

In information theory, entropy (given by − ∑
p log2 p) is the average degree of

certainty (surprise) of being able to predict the next bit of information in a stream,
e.g. the next character in a string of characters. (The logarithmic scale used in keeping
with other human sense sensitivities (Shannon and Weaver 1949). So:

The more unlikely the event the greater the surprise.

We use this in a general measure of an agent’s confidence about its current view of
the world and its ability to respond correctly to event n. In the equation below we
will use ‘A’ and subscript ‘a’ to denote a particular agent. Because the hypotheses
under consideration in this example will be assumed mutually exclusive, the average
surprise will increase as an agent becomes more confident about a smaller number of
hypotheses. We call this general confidence measure for an agent the model entropy.
The term model denotes the set of hypotheses that make up the agent’s view of the
world. Model entropy is given by:

Entropy (Agenta) = −a

∑
H

En(Ha) ∗ Log2(En(Ha))

and from this we can obtain an inverse of the entropy which gives an expected
value for En (H). This will be denoted by In (A). In (A) will be called an Indifference
Threshold for the agent A at event (time) n:

IndifferenceThreshold(a, n) = −log2
−1(Entropyn(Aa))

= In(A)

The expression En (H) is the expected probability of a hypothesis. Values of En (H)
above In (A) are considered to be significant, i.e., the hypothesis is actively believed
by the agent1.

In (A) can be treated as a generic confidence over all the hypotheses. If we consider
the case that all hypotheses had this confidence value as one possible state that could
occur we can say that the agent is indifferent to them all, thus the name Indifference
Threshold. In (A) indicates a level of general confidence an agent has about its view
of the world at time n.

1 Since most of the calculations are done by natural logarithms,it is useful to note that: 2x = e(x.log2)
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We will propose that the agent says it believes in all those hypotheses that have a
greater confidence value than In (A) and disbelieves all hypotheses that have a lesser
value.

Therefore, from our simple example with the coins we have:
Initially (before the coin toss):

Agent 1s belief in

H1 = 0.4 + 0.4 = 0.8

And its belief in

H2 = 0.2 + 0.0 = 0.2

So :

Entropy (Agent) = −(0.8 ∗ Log2(0.8) + 0.2 ∗ Log2(0.2))

= 0.26 + 0.46

= 0.72

Since we require our indifference threshold to be in terms of a probability but the
entropy measure is in terms of a log of a probability then this result needs to be
converted. So the indifference threshold I will be the:

{inverse − log2(0.72)}, = 0.61(approximately).

This is because:

−Log2(0.61)is approximately equal to 0.72.

If a tail occurs then Agent 1’s belief in H1 and H2 becomes:

Entropy (Agent) = −(0.85 ∗ Log2(0.85) + 0.15 ∗ Log2(0.15))

= 0.2 + 0.41

= 0.61

The indifference threshold I will be 0.66 since − Log2 (0.66) = 0.61 (approximately).
We can say that when the result of the coin toss is tails, the general agent’s

confidence has gone up from 0.61 to 0.66. Given a string of tails this confidence
will eventually reach 1.0, whence the remaining hypothesis (H1 in this case) would
be re-designated as a fact. Nevertheless, in our game theory model the agent is not
so certain of the world that it never acts to test for alternative hypotheses. No matter
how ‘certain’ they become of a hypothesis, the agents in our model remain open to
conflicting (negative) evidence. (For examples, see Gooding and Addis 2004).
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6.7 Agents and Groups

The aim of every agent is to raise its general confidence in some view of the world by
discovering facts about the world. A group of agents has a similar aim; to obtain new
information to minimize their collective uncertainty about the world. For a collection
of agents a similar group-confidence value can be derived from the Group Entropy:

Entropy(Grp) =
∑

A

∑
H

∑
n
(H/A) ∗ {Log2(En(H/A)) − Log( |A| )}/ |A|

This expression represents the expected result of a single sampling of the confidence
in any hypothesis of an agent randomly chosen from the group.

Similarly, the inverse of the group entropy represents the significance threshold
for the group of agents in terms of an expected probability. We can also calculate
the inverses of entropy for an agent I(A), a group of agents I(G) and for a set of
experiments I(E(A)) as perceived by a single agent or a group of agents I(E(G)),
where an experiment ‘e’ is defined in terms of the probabilities of results R that are
considered possible for a given range of hypotheses H.

These dynamic threshold values are independent of the number of hypotheses or
experiments, so we can define the indifference level of a group of actors indepen-
dently of particular hypotheses that happen to be in play. This is important for two
reasons. It allows us to use these dynamic values in agent-based decision-making
about the next action to take (see Sect. 6.6). It also allows us to represent the pro-
cesses whereby scientists respond to changing evidence by altering their view of the
world, e.g. a hypothesis changes from being a mere possibility, to being considered
plausible, to being generally accepted and, finally, coming to have the status of a
fact, law or principle. If all hypotheses were to be eliminated except one, both I(A)
and E(A) would equal unity (implying certainty). If this happens, it can be said of
the agents that they are both indifferent to the hypothesis as well as certain of it.

6.8 The Choice of an Action

6.8.1 Evaluating Actions

Agents decide whether to experiment or to consult by evaluating each of the possi-
bilities offered by each kind of action. We represent an experimental setup as a table
of real numbers that indicate the a priori probability of a result occurring, given that
a hypothesis (or model) is a correct description of the world’s constraints. We refer
to the hypothesis that is active within a simulation run as the objective model. Sim-
ulated experiments have those outcomes that are most probable in a world in which
the objective model is true (see Gooding and Addis 1999). This list of occurrence
probabilities defines each possible experiment. The list will sum to unity for each
hypothesis, since at least one of the results must occur in a world of which that model
is the best available description. Experiments differ in producing different sets of re-
sults, so where the set of occurrence probabilities for an experiment is the same for
any hypotheses, it is the same experiment, regardless of the physical apparatus used.
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In our model, the choice of an experiment is derived from its effectiveness, as
perceived by an agent, in discriminating between hypotheses. This choice is gov-
erned by the agent’s initial confidence En − 1(H). We represent an agent’s view of an
experiment by the entropy, represented for each experiment as:

Entropy(e) =
∑

Re

∑
m

Hm{En-1(Re/Hm)} ∗ Log2(En−1(Re/Hm)}

This equation describes the confidence of a result given a hypothesis as perceived by
an agent, i.e. the choice of experiment is affected by an agent’s bias. The experiment
with the lowest entropy is the experiment most likely to be chosen by the agent in
that it will have the clearest and most decisive results for supporting or negating each
of the hypotheses in the agent’s confidence-profile. Thus, the choice reflects both a
property of the experiment and a property of the experimenter.

Even so, the experiment with the lowest entropy is ‘most likely’to be selected. This
is because the actions of agents are governed, Monte Carlo fashion, by a probability
distribution based upon belief, and because we apply game theory in the decision
procedure (Luce and Raiffa 1957). Suppose in our simple example we choose to
‘ask’ for a head or a tail. Then allowing for mishearing, we could write a table of
probabilities for H1 thus:

Hypothesis: the coin is good—H1 Head Tail No response

Exp1: Ask for a Head 0.9 0.05 0.05

Exp2: Ask for a Tail 0.05 0.9 0.05

But even with mishearings for H2 we would have:

Hypothesis: the coin is double
headed—H2

Head Tail No response

Exp1: Ask for a Head 0.9 0.00 0.1

Exp2: Ask for a Tail 0.1 0.0 0.9

The initial beliefs of the agent about the different hypotheses is as before:

Agent

En − 1(H1) 0.8

En − 1(H2) 0.2

Total 1.0

The experimental setup (here, calling for a coin to be tossed) is defined by a table of
real numbers. To obtain a vector of expectations we multiply an agent’s confidence
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profile by the matrix representing the result probabilities of all experiments that are
possible. This calculation generates a biased perception for each agent of each of the
experiments. The results can now be made into expectations of results for the agent
thus:

0.8 * Hypothesis: the coin is good—H1 Head Tail No response

Exp1: Ask for a Head 0.72 0.04 0.4

Exp2: Ask for a Tail 0.4 0.72 0.4
∗ multiply

0.2 * Hypothesis: the coin is good—H1 Head Tail No response

Exp1: Ask for a Head 0.18 0.0 0.02

Exp2: Ask for a Tail 0.04 0.0 0.16
∗ multiply

Note that the total confidence over both hypotheses for each experiment is equal to
one. So for the agent we have:

Exp 1

= −{0.72 ∗ Log2 (0.72) + 0.04 ∗ Log2 (0.04) + 0.04 ∗ Log2 (0.04)

+ 0.18 ∗ Log2 (0.18) + 0.0 ∗ Log2 (0.0) + 0.02 ∗ Log2 (0.02) }
= 1.27 (entropy for H1 and H2)

I (Exp 1) = 0.41 (approximately)

Exp2

= − (
0.04 ∗ Log2 (0.04) + 0.72 ∗ Log2 (0.72) + 0.04 ∗ Log2 (0.04)

+0.04 ∗ Log2 (0.04) + 0.0 ∗ Log2 (0.0) + 0.16 ∗ Log2 (0.16)
)

= 1.32 (entropy for H1 and H2)

I (Exp 2) = 0.40 (approximately)

Taking this criterion alone, experiment 1 (“Ask for a Head”) is a marginally better
choice because it has lower entropy. However, according to the logic of falsification
that many have attributed to science (Popper 1959; Wason 1960; Lakatos 1970), this
is not the best experiment to choose. The exposure of a Tail would eliminate H2, so
we ought to “Ask for a Tail”. There is a way of avoiding an apparent conflict between
confirmatory- and non-confirmatory strategies so that our agents can employ both.
The clue is to note that the Indifference levels (0.40, 0.41) do not sum to unity. This
suggests that these ‘probabilities’ are not giving the complete story. Something more
needs to be done.
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Our agents do not update their beliefs in a simple Bayesian fashion. In the most
general terms, a Bayesian agent moves through time and evidence having a set
of beliefs. Each time it learns a new fact, the agent revises its degree of belief in
each hypothesis by adapting to the new fact. For a Bayesian agent, ‘confirmation’
is analogous to a new fact making a hypothesis more probable than it was before;
‘disconfirmation’ is analogous to new evidence making a hypothesis less probable
than before. Close analysis of scientists’ behaviour suggests that they sometimes
behave as Bayesians (Gooding and Addis 2004), however, recent evidence shows
that this is not the only factor at work.

6.9 Choosing Actions

In what we have modelled, each agent perceives the potential outcome of an experi-
ment differently because each has a different confidence profile, just as in real life.
It follows from our definition of an experiment that each agent perceives a subtly
different experiment being performed. The result of the multiplication (belief pro-
file × result probabilities) is then used to modify each agent’s a priori confidence
value for each hypothesis. The degree of modification to the belief profile depends
upon the agent’s flexibility (see Sect. 6.2.1). A similar process occurs when there
is a decision to consult another agent rather than experiment. The cycle of learning
through consultation is similar to that for an experiment, except that there is no need
to involve Bayes’ Rule because the confidence values in the profiles of consulters
and consultees are already expressed in the same terms; that is belief or perceived
probability.

The Peircian, pragmatic notion of belief implies that the numerical confidence
value attached to each hypothesis by an agent represents the probability, given avail-
able each state of affairs, of its performing an action. Under certain conditions Game
Theory favours a ‘mixed strategy’ approach where a mix of actions are tried ac-
cording to some probability distribution (Luce and Raffia 1957, pp. 67–70). We
use an agent’s belief profile to calculate personalised entropies for each experiment
(see Evaluating Actions). The decision mechanism deploys this profile as a set of
probabilities to act. We will illustrate this using the simple coin experiment.

Indifference represents the expected probability of an event (as implied by a
hypothesis). The gain for choosing ‘correctly’ would be increased confidence in
one’s view of the world. If we assume the expected loss for acting on a wrong belief
is one unit and expected gain is zero then we can express the payoff in a two person
zero sum matrix (Table 6.1, 6.2).

• Ih is the expected ‘belief’ that some hypothesis represents a particular state of
affairs. It does not matter which hypothesis, since this represents an average.

• Expected Gain in Exp1 is Ih * (0) − (1 − Ih) * (− 1) = (1 − Ih).

The equations in Table 6.1 can be generalized for any number of hypotheses and
actions.
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Table 6.1 A payoff matrix for
a ‘two person zero sum’ game Action (frequency) Expected

hypothesis
Expected NOT
hypothesis

Exp1 (fh) Ask for Head Ih * (0) (1 − Ih) * (− 1)

Exp2 (ft) Ask for Tail It * (0) (1 − It) * (− 1)

Table 6.2 An example of a
payoff matrix Action (frequency) Expected

hypothesis
Expected NOT
hypothesis

Exp1 (fh) Ask for Head 0.41 * (0) 0.59 * (− 1)

Exp2 (ft) Ask for Tail 0.40 * (0) 0.60 * (− 1)

We iterate this mixed strategy in each cycle of the belief-revision process. Inclu-
sion of this strategy makes the application of game theory to science and to learning
more appropriate than a single-step decision procedure would be. If fh is the fre-
quency of applying the strategy ‘ask-for-head’ and ft is the frequency of ‘ask for
tail’, then we can calculate for each actor the gain (maximum-security or minimum
possible loss) between the agent’s two options, as:

fh = (1 − It)/[(1 − Ih) + (1 − It)]

= 0.59/[0.59 + 0.60]

= 0.496

ft = 1 − fh

= 0.504

So for optimum results the frequency of ‘Ask for a Head’ should be 0.496 and ‘Ask
for a Tail’ should be 0.504. Having only a slight bias towards asking for head reflects
the strong prior belief that the coin is good; the coin is fair. This course of action
would be more rational than asking for a tail every time, given that the agent believes
that the coin is good.

The above equations are extended to deal with decisions about which experiment
to perform or which agent to consult. Agents evaluate a distribution of choices in
order to select those most likely to maximize the gain (confidence in the overall view
of the world). A consultee is chosen by extending the calculations to consider the
entropy of every pair of agents’, including the agent making the decision, average
confidence in each hypothesis. Self-consultation then becomes an option. As with
evaluating experiments, the payoff should invoke a ‘maximum security’ level from
the entropy pairings. So an agent’s best bet is to decide which other agent it is to
be influenced by in order to gain a greater overall confidence. The mechanism of
a ‘conversation’, where agents infer each other’s internal views of music, has been
investigated by Addis and Billinge (2004) and described in Chap. 13.
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Fig. 6.1 Agent ‘Tom’ starts
with belief that the coin is
good (red line) but is
persuaded by the evidence
that the coin is double
headed. Note that the green
line (mislabelled
‘actor-entropy’) actually plots
the Indifference level

Fig. 6.2 Agent ‘David’ starts
with an unbiased view

6.10 Running the Program

The belief revision program that implements this model was run using our simple
example for three agents. In this simulation the agents have no communication with
each other. Their flexibility and receptivity (Sect. 6.2.1 and 6.2.2) was 0.25 as in our
illustrative example. However, all agents had access to all the experiments (two in
this simple case). The agent ‘Tom’ started with the ‘belief’ of 0.8 in ‘good coin’ and
a belief of 0.2 for a ‘double-headed coin’. A typical run is shown in (Fig. 6.1) where
Tom’s overall confidence level falls at first then rises as more evidence is obtained.

Figure 6.2 shows agent ‘David’starting with no bias. The number of cycles needed
to develop a suspicion that the coin is double headed varies but is typically about
eight cycles.
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Fig. 6.3 Agent ‘Jan’ starts
with a positive bias

Agent ‘Jan’ in Fig. 6.2 believes 0.2 that the coin is good and 0.8 that it is double
headed. The result is a steady increase in confidence towards the final conclusion
that it is a ‘fact’.

The flat centre plotlines in these figures indicate that in all cases the actions
‘Ask for head’ and ‘Ask for tail’ remain equally likely (probability of 0.5). From an
information point of view the options are about the same, no matter what the agent’s
belief might be. This is due to the simplicity of the situation. In more complex cases
a genuine bias between the actions will become apparent as belief changes (see
Gooding and Addis 2004) (Fig. 6.3).

6.11 Other Examples

We have also run this simulation using an extension of Wason’s four-card problem
(Wason 1960; Wason and Shapiro 1971). In the original task sets of four cards are
displayed, two showing integers and two characters (e.g., A, D, 4, 7). The subject
is asked to turn a card (or cards) to show that the rule ‘An even number implies
a vowel on the other side’. Wason was testing whether subjects reasoned so as to
falsify the rule (so the expected action is to turn an even number and just one other
card (Johnson-Laird and Wason 1977)). We adapt this problem by providing our
agents with 100 cards and, in some scenarios, access to other agents. Each card
represents a possible experiment, although there are only four distinct choices (to
turn a vowel, a consonant, an odd or an even). The entropy-driven mixed strategy (see
Evaluation Actions—Choosing Actions) implies that the rule should be discovered
with a minimum number of turns.

This scenario allows for ten possible logically distinct rules (or hypotheses; see
Addis and Gooding 1999, pp. 23–24). The simulated agents ‘home in’ on the correct
rule within ten or so moves (see Fig. 6.4). They also correctly eliminate the redundant
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Fig. 6.4 Agent ‘Jan’ starts
with no knowledge of the
correct hypothesis. Two
major competing hypotheses
are shown (medium red and
medium dark blue). Overall
confidence for agent ‘Jan’
falls as new information is
obtained then rises. Notice
how the probability of
selecting more informative
experiments increases
steadily from cycle 10

actions (e.g. A, 7), reducing their probability to a very low value. There is a corre-
sponding increase in the probability of selecting the best moves (e.g. D, 4). Figure 6.4
also illustrates the effect of biasing an agent against the correct rule by initiating a
run with Jan’s confidence in the correct rule set at zero. This makes a different set of
actions more probable, so that the agent Jan is less likely to discover the correct rule
in the early stages. However, agent ‘Jan’ gets to know about the ‘correct’ hypothesis
from fellow agents. As soon as this new hypothesis is recognised Jan’s confidence
increases, different cards are selected and the ‘new’ idea takes rapid hold.

6.12 Belief and Truth

If agents are prevented from consulting, they take longer to arrive at a correct out-
come than agents that combine experiments with consultation. This endorses the
post-Kuhnian view that science is an inherently social process. Consultation also
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moderates the impact of evidence: agents with high flexibility (i.e. great sensitiv-
ity to recent events) display more erratic behaviour than similarly flexible agents
that consult (Chap. 7 and Gooding and Addis 2004). As Fig. 6.1 indicates, a strong
negative bias can be overcome. However, three things are needed:

1. frequent consultation (to be made aware of new information, as illustrated in
Fig. 6.4),

2. a strong commitment to an alternative view held by at least some participants
(so that peer pressure alone does not force a consensus—see Fig. 6.4, where the
actor-entropy (indifference) dips before rising steadily),

3. experimental evidence supporting an alternative view during the time of change.

The three-part inference system of abduction, deduction and induction as defined
by Peirce takes into account the possibility of change and error. For this to work,
no particular form of inference can act alone. Deduction unaided cannot deal with
the irrational sets needed to capture the phenomenology of a changing world and
of human responses to it. We have not used the abductive cycle strictly as a hy-
pothesis generator (Gooding 1996; Hanson 1958; Magnani 1998, 2001). Rather,
we have emulated abduction through look-up tables representing the experimental
phenomenology for each hypothesis. These models differ inferentially and cogni-
tively, but from a functional point of view, the two methods are indistinguishable
(Addis 2000). For either method of implementation to work, abduction also needs
to be made part of a larger system of different, interacting inference and decision
mechanisms. In such an inference-system, the notion of ‘Truth’ is confined to the
internal workings of deduction. In its place, we have ‘Belief’—the confidence an
individual has in statements that influence his or her actions—as a dynamic indicator
of the evaluation of a particular worldview. The notion of ‘belief’ as a propensity
to act displaces truth. A consequence of our approach is that actions that would be
deemed irrational according to traditional models of inference and of ontology can
be valuable in that they help agents continually test the world for change.
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Chapter 7
Simulating Belief and Action

Reason’s last step is the recognition that there are an infinite
number of things which are beyond it

Pascal, Pensées, 1670.

7.1 Modelling Inferences About Observations

In Chap. 6 we noted that the concept of ‘truth’ was limited to deductive inference
only. For other kinds of inference we have introduced the new concept of ‘belief’
to replace ‘truth’. Our approach is now to represent experiments with a computer
model that allows for variability in four key components of the scientific process:

• hypotheses which are ‘believed’ or ‘disbelieved’ by agents,
• where each hypothesis implicates a phenomenology
• that the agents produce by performing experiments
• made up of procedures and apparatus.

Thus, we have the interacting sets of hypotheses, results and experiments. The mem-
bership of each set can vary according to the hypotheses favoured by the agents. An
example illustrates the approach.

In Gruber’s shadow box experiments, subjects are able to see an image that is
a 2-D shadow projection of an object hidden inside it (Fig. 7.1). Different subjects
may see different shapes cast as different projections of the object (Gruber 1985). A
cylindrical object can project a circle (endways), a rectangle (sideways), or a range of
capsule shapes (by oblique projection). Gruber was testing subjects’ability to modify
a construction based on their own perception (e.g., of a circular shape) by the different
perception of another subject (e.g. a triangular shape). This required individuals to set
aside the implicit presumption of the superiority of their own perceptions (Gooding
1990). In some cases subjects could generate a correct solution only by exchanging
observations and conjectures with other subjects. Gruber found that adults are better
at collaboration (trusting the observations of others) than adolescents or children, and
that few subject groups generated more than one construct, even for simple (implied)
objects.

We use tables to relate such constructs (hypotheses) to the observations (data) via
the probability of observing (say) a triangle if the box contains (say) a cone. The
box works by projection so the simplest phenomenology will be that of a perfectly

© Springer International Publishing Switzerland 2014 91
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Fig. 7.1 A shadowbox is
where subjects may exchange
information about images in
order to identify an object
from its shadow projection(s)

Image for
Observer

A

Image for
Observer

B

Agreed
Object

Table 7.1 Relationship between a set of observations and a set of hypothesized objects

Phenomenology
hypothesized
objects

Circle Triangle Square Point-
circle
(oblique)

Circle-
point
(oblique)

Point-
square
(oblique)

Square-
point
(oblique)

Items
in
phenom-
enology

Sphere Yes No No No No No No 1

Cone Yes Yes No Yes Yes No No 4

Pyramid No Yes Yes No No Yes Yes 4

Objects
implied

2 2 1 1 1 1 1 –

symmetrical object. A sphere has only one 2-D projection, a circle (see Table 7.1).
But if an observer then sees, say, a triangle, the sphere hypothesis must be set aside
in favour of an object (or set of objects) that could have both circular and triangular
projections.

In this example, the experimental procedure is rudimentary. Making an exper-
iment involves looking at one or more faces of the box. This approximates to the
epistemic ideal of direct (i.e. unmediated) observation. Since the phenomenology can
be described using simple, ordinary language descriptors, the example also elimi-
nates another source of complexity in science, miscommunication. Nevertheless, the
example illustrates the essentials of our approach: subjects make experiments that
mediate between two partially defined domains: a variable set of hypotheses and a
variable set of phenomena. They can also communicate with other subjects to acquire
additional observations and hypotheses.

Table 7.1 illustrates that the cone and pyramid hypotheses have a richer phe-
nomenology than the sphere. This makes the sphere an easier hypothesis to rule out.
The Venn-diagram in Fig. 7.2 (Venn 1880) displays this phenomenology as sets of
observables for each hypothesised object, showing where sets overlap or are mutu-
ally exclusive. For example, a sequence of observation reports containing anything
other than a circle will rule out the sphere; similarly, observation of a square will
rule out sphere and cone. The order in which observations are encountered will of
course affect the pattern of belief-revision.
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Cone
            CIRCLE-POINT 
            POINT-CIRCLE Pyramid 

          POINT-SQUARE 
           SQUARE POINT 

TRIANG
SQUAR

CIRCLE

Fig. 7.2 Venn diagram illustrating unique projections (e.g., circle for sphere and square for pyramid)
and the shared phenomenology of hypothesized objects (e.g., sphere and cone can both have a circle
projection; cone and pyramid can both have a triangle projection)

This process of negotiating hypotheses about objects compatible with the ob-
served projections can be specified in terms of our analogy to variable or irrational
sets (Chap. 5, Addis and Gooding 2004). Possibilities for observation depend on
which experiment is selected. But this depends in turn on which hypothesis is most
believed and whether doing an experiment seems more likely to reduce an actor’s
uncertainty about the world than would consulting another actor. So the process is
far more complex than can be captured by applying a single inference rule to a set
of observations.

This process of negotiating hypotheses about objects compatible with the ob-
served projections can be specified in terms of our analogy to variable or irrational
sets (Chap. 5, Addis and Gooding 2004). Possibilities for observation depend on
which experiment is selected. But this depends in turn on which hypothesis is most
believed and whether doing an experiment seems more likely to reduce an actor’s
uncertainty about the world than would consulting another actor. So the process is
far more complex than can be captured by applying a single inference rule to a set
of observations.

7.2 Why Inference Can’t be Modelled

We remarked above that the order in which observations are encountered would affect
the pattern of belief-revision. This process is also influenced by the order in which an
agent consults other agents. Different patterns of observation and consultation will
produce different states in each of the agents. The order in which such events occur
is not predictable. An iterative approach—a simulation—can capture this aspect of
science in a way that static, structural or semantic models do not.
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Table 7.2 Initial position of subject A. The table relates the constructs (hypotheses) to the observa-
tions (data) via the probability of observing (say) a triangle if the box contains (say) a cone. Each of
the three constructs is compatible with the only available data, so each datum is assigned an equal
probability of 1.0

Hypothesis:
Observed shape:

2D: triangular card 3D: cone 3D: triangular
section bar

Triangle p = 1.0 p = 1.0 p = 1.0

Circle Not envisaged Not envisaged Not envisaged

Cross Not envisaged Not envisaged Not envisaged

Table 7.3 Position of subject A after consulting subject B, who reports seeing a circle. There is now
some ambiguity, e.g. if there is a cone in the box, observation of a triangle or a circle are equally
probable

Hypothesis:
observed
shape:

2D: triang.
card

3D: cone 3D: triang. bar 2D: disc 3D: sphere 3D: rod

Triangle 1.0 0.5 1.0 0.0 0.0 0.0

Circle 0.0 0.5 0.0 1 1 1

Cross Not seen Not seen Not seen Not seen Not seen Not seen

Table 7.4 Position of subject A after first consulting subject C who reports seeing a cross

Hypothesis:
observed
shape

2D: triang. card 3D: cone 3D: triang. bar 2D: flat cross 3D: intersecting
sheets

Triangle 1.0 1.0 1.0 0.0 0.0

Cross 0.0 0.0 0.0 1.0 1.0

Circle Not seen Not seen Not seen Not seen Not seen

In Gruber’s experiments, if a subject interprets a triangular shadow as being
compatible with (say) ‘the existence of a solid cone in the box’ then this hypothesis
would be ruled out by a second subject’s report of a circular image. Consider the
situation of one of three subjects, A, as shown in Table 7.2. A has postulated three
objects compatible with the evidence. The observations of subjects B and C are not
yet known. On the basis of this one observation A could postulate a 2-D object (a flat
triangular card) or two 3-D objects (an opaque cone and a triangular bar).

New objects are postulated to explain new kinds of observation. Suppose A first
consults B, who reports seeing a circle. A could postulate or negotiate with B the
construction of three further objects (a disc, a sphere, and a rod). A’s situation at this
point is shown in Table 7.3.

Suppose A first consults C, who reports seeing a cross. Then, as indicated in
Table 7.4, A invokes a different set of hypotheses and phenomena than if B is consulted
first.
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In recognising the social dimension of inference, we accept that patterns of be-
lief revision depend not only on evidence, but also on the influence of others. This
introduces order effects. Similar sets of tables would be needed for subjects B and
C, detailing the pattern of construction and the probabilities of each possible obser-
vation, for every possible sequence of observation and consultation. For this very
simple case the first iteration would require two observation-construction tables for
each subject and could be calculated by hand. But for even a modest degree of com-
plexity simulation methods must be used. In science there are well-defined pathways
of communication and constraints on communication, but there are also many sources
of contingency (Knorr-Cetina 1981). When we factor in real-science contingencies
such as access to experimental setups and the accessibility of other observers, the
situation becomes more complex still.

Confirmation theories and cognitive models of inference do not encounter such
difficulties because they treat agents in isolation, as do experimental designs based
on such models (e.g. Wason 1960). These approaches fail to represent one of the most
important features of learning and belief-formation—its social character. It could be
argued that scientists use rules of inference and heuristic principles that constrain
variability due to social interaction and individual personality so that (say) actor A
would always choose to make the most decisive experiments or to consult the most
competent actors.

This objection simply reasserts an article of faith of traditional philosophies of
science: for rationalists, that there are objective (i.e. universal or non-contextual)
principles of reasoning about observations, and for empiricists, that evidence even-
tually eliminates false hypotheses in favour of the true one. A further objection might
be that inference rules (other than the Bayes rule) apply only when all the evidence
is in. The entire set of hypotheses and associated observations could be included in
a single table that relates hypotheses to phenomena via sets of probabilities, rep-
resenting a final state of pooled knowledge. But this requires that all actors have
simultaneous access to reports of every type of observation. It would reveal nothing
about the dynamics of the process according to which each actor revises its beliefs
in response to each observation or consultation. Tables 7.2–7.4 illustrate a sequence
whereas information is acquired so hypotheses are introduced, amended or rejected.

7.3 A Historical Example

Simulated experiments will have those outcomes that are most probable in a world
in which the active, objective hypothesis is true. We argued in Chap. 5 that sci-
entists change the world by improving their experiments and engaging with other
researchers. In practice, even where an experiment is designed to test a particular hy-
pothesis, this development turns up additional hypotheses relating to other processes
that are implicated by the method of investigation. An example is the Michelson-
Morley-Miller experiments to detect ether-effects between 1880s and the 1930s.
These experiments were designed to detect a difference in the velocity of light due to
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Table 7.5 Non-historical, retrospective view of the role of the interferometer experiments

Result Hypothesis:

Lorentz hypothesis + Special
Newtonian relativity relativity

No displacement 0.01 (error) 0.90

Small displacement 0.09 0.09 (error)

Predicted displacement 0.90 0.01 (error)

Table 7.6 Early stages of the development of the interferometer experiments

Result Hypothesis

Apparatus effect
(temperature, vibration)

Ether drag
(no apparatus effects)

No ether drag

No displacement
(Helmholtz)

0.50 0.1 0.9

Small displacement
(error)

0.50 0.1 0.1

Predicted displacement
(Michelson, Lorenz)

0.00 0.8 0.0

differences in the relative velocity of the earth and the luminiferous ether (Swenson
1970). Michelson and Morley’s experiments showed a much smaller effect than that
predicted. In 1905 Einstein’s special theory of relativity made the ether unnecessary.
It included the radical proposal that the velocity of light is a constant so that if the
ether existed the velocity-dependent effects could not detect it. Table 7.5 assigns a
small probability to the occurrence of all three types of result (including the result
predicted by the rival hypothesis).

The Michelson-Morley experiment is often presented as a crucial experiment
that confirmed Einstein’s theory (Holton 1973a). Yet for many, the non-existence
of ‘ether’ (and therefore, an interaction with light) remained beyond consideration.
There is a long history of hypotheses about the behaviour of the apparatus and ad-hoc
hypotheses dealing with the negative result before and after 1905. In the early stages
of his search for evidence of ether-drift, Helmholtz advised Michelson that unless
temperature gradients within the interferometer apparatus could be eliminated, dif-
ferential expansion of the material would mask any effects indicating ether effects.
Fitzgerald later proposed a similar effect of the ether on the interferometer arms in
order to explain the null-results. Table 7.6 summarises this simplified version of the
early situation. It illustrates the range of possibilities that could be expected from
the Michelson-Morely experiment. Here we treat the Helmholtz’ criticism as a hy-
pothesis about the experimental apparatus (no displacement). Fitzgerald introduced
an ad-hoc explanation of the negligible result; according to this the ether affects the
length of the interferometer arms.
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Table 7.7 Hypotheses in play prior to 1905

Result Hypothesis:

Apparatus
effect
(temperature,
vibration)

Ether drag +
Lorenz-Fitzgerald
contraction applied
to apparatus

Ether drag
(no apparatus
effects)

Velocity of light
is constant
(some apparatus
effects)

No displacement 0.45 0.1 (error) 0.1 (error) 0.9

Small displacement 0.45 0.9 0.1 (error) 0.1 (error)

Predicted displace-
ment (may indicate
experimental error)

0.10 0.0 0.8 0.0

Table 7.8 The situation after 1905

Result Hypothesis:

Apparatus
effect
(temperature,
vibration)

Ether drag +
Lorenz-
Fitzgerald
contraction
applied
to apparatus

Ether drag
(no apparatus
effects)

No ether drag:
velocity of light
is constant

No displacement
(Helmholtz)

0.45 0.1 0.1 0.9

Small displacement
(error)

0.45 0.9 0.1 0.1

Predicted
displacement
(Michelson, Morley,
Lorenz-Fitzgerald

0.10 0.0 0.8 0.0

Fitzgerald’s suggestion is included in Table 7.7 along with relativistic alternatives
mooted in a textbook by Föppl in 1894 (Holton 1973b, pp. 208–212) and by Poincare
in 1904 (Poincare 1905). For those who accepted the argument of Einstein’s 1905
paper, the null results confirmed his postulate of special relativity. Yet, the search
for ether-drag effects continued long after 1905. By the 1930s D. C. Miller finally
concluded, that Helmholtz had probably been right all along (Swenson 1970, 1972).
Rejecting the explanation provided by Einstein’s relativity postulate of 1905, he
continued to believe that the experiments confirmed some conjunction of Helmholtz’s
surmise and the Lorenz-Fitzgerald contraction hypothesis (see Table 7.8).

This method of representation introduces each hypothetical possibility in histor-
ical sequence and shows how its probability varies for each scientist, according to
each scientist’s knowledge of experimental results and of another scientist’ beliefs.
To tell the full story we would need a set of matrices showing the probability of each
set of outcomes of each set of experiments for each set of hypotheses, for each of the
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developments that can be discerned according to historical evidence. We would also
programme changing sets of probabilities to govern actors’ access to existing and
new apparatus and techniques, and to other actors as these enter or leave the scene
(e.g. Lorentz, Fitzgerald, Poincare, Einstein, Miller).

7.4 Simulating Experimental Science

We argue elsewhere (see Chaps. 4 and 5, also Addis and Gooding 2004) that there is
no a priori reason to prioritise either the hypotheses (treating phenomena as deductive
consequences) or the phenomena (from which hypotheses are induced or abduced).
In science, hypotheses and phenomena develop jointly by a dynamic that combines
inductive, abductive and deductive forms of inference. To consider the dynamics we
shall examine examples based on simulation of the Gruber shadowbox. In Gruber’s
experiments, subjects have the option of consulting another subject. At every iteration
stage of our simulation, each agent decides whether to experiment, consult or do
nothing, and must select an experiment to perform or an agent to consult. The decision
procedure is complex. An agent is motivated to reduce the uncertainty in its view of
the world (see Chap. 6, Addis and Gooding 1999; Gooding and Addis 1999). This
view consists of the agent’s changing belief profile (a set of confidence values) and
dynamic variables derived from this (e.g. scientist’s belief entropy or indifference,
or probability of consulting another scientist is reduced). Uncertainty consists of not
knowing which hypothesis best describes the world. A scientist with a flat belief
profile (having no bias towards a particular hypothesis) is less confident of his view
of the world than is a scientist who is confident about only one or two hypotheses.

The belief-revision simulation tracks and reports agent (a simulated scientist)
behaviour in two ways: as macro-behaviour, a trajectory of changing confidence
in each hypothesis (a changing belief-profile, as plotted in Fig. 7.3) and as micro-
behaviour, a narrative or history of actions. In Figs. 7.4 and 7.5, Table 7.10 the agent’s
display which of two experiments are selected (and the outcome) or which of two
agents is consulted. During the process of experimenting or consulting an agent’s
indifference levels changes and is shown as a dynamic threshold In(A). This dynamic
threshold defines which of the hypotheses are believed (see Chap. 6).

7.5 How Experiments Mediate Between Hypotheses and
Phenomenology

An experiment consists of a physical setup that is acted on by an agent procedure.
Each apparatus-procedure pairing can produce a range of results. Which results can
occur also depends on which hypothesis is being considered. So in our computer
simulation, the range of possible results is expressed as a probability distribution for
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Fig. 7.3 Single agent,
flexibility 0.3; 3 hypotheses,
negative bias: sphere 0.45,
pyramid 0.45, cone 0.1;
object in box: cone

SPHERE

PYRAMID

CONE INDIFFERENCE
THRESHOLD

Fig. 7.4 The effect on belief
of maximum responsiveness
to new data. Single agent, 2
hypotheses, negative bias:
sphere 0.8, cone 0.2;
flexibility 1.0, object in box:
cone

SPHERE

CONE

SPHERE

INDIFFERENCE
THRESHOLD

each combination of < hypothesis + setup + procedure > . The ‘belief’ (action prob-
ability) for each hypothesis adds up to 1.0 since the agent must act even if the action
is ‘do nothing’. This representation treats an experiment as mediating between four
sets of objects: hypotheses, procedures, physical setups and observable outcomes. In
selecting an experiment our agents will prefer those having more decisive outcomes.
However, such an agent does not ‘know’ the specific outcome of any experiment
beforehand. When the agent selects an experiment, its results in our simulation are
generated ‘Monte Carlo’ fashion according to the probability distribution of the out-
comes that are possible for each hypothesis (see, for example, Tables 7.7 and 7.8).
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Fig. 7.5 Two communicating
actors; flexibility 0.3,
receptivity 0.3; 3 hypotheses;
actor 1 negative bias: sphere
0.45, pyramid 0.45, cone 0.1;
actor 2 unbiased; object in
box: cone

ACTOR 1 CONE

ACTOR 2 CONE

As we noted previously, this ensures that simulated experiments can sometimes have
surprising results. This introduction of a random choice of actions based on belief
as a probability is a vital component of the model. This method of action choice
was derived from game theory. Without this option to select apparently irrational
actions the model gets stuck where no further actions are possible. Introducing a
choice based on probability allows fresh paths to be followed and new knowledge to
be gained.

7.6 Evidence-Driven Belief-Revision

Having constructed a computer model based upon the principles described above, in
what follows we show two runs for a single agent. Evidence is the only influence on
belief in this case. A version of the belief model for a PC running WindowsTM 95,
98, ME, 2000, XP or Vista can be downloaded from:

http://www.clarity-support.co.uk/products/belief/index.html
We then compare the belief model with an otherwise identical starting scenario

for two agents in which beliefs are also mediated by the other agent’s opinion. This
comparison illustrates how consultation:

1. produces order effects, in that consultation creates greater variability in the
sequence of events and resulting belief-states

2. can also ‘smooth’ belief-revision.
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7.6.1 Non-consultation Run (Solo)

In the following run there is just one actor (‘Solo’) with access to a simple (single-
image) shadowbox. In this case the act of ‘consultation’ will be equivalent to ‘no
experiment’. On each cycle the object may be observed as either a circle, triangle or
circle point. The plot (Fig. 7.3) indicates that an initial bias in favour of the pyramid
hypothesis is quickly overcome by increased confidence in the sphere hypothesis. By
cycle 8 both have been displaced by the cone hypothesis. Cone and sphere are again
considered almost equiprobable later in the sequence (cycles 35–40). This indicates
that an emerging bias may be overcome by new evidence. The pattern of events
(self-consultation, experimentation or inaction) that shapes these patterns of belief
is shown in the narrative sequences in Tables 7.9 and 7.10. At cycle 38, following
a sequence of ‘circle’ observations, the actor is for the moment undecided between
them.

These narratives (in Tables 7.9 and 7.10) also illustrate how revising confidence
in hypotheses based on experimental evidence produces behaviour that appears to
switch between confirmatory behaviour (as between cycles 32 and 38) and falsifying
behaviour (as between cycles 7–10 and 38–42). Although this fits with strategies used
by scientists (Tweney 1985), it is misleading to construe the simulation behaviour in
these terms.

The inference process updates confidence in light of recent events (in this run the
event-window = 3.3 events). Reducing the event-window further to just a single event
(flexibility = 1.0) produces more abrupt changes in belief (Fig. 7.4). However, even
with a single-event window an agent’s behavior does not reflect simple falsification.

The narrative (Table 7.10) shows that the changes plotted in Fig. 7.4 are due to
two experimental results separated by a series of self-consultations. It may seem that
the sphere hypothesis is ‘confirmed’ at cycle 2 prior to being ‘falsified’ at cycle 9,
given that a sphere could produce the circle seen at cycle 2 but cannot produce the
pointed oblique projection seen at cycle 9.

However, when an actor can also consult other actors we cannot interpret these
behaviours simply in terms of such rules. This is because actors’ belief profiles will
reflect other opinions as well as experimental evidence. Whereas logical models of
confirmation (or falsification) exclude influences other than observational data, our
simulation calculates the consequences of allowing actors to consult. This can be
shown by comparing the ‘solo’ sequences Table 7.9 with a similar scenario in which
there are two consulting actors in Tables 7.11 and 7.12.

7.6.2 Consultation Run for Two Agents (Actor1 & 2)

We argued in the section ‘Why Inference can’t be modelled’ that consultation
complicates belief-revision models based on inference rules because consultation
introduces the influence of opinions (rather than evidence) and introduces order
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Table 7.9 Belief System 2.0– narrative for first 10 cycles in Fig. 7.3. Threshold value for action in
cycle n is recorded in cycle n +

Cycle:
agent

Actions Setup or consultee Result Threshold Preferred
hypothesis

0: Solo Single-image Make_observation
single_image

Circle_point 0.33871 Pyramid,
sphere

1: Solo Consultation Solo 0.334326 Cone

2: Solo Single_image Make_observation
single_image

Circle 0.334326 Cone

3: Solo Consultation Solo 0.346915 Sphere

4: Solo Consultation Solo 0.346915 Sphere

5: Solo No_experiment 0.346915 Sphere

6: Solo Consultation Solo 0.346915 Sphere

7: Solo Single_image Make_observation
single_image

Circle_point 0.346915 Sphere

8: Solo Single_image Make_observation
single_image

Circle_point 0.371482 Cone

9: Solo No_Experiment 0.430718 Cone

10: Solo single_image Make_observation
single_image

Triangle 0.430718 Cone

30: Solo No_experiment 0.628526 Cone

31: Solo Consultation Solo 0.628526 Cone

32: Solo Single_image Make_observation
single_image

Circle 0.628526 Cone

33: Solo Single_image Make_observation
single_image

Circle 0.567274 Cone

34: Solo Single_image Make_observation
single_image

Circle 0.520047 Cone

35: Solo No_experiment 0.492474 Cone

36: Solo No_experiment 0.492474 Cone

37: Solo Single_image Make_observation
single_image

Circle 0.492474 Cone

38: Solo Single_image Make_observation
single_image

Circle_point 0.48467 Cone,
sphere

39: Solo No_experiment 0.514958 Cone

40: Solo Consultation Solo 0.514958 Cone

41: Solo Single_image Make_observation
single_image

Circle_point 0.514958 Cone

42: Solo No_experiment 0.569498 Cone
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Table 7.10 Belief system 2.0—narrative for cycles 0–10 in Fig. 7.4

Cycle 1: Solo—Consultation Solo 0.606287 sphere

Cycle 2: Solo—single_image

Make_observation single_image circle 0.606287 sphere

Cycle 3: Solo—No_Experiment 0.788873 sphere

Cycle 4: Solo—No_Experiment 0.788873 sphere

Cycle 5: Solo—No_Experiment 0.788873 sphere

Cycle 6: Solo—No_Experiment 0.788873 sphere

Cycle 7: Solo—No_Experiment 0.788873 sphere

Cycle 8: Solo—Consultation Solo 0.788873 sphere

Cycle 9: Solo—single_image

Make_observation single_image point_circle 0.788873 sphere

Cycle 10: Solo—No_Experiment 1.000000 cone

effects. Figure 7.5 shows how the confidence of two agents in each of the three
hypotheses changes, as consultations and new observations are made. Actor 1 starts
with negative bias (see Fig. 7.5) while actor 2 is unbiased. They are otherwise identical
as to flexibility, receptivity and access conditions.

Consultation has several effects:

• First, comparing actor 1 in Figs. 7.4 and 7.5 shows a jagged but less erratic
trajectory.

• Second, the actors converge to the same conclusion. Multiple runs of this scenario
show that the sequence of events producing agreement varies in each run (compare
the two narratives in Table 7.11, which also show that self-consultation occurs
less frequently than for a solo actor).

• Third, consultation can also moderate the effects of bias.

To understand the macro-behaviour displayed in the plots we would need to examine
the actions of each actor and their outcomes in each of their iterations in more detail.

7.7 Conclusions

We have shown in this chapter how simulation methods enable us to model the
interaction of hypotheses; experiments and an emerging phenomenology and that
iterative modelling can represent the combined influence of evidence and opinion
on inferences about hypotheses. Studies made with the belief-revision system show
some behaviour that is stable over variation of parameters. These include convergence
of beliefs to the objective hypothesis, that an emerging consensus is often interrupted
and then restored, and that an optimum balance between the impact of evidence and
the influence of opinions is achieved for an event-window of 2–3 events.
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Other robust results are that evidence-driven agents with a very small event win-
dow behave like naı̈ve falsificationists, and abandoned hypotheses can be revived.
Most important, given the argument of section ‘Why Inference can’t be modelled’,
is that experimenters perform better when communicating with others.
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Chapter 8
Programming and Meaning

Rules are for the obedience of fools and the guidance of wise
men

Douglas Bader (1910–1982)

8.1 A Grand Challenge

During April 2005 at the University of York, an international workshop was held
called ‘The Grand Challenge in Non-Classical Computation’. The purpose of the
conference was to stimulate those doing research and development in Computer
Science to consider new approaches to computing. The stimulation for this challenge
was triggered by the novel concept of ‘Quantum Computing’, which seemed to offer
the potential for ultra fast parallel processing using quantum mechanical principles
such as superposition and entanglement. The organisers thought that there might
be other mechanisms that could be harnessed based upon, say, biology, alternative
physical principles or probability. They considered that by moving away from the
architecture of computers there might be some benefits. It was put to the science
community to consider and propose alternative computational mechanisms that might
lead to some conceptual extensions of computer science.

The mass of proposals put before the workshop were concerned mainly with
new engines of computing. However, another important challenge of the time was
how people and communities could more easily interact with the computer. The
problem, as David Gooding and I saw it, was embodied in the phrase ‘socially
sensitive computing’ and was included as another issue that was different from the
mechanics of computation. This area of socially sensitive computing was also covered
by the two existing studies of Informatics and Cybernetics.

A definition of ‘Informatics’, given by Edinburgh University (February 2014), is
the study of the structure, the behaviour, and the interactions of natural and engi-
neered computational systems. The central focus of Informatics is the transformation
of information—whether by computation or communication or by organisms or arte-
facts. It was considered that the understanding of the informational phenomena,
such as computation, cognition, and communication as a single combined subject,
would enable technological advances and also provide insights into many natural
and artificial systems.

© Springer International Publishing Switzerland 2014 107
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However, long before informatics was offered as a course of study, the subject
of ‘Cybernetics’ was taught as part of the theory and practice of programming in
the MIT Electronic Systems Laboratory (Wiener 1948). Its founder, Norbert Weiner,
taught this course. He defined it as the study of control and communication in the
animal and the machine. This also included social and other multi-element systems
that involve feedback (e.g. control) and objectives (e.g. survival).

The studies of Informatics and Cybernetics seem to be similar and both include
the objectives of the Grand Challenge (2005) as described next.

8.1.1 Meeting the Criteria

The organisers of the Grand Challenge (2005) gave 13 criteria for the grand challenge
so that it would help potential authors to address the right issues. Each one of the
criteria related to social or people sensitive issues. The study of behaviour in society
is linked to the grand challenge specification and argued for as follows:

1. It arises from scientific curiosity about the foundation, the nature or the limits of
a scientific discipline.

The proposal of socially sensitive computing, oddly enough, arises from the question
of why, after 60 years of effort, millions of man hours and technology including
silicon machines that do 1000 + Giga-flops with 1000 + Terabytes of storage, we
have still not even addressed many of the important functions of a human brain. The
brain is a device that looks like a bowl of porridge and consists of only 15 Gigacells
working at about 50 cycles per second (Edwards 2014).

2. It gives scope for engineering ambition to build something that has never been
seen before.

The proposal of socially sensitive computing could suggest new ways of looking
at current problems. New types of computation might arise, and thus new engines
could be created along different principles; notions such as ‘a structure malleable
program’ that will reform its processes (say, between parallel and sequential) to best
create a single efficient solution.

3. It will be obvious how far and when the challenge has been met (or not).

The challenge will have been addressed when it is no longer a problem that the
world cannot be classified or partitioned. This need to predefine the world is a
necessary starting point for all current computer programming. Once done it confines
the possibilities of the program to a very limited point of view. Because of this
limitation the challenge will never be met, but it is still worth trying in order to see
how far we can get.

4. It has enthusiastic support from (almost) the entire research community, even
those who do not participate and do not benefit from it.
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Although at the time there was a growing group of people at Sussex University
(Informatics) who responded very positively to the grand challenge, we are still a
long way from producing human style intelligence.

5. It has international scope: participation would increase the research profile of a
nation.

It clearly has worldwide implications but Artificial Intelligence has benefited most
from faster and more compact computers. No new principles have evolved from or
since the grand challenge.

6. It is generally comprehensible, and captures the imagination of the lay public, as
well as the esteem of scientists in other disciplines.

Many of the problems people had at the time of the challenge have been ameliorated
by ‘iPads’and ‘Apps’. What was really meant by this criterion is the excitement about
the ‘idea’ proposed. The notion would strike at the very heart of how we organise
ourselves and accept hypotheses. The accelerated growth of laws and regulations is
derived from the misapprehension that concepts can be perfectly captured through
definition. The rejection of this idea would release us all from the inappropriate
constraints imposed by those in authority; it would give us a rationale on which to
reject nonsense. Sadly, this has never happened.

7. It was formulated long ago, and still stands.

If ‘long ago’means ‘in the early part of the twentieth century’, then it does still stand.

8. It promises to go beyond what is initially possible, and requires development of
understanding, techniques and tools unknown at the start of the project.

This promise seemed to be the case. A new technology and science could stem from
this proposal. As noted for 6, in some limited way it has in the form of iPads and
Apps.

9. It calls for planned co-operation among identified research teams and communi-
ties.

It will require a wide range of specialisation ranging from psychologists, philoso-
phers, linguists, sociologists and computer scientists of many fields (e.g. networking,
systems, architecture and interface design). However, it never really happened except
in very isolated places.

10. It encourages and benefits from competition among individuals and teams, with
clear criteria on who is winning, or who has won.

I did not like to see this happen. It could do, but I would discourage it. Competition
in science is generally counter-productive because it involves secrecy and ownership
of knowledge.

11. It decomposes into identified intermediate research goals, whose achievement
brings scientific or economic benefit, even if the project as a whole fails.
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In some isolated cases this happened. A simple, working solution to such tasks as
information retrieval could be of considerable benefit to the community as a whole.
Google and other public search engines have clearly demonstrated this point. Many
of the objectives already pursued and abandoned from lack of practical success (such
as natural language understanding and adaptive interfaces) were re-examined due to
this new paradigm. They achieved very little and have become irrelevant.

12. It will lead to radical paradigm shift, breaking free from the dead hand of legacy.

It is a radical paradigm shift. The question is: “would we be able to go against our
own training and start thinking within this new framework?” The answer seems to
be ‘No!’

13. It is not likely to be met simply from commercially motivated evolutionary
advance.

Socially Sensitive Computing is not a simple evolution from where we stand, and
that is a problem (see last point above).

I will argue from the Church-Turing thesis (Kleene 1967) in this chapter, that:

• A computer program can be considered as equivalent to a formal language similar
to predicate calculus where predicates can be considered as functions.

This can be related to such a calculus in Wittgenstein’s first major work, the Tractatus
(Wittgenstein 1921). The Tractatus’s theory and its relationship to the world can be
used as a model of a formal classical definition of a computer program. It was
originally intended to explain how meaning and language were tied together via a
‘referential’ semantics; that is each word in the language was associated with some
object or action in the world.

8.1.2 Problems with Referential Semantics

A problem arose from using referential semantics, since most everyday objects are
complex. Objects, such as a ‘car’ or a ‘garage’ can be described in terms of other
objects. This makes them propositions rather than simple primitive objects. Further,
if ‘my’ red car were to be destroyed then the proposition:

My red car is in the garage

would suddenly cease to have meaning, or if all cars were scrapped, then all sentences
containing ‘car’ would become nonsense. This sudden loss of meaning is unlikely to
be the case.

The problem with nonsense is that it cannot even be assigned a truth-value. There-
fore, Wittgenstein, in his Tractatus, set out to identify the simple primitive objects by
specifying their necessary characteristics. One of the objects that do fit his criteria is
the ‘bit’ as used in a computer. A ‘bit’ is really a primitive distinction, which may be
realised, for example, as a voltage difference or a bead position on a wire or a counter
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placed in a square. Obviously, the electronic version of a ‘bit’ has many practical
advantages; it is compact, fast and computationally viable. Other objects that fit are
space, time, colour (being coloured), force and mass (as per Newton).

Although Wittgenstein’s Tractatus satisfied formal languages, such as predicate
calculus, he found that it did not completely explain natural language. The referential
paradigm of meaning cannot cope with the human use of a language. For example,
you can take the notion of a ‘game’ and explain this by pointing to examples of
games. But what defines a game? Is there any definition that will both contain the
idea of all games and exclude all that are not games? The answer seems to be no. Yet
this negative case cannot happen within the bounds of the Tractatus.

This indeterminacy of meaning in natural language seems to be a flaw in his initial
great work. Recognising this he then went on to explore these flaws in his second
great work ‘the Philosophical Investigations’ (Wittgenstein 1953). Here he expands
the principles of meaning to include the flexible way language is used. This involves
what he called ‘a language game’ where the rules of the ‘game’ can be changed. The
challenge we make is “can computer science make the same leap?” Can we extend
the computer interactions to also include a programming game?

I propose that because of this essential flaw identified by Wittgenstein, computers
are unlikely to have the possibility of natural communication with people unless
we apply a different approach to program design. I will come to this conclusion by
considering the two major works on the philosophy of language by Wittgenstein.
I will show that such a lack of natural communication with machines is related to
same reason that Wittgenstein made the paradigm shift away from his first work—
the Tractatus. I will explain why the Tractatus clearly aligns with formal computer
modelling and that his second work, the Philosophical Investigations, best fits the
more flexible requirements of human communication. How his second work might
be used to make computer communication more human becomes another question
to be answered.

8.2 Inferring Internal Experience

As we have discussed, classical linguistic philosophy suggests that language un-
derstanding arrives from denotational (referential) semantics. If we examine what
people talk about, we find that many of the conversations are descriptions of our own
internal lives. Since nobody can have direct access to another’s internal experiences,
then the only way in which such experiences can be understood is indirectly through
inference. We can infer each other’s experience because we share the state of being a
person, in the same culture, using a common language and in the context of similar
external events (such as a musical performance; see Chap. 6 and Billinge and Addis
2003). It is hence possible through conversation to build an internal model of another
person’s view of the world. The only requirements for this model is to be able to
make predictions from conversations about:
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• one’s own possible future experiences
• the way one should respond to another person
• an interpretation of what is said
• new ideas and ways of looking at the world

For example, if the non-technical music literature is examined, such as record re-
views, concert reports, descriptive, as opposed to analytical, music histories and
biographies, it becomes evident that the common experience does not have to be
even the music itself in order for one person to describe an experience to another.
The rich and extensive use of metaphor suggests that emotional resonance and asso-
ciation to a commonly understood situation can be employed to trigger what, to the
author of the description, is his “accurate” emotional response to a piece of music.
Communication, in this case, will depend mostly upon our shared humanity, some-
times upon our personal experiences but unlike computers, little upon any external
referential semantics. This point is explained in Chap. 13.

8.3 A Philosophical Paradigm of Meaning for Computing

The implications of such observations on the communication of internal experience
are radical. They have led us to take Wittgenstein’s Tractatus as a paradigmatic
description of the current state of computer science. We will treat the tractatus as
theory of formal computer languages and use it to describe how programming lan-
guages have meaning. We can take this step because the Church-Turing Thesis shows
that the Turing Machine (the classical computer) is equivalent to Lambda calculus
and recursive functions. Lambda calculus and recursive functions together form the
description of functional programming languages (e.g. ML, LISP).

David Gooding (University of Bath, private communication 2004) notes that:

The Tractatus was modelled on Hertz’ Principles of Mechanics. Hertz believed that his book
would be a full and final statement of the principles of mechanics; Wittgenstein thought that
Frege, Russel and Whithead had done the same for mathematics and that he would do the
same for language.

In the Tractatus Wittgenstein creates a formal analysis of language and in particular,
shows how it relates to the world through ‘objects’. What exactly an object is emerges
from exploring its role in a language. I now look at the statements in the Tractatus
labelled Tn where n is a number indicating the statement’s level in an argument.
There are seven major statements (e.g. T2) and the point indicates a branch of further
statements made from the initial statement (e.g. T2.01, T.02).

• T2, What is the case—a fact—is the existence of states of affairs.
• T2.01, A state of affairs (a state of things) is a combination of objects (things)
• T2.02, Objects are simple.
• T2.021, Objects make up the substance of the world. That is why they cannot be

composite.
• T2.0251, Space, time and colour (being coloured) are forms of objects.
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It was from Tractatus that predicate calculus emerged. This is a formal language
for describing states of affairs or facts. Pure functional programming languages,
such as ML and LISP, have evolved from predicate calculus. Wittgenstein describes
predicate calculus in the Tractatus. His early work encapsulated a formal and logical
representational schema into a descriptive form that was based upon denotational (or
referential) semantics. Such a semantics link the meaning of a symbol to an object in
the world. A ‘symbol’ can only have one meaning and a ‘sign’ can represent two or
more symbols. The distinction between symbols is inferred by how the sign is used.

• T3.32, A sign is what can be perceived of a symbol
• T3.321, So one and the same sign (written or spoken) can be common to two

different symbols—in which case they signify in different ways.

Thus, a symbol’s physical representation is a sign and it is usually a recognisable
mark on the page such as a word or character, but it can be a spoken word or any
other physical display. This display (the sign) refers through a symbol to an object
in the world. Wittgenstein also referred to these signs presented in some kind of
relationship as ‘pictures’.

• T3.221, Objects can only be named. Signs are their representatives. I can only
speak about them: I cannot put them into words. Propositions can only say how
things are, not what they are.

• T3.27, A name cannot be dissected any further by means of a definition: it is a
primitive sign

• T3.3, Only propositions have sense: only in the nexus of a proposition does a
name have meaning.

• T3.32, A sign is what can be perceived of a symbol.

The idea here is that the meaning of the symbol is to what it points (its referent), and
so it can only have one meaning. A sign can represent more than one symbol and its
distinction may be inferred as to how it is used. A ‘name’ is a primitive sign.

A sign may also represent other signs in relationship; these are signs that represent
propositions, or states of affairs. For example, the sign ‘father’ refers to a sign that
refers, in turn, to the proposition ‘A man who has an offspring’. Thus, the sign ‘father’
refers to the symbol that is the object of being a father. These are propositions and
refer to a state of affairs.

8.3.1 Objects

Wittgenstein was after a set of primitive and simple objects in the world. These
objects would form the base from which everything else could be expressed in terms
of propositions. In this case, the referents (the objects) will have some logically
strange properties. Objects must be:
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1. independent in that they can freely combine to form “states of affairs” that can
be described. This is supported by the statements:
a. T2.01, A state of affairs (a state of things) is a combination of objects (things)

1. T2.0122, Things are independent in so far as they can occur in all possible
situations, but this form of independence is a form of connection with states
of affairs, a form of independence.

2. T2.0124, If all objects are given, then at the same time all possible states
of affairs are also given.

b. T2.0272, The configuration of objects produces states of affairs.
2. atomic in that there are no smaller constituents:

1. T2.021, Objects make up the substance of the world. That is why they cannot
be composite.

a. T2.02, Objects are simple.
3. in all possible worlds

1. T2.022, It is obvious that an imagined world, however different it may be from
the real one, must have something—a form—in common with it.

2. T2.023, Objects are just what constitute this unalterable form.
4. immaterial

1. T2.0231 The substance of the world can only determine a form, and not
material properties. For it is:
1. only by means of propositions that material properties are represented
2. only by the configuration of objects that they are produced.

2. T2.0233, If two objects have the same logical form, the only distinction
between them, apart from their external properties, is they are different.

5. indescribable except by their behaviour (form)
1. T2.0121, It would seem to be a sort of accident, if it turned out that a situation

would fit a thing that could already exist entirely on its own, this possibility
must be in them from the beginning.
1. If things can occur in states of affairs, this possibility must be in them from

the beginning.
2. (Nothing in the province of logic can be merely possible. Logic deals with

every possibility and all possibilities are its facts.)
3. Just as we are quite unable to imagine spatial objects outside space or

temporal objects outside time, so too there is no object that we can imagine
excluded from the possibility of combining with others.

4. If I can imagine objects combined in states of affairs, I cannot imagine
them excluded from the possibility of such combinations.

2. T2.021, Objects make up the substance of the world. That is why they cannot
be composite.

3. T3.0271, Objects are what is unalterable and subsistent; their configuration is
what is changing and unstable.

6. self-governed in that they have their own internal rules of behaviour
1. T2.0141, The possibility of its occurring in states of the affairs is the form of

an object.
2. T2.0121, see above
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3. T2.0123, If I know an object I also know all its possible occurrences in states
of affairs.
1. (every one of these possibilities must be part of the nature of the object)
2. A new possibility cannot be discovered later.

a. T2.01231, If I am to know an object, though I need not know its external
properties, I must know all its internal properties.

4. T2.03, In a state of affairs objects fit into one another like links of a chain.
1. T2.033, Form is the possibility of structure.

These referents (objects) are intended to be more than just elements of description;
they form the real world:

T2.04, The totality of existing states of affairs is the world.
T2.06, The existence and non-existence of states of affairs is reality. (We also call the
existence of states of affairs a positive fact, and their non-existence a negative fact).

From these referents, the full force of logic, predicate and propositional calculus
retains stability of meaning and sense. Such a stance results in the position that
everything is potentially unambiguously describable:

T2.225, There are no pictures that are true a priori.
T2.224, It is impossible to tell from a picture alone whether it is true or false.
T7. What we cannot speak about we must pass over in silence.

8.3.2 A Rational Set

I now introduce here the idea of a ‘rational’set. The idea of rational and irrational sets
was proposed first by Jan Townsend Addis (private communication February 2004),
who related the irrational sets to Cantor’s (1845–1918) irrational numbers. In the
case of rational numbers the rule was that a member number could be expressed as a
ratio of integers. Examples of irrational numbers are

√
2 and π. There are infinitely

more irrational numbers than rational numbers. So we will define a ‘rational’ set is
a set where there is a finite set of rules that unambiguously includes any member of
that set and unambiguously excludes any non-member of that set.

It should be noted that all the sets referenced by the Tractatus are rational, where
set membership is always specifiable and context independent or has an explicit
context that is also rational. This, as discussed above, was the formal limitation
imposed on the Tractatus.

The Tractatus provides an extensive and useful description of computer program-
ming languages. The argument is that signs (the visible part of an expression) in
propositions do not always refer to primitive objects but are themselves referencing
propositions. This is expressed by the following Tractatus statements:

T3.14, What constitutes a propositional sign is that in its elements (the words) stand in a
determinate relation to one another.
A propositional sign is a fact.
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T3.31, I call any part of a proposition that characterises its sense an expression (or symbol)
(A proposition is itself an expression)
Everything essential to their sense that propositions can have in common with one another
is an expression.
An expression is the mark of ‘a form’ and ‘a content’.
T4.03, A proposition must use old expressions to communicate a new sense.
A proposition communicates a situation to us, and so it must be essentially connected with
the situation.
And the connection is precisely that it is its logical picture.
A proposition states something only in so far as it is a picture.
T4.22, An elementary proposition consists of names. It is a nexus, a concatenation, of names.
T4.221, It is obvious that the analysis of propositions must bring us to elementary
propositions, which consist of names in immediate combination.
This raises the question how such combination into propositions comes about.
T5.135, There is no possible way of making an inference from the existence of one situation
to the existence of another, entirely different situation.

This notion of meaning being related to its use rather than just reference is also
discussed in his next great work the Philosophical Investigations 43–60 (Wittgenstein
1953).

These states of affairs, in turn, are complexes that finally end up as compound
statements whose ultimate referent in computing is the bit. For example, in computer
languages we may have seven bits of the ASCII code identifying 1000001 as the
character A and 1000010 as the character B, etc. There are also special characters
such as ‘delete’ 1111111 and ‘start’ 0000001.

Here the bit is the mechanical equivalent of Wittgenstein’s referent objects. The
bit, if taken as a detectable distinction, has all the strange properties of Wittgenstein’s
object. For example, a world cannot exist (or at least be detectable) unless it contains
at least one distinction. A ‘bit’ is a concept that can only be embodied in a distinction.
A particular ‘bit’ is an argument place.

• T2.0131, A spatial object must be situated in infinite space. (A spatial point is an
argument place.) A speck in the visual field, though it need not be red, must have
a colour: it is, so to speak, surrounded by colour-space. Notes must have some
pitch; objects of the sense of touch some degree of hardness, and so on.

Further, it is at the bit that the program links to the world and has meaning. It is
this meaning that allows the program to have “sense” with respect to the computer.
This formal semantics and the ability for programmers to create procedures and sub-
routines (sub-propositions or expressions) is the primary characteristic of all high
level and assembler programming languages.

The consequence of such a formal model is that any set of signs can be used in
a program to represent a proposition. All that is necessary is that there is a formal
definition that gives the sign meaning within the program in terms of the proposition
it represents. Since a proposition can take on an infinite number of forms through the
use of tautologies and other formal equivalences then there is an infinite but bounded
set of possible organisations that can be adopted for a program. Such a set is bounded
by the meaning of the term ‘essential program’. An essential program is a theoretical
idea and refers to the base or minimum program. However, the additional adopted
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structure is also represented, in the end, by bits on a computer. This will appear as a
program overhead that is used to support a chosen program organisation or structure
and in this sense only the program interpretation has changed. We can say that within
the referential paradigm:

• The only strictly formal and unique meaning a computer program can have is
found within a computer.

However, we know that computer programs have some other relationship to the
world. This will be explored in the next chapter.

8.3.3 Social Consequences

There are also social consequences of the view adopted by the Tractatus in that it is
assumed that rules can be created for all situations and as such, these rules can bypass
human judgement. It also assumes that there is only one correct way of seeing the
world and so all human existence can be governed by some finite set of laws. It is
because there is a tendency to support such a ‘rational’ view that we now have all the
measures of performance and rules of assessment in the modern work environment. It
was this rational view that was the driving force behind Artificial Intelligence during
the 1960s and it was the major reason for the demise of Cybernetics as a serious
science.
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Chapter 9
Irrational Reasoning

The intellect is not a serious thing, and never has been. It is an
instrument on which one plays, that is all

Oscar Wild (1854–1900)

9.1 Dual Semantics

In Chap. 8 referential semantics was shown to fit a computer programming language
since the meaning of a word could be related to the bit as an object in the machine. This
is not the complete story. This is because computer languages have a dual semantics
in that the program signs (e.g. the names/labels given to data items, procedures and
sub-routines) at the highest level also have referents in the world other than the
computer (Fig. 9.1).

This other source of objects is found in the analysis of the problem domain in
terms of records (as in database and program structures), relations (as in normalised
data structures) and objects (as in object-orientation). It is the role of the analysis
done by a computer expert (a System Analyst) to identify and create a logical picture.
This logical picture is a description of the user’s world that will be used to implement
a set of programs. It is this analysis that will identify constructs (objects) in the world
that are meant to be stable and unchanging (as per Tractatus referents—Wittgenstein
1921) to which names can be given within the computer programs and their meaning
assigned.

Now it is acceptable that propositions can represent material properties:

• T2.0231, The substance of the world can only determine a form, and not any
material properties. For it is only by means of propositions that material properties
are represented—only by the configuration of objects that they are produced.

and relationships between objects:

• T2.031, In a state of affairs objects stand in a determinate relation to one another.

and any complex model of the world:

• T3.1, In a proposition a thought finds an expression that can be perceived by the
senses.
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Fig. 9.1 The problem with
dual semantics
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Fig. 9.2 The only rational
interpretation of a computer
program
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– T3.11, We use the perceptible sign of a proposition (spoken or written, etc.)
as a projection of a possible situation. The method of projection is to think of
the sense of the proposition.

• T3.32, A sign is what can be perceived of a symbol.
• T4.01, A proposition is a picture of reality. A proposition is a model of reality as

we imagine it.
• T4.021, A proposition is a picture of reality: for if I understand a proposition, I

know the situation that it represents. And I understand the proposition without
having had its sense explained to me.

and a proposition can have one and only one complete analysis:

• T3.25, A proposition has one and only one complete analysis.

Such an analysis is dependent upon only the essential features of the proposition (the
program) that link it to the referent objects (which is the bit in our case).

A computer program, as we have already seen, has such an analysis with respect to
the computational engine (Fig. 9.2), so the ‘alternative’ interpretation of a program,
the problem domain, depends upon its accidental features.

• T3.34, A proposition possesses essential and accidental features. Accidental fea-
tures are those that result from the particular way in which the propositional sign
is produced. Essential features are those without which the proposition could not
express its sense.

This develops a peculiar tension in program design that is hard to keep stable, partic-
ularly with respect to the informal, and often undefined, mechanism which links the
program names with the user’s domain. Further, the ‘objects’ that are usually chosen
to be referenced in the informal analysis of the problem domain do not normally
have all the features required of Wittgenstein’s objects. For example, they usually
cannot be unambiguously defined. This is because no set of rules can be formulated
to identify completely most objects that exist in the world as recognisable entities.
Simple distinctions such as the computer bit are possibilities provided there is some
well-defined formal definition of what is meant by a bit. However, computer engi-
neers can find examples of bits that are indeterminate, and it is for this reason that
sum check bits accompany every computer word. These check bits provide additional
information so that bits that are ambiguous can be detected and made distinct.
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9.2 The Paradigm Leap

The Tractatus is a magnificent piece of work and is an effective description of how
programming languages should be linked to a computer through ‘sense’ (as with
meaning) assignment. There is no problem with the engineering necessity of this
approach to ‘sense and meaning’. On a broader scale, it sidesteps many of the
paradoxes of the linguistic philosophy of the day. However, it has one fatal flaw
when applied to the human use of language. Wittgenstein eventually exposed this
flaw. He noted that it is not possible to unambiguously describe everything within the
propositional paradigm. He found that the normal use of language is riddled with
example concepts that cannot be bounded by logical statements that depend upon a
pure notion of referential objects. So I now turn to Wittgenstein’s second great work
where he explores the issues this raises (Wittgenstein 1953).

Wittgenstein illustrates this problem of defining concepts, using a propositional
framework, in his Philosophical Investigations. We will refer to paragraphs in this
work as PI n where n is an integer. In his illustration, he attempts to define a ‘game’(PI
69–PI 71). He makes clear that such an unambiguous definition cannot be achieved.
If you try to create such a definition then you will always fail both to exclude all
examples that are not games and to include all examples that are.

It is through such considerations that Wittgenstein proposed a new linguistic phi-
losophy that was based upon what I will call ‘inferential semantics’. David Gooding
(University of Bath, private communication 2004) notes that:

• The view epitomised by Wittgenstein’s Philosophical Investigations is that mean-
ing, grammar and even syntactic rules emerge from the collective practices (the
situated, changing, meaningful use of language) of communities of users.

It is because of this observation by Wittgenstein that we make the distinction between
rational and irrational sets (see Chap. 8–A Rational Set).

An irrational set is where no finite set of rules can be constructed that can include unambigu-
ously any member of that set and, at the same time, unambiguously exclude any non-member
of that set.

By way of illustration, consider the set of chairs and a possible specification
(Fig. 9.3). Here we have a typical chair (1), a high chair (2), a bar stool (3), a
shooting stick (4) and a shooting stick that is also an umbrella (5) and finally a chair
that is a maze that cannot even be sat upon. Each of these stages eliminates a rule
in the original specification of a chair. It is always possible to find some exception
to a finite set of rules that attempts to identify a member of the set ‘chair’. Even if
every exception were added to a membership list this would break down by simply
discovering a context in which at least one member would cease to be identified as
a member through the use of the rules. The more additions made of extreme cases
to the set, the more opportunities there will be for finding situations that exclude
accepted members of the set.
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Chair Specification 1:
Designed specifically to be sat upon, 
Stands on its own 
Has four legs 
Has a back 
Sitter’s Feet touches floor 

Chair Specification 2:
Designed specifically to be sat upon 
Stands on its own 
Has four legs 
Has a back Chair Specification 3:

Designed specifically to be sat upon
Stands on its own 

Chair Specification 4:
Designed specifically to be sat upon

Chair Specification 5:
Designed to be sat upon 

Chair Specification 6:

AA CChhaaii rr
JJeeaann--FFrraannccooiiss DDuupprriiss

Fig. 9.3 An attempt at identifying a chair

9.3 Examples of Irrational Sets

We are thus in a position where most things are not potentially unambiguously
describable. The following examples are drawn from the press where the limitations
of rules and the indeterminacy of irrational sets have some devastating effects.

9.3.1 The Problem of Rules

9.3.1.1 Offensive Words

From a report by David Hewson, Sunday Times, April 4 2004.

Can’t an intelligent filter analyse a page beforehand and make a machine judgement on its
suitability? There are stacks of those around, too, and pretty worthless they are. Peacefire
(www.peacefire.org), a web group opposed to online censorship, carried out an interesting
experiment recently. It created dummy pages supposedly run by small sites; each carry-
ing examples of anti-gay hate speech. Posing as individuals, the organisation complained
about these pages to the big content-filtering programs, including SurfWatch, NetNanny and
CyberPatrol.
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Sure enough, the filtering companies responded by blocking the offenders. Then Peacefire
revealed the true sources of the quotations—all were taken verbatim from the websites of
conservative organisations, including the Family Research Council, Focus on the Family and
Concerned Women for America. Would the content-filtering companies now block these big
and influential lobby groups? Not yet, which means you can read the self-same daft words
on their sites, along with plenty of other material, but not on the bait pages that Peacefire
erected to test the system.

9.3.1.2 Safety

From a report by Jeremy Clarkson, Sunday Times, April 11 2004.

The essence of the quotation was that the Health and Safety Executive (HSR) has attempted
to provide legal control over all behaviour at work to such an extent that it is impossible to
actually do his job. The nickname for the HSE is the Programme Prevention Department.

9.3.2 The Problem of Irrational Sets

9.3.2.1 Guilt

Report on the film ‘Capturing the Friedmans’ by Cosmo Landsman, Sunday Times,
April 11 2004.

He found this film riveting because every time new evidence was present he kept on changing
his mind about who was guilty until by the end of the film he was still unsure. The fascination
about the film was concerned with the nature of memory and the way facts can be so fluid.
It was a perplexing and poignant film.

9.3.2.2 Murder

Report on the execution of Paul Hill at Starke, Florida, CBSNEWS.com, September
4 2003

The execution of Paul Hill for the murder of a doctor who performed abortions and his
bodyguard left U.S. abortion providers anxious – and wary that the former minister may
become a martyr to the anti-abortion cause and spur others to act violently.
Paul Hill’s final statement . . . if you believe abortion is a lethal force, you should oppose
the force and do what you can to stop it
Paul Hill should be honoured today, the abortionists should be executed. Said Drew Holman
We think that unborn children should be protected and it should be law. Said Sheila Hopkins,
a spokeswoman for the Florida Catholic Conference. We definitely reject his statement that
it was justifiable homicide.

Attempts at providing a rational description of irrational sets has stimulated exten-
sions to the ‘crisp’ set by assigning a ‘value’ to a membership. Examples are fuzzy
and probabilistic membership assignments. However, fuzzy sets are rational in that
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members are assigned a membership number that is explicit and essentially ordinal.
Such assignments can be expressed by a finite set of rules. Similarly, a probabilistic
assignment of a member is also rational where a rule is in the form of a ratio of in-
tegers that specifies its membership. So there is difficulty transforming an irrational
to a rational set by simply assigning some kind of membership function.

Even though there are irrational sets we still have rational sets, and so denotation
remains one mechanism for relating meaning to a name. For irrational sets there is
an additional and more important mechanism for meaning assignment based upon
human usage and context. It is this latter mechanism that provides the link between
the program and the world it is designed to represent and is the other half of the dual
semantics.

9.3.3 Some Predictions from this Thesis

So we have computer programs with a semantics based upon computer bits but we
create programs that cannot rationally be assigned meaning to the very problem
domain for which they have been written. Programs must remain in the domain of
rational sets if they are to be implemented on a machine. However, we do have the
freedom to use the program’s accidental properties, such as variable names and the
addition of annotation, without affecting the program’s meaning with respect to the
computer. We can choose the names we use and select the computer organisation
from the possibilities bounded by the essential (minimal expression of a) program.

During the 1960s variables in programs were severely limited to about 4–8 char-
acters or integers. This limitation could make programs obscure to even experienced
programmers. The advance of more flexible naming and the addition of annotation
made programs very much more readable. The early endeavours, such as COBOL,
attempted to make the program expressions reflect an English sentence so that non-
programmers, such as clerks, could understand it. This did help, sometimes but it
could also be very confusing. The problem was that the real programming features,
such as column position, became lost in the English ‘descriptions’.

A proposition, and hence a program, can adopt many equivalent forms. It is the
job of a compiler to make a transformation of a program in order that it is accept-
able for a particular computer to run it. For any computer there are an infinite but
bounded number of possible structural forms for a given program. The possibilities
are bounded by the limitations of the compiler and the intended final form of the
program (the essential program). Apart from these limitations the choice of form
chosen is in the hands of the programmer. This means that:

• Reverse engineering is impossible unless domain information is used. This is
because there is no rational link between a real world domain and the program.
The world is always open to novel interpretations that depend upon purpose.

• Design methods will generally only limit what is possible to implement unless they
are ‘complete’. A ‘complete’ method is one that constrains the possible designs
to that of the limits of the machine being programmed.
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• Machine mismatches can be detected through tautology. This is already done with
such ideas as a parity bit; a mechanism for assuring the correctness of a computer
word by indicating that there should be either an even or odd number of bits.

• Programs on ‘quantum’ computers are bounded by operations that do not depend
upon knowing an interpretation. A ‘quantum’ computer is one that is based on the
idea of a ‘qbit’ or quantum bit. This works at the atomic level where ‘superposi-
tion’ is possible. Superposition means existing simultaneously in more than one
state (two in this case). A qbit has two simultaneous states and so every operation
is performed on all possible states simultaneously. This, in effect, allows massive
operational parallelism. Small-scale experiments have shown it can work in prin-
ciple. The problem, in practice, is the maintenance of the very special environment
in which it can happen.

• Formal ‘objects’ (e.g. Windows in Object Oriented) will be stable but informal
‘objects’ (e.g. persons, chairs or games) will never be fully captured or be stable
because they are irrational sets (see example above).

• It will not be possible to completely represent certain human functionality such
as natural language understanding on any machine that is not adaptable.

• Increasing a training set for machine-learning algorithms will eventually cause
degradation in its recognition performance if the set includes irrational distinc-
tions. This is because there will arise increasing number of contradictions as
further training examples are given.

9.4 Inferential Semantics

From an engineering point of view the only information that can be experienced by
an individual is the result of the interaction of the individual’s sense organs with
the world. This is not a passive view, since these organs are also controlled by an
inference engine; namely the human mind. It is only through inference and the senses
that we experience the world and relate to other people. So, like the computer, we
might be able to trace the sense of our understanding of the world through the tracing
of internal constructs to our senses. However, this would not be of any great help to
other people since it is unlikely that we are identical in the same way as two computers
that are constructed according to a defined engineering diagram are identical. If we
were to be different by as little as one bit we could not ever be sure that a ‘program’
would mean the same if ‘run’ in different heads or that it would even ‘run’ at all. So
tracing and knowing the ‘program’ (or our internal constructions) is not very useful.
This puts some doubt on the value of tracing circuits in the human brain as a means
of understanding how ‘it works’.

What could work, from a purely pragmatic point of view, is if individuals could
construct models of the world, and of other people, that were sufficient to meet the
needs of surviving in the world and with others. This model does not have to be
exact, just sufficient. However, to do this we have to extend our semantic model
to have another definition of meaning; a definition that does not depend upon the
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direct referencing of objects. For Wittgenstein, in the Philosophical Investigations,
he extends the idea of the meaning of a word to include its use in language (PI 43).

PI 43 For a large class of cases – though not for all – in which we employ the word “meaning”
it can be defined thus: the meaning of a word is its use in the language. And the meaning
of a name is sometimes explained by pointing to its bearer.

We can interpret this extended definition of meaning to imply a process of inference.
During conversation, both listened to and participated in, a process is going on
where a model of the meaning of words is being constructed through inference.
This is a group activity and one designed to construct something common in the
way language and the world may be perceived; a way that allows communication
to occur. However, these models are only understood by their effectiveness, their
ability to make predictions and their coherence within a group-dynamic situation.
They can never have been ‘seen’ directly since they only exist within an individual.

This lack of boundaries for concepts is the family resemblance effect detected
by Wittgenstein, such that ‘games’ form a family, and he illustrates this by further
examples in the PI (PI 67). It is this effect that fuzzy sets, probability and belief
networks, were intended to overcome (see also PI 71) without losing the power of
referential assignment. In 2003, a research team in Mexico, in conjunction with
Salford University, started to explore the use of family resemblance with a learning
system in order to approach human performance in categorization (Vadera et al.
2003). However, despite this insight, they remain firmly fixed in assessing their
results within the classical paradigm and consequently they did not really move our
boundaries of understanding any further.

The tension caused by the dual semantics that pivots on the essential (defining) and
accidental (non-essential) meaning of the signs used in programs has been recognised,
as can be seen by the continued search for new languages, program structuring
and systems design methods (e.g. Java, conceptual modelling and object oriented
programming). The central problem of the human context has also been addressed
through the pursuit of natural language understanding, naı̈ve physics (the physics as
described for every day purposes), case-based reasoning (reasoning using examples)
and adaptive interfaces. There is a belief that given sufficient power or moving
beyond the Turing machine would somehow solve the problem. This has not been
demonstrated with such efforts such as many-fold increases in computer power or
parallel mechanisms including neural nets. None of the approaches tried so far have
really succeeded. Many of the pursuits have been constrained by the formal bounds
represented by the Tractatus, and of those people who have tried to break away with
novel approaches none of them have bridged the gap identified here.

9.5 The Real Challenge

An alternative to Wittgenstein’s family resemblance is Lakoff’s (Lakoff 1986; Lakoff
and Johnson 1980) use of prototypes (paradigms) and metaphor instead of reference.
With either route we have a more acceptable approach to human relationships in
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Fig. 9.4 Showing where
change can occur to solve the
dual semantic problem
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that there will always be a need for human judgment because what is acceptable
behaviour or performance is a time sensitive and socially dependent notion. The
requirement to encapsulate a wide range and ever changing perceptions of a problem
domain will be the need for a continuous link with human activity. Such perceptions
cannot be predicted and hence planed for in advance. Thus many of the current
principles of design will have to be shelved, and two distinct design paths must be
forged that involve the two independent elements of a program: the formal rational
and the informal irrational (Fig. 9.4).

The challenge is this: can we construct computing based upon:

• family resemblance rather than sets,
• paradigms rather than concepts,
• metaphor rather than deduction?

Can we devise systems that have judgment rather than decisions? One possibility is
that we might be able to write dynamic, socially sensitive interfacing-compilers that
can match any program to any user (see Fig. 9.4).

Such a compiler would be in ‘conversation’with its user, other users and machines
via (say) the Internet, absorbing human cultures and language so that its generated
semantic and semiotic mappings made a program usable by a person. This might
provide a more natural communication between people and machines; it may identify
what is really meant by common sense.

9.6 A Science of Mechanisms

The original idea behind the grand challenge in 2005 (see Chap. 8) was to provide
a series of challenges that would be represented by non-classical computing. It was
a hope that such explorations would produce computational engines that somehow
would avoid some of the limitations found in the current crop of computers. It was
noted during the meeting that many of these difficulties would either identify:

the existence of irrational sets

or

the mismatch between the computer and the problem domain.
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It was suggested that a bigger challenge would be to develop a Science of Mech-
anisms. This science would evolve a way of arranging mechanisms into family
organisations and in particular identify such mechanisms by their organisational,
features; features that are relevant to being able to counter the above issues of mis-
match and will also support the use of irrational sets. A result would be a way of
reducing complexity of implementation by construction mechanisms that match the
problem. Flexibility to change (as required for irrational sets) would be provided by
a change in mechanism definition. Mechanism definition would also include the soft
variants in terms of program organisation and the possibility of combining distinct
physical implementations.
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Chapter 10
Knowledge for Design

“It is to be noted that when any part of this paper appears dull
there is a design in it”

Richard Steel (1672–1729)

10.1 Knowledge-Based Systems

Having dealt early with the issues of intelligence and the dual semantics of computer
programs in Chap. 9, we must now address the issue of how to design a knowledge-
based system.

A Knowledge-based system was coined to distinguish a database system from
one that captured expertise or ‘knowledge’. Such systems are a product of Artificial
Intelligence research. They have taken on many roles as people come to terms with
the idea of manipulating knowledge. In the first instance, a knowledge-based system
was considered by many people to be a direct replacement of an expert. The “Turing
test” was often evoked as a paradigm for a knowledge-based or expert system. This
paradigm is where given the limited means of communication with a computer it
should not be possible to tell the difference between the knowledge-based system
and an expert (hence the term expert system). The original designers of such systems
had high expectations that have never really been fulfilled.

The Turing test, as I have suggested in Chap. 1, has always been a misconceived
approach to a specification of the objectives of Artificial Intelligence, since it has
the appearance of a clear definition in that it uses equivalence, but this notion of
equivalence does not include the most important element. This element is the exact
manner in which a user of a knowledge-based system would attempt to make the
distinction between a person and a program to determine the criteria to be satisfied
that a person and a program are in practice equivalent. It is within this set of actions
or this specification of the criteria that the real difficulties lay.

The analogue of knowledge was often considered (although only half seriously by
the practitioners) as a sort of substance that was extractable (mined) from experts. The
extraction process (knowledge acquisition) is accomplished by interviews with the
expert where every utterance, action and gesture (if possible) is recorded on audio
and/or videotape. The script is then analyzed (the ‘ore’ refined) by a knowledge
engineer, sometimes with the help of a computer ‘induction’ program. The induction
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Fig. 10.1 The role of a knowledge-based system with respect to a theory

program will identify (with respect to the tasks to be performed by the expert) the
information-carrying statements or actions and reject redundant statements or actions
(Chap. 4).

The result of knowledge acquisition would be a model of the expert in the form of a
representation that was at least indirectly convertible to a computer implementation.
The target representation will depend upon the knowledge-based system used. Many
systems are variants of a ‘production rule’ system that presumes the existence of a
deductive inference unit that can work under the guidance of some simple heuristics
to infer an expert’s actions from the model. The model of the expert is given in the
form of ‘if. . . then. . . ‘ rules. This is a rule of the form “Rule 34: If the patient has a
high temperature and (Rule 56 or Rule 57 are true) then the patient has flu”. Many of
these expert system models may be fine-tuned with the aid of weightings (sometimes
called certainty factors or probabilities) that are assigned to each of the rules (see
Chap. 6).

These models can never be complete since the systems that use them rarely have
the capability to interact directly with the environment and even those that do will be
deprived of many of the refinements of the human senses. The models have to rely
on a human agent (the user) who must be able to interpret the meaning of the words
generated by the model. These words instruct the user in an exploration of and the
actions to be performed in the task domain (See Chap. 9). Thus, a less ambitious
view of a knowledge-based system is as an aid or intellectual assistant to a skilled
user (Addis 1985). The exact position of a knowledge-based system in the scheme
of activities is shown in Fig. 10.1.
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Fig. 10.2 States and transformations in a problem space

The model is referred to as the knowledge of the ‘Expert’. The model is derived
from the knowledge acquisition results provided by the ‘knowledge engineer’ and
these results are interpreted by the designer in terms of the ‘Theory’ (Fig. 10.1;
‘Knowledge 1’). The process of deriving the model from the ‘Theory’ depends
upon ‘Abduction’ and ‘Abstraction’ (formerly called type 2 and type 1 abduction
respectively—Addis 1987). The model is a ‘Case’(an element of the extension) of the
theory of knowledge given in terms of some representation scheme (‘Knowledge 2’).
The model is driven by deductive inference and controlled by heuristics (Abduction
type 3) towards a chosen goal. Induction uses the results of the model and ob-
servations to either, confirm (justify) the model or to stimulate further action and
design.

Knowledge-based systems provide possible intellectual assistance through the
animation and automation of representations (vehicles of thought). In order to build
better aids to thought we need a better grasp of what is involved in the human use of
representations (so we can automate aspects of that use). The account, as is normally
assumed in AI, is based upon problem solving as portrayed by Newell and Simon
(1956). This theory (of knowledge) is a derivative of a human problem-solving model,
an example (a case) of which was first implemented as the Logic Theory Machine
(LTM). The LTM was later extended to a General Problem Solver (GPS). This theory
was proposed in order to describe the general behavior of people reporting on their
thought processes as they were solving problems (Newell and Simon 1973).

In essence, the theory states that problem solving is a process of exploring a
“problem space” for a solution. A problem space can be considered as a directed
graph (see Fig. 10.2). The nodes of the graph represent the different possible states
of a problem. There is usually a single start state that indicates the initial situation
and a set of termination states that indicate the desired result. The arrows that go
from node to node represent the actions that are available to an agent in that state, and
these actions transform the problem from one state to the next. Problem solving is the
discovery of a path from the start state (S) to one of the termination states (T1, T2).
The solution is the sequence of transformations (arcs) that make up the path.

The theory has its foundations in utility theory (Luce and Raiffa 1957). Utility
theory is a means through which choices can be assessed (their utility) and decisions
can be made. The utility of a state in Newell and Simon’s version of decision theory
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is a measure of the proximity, in terms of further state transitions, that a state (and
hence the cost that leads to that state) has to a solution. The cost is estimated in
terms of the number of intermediate states and the effort to reach each state. This
provides an estimate of the cost for a solution path. Each arc of the path represents
a transformation sequence involved in getting from one state to the next, and the
cost is derived from the nature of the transformation. This utility measure forms the
basis of a representation of the heuristic knowledge. The utility guides the inference
system by selecting a route that minimizes the cost.

The computer model of a general problem solver is expected to consist of three
elements that are related to different kinds of case knowledge:

• a data representation that describes a set of problem states and has the potential
to describe all the problem states (the abstraction of the problem),

• a set of data updates that describes how a given state can be transformed to a new
state (the deductive system),

• a set of heuristics that provides guidance to a search algorithm through the problem
space (the heuristic knowledge).

These elements may be represented in a wide variety of forms depending upon
the knowledge representation scheme used (e.g. clauses, rules). Many AI programs
will have these three elements made explicit in their design even though they may
have been designed through a different theoretical framework (e.g. object oriented
programming, semantic nets, frames, case systems, etc.). Most of the alternative
current AI theories (of knowledge) are concerned primarily with representation.

The appeal of Newell and Simon’s theory is that the states of the problem can be
represented as propositions. These propositions are formal representations of natural
sentences that are written thus:

All (x) Elephant (x) - > Colour (Grey, x)
[All elephants are grey]
Exists (y) Name (Dumbo, y) and Elephant (y)
[There is an elephant called Dumbo]

and the transformation from one state to the next is the application of deductive
inference to selected propositions. The deductive inference step is an extension of
Modus Ponens called Resolution. The only requirement is that the propositions must
be normalized into clauses, a process that can be done automatically. This process
is appealing because it demonstrates “human thinking” as proposed by logicians.
Further, it defines the start of an important research program into modeling human
cognition that has deep foundations in Mathematics and the formal traditions of
Science. The program can draw upon a long history of development that includes
work from many of the best thinkers of the last two millennia. This research program
has been pursued vigorously by many centers in the UK such as Imperial College
(London) and Edinburgh University.



10.2 The Role of a Model 133

Fig. 10.3 A spatial representation of a slide

10.2 The Role of a Model

Newell and Simon’s problem-space is defined by means of linguistic (propositional)
representations and the manipulation of linguistic representations to solve problems.
This has stimulated the development of animated and automated sentence manip-
ulators (the logic research program). However, scientific and engineering thinking
uses other vehicles to model that should not be regarded as reducible to just sets of
sentences.

As an illustration of what is outside the philosophy of the logic research program,
consider the process of designing a simple slide as shown in Fig. 10.3. Such a slide
may form part of the transportation system for a product in a factory. This product
will have specific dimensions, weight and composition. After the drawing of a sketch
that shows the spatial relationship of the components of the slide, it is required to
determine the acceleration of the product down the slide so that the velocity may be
calculated at its point of reception.

Reference is now made to the theory of Dynamics. In a wider context, a theory
in this paper does not necessarily mean a formal theory. Any set of statements that
forms some coherent description of the world that can be used to “render facts
likely” (Peirce 1934) will be considered a theory. A theory, for example, is a set of
propositions that reduces the uncertainty in the world for an agent. Some aspects of
the theory of Dynamics (Newtonian Mechanics) may be presented as such a series
of statements thus:

T1. Every Body travels in a straight line unless a force acts upon it.
T2. Momentum is the product of mass and velocity.
T3. Force is the rate of change of momentum.
T4. For every action, there is an equal and opposite reaction.
T5. Gravity is an acceleration caused by the mutual attraction of mass.
T6. Weight is a force due to gravity.
T7. Forces (and hence velocities) will add as vectors.
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Fig. 10.4 A cycle in the design process

From this theory a more formal dynamic model may be constructed using
mathematics. In this case a first attempt will appear as:

M1. A Body of mass M on a slide.
M2. The slide is at angle θ with respect to the horizontal.
M3. The weight of the Body is W = M*G where G is the acceleration due to

gravity.
M4. The force down the slide Fs =W*Sin (θ).
The slide is constructed and it is found that the actual acceleration is much less

than that predicted. After checking the calculations, reference is then made back to
the Theory (see Fig. 10.4). The Theory restricts the set of possible explanations for
this discrepancy and guides the designer to create a better model. In this case, the
theory limits the set of possible proposals to the existence of another force acting
on the Body. This force then ‘explains’ the discrepancy between the model and the
observations; this force is called ‘friction’.

The notion of friction does not come directly from the theory but is an inter-
pretation of both experience (i.e. there is a recognizable feeling of resistance when
moving the Body on the slide which becomes greater with increased pressure be-
tween the surfaces) and the Theory (i.e. only forces can influence the motion of a
Body). The process that generates the insight (that these disparate experiences and
concepts should be amalgamated into a simple causal element identified as friction)
is called ‘abductive’ inference. An important component of abduction is the element
of contact by an agent with the world. The Model is modified thus:

M4’. The force down the slide

Fs′ = W∗[Sin(q) K∗Cos(q)]

where K is the coefficient of friction for the materials in contact.
The coefficient of friction K is a concept that has evolved from the need to adjust

the model to fit the observations (see Fig. 10.4). This indicates that the notion of
friction does not and cannot emerge from only the manipulation of the sentences that
make up the theory.
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Fig. 10.5 The Model as a point of contact between theory and Artefact

A precise relationship between a theory and a model cannot be easily defined as
they both represent a range of possible interpretations and share many of the same
properties (cf. Aris 1978). There is a continuum of theories or models ranging from
the non-specific (most general) to the identification of unique cases. The relationship
between a theory and a model is that a model will be associated with a more specific
situation (a case) than a theory. The complete range of models derivable from a
theory will be called the ‘extension’ of the theory. The theory from which a model
is derived is called its ‘intension’.

Figure 10.5 illustrates the model as the end-product of several stages of abduction.
The model emerges from the potentially infinite set of possibilities that may be
presumed to exist within the abstract world of the human imagination. However,
the model is also the end-product of several stages of abstraction of the potential
distinctions in the empirical world. The model captures only a subset of the possible
features of an artifact. In the above case, it does not show the color, texture, smell
or structure of the materials; it’s a coherent subset, which serves our purpose. A
model and a theory both together encapsulate an understanding of the world that is
the result of purpose and experience. A model and its associated theory will be called
‘declarative knowledge’ if the model relates to at least one feasible artifact (i.e. can
be constructed). What is feasible and the methods used to make such a judgment,
such as the comparison of predictions with observations, are referred to as ‘inductive
inference’ or just ‘induction’.

In the case of the slide, the mathematical model will describe the active forces
of interest provided the right combination of calculations is applied. The knowledge
of how to perform a particular chosen calculation correctly is ‘deductive inference’
or just ‘deduction’. Mathematical calculations are deductive in the sense that they
are ‘valid’ operations and truth preserving. The understanding of how to perform
the three forms of inference; abduction, deduction and induction will be called
‘inferential knowledge’.
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The mathematician, given the purpose of the model, will select the right combina-
tion of calculations. This understanding of how to use the model to make appropriate
predictions will be called ‘heuristic knowledge’. Heuristic knowledge may be con-
sidered to be the result of another form of inference since it requires a similar kind of
insight observed in abduction; the perception of the significance of certain particulars.

The design of this slide (the artifact) currently uses two models: the model of
forces represented in mathematical terms, and the model of spatial relationships that
uses a scaled projection of the slide on to two dimensions. The two models are two
different abstractions from experience and two different abductions from theory.

The two models are related in that there is a clear mapping between points of
contact. In this case, the points of contact are the angle of the slope and the direction
of the forces acting on the Body1. Other design tasks, such as the construction ofVLSI
chips, will use nine or ten different models to represent different abstractions of the
same object. Each of the models is related to some theory that uses a generalization
of the characteristics to be controlled and formed in the design. A theory is only
useful if it provides this control. The control is incorporated in the constraints (lawful
behavior) and in the procedures for deriving the consequences of any design decision
within the domain of the theory. Hence, the laws of electronics (e.g. Ohm’s Law)
provide a means through which particular circuits (electronic models) may have
predictable performance.

Related to each model type are one or more preferred representations and a means
of deducing measurable features of the artifact. Before the invention of Cartesian
Projection as a method of depicting a normalized view of objects, the only means
of representing spatial relationships was through sketches. Sketches (or perspective
drafts or drawings) do not allow the possibility of extracting measurements or making
detailed predictions of the distance between any two points on the object. Sketches
do show certain ordinal relationships such as next, above, below, inside and meshing.
However, the Cartesian projections, with the aid of a ruler and in some cases a little
geometry, will provide not only this ordinal information but will also give a prediction
of the distance between any two points.

Figure 10.6 shows details of the elements involved for one of the models in de-
signing the slide. The theory involves both the representation scheme (mathematics)
and the generalization of a particular aspect of the world (dynamics). The theory is
made explicit by the model in the form of equations (case). Both the theory and the
artifact influence the model. A mathematician interrogates the model using calcu-
lations. This person is usually the same person as the designer and who may use a
calculator or lookup tables. The engineer must be able to interface with the artifact
(the construct) through measurements (e.g. the angle of slope and the acceleration)
in order to provide observations that can be compared with the predictions of the de-
signer; the artifact must engage the model. The mathematician, engineer and designer
indicate the skills (tacit knowledge) required to progress a simple design.

1 The triangle of forces is not shown.
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Fig. 10.6 The representation of knowledge and the skills for design

Although the model is the main component to be altered in the design process,
the effectiveness of both the theory and the artifact are continually under review.
If the models cannot be made adequate to reflect the artifacts, the theory will be
modified, and an artifact will be reconsidered in the light of predicted performance
and the achievement of the purpose. Progress can only be made if there exist both the
beginnings of a theory and the inklings of an artifact from which a case model can be
created. However, to modify a theory would seem to require the existence of a meta-
theory, which has the same relationship to the theory as that which the theory has to
the model. Model, theory and meta-theory will be referred to as different “levels” of
knowledge. A theory is abduced from a meta-theory and supported through induction
from experience with its models.

10.3 The Limits of Logic

The logic research program, after some initial success, seems to have reached a point
where progress has slowed. There are several reasons for this, both technical and
fundamental.

The “technical” reasons are to do with the excessive expansion of the problem
space when faced with only a small increase in problem scale. This effect is known
as the combinatorial explosion. The attainment of better heuristic knowledge and
methods of assessing the state utility is a major objective in this research program.
However, there is currently no general theory that explains heuristics nor describes
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how such knowledge may arise. Each case must be dealt with on its own merits
where the designer supplies the heuristic component.

Techniques for the system to automatically extend the model as the problem
space is explored have had some success in reducing the search space for some
problems (e.g. Truth Maintenance Systems). However, in many cases these elaborate
techniques have had only marginal effects. In the end, it usually falls upon the
designer of the system to incorporate as much domain knowledge as possible in the
heuristic component.

An alternative approach to the search space problem is to use more powerful
computers, and in particular to use parallel processing. It would seem natural to use
parallel exploration of a divergent problem space, but the amount of improvement de-
pends upon the structure of the problem space. The control and intercommunication
of the parallel processes for optimum effect is still a research topic.

The “fundamental” reasons for the slowing of progress call into question many
of the assumptions on which logic and formal systems are based. It is clear from the
description of the general structure of Artificial Intelligence programs that:

1. The concept of truth never enters into the issue of design except as a marker to
show valid deduction,

2. There are several elements that must still be provided by the designer, the
knowledge engineer and the user.

The elements comprising 2 are:

• The heuristic knowledge and purpose for which the solution is required (the
‘heuristic’ component).

• The range of interpretations of the symbols and structure in the model (the
‘abductive’ component).

• The association of the distinctions in the world with the primitives for each case
(the ‘abstractive’ component).

• The creation of a model from a theory and its subsequent modification in the light
of experience (the ‘abductive’ and ‘inductive’ component).

These are similar or associated reasons to those reasons why Wittgenstein explored
an alternative view to his Tractatus and why Peirce concerned himself with semiotics
and abductive inference. Part of the problem can be illustrated by a re-drawing of
Fig. 10.3 as shown in Fig. 10.7.

Figure 10.7 suggests that the boundaries of first order and second order logic are
restricted to the abstract world and limited to the relationships between theory and its
models. Thus, the range of interpretations is not open-ended. However, there may be
an infinite set of interpretations within each range. The vertical axis in Figs. 10.5 and
10.7 is an ordinal measure of transfinite numbers. The mapping of theory to model
is a second order issue since the theory is used to generate new predicates. In the
slide example, the new predicate Friction (x, f) was implied where x is a body and f
the frictional force.



10.3 The Limits of Logic 139

Fig. 10.7 The boundaries of first and second order logic

The mechanism through which this generation of predicates occurs is not fully
understood; second order logic is incomplete. It is for this reason that the counterar-
gument that logicians might raise concerning the generalization of logic to include
any number of stages of abstraction cannot be fully justified. The complete formal
step between levels of knowledge has not yet been achieved.

There are two-level ‘abductive’ programs that incorporate both theory and model
based on something like a simple second-order logic (e.g. Langley et al. 1987).
Nevertheless, the engagement of the model with the world still requires human action
except in some very primitive cases (e.g. thermostats and other control mechanisms).

The argument for continuing the logic research program is strong and it is not the
purpose of this chapter to suggest otherwise. What is being proposed is that alongside
this research program should be a parallel research program. This program should
include the human agent and a program that attempts to provide a richer structure
to the knowledge description; a structure that can cope with a formal description of
heuristics, interpretation, abduction and induction, a structure that may even be able
to define intelligence unambiguously.

The benefit is not a proposal to develop automated models—that’s already
commonplace—but to provide automated aids to the process of moving between
artifact, model and theory. The relationship between artifact and model, and model
and theory is one of generalization and the major limitation of the logic research
program is that by confining its attention to linguistic representations it cannot ad-
equately encompass the full process by which humans move between the particular
and the general. It is not merely the incompleteness (in the logician’s sense) of
second-order logic, which stands in the way; it is the incompleteness, in the ordinary
sense, of the representations use by logician’s. Here is where there is room to run a
research program alongside the logic program (Addis 1989).
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Chapter 11
Measures of Intelligence

He gave man speech, and speech created thought, which is the
measure of the universe.

P. B. Shelley,
(1820, Prometheus Unbound)

11.1 IQ as a Measure of Intelligence

We will now describe a program, devised and constructed by Dr. Mohamad S. Za-
karia (See Zakaria 1994). This program uses the models of only the three forms of
inference, ‘abduction’, ‘deduction’ and ‘induction’ as described in Chap. 4. Abstrac-
tion will be done manually and is therefore pre-defined. The roles of the three forms
of inference in creating and validating a hypothesis will be tested using a simple IQ
test. This test requires the inferring of a hypothesis that is the generator of a sequence
of numbers. The origin of these hypotheses was taken from Eysenck’s numerical se-
quence IQ tests (Eysenck 1974a, b). The IQ test sequences and the extensions of the
sequences generated by applying the inferred hypothesis are used as a testing ground
for the implementation.

First, I will attempt to explain the rationale of using IQ as a measure of intelligence.
Using the IQ tests to measure intelligence has always been controversial, largely
because there is a great deal of disagreement between experts about the nature of
intelligence. We have already looked at the inadequacy of both Turing’s and Simon
and Newell’s definition in Chaps. 1 and 5.

Eysenck notes that ‘there is no satisfactory criterion that exists to measure intel-
ligence’. He adds that if there really were a satisfactory criterion, then intelligence
tests, in their current form, would probably be superfluous. However, we might be
prepared to agree that people of high intelligence are more likely to succeed at in-
tellectual tasks involving solving problems by applying existing principles to new
facts, the discovery or invention of relations between existing facts, learning the new
interconnected facts and principles, and other similar activities.

Training in schools and universities attempts to introduce students to areas of
knowledge requiring the use of such abilities. The success of the student is mea-
sured by examinations. In part at least, these examinations are to measure individual
student’s intellectual abilities. As the late Professor Edwin G. Boring pointed out,
intelligence, by definition, is what intelligence tests measure (Jensen 1969).
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Intelligence tests deal with discovering relationships and educing correlates by
noting similarities and differences among given facts. They are the measurement of
general intelligence, known as the ‘g’ factor in psychology. They assess our pattern
of abilities to discover the relevant qualities and relationships between objects or
ideas that are before us and to evoke other relevant ideas. No psychologists have
ever claimed that these tests can also measure other qualities such as character and
artistic talent. Controversial they may be, but most competent judges agree that they
provide a better measure of intelligence than any other at our disposal.

The validity of intelligence tests is also shown by the fact that their results are
highly correlated with other activities in which intelligence plays a dominant part.
For example, Eysenck noted the correlation between the results of intelligence tests
with the success of students at university (Eysenck 1974b, p. 20). Students who
obtain a first-class degree have usually scored ten IQ points higher upon first entering
university than did students obtaining lower-class degrees; successful students have
usually scored some 15 points higher than students who failed to obtain a degree at all.
The close relationship found between IQ and the success at university is remarkable.
For the very same reason, intelligence tests have been profitably employed and
widely used by psychologists. They have also been used, for example, by school
medical officers in the diagnosis of mental deficiency (e.g. the Terman and Merrill
1936, 1960, New Stanford Revision of the Binet-Simon Scale was once the most
popular in Britain), by specialized training centers (such as pilot school), and by top
universities (Oxford and Cambridge) as a mean to assess their potential students.

Argument about the nature of intelligence has been going on since 1920s. Eysenck
pointed out in 1974 that “it is fair to say that it may even be that in the next twenty years
we will know a little more about the nature of intelligence than we do at present”.
He continued “until then we shall have to contend with our ability to measure it with
a certain degree of accuracy, and with such data as can be collected by means of
intelligence tests” (Eysenck 1974b, p. 38). It is now 40 years later, and very little
progress has been made.

There is another reason the IQ test is being used. Throughout modern history, pro-
fessional psychologists devised intelligence tests. They depended on a pre-conceived
norm of a mental function, and were standardized so that their results would fall
within the normal or Gaussian curve of distribution. The standardization of an intel-
ligence test involves the expert use of statistical techniques. It also involves much
time and labor, because in order to establish norms, the tests were applied to a repre-
sentative sample of those for whom it is intended—a sample in which all the relevant
differences in the whole group are represented in their proper proportions—and the
distribution of scores for every age group were determined.

This standardization is very important in that it provides a scale to measure in-
telligence. In this respect, measurement of intelligence resembles measurement of
height—or, indeed, anything else. Knowing the height of a 16-year-old boy, we know
whether he is tall, short or average by comparing him with the average height of boys
of 16. Similarly, if we know the score the boy obtains in an intelligence test, we can
determine his brightness or dullness by comparing it with its appropriate norm. The
tests and the scale were rigorously tuned to reflect human intelligence throughout
the history of their construction in Europe and the USA.
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IQ tests are used to measure human intelligence rather than machine intelligence.
This is of paramount importance since rather than constructing a machine with intel-
ligence capability, I am attempting to describe a model that was devised by Zakaria
(1994) of the human decision-making process within a problem IQ domain. Since
no predefined framework for this decision-making process existed in this domain at
the time the model was constructed, its form was based upon IQ tests. The comfort-
ing component about this very practical approach is that these tests reflect human
intelligence derived from empirical evidence. A definition of intelligence may be
disagreed with but performance cannot be denied.

For this purpose, a subset of intelligence tests was selected, to measure the success
of this model. The range of tests seeks to assess intelligence in a direct and reliable
manner. These tests contain a number of miscellaneous problems, since it is only in
this way that the test can yield a measure of that general ability (the g factor) which
is intelligence. However, these problems aimed for the fundamental objective: the
demand for relational and constructive thinking which involves the discovery of
relationships and the induction of correlates. From the set of 18 different tests (each
with between 35 and 40 problems), only those that deal only with numerical sequence
extrapolation were selected, since they served the purpose and objective of testing
the model proposed.

11.2 Sequence Extrapolation as a Model

Given a sequence of numbers, the system is organized to find a simple rule from
which such a sequence might have been generated. The creation and validation of
hypotheses are performed by interacting and co-operating retroductive, deductive
and inductive inferences.

Note that retroduction is closely related to ‘abduction’ as described in Chap. 2
(see Fig. 2.9). Retroduction selects a concept drawn from a set of concepts and
constructs (abduces) a specific hypothesis to ‘explain’ the observed facts. In this
case the observed facts are a sequence of numbers. Abstraction is not needed here
since a computer easily recognizes numbers and the basic transform functions for
numbers.

In its simplest form, the process is similar to the simple ‘generate and test’ proce-
dure (see Chap. 2, Fig. 2.9). However, the process is more complex than this simple
cycle in that the results at each stage influence the way in which each element in the
cycle behaves. There is a “tension” among the three inferences and this “tension”
provides feedback data from one inference to another in order to improve the quality
and credibility of a potential hypothesis. Figure 11.1 illustrates this tension.

Note that Fig. 2.9 in Chap. 2 and Fig. 4.4 in Chap. 4 there is an extra inference
of ‘abstraction’. Abstraction infers the relevant features that form the appropriate
hypotheses. In Chaps. 2 and 4, I considered ‘abstraction’ as a fourth inference.
However, I will not consider it here because, first, this is not usual in the literature
and second, I am dealing with only numbers and the sequences that use the notion of
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Fig. 11.1 The interaction
between the different types of
inferences

Retroduction

Induction Deduction

numbers. The abstraction element for inference is thus already done. The mechanism
described here is simplified by excluding any direct and dynamic modification of
one inference type by another. The processes of inference will remain fixed for this
implementation.

The black solid circle in Fig. 11.1 is a controller that manages the flow of infor-
mation (thick arrow) between the three inferential mechanisms. A tension is created
when the three inferential mechanisms cooperate to formulate a viable hypothesis.
Communication between the mechanisms involves a cycle of retroduction, deduc-
tion and induction as well as the feeding-back of information, which will ensure that
a hypothesis is applicable within the three mechanisms. In a normal mixed IQ test
that involves other sequences than numbers, the process of ‘abstraction’ becomes an
important component of this tension (c.f. Chap. 2).

For a given set of facts (e.g. a sequence of numbers), it is the role of retroduction
to create a reasonable hypothesis for those facts (e.g. that particular sequence). De-
duction exercises the hypothesis and returns a prediction of a new fact (e.g. the next
number in the series). The validation of the retroduced hypothesis is the function of
induction that ensures that the hypothesis is suitable for the purpose (e.g. the predic-
tion is correct, the calculation was not too complex, it fits all or most of the facts and
the form of the hypothesis is simple).

The process of creating and validating a hypothesis is governed by:

• a set of hypothesis generators called concepts,
• a set of criteria, and
• two stages of learning that orders the formation of these concepts and criteria.

The learning process and the final selection of a hypothesis from the set are dependent
upon the validation of the hypothesis against a criterion. The criterion is selected from
a set of criteria (see Table 11.1) each of which relate to a hypothesis or concept. The
validation process (i.e. induction) is the test for specified features of the generated
hypothesis against a pre-set criterion (see Table 11.1).

11.3 Learning in Retroduction and Induction

However, the process of inferring a hypothesis depends not only upon the cycle of
retroduction, deduction and induction but also upon two stages of learning. There is a
primitive learning scheme in both the retroductive and the inductive module. Learning
in retroduction is a process of using the features of the abstraction to choose a concept
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Table 11.1 Criteria for induction

Criteria Meaning

CR1 The size of the hypothesis representation should not exceed a certain threshold value

CR2 All parameters used in the formulation of a hypothesis should be in integer form

CR3 The length of coefficients is set 1

CR4 All parameters are rational numbers

CR5 All coefficients are less than or equal to 10 and greater than or equal to −10

from which to generate a hypothesis (see Table 12.1 in Chap. 12). The process
of hypothesis generation can be expensive and therefore a good initial choice of
hypotheses will improve the potential success. However, this choice is in some sense
making a pre-judgment and is in competition with induction. Learning in induction
is the selection of a criterion from a set of criteria that relates to each concept. It is
interesting to see that both the learning processes are complementary to each other
to achieve symmetry. The learning in induction (the validation of a concept) is the
inverse of learning in retroduction (the generation or selection of a concept).

There are two kinds of learning used in retroduction. The first kind of learning
is a simple training set to establish a norm from which insight may be gained. This
enables the system to orientate towards generally humanly accepted hypotheses as
opposed to workable but humanly unacceptable hypotheses. The second kind of
learning uses the facts given (e.g. the number sequence) in order to do a running test
of confidence between competing hypotheses. We test both mechanism of learning
over the same set of data in order to compare the relative changes in performance.

11.4 The Basic Concepts

This model employs five basic quantitative concepts to act as hypothesis generators.
The concepts are shown in Table 11.2.

The five concepts can be recognized by the way they are formed.

11.4.1 INTER

This is a relationship between an element Si in the sequence S and with those
preceding it.

Si = Ai
∗ Sfi

i−1 + ki

For a particular sequence the start value, A(i), f(i) and k(i) need to be determined in
order to fit this function.
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Table 11.2 A list of concepts C that relate to hypotheses H

Rank. concept probability, D Description Example series

1. INTER
48 %, 0.09

A quantitative relation between
elements in a sequence

4 3 5 17 83 497 3479
4 * 2 - 5, 3 * 3 - 4, 5 * 4 - 3

2. PERIODIC
42 %, 0.15

An oscillation in differential
coefficient shift of a sequence

24 21 15 21 18 24 18 15 9 15
12 18 12 9
So first level of differential
gives:
- 3, - 6, + 6, - 3, + 6, - 6, rpt

3. POLY
7 %, 1.38

A polynomial function that fits
into a given sequence.

0 1 4 9 16 25 36 49 64
Square of 0 to n

4. PRIME
2 %, 4.76

A prime function that fits into a
given sequence

75 147 363 507 867 1083 1587
3 * Square (prime)

5. FACTORIAL
1 %, 5.85

A factorial function that fits into
a given sequence

1 1 2 6 24 120 720
Fact(n)

Table 11.3 The generation of an INTER sequence using equation Si

i Ai

i + 1
fi

1
ki

i - 6
S

0 4

1 2 1 - 5 2.41 − 5 = 3

2 3 1 - 4 3.31 − 4 = 5

3 4 1 - 3 4.51 − 3 = 17

4 5 1 - 2 5.171 − 2 = 83

5 6 1 - 1 6.831 - 1 = 497

6 7 1 0 7.4971 − 0 = 3479

7 8 1 1 8.34791 + 1 = 27833

8 9 1 2 9.278331 + 2 = 250499

Example:
An example INTER sequence with:

Start value = 4, A(i) = i + 1, f(i) = 1 and k(i) = i − 6

is

4, 3, 5, 17, 83, 497, 3479, 27833, 250499,

and is generated as shown in Table 11.3.
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Table 11.4 Initial sequence cycle

Position 0 1 2 3 4 5 6 7 8 9 10 11

Number 24 21 15 21 18 24 18 15 21 27 |12 18

Table 11.5 Sequence cycle

Position 10 11 0 1 2 3 4 5 6 7 8 9

Number 12 18 24 21 15 21 18 24 18 15 21 27

11.4.2 PERIODIC

This is an oscillation in the differential coefficient shift of a sequence where POSmin

is the position of the smallest number in the sequence and LCDi is the Least Common
Divisor. The function ‘mod’is taken in the programming sense of being the remainder
after integer division.

Sub-harmonic function =
∑

((i − POSmin) mod LCDi)

Example:
Here we highlight the start of the cycle with the symbol ‘|’. The complete cycle

and the initial positions is shown in Table 11.4

(24, 21, 15, 21, 18, 24, 18, 15, 21, 27, |12, 18, 24, 21, 15, 21, 18)

The start is found by looking for the minimum value (i.e. 12). The numbers after
the pair (12, 18), in bold italic, match the numbers in italic at the beginning of
the sequence. So, this sub-sequence starting at 12 represents the initial part of the
complete cycle. So doing ‘a right shift circular seven times’ on the numbers (an old
style computer operation applied to bits in a computer word) we have:

|12, 18, 24, 21, 15, 21, 18) (24, 21, 15, 21, 18, 24, 18, 15, 21, 27,

So the sub sequence in italic 24, 21, 15, 21, 18 is the same as the italic 24, 21, 15,
21, 18 at the start of the sequence. One of these sub-sequences can be deleted to give
the minimum cyclic component of the total sequence as in Table 11.5

Taking the original given sequence starting with 24, 18, the cyclic component
starts at position 10 (numbering from 0). The length of the cycle is 12. This has the
least common divisors (LCD) of (3, 4). Using the Sub-harmonic function above we
can express another formula for this periodic sequence as a function of the index i
as (Table 11.6):

Pf (i) = SMin + K ∗ ∑
((i − POSmin) mod LCDi)

SMin = 12 - > minimum value in sequence
POSmin = 10 - > position/index of minimum value
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Table 11.6 Application of Pf(i) for sequence example in Table 11.5

Index Calculation Result

10 12 + 3.[((10 - 10) [mod3 + mod 4])],
12 + 3.[0.mod 3 + 0.mod4]

12

11 12 + 3.[((11 - 10)[mod3 + mod4])],
12 + 3.[1.mod3 + 1.mod4],
12 + 3.[1 + 1]

18

12 12 + 3.[((12 - 10)[mod3 + mod4])],
12 + 3.[2.mod3 + 2.mod4],
12 + 3.[2 + 2]

24

13 12 + 3.[((13-10)[mod3 + mod4])],
12 + 3.[3.mod3 + 3.mod4],
12 + 3.[0 + 3]

21

Table 11.7 Periodic function at second level of differentiation

Differential
(depth)
(exponent)

Sequence Variance

0 6 12 21 31 43 58 74 92 113 135 159 2668.85

1 6 9 10 12 15 16 18 21 22 24 36.23

2 3 1 2 3 1 2 3 1 2 0.75

3 - 2 1 1- 2 1 1- 2 1 1 2.41

K = 3 - > coefficient is required since all numbers must be divisible by 3. This
will generate the correct values from POSmin

So far the PERIODIC concept is at the surface but it could occur at the first or
second levels of differentiation. This is determined by selecting the row with the
minimum variance. For example Table 11.7:

In Table 11.7 we see that the minimum variance is at level 2.
It is also possible to extend the periodic sequence to (say) the third differential of

the series but no examples in IQ tests were ever found that conformed to that level
of complexity.

11.4.3 POLY

This function fits a polynomial function to a given sequence. The general formula
for such a function is:

F(x) = axn + bxn −1 + cxn −2 + . . . .. + dx2 + ex1 + f

The process for fitting this polynomial function to a sequence is normally called
regression analysis.
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Table 11.8 First stage of
sequence differentiation to
that of a constant number

Differential (depth)
(exponent)

Sequence

0 6 11 18 27 38 51 66 83 102 123

1 5 7 9 11 13 15 17 19 21

2 2 2 2 2 2 2 2 2

Example:

(6 11 18 27 38 51 66 83 102 123)

This sequence was originally generated by the function:

F(x) = x2 + 2x1 + 3

d/dx F(x) = 2x1 + 2

d2/dx F(x) = 2

Step 1. Differentiate the sequence until a constant difference is achieved (Table 11.8):
Step 2. The final differential (depth) gives the first exponent.
In this case it is x2.
Step 3. The coefficient for the first exponent is obtained by taking the ratio of the

final number, in this case 2, with the factorial of the exponent (also 2).

2/(1 ∗ 2) = 1

so the first term will be x2.
Step 4. For each element in the sequence its values will be:

1 4 9 16 25 36 49 64 81 100

Step 4. These values are subtracted from each element in the sequence. This is
because:

(x2 + 2x1 + 3) − x2 = 2x1 + 3

(6 − 1) (11 − 4) (18 − 9) (27 − 16) (38 − 25) (51 − 36) (66 − 49) (83 − 64)

(102 − 81) (123 − 100)

= 5 7 9 11 13 15 17 19 21 23

So this is the sequence for (2x1 + 3)
Step 6. The procedure is repeated for this next set of numbers (Table 11.9).
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Table 11.9 Second
differentiation stage to a
constant

Differential (depth)
(exponent)

Sequence

0 5 7 9 11 13 15 17 19 21

1 2 2 2 2 2 2 2 2

This gives exponent = 1 and coefficient = 2 for the second term.

(2/1) = 2

Step 7. Generating the next set of numbers using 2x we have:

2 4 6 8 10 12 14 16 18

Step 8. Subtracting 2x from these new first set of numbers.
This because the sequence is (2x + 3) − 2x = 3

(5 − 2) (7 − 4) (9 − 6) (11 − 8) (13 − 10) (15 − 12) (17 − 14) (19 − 16) (21 − 18)

= 3 3 3 3 3 3 3 3 3

Step 9. This gives the final term 3 at depth 0 so we have:

F(x) = x2 + 2x1 + 3x0

which may be rewritten in a more normal form as

F(x) = x2 + 2x + 3

And is the original generating function abstracted from the sequence.

11.4.4 PRIME

This function generates sequences using the prime number sequence as its source.
The sequence generated can take on the general form as fir INTER:

Si = Ai
∗ Primefi

i + ki

The basic sequences are generated from the Prime number sequence:

2 3 5 7 11 13 17 19 23 29 . . . . . . . . .

A simple example is the square of the prime numbers:

4 9 25 49 121 168 287 361 529 841

So you could have twice prime squared plus a constant. Such a complex form as this
is unlikely in normal intelligence tests.
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11.4.5 FACTORIAL

This is similar to PRIME except the generating sequence is now factorial. Factorial
is shown by the symbol ‘!’. The factorial of 0 is represented as 0! defined as having
the value of 1. 1! is also1. 2! is 1 * 2 = 2, and 3! = 2! * 3. So in general we can say:

n! = (n − 1)! ∗ n

where n is any integer. So the first ten, starting at 0!, factorials are:

1 1 2 6 24 120 720 5040 40320 362880

so the sequence of the squares of factorial would appear as:

1 1 4 36 576 14400 518400

Like PRIME it can have, in principle, a coefficient, exponent and offset that can also
be functions.

The next Chap. 12 will use these functions to identify for a given numerical
sequence the most likely concepts to apply.
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Chapter 12
Implementing Intelligence

Routine, in an intelligent man, is a sign of ambition.

W. H. Auden,
(1958, ‘The life of That-There Poet’)

12.1 Features of Intelligence

I have specified in Chap. 11 the different concepts as defined by Zakaria (1994) in his
thesis which characterize sequence types. However, this does not help in identifying
what concept should be tried when given an IQ test sequence. For this it is required
to identify features of sequences and associate them with the range of generating
concepts. The problem is that the features assigned can apply to more than one
concept. This issue can be readdressed as a form of pattern recognition in which
the pattern of features will identify the most likely concept to apply to a particular
sequence.

The problem of inferring a concept from a sequence of numbers is very similar
to identifying a hypothesis from experimental observations, as described in Chap. 6.
Here we found that the running confidence test is an important choice in a learning
mechanism in that it can limit the amount of computation. When the degree of
confidence in a particular hypothesis reaches a certain low level then the computation
on that hypotheses will stop. The remaining hypotheses are further examined until
there is a winner; then this hypothesis is put forward. This avoids having to perform
deduction on all potential hypotheses. In addition it is this mechanism that provides
part of the tension between the three inference mechanisms through an exchange of
information on how well the competing hypotheses fit their respective criterion.

The abstraction of features from the facts gives rise to the formation of a hypothesis
generated from one of the several predefined concepts. The abstracted features are
a computationally simple test made on the data that will give some indication of the
underlying series generator. A simple Bayesian decision-making system is then used
to select the concept to be deployed in the hypotheses generator (see Chap. 6). The
selection is either made under a simple pre-learning stage or learning as combined
in a running window system. The learning that leads to a final choice of a concept
depends not only upon the features that go towards the generation of the hypotheses
but also upon a different set of features that show the general characteristics of, in
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Table 12.1 The four features (Features type 1) associated with a number sequence

Feature Meaning, Example

F1 The sequence is either monotonically increasing or decreasing,
1 2 3 4 5 6 7

F2 All the numbers in the sequence have the same parity,
2 4 6 8

F3 The parity of the numbers in the sequence alternate,
1 2 3 4 5 6 7

F4 The size of each number in the sequence is either monotonically increasing or
decreasing,
1 10 100 1000 10000

this case, a numerical sequence. The concepts are the target classes of a Bayesian
learning mechanism for which this specific set of features provides information. The
four features of a sequence are shown in Table 12.1 below.

Information about the prediction of a hypothesis is deduced and provides feedback
to the retroduction process to refine and improve the hypothesis if there is a need for
it. This result also serves as a framework for inductive testing. The consequence of
induction causes further retroduction. The interaction of the three types of inference
suggests why, while it is possible to generate a large number of hypotheses for given
observable facts, people tend to generate and accept the first valid hypothesis that
satisfies their preconceived criteria (Wason and Johnson-Laird 1968).

12.2 Implementation of Intelligence

The role of the controller, as shown in Fig. 12.1, is to monitor the progress of
the creation, the prediction and the validation of hypotheses. It also keeps track of
whether a hypothesis was successfully generated and validated during each cycle.

The ovals describe the main mechanism, the clear boxes indicate ordered lists
of concepts, etc., and the shaded boxes give the information and its structure to be
processed by the main mechanism. The ‘thick’ arrows pick out the main processing
cycle.

The controller governs the process that assesses the relative confidence for the
hypothesis generated by each concept. In one set of tests extending the original
simple Bayesian learning into a ‘running’ Bayesian learning system generates the
confidence. The controller feeds a portion of the number sequence to the retroduction
by taking a sample of the extended sequence. This is achieved by partitioning the
sequence into “windows” and each “window” will be subjected to retroduction at
each cycle. Figure 12.2 shows two methods (A and B) of using a running window.
A window (wx) is a ‘running’ sample of a sequence. If X1 to Xm is a sequence, then
“windows” for X (size n) are generated as:
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Fig. 12.1 The overall system
Retroduction

Induction Deduction

Concepts

HeuristicCriteria

Abstraction

Features

Controller
Rank

Hypotheses

Acceptability

Frame

Result

Fig. 12.2 Running
probabilities ‘with’ (a Direct
learning) and ‘without’ (b
Window learning) event
memory

{ (X0, X1, X2, ...., Xn)

(X1, X2 X3, ...., Xn+1),

(X2, X3, X4, ...., Xn+2)

...

(Xn−m, Xn−m+1, ....,Xm)}
A running probability matrix (see b in Fig. 12.2) is used to trace the occurrences of
successful hypothesis. A function to update the running probability matrix is given by
Addis (1985, p. 260) and is also used for belief adjustment as described in Chap. 11.
So we have:

nP(H)t = (n-1) P(H)t-1 + α
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Fig. 12.3 The effectiveness of flexibility on the influence of past events on current belief

Where
α = 1 if H occurs at time t or 0 otherwise
P(H)t is the estimate of the probability of an occurrence of H at time t
n is the window size
1/n is flexibility
The probability P(H) is calculated from the initial probability. The success or

failure of a prediction by a hypothesis for each window is used to dynamically rank
concepts. The influence on any decision is derived from the accumulated evidence.
The effect of the evidence is reduced in time (Fig. 12.3)

The abstraction of features is fixed and predefined. The two sets of features are
orientated towards either determining the concept that might best fits the facts—the
set called Features type 1 (see Table 12.1) or in providing the concepts data (e.g. the
number sequence) to generate a specific hypothesis suitable for prediction—the set
called Features type 2 (see Table 11.2 and in Chap. 11, Table 12.2). The position of
the two sets of features in the system is shown in Fig. 12.4

It is the first abstraction (Features type 1), which is the initial abstract set of
features we discussed earlier. The purpose of this abstraction is to identify a list of
features F1 to F4 (Table 12.2) from a window, wx, provided by the controller. The
drawn feature list is used to rank concepts from which a hypothesis will be generated
to account for the sub-sequence in the current window wx.

The second abstraction (Features 2), the drawing of the number sequence to serve
as the concept data, is done manually. The number sequence together with the ranked
concepts (see Table 12.2) will be used by the retroductive mechanism to generate
a suitable hypothesis for the sequence. The probability of this hypothesis having
Feature 2 will then be updated to reflect past experience of a successful matching
between hypothesis and features.
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Table 12.2 Probability density table for features type 1

Concept 
(Probablity)

F1 F2 F3 F4 

Inter
(0.48) 

0.35 0.41 0.37 0.00

Periodic 
(0.42) 

0.30 0.27 0.30 0.00

Poly 
(0.07) 

0.29 0.24 0.33 0.00

Prime
(0.02) 

0.03 0.03 0.00 0.00

Factorial 
(0.01) 

0.04 0.05 0.00 1.00

Fig. 12.4 Learning concepts
using features

Retroduction

Controller

Concepts

Abstraction

Features 1 Features 2

Rank

Learning

Result

Result

The initial probabilities of each hypothesis are either fixed to make each equally
probable or are calculated from a training set by using a trainer. The trainer keeps
past classifications of hypotheses and its features with its probability value in two
tables. These are:

• A probability density-table to keep track of the history of occurrences of a
hypothesis with the features of a sequence that produce such hypothesis,

• A running probability table to keep records of occurrences of each hypothesis.

Bayes rule provides the underlying mechanism for our classification. Both tables
have to be ‘trained’ using a training set to establish their probability values. The
effect of training is to accumulate experience and use them to “recognize” variations
to be used for our classification of hypotheses. Training data was provided from
standard IQ tests set by Eysenck (1974a, b). This data gives sequences from where
actual hypotheses and features were extracted and used as input for the training
session. Using these training patterns, we update the two probability density-table
using the rule
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p(Fj|Ci) p(Ci)

P(Ci|Fj) = − − − − − − − − − − − − − − − − −
p(Fj)

where

p(Fj) =
n∑

i=1

p(Fj|Ci) P(Ci)

Ci is concept i
Fj is feature j
Ci|Fj is concept i given feature j
Fj|Ci is feature j given concept i
p() is an a priori probability function
P() is an a posteriori probability function

Once training is done, we should have two stabilize tables to be used to guide
retroduction to select a concept from which a hypothesis can be constructed.

Each feature, Fj, in the list provided by a window wx will be used to calculate
an a posteriori probability of the concept,Ci, using the Bayesian rule. The a priori
probabilities p(Fj|Ci) and p(Ci) are obtained from the probability density-table given
by the initial training (Table 12.2). The calculated a posteriori probabilities, P(C|F),
are used to calculate ranking weight, Ri, for every concept Ci using

Ri=
|F L|∑

j=1

logP( FLj

∣∣Cj)logP(Ci)

where FL is the feature-list and |FL| is the cardinality of the list, i.e. how many
features are in the list.

This ranking function Ri is actually a variation of Shannon’s entropy (Information
Theory). The concepts are ranked according to their relative entropy. The concept
Ci with the highest relative entropy value with respect to the range of features FLj

will be the most likely candidate to produce a correct hypothesis. The reason for
this is that the features that contain the most information about the link between an
observed sequence and the associated concept, are those that change the most with
a change of concept. If it fails, the next highest ranking will be used.

12.2.1 The Deductive Process

The deductive process begins with an abduced hypothesis and prepares it for inductive
testing. The deductive process draws consequences from the abduced function (i.e.
prediction, size of representation, etc.) in preparation for the inductive testing. All this
information is packaged and passed on as a frame. A frame is a set of predefined infor-
mation requests that provide the information to fill the fields in a pre-set empty form.
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12.2.2 The Inductive Process

The inductive process is the qualitative assessment of the abduced hypothesis set
against pre-defined criteria (Chap. 11, Table 11.1). These criteria are primarily
concerned with determining whether the hypothesis is simple enough to warrant
acceptance. The set of criteria employed for this validation are the obvious features
such as size of representation (it must be within a certain threshold value), param-
eters should be rational, the level of differential depth should not exceed a certain
limit, etc. The criteria selection for assessing the abduced hypothesis is governed by
the inverse of learning employed in retroduction. We employed a probability density
table (as in retroduction) to keep track of the history of selection of criteria for each
hypothesis and a criteria probability table to keep records of occurrences of criteria.
The rule for updating the probability density table is similar to P(Ci|Fj) above:

P(Cri|Hj)=
p(Hj|Cri) P(Cri)

P(Hj)

where

p(Hj)=
n∑

i=1

p(Crj|Hi) P(Hi)

The calculated a posteriori probabilities of each criteria in the density table, P(Cr|H),
are used to calculate the determinant of the criteria D(Cri) for the abduced hypothesis
using:

D(Cri)=
n∑

j=1

log P(Cri|Hj) log P(Hj)

All non-zero D(Cri) are taken to be the criteria to be assessed. If an abduced hypothesis
matches all these criteria, it is an acceptable hypothesis. Otherwise, the retroductive
process takes control and creates a new hypothesis as a function of the next concept
in the ranking.

12.3 Feedback Assessment

Before the actually inductive assessment is carried out, there is a feedback assessment
carried out. Feedback assessment looks for “irregularities” in the abduced hypothesis.
These “irregularities” are used to refined a hypothesis to fit important criteria of
acceptability. For example, given a function:

f(x) = x4 − 16x3 + 96x2 − 256x + 256

from a sequence (256 81 16 1 0 1 16 81 256. . . .), the deductive process will detect
that the retroduced function consists of fairly large numbers. The criteria indicate
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that the sequence should not be generated from a function starting from an index 0
or 1. Two features of the hypothesis (i.e. coefficients and the largest exponent) give
a clue that the sequence may be generated from a function starting with index 4 or
− 4. The alternating sign (+ and −) suggest that the most likely index is − 4. This
information is returned to the retroduction so it can be used in refining the hypothesis.

If no such refinement is necessary, criteria assessment will be carried out.
If the factual information is exhausted before a suitable hypothesis reaches a

stage of confidence or has achieved a satisfactory pass of the criteria, a second stage
of hypothesis generation is begun. Under these conditions, it is assumed that the
facts are generated (can be explained) by more than one hypothesis. There is a set of
strategies based on symmetry that attempts to examine sub-sequences. The controller
breaks the main sequence apart into sub-sequences (e.g. taking alternate values as
two independent sequences) where each subsequence will be subjected to the same
rigorous process of creation and validation.

12.4 Experiments and Discussion

We carried out two sets of experiments to test the model (see Fig. 12.5 and also
Chap. 2, Fig. 2.10). The purpose in the first set of the two experiments is to test intel-
ligence using Direct Learning (DL1, DL2). The ‘D’ indicates that all the information
in a series is used, thus every given number in a test sequence is considered. This is
similar to ‘A’ Fig. 12.2 except that every example is given from the beginning. The
‘1’ will indicate that no previous learning is done on other training sets whereas the
‘2’ shows previous learning on example series have been done before the final test
sequence is given.

The alternative learning method is to use Window Learning (WL1, WL2), or
running probability, as described in Chap. 11 and shown as ‘b’ in Fig. 12.5. In order
to see clearly the behavior of the running probabilities, all hypotheses were processed
at all stages through a numeric sequence. Thus the model would attempt to work out
each next number in the given test sequence using each potential concept shown in
Chap. 11, Table 11.2. The best one of the competing beliefs is chosen to formulate
and present as an answer.

In the first experiment 1 of the first set DL, the probability of the likelihood of
each concept was set initially to 0.2 (all of five potential concepts shown in Fig. 11.2
have an equal chance of being selected). In the second experiment ‘2’ of this first set
DL, the model was initially trained by using 85 sequences obtained from Eysenck
(1974a, b) as the training set. The role of this initial training is to bias each concept
towards the expected normal distribution implied by Eysenck’s collection of test
sequences.

In the second experiment, the running conditional probabilities WL1 and WL2
were calculated for each initial condition and the results obtained are shown in the
graphs (see ‘b’ in Fig. 12.2)
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Fig. 12.5 The results of running the model with all the information in a given series DL1 and 2 as
shown in a or limited to a window WL1 and 2 as shown in b Fig. 12.2

The running probability (i.e. y-axis) is the weighted average of four examples of
a test sequence using a window size of seven. The selection of window size seven
was made after running the model for various window sizes. We found that for our
examples, seven was the optimal number for any significant differences to be detected
in the values of the running probability. However, we must stress that seven is not an
ideal number for all sizes of window. Different samples may need to be smaller or
bigger in order for a change in the values of running probabilities to be significant.
Note here that Eysenck only used an average of four numbers in his sequences for
IQ tests.

The behavior of the system is shown by the graphs. This graphs indicate a sim-
ilar trend for both experiments. The generating hypothesis shows an increase in its
probabilistic values over time while others tend to collapse or be unstable. There
are instances where two hypotheses are competing against each other where both
their conditional probability values are on the increase. This phenomenon suggests
that both hypotheses are actually two different manifestation of the same thing. For
example, some polynomial functions can be represented as a periodic functions and
vice-versa.

The results showed that the running conditional probability has the potential for
limiting the exploration for a hypothesis. As we continue to assess a sequence, the
probability value of some concepts increases while others decreases. A consistent
decrease in probability value indicate that a particular concept should be abandoned
from further consideration.
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Table 12.3 Valid hypotheses per iteration

Number of valid hypotheses

Without learning With learning

Iteration Formed Matched Formed Matched

1 41 20 42 40

2 21 21 24 22

3 7 7 3 3

4 1 1 0 0

5 0 0 1 1

By training the system prior to running, the probabilistic values of the generating
hypothesis tends to increase more rapidly compared to its non-training counterpart.
This provides vital information on how to resolve the problem of two hypotheses
competing against one another.

If we have two competing hypotheses (say A and B) and if A increases at a greater
rate compared to B, then A is the most likely hypothesis. It doesn’t matter if A has
a lower probabilistic value since its rate of change will cause it to close its gap on B
and eventually will surpass B at some point.

However, it is important to note that since both A and B are competing against one
another, they are really two representations or manifestations of the same thing. The
behavior provided by the trained system merely pinpoints the generating hypothesis
based on experience and the criteria for validation.

Another result is that the generating hypothesis tends to be more stable than
related hypotheses. For example, the trained system where the intended hypothesis
is a factorial, we noticed that the behavior of the factorial hypothesis is stable.
However, there are two other hypotheses where their behavior fluctuates. This would
suggest that the inappropriate hypotheses are either unstable or their confidence level
decrease over time.

The second set of experiments shows the difference between a system with no
learning and one with learning. The table below gives the results of running the system
for 85 samples. The first experiment performs a running assessment calculated on
each sequence and the running probability obtained together with the probability
values in the density-table used to rank concepts. In both cases, the system managed
to generate hypotheses for 70 out of the 85 samples (Table 12.3).

We ran two experiments on each sample. In the first, we did not employ any
training and learning at all. A predefined ranking of concepts was used and the
system merely traversed the list to build a hypothesis. The iteration is the number
of times it has to traverse the list before a hypothesis was successfully found. The
result shows that it manages to build hypothesis from the first concept in the list for
41 samples, 21 samples have their hypotheses constructed from the second concept,
etc. However, the result also shows a disappointing 20 out of 41 hypotheses actually
matched with the intended (generating) hypothesis.



12.5 Conclusion 163

Table 12.4 Used reason types and their formal limitations

Intelligence function Characteristic

Abstraction Closed, predefined features, two levels

Retroduction Closed, predefined concepts, infinite and uncountable

Deduction Closed, predefined heuristic

Induction Closed, predefined single criteria

By employing learning and training to create a ranking of hypotheses (a ranking
list), we can see a high percentage of successfully formed hypotheses that matched
the intended hypotheses. This goes to show that learning and training can improve
the intelligence by providing better or more appropriate hypotheses. Learning does
not increase the ability to solve harder problems and hence the IQ value of the system
remains the same.

In both cases, the system managed to find hypotheses for 70 of the samples. The
other 15 samples cannot be fitted into any of the concepts employed.

12.5 Conclusion

What kind of intelligence are we implementing in our sequence recognition? We cat-
egorized that intelligence in the manner described in Sect. 2 as follows (Table 12.4):

12.5.1 Intelligence Quality Specification

Since all intelligence functions in this model are closed and predefined, the potential
for a sensible response to a generation of a new domain and new concept is zero. This
is an example of a ‘closed’ inferential system. There is no new insights (concepts)
created here. What actually occurs is that hypotheses are built as a function of a
quantitative concept selected from a list of predefined concepts. Once a concept is
selected, its generator will derive all of its parameters. Induction will then evaluate
the viability of that hypothesis against a predefined criteria.

It is important to note that the employment of multiple concepts only improves
the range of intelligence; it does not improve the quality of intelligence. The more
concepts being employed, the more choices we can have to build our hypotheses. The
choice of concepts to build a hypothesis is based on Bayesian statistics. No doubt there
are other techniques that may be used for the classification of concepts. However,
the best technique should be based on sound statistical techniques. Bayesian is well
known for being the most comprehensive and widely used technique. The attraction
of Bayesian technique can be seen from its simplistic rule:
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If we have no current observations to draw upon, then we must make all of our judgments
from previous experience. If we have both previous experience and current perceptions based
upon observational data, our judgment must be based on both.

The human decision making model that was devised based on IQ tests looks very
promising. IQ tests present, not all, but some facts, and there are many possible
solutions to the problem presented. We are required to make the best and most
practical judgment. We first start by looking at the features of the facts. By extracting
the features of the facts given, we should be able to pinpoint to the right class of
hypothesis as our best judgment based on previous experience. The problem remains
of extracting only the right set of features, since they help us tune into the right
hypothesis.

Having put forward the right hypothesis to account for the facts given, we proceed
to assess the hypothesis against a purpose. Since the criteria for IQ is simplicity, the
nature of the hypothesis should help us to select the ‘correct’ criteria of simplicity
that will then be evaluated to determine the acceptability of a given hypothesis.

Since IQ tests reflect how human judgments are made given limited facts, then
the framework of feature-extraction and criteria-selection technique that closely re-
semble pattern recognition techniques is a good candidate for human intelligence. I
make no claim that this approach is the model of human intelligence. However, in the
absence of a standard technique of human decision-making process, this approach
using the solving of IQ tests seems to give acceptable results.

One of the attractions of the taxonomic approach is the symmetrical nature of the
model produced. The reverse process of ranking and selecting concepts for retroduc-
tion is employed in the selection of criteria for induction to create an equilibrium.
Each of these may employ learning as described in Chap. 11.

Hypotheses are used to make predictions and in our case, to predict the next
number of a given sequence. We ran our model against 85 samples taken from
Eysenck (1974a, b). He also provided a graph to determine IQ value. Interpreting
the results in terms of such scoring system, our system has an IQ ranging between
132 and 143 points depending on learning technique engaged.
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Chapter 13
Figuratively Speaking

A man’s life of any worth is a continual allegory—and very few
eyes can see the mystery of his life—a life like the
scriptures—figurative.

J. Keats letter to G. and G. Keats,
(14th February–3rd May 1819)

13.1 The Problem with Reference

Dr. David Billinge, a Computer Science lecturer at Portsmouth University, gives
regular pre-concert lectures at the local Guildhall. His interest in music and language
raised the question of how the communication of the emotional content of music
can be justified using referential semantics. This was particularly puzzling because
emotions do not have any externally shared reference points. This apparent lack of
external references for emotion raises the interesting primary question, “How can
the semantics of emotion ever be established?”

I will describe in this chapter, drawn from David Billinge’s work, our initial
hypothesis into the potential consistency of a response to music by two or more
people and explain why we view these responses as private and knowable only by
the respondent. Despite this, people do discuss music and so David and I adopted
a position that people communicate using ‘tropic’ or figurative language. But why
would a figurative language help?

We developed a model of the discourse based upon our initial hypothesis as well
as a simple diagrammatic language that people can use to talk about music and its
emotional content. A functional model evolved from these diagrams, and a working
model in a schematic programming language was constructed. With this model we
can show that some kind of communication is possible, in principle, with private
referencing. One conclusion is that such private referencing could be an underlying
mechanism for other creative acts.

The basic question we are exploring here is, ‘Is it possible for people to have a
mutually consistent response to the world given only internal and private references?’
This chapter describes the conceptual and computer model we constructed that shows
that communication is possible with such a virtual referencing semantics.

The above question arose from our work in trying to analyse the nature of people’s
descriptions of musical effect. The original purpose of this analysis was to find a set
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of emotionally descriptive keywords that could be used in order to build an artistic
decision support system. Such a system would enable a concert planner to construct
a musical program that would provide a defined and structured emotional content.
For this we needed to find out how people talked about music. In particular we were
interested in the experienced and enthusiastic concertgoers. We discovered from the
observation of the language people used while they discussed music under controlled
conditions that there seemed to be no consistent way in which words were employed
to describe music. It was only when we considered metaphor that we could make
sense of what we had observed. In particular, we noted that speakers used metaphor
creatively and it was because of this that an inconsistency was observed. The question
then arose as to why people found it necessary to use metaphor. We concluded that it
was because the descriptions were about personal feelings. Since feelings are private,
the accepted external referential mechanism of language cannot take effect.

People routinely have such conversations not only about art but also about many
other subjective views of the world and yet they still believe they are communicating
successfully to others. David and I saw the act of communicating musical experience
as a microcosm of this much larger issue. The issue of how people manage to converse
when so often they appear, from a referential point of view, not to be saying what
they mean.

It is essential to point out what we are not researching. We are not trying to show
what music means, (if indeed that is a real problem at all), and we do not believe
that people need to agree on artistic descriptions as they would need to agree on
descriptions of, say, poisonous mushrooms in the forest. Meyer (1956, 1967, 1973),
Cooke (1959) and many others gave extensive consideration to these issues (see
Billinge 2001 for a full account). What we are trying to show is how people can
communicate figuratively, and for that we do need to establish that some common
understanding of a language exists.

13.2 Tropic Communication

It is the view of some linguists that our natural language does not function as
a computer language with defined terms and unambiguous reference (Lakoff and
Johnson 1980). Our language is overwhelmingly figurative; it is ‘tropic’ communi-
cation. A trope is a figure of speech such as metaphor; a type of analogy, metonymy
(meaning by association) or synecdoche (meaning by relating to a sub- or super-set).
If this is the case, and if we also wish to build machines that work within the same
paradigm as people so that emotion can be communicated, then such tropic com-
munication must be understood. However, the process behind such communication
seems to depend upon the construction of descriptions from purely internal reference
points; namely primary emotions or emotional-archetypical situations. How such a
system can work is puzzling, but one way of understanding and exploring the process
is to build a computer model.
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Fig. 13.1 Venn diagram of the emotional landscapes for actors A and B and the effect of two
metaphors

13.3 The Conceptual Model

A model that has many of the properties we are looking for and that seems to support
the creative construction of metaphorical descriptions of musical effect is ‘conceptual
blending’. Conceptual blending (Fauconnier and Turner 2002) suggests a way in
which different situations (such as given by mixed or simultaneous metaphors) can
be brought together to form new perceptions of the world. As with metaphor such
perceptions can then be used to infer consequences and thus possible action.

In order to ensure that conceptual blending fulfils the role of describing tropic
communication we need to review our initial observations (Billinge 2001; Billinge
andAddis 2001, 2002), drawn from the field of musical literature and critical reviews.

The Venn diagram summarises these results (see Fig. 13.1). It is also an indica-
tion of the process as we saw it at the time but in a way that leaves too much to the
imagination. The diagram is essentially static and does not show all the necessary
dynamics of creating descriptions through hidden and private references. What we
needed to show was that the internal referencing was a possible basis for commu-
nication and that it could be stable. We had to determine the strategies needed for
it to work and to show the underlying assumptions required. Only then could we
consider designing some kind of experiment that would support or reject our initial
proposal that internal referencing could be possible as a basis for communication.
Such communication could then be used as means of retrieval of music effects from a
database of music. This database would then form the basis of a music-programming
aide; an expert system for artistic program designers.
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13.4 The Functional Model

13.4.1 Background

In an attempt to address these issues and to detail the process, we created a functional
computer model of a proposed internal referencing process. This, we hoped, should
lead to a comparatively simple version of a conceptual blending model. It is a dynamic
model, which demonstrates the mutually adaptive internal processes that allow tropic
communication to work. We expected to use this model to revisit our observations
and then create new controlled experiments to find evidence for the model. In the
light of this evidence we then expected to refine the model or create a new one.

As a starting point in this investigation, a text by a music critic was chosen from a
music magazine. This text is typical and it is intended to communicate the emotional
effect of a piece of music.1

(X’s) refreshingly iconoclastic insert notes insist that this performance of the Brahms’Second
reveals an ’intrinsic unease’stemming from Horowitz’s ’temperamental mismatch’with both
Toscanini and the work itself. That may be true but whatever contentiousness clouded the
recording session, the heat of the occasion forged it into an interpretative virtue. The result is
one of the most arresting recordings of this warhorse ever made. Granted, it’s controversial.
This is not the place to seek out the succulence of Brahms’s harmonies (passages that are
poignant in other hands sound nervously expectant here) or the sweetness of his melodies
(calls for dolce and espressivo are rebuffed even in the third movement). Rather, Horowitz and
Toscanini deploy every available tool to scratch out any signs of tenderness from this normally
bighearted score: barbed attacks, gaunt tone, angular phrasing, contestatory treatment of
accompaniments, urgent tempos, highly strung rhythms (dotted figures have a special edge).
The climaxes erupt with an unaccustomed violence; and while the finale is notable for its
leggiero, it’s the lethal lightness of a well-aimed stiletto. It is, in other words, far from
easy listening. But despite a few moments of scramble, the performance has such ferocious
commitment that it’s hard to resist. If the stately account of the Tchaikovsky sounds less
heterodox, that’s largely because, in my view, the work is more overtly dramatic to begin
with. Still, even here, the music is pushed to extremes. Every single bar crackles with tension
and Horowitz and Toscanini forgo the music’s lyricism in order to wring every possible thrill
from the score. It is, without doubt, a cruel sacrifice; but once again, the reading is so
electrifying that you’re compelled to go along with it.2

On the surface this is a set of undefined, maybe poetic, words. This is especially
problematic if seen, as we did in our initial experiments, as a source for a discrete
lexicon. However if we inspect the text for metaphors a different view emerges.
The metaphors may also be considered the medium for transmission of the musical
experience.

The author of the example critical comment sets the stage with a statement of the
stance he takes and intends to convey.

1 A more detailed account of this work was presented by the authors at the ECAI’02 conference in
Lyons, France in August 2002. See Billinge and Addis (2002).
2 From International Record Review, Vol 3 Issue 5 August 2002: ISSN 1468–5027 p.27.
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X’s refreshingly iconoclastic insert notes insist that this performance of the Brahms’ Second
reveals an ‘intrinsic unease’ stemming from Horowitz’s ‘emperamental mismatch’ with both
Toscanini and the work itself.

The way he reinforces this message is to write in terms of conflict, violence and
tension whilst using harmoniousness as a foil. It would be inappropriate to go into
this in overmuch detail so a few examples must suffice. The text is full of conflict
metaphors:

Iconoclastic insert notes . . . contentiousness clouded the recording session . . . one of the
most arresting recordings of this . . . it’s controversial . . . calls for dolce and espressivo are
rebuffed . . . deploy every available tool to scratch out any signs of tenderness . . . barbed
attacks . . . gaunt tone . . . contestatory treatment of accompaniments . . . lethal lightness of
a well-aimed stiletto . . . you’re compelled to go along . . .

And at the other end of the emotional scale it has a significant number of metaphors
of harmony and pleasure:

the succulence of Brahms’s harmonies (passages that are poignant in other hands) . . . the
sweetness of his melodies . . . signs of tenderness from this normally bighearted score . . .

the music’s lyricism . . .

These examples are typical of the written genre and indeed of the spoken discourse.
Modelling this must involve simplification thus we chose to work in terms of mes-
sages being conveyed between exclusive private worlds where the only common
factor is the source of the experience and its comparators.

13.5 The Initial Model

We wanted to show how the reactions of an Actor B to a piece of music, as perceived
by Actor A, might be quantified to enable processing into an internal model of B held
by A. Such a process will involve a form of negotiation and learning that requires the
use of tropic communication by both Actors. It should be noted that the weightings
we apply are not seen as ‘real’ mental artefacts that exist within the human brain
(although they might). Any measures we use are simply convenient representations
of emotional intensity within the computational model.

We start by describing how the processes are modelled.
Figure 13.2 will illustrate the situation. This diagram shows an external world

in the central rectangle that consists of six metaphors for artistic objects, in this
case musical performances (events) of pieces (objects) called Triangle Music, Circle
Music etc.

In this world Actors A and B listen to Triangle Music and then A modifies its3

internal interpretation of Actor B
′
s description from its own perception of the music.

3 The English term ‘his’, as is the traditional syntactic convention, could have been used here
where it is considered gender neutral. However I have used ‘it’ since an actor in this context is a
programmed artifact.
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Fig. 13.2 Tropic
communication using internal
views

It is postulated that Actor A’s and Actor B’s internal emotional reactions to this
external stimulus differ. The different shapes within the hard circle associated with
each actor are intended to represent this difference. We use a simple model that will
illustrate how discussion will lead inevitably to the kind of differences of opinion
commonly experienced by those discussing art works. We assume B provides a
figurative description in which its (B’s) differing perception of the effect of Triangle
Music is conveyed to Actor A. This will, in turn, adjust A’s model of B’s perception.

The process is now traced in more detail. As noted, the series of shapes in the
central oblong represent different pieces of music experienced by both A and B.
They can therefore describe their respective reactions to the first of these, Triangle
Music, by comparing the effect of Triangle Music with the effect of Circle Music,
Square Music, and so on. This use of comparative reference is what we take to be
characteristic of figurative discourse. A’s initial emotional reaction to Triangle Music
is represented by a heart shape, B’s by a star. This implies that both Actors have their
own individual responses. In conversation B describes toA how it feels about Triangle
Music. As a result of this explanation, A begins to build an internal representation
of what it believes to be B’s emotional reaction: this is shown in Fig. 13.2 by the
soft circle B1. A can never know exactly what reaction has taken place in B’s mind
because we cannot describe our emotional states directly, only indirectly via the use
of what we have described as “Tropic Communication”, the use of metaphor, simile
and other tropes; a figurative language. The inevitable result of this tropic description
is that A’s picture of what is in B’s mind is inaccurate, thus B1 is shown containing a
polygon only loosely similar to the star B is “actually” describing. The only means
B can use to describe its reaction to Triangle Music is by making statements like
“It was more dramatic than Circle Music”, or, “It was much less lively than Cross
Music”, and so on. We note that ‘dramatic’ and ‘lively’ are emotional dimensions
that are understood internally by each actor.
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In parallel with these inputs, A has to interpret B’s comments via its own emotional
reaction, which is a ‘heart’ reaction shown in Fig. 13.2. Further, when B draws a
comparison with Circle Music as above, A’s interpretation of the comparison not
only has to modify from the basis of a ‘heart’ effect, it also has to be modified using
A’s and not B’s, reaction to Circle Music. So when B says, “Triangle Music was
more dramatic than Circle Music”, A’s internal model B1 is modified by a statement
which could be stated like this.

B thinks that the dramatic impact of Triangle Music is more than the dramatic impact of
Circle Music so I must alter B1 to reflect how I perceive the dramatic nature of Circle Music
to make it more dramatic than my perception of Triangle Music.

A has no means whatever of directly observing what B thinks about anything. It has
to make a creative leap from state B1 to, perhaps, state B2, B3, and so on, until B
has finished drawing comparisons with all the available music know to them both.
What this model is intended to convey is not only the inaccuracy that must inevitably
follow from A trying to picture something it can never see, i.e. an image inside B’s
mind, but also show that there is a convergence of the internal models that results
from the accumulation of comparisons.

We aim to show how the feedback triggers adjustments of A’s emotional reaction
weightings and leads to its reassessing its categorisation of the basic emotional states
conveyed by its experience of the artistic event. With these states changed, Actor A
is obliged to rework its internal descriptions and adjust internal references so that
they are acceptable both to himself and to Actor B. This also suggests that without
some common external reference (the event) no change of their internal models can
take place. It also implies that the order of the description B is giving to A will be
important since every step in the description is relative to the adjusted made in the
previous steps.

13.6 The Abstracted Initial Model

The extended nature of the above description was reason enough for us to view the
further modelling of this interaction by, so far as we are able, refining it down to
the bare essentials. Figure 13.3 is still a diagrammatic representation but it provided
for us a means of resolving the various objects into numeric measures and program
labels.

In Fig. 13.3 the different music pieces are represented as P to S, the Actors as A
and B and the heavy arrow shows the potential for an indefinite number of additional
Actors C, D, E and so on. The lines represent one of many simplified single-emotional
reactions to Music P, Q, R and S. We call these lines ‘dimensions’ and they are
associated with each external object. For example the extent to which the music P
makesActorA happy (say) is shown by the position of the bisecting vertical line at ‘*’,
the horizontal line representing the continuum between totally-without-happiness on
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Fig. 13.3 Further abstracted model of tropic communication

the left and fully-happy to the right. Thus Music P makes A strongly happy, Music
Q makes A moderately happy and so on through R and S.

Actor B’s happiness quotient is similarly shown and we can see it is different for
Music R but quite similar for Music P. Thus when B tells A that Music P makes
him feel happier than does Music S, Actor A will interpret that declaration against
its (A’s) internal model of the happiness quotients it has attributed to Music P and
Music S. Since A finds P to be less-happy music than S it might well respond to
B by expressing surprised disagreement. B, who cannot be aware of A’s internal
ratings, will come back with a further comparison with which it hopes to clarify the
extent of Music P’s happiness in its estimation. It might respond, “OK, but surely
you find R happier than P.” It can be seen that this will not bring agreement since
A’s internal model still will not be able to support that belief, but it will enhance A’s
understanding of B’s vision of the world as it modifies its model of B’s vision in
repose to the discussion.

The use of continua to represent strength of emotion, and statements of sequence
to represent the tropic communications which are all that may pass between A and
B, allowed us to construct a functional model which would simulate the course of
an internal model change.

Adding the potential for an Actors C, D, E and so on, allows us to extend the
model to simulate another factor, the process by which A may choose with whom it
wants most to talk. If A converses with B and C, it will eventually find that one or the
other of the actors will tend towards a better agreement with its own assessments. In
future exchanges A may choose to take the views of C more seriously because they
agreed better with its own perceptions last time they talked. To account for this we
adopt the notion of belief (see Chap. 7 and Addis and Gooding 1999) as a weighting
of C’s (and others) views in A’s estimation. Tropic communication such as this takes
place in a social situation and it is our personal experience that such changes in social
bonding do, in fact, take place with people.
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13.7 The Basic Functional Model

The current model shows how actors negotiate an agreed internal emotional frame-
work that neither of them can observe directly. This serves in turn as a model of
how they also agree on choices of metaphor and other tropes, as well as creating a
figurative description that both accept as an adequate representation of their feelings.
We further show how the current model reflects these differing effects as numerical
weightings, and discuss the types of experiment that we can carry out to refine the
model.

I will now use a numeric identification instead of the alphabet to distinguish the
model from the above discussion. The starting point for Actors 1, 2 and 3 is they have
no musical experience, having attended no concerts. So we show them as having no
knowledge of what we describe above (Fig. 13.2) as Triangle Music, Circle Music,
Square Music, and so on. They have no means of communication about the effect
of these virtual compositions because they have no reference points. They cannot
describe reactions in terms of ‘more’ or ‘less’ happiness (for example) because
they have no happiness-concept concerning this music to begin with. The dimension
of experience chosen could be anything, love, hate, anger, happiness, like etc. We
choose the latter just by way of an example.

We show this state of affairs by rating an actor’s belief in the effect on others
within the chosen realm of a piece of music. Since belief must never exceed unity,
the maximum value of 1 is distributed evenly over a 7-part scale thus:

[0.143 |0.143| 0.143 |0.143| 0.143 |0.143| 0.143]

The choice of a 7-part scale will need an explanation because we refer to these
dimensions as continuous. We have adopted the notion of belief from Addis and
Gooding where it applies only to scientific hypotheses. A hypothesis is a discrete
object drawn from a set of competing hypotheses. In this case a value is treated as
an object drawn from an ordered set of distinct values. Because a centre value is
important, any odd number will suffice. 3 or 5 were rejected as too limited and 9,
11, 13 and beyond as unnecessarily complex for demonstration purposes. 7 can be
seen as a usable compromise. We use 0 to represent no (happiness) and 6 to represent
absolute (happiness). Only the actor itself knows this measure and for now we will
not pursue questions such as “how does it know?”

After experience of a single object our actors can only make absolute statements
like “Triangle Music makes me feel (happy) or (nothing)”, so communication be-
tween actors 1, 2 and 3 is limited to (happiness current), and (happiness absent).
Internally the object will have triggered a degree of (happiness) but it cannot be
expressed. In our model we will represent this personal experience as a belief of 1
for one of the seven positions on the continuum because “it knows what it likes”.

If we communicate with actor 4, who has never attended any concert, thenActor 1,
for example, could tellActor 4 that the music was of no consequence, or report that “it
should have the experience”. This level of effect is akin to Pierce’s ‘firstness’ where
there is no possibility of further description other than first hand experience. Actors 1,
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Fig. 13.4 Actor 2’s and 3’s
views of other’s view of
object 1
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Fig. 13.5 Actor 2’s and 3’s
views of other’s view of
object 2
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2 and 3 have experienced something they can graduate internally but cannot express,
but Actor 4 lacks the experience that even allows identification of the dimension.

The actors are now exposed to the second object, Circle Music. A similar process
of adaption takes place. Owing to the fact that Actors 1, 2 and 3 have one item
of prior experience they can now compare that emotional effect with the effect of
object two on an identified dimension. This gives them a better and a subtler means
of communication in that they can convey internal comparisons.

To represent the experience of attending a concert (event 1) we instruct our model
through queries. Note that all interactions are called “queries” in the schematic
functional programming language ‘Clarity’ from which the modal was constructed.
(See Drawing Programs, Tom & Jan Addis, pub Springer 2010. Also see Addis
and Townsend-Addis 1995, 1998, 2001, 2002. A free version of ‘Clarity’ is avail-
able at ‘www.clarity-support.co.uk’ including the belief system and other example
programs.)

QUERY > actor_only_concerts (no_query) #1
True
Each actor, knowing its own response to the objects, then modifies its initial neutral assess-
ment of others’ views. The function ‘show_views’ displays all actors’ perception of other
actors for all objects. For clarity we have graphed the results. Since this is the view of Actor
1 concerning the others we have also dropped its view for simplicity (Fig. 13.4, 13.5)
QUERY > show_views #1
True
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Fig. 13.6 Clarity function for
consulting and changing view

Fig. 13.7 Object 1 modified
by object 2 for actor 2
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All Actors initially assume, without any other knowledge, that all other Actors will
have the same view as themselves. The distribution of effects has now changed from
the base distribution of 0.143 and all the actors have an increased rating at one point
of the scale to a new value of 0.357. Since all of the seven positions on the scale still
have to total to unity, the remaining items dropped back to 0.107.

We now illustrate a single communicative exchange between actors 2 and 3 using
the function ‘consult_person’ shown in Fig. 13.6. Note that the parameters ‘actor 1’
and ‘actor 2’ in Fig. 13.6 are the first and the second actors. In this example these
parameters are filled with value ‘actors 2’ and ‘actors 3’ respectively.

Figure 13.6 shows two processes: ‘answer_query’ and ‘change_views’. In this
example Actor 2 asks Actor 3 “Is Object 2 of higher value than Object 1?” In
this case the response is “No”. This then triggers ‘change_view’ for Actor 2,
which is graphed in Fig. 13.7. The change can be seen in relationship to Actor
3’s view that remains unchanged since it has no information yet about actors 2’s
opinion.
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To be more specific, when Actor 2 asks Actor 3 if Circle music (object 2) is liked
better (more) than Triangle music (object 1), it gets the answer “No” (False). In
response, Actor 2 modifies its internal distribution of Triangle music (object 1) by
shifting its distribution of Circle music (object 2). It shifts it to be higher than the
current position, using it to modify its vision of Actor 3’s view of Triangle music
(object 1). Note that in Fig. 13.7 the happiness in Object 1 (Triangle music) is now
higher, in position 3, than shown in Fig. 13.3. This is because Object 2 (Circle music)
was high for Actor 2 in position 2, which is shifted right by one position. The extreme
left value for the modification was taken as zero.

In the functional language Actor 2 asks Actor 3 if object 2 is more (happiness)
than object 1 as follows:

QUERY > answer_query (more #2) #3 #1 #1 #1
False
The distribution of 2’s view of object 2 is shifted right. This distribution is used to modify
the distribution of 2’s view of Triangle music (object 1).
QUERY > query_update_actor #2 #3 (more #2) #1 #1 #1
True

If the result of ‘answer_query’ had been True then the shift would have been in
the opposite direction. Each Actor to the other can also ask queries using ‘same as’
instead of ‘more’.

The effect of modifying an Actor’s confidence concerning the views of others
about objects uses the same technique as in Chap. 6 and 11 (also see Addis and
Gooding 1999). This is reproduced here for convenience. The confidence of each of
the seven dimension values that make up theActor’s belief profile is Hh. A hypothesis
here means one of the seven (h ranges from 0–6) values on (say) a happiness dimen-
sion. All these values on that dimension will be modified according to the following
equation:

En(Hh) = (M −1).En−1(Hh) + En−1(Hh/R)

M

M ranges from 1 to infinity. The larger M, the smaller the effect any evidence has
on the change in confidence. We can thus define concept receptivity as follows. This
ranges from 0 to 1 for each agent as:

receptivity = 1/M

This reflects the influence of any consultation upon the consulting Actor.

∑
h
En (Hh) = 1

The value of En−1(Hh/R) in the En(Hh) equation will be 1 for the selected value and
0 otherwise. In this way the selected belief value will increase and the others will
reduce to compensate accordingly.

The value 0.25 was selected for receptivity. This choice needs some explanation.
To some extent it is arbitrary insofar as anything between 0 and 1 might be chosen.
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If a value close to zero is chosen then no change could effectively take place; if 1
were chosen there could only ever be an exchange of one viewpoint for another and
no negotiation of belief would be possible. We opted for 0.25 as the ‘experience’
unit because if a new ‘experience’ arrives to compete for the Actor’s attention it has
only to discard 0.25 of its current happiness. If we continue in a figurative vein by
suggesting that each new experience be mixed with those added before, we have a
situation for the gaining of experience-knowledge as follows. Actor X gains (say)
four experiences, red experience, blue experience, orange experience and purple
experience. These experiences together modify X’s view such that it only has to
discard 0.25 of the overall stock of experience to make way for the new experience.
Enough of all the previous experiences remain to count as useful learning. This is an
engineering type of decision rather than one that has any scientific or strictly logical
basis.

The number of discrete values along each dimension considered by an Actor can
vary. The confidence in a particular value is affected not only by experience and
queries but also by the number of values along a dimension available for considera-
tion. In our case we have only to consider seven along a single dimension. In order
to allow for a changing number of values we used the same idea that was originally
proposed by Addis and Gooding (1999) for belief (also see Chap. 6). Here we intro-
duced a dynamic threshold, the indifference value ‘I’. In this case the value ‘I’defines
those happiness values larger than which are to be actively considered as happy. ‘I’
represents the general normal happiness (contentment) of an individual actor instead
of a group confidence as in the belief model.

To calculate the indifference value ‘I’ a function is needed that will change
smoothly between limiting values. It should be easily calculable from any number
of different values along any particular dimension, in this case happiness. A quantity
that varies in time in this way is the inverse of entropy. Entropy is an expected measure
of the log of a range of values. This can be used as a general measure of an Actor’s
general happiness while listening to the music at time n. In the following equation
‘a’ and subscript ‘a’ is used to denote a particular Actor. This ‘Entropy(Agenta),’ is
called the general happiness measure for an actor ‘a’ in the Model Entropy, where
the term model denotes the set of values that makes up the Actor’s view of a piece
of music. Model Entropy is given by:

Entropyn(Agenta) = −
∑

Ha
En(Ha) ∗ Log2(En(Ha))

From this equation we can obtain an inverse of the entropy which gives an expected
value for En(Ha). This will be denoted by In(Ha). In(Ha) will be called an Indifference
Threshold for the actor ‘a’ at event ‘n’:

Indifference Threshold(a, n) = log2
−1(Entropyn (Agenta))

= In(Ha)

The expression En(Ha) is the expected probability of a dimension (happiness) value
for actor ‘a’at conversation moment ‘n’. The measure of a value En (Ha) above In(Ha)
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Fig. 13.8 The top level of the
functional model

is considered to be significant, that is to say, the actor is said to be ‘happy’or whatever
the emotional dimension is being measured.

13.8 A Commented Run of the Model

Figure 13.8 is the top level of the model in the Clarity schema. The sequence of
the program events goes clockwise from the output < list bool > of function ‘progN’
shown in the schema. So first a new line with function ‘nar_line’, then the text “Intital
State” followed by a new line is printed. Next the function ‘show_views’ is called
with a parameter marked as ‘scale’. The value of ‘scale’ is the last parameter of the
main function ‘actor_lives’ and so on (see Addis and Addis 2010).

Our initial trial of the model was run so that every actor was initialised as to be
indifferent to objects 1 and 2, where I = 0.143, about all values as follows:

Initial State

Actor 1
1[ 0.143 0.143 0.143 0.143 0.143 0.143 0.143 ] I = 0.143
2[ 0.143 0.143 0.143 0.143 0.143 0.143 0.143 ] I = 0.143
Actor 2
1[ 0.143 0.143 0.143 0.143 0.143 0.143 0.143 ] I = 0.143
2[ 0.143 0.143 0.143 0.143 0.143 0.143 0.143 ] I = 0.143
Actor 2
1[ 0.143 0.143 0.143 0.143 0.143 0.143 0.143 ] I = 0.143
2[ 0.143 0.143 0.143 0.143 0.143 0.143 0.143 ] I = 0.143

Each actor then has a single experience of two objects 1 and 2 (e.g. all attend a
concert with two pieces of music) and this modifies their neutral view with this
certain experience thus:
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13.9 The Single Experience

Actor 1
1[ 0.107 0.107 0.107 0.357 0.107 0.107 0.107 ] I = 0.165
2[ 0.357 0.107 0.107 0.107 0.107 0.107 0.107 ] I = 0.165
Actor 2
1[ 0.107 0.107 0.107 0.107 0.357 0.107 0.107 ] I = 0.165
2[ 0.107 0.107 0.357 0.107 0.107 0.107 0.107 ] I = 0.165
Actor 3
1[ 0.107 0.107 0.107 0.107 0.357 0.107 0.107 ] I = 0.165
2[ 0.107 0.107 0.107 0.357 0.107 0.107 0.107 ] I = 0.165

Without this experience, no changes or modifications are possible. So we, in ef-
fect seeded this experience in order to give the actors different evaluations of what
they heard. The values that have a belief greater than the indifference threshold are
highlighted.

Eight cycles of consultation take place where each Actor asks all other actors a
sequence of questions concerning their own experiences. The questions are formal-
ized as (more n) or (same n) where ‘n’ is the music reference (1 or 2). The replies are
used to modify each Actor’s own distribution of beliefs on some view of the group’s
opinions:

13.10 Consult

(more 1)
Actor 1
1[ 0.107 0.107 0.107 0.357 0.107 0.107 0.107 ] I 0.0.165
2[ 0.253 0.113 0.235 0.113 0.113 0.113 0.060 ] I ] 0.158
Actor 2
1[ 0.107 0.107 0.107 0.107 0.357 0.107 0.107 ] I 0.0.165
2[ 0.113 0.113 0.253 0.235 0.113 0.113 0.060 ] I ] 0.158
Actor 3
1[ 0.107 0.107 0.107 0.107 0.357 0.107 0.107 ] I 0.0.165
2[ 0.113 0.113 0.113 0.376 0.113 0.113 0.060 ] I ] 0.171
(more 2)
Actor 1
1[ 0.060 0.178 0.113 0.310 0.113 0.113 0.113 ] I 0.0.161
2[ 0.253 0.113 0.235 0.113 0.113 0.113 0.060 ] I ] 0.158
Actor 2
1[ 0.060 0.113 0.113 0.178 0.310 0.113 0.113 ] I 0.0.161
2[ 0.113 0.113 0.253 0.235 0.113 0.113 0.060 ] I ] 0.158
Actor 3
1[ 0.060 0.113 0.113 0.113 0.376 0.113 0.113 ] I 0.0.171
2[ 0.113 0.113 0.113 0.376 0.113 0.113 0.060 ] I ] 0.171
(same 1)
Actor 1
1[ 0.060 0.178 0.113 0.310 0.113 0.113 0.113 ] I 0.0.161
2[ 0.211 0.123 0.197 0.114 0.128 0.128 0.099 ] I ] 0.148
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Actor 2
1[ 0.060 0.113 0.113 0.178 0.310 0.113 0.113 ] I 0.0.161
2[ 0.132 0.128 0.207 0.192 0.114 0.128 0.099 ] I ] 0.148
Actor 3
1[ 0.060 0.113 0.113 0.113 0.376 0.113 0.113 ] I 0.0.171
2[ 0.132 0.128 0.128 0.276 0.109 0.128 0.099 ] I ] 0.152
(same 2)
Actor 1
1[ 0.091 0.164 0.122 0.239 0.127 0.127 0.129 ] I 0.0.149
2[ 0.211 0.123 0.197 0.114 0.128 0.128 0.099 ] I ] 0.148
Actor 2
1[ 0.097 0.127 0.121 0.159 0.239 0.127 0.129 ] I 0.0.149
2[ 0.132 0.128 0.207 0.192 0.114 0.128 0.099 ] I 0.0.148
Actor 3
1[ 0.097 0.127 0.127 0.116 0.276 0.127 0.129 ] I 0.0.152
2[ 0.132 0.128 0.128 0.276 0.109 0.128 0.099 ] I ] 0.152
In the final modification after seven more cycles we have:
Actor 1
1[ 0.089 0.167 0.131 0.198 0.136 0.138 0.142 ] I 0.0.146
2[ 0.180 0.132 0.191 0.126 0.138 0.139 0.094 ] I ] 0.146
Actor 2
1[ 0.093 0.139 0.133 0.160 0.198 0.136 0.142 ] I = 0.146
2[ 0.145 0.137 0.172 0.186 0.126 0.139 0.094 ] I ] 0.146
Actor 3
1[ 0.093 0.138 0.138 0.127 0.227 0.135 0.142 ] I 0.0.148
2[ 0.145 0.138 0.135 0.227 0.121 0.139 0.094 ] I ] 0.148

Given the limited experience of each Actor this shows that there is the possibil-
ity of convergent internal standards. The limitation is that the upper bounds of the
evaluation of the objects cannot be shifted until new and ‘better’ objects have been
experienced. Actor 1 has inferred correctly the relative position of object 2 with re-
spect to object 1 and Actor 2 has adopted an evaluation of object 2 that is approaching
a consensus.

13.11 Future Development

This initial experiment with this model was only intended to establish the possibility
of inferred internal referencing. Experiments that are more extensive will need to be
done to show what might be the limitations and stability of such internal and inferred
references. More Actors experiencing a wider range of objects over an extended set
of events is required. Investigations into the way in which the internal referencing
might change are needed as well as the seeing if there is the possibility of distinct
sub-groups of Actors appearing due to drift. Such drift would be expected as soon
as the Actors become independent of the forced consultation sequence used here.
The model could be extended along the lines of Gooding and Addis (1999—also
see Chap. 7). We would intend to use the development of this model to revisit our
observations and we would expect this to lead to the construction of new experiments.
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13.12 Conclusions

We have shown within the limitations of this model that internal referencing can
have some external meaning. This relies firmly on the common humanity of the
individual actors, in that they have to share a common cognitive structure. This study
also suggests that without some common external reference with which this cognitive
structure may interact no communication can take place.

Moreover the results suggest that more experience and interaction would produce
internal models that are more congruent. Despite this potential for convergence,
there could remain important differences between individuals. It is these differences
that could be the source of creative acts, since perceived novelty occurs because
the observer lacks the internal logical structures to construct the observed act. This
implies that creativity is a result of individual differences remaining despite social
interaction. Because we do share a common cognitive structure it should not be
surprising that some people will develop common internal views at the same time.
This would result in new insights occurring independently and simultaneously within
a particular culture. This should not suggest that people need isolation to be creative,
quite the reverse; people need to be in communication in order for novelty to be
recognised and accepted.
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Chapter 14
Seeking Allies

There is no such thing as absolute certainty, but there is
assurance sufficient for the purpose of human life.

John Stuart Mill,
(On Liberty, 1859)

14.1 Exchanging Information

In this chapter I will describe in some detail a formal computer model of inferential
discourse based on the belief system (see Chaps. 6 and 7). The key issue is that a
logical model in a computer, based on rational sets, can usefully model a human
situation grounded on irrational sets (see Chap. 9). The background of this work is
explained elsewhere, as is the issue of rational and irrational sets (Billinge and Addis
2004; Stepney et al. 2004). The model is based on the Belief System (Addis and
Gooding 1999—Chap. 7) and it provides a mechanism for choosing queries based
on a range of belief. We explain how it provides a way to update the belief based on
query results, thus modelling others’ experience by inference. We also demonstrate
that for the same internal experience, different models can be built for different
actors.

The problem of what information is exchanged between people talking about
music arose when we started to investigate the possibility of providing a computer
aid to help music planners devise acceptable music programmes (see Chap. 13 and
Billinge 2000; Billinge and Addis 2003). In order to create such a computer aid
we needed to formalise the way people perceived music and communicated their
perceptions to each other. Studies of people attempting to pass this information on
seemed to fail completely and further, no correlates were discovered between the
words used and the music features (e.g. minor chords relating to sadness). This was
totally unexpected. It seemed that talking about music had no effective role and yet
people do talk and there is a complete industry devoted to communicating about
the subjective perception of music. Our observations did not make sense and this
required us to reconsider our methods.

The essence of the original approach was to take the simple surface observations of
communication, such as words, taken under controlled experimental conditions, and
then apply statistical and linguistic analyses based on simple denotational semantics.
Since these analyses failed to produce a result we then considered a deeper approach
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in which we posited a mechanism of inferential semantics. The mechanism was
proposed on the observation that communication of music was rich with metaphor as a
descriptive aid, metaphors that can be drawn from more explicit and positive domains
such as war or nature. Meaning was thus inferred from relationships evoked by these
metaphors that can then be applied to describing unobserved and less concrete ideas
such as music perception. The problem with metaphors is that they are a culturally
based and a dynamic trope (a figure of speech that changes in context or time). It
is because of this that language falls firmly into the area of irrational sets with the
consequent difficulties. A technical solution invokes the process of tracking meaning
through a belief system (Chap. 12, Addis et al. 2004; Billinge and Addis 2004;
Stepney et al. 2004).

I described in Chap. 12 how an inferential semantics that uses metaphor might
work. Such a process required two distinct mechanisms. The first was a belief system
originally created to show how scientists decide what experiments to perform or
with whom to communicate in order to find out which of several possible hypotheses
about the world is workable. Workable here means making the world more predictable
(Chaps. 5 and 6). The second mechanism was the internal modelling of other people’s
beliefs derived from conversation (Chap. 12). This latter process was bypassed in the
original belief system by assuming that the model would be the same as the actual
perceptions (Chap. 7). These actual perceptions were made accessible within the
computer model by allowing the computer actors (agents) to have partial information
of another’s perceptions. How this might be accomplished with people was not
considered until the second mechanism of modelling people’s beliefs was designed.
These processes were emulated as computer programs to show how they might work
in practice. For such complex processes involving many different scenarios, it was
only through running such computer models that these processes could be tested
for coherence.

Constructing a computer program as though it were a theory is not enough. The-
ories also have to be tested against the world, and the effectiveness of a theory can
only be assessed in its ability to make successful predictions. Any theory that makes
the world predictable is useful, and a better theory will improve on this by making
more secure or detailed predictions. A theory can also provide a framework in which
to design experiments and recognise significant features. Even a completely inade-
quate theory can play this latter role, and without designed experiments and puzzling
observations, a new theory cannot be coherently created. To this end we produced a
computer model of music communication not to say ‘This is how it is with people’
but to say ‘This makes the world a less surprising place’ (Peirce, in Weiner 1966).

14.2 The Experiment

The experiment is described in detail elsewhere (Billinge and Addis 2003, 2004).
A summary of the process is that four people (A1–A4) were asked to listen to four
pieces of classical (but little known) music. Each piece of music lasted about 10–15
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min. Each person was asked to keep abbreviated notes on what they heard and to rate
the music on a single linear scale ranging from 1 to 10 in units of 1. Evaluation of
two pieces of music could be the same. They were then asked to form a committee
to discuss the music with the purpose of recommending that one of the pieces should
be included in a concert programme. The discussion was recorded. For completion
the committees were asked to arrive at a group opinion and rank all four pieces of
music on a scale 1–10.

The final part of the experiment, and as it turned out the most significant, was
to ask the individual participants to rank their fellow committee members in terms
of whose judgement they would take the most notice of when deciding to go to a
concert. This will be referred to as ‘ally choice’.

The design of the experiment was primarily to explore the use of metaphor during
the discussion. The actual recordings taken during these discussions have yet to be
fully analysed. However, Dr. David Billinge and I were primarily interested in the
relationship between the music and ranking. We were also interested in how the
discussions might influence opinion, hence the individual-before and the group-after
rankings of ally choice. The test of the effectiveness of a person’s internal models of
others was to be assessed from the individual ranking of a chosen advisor.

The delay in analysing the discussions was taken because we wished to view these
data in the light of a computer model of inferential semantics. There are arguments
to suggest that this is bad practice, since we are prejudicing our observations with
the computer model. Such prejudice will cause us to observe only that which will
support the model and thus our observations will be tainted and in doubt. We reject
such an argument because the history of science supports the need for an initial
theory (Kuhn 1985), provided such a theory can be tested and has the possibility of
being rejected (Popper 1959). Theories are particularly helpful in observing complex
situations, such as group discussions, because they do limit what should be observed.
The real test of a theory has been discussed above, but a theory also plays a further
important role by providing a basis for puzzlement and modification. If you don’t
have a theory then you cannot be puzzled by what you observe. We therefore, required
a satisfactory model of discourse that could do the job of limiting what we observed
(at least initially) in the conversation.

14.3 The Computer Model

The process that models the inferential semantics is driven by the belief system
(Chap. 7, Addis and Gooding 1999, 2008). The belief system, in this case, models
each user as a single undefined dimension of values for each piece of music involved
in a discussion. The values on the dimension are discrete and ordered. Each value is
considered an independent hypothesis that has a level of belief associated with it. The
actions open to the belief system, in order to update these associated beliefs, is limited
as to a fixed set of queries that may be addressed to another person. ‘Person’ in this
case is a part of the computer program that is normally referred to as ‘Agent’, but in
this chapter we will use the more appropriate and original term ‘Actor’(Hewitt 1979).
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The range of queries given provides a basis for the process of question and inference
required to update the model.

We (David Billinge and myself) use the initial decisions made by the participants
during their evaluation of the music heard in experimental sessions to initiate the
model. We then compare the predicted order of ally choice made by each agent in the
model as assessed from the agent’s perception of others, as drawn from a simulated
conversation, with the actual outcomes of the sessions. We plan to modify the model
to show from recorded conversations of the participants in our experimental sessions
how the patterns of questioning compare with that generated by the model. The model
has n actors and m aesthetic objects. The m objects in our experiments are pieces
of classical orchestral music to which our actor/participants have a response. Actors
have a response-scale for each piece of music representing their own subjective
impression. Further, an actor has a separate scale of belief for the response to each
piece of music for each other actor as derived from the conversation. In the model the
actors can ask questions in turn and can only ask one question per turn. Only the actor
asking the question can update its scales of belief from another actor’s response.

We made three assumptions: first, that each actor accepts that other actors initially
have the same perceptions of the heard music and thus the same ratings; second, that
each modelling actor tends to ask the other actor about the music of which it, the
questioner, has the most uncertain belief scale (e.g. highest entropy—see Chap. 6);
and finally that the modeller can have no doubt of its own experience. In this way an
actor tracks the subjective experience of others; an experience that may change over
time. We also assumed that, as supported by our observation of the experimental
work with people, an actor will choose as an ally the fellow actor who is closest in m
scale distance. The significance of this result is that it should show that a subjective1

experience can be inferred through conversations and we also suggested that this
might actually be the major purpose of peoples’ discussions.

Finally we describe how we expect to adapt the model to fit in with observations
to take into account other factors that decide group decisions. Our model should
thus become more able to predict conversational behaviour and final group decisions
from knowing individuals’ perceptions within this scenario.

14.4 Analysis of the Experimental Results

Seven experiments were carried out with four people and one with only three peo-
ple. Where ally-ranking information is important only the seven fully populated
experiments are considered here.

The basic ordinal and numerical data from these experiments includes:

• Each subject’s personal scale for each piece of music.
• The order in which the music was played.

1 An evaluation, of a potentially shareable event, that is accessible only by a single actor and related
to that actor’s observation and assessment of that event.
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• The evaluation order for the pieces of music agreed by the group after discussion.
• The order of preference for another actor as mentor or ally.

To enable us to make ordinal comparisons without the problems of individual scale
choice we used a relative z-score. This is employed differently from the normal use
of a z-score since we consider each individual subject as though they had their own
personal distribution. Thus each subject’s personal scale is normalised according to
the following equation.

z − score (i) = (xi − μi)/σi

where i is a particular actor, xi is a value given by that subject for a piece of music,
μi is the mean of the subject’s values and σi is the standard deviation of the values
adjusted for a small sample (Moroney 1963, p. 137) such that σi = σ/

√
n where n is

4 in this case.
In this way all the scores are normalised such that all their scores are:

• distributed about a common mean of zero
• the spread of their evaluations is made equal.

Thus the only significant information is the ordering. However, since all scales are
now normalised the relative ordering (nearer or further from other pieces of music)
information can also be compared. Each subject is represented as a single point in a
four-dimensional music space where each dimension represents one of the pieces of
music they are judging.

Having eliminated personal scaling differences we can see if there are any simi-
larities in choice combinations. We now look to see how independent the four music
dimensions are. We are asking the question, “Does knowing a person’s first choice
make it possible to predict their second choice?”

However, from the correlation analysis of pairing pieces of music, no significant
correlation is found (Fig. 14.1). This indicates that there is no pattern of common
approval between items; i.e. approval of Stravinsky does not imply approval of, say,
Stenhammar. (See example in Fig. 14.1).

The result was also corroborated using the raw (non z-score normalized) analysis
and using optimised principle component analysis (Billinge and Addis 2004). This
result confirms that we can treat music space as a set of independent dimensions so
that distance calculations in this space conform to normal n-dimensional geometry.

The raw un-normalised values were also used to see if there was any correlation
between the group scaling and the average of all the individuals’ scales. We found
that these were positively correlated (see Fig. 14.2). This result suggests that partic-
ipation within the discussions has some influence on the individual with a statistical
significance r = 0.7584. For 22 experiments, as looked up in statistical tables, an
r-value of 0.6524 is better than 0.001 probability that a correlation exists, i.e. there
is a 0.1 % chance of this happening accidentally. For the 24 experiments we did this
would be even better, i.e. less likely to occur by chance.

By contrast, and as we have noted in previous findings (Billinge and Addis 2004)
no information about music experience or content is exchanged during these group
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conversations. It is clearly possible for such information to be exchanged as suggested
in Chap. 13. This is a puzzle, so we pose a further question: “If musical experience is
not being exchanged then what influences the group decision?” We speculate that the
group discussion is actually performing a different task than exchanging information
about a music experience. Since it is not concerned with any group experience, could
it be concerned with just the exercise of social dominance?

We observed that the discussion proceeds in all seriousness and that there is an
outcome in the form of ally choice that was not previously acknowledged. The actor’s
ally preference order seems to relate to the similarity of the order of the evaluation
of music between them. Plotting the distance between two subjects in a relative
four-dimensional (music) z-space can assess this order similarity.
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The hypothesis here is that an actor tends to choose others who have a similar view
of the music. For the results analysis, the relative z-score distance measure is used to
calculate the similarity between each pair of actors. The principle used is that those
closest in four-dimensional music space tend to be chosen as the ally. Closeness is
derived from the normal application of Pythagoras’ theorem applied to a relative 4
dimensional z-score music space. Figure 14.3 shows a cumulative frequency graph
giving the proportion of position choice against distance. Those closest (z-score
distance of less than 0.8) are 100 % likely to be chosen but at distances approaching
a relative z-score of 4 all ally positions are accounted for. Thus at this high inclusive
distance all people that can be selected are included.

In Fig. 14.3 the blue area occupying the bottom left quadrant of the graph shows
the likelihood of a first ally being selected as the inclusive distance is extended.
When the evaluative distance is at its closest, a z-score of 0.4, then the likelihood
of first choice is a certainty. As the distance increases the likelihood begins to even
out between the first, second (red) and third (yellow) choices because more people
are being included. The position of no correlation between closeness and ally choice
would give the result that all ally choice positions would be equally likely for all
relative z-scores.

14.5 Model Running Results Analysis

Seven experimental runs of our model were done using the start conditions of the
seven actual experiments with people.

A model was developed to simulate how one participant can acquire another’s
internal view of music through conversation and inference using simplified questions
without directly asking about their scale. We set the model up by using for each
subject the actual initial scores expressed during our experiments. We refer here
to the model of a subject as an actor since the software is playing the part of an
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experimental subject in this scenario. We organise the model so that the actors are in
the same groupings as the human subjects.

In the model the actors enter into a conversation with the other actors in the group
with a limited questioning repertoire, that is only being able to ask if they like a
particular piece more than another piece, and which they liked least or most. Ordinal
relationships such as more or less are one of Wittgenstein’s fundamental objects as
defined in his Tractatus; that is a primitive object that cannot be defined in terms of
any other primitive objects. This would suggest that denotational semantics is being
used here despite the lack of direct observation.

The choice of to whom the question is directed, what music is compared and what
question is framed, is left to the model of the actor’s choice. The choice is based upon
the degree of uncertainty of another actor’s view and the purpose of the conversation.
This purpose is to reduce the actor’s degree of uncertainty about its view of all the
other actors in the group. The mechanism uses game theory as described in Chap. 6
(also Addis and Gooding 1999 and 2008). In the model the other actors don’t have
access to individual conversations, i.e. they are not listening in; they only know about
the answers to their own questions.

Each actor has their own separate sub-model for each of the other actor’s internal
views and these sub-models are modified according to the answers they receive in
response to their questions. Based on these four sub-models (one is the actor’s own
scale and the other three are scales from its belief model of the other actors), we can
calculate the distance measurement for each actor as perceived by any other actor
through their sub-model. In comparing the actual mentor choice order with the model
distance, we should be able to get similar results to those above (Fig. 14.3) if the
actor’s belief model does represent other’s internal view to some degree.

14.6 Model Data Input and Results Analysis

Seven sets of actual experimental data are used as input. For each set, the model is
run 300 times to get the actors’ expected belief model result. The Fig. 14.4 shows
how Actor 1’s view of Actor 2 changes through the conversation.

It can be seen that as the model runs and actor 1 asks questions of actor 2, actor
1 homes in on actor 2’s order of evaluation but not exactly how much it ‘likes’
each piece. The realisation of sequence occurs fairly fast, by less than 30 runs, and
thereafter actor 1’s belief only strengthens as to sequence and broadens as to the
absolute scaling he believes to be the view of actor 2. (See Fig. 14.3 where the
bracketed numbers in the key are the actual values for actor 2). Note that actor 1
does not always ask actor 2 at each cycle and in this case only asks actor 2 about
ten question before deciding its order. The run of questions (see Fig. 14.4, Music 2
between 50 and 100 runs) is caused, in part, by the relative uncertainty actor 1 has
about actor 2 compared with the other actors in the group.

Actor 1’s belief model of actor 2 is given in Table 14.1. This includes 4 ranges of
belief (series 1–4) for each of the four music objects. The belief concerns the scales
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Table 14.1 Actor 1’s range of beliefs of actor 2 after 300 runs

(model) 
x /

Music
0 1 2 3 4 5 6 7 8 9 Indifference

I(x)
Expected

E(x)
Series 1 0.01 0.01 0.02 0.03 0.04 0.07 0.1 0.15 0.23 0.3 0.16 7.18
Series 2 0.5 0.24 0.12 0.06 0.03 0.02 0.01 0.01 0.01 0 0.24 1.09
Series 3 0.04 0.07 0.1 0.12 0.14 0.14 0.13 0.12 0.09 0.1 0.11 4.72
Series 4 0.09 0.13 0.15 0.15 0.14 0.12 0.09 0.06 0.04 0 0.11 3.52

0–9 such that actor 1 has some expectation as to each scale position concerning a
piece of music for each actor. The sum of these beliefs for a series adds up to one since
the actor must place the music somewhere on the scale. There are three important
measures derived from the ranges of belief:

1. Indifference, I (x) = Log2
−1

(
−

∑
x
px.log2

(
px

))

Where px is the belief of x for a given actor’s perception of another actor’s view of
a piece of music. I(x) represents the value that a belief would need to have if, for
the same level of overall uncertainty (entropy), the belief value were to be equal for
all hypotheses (scale positions). Under this hypothetical situation all the hypotheses
(scale values in this case) would be indifferent to each other. We take this level of
indifference to be a threshold above which the hypotheses are considered ‘believed’
and below which they are not. This threshold is dynamic and tends to become higher
as more hypotheses’ belief values approach zero.

2. Expectation E(x) =
∑

x
px.x
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Fig. 14.5 The change of belief of a scale value for actor 2 as perceived by actor 1 after 300 cycles

Expectation E(x) is the expected or average value of the scale over an imaginary
time period (n), which in this model is taken to be in the order of four events. It is
‘imaginary’ because it is in practice calculated in terms of an accumulation of effects
such that events occurring further back in time have an exponentially decreasing
weight on the current value. The equivalent time period in this case is in the order of
four events (see Chap. 7). The consequence of making this time window larger is to
reduce the response of the belief value to change, so we have:

3. Flexibility f(px) = 1/n

Figure 14.5 shows the differences in belief over the range of scales after 300 model
cycles. Considering that the beliefs are independent, the smoothness of the curve is
comforting. From Table 14.1 we can see that, for Series 1 and 2, the believed values
are well defined being 8 or 9 and 0 or 1. For series 3 and 4 the believed values are
more spread out, covering a range of five mid range values in both cases. What is
plotted in Fig. 14.4 is the expected value rather than the ‘believed’ values.

Table 14.2 results are subjected to the z-score normalisation process to make
them comparable with observed results derived from the experiment. We then get
the results shown in Table 14.3:

Then the evaluation distances are calculated by plotting these data sets in four-
dimensional space. The distance between each pair of points in 4D space is given
indicating how closely allied the other actors are placed in terms of music order in
the model.

It should be noted that because each actor has a sub-model of the other actors that
is expected to be different. So actor 1’s perception of distance from actor 2 is likely
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Table 14.2 Actor 1’s range of expected values for other actors in the group

Series 1 Series 2 Series 3 Series 4 Actor 1 Model description

6.00 8.00 8.00 9.00 Models himself

7.18 1.09 4.72 3.52 Models actor 2

1.61 4.15 6.02 7.81 Models actor 3

0.86 3.5 5.05 6.96 Models actor 4

Table 14.3 Actor 1’s normalised expected values and normalised distances

Series 1 Series 2 Series 3 Series 4 Distance in 4D
space

Actor 1 Model
description

− 1.61 0.23 0.23 1.15 0.00 Models himself

1.39 − 1.38 0.27 − 0.28 3.69 Models actor 2

− 1.43 − 0.33 0.49 1.27 0.65 Models actor 3

− 1.45 − 0.27 0.43 1.29 0.57 Models actor 4

to be different from actor 2’s distance from actor 1. So in comparing the distances
derived from the model with the results obtained from the experiments (shown in
Table 14.4) we can make some predictions from the relative z-score distance between
two subjects’choice of ally. Note that the results in Table 14.4 are 500 runs instead of
300 as shown previously. This accounts for the first line of Table 14.4 being slightly
different from the fifth column of Table 14.3.

14.7 Assessing the Results

We can measure the predictive power of the model in terms of the improved infor-
mation over the null hypothesis. The null hypothesis is where the choice of order is
made randomly compared with model differences. The model has simulated a con-
versational process that allows internal sub-models to be constructed that provides
an actor centred view. In Table 14.4 we have scored a successful prediction of order
by assigning 1.0 and a partial order as 0.5 only where, due to lack of information,
there is 0.5 probability of the answer being correct (rounded to 2 decimal places).
All other orderings have been scored 0. So we have:

• Probability of guessing order correctly if random = 1/3! = 1/6 = 0.17
• Random Hypothesis Entropy = − Log2(0.17) = 2.56
• Observed Entropy = − Log2 (0.40) = 1.32

The numeric value of the prediction from the model is the difference of the two
hypotheses. This is about 1.2 bits, which means that you roughly double your chance
of guessing correctly by running and using the model.
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Table 14.4 Results of 500 runs of the model for all the experiments showing relative distance z-
scores (left four columns): the right hand four columns are the sequences from the real experimental
runs involving people. The complete sequence (1–3) was not always given by these participants

Sequence
Similarity EX.1 A1 A2 A3 A4 A1 A2 A3 A4

1.0
A1 0 3.71 0.66 0.72 0 3 1 2

0.0
A2 3.65 0 3.33 3.31 1 0 2 3

1.0
A3 0.62 3.44 0 0.56 2 3 0 1

1.0
A4 1.18 3.26 0.61 0 2 3 1 0

Sequence
Similarity EX.3 A1 A2 A3 A4 A1 A2 A3 A4

0.0
A1 0 1.67 2.16 3.12 0 0 1 0

0.0
A2 1.70 0 3.28 3.60 1 0 3 2

1.0
A3 2.36 3.34 0 3.05 1 3 0 2

0.0
A4 2.90 3.12 3.04 0 3 2 1 0

Sequence
Similarity EX.4 A1 A2 A3 A4 A1 A2 A3 A4

0.5
A1 0 0.756 3.44 1.88 0 1 0 0

0.5
A2 0.52 0 3.34 1.84 1 0 0 0

0.0
A3 3.47 3.32 0 2.36 0 1 0 0

0.0
A4 1.73 1.72 2.27 0 1 3 2 0

Sequence
Similarity EX.5 A1 A2 A3 A4 A1 A2 A3 A4

1.0
A1 0 3.63 1.99 1.61 0 3 2 1

0.5
A2 3.66 0 2.56 3.61 0 0 1 0

0.0
A3 2.21 2.62 0 3.03 2 1 0 3

1.0
A4 1.29 3.58 3.01 0 1 3 2 0
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Table 14.4 (continued)

Sequence
Similarity EX.6 A1 A2 A3 A4 A1 A2 A3 A4

0.0
A1 0 3.85 3.21 2.16 0 1 3 2

1.0
A2 3.84 0 3.01 3.37 3 0 1 2

0.0
A3 3.38 2.85 0 3.46 3 1 0 2

0.0
A4 2.11 3.17 3.44 0 2 3 1 0

Sequence
Similarity EX.7 A1 A2 A3 A4 A1 A2 A3 A4

0.0
A1 0 2.17 3.41 3.30 0 2 3 1

0.0
A2 1.84 0 2.11 3.97 2 0 1 3

1.0
A3 3.44 2.02 0 3.10 3 1 0 2

0.0
A4 3.33 3.97 3.63 0 2 3 1 0

9.5/24
= 0.40

Using the cumulative binomial probability calculations (Feller 1968) to assess
the confidence of these results, we find that the probability of getting eight or more
correct sequences is 0.035444 or less than 4 % of the time. For nine or more correct
sequences it drops to 0.01176 or slightly greater than 1 % and ten or more it is
0.003339 or a slightly higher than 0.3 %. Since we have predicted 9.5 sequences
correctly (using 0.5 where not all information is available) we can be confident in
our model to about 1 % that the predictions can happen by chance. This is quite
good.

14.8 Ally Choice

The results seem to indicate that the frequency of ally choice order relates to the
relative z-score distances calculated. The complete sequences were not always given
but where a particular position is given we have included this in Figs. 14.6 and 14.7.
We can compare the shape of the cumulative graphs for relative z-score distance
for each position (first, second and third) for both the observed and the model. The
model is on the left and the observed results on the right:
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Fig. 14.6 A comparison between observed and model ally choice cumulative probabilities

14.9 Last Words

Our analysis of the experiments with people involving music and our computer
model is still to be completed. However, the experiments so far have shown that the
ranking choice of music seems to follow no pattern and that for each person each
piece of music can be treated like a unique dimension. It may be that because all
the pieces of music were ‘classical’ and therefore of the same type that grouping
of choice was masked. The most significant information that has been gathered has
been the ally choice. It is possible to surmise that such information has a valuable
role in the survival, or at least the wellbeing, of individuals since other people’s
experiences become valuable surrogates to one’s own experiences. This is a kind of
metaphor in that the judgement of a close ally is taken to be representative of one’s
own experience.

The other result that came from the experiments was that the correlation between
group results and individual results was significant. However, there is enough varia-
tion in the final decision to suggest that there are factors to be considered other than
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Fig. 14.7 Results of ally choice as structured bar charts: compare Fig. 14.3

just an average weight drawn from everyone’s opinion. Similarly, the choice of ally
shows sufficient variation from the choice of ‘like-mind’ to suggest that there are
reasons for choice other than selecting a perceptual substitute. For clues to this we
will need to look at the details of the group discussion. This, unfortunately, has not
been done.

The model has shown similar behaviour to the experimental observations. Details
of model discussions would need to be explored to see what causes clustering of in-
terrogation and whether this is reflected in the observed behaviour of people. Further,
we can propose that some of the observed variation is the effect of dominance by
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individuals. Such dominance can be extracted from our scale data and used to make
better predictions of the group decisions. If such dominance is supported then the
model might be modifiable to take this into account and thus give a better account
of the group discussions and ally choice.

We are only in the foothills of modelling human behaviour. The advantage of con-
sidering music is that perception of it is purely subjective. There can be no argument
or logic as to the nature of the experience for each individual. Only they know what
they felt. This neutral stance means that all the mechanisms of language and com-
munication have got to go into communicating these perceptions. The detection of
perceptual allies seems valuable for extending ones own experiences and this should
lead to using shared metaphors; metaphors that are initially found through direct
shared experiences and later from shared perceptions (Lakoff and Johnson 1980;
Lakoff 1986).

Computer modelling opens up the possibility of checking the consistency of how
an unanchored conversation can drift without loss of communication. In here some-
where, is the suggestion of how ontological changes, e.g. changes in conceptual
boundaries, can be made because of the fluidity of the inferential language. In here
is a clue to the mechanism of insight and originality. The progress of human think-
ing and experience seems to be related to our method of communicating between
ourselves; our knowledge seems to exist between us more than it exists within each
of us in isolation.

Computer science, as a subject, has always been puzzling in that it was never
clear where the ‘science’ component was. There were formal theories that were
principally part of mathematics and there was engineering required for hardware and
software. But where were the experiments that lead to new theories? We discover in
this book that the science is founded in experimental psychology with the theories
being replaced by modelling people’s thought processes and social interactions. It is
through these models that we gain some insight into the complexity of what it is to
be human.
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