

computers
Ltd.
what they rea 7 7y
can't do

david harel
faculty of mathematics and computer
science
the weizmann institute of science,
rehovot, israel

OXFORD
UNIVERSITY PRESS

OXFORD
UNIVERSITY PRESS

Great Clarendon Street, Oxford 0)(2 6DP

Oxford University Press is a department of the University of Oxford.
It furthers the University's objective of excellence in research. scholarship,

and education by publishing worldwide in

Oxford New York

Athens Auckland Bangkok Bogota Buenos Aires Calcutta
Cape Town Chennai Dar es Salaam Delhi Florence Hong Kong Istanbul

Karachi Kuala Lumpur Madrid Melbourne Mexico City Mumbai
Nairobi Paris Sio Paulo Singapore Taipei Tokyo Toronto Warsaw

with associated companies in Berlin Ibadan

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States by
Oxford University Press Inc . New York

© D. Harel 2000

The moral rights of the author have been asserted

Database right Oxford University Press (maker)

First published 2000

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,

without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate

reprographics rights organization Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,

Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose this same condition on any acquirer

British Library Cataloguing in Publication Data
Data available

Library of Congress Cataloguing In Publication Data

Hare!, David, 1950-
computers Ltd what they really can't do/David Harel.

p em
ISBN 0-19·850555·8

I.Computers 2 Computer software. I. Title.

QA765 H3575 2000 004-de21 00-023751

Typeset by EXPO Holdings, Malaysia
Printed in Great Britain by

Biddies Ltd, Guildford & King's Lynn

To Eynel
for so much more

than proposing the title

preamble

In 1 984, TIME magazine ran a cover story on computer software.

In the excellent article, the editor of a certain software magazine

was quoted as saying:

Put the right kind of software into a computer, and it will do what

ever you want it to. There may be limits on what you can do with

the machines themselves, but there are no limits on what you can

do with software.

Wrong. Totally wrong. In fact, a simple way of summarizing this

book is that it is devoted to describing and explaining the facts that

refute - no, shatter! - this claim.

Of course, computers are incredible. They are without doubt the

most important invention of the 20th century, having dramatically

and irrevocably changed the way we live, and mostly for the better.

But that is the good news, and good news is what most computer

books are about. This book concentrates on the bad; on the nega

tive side of things.

Computers are expensive, which is already bad news. They frus

trate us: programming them is laborious and using them can be

difficult; they are seductive, luring us away from more important

things; they err; they crash; they contract viruses; and on and on.

But it is not these kinds of bad news that concern us here. The goal

of the book is to explain and illustrate one of the most important

viii p r e a m b l e

and fundamental facets of the world of computing - its inherent

limitations.

Typically, when people have difficulties bending computers to

their will, their excuses fall into three categories: insufficient

money, insufficient time, and insufficient brains. Being richer, the

argument goes, could buy us larger and more sophisticated com

puters, supported by better software; being younger or having a

longer life-span would enable us to wait longer for time-consum

ing programs to terminate; and being smarter could lead to solu

tions that we don't seem able to find. These are strong and valid

points, and we are not about to contest them: a more generous

supply of any of these three commodities could indeed take us a

long way. However, for the most part, our book is not about these

kinds of hardships either. It concentrates on bad news that is

proven, lasting and robust, concerning problems that computers

are simply not able to solve, regardless of our hardware, software,

talents or patience. And when we say 'proven', we mean really

proven; that is, mathematically, and not just experimentally.

* * *

Why are we interested in bad news? Shouldn't computer scientists

be spending their time making things smaller, faster, easier, more

accessible and more powerful? Well, they should, and the vast

majority of us actually do. But even so, starting in the 1 930s, and

increasingly so by the year, many researchers have been working

hard to better understand the other side of the coin, that of hum

bling the computer, by discovering and better understanding its

inherent weaknesses.

The motivation for this quest is four-fold:

p r e a m b l e ix

• To satisfy intellectual curiosity. Just as physicists want to deter

mine the ultimate confines of the universe or the constraints

imposed by the laws of physics, so computer scientists want to

discover what can be computed and what cannot, and how

costly it is when it can. I
• To discourage futile efforts. Many people, among them know

ledgeable computer experts, try to tackle computational prob

lems that happen to be subject to devastating bad news. The

more we understand these problems and their inherent nature,

the less we shall waste our time and energy on such endeavors.

• To encourage development of new paradigms. Parallelism, ran

domization, heuristics, and quantum and molecular comput

ing, five of the most promising and exciting topics in computer

science research, would not be developing the way they are

without the push resulting from the bad news.

• To make possible the otherwise impossible. To make possible the

impossible?! This is surely paradoxical. How on earth can we

hope to projit from bad news? Well, to keep up the suspense until

Chapter 6, we shall only remark here that this is an unexpected

aspect of our story, but also a surprisingly beneficial one.

So much for motivation. As to the nature of the bad news we

discuss, consider the large body of very exciting work aimed at

endowing computers with human-like intelligence. In its wake, a

host of questions arise concerning the limits of computation, such

I To get a broad perspective on the kind of limitations scientists are
interested in, see Barrow, J. D. (1998) . Impossibility: The Limits of Science
and the Science of Limits. Oxford University Press, Oxford.

x p r e a m b l e

as whether computers can run companies, carry out medical diag

nosis, compose music or fall in love. While promising, and often

quite amazing, progress has been made in addressing these issues

(not very much on the last one, however), these questions are

posed in an imprecise and vague manner. With the exception of

the last chapter of the book, we avoid them. In contrast, we con

centrate on precisely defined computational problems, that come

complete with clear-cut objectives. This, in turn, makes it possible

to make equally clear-cut statements about whether or not they

can be solved satisfactorily.

The issues we discuss are not debatable, and do not involve

philosophical, quasi-scientific arguments. Rather, we concentrate

on hard facts, rigorously stated and mathematically proved. You

don't go looking for triangles whose angles add up to 1 500 or 2000

- although no-one has ever been able to inspect each and every

triangle - simply because there is a proof that no such triangles

exist.2 In a similar way, if a computational problem has been

proved to admit no solution, and we shall discuss such problems,

then seeking a solution is pointless. The same goes for problems

that do have solutions, but have been proved to require wholly

unreasonably large computers (say, much larger than the entire

known universe) or to take wholly unreasonable amounts of com

putation time (say, a lot more than has elapsed since the Big Bang) ,

and we shall discuss many of these too.

* * *

2 Planar ones, of course. On a spherical or almost spherical surface, such
as the planet Earth, the sum of the angles of a triangle is in fact greater
than 180°.

p r e a m b l e xi

By and large, people are unaware of the issues this book addresses.

Sadly and surprisingly, this is true also for many members of the

computing profession itself, as the quote from TIME shows. This

is really unfortunate. If the bad news were some esoteric, recently

discovered phenomenon, not having come across it could be

understood. The truth is that some parts of our story have been

known for some 60 years, long before real computers were built,

and most of the others have been steadily unfolding for the last 30.
To a large extent, the blame is on us - researchers in computer

science. We have done far too little in exposing, exemplifying,

illustrating, and making comprehensible the basics of our science

in general, and its negative facets in particular. This leaves the

public in general blissfully unstirred, free to follow with awe the

technological advances in hardware and software, to delight in the

excitement of new applications, and to gloat over the futuristic

possibilities raised by instantaneous telecommunication, multi

media, virtual reality, artificial intelligence, and the global nature

of the internet revolution.

There is no reason to break up the party. We should continue to

strive for bigger and better things. But even so, a measure of

humility is in place: computers are not omnipotent - far from it.

Moreover, the problem is real, and it is here to stay.

acknowledgments

This book is based on the bad news parts of computer science, as

exposed in my earlier book, Algorithmics: The Spirit of Computing,
Addison-Wesley, 1 987 (2nd edition, 1 992) . Algorithmics is not a

popular science book. It is longer and a lot more technical than

this one, and discusses the good news too. It was written for a tech

nically oriented audience, and in its second edition it is also usable

as a textbook. Some parts of the present book are indeed adapted

from Algorithmics, but they are simplified and popularized, often

quite significantly. I would like to thank Addison Wesley Longman

for permission to use this material. Thanks also to IEEE Spectrum
for permission to adapt R. W. Lucky's 'Jim's Phone' conversations

in Chapter 7.

I am always extremely grateful to my home institution, The

Weizmann Institute of Science in Israel, for providing the ideal

supportive and encouraging environment for this kind of work.

Thanks are due also to the Computer Science Department of

Cornell University, Ithaca, NY, where I spent the academic year of

1 994-1 995; parts of the book were written there.

As in all my expository writing, it is a pleasure to acknowledge

the influence of three colleagues, who are also researchers of the

highest calibre, Amir Pnueli, Adi Shamir and Shimon Ullman.

In addition to the many people whose help is acknowledged in

Algorithmics, I 'd like to thank the following friends and colleagues

xiv a c k n o w l e d g m e n t s

for reading and commenting o n parts o f the manuscript, o r for

providing pointers and references: Dorit Aharonov, Liran Carmel,

Judith Gal-Ezer, Stuart Haber, Lila Kari, Noam Nissan, Christos

Papadimitriou, Ran Raz.

contents

1 what's it all about? 1
Algorithms 2

Basic instructions 5

The text vs. the process 7

Inputs 9

What do algorithms solve? 10

Isn't our setup too simplistic? 15

Solving algorithmic problems 1 6

Programming 1 8

Errors and correctness 2 1

Termination 26

2 sometimes we can't do it 27
Finite problems are solvable 29

The tiling problem 30

Do we really mean it? 33

Elementary computing devices 36

The Church-Turing thesis 40

Computability is robust 42

Domino snakes 46

Program verification 48

The halting problem 50

Nothing about computation can be computed! 53

Some problems are even worse 54

xvi c o n t e n t s

3 sometimes we can't afford to do it 59
Resources: time and memory space 60

Improving running time 6 1

Upper a n d lower bounds 65

So what? 69

The towers of Hanoi 69

The good, the bad, and the ugly 73

Intractability 78

Roadblocks and chess 82

Problems that are even harder 85

Unreasonable memory requirements 88

4 Sometimes we just don't know 91
The monkey puzzle 92

NP-complete problems 95

Finding short paths 97

Scheduling and matching 100

More on puzzles 102

Coloring networks 104

Magic coins 1 06

Standing or falling together 1 09

The great mystery: is P equal to NP? 1 1 1

Can we come close? 1 1 3

Sometimes we succeed 1 1 5

5 Trying to ease the pain 119
Parallelism, or joining forces 1 2 1

Can parallelism eliminate the bad news? 1 24

Randomization, or tossing coins 1 29

More on Monte Carlo algorithms 1 32

Testing for primality 1 34

c o n t e n t s x vii

Randomized primality testing 1 36

Can randomization eliminate the bad news? 1 40

Can computers simulate true randomness? 1 4 1

Quantum computing 143

Quantum algorithms 146

Can there be a quantum computer? 1 5 1

Molecular computing 1 53

6 Turning bad into g ood 157
Classical cryptography 1 58

Public-key cryptography 1 6 1

Signing messages 1 65

Can this be made to work? 1 68

The RSA cryptosystem 1 70

Interactive proofs 1 73

Zero-knowledge proofs 1 77

I can 3-color a network 1 80

On millionaires, ballots, and more 186

7 Can we ourselves do any better? 189
Algorithmic intelligence? 19 1

The Turing test 192

ELIZA and zupchoks 196

Heuristics 199

What is knowledge? 204

Understanding natural language 208

Postramble 213

Index 215

chapter 1

what's
about?

i t a 11

Computers are amazing. They seem to have it all. They fly aircraft

and spaceships, and control power stations and hazardous chem

ical plants. Companies cannot be run without them, and many

medical procedures cannot be performed in their absence. They

serve lawyers and judges who seek judicial precedents, and help

scientists and engineers to perform immensely involved math

ematical computations. They route and control millions of simul

taneous telephone calls and manage the remarkable movement of

Internet data in enormous global networks. They execute tasks

with great precision - from map-reading and typesetting to

image processing, robot-aided manufacturing and integrated

circuit design. They help individuals in many boring daily chores

and at the same time provide entertainment through computer

games or the delight of surfing the Web. Moreover, the computers

of today are hard at work helping design the even more powerful

computers of tomorrow.

It is all the more remarkable, therefore, that the digital computer

- even the most modern and complex one - is merely a large

2 c o m p u t e r s L t d .

collection of switches, called bits, each of which can be on or off.

On is denoted by 1 and off by o. Typically, the value of a bit is deter

mined by some electronic characteristic, such as whether a certain

point has a positive or negative charge. In a technical sense, a com

puter can really execute only a small number of extremely simple

operations on bits, like flipping a bit's value, zeroing it, or testing it

(that is, doing one thing if the bit is on and another if it is off) .

Computers may differ in size, i .e. in the number of bits available,

and in internal organization, as well as in the types of elementary

operations allowed and the speed at which they are performed.

They can also differ in outward appearance and in their connec

tions with the external world. However, appearances are peri

pheral when compared to the bits and their internal arrangement.

It is the bits that 'sense' the input stimuli arriving from the outside

world, and it is the bits that 'decide' how to react to them by

output stimuli. The inputs can arrive via keyboards, touch screens,

control panels, electronic communication lines, or even micro

phones, cameras, and chemical sensors. The outputs are fed to the

outside world via display screens, communication lines, printers,

loudspeakers, beepers, robot arms, or whatever.

How do they do it? What is it that transforms simple operations

like flipping zeros and ones into the incredible feats computers

perform? The answer lies in the concepts that underlie the science

of computing: the computational process, and the algorithm, or

program, that causes it to take place.

algorithms

Imagine a kitchen, containing a supply of ingredients, an array of

baking utensils, an oven, and a (human) baker. Baking is a process

w h a t ' 5 i t a l l a b ou t ? 3

that produces a cake, from the ingredients, by the baker, aided by
the oven, and, most significantly, according to the recipe. The

ingredients are the input to the process, the cake is its output, and

the recipe is the algorithm. In the world of electronic computa

tion, the recipes, or algorithms, are embodied in software, whereas

the utensils and oven represent the hardware. See Fig. 1 . 1 .

Just like computers carrying out bit operations, the baker with

his or her oven and utensils, has very limited direct abilities. This

cake-baking hardware can pour, mix, spread, drip, knead, light the

oven, open the oven door, measure time, measure quantities, etc.

It cannot directly bake cakes. The recipes - those magical pre

scriptions that convert the limited abilities of novice bakers and

kitchen hardware into cakes - are at the heart of the matter; not

the ovens or the bakers.

Ingredients

(Software)

B

Fig. 1 . 1 . Baking a cake.

(Hardware)

Oven,
utensils

4 c o m p u t e r s L t d .

In our world, recipes are called algorithms, and the study,

knowledge, and expertise that concerns algorithms has been

termed algorithmics. 1

The analogy with cooking can be understood as follows: the

recipe, which is an abstract entity, is the algorithm; the formal

written version of the recipe, such as is found in a particular cook

book, is analogous to a computer program - the precise repre

sentation of an algorithm, written in a special computer-readable

formalism called a programming language. It is important to

realize that, just as a recipe remains the same whether written in

English, French, or Latin, and regardless of where and by whom it

is carried out, so does an algorithm remain the same whether

written in Fortran, C, Cobol, or Java, and regardless of the com

puter it runs on, be it an ultra-light laptop or a room-size main

frame. The generic term software actually refers to programs

rather than to the abstract notion of algorithms, since software is

I The word 'algorithm' is derived from the name of the Arabic/Persian
mathematician of the ninth century, Mohammed al-Khowarizmi, who
is credited with providing the step-by-step rules for carrying out the
fundamental operations of decimal arithmetic. In Latin the name
became Algorismus, from which 'algorithm' is derived. Historically, the
first nontrivial algorithm was invented somewhere between 400 and
300 Be by the great Greek mathematician Euclid. The Euclidian
algorithm, as it is called, finds the greatest common divisor (gcd) of two
positive integers, i.e. the largest integer that exactly divides them both.
For example, the gcd of 80 and 32 is 16. The word 'algorithmics' was
apparently coined by J. F. Traub (1 964). Iterative Methods for the Solution
of Equations, Prentice Hall. It was proposed as the name for the relevant
field of study by D. E. Knuth (1985). 'Algorithmic Thinking and
Mathematical Thinking', American Math. Monthly 92, 170-181, and by
the present author in Algorithmics: The Spirit of Computing, Addison
Wesley (1 987) .

w h a t ' s i t a l l a b o u t ? 5

written for real computers. However, we shall blur the distinction,

since the story told in the following chapters applies just as well to

both.

bas ic ins tructions

Let us take the gastronomical analogy a little further. Here is a

recipe for chocolate mousse.2 The ingredients - that is, the

recipe's input - include 8 ounces of semi-sweet chocolate pieces,

2 tablespoons of water, a 1 /4 cup of powdered sugar, 6 separated

eggs, and so on. The output is described as six to eight servings of

delicious mousseline au chocolat:

Melt chocolate and 2 tablespoons water in double boiler. When

melted, stir in powdered sugar; add butter bit by bit. Set aside. Beat

egg yolks until thick and lemon-colored, about 5 minutes. Gently

fold in chocolate. Reheat slightly to melt chocolate, if necessary.

Stir in rum and vanilla. Beat egg whites until foamy. Beat in 2

tablespoons sugar; beat until stiff peaks form. Gently fold whites

into chocolate-yolk mixture. Pour into individual serving dishes.

Chill at least 4 hours. Serve with whipped cream, if desired. Makes

6 to 8 servings.

This is the 'software' relevant to the preparation of the mousse; it

is the algorithm that prescribes the process that produces mousse

from the ingredients. The process itself is carried out by the person

preparing the mousse, together with the 'hardware', in this case the

various utensils: double boiler, heating apparatus, beater, spoons,

timer, and so on.

2 From Sinclair and Malinowski (1978) . French Cooking. Weathervane
Books, p. 73.

6 c o m p u t e r s L t d .

One of the basic instructions, or basic actions, present in this

recipe is 'stir in powdered sugar'. Why does the recipe not say ' take
a little powdered sugar, pour it into the melted chocolate, stir it in,
take a little more, pour, stir, . . . '? Even more specifically, why does it

not say ' take 2,365 grains of powdered sugar, pour them into the
melted chocolate, pick up a spoon and use circular movements to stir
it in, . . . '? Or, to be even more precise, why not 'move your arm
towards the ingredients at an angle of 14°, at an approximate veloc
ity of 18 inches per second, . . . ' ? The answer, of course, is obvious.

The 'hardware' knows how to stir powdered sugar into melted

chocolate, and does not need further details.

This begs the question of whether the hardware knows how to

prepare sugared and buttered chocolate mixture, in which case the

entire first part of the recipe could be replaced by the simple

instruction 'prepare chocolate mixture'. Taking this to the extreme,

perhaps the hardware knows how to do the whole thing. This

would make it possible to replace the entire recipe by 'prepare
chocolate mousse', indeed a perfect recipe for producing the choco

late mousse; it is clear and precise, contains no mistakes, and is

guaranteed to produce the desired output just as required.

Obviously, the level of detail is very important when it comes to

an algorithm's elementary instructions. The actions that the algor

ithm asks to be carried out must be tailored to fit the capabilities of

the hardware that does this carrying out. Moreover, the actions

should also match the comprehension level of a human. This is

because humans construct algorithms, humans must become con

vinced that they operate correctly, and humans are the ones who

maintain those algorithms and possibly modify them for future use.
Consider another example, which is closer to conventional com

putation: multiplying integers manually. Suppose we are asked to

multiply 52 8 by 46. The usual 'recipe' for this is to first multiply

w h a t ' s i t a l l a b o u t ? 7

the 8 by the 6, yielding 48, to write down the units digit of the

result, 8, and to remember the tens digit, 4. The 2 is then multi

plied by the 6, and the 4 is added, yielding 16 . The units digit 6 is

then written down to the left of the 8 and the tens digit 1 is remem

bered. And so on.

The same questions can be asked here too. Why 'multiply the 8
by the 6'? Why not ' look up the entry appearing in the eighth row
and sixth column of a multiplication table', or 'add 6 to itself 8
times'? Similarly, why can't we solve the entire problem in one

stroke by the simple and satisfactory algorithm 'multiply 528 by
46'? This last question is rather subtle: we are allowed to multiply

8 by 6 directly, but not 528 by 46. Why?
Again, the level of detail plays a crucial part in our acceptance of

the multiplication algorithm. We assume that the relevant hard

ware (in this case, ourselves) is capable of carrying out 8 times 6

directly, but not 528 times 46, so that the former can be used as a

basic instruction in an algorithm for carrying out the latter.

Another point illustrated by these examples is that different

problems are naturally associated with different kinds of basic

actions. Recipes entail stirring, mixing, pouring, and heating; mul

tiplying numbers entails addition, digit multiplication, and

remembering a digit; looking up a telephone number might entail

turning a page, moving a finger down a list, and comparing a given

name to the one being pointed out. Interestingly, we shall see later

that when it comes to algorithms intended for computers these

differences are inessential.

the text vs . the proces s

Suppose we are given a list of personnel records, one for each

employee in the company. Each record contains an employee's

8 c o m p u t e r s L t d .

name, some other details, and his or her salary. We are interested in

the total sum of the salaries of all employees. Here is an algorithm

for this:

1. make a note of the number 0;

2. proceed through the list, adding the current employee's

salary to the noted number;

3 . having reached the end of the list, produce the noted number

as output.

Clearly, the algorithm does the job. The 'noted' number can be

thought of as a sort of empty box containing a single number,

whose value can change. Such an object is often called a variable.

In our case, the noted number starts out with the value zero. After

the addition in line 2 is carried out for the first employee, its value

is that employee's salary. After the addition for the second

employee, its value is the sum of the salaries of the first two

employees, and so on. At the end, the value of the noted number

is the sum of all salaries (see Fig. 1 .2) .

I t i s interesting that the text of this algorithm i s short and i s fixed

in length, but the process it describes varies with the size of the

employee list, and can be very, very long. Two companies, the first

with 10 employees and the second with a million, can both use the

very same algorithm to sum their respective employees' salaries.

The process, though, will be much faster for the first company

than for the second. Moreover, not only is the text of the algorithm

short and of fixed size, but both companies require only a single

variable (the noted number) to do the job. So the quantity of

'utensils' is also small and fixed. Of course, the value of the noted

number will be larger for a larger company, but only a single

number is required to be 'noted' all along.

w h a t ' s i t a l l a b o u t ? 9

Start
Name Salary 0 Value of noted number �

John Brown $21 000 2 1 000 1
Mary White $34 400 55 400 1
Mike Green $ 1 8 000 73 400 1

Joan Silver $26 000 1 7 547 200 1

End

Fig. 1 .2. Summing salaries.

Thus we have a fixed algorithm, that requires no change in order

to be used in different situations (i .e. for each and every different

input list) , but the processes it prescribes can differ in length and

duration for different input situations.

inputs

Even the simple example of salary summation shows a variety of

possible inputs: small companies, large companies, companies in

which some salaries are zero, or ones in which all salaries are equal.

The algorithm might also have to deal with unusual or even

bizarre inputs, such as companies with no employees at all or with

employees who receive negative salaries (that is, the employee pays

the company for the pleasure of working for it) .

Actually, the salary algorithm i s supposed to perform satisfactor

ily for an infinite number of perfectly acceptable lists of employees.

This is an extreme way of appreciating the 'short-algorithm-for

lengthy-process' principle. Not only the contrast in duration, or

1 0 c o m p u t e r s L t d .

length, is interesting; the very number of processes prescribed by a

single algorithm of fixed length can be large, and most often is

infinite.3

An algorithm's inputs must be legal relative to its purpose. This

means that the New York Times list of bestsellers would be un

acceptable as an input to the salary summation algorithm, just as

peanut butter and jelly are unacceptable as ingredients for the

mousse recipe. This means that we need a specification of the

allowed inputs. Someone must decide precisely which employee

lists are legal and which ones are not, where an employee record

ends and another begins, where exactly in each record the salary is

to be found and whether it is given in longhand (for example,

$32 000) or in some abbreviated form (e.g. $32K) , and so on.

what do algorithms s olve?

All this leads us to the central notion underlying the world of

algorithmics and computation - the algorithmic problem, which

is what an algorithm is designed to solve. The description of an

algorithmic problem must include two items (see Fig. 1 .3) :

• a precise definition o f the set o f legal inputs;

• a precise characterization of the required output as a function of

the input.

3 This issue of an infinite number of potential inputs doesn't quite fit the
recipe analogy, since although a recipe should work perfectly well no
matter how many times it is used, ingredients are usually described in
fixed quantities. Hence, the recipe really has only one potential input.
However, the chocolate mousse recipe could have been made generic, to
fit varying but proportional quantities of ingredients.

Specification
of all legal

inputs

and

Characterization
of desired output

as a function
ofthe input

The algorithmic problem

what's it all about? 11

Any legal
input

The desired
output

An algorithm solving the problem

Fig. 1 .3. The algorithmic problem and its solution.

When we discuss an algorithmic problem as applied to a particular

input (like the salary summation problem applied to some con

crete list of employees), we call it an instance of the problem.

Here now are some additional examples of algorithmic prob

lems. Each one is defined, as is proper, by its set of legal inputs

and a description of the desired output. They are numbered,

and we will refer to them at various points in the following

chapters.

Problem 1

Input: Two integers, J and K.
Output. The number J2 + 3K.

This is a simple problem that calls for an arithmetic calcula

tion on two input numbers.

12 c o m p u t e r s L t d .

Problem 2

Input: A positive integer K.
Output: The sum of the integers from 1 to K.

This problem also involves arithmetic, but the number of

elements it deals with varies, and itself depends on the

input.

Problem 3

Input: A positive integer K.
Output: 'Yes' if K is prime and 'No' if it isn't.

This is what we shall be referring to as a decision problem. It

calls for deciding the status of its input number. (Recall that

a prime number is a positive integer that can be divided

without a remainder only by 1 and itself. For example, 2, 1 7,

and 113 are primes, whereas 6, 91, and 133 are not. Non

primes are termed composite.) Solving this problem will

surely involve arithmetic, but it does not provide a numeric

output, only a 'Yes' or a 'No'.

Problem 4

Input: A list L of words in English.

Output: The list L sorted in alphabetic (lexicographic)

order.

This is a non-arithmetical problem, but like Problem 2 it has

to deal with a varying number of elements; in this case

words.

w h a t ' s i t a l l a b o u t ? 1 3

Problem 5

Input: Two texts in English.

Output: A list of the words common to the two texts.

This too involves words, rather than numbers. We assume

that texts have been defined appropriately, say, as a string of

symbols consisting of letters, spaces and punctuation marks.

A word in a text would be a string of letters enclosed by

spaces or punctuation marks.

Problem 6
Input: A road map of cities with distances attached to road

segments, and two designated cities therein. A and B.
Output: A description of the shortest possible path (trip)

between A and B.

This is a search problem. involving points and distances

between them. It calls for some kind of optimization process

to find the shortest path.

Problem 7

Input: A road map of cities, with distances attached to road

segments, and a number K.
Output: 'Yes' if it is possible to take a trip that passes through

all the cities, and whose total length is no greater than K

miles, and 'No' if such a trip is impossible.

This too asks to search for a short path, not between two

points but, rather. a path that traverses all points. Also, this

problem is not phrased as requiring an optimization (i.e.

find the 'best' path) , but as a decision problem that asks just

whether there is some path shorter than the given limit.

1 4 c o m p u t e r s L t d .

ProblemS

Input: A program P written in Java, with integer input vari

able X and output variable Y, and a number K.
Output: The number 2K if the program P always sets Ys

value to be equal to X2, and 3Kif not.

This problem is about algorithms, in their formal attire as

programs. It wants to know something about the behavior of

a given program in general; not of a particular input.

So algorithmic problems have all kinds of inputs: numbers,

words, texts, maps, and even other algorithms or programs. Also,

some problems are truly computational in nature, some involve

rearrangements (sorting) , some require information retrieval

(finding common words) , some are optimization problems (short

est path) , and some are decision problems (primality testing and

all-point trips). Thus, a decision problem is a yes/no algorithmic

problem. Decision problems appear not to compute, retrieve or

optimize, only to decide, determining whether some property is

true or false. Some algorithmic problems are hybrids: Problem 8,

for example, combines decision with computation; its output is the

result of one of two simple computations, but which of these it will

be depends on a property of the input that has to be decided.

All these sample problems have infinite sets of legal inputs. To

solve them, we have to be able to deal with arithmetic on all num

bers, with sorting all lists of words, with finding the shortest trip in

all city maps, etc. Put another way, each problem requires that we

devise a method, a common procedure or recipe, that will solve

any given instance of the problem. The number of potential

instances is infinite. Such a method constitutes an algorithm.

w h a t ' s i t a l l a b o u t ? 1 5

Many algorithmic problems i n the real everyday world are not so

easy to define. Sometimes the difficulty is in specifying the

required output, as when asking for the best move from a legal

board position in chess (what exactly is 'best ' ?) . In other cases,

describing the inputs can be complicated. Suppose 20 000 news

papers are to be distributed to 1000 delivery points in 100 towns

using 50 trucks. The input contains the road distances between the

towns and between the delivery points in each town, the number of

newspapers required at each point, the present location of each

truck, details of available drivers, including their present where

abouts, and each truck's newspaper carrying ability, gasoline

capacity and miles-per-gallon performance. The output is to be a

list, matching drivers and destinations to trucks, in a way that min

imizes the total cost to the distributing company. Actually, the

problem calls for an algorithm that works for any number of news

papers, towns, delivery points, and trucks.

Some problems have hard-to-pin-down inputs as well as hard

to-specify outputs, such as the ones required to predict the weath

er or to evaluate stock market investments.

In this book, we shall stick to simple-looking algorithmic prob

lems, usually with easy to describe inputs and outputs. In fact, for

the most part, we will concentrate on decision problems. So

describing our problems will be easy, and the outputs will usually

be just 'Yes's and 'No's.

is n't our s etup too s implis tic?

Aren't we overly simplifying things? Computers are busy struggling

with tasks far more complicated than merely reading a simple

input, doing some work, producing a 'Yes' or a 'No' and quitting.

Aren't we greatly weakening our presentation by avoiding modern

16 c o m p u t e r s L t d .

real-world computational frameworks, such as interactive comput

ing, distributed systems, real-time embedded systems, graphics

intensive applications, multimedia, and the entire world of the

Internet?

To me, the author, you might be saying under your breath 'Are

you just another one of those stuffy academics? Don't you know

anything about computing? Stop giving us this chit-chat about

simple input/work/output computations. Just get real, will you?'.

The answer is: indeed, yes. We are simplifying things, and in fact

quite radically. But for a very good reason. Remember that we are

dealing with the bad news. This book is not about making things

better, smaller, stronger, or faster. It is about showing that very often

things cannot be improved in these ways. That things can become

very, very nasty. That certain tasks are simply impossible. Now, given

that we are after bad news here, our arguments and claims become

stronger, not weaker, by considering a simpler class of problems! We

will be showing that even in a simple computational framework

things can be devastatingly bad; all the more so in an intricate and

seemingly more powerful one. The fact that computers are hope

lessly limited is more striking with a simple input-output paradigm

for computation than with a more complex one. Moreover, since the

book is devoted almost exclusively to decision problems, we are also

implying that the bad news has nothing to do with the need for

complicated and lengthy outputs. The desire to generate even a

simple 'Yes' or 'No' is enough to yield real nightmares.

s olving algorithmic problems

An algorithmic problem is solved when an appropriate algorithm

has been found. What is 'appropriate'? Well, the algorithm must

provide correct outputs for all legal inputs: if the algorithm is exe-

w h a t ' s i t a l l a b o u t ? 17

cuted, or run, on any one of the legal inputs defined in the prob

lem, it must produce the output specified in the problem for that

input. A solution algorithm that works well for some of the inputs

is not good enough.

Finding solutions to most of the sample problems described ear

lier is easy. Computing J2 + 3K is trivial (assuming, of course, that

we have basic operations for addition and multiplication) , and

likewise summing the integers from 1 to K. In the latter case, of

course, we must use a counter to keep track of how far we have

gone and to stop the process when we have dealt with K itself.

To test whether a number K is prime (Problem 3), we divide it by

all the integers from 2 to K - 1, stopping and saying 'No' if one of

them is found to divide K without a remainder, and stopping and

saying 'Yes' only when all the divisions have been completed and

they have all yielded a remainder.4

Problem 4 can be solved by numerous different sorting algor

ithms. A simple one involves repeatedly searching for the smallest

element in the input list L, removing it from L and adding it to the

accumulating output list. The process stops when the original list is

empty. Problems 6 and 7 can both be solved by considering all

possible paths between cities (that is, one-way paths between A

4 Of course, this algorithm can be improved: we can stop the process of
testing for divisors at YK, the square root of K, rather than at K - 1 .
The reason is that i f K has a clean divisor that is larger than YK it must
also have one that is smaller. We can also avoid testing multiples of the
numbers already tested, thus further expediting the process. Some of the
other problems can also be solved more efficiently than the ways we
mention. However, efficiency and practicality of algorithms are not
addressed until later in the book, so we shall not dwell on these issues
right now. Here we impose only the minimal requirement - that the
algorithm does, in fact, solve the problem, providing correct outputs for
all legal inputs, even though it might do so inefficiently.

18 c o m p u t e r s L t d .

and B in Problem 6, and round-trip paths that traverse all the cities

in Problem 7) , and computing their lengths. Since the number of

cities is finite, the number of paths is finite too, so that an algor

ithm can be set up to run through them all. This has to be done

with care, however, so as not to miss any paths, and not to consid

er paths more times than is needed.

As mentioned, we shall return to several of these sample prob

lems in the following chapters.

programming

An important issue that we should address, although it is not real

ly critical to the central concerns of the book, is the way algorithms

are executed by real computers. How do computers bridge the gap

between their extremely modest capability to carry out operations

on bits and the high-level actions humans use to describe algor

ithms? For example, how can bit manipulation be made to accom

plish even such a simple-looking task as 'proceed through the list,
adding the current employee's salary to the noted number? What list?

Where does the computer find the list? How does it proceed

through the list? Where exactly is the salary to be found? How is the

'noted number' accessed? And so on.

We have already mentioned that algorithms must be presented to

the computer in a rigorous, unambiguous fashion, since when it

comes to precision and unambiguity, 'proceed through the list' is not

much better than ' beat egg whites until foamy'. This rigor is achieved

by presenting the computer with a program, which is a carefully

formulated version of the algorithm, suitable for computer execu

tion. It is written in a programming language, which provides the

notation and rules by which one writes programs for the computer.

w h a t ' s i t a l l a b o u t ? 1 9

A programming language must have a rigid syntax, allowing the

use of only special words and symbols. Any attempt to stretch this

syntax might turn out to be disastrous. For example, if 'input K is

written in a language whose input commands are of the form 'read
K, chances are that the result will be something like 'SYNTAX

ERROR E45 14 IN LINE 1 08'. And of course, we cannot hope to

address the computer with the like of 'please read a value for K from
the input', or 'how about getting me a value for K. These might result

in a long string of obscure error messages. It is true that nice, talk

ative instructions, such as the ones we find in recipes, are more

pleasant and perhaps less ambiguous than their terse and imper

sonal equivalents. It is also true that we strive to make computers

as user-friendly as possible. But since we are still far from comput

ers that can understand free-flowing natural language like English

(see Chapter 7) , a formal, concise, and rigid set of syntactic rules is

essential.

An algorithm for summing the numbers from 1 to K might be

written in a typical programming language as follows:

input K

x:=o

for Yfrom 1 to K do
X:=X + Y

end
output X

The intended meaning of this program is as follows. First, K is

received as an input and the variable X (a 'noted number') is

assigned an initial value of zero. Its role will be to accumulate the

running sum we are calculating. Next, a loop is carried out, calling

for its body - in our case the X : = X + Y that appears between the

2 0 c o m p u t e r s L t d .

for command and the end - to be executed again and again. The

loop is controlled by the variable Y, which starts out with the value

1 and increases repeatedly by 1 until it reaches K, which is the last

time the X : = X + Y is executed. This causes the computer to con

sider all the integers from 1 to K, in that order, and in each iteration

through the loop the integer considered is added to the current

value of X. In this way X accumulates the required sum. When the

loop is completed, the final sum is output.

Of course, this is what we intend the program to mean, which is

not enough. The computer must somehow be told about the

intended meaning of programs. This is done by a carefully devised

semantics that assigns an unambiguous meaning to each syntacti

cally allowed phrase in the programming language. Without this,

the syntax is worthless. If meanings for instructions in the lan

guage have not been provided and somehow 'explained' to the

computer, the program segment 'for Y from 1 to K do' might, for

all we know, mean 'subtract Y from 1 and store the result in K,
instead of it being the controlling command of the loop, as we

intended. Worse still, who says that the keywords from, to, do, for

example, have anything at all to do with their meaning in English?

Maybe the very same program segment means 'erase the com

puter's entire memory, change the values of all variables to zero,

output "TO HELL WITH PROGRAMMING LANGUAGES", and

stop! '. Who says that ' : =' stands for 'assign to', and that '+' denotes

addition? And on and on. We might be able to guess what is meant,

since the language designer probably chose keywords and special

symbols intending their meaning to be similar to some accepted

norm. But a computer cannot be made to act on such assumptions.

To summarize, a programming language comes complete with

rigid rules that prescribe the allowed form of a legal program, and

w h a t ' s i t a l l a b o u t ? 2 1

also with rules, just as rigid, that prescribe its meaning. We can now

phrase, or code our algorithms in the language, and they will be

unambiguous not only to a human observer, but to the computer

too.

Once the program is read in by the computer, it undergoes a

number of computerized transformations, aimed at bringing it

down to the bit-manipulation level that the computer really 'under

stands'. At this point the program (or, rather, its low-level equiva

lent) can be run, or executed, on a given input (see Fig. 1.4).5

errors and correctnes s

Coming up with a bright idea for an algorithm, constructing the

algorithm itself carefully and then writing it up formally as a pro

gram, doesn't mean we are done. Consider the following:

• Several years ago, around her 1 07th birthday, an elderly lady

received a computerized letter from the local school authorities

in a Danish county, with registration forms for first grade in ele

mentary school. It turned out that only two digits were allotted

to the 'age' field in the population database .

• In January 1 990, one of AT&T's switching systems in New

York City failed, causing a major crash of the national AT&T

telephone system. For nine hours, almost half of the calls made

through AT&T failed to connect. As a result, the company lost

5 The main transformation among these is called compilation. The
compiler, which is itself a piece of software, transforms the high-level
program into a functionally equivalent program written in a low-level
format called assembly language, which is much closer to the machine
language of bit manipulation.

2 2 c o m p u t e r s L t d .

Algorithmic
idea

Programmer
(human)

Compiler
(software)

(��.::: .. '-�-)
Compilation "\

Fig. 1 .4. Transforming an algorithm into machine code.

Computer
execution

more than $60 million, not to mention the enormous losses

accrued by airlines, hotels, banks, and all kinds of other estab

lishments that rely critically on the telephone network. The

failure was caused by a software flaw, and escaped detection even

w h a t ' s i t a l l a b o u t ? 2 3

by the complex software-testing methods of AT&T, Moreover,

although the error was in a single program, it caused a cascade

of failures that avalanched through the entire system, resulting

in what turned out to be essentially a collapse of the entire

network.

• In June 1996, less than a minute into its first flight, the French

rocket Ariane 5 self-destructed, causing direct and indirect losses

of several billions of dollars, and many months of setback for the

entire Ariane space program. In the words of the inquiry board,

the failure was caused by 'the complete loss of guidance and atti

tude information 37 seconds after start ofthe main engine ignition

sequence: and that this was 'due to specification and design errors

in the software of the inertial reference system'. The error, it turned

out, was in a single line of code that attempted to load a 64-bit

number into a 16-bit location in the computer, causing overflow.

These are just three of numerous tales of software failures, many of

which have ended in catastrophes, at times with loss of life. It is

naive to assume that the algorithms and programs we write will

always do exactly what we had in mind. Getting them to be correct

takes lots and lots of very hard work, and is often unsuccessful.

The correctness issue has surfaced recently in all its severity

around the so called Y2K problem, or the 2000 year bug, which is

expected to come to a climax at the turn of the century, when com

puters that used two digits for storing years will have to start deal

ing with dates that have a year component of 00 or 05. At the time

of writing (mid- 1999) no-one knows the extent of the difficulties

or catastrophes this will cause; immense efforts and enormous

amounts of money have been put into minizing its impact.6 Put

very simply, definitions of algorithmic problems in the past did not

normally take into account years that go beyond 1 999.

Footnote 6 can be found on p. 24

24 c o m p u t e r s L t d .

Establishing correctness is particularly difficult because algo

rithms are required to produce the right outputs when run on any

one of the legal inputs specified in the problem. Partial solutions

are unacceptable. To use the example of testing a number for pri

mality (Problem 3) , it would be laughable if someone were to pro

pose an algorithm that works well for half of the inputs - the even

numbers .7 As a more extreme example, consider the following

trivial algorithm for summing salaries:

1 . produce 0 as output.

This 'algorithm' works perfectly well for several interesting lists of

employees: those with no employees at all, those in which everyone

earns $0.00, or those with a payroll that reflects a perfect balance

between positive and negative salaries. Clearly, this is not good

enough. Our algorithms have to work as required for all legal

inputs. This is a strict requirement: we want complete, foolproof

solutions. No almosts. (In Chapter 6 we shall relax this somewhat,

but for now these are the rules of the game.)

A frequent kind of error stems from abusing the syntax of the

programming language. If we write 'read X' when the program

ming language requires 'input X', or even merely misspell the word

input, there is no way for the computer to know what we meant,

and the program will not be able to run or will produce garbage. So

we must be careful with that. Nevertheless, syntax errors are but a

troublesome manifestation of the fact that algorithms run by com-

6 Added in proof-reading (early 2000) : fortunately, the morning of
January 1, 2000 went by without too much trouble. Curiously, instead of
applauding, and being grateful for all this work, some people have tried
to claim that the whole issue was a hoax to begin with.

7 The only even prime is 2.

w h a t ' s i t a l l a b o u t ? 2 5

puter are required to b e presented i n formal attire.s Much worse are

logical errors. These do not mean that something is wrong with the

program as is, but simply that it doesn't solve the algorithmic prob

lem we had in mind. Unlike syntax errors, logical errors can be

notoriously elusive. They often reflect flaws in the very design of the

algorithm. Someone once said that logical errors are like mermaids

- the fact that you haven't seen one doesn't mean they don't exist.9

The quest to eliminate logical errors in algorithmics is a deep

and complex topic, and is outside the scope of this book. The naIve

method is to repeatedly execute the program on many different test

inputs, checking the results. This process is called debugging, a

name with an interesting history: one of the early computers

stopped working one day and was found to have a large insect

jammed in a crucial part of its circuitry. Since then, errors, usually

logical errors, are affectionately termed bugs.

All this has to do with the algorithms and programs - the soft

ware. As far as hardware goes, computers make less mistakes. A

hardware error is quite a rarity these days, despite the famed 1 997

bug in Intel's Pentium II chip. In fact, when our bank statement is

in error and we are told that the computer made a mistake, it was

most certainly not the computer that erred but one of the humans

involved in the bank's computerization process. Either incorrect

data was input to the program, or the program itself, written, of

course, by a human, contained an error.

8 Many compilers are made to spot syntax errors, and will notify the
programmer, who will typically be able to correct them with little effort.

9 See G. D. Bergland (1981) . 'A Guided Tour of Program Design
Methodologies', Computer 14, 1 3-37.

2 6 c o m p u t e r s L t d .

termination

An algorithm that completes its work but produces the wrong out

put is just one kind of worry. When it comes to the need for our

algorithms and programs to do what we expect, there is something

else we have to worry about - an algorithm that doesn't terminate

at all, but, rather, keeps running on its input forever. This is clearly

an error too. We don't want our programs to loop forever, i.e. to get

stuck in an infinite non-terminating computation. The execution

of a program on any one of its legal inputs should terminate with

in a finite amount of time, and its output must be the correct one.

Often, we can see rather easily how to make sure that our algor

ithm terminates. As a simple example, suppose we are devising an

algorithm to check the primality of a number. We might have decid

ed, rather stupidly, to base our approach directly on the definition of

a prime number, verbatim. That is, in an attempt to find a factor (a

divider) of the input number, we instruct our algorithm to try to

divide it by each and every number from 2 on, in turn, with no

bounds set. This rather silly algorithm would clearly loop indefin

itely when run on a number that was indeed prime. Fortunately, as

we have seen, there are obvious ways to bound the number of candi

date divisors that need to be tested, and these guarantee termination.

Contrast this example with Problem 8 of the list given earlier, in

which we don't seem to be that lucky: a solution algorithm is

required to give one answer if the input program P behaves in some

particular way, and another answer if it doesn't. There appears to

be no way for us to make the decision without actually running P,

a process that can itself fail to terminate. Worse, it seems that we

have to run P on infinitely many inputs, not just on one or two.

We shall return to this example in the next chapter.

chapter 2

s ometi mes
can't do

we
i t

The message of this chapter is simple and clear. Computers are not

omnipotent. They can't do everything. Far from it.

We shall discuss problems that cannot be solved by any comput

er, past, present or future, running any program that can be

devised, even if given unlimited amounts of time and even if

endowed with unlimited storage space and other resources it might

need. We still require, of course, that algorithms and programs

terminate for each legal input in a finite amount of time, but we

allow that time to be unlimited. The algorithm can take as long as

it wishes, and can use whatever resources it asks for in the process,

but it must eventually stop and produce the right output.

Nevertheless, even under these generous conditions, we shall see

interesting and important problems for which there simply are no

algorithms, and it doesn't matter how smart we are, or how sophis

ticated and powerful our computers, our software, our program

ming languages and our algorithmic methods. Figure 2. 1 is intend

ed to set the stage for what is to come.

28 c o m p u t e r s L t d .

®

Fig. 2. 1 . The sphere of algorithmic problems: Version 1 .

These facts have deep philosophical implications, not only on

the limits of machines like computers, but also on our own limits

as beings with finite mass. Even if we were given unlimited

amounts of pencil and paper, and an unlimited lifespan, there

would be well-defined problems we could not solve. It is also

important to stress that this is not just a fact about computing, by

brain or by machine. It is a fact about knowing. In a strong sense,

what we can compute is what we are able to figure out by careful

step-by-step processes from what we already know. The limits of

computation are the limits of knowledge. We may have insight and

depth, and some people have astonishing brilliance, but there is a

strong case to the effect that what is deducible from facts is what

can be computed from them algorithmically.

Some people are opposed to drawing such sweeping conclusions

from mere algorithmic results, and indeed we shall not get into this

more general issue. It definitely deserves a broader treatment.

Instead, we shall stick to the mathematically rigorous aspects of

pure algorithmics, leaving the speculative and controversial facets

of our story to philosophers and cognitive scientists.

s o m e t i m e s we c a n ' t d o i t 2 9

fi nite problems are s olvable

The first thing to notice is that any algorithmic problem with a

finite set of inputs is solvable. That is, if all it will ever have to deal

with is a finite, limited set of possible inputs, there is an algorithm

to solve it. Suppose we have a decision problem whose sole legal

inputs are the items inputl , input2, . . . , inputK. Then there is an

algorithm that 'contains' a table providing each of the K inputs

with the appropriate output. It might look like this:

1 . read the input;

2. if it is inputl then output 'Yes' and stop;

3. if it is input2 then output 'Yes' and stop;

4. if it is input3 then output 'No' and stop;

K + 1. if it is inputK then output 'Yes' and stop.

This works, of course, because it is possible to 'hard-wire' into an

algorithm the entire algorithmic problem in all its glory by tabu

lating all the (finitely many) input-output pairs. It might be

difficult to figure out the tabulation itself, that is, to construct such

a table-driven algorithm, but we are not interested in this meta

difficulty here. For the present discussion, it suffices to know that

for finitary problems solutions exist, and we ignore the issue of

how to find them.

In contrast, algorithmic problems that have infinite sets of legal

inputs are the really interesting ones. For these, we don't even

know if there exists a finite algorithm to tackle the infinitely many

different cases, and it is those that will keep us busy.

30 c o m p u t e r s L t d .

the tiling problem

Our first example of a noncomputable problem involves covering

large areas using colored tiles. A tile is defined to be I x I square,

divided into four by the diagonals, each quarter colored with some

color. We assume that the tiles have fixed orientation and cannot

be rotated, l

An input is a finite number of tile descriptions, collectively

denoted by T. Each tile type in T is defined by its four colors in

order. The problem asks whether any finite area, of any size (with

integer dimensions, of course) , can be covered using only tiles of

the kinds described in T, but adhering to the following restriction:

the colors on the touching edges of any two adjacent tiles must be

identical. An unlimited number of tiles of each type is available,

but in T there is only a finite, limited number of types of tiles.

Think of tiling your living room. The input T is a description of

the various types of tile available, and the color-matching restric

tion reflects a rule enforced by your interior designer for esthetic

reasons. The question we would like answered ahead of time is this:

can any room, of any size, be tiled using only the available tile

types, without violating the color-matching rule?

This algorithmic problem and its variants are commonly known

as tiling problems, and are sometimes called domino problems
because of the domino-like restriction on touching edges.

I After you finish reading this section you might want to try to convince
yourself that this assumption is, in fact, necessary. We should add,
however, that it is necessary only in the version we discuss here. It is easy
to define a variant of the tiling problem, where instead of colors having
to be identical, they have to match up in pairs (e.g. red against blue,
green against orange, etc .) . In such a version, the rotations-forbidden
constraint is redundant, and the bad news is exactly the same.

s o m e t i m e s we c a n ' t d o i t 31

In way of illustration, consider Fig. 2.2, which shows three tile

types and a 5 x 5 tiling. The reader will have no difficulty verifying

that the pattern in the figure can be extended in all directions, to

yield a tiling of any sized room whatsoever. As can also be seen,

this tiled portion uses only the three available types, and it adheres

to the color-matching rule. However, exchange the bottom colors

of tiles (2) and (3) as in Fig. 2 .3 , and the situation changes

dramatically. It is now quite easy to show that even very small

rooms cannot be tiled at all, since no matter how you attempt to

lay down the tiles you will be forced very quickly into situations

with mismatched colors. Figure 2.3 illustrates this. An algorithm

for the til ing problem, thus should answer 'Yes' to the input

consisting of the three tile types of Fig. 2.2, and 'No' to those of

Fig. 2.3.
Can we somehow mechanize or 'algorithmicize' the reasoning

employed in generating these answers?

(I) (2) (3)

Fig. 2.2. Tile types that can tile any room, of any size.

32 c o m p u t e r s L t d .

(I) (2) (3)

�--.... ! !

Fig. 2.3. Tile types that cannot tile even very small rooms.

The answer is no,2 and this must be said in the strongest possible

way:

There is no algorithm, and there never will be, for solving the tiling

problem!

You can try to devise one, and it might actually work quite well

some of the time, on some of the inputs. Still, there will always be

inputs upon which your algorithm will misbehave: it will either

run forever and never halt, or will produce the wrong output.

This problem does not ask for a complicated output, such as a

sample tiling when the answer is 'Yes', or an illustration of the

impossibility of tiling when it is 'No'; all we want is a bare indica

tion as to which of these is the case. Even so, the problem cannot be

solved. And to repeat a point made in the Preamble, this fact has

been proved mathematically. The problem has no solution and it

never will. Period.

2 H. Wang (1961). 'Proving Theorems by Pattern Recognition', Bell Syst.
Tech.]. 40, 1-42; R. Berger (1 966). 'The Undecidability of the Domino
Problem', Memoirs Amer. Math. Soc. 66.

s o m e t i m e s we c a n ' t d o i t 3 3

An algorithmic problem that admits no solution i s termed non
computable; if it is a decision problem, as is the case here and in

most of the examples that follow, it is termed undecidable. The

tiling problem is thus undecidable: there is no way we can construct

an algorithm, to be run on a computer, any computer, regardless of

the amount of time and memory space required, that will be able to

distinguish between tile types that can tile all areas and those that

cannot.3 This problem, then, lies above the line of Fig. 2. 1 .

do we really mean it?

Are we really claiming that this problem has no algorithmic solu

tion at all? How can we justify drawing the grand line of Fig. 2 . 1 ?

What gives us the right to use such all-inclusive terms like non

computable and undecidable? 'Maybe', the reader might claim,

'you can't solve it, on your computer, with your ancient system

software, mediocre programming language and old-fashioned

algorithmic methods and tricks. But not me. I have an amazingly

powerful supercomputer, I am smart and I work with incredibly

sophisticated programming languages and state-of-the-art

methodologies; I can surely do it! . . . '.

3 There is a subtly different version of the tiling problem. We asked
whether the tile set T can be used to tile any finite area, of any size.
Instead, we could have asked whether T can be used to tile the entire
infinite two-dimensional plane. Interestingly, these two problems are
completely equivalent: a 'Yes' for the first version is a 'Yes' for the second
version too, and a 'No' for the first is a 'No' for the second too. One
direction of this equivalence (if we can tile the entire infinite plane then
we can tile any finite area) is trivial, but the argument that establishes
the other direction is quite delicate. You are encouraged to try to find it.
Thus, the infinite-plane version is also undecidable.

34 c o m p u t e r s L t d .

Well, no, dear reader, you cannot. When we label a problem non

computable or undecidable, we really and truly mean it. You can't

solve it, and neither can anyone else, no matter how rich or patient

or smart.

Still, the claim does sound very strange if we don't restrict the

basic operations. Surely, if anything is allowed, the following two

step procedure solves the tiling problem:

1 . If the tile types in the input set T can tile rooms of any size,

output 'Yes' and stop;

2. Otherwise, output 'No' and stop.

So, is this not a solution? It consists of but two basic operations,

and thus terminates in a finite amount of time, as it should. And

surely it will always produce the correct output too.

Well, we must be a little more careful. Suppose we choose a fixed

programming language Lang as the medium for expressing algor

ithms, and a fixed computer Comp as the machine on which they

are to run (with the understanding that Comp can grant any

amount of time, additional storage space, and any other tangible

resource requested by a program during a computation) . Suppose

that we also agree that, for the moment, whenever we talk about an

algorithm we really mean 'a program written in Lang and running

on Comp'. With this setup, when we say 'no algorithm exists' we

really mean that no program can be written in the specific lan

guage Lang for the specific computer Compo This sounds a little less

wild: it is conceivable that some problems will indeed be unsolv

able if one is limited to working with a specific hardware/ software

framework (sometimes called a model of computation) . In fact, a

reasonable way to dismiss the above two-line 'solution' to the tiling

problem is to convince its proposers that there is no way to imple-

s om e t i me s we c a n ' t d o i t 3 5

ment the test i n line 1 using their chosen language Lang running on

their machine Camp.
'OK', those proposing the two-line solution might say, 'so we

can't solve the problem on this particular computer and with this

particular language, but we could solve it had we a more powerful

computer and a more sophisticated language.' Isn't the issue

merely a question of coming up with the right algorithmic idea,

designing the corresponding software and running it on a

sufficiently powerful piece of hardware?4

No, it isn't. Not at all.

Actually, the situation is far more striking. It is not only that each

model of computation can be shown to be fallible, by exhibiting

some special problem it cannot solve, but there are fixed problems

(the tiling problem is one of them) that are bad news for each and

every model. That is, these problems are noncomputable regard

less of the model chosen. They are thus inherently noncomputable.

Worse, we computer scientists believe that this applies not only to

currently known models, but to any effectively implementable lan

guage, running on any computer of any type, size or shape, now or
at any time in the future. And this is what we mean when we say

that a problem is noncomputable.

Amazingly, all that is needed in order to establish that a problem

is noncomputable in this all-embracing sense is to show that it

can't be solved within an extremely simple-looking model of com

putation, which we now set out to describe. That it actually can't

be solved in any known model whatsoever, including the most

4 This is probably what the TIME magazine interviewee quoted in the
Preamble had in mind.

3 6 c o m p u t e r s L t d .

powerful computers invented and those that will be invented in

the future, will follow from this modest-looking fact.

elementary computing devices

Let us see how simple we can make a general computing model.

The first thing to notice is that any item of data used by an algor

ithm can be viewed as a string of symbols. An integer is but a string

of digits, and a fractional number is a string of digits with a deci

mal point. A word in English is a string ofletters, and an entire text

is really just a string of symbols consisting of letters, blanks, and

punctuation marks. More complicated objects, such as lists, tables,

city-connection networks, graphs, pictures, video sequences, and

even whole databases, can also be encoded this way, by using

special delimiting symbols to signify new items, line breaks, file

borderlines, and so on.

The number of different symbols used in all such encodings is

actually finite, and can always be fixed ahead of time. This is the

ingenuity of a standard numbering scheme, such as the decimal

system: we do not need infinitely many symbols, one for each

number - 10 symbols suffice to encode them all.5 The same obvi

ously applies to words, texts, and pictures, since only a finite num

ber of letters, punctuation marks, color codes, and special symbols

are used in writing or in rendering images for computerization.

Consequently, in principle, we can write any data of interest along

a one-dimensional tape, perhaps a long one, which consists of a

sequence of squares, each containing a single symbol taken from

some finite alphabet. In order to allow for additional 'scrap paper'

5 The binary system uses just two, 0 and l .

s o m e t i m e s we c a n ' t d o i t 3 7

to be used during the execution, the tape will be of unlimited

length. We are not saying that it is convenient to work with data

encoded in this primitive fashion, only that it is possible to do so.

So much for simplifying the data.

Now to the algorithmic/computational work itself. Instead of

our device being able to do great things in manipulating data and

computing thereon, we endow it with only the most trivial cap

abilities. It is allowed to look at one square of the tape at a time,

examine the symbol it sees there, overwrite it with some other

symbol of the finite alphabet if it wishes to, and move one square to

the right or the left in preparation for its next action. To help the

device decide which symbol to write and in what direction to move

after the writing, it will be equipped with an extremely limited

'mind: in the form of a sort of gearbox, whose various positions -

and there are only finitely many of them - are called states. At any

given point in time, the device is said to be in one of the states (i .e .

engaged in one of the gears) , and depending on that state and the

symbol it sees on the square it is looking at, it will make its deci

sions regarding how to rewrite the symbol it is looking at and

whether to move to the left or the right.

The mechanism resulting from all this is called a Turing
machine, after the British mathematician Alan M. Turing, who

conceived of it in 1 936.6 A Turing machine is thus extremely sim

ple (see Fig. 2 .4) . It chugs along a one-dimensional tape, one

square at a time, in one of a finite number of gears, or states. In so

doing, it uses an 'eye' of very limited power (actually called a head)

6 A. Turing (1936). 'On Computable Numbers with an Application to
the Entscheidungsproblem', Proc. London Math. Soc. 42, 230-65.
Corrections appeared in: ibid. (1937) , 43, 544-6.

38 c o m p u t e r s L t d .

Fig. 2.4. A Turing machine.

to contemplate and possibly change the symbol it finds on the cur

rent square. It then 'changes gear', and hops over to a neighboring

square for its next step. That's all.

Here is an informal description of a Turing machine that has

been programmed to add two decimal numbers X and Y. (You can

skip to the next section if you feel you might be bored by a rather

tedious description of how a primitive-looking machine adds

numbers .) The input numbers are given on the tape, separated by

the symbol +, and the rest of the tape contains blanks, which are

denoted here by #. See Fig. 2.5, which shows, from top to bottom,

some snapshots of the tape as the computation proceeds.

Initially, the head is positioned at the leftmost symbol of the first

number X - in this case, it is the 7. The machine then travels to

the rightmost digit of X - the 6 - one square at a time, without

making changes, until it reaches the separating symbol +, and then

s o m e t i me s we c a n ' t d o i t 3 9

7 3 6 + 6 3 5 9 # #

5 7 3 # + 6 3 5 # # #

5 5 7 # # + 6 3 5 # # # #

2 5 5 # # # + 6 3 # # # # #

4 2 5 5 # # # + 6 # # # # # #

6 4 2 5 5 # # # + # # # # # # #

6 4 2 5 5 # # # + # # # # # # #

Fig. 2.5. Adding numbers with a Turing machine.

moves one square to its left. It then erases this digit, i.e. replaces it

with a blank, while 'remembering' the erased digit as its state; it

will need 10 different states for this, one for each digit. The

machine then travels over to the rightmost digit of Y - the 9 -

and erases it too, entering a state that remembers the sum digit of

the two numbers, and whether or not there is a carry. This state

depends only on the current digit and the memorized one, and

hence 20 different states are needed - one for each of the possible

combinations of the 10 sum digits and the carry/no-carry indica

tion. The machine then moves to the left of what remains of X and

writes the sum digit down - a 5 in this case - having prepared a

new separating symbol, say, an exclamation mark, ' ! '. This situation

is illustrated in the second line of the figure.

The next step is similar, but involves the currently rightmost dig

its (which were second from the right in the original numbers -

here the 3 and the 1) , and takes the carry into account, if there is

one. The new sum digit - here 5 because of the carry - is written

down to the left of the previous one, and the process continues. Of

course, any one of the two input numbers might run out of digits

before the other, in which case, after adding the carry (if there is

one) to the remaining portion of the larger number, that portion is

40 c o m p u t e r s L t d .

just copied down on the left, tediously, digit by digit. Finally, a

second exclamation mark is written down on the extreme left, to

identify the machine's output as consisting of the portion of the

tape enclosed by the two exclamation marks, and the machine halts.

Phew . . .

the church- turing thes is

This example is a little surprising. Turing machines have only

finitely many states, that is, a finite 'brain', and the only thing they

can do is to rewrite symbols on a linear tape one at a time.

Nevertheless, they can be programmed to add numbers of any size

and shape. The task can be frustrating and thankless, and the

machine's method of execution can be painfully slow and simple

minded (try to describe a Turing machine to multiply numbers or

to compute the average of N salaries) , yet it gets the job done.

With this in mind, let us forget about tedium, frustration and

efficiency for the moment, and ask ourselves what indeed can be

done with Turing machines, for whatever cost and no matter how

painstakingly? Which algorithmic problems can be solved by an

appropriately programmed Turing machine?

The answer to this is not a little surprising, but very surprising

indeed: Turing machines are capable of solving any effectively solv

able algorithmic problem! Put differently, any algorithmic problem

for which we can find an algorithm that can be programmed in

some programming language, any language, running on some

computer, any computer - even one that has not been built yet

(but, in principle, can be built) , and even one that requires

unbounded amounts of time and memory space for ever-larger

inputs - is also solvable by a Turing machine!

s om e t i me s we c a n ' t d o i t 41

This statement is one version of the so-called Church-Turing
thesis, after Alonzo Church and Turing, who arrived at it inde

pendently in the 1 930s, following the work of Kurt Godel on the

incompleteness of mathematics. 7

It is important to realize that the CT thesis, as we shall call it

(both for Church-Turing and for computability theory) , is a thesis,

not a theorem, since part of it cannot be proved mathematically.

The reason for this is that one of the concepts it involves is infor

mal and imprecise, namely, effective solvability, or effective com
putability. The thesis equates the mathematically precise notion of

'solvable by a Turing machine' with the informal, intuitive notion

of 'effectively solvable', which alludes to all real computers and all

programming languages, past, present, and future. It thus sounds

more like a wild speculation than what it really is: a deep and far

reaching statement, put forward by two of the most respected pio

neers of the science of computing. And, as we shall see, while its

futuristic facet cannot be proved until the future materializes, its

past and present facts have been proved.

Turing machines are a little like typewriters. A typewriter is

also a very primitive kind of machine. All it enables us to do is to

type sequences of symbols on blank paper. Yet despite this, any

7 K. Godel (1931) . 'Ober formal unentscheidbare Siitze der Principia
Mathematica und verwandter Systeme, I ', Monatshefte fur Mathematik
und Physik 38, 1 73-98; A. Turing (1 936). 'On Computable Numbers
with an Application to the Entscheidungsproblem', Proc. London Math.
Soc. 42, 230-65; A. Church (1 936). 'An Unsolvable Problem of
Elementary Number Theory', Amer. J. Math. 58, 345-63. See also
S. C. Kleene (1981). 'Origins of Recursive Function Theory', Ann. Hist.
Comput. 3, 52-67, and M. Davis (1982). 'Why Godel Didn't Have
Church's Thesis', Inf. and Cont. 54, 3-24.

42 c o m p u t e r s L t d .

typewriter can be used to type anything, even Hamlet or War and
Peace. Of course, it might take a Shakespeare or a Tolstoy to

'instruct' the machine to do so, but it can be done. In analogy, it

might take very talented people to program Turing machines to

solve difficult algorithmic problems, but the basic model, so the

CT thesis tells us, suffices for all problems that, in principle, can be

solved by some device.

On the face of it, there is little reason to choose the Turing

machine model to be the one the CT thesis mentions explicitly.

The thesis might have talked about the model underlying a large

IBM mainframe or a powerful Silicon Graphics workstation. In

fact, one of the most striking formulations of the thesis doesn't

mention a particular model at all, but states simply that all com

puters and all programming languages are equivalent in computa

tional power, given unlimited computation time and memory

space.

computability is robus t

Why should we believe the CT thesis, when even its proponents

admit that the yet-to-be-seen parts of it can't be proven? What evi

dence is there for it, and how does that evidence fare in an age of

incredible day-to-day advances in both hardware and software?

Let us go back to the 1 930s. At that time, several researchers were

busy devising various algorithmic models, with the goal of trying

to capture the slippery and elusive notion of effective comput

ability, i.e. the ability to compute mechanically or electronically.

Long before the first actual computers were invented, Turing sug

gested his limited-looking machines and Church devised a simple

mathematical formalism of functions called the lambda calculus.

s o me t i me s we c a n ' t d o i t 4 3

Around the same time, Emil Post defined certain symbol-manipu

lating mechanisms called production systems, and Stephen

Kleene defined a class of mathematical objects called recursive
functions. All these people tried, and succeeded, in showing that

their models were able to solve many algorithmic problems for

which 'effectively executable' algorithms were known. Actually,

collectively, they also succeeded in showing that their formalisms

were all equivalent in terms of the class of problems they could

solve. Other people have since proposed numerous different mod

els for the universal algorithmic device. Some of these models

underly real computers, and some are purely mathematical in

nature. But the crucial fact is that they have all been proven to be

computationally equivalent; the class of algorithmic problems they

can solve is the same. And this fact is still true today, even for the

most powerful models conceived.s

Thus, the strongest, most powerful computer you know,

coupled with the richest, most sophisticated programming lan

guage it supports, cannot do any more than can be done with a

8 A. Turing (1 936) . 'On Computable Numbers with an Application to
the Entscheidungsproblem', Proc. London Math. Soc. 42, 230--65;
corrections appeared in: ibid (1 937) . 43, 544-6; A. Church (l 936) . 'An
Unsolvable Problem of Elementary Number Theory', Amer. J. Math. 58,
345-63; S. C. Kleene (1 935) . 'A Theory of Positive Integers in Formal
Logic', Amer. J. Math. 57, 1 53-73, 2 1 9-44; E. Post (1 943) . 'Formal
Reductions of the General Combinatorial Decision Problem', Amer. J.
Math. 65, 197-2 1 5; S. C. Kleene (l 936) . 'General Recursive Functions
of Natural Numbers', Math. Ann. 1 1 2, 727-42. For proofs of the
equivalence of these formalisms, see S. C. Kleene (1936) . 'A-Definability
and Recursiveness', Duke Math. J. 2, 340-53 ; E. Post (l 936) . 'Finite
Combinatory Processes - Formulation 1 ', J. 5ymb. Logic 1, 1 03-5;
A. M. Turing (1 937) . 'Computability and A-Definability', J. 5ymb. Logic
2, 1 53-63.

44 c o m p u t e r s L t d .

simple laptop and a very modest language. Or, for that matter,

any more than can be done by the ultimate in computational

simplicity - the ever so primitive Turing machine mode1.9

Noncomputable (or undecidable) problems, such as the tiling

problem, are solvable on neither, and computable (or decidable)

problems, such as sorting words or testing a number for primality,

are solvable on both. All this, mind you, on condition that running

time and memory space are not an issue: there must be as much of

those available as is needed.

This means that the class of computable, effectively solvable, or

decidable algorithmic problems is, in fact, extremely robust. It is

invariant under changes in the computer model, the operating

system, the programming language, the software development

methodology, etc. Proponents of a particular computer architec-

9 Another extremely primitive model of computation that is nevertheless
as powerful as Turing machines and is therefore also of universal power
and subject to the CT thesis, is that of counter programs, or counter
machines. A counter program is a sequence of simple instructions on
non-negative integers that can assign 0 to a variable (X � 0) , and can
increase or decrease a variable by one (X � Y + 1 and X � Y - 1) . It
can also branch conditionally, based on the zero-ness of a variable
(if X = 0 goto G, where G labels some other instruction in the sequence) .
Surprisingly, merely incrementing and decrementing integers by 1 and
testing values against 0 can be used to do anything any computer can do.
Turing machines and counter programs are dual models in the following
interesting sense: they both have access to unlimited amounts of
memory, but in different ways. With Turing machines, the number of
memory items (the tape's squares) is unlimited, but the amount of
information in each is finite and is bounded ahead of time (one symbol
from a fixed and finite alphabet) . With counter programs it is the other
way around: there are only finitely many variables in a given program,
but each can contain an arbitrarily large number as its value, thus
encoding a potentially unlimited amount of information.

s o m e t i m e s we c a n ' t d o i t 4 5

ture o r programming discipline must find reasons other than raw

solving power to justify their recommendations, since anything

doable with one is also doable with the other, and all are equiva

lent to the primitive machines of Turing or the various formalisms

of Church, Post, Kleene, and others.

That so many people, working with such a diversity of tools and

concepts, captured the very same notion (long before any actual

computers were built, we should add !) , is evidence for the pro

fundity of that notion. That they were all after the same intuitive

concept and ended up with different-looking, but equivalent,

models, is justification for equating that intuitive notion with

those precise models. Hence the CT thesis.

Thus, if we set efficiency aside for now, not caring about how

much time or space an algorithm actually requires, but simply

giving it anything it wants, the line drawn between the com

putable and the noncomputable in Fig. 2. 1 is fully justified.

Moreover, as we proceed in our discussions, we can safely allude

to some favorite computer Camp and programming language

Lang as the model on which algorithmic problems are to be

solved, just as we did earlier on a temporary basis, because it

makes no difference ! Nevertheless, it is intellectually satisfying to

be able to point to a most simple model - Turing machines -

that is as powerful as anything of its kind. 1 o

10 Another advantage of knowing that simple-looking models like Turing
machines or counter programs are universally powerful, is that they are
better suited for establishing bad news. As stated earlier, to prove that a
problem is undecidable, for example, all one has to show is that it
cannot be solved using Turing machines. That it cannot be solved on
any model will then follow from the CT thesis.

46 c o m p u t e r s L t d .

domino s nakes

Let us return for a moment to the tiling problem. Some people

react to its undecidability by saying: 'well, obviously the problem

is undecidable, since a single input can give rise to a potentially

infinite number of cases to check; and there is no way you can get

an infinite job done by an algorithm that has to terminate after

finitely many steps.' Indeed, a single input (that is, a single set T of

tile types) apparently requires all rooms of all sizes to be checked

(or, equivalently, a single infinite 'room') , and there appears to be

no way to set a bound on the number of cases that have to be con

sidered.

This unboundedness-implies-undecidability hypothesis is

unbased, and can be very misleading. In fact, it is often simply

wrong. To drive the point home, here is a similar tiling problem,

whose status violates this hypothesis in a surprising way. As before,

the input contains a finite set T of tile types, but here it also con

tains the coordinates of two points on the infinite plane, V and W.
The problem doesn't talk about tiling whole rooms, but, in the

spirit of real domino games, it asks if it is possible to connect Vand

W by a 'domino snake' consisting of tiles from T, and with the

same color-matching restriction: every two adjacent edges must

have identical colors (see Fig. 2.6) . Note that a snake originating at

V might twist and turn erratically, reaching unboundedly distant

points before converging to W. So, to decide whether or not there

is such a snake, we might have to check ever-larger portions of the

infinite plane (the infinitely large room) - perhaps all of it -

before we either find such a snake or conclude that none exists.

Hence, this problem also seems to require an infinite search,

prompting us to presume that it too is undecidable.

s om e t i m e s we c a n ' t d o i t 4 7

Fig, 2.6. A domino snake connecting V t o W

Curiously, the decidability of the domino snake problem

depends on the portion of the plane available for placing tiles, and

in a very counter-intuitive fashion. If snakes are allowed to go

anywhere (that is, if the allowed portion is the entire infinite

plane) , the problem is decidable; but if the allowed area is limited

to, say, the upper half of the plane, the problem becomes undecid

able! That is, if snakes can run around anywhere, with no limita

tions, there is an algorithm to decide whether there is a snake going

from V to W, but if we do limit its habitat, there is no algorithm.

Surprising, right?

The latter case is 'more bounded' than the former, and therefore

should be 'more decidable'. The facts, however, are quite the other

way around. I I

I I If the available portion of the infinite plane is finite, the problem is
trivially decidable, since only finitely many possible snakes can be
positioned in a given finite area, and an algorithm can be easily designed

continued on next page

48 c o m p u t e r s L t d .

program verifi cation

In Chapter 1 we discussed the need for algorithms and programs

to be correct. Establishing the fact that a candidate program

indeed solves the algorithmic problem you are working on is no

easy feat. So it is tempting to ask whether computers can do this

for us. We would really like an automatic verifier, a piece of soft

ware whose input consists of (the description of) an algorithmic

problem and (the text of) an algorithm, or program. We would

like the verifier to determine algorithmically whether the given

program solves the given problem. In other words, we want a 'Yes'

if for each of the input problem's legal inputs the input program,

had we run it on that legal input, would terminate with the correct

output, and a 'No' if for even a single legal input the input

program would either fail to terminate or would terminate with

the wrong output (see Fig. 2 .7) . The verifier must be able to do this

continued
to examine them all. Far more interesting is the fact that the snake
domino problem has been proved to be undecidable for almost any
conceivable infinite restriction of the plane, as long as the portion under
consideration is unbounded in both directions. The most striking
contrast is best described by saying that only a single point stands
between decidability and undecidability, since the strongest result
known is this: while the problem, as we have seen, is decidable in the
whole plane, it becomes undecidable if even a single point is removed
from the plane, meaning that candidate snakes are allowed to go
anywhere except through a third given point, U. See H.-D. Ebbinghaus
(1 982) . 'Undecidability of Some Domino Connectability Problems',
Zeitschr. Math. Logik und Grundlagen Math. 28, 33 1-6; Y. Etzion
Petrushka, D. Harel, and D. Myers (1994). 'On the Solvability of
Domino Snake Problems', Theoret. Comput. Sci. 1 3 1 , 243-69.

s ometi mes we c a n ' t do i t 4 9

1 . Program A
2. Algorithmic problem P

'Yes: program A
correctly solves

problem P'

Fig. 2.7. A hypothetical program verifier.

'No: program A
does not correctly
solve problem P'

for every choice of algorithmic problem and for every choice of a

candidate program, 12

As a particularly pressing example, wouldn't it be nice if

someone were to establish a start-up company and construct a

general-purpose Y2K verifier? We could have then subjected any

piece of software to the verifier, and found out whether what it

would have done on 1 January 2000 is the same as what it did on

31 December 1999, Is this possible?

12 Here too, it is convenient to fix a computer model and programming
language in advance. Actually, since in this case programs are part of the
input, we must adopt a language with well-defined syntax and semantics,
so as to be able to hand the program verifier a real, tangible object as
input. By the CT thesis, however, such a choice does not detract from
the generality of what we have to say here.

50 c o m p u t e r s L t d .

Well, the general verification problem is undecidable, as is the

special case of verifying compliance with the year 2000. A candi

date verifier might work nicely for many of its inputs; it might be

able to verify certain kinds of programs against certain limited

kinds of specifications, but as a general verifier it is bound to fail.

There will always be algorithms or programs that such a verifier

will not be able to verify. We can thus forget about a computerized

solution to the Y2K problem or any other such sweeping attempt

at establishing the correctness of software by computer.

In contrast to tiling and snake domino problems, which you

might dismiss as toy problems of no practical value, program

verification is an extremely important computer-related task,

coming from the real world. The fact that it is unsolvable dashes

our hope for a software system that would make sure that our

computers do what we want them to.

the halting problem

It turns out that the news is as bad already for a lot less than the

full correctness of programs. We cannot even decide whether a

program merely terminates on its inputs. Worse, it is not even

decidable whether it terminates on one specific input! These issues

of termination, or halting, are at the heart of Problem 8 in the list

given in Chapter 1 , and they deserve special attention.

Consider the following algorithm (call it A):

1 . while X*, 1 do the following: set X f- X - 2;

2 . stop.

In words, the algorithm A repeatedly decreases its input number X

by 2 until it becomes equal to 1 . Assuming that the legal inputs

consist of the positive integers 1, 2, 3, etc., it is quite obvious that

s o m e t i me s we c a n ' t d o i t 5 1

A halts precisely for the odd numbers. An even number will be

decreased repeatedly by 2, will 'miss' the 1, running forever

through 0, -2, -4, -6, etc. Hence the problem of deciding whether

a legal input will cause this particular algorithm to halt is trivial:

all we have to do is to check whether the input is odd or even, and

answer accordingly.

Here is a slightly more complicated algorithm, B:

1 . while X t:. 1 do the following:

1 . 1 . if X is even, set X f- XI2;

1 .2. otherwise (i .e. X is odd) , set X f- 3X + 1 ;

2 . stop.

This algorithm repeatedly halves its input if it is even, but increases
it more than threefold if it is odd. And it too halts if and when it

reaches the value 1 . For example, if B is run on the number 7, the

sequence of values is: 7, 22, 1 1 , 34, 1 7, 52, 26, 1 3 , 40, 20, 1 0, 5 , 16 ,

8, 4, 2, 1 , a s you can easily check, following which execution halts.

Actually, if we try running algorithm B on an arbitrary positive

integer, even using a powerful computer, we will find that it either

terminates, or progresses through an erratic-looking sequence,

reaching surprisingly high values, and fluctuating unpredictably.

In the latter case, one gives up after a while, having not observed

either termination or a periodic sequence of values (which, of

course, would have indicated that the computation will not term

inate) . Indeed, over the years, B has been tested on numerous

inputs, and on large and fast computers. On the one hand, no peri

odicity has been observed, and no-one has been able to come up

with an input for which B can be proved not to terminate. On the

other hand, no-one has been able to prove that B terminates for all
positive integers (although people believe it does) . Which of these

is the case is actually a difficult unresolved question in the branch

5 2 c o m p u t e r s L t d .

of mathematics known as number theory, and it has been open for

some 60 years. I 3

So, here we are, with two algorithms, the uninteresting A and the

far more interesting B. While some mathematicians in the field of

number theory would probably give a lot to find out whether B
halts on all its inputs, B is still but one specific algorithm. In the

study of algorithmics we are not that interested in the halting

behavior of specific programs, even tantalizing ones like B. Rather,

we are interested in the generic problem of determining the halting

behavior of an unknown given algorithm or program. This general

decision problem is called the halting problem.
As input, the halting problem is fed the text of a legal program

A in our chosen programming language Lang, and a potential

input X, which is really nothing more than a string of symbols. The

problem asks whether or not A would have terminated had we run

it on the input X (see Figure 2.8) .

The halting problem, just like the more demanding verification

problem, cannot be solved by algorithmic means; it is undecidable.

This means that there is no way to tell, in general, and in a finite

amount of time, whether the execution of a given program will

terminate on a given input. 14

1 3 J. c. Lagarias (1 985) . 'The 3x + 1 Problem and its Generalizations',
Amer. Math. Monthly 92, 3-23. This is perhaps the simplest-to-describe
open problem in mathematics. To understand it you need to know
nothing except basic arithmetic symbols. Is it or is it not the case that
any positive integer eventually reaches 1 if it is repeatedly halved when
even and tripled and increased by one when odd?

1 4 This is due to Turing. See his 1936 paper referenced in footnote 6 of
this chapter. See also G. Rozenberg and A. Salomaa (1 994). Cornerstones
of Undecidability. Prentice Hall, New York, NY.

Fig, 2,8. The halting problem.

s o m e t i me s we c a n ' t do i t 5 3

Program, or
algorithm

Potential
input

It is tempting to try to solve the problem by a simulation algor

ithm that simply mimics running the program A on the input X and

waits to see what happens. The point is that if and when execution

terminates we can justifiably stop and conclude that the answer is

'Yes': had we indeed run A on X it would have terminated. The

difficulty is in deciding when to stop waiting and say 'No'. We cannot

simply give up after a long wait and conclude that since the simula

tion has not yet terminated it never will. Perhaps if we had left it to

run just a little longer - maybe one more microsecond would do it

- it would have terminated. Simulating the given program's behav

ior on the given input, therefore, does not do the job, and, as stated,

nothing can do the job, since the problem is undecidable.

nothing ab out comp u t ation c an b e

compute d !

This phenomenon is actually much deeper and more devastating.

There is a remarkable result, called Rice's theorem, that shows that

54 c o m p u t e r s L t d .

not only can we not verify programs or determine their halting

status, but we can't really figure out anything about them. l s No

algorithm can decide any nontrivial property of computations.

More precisely, let us say we are interested in deciding some prop

erty of programs, which is (i) true of some programs but not of

others, and (i i) insensitive to the syntax of the program, that is, it

is a property of the underlying algorithm and not of the particular

form it takes in a programming language. For example, we might

want to know whether a program runs in less than a particular

amount of time, whether it ever outputs a 'Yes', whether it always

produces numbers, whether it is equivalent to some other

program, etc., etc.

What Rice's theorem tells us is that no such properties of pro

grams can be decided. They are all undecidable. We can really

forget about being able to reason automatically about programs.

Virtually nothing about computation is computable!

s ome problems are even wors e

As it turns out, three of the undecidable problems mentioned so

far - the tiling problem, the domino snake problem on the half

plane, and the halting problem - are computationally equiva

lent . 1 6 This is not a simple notion, since obviously these problems

look very different: tiling rooms and determining whether pro-

1 5 H. G. Rice (1953) . 'Classes of recursively enumerable sets and their
decision problems', Trans. Amer. Math. Soc. 74, 358-66.
1 6 To be technically precise, the halting problem has to be negated for
this equivalence to hold. In other words, the version that is equivalent to
the others is the non-halting problem, in which we want a 'Yes' if the
given program does not halt on the given input, and a 'No' if it does halt.

s o m e t i m e s we c a n ' t d o i t 5 5

grams terminate, for example, don't seem to have anything to do

with each other. In fact, they have everything to do with each other.

What exactly do we mean by two undecidable problems being

computationally equivalent? Well, the key notion is inter

reducibility. Each one of the two problems is reducible to the

other, in that sense that one can be decided with the aid of an

imaginary solution, or oracle, for the other. Thus, if we had an

algorithm to decide, in general, whether programs halt on inputs

(we can't have a real algorithm for this because the problem is

undecidable, but say we had a hypothetical one, the oracle) we

could use it to decide whether tiles can tile living rooms. And

perhaps more surprisingly, vice versa: if we could decide about

tiling living rooms, we could decide about computer programs

halting. Imagine that!

Having an imaginary solution is like having an immortal oracle

who gives you answers to certain questions for free. Thus, if you had

an oracle who could answer tiling questions whenever asked, you

could solve the halting problem.

A rather striking addendum to the equivalence between these

noncomputable problems is that some problems - program

verification for example - are even less decidable. What on earth

can we mean by this? What can be worse for an algorithmic problem

than to have no solution at all? Here too, the key is reducibility: the

halting problem can be reduced to program verification, meaning

that an imaginary solution to the latter can be used to solve the

former. The converse, however, is not true. Even with a free (imag

inary) oracle for the halting problem, or the tiling problem, or the

half-plane snake domino problem (or even with oracles for all of

these) we could not verify programs. The verification problem is

thus harder than the halting problem; it is less decidable, so to speak.

56 c o m p u t e r s L t d .

This oracle-based way of comparing undecidable problems,

making some of them 'better' than others, induces a classification

of algorithmic problems into levels of undecidability, or levels of

noncomputability. Layers upon layers of problems exist, coming

with worse and worse news! The three equivalent problems we

mentioned, halting, tiling, and half-plane snakes, turn out to be on

one of the lowest such levels. You might say that they are almost
decidable. Sadly, however, many problems reside far higher up in

the hierarchies of ever more terrible news, so that they are much

less decidable than the ones lower down.

One interesting level is sometimes termed high noncomputabil
ity, or high undecidability, and it deserves a zone of its own in the

sphere of algorithmic problems (see Fig. 2.9) . Highly noncom

putable problems are much, much worse than the 'ordinarily'

noncomputable ones we have discussed. In fact, they are infinitely
worse. Even an infinite lineup of increasingly more sophisticated

oracles wouldn't suffice to solve them. Thus, above the almost

The
noncomputable

The
computable

(8)' /0' , . .

®

Fig. 2.9. The sphere of algorithmic problems: Version II.

s o m e t i m e s we c a n ' t d o i t 5 7

computable, o r almost decidable problems (tiling, halting, and

their friends) there are infinitely many different problems, each

more difficult than the ones lower down, and each one not com

putable even with the aid of oracles for all those below it. The

problems we have termed highly undecidable are even worse than

all those. I 7

* * *

1 7 S. C. Kleene (1943) . 'Recursive predicates and Quantifiers', Trans. Amer.
Math. Soc. 53, 4 1-73. The high undecidability we discuss here is called
the l: ltn l level, in technical terminology. A simple example of a highly
undecidable problem is the following variant of the tiling problem (we
use the version of tiling that asks whether the set T of tile types can tile
the entire infinite plane, rather than the one that asks about tiling all
finite areas) . The new variant adds but a small requirement: we want to
know whether T can tile the infinite plane, but in such a way that the
tiling contains infinitely many copies of the first tile listed in T; i.e. a
recurrence of the designated tile type. We want a 'Yes' if there is a T-tiling
of the plane containing a recurrence of this particular tile, and a 'No' if
no such tiling exists. Note that the answer must be 'No' even if there are
legal tilings of the whole plane using the tiles in T, but none of them has
the first tile of T recurring infinitely often. This extra requirement doesn't
look as though it should make a big difference, because if you can tile the
infinite plane using a finite set of tile types, then some of the types must
occur in the tiling infinitely often. The difference is that here we want
a specific tile to recur. Despite the apparent similarity, this recurring
dominoes problem, as it is called, is highly undecidable. It is not
decidable even with the use of imaginary solutions to the infinitely many
other problems residing on lower levels of the undecidability hierarchies.
See D. Harel (1 986) . 'Effective Transformations on Infinite Trees, with
Applications to High Undecidability, Dominoes, and Fairness', J Assoc.
Comput. Mach. 33, 224-48. But don't think that this is as bad as it can
get. Some problems are even worse than the highly undecidable ones,
but we will ease off now, and let it go at that.

58 c o m p u t e r s L t d .

In summary, we have learned that the world of algorithmic/com

putational problems is divided into the computable, or decidable,

vs. the noncomputable, or undecidable, and that among them

selves the problems in the latter class exhibit various degrees of

hardness. We have also seen that these facts are extremely robust

and lasting: the dividing lines of Fig. 2.9 are mathematically

precise and firmly defined, and are insensitive to variations in

computational models, languages, methodologies, hardware or

software.

So our hopes for computer omnipotence are shattered. We now

know that not all algorithmic problems are solvable by computers,

even with unlimited access to resources like time and memory

space.

Can we finish our story here? Isn't this the bad news alluded to

in the Preamble? What else can go wrong?

chapter 3

s ometi mes we
can't af ford
do i t

to

The fact that some tasks cannot be computerized is bad enough

already. But we are not done yet. Let us now concentrate on the

ones that can.

Say we are asked to construct a bridge over a river. The bridge

could be 'incorrect'; it might not be wide enough for the required

lanes, it might not be strong enough to carry rush-hour traffic, or

it might not reach the other side at all! However, even a 'correct'

design may be unacceptable. It might call for too large a workforce,

or too many materials or components. It might also require far too

much time to bring to completion. In other words, although it will

result in a good bridge, a design might be too expensive.
The field of algorithmics is susceptible to similar concerns. Even

if a problem is computable, or decidable, and a correct solution

algorithm is found, that algorithm might be far too costly in its use

of resources, and hence impractical. The term 'impractical' sounds

mild, but it's not: we shall discuss problems that require such

6 0 c om p u t e r s L t d .

formidable amounts of running time or memory space, as to

become just as unsolvable as the ones of the previous chapter.

res ources : time and memory s pace

Lumber, steel, screws, and bolts - the stuff of bridges - are not

relevant here. Instead, we have the resources consumed by com

puter programs, particularly running time and memory space.

These are often referred to as measures of computational com
plexity, and are called simply time and space. Time is measured by

the number of basic actions carried out during an execution, and

space by the area in the computer's memory required to store the

data generated and manipulated in that execution. These depend

on the computer running the algorithm, of course, an issue we

shall return to later.

The amount of time and space used by an algorithm will typically

differ from input to input, and algorithmic performance must be

assessed accordingly. The salary summation algorithm clearly takes

longer on lengthier lists, but this doesn't mean that its time perfor

mance cannot be formulated precisely; all it means is that the for

mulation will have to account for the fact that the running time

depends on (is a function of) , the length of the input list. The

symbol N is often used generically to denote input size; if we say

that an algorithm runs in time SN we mean that it never performs

more than 5 times N basic actions on any given input of size N.
The important thing is the input's size, not the input itself. The

time it takes to multiply two integers should not be much different

for pairs of inputs with the same number of digits, but will typi

cally grow with longer numbers. The same goes for finding paths

in city maps, for searching and sorting lists, etc.

s o m e t i me s we c a n ' t a f f o r d t o d o i t 6 1

Time is a crucial factor i n computation. I n many day-to-day

applications there is vast room for improvement. Time is money,

and computer time is no exception . l As to memory space,

although in many cases this resource can be every bit (no pun

intended) as crucial as time, we shall concentrate mostly on time

complexity.

improving running time

Sometimes running time can be improved with simple tricks.

Consider a straightforward procedure for seeking a name in a long

list. We go through the names on the list one by one, repeatedly

inspecting the current name to see if it is the one we are after, and

then checking to see that we are not at the list's end before moving

on to the next name. So we carry out two basic actions for each

name we check. If the list is oflength N, the time complexity is 2N.
To improve things, we can start out by adding the sought-for

name to the end of the list, in an artificial manner. If the name did

not appear in the original list at all, it now appears once, at its end,

and if it did it now appears twice, once in the original place and

once at the end. What is the advantage of this addition? Well, it

enables us to expedite the entire process, by omitting the end-of

list check that was carried out again and again, for each name

inspected. Now that the sought-for name appears at the end, we

are bound to bump into it even if it were not in the original list.

1 In fact, where computers are concerned, time can be absolutely critical:
certain kinds of computerized applications involve real-time systems,
especially those found in the aerospace and defense industry, and even in
automobiles. They must respond to external stimuli in 'real time', since
failing to do so could be fatal.

6 2 c o m p u t e r s L t d .

Once we find it, we check just once if we are at the list's end. If we

are, we may safely conclude that the name did not originally

appear; and if we are not at the list's end, then the place we are at

right now is the original appearance of the name in the list.

This yields a 50% improvement in time: assuming that the

inspection of a name costs roughly the same as checking whether

we are at the end of the list - one basic action - the running time

drops from 2N to around N. Both versions work their way through

the list item by item. In both cases, if the sought-for name is not

on the list, or if it happens to be positioned last, we will have to

inspect all the N names. The difference is in how much each

inspection costs.

An important point is that the 2N for the first version and the N
for the second are both worst case estimates. That is, there are

'bad' inputs (the ones where the name does not appear in the list

at all) that force the algorithm to indeed run through the entire

list. In other words, the algorithm could presumably run for much

less on certain inputs (those in which the name appears early in

the list) , perhaps on most inputs, but it never runs for more, even

on the worst input of its size. We shall stick to worst case com

plexity throughout most of the book.2

Now, although the two algorithms for the name-searching

problem differ by a factor of 2, both run in time that is propor-

2 W:orst case analysis is not the only way to view time complexity.
People also study and analyze algorithms for their average case time
performance, obtaining insight into the duration of an algorithm's
rUIJ.,on a typical input. This analysis can cause unpleasant surprises,
however, since running the algorithm on a bad input can take much
longer than the average case predicts. In any case, as mentioned, we
shall concentrate on the worst case.

s o me t i me s we c a n ' t a f f o r d t o d o i t 6 3

tional to N. The running time grows linearly with N. When the

worst case running time of an algorithm is proportional to the

length of the input, we say that it runs in linear time. This phrase

blurs the distinction between N and 2N, so that with this term

inology it is as if the 50% trick doesn't make a real difference; we

have a linear-time algorithm either way.3

Impressive as a 50% cut in running time sounds, we can often

do much better. When we say better, we don't mean just fixed-rate

improvements of 50%, 60%, or even 90%, which would all retain

the linear-time status of an algorithm, but ones whose rate gets

increasingly better as the size of the input increases. These are

order of magnitude improvements.

One of the best-known examples of this involves searching for a

name, as before, but this time in an ordered, or sorted list; say, a

telephone book with the names ordered lexicographically. Here,

the naive linear search can be dramatically improved. Instead of

simply going through the names in some order, one by one, the

idea is to use a splitting technique, whereby the first name we

inspect is the one appearing smack in the middle of the list. If this

does not turn out to be the name we are after, then, depending on

whether it is lexicographically larger or smaller than the sought

for name, we can discard the entire first or second half of the list,

concentrating our search on the remaining half only. In this way

we manage to decrease the size of the problem to half of its orig

inal size, by inspecting a single name only. We now do the same to

the remaining half: we inspect its middle name and compare it to

3 The term 'linear time' applies to any algorithm whose running time is
bounded from above by KN for some constant K > O. Thus, even N/ l OO
is linear time. There is a special notation for this: D(N), read 'big-D of
N, or 'order of N.

64 c o m p u t e r s L t d .

the sought-for name, thus reducing the size of the problem to a

quarter of the original size. Half of this half-list is discarded and

the middle name of the remaining portion is inspected; and so on.

When the ever-decreasing portion in hand gets so small as to

contain only one name and this too is not the one we are looking

for, the search ends in failure. This binary search algorithm works

by a divide and conquer kind of principle: you repeatedly halve the

list, check the middle name, and are then left with having to

'conquer' only one of the resulting half-lists.

Binary search runs in time proportional to 10gzN, the base-2

logarithm of N, in the worst case. We thus say that it is a logarithmic
time algorithm.4 The precise mathematical definition of the logar

ithmic function is not important here, so don't feel bad if you are not

familiar with it, but what is important is that logarithmic time

embodies an incredible improvement over linear time. One that is

not only better by some constant factor of 50% or 90%, but is better

in the order of magnitude sense of the word. The improvement itself
grows rapidly with the growth of N, as the following table shows:

Length of List, Number of comparison,

N log2 N

10 4

100 7

1000 10

1 000 000 20

1 000 000 000 30

10 1 8 60

4 The words 'logarithm' and 'algorithm' are not related.

s o m e t i me s we c a n ' t a f f o r d t o d o i t 6 5

Consider this: to find a number i n New York City's telephone

book, which must have around a million names, you don't need to

inspect more than 20 numbers! For a telephone book with a

billion names (China's, perhaps, or maybe the whole world's?) ,

you need inspect only 30. Even with the overhead required to halve

the lists and keep track of where we are searching, this is a very,

very fast algorithm.

upper and lower bounds

The sorting problem, Problem 4 on the list of Chapter 1 , is

another case where the time complexity of a naive algorithm can

be vastly improved. We can think of it as asking for a method of

transforming a jumbled telephone book into an ordered one.

An obvious sorting method that comes to mind is to repeatedly

find the smallest element in the list, output it, and remove it from

the list, in preparation for a search for the next smallest one. In

the worst case, this process takes about N2/2 comparisons, which

is proportional to N-squared (that is, to N2) , and is thus termed

quadratic time. However, there are several more sophisticated

algorithms for sorting, with such names as heapsort and merge
sort.s These are much faster. They run in time proportional to N

times the logarithm of N, or in symbols N log2 N, rather than N2,

which is a vast improvement: using these methods, a jumbled

New York City telephone book can be arranged in lexicographical

5 See D. E. Knuth (1 973) . The Art of Computer Programming, Vol. 3 :
Sorting and Searching. Addison-Wesley, Reading, MA, 2nd ed. 1 998;
T. H. Cormen, C. E. Leiserson, and R. L. Rivest (1 990) . Introduction to
Algorithms. MIT Press, Cambridge, MA.

6 6 c o m p u t e r s L t d .

order using only several million comparisons, instead of many

billions.6

So we can search for a name in an ordered list in logarithmic

time, and we can sort an unsorted list in less than quadratic time.

Fine. But can we do better? Is it possible to search for an element

in a million-name telephone book with less than 20 comparisons

in the worst case? Is there some unknown search algorithm out

there that requires time of only, say, the square root of the logar

ithm of N in the worst case? How about sorting? Can we sort a list

in, say, linear time, rather than in time N log2 N?

To put these questions into perspective, think of an algorithmic

problem as sitting out there, possessing an inherent optimal solu

tion, which is what we are after. Along comes someone with, say, a

quadratic-time algorithm. Once we become convinced that the

algorithm is correct, i .e. it indeed solves the problem, we know for

sure that the optimal solution can't be any worse than quadratic

6 Time complexity is obviously a relative concept that makes sense only
in conjunction with an agreed-upon set of basic instructions. In the case
of searching and sorting these typically include comparisons of names
and numbers. Coding an algorithm in a specific language, or using a
specific compiler, can obviously make a difference in the final running
time. But on the assumption that algorithms are designed to use
conventional basic instructions, the differences will most often be in the
constant factor that is hidden in the term 'order-of-magnitude' (the
big-O notation mentioned in an earlier footnote) , so that the order-of
magnitude time complexity will not be affected. This robustness,
coupled with the fact that, in the majority of cases, algorithms that are
better in the order-of-magnitude sense are also better in practice,
renders the study of order-of-magnitude time complexity the most
interesting to computer scientists. Keep in mind, however, that this
approach may hide issues of possible practical importance, such as
constant factors.

s o m e t i me s we c a n ' t a f f o r d t o d o i t 6 7

time, We have a quadratic time solution. We then say that w e have

approached the desired inherent optimum from above. Later on,

someone else discovers a better algorithm, running, say, in time

N log2 N, thus coming closer to the desired optimum, also from

above. We now know that the problem cannot be inherently worse

than that; the previous algorithm becomes obsolete, and the

process continues. Accordingly, an efficient algorithm is said to

place an upper bound on the algorithmic problem. Better algor

ithms approach the problem's best-known time bound from

above, pushing it downward, closer to the unknown inherent

complexity of the problem itself.

But how far can these improvements go? Can we approach the

optimal complexity from below? What we are after is a lower
bound, which would mean finding, not an algorithm, but a proof
that you can't do any better. If we can prove rigorously that our

problem cannot be solved by any algorithm that uses less than, say,

logarithmic time (in the worst case) , we can stop trying to find

better algorithms, for there aren't any. Such a proof constitutes a

lower bound on the algorithmic problem, in that no algorithm can

bring about an improvement, and it doesn't matter how clever we

are or how hard we work on devising one.

Discovering a fast algorithm shows that the problem's inherent

time performance is no worse than some bound, while discovering

a lower bound proof shows that it is no better than some bound.

In both cases, a property of the algorithmic problem has been dis

covered, not a property of a particular algorithm. This is a subtle

and confusing difference that is worth carefully taking in.

Establishing a lower bound on a problem entails somehow consid

ering all possible algorithms for it, while an upper bound is

achieved by constructing one particular algorithm.

68 c om p u t e r s L t d .

Lower bound proofs can be difficult to come by, but once found

they put an end to futile attempts to search for better algorithms.

Such bounds have been established for searching and sorting, for

example. Searching in an ordered list has a lower bound of logar

ithmic time, so that the binary search algorithm is optimal. There

simply is no better algorithm, and that's that. Similarly, sorting has

a lower bound of N log2 N, so algorithms that achieve this running

time, such as heapsort and mergesort, are optimal too. We thus say

that searching and sorting are closed problems.? We have discov

ered their inherent time-complexity. End of quest.

Many algorithmic problems are not yet closed. Their upper and

lower bounds do not meet, and we say that they give rise to algo
rithmic gaps. In the next chapter we shall see striking examples of

gaps that are unacceptably large. For now, however, it suffices to

realize that if a problem is not closed, the deficiency is not in the

problem, but in our knowledge about it. We have failed either in

finding the best algorithm for it or in proving that a better one

7 The terms 'optimal solution' and 'closed problem' are used here in the
order-of-magnitude sense. Matching upper and lower bounds means
that we have found the optimum to within a constant factor. This still
leaves open the possibility of improvements of the 50% and 90% kind, or
improvements in other resources, such as space. Moreover, the lower
bounds for searching and sorting are based on models of computation in
which information about the input can be obtained only by comparing
elements. If we know more about the input, the lower bound argument
might fail, and a better algorithm may be found. As an extreme example,
if we are told that the inputs to the sorting problem will always be
distinct integers between 1 and some number M, linearly related to the
length of the input list, we can sort in linear time: simply prepare an
indexed array of length M, put each incoming number directly in its
corresponding place and then read off the nonempty values in the
resulting array as output.

s ome t i m e s we c a n ' t a f f o r d t o d o i t 6 9

does not exist, o r i n both, The inherent 'truth' i s indeed out there

somewhere; it is either the upper bound or the lower bound, or

resides somewhere in between.

s o what?

So we know that algorithmic problems will often admit solutions

that are more time-efficient than the naIve approaches. A sorted

list can be searched in logarithmic time, and we can sort a list in

far less than quadratic time. In general, there are often more

efficient algorithms to be found. So what?

Computers are the ones who have to carry out algorithms, you

might think, and computers are fast. You might claim to be

sufficiently 'rich' to afford to pay a million or a billion compar

isons for searching through a list, and that a few extra seconds of

computer time make no difference. If worst comes to worst, you

could be saying to yourself, there are always faster machines to be

bought. With this attitude, algorithmic gaps might not be bother

some either. So we don't know the exact optimal solution to our

problem; so what? Once a reasonably good algorithm has been

found, we may not be interested in better algorithms or in proofs

that they don't exist.

Is the whole issue of algorithmic efficiency a tempest in a teacup?

the towers of H ano;

Let us start answering this question by way of a rather playful

puzzle example: it is known as the Towers of Hanoi.

We are given three towers, or pegs, A, B, and C. Three rings are

piled in descending size on the first peg, A, and the other pegs are

7 0 c o m p u t e r s L t d .

empty (see Fig. 3 . 1) . We want to move the rings from A to one of

the other pegs, perhaps using the third peg in the process. The rule

is that rings are to be moved one at a time, but a larger ring may

never be placed atop a smaller one.

This puzzle can be solved in seven steps, as follows:

move the top ring from A to B;

move the top ring from A to C;

move the top ring from B to C;

move the top ring from A to B;

move the top ring from C to A;

move the top ring from C to B;

move the top ring from A to B.

It is not difficult to see that this series of actions really does the job;

it complies with the rules of the game, and results in the rings all

piled on peg B. Try to solve the same puzzle with four rings on peg

A, not three (the number of pegs does not change) . It shouldn't

take you too long to find a sequence of i s -move instructions for

this case.

Such puzzles may be entertaining and challenging, but our busi

ness is algorithmics, not puzzles. We are far more interested in the

n n
A B c

Fig. 3. 1 . The Towers of Hanoi.

s o m e t i m e s we c a n ' t a f f o r d t o d o i t 7 1

general problem associated with the Towers of Hanoi than with

this or that particular instance. The input to this algorithmic

problem is any positive integer N, and a solution algorithm is

required to issue a list of move instructions that will solve the

puzzle for N rings. Once we have such an algorithm, any indi

vidual Towers of Hanoi puzzle, be it the 3-ring, the 4-ring, or

3 1 78-ring version, can be solved by simply running the algorithm

with the appropriate number of rings as input.

As it happens, there is a very simple algorithm for this, which

can be carried out even by a small child.s To describe it, assume

that the three pegs are arranged in a circle (the names of the pegs

are unimportant) :

1 . do the following repeatedly, until step 1 . 2 can n o longer be

carried out:

1 . 1 . move the smallest ring to the peg residing next to it

in clockwise order;

1 .2. make the only legal move possible that does not

involve the smallest ring;

2. stop.

Step 1 .2 means moving some ring other than the very smallest one

to some peg other than the one it is on right now. Of course, this

must be done in such a way that the ring moved is laid on top of a

larger ring. The only situation in which this step cannot be carried

out is when all the rings have been correctly transferred to some

other peg; no ring is then exposed except the smallest. Note that

when step 1 .2 can be carried out, it is well defined and unambigu-

8 P. Buneman and L. Levy (1 980). 'The Towers of Hanoi Problem', In!
Proc. Lett. 10, 243-4.

7 2 c o m p u t e r s L t d .

ous, since one of the pegs has to have the smallest ring on top, and

of the two remaining pegs one has a smaller ring on top than the

other (or the other one has no rings on it at all) . Thus, the only

move not involving the smallest ring is to transfer that smaller ring

to the other peg.

A time analysis of this algorithm shows that the number of

single-ring moves it produces is precisely 2N - 1, that is, 1 less than

2 to the power of N (2 times itself N times) . Since N appears in the

exponent, such a function is termed exponential. It can be shown

that 2N - 1 is also a lower bound for this problem: there is no way

to get N rings transferred adhering to the rules, with less than

2N - 1 move instructions. Hence, our solution is optimal.

But is it a good solution? Being optimal in our business doesn't

necessarily mean you are happy, only that you can't do any better.

Is 2N - 1 a good time bound, like N or N log2 N? Maybe it is even

a truly excellent one like log2 N.

By way of answering these questions, we should mention that the

original version of the puzzle had the same three pegs, and it

involved not three rings, but 64, moved by Tibetan monks. Given

the 2N -1 time complexity, even if the monks were to brush up their

act and move a million rings every second, it would still take them

more than half a million years to complete the 64-ring process! If,

somewhat more realistically, they were to move one ring every five

seconds, it would take them almost three trillion years to get the job

done. No wonder they believed the world would end before they

managed to finish. The Towers of Hanoi problem, at least for 64

rings or more, is thus hopelessly time-consuming.

Bad news indeed.

Somehow, this statement leaves us feeling somewhat uncon

vinced. It doesn't seem to signify real bad news in the world of

s o me t i m e s we c a n ' t a f f o r d t o d o i t 7 3

computing a s much a s i t illustrates the fact that the output here

happens to be very long. For better or for worse, the puzzle has

been set up in a way that requires 2N - 1 actions to get N rings

transferred, and the algorithmic problem asks for a list of these

actions. The computations themselves are extremely easy; it is the

output that is long. To exhibit such a seemingly boring pheno

menon, we could have discussed a 'problem' that inputs N and

asks for a printout of 2N - 1 copies of the letter a. That too would

take time 2N - 1, and couldn't be done in less.

So our question is really this: does such devastating time per

formance, requiring zillions of years of running time, show up

only when the outputs are devastatingly lengthy? Can we find

problems with short outputs that behave as badly? How about

decision problems? An algorithm that says only 'Yes' or 'No'

spends all of its time reaching a verdict, not issuing it. Can such

problems be that bad too?

Before we go any further, we should take a closer look at the

kind of truly formidable time behavior represented by the likes of

2N - 1 .

the good , the bad , and the ugly

Exponential functions, such as 2N, yield very large numbers much

sooner than linear or quadratic ones. Say N is 1 00. Then N2 will be

only 10 000, whereas 2N is an enormous number; it is far, far larger

than the number of microseconds that have elapsed since the Big

Bang (see Fig. 3 .2) . In fact, exponential functions easily dwarf all

polynomial functions, which are those of the form NK for some

fixed number K, like N2 or N 1 5. It is true that N1OO, for example, is

larger than 2N for all the values of N up to some point (996, to be

7 4 c o m p u t e r s L t d .

1040

NN 2 N

1 035

1030

1 025

1 020

1 0 1 5

A trillion

A billion

A million

1 000
1 00

1 0

Fig. 3.2. Polynomial vs. exponential growth.

SN

Number of
microseconds

since
Big Bang

Number of
microseconds

in one day

precise) . However, from that point on, 2N starts leaving NlOO far

behind, very, very quickly. And this is true for any choice of a

fixed K.
Other functions exhibit similarly unacceptable growth rates.

For example, N!, which is called N-factorial, and is defined as

1 x 2 x 3 x . . . x N, grows much faster than even 2N. And the func

tion NN, which is N times itself N times, grows even faster than

s o me t i m e s we c a n ' t a f f o r d t o d o i t 7 5

that. I f N is 20, the value of 2 N is over a million (1 048 576, to be

precise9) , the value of N! is well over 2 billion billions, and the

value of NN is more than 1 04 trillion trillions. If N is 1 50, the

value of 2N is billions of times larger than the number of protons

in the entire known universe, and N! and NN cause that number

to be reached for much smaller values of N.

Figure 3.2 shows the relative growth rates of some of these. It is

a special kind of graph (termed logarithmic) , in which the axes

grow exponentially instead of linearly. This has the effect of

causing all polynomials to come out as straight lines but exponen

tials to curve wildly upwards. Admittedly, this is something of a

visual enhancement, but it serves nicely to show the difference

between the two families of functions under discussion. 1O

Let us see what happens when such functions represent the time

complexity of algorithms. The following table shows the running

times of four algorithms on various quite modest input sizes. It

assumes that they are run on a computer capable of a million

instructions per second:

9 This is closely related to the fact, mentioned earlier in searching New
York's telephone book, that the logarithm of a million (with the
fractional part dropped) is 20, since 2N relates to N exactly as N does
to log2N.
10 H. R. Lewis and C. H. Papadimitriou (1 978) . 'The Efficiency of
Algorithms', Scientific American 238(1) , 96--109; L. J. Stockmeyer and
A. K. Chandra (1 979) . 'Intrinsically Difficult Problems', Scientific
American 240(5) , 124-33 .

7 6 c o m p u t e r s L t d .

Input length

1 0 20 50 1 00 200

N2 1 1 1 0 000 1 12500 1 1400 1 1 100 1 125
second second second second second

N5 1 1 1 0 3.2 5.2 2.8 3.7
second seconds minutes hours days

2N 1 / 1 000 35.7 Over 400 trillion A 45-digit no.
second second years centuries of centuries

NN 2.8 3.3 trillion A 70-digit no. A 1 85-digit no. A 445-digit no.
hours years of centuries of centuries of centuries

For comparison, the Big Bang was 1 2- 15 billion years ago.

The first two lines in the table represent two typical polynomials,

N2 and N5. The last two are exponential. Our point is that these

two pairs are acutely different. The running time behaviors of the

former are reasonable and we can live with them. The latter two

are not and we can't.

Admittedly, the N5 algorithm indeed behaves quite badly on an

input of size 200, but with a faster machine and some tight opti

mization techniques we would probably be able to decrease the

3 .7 days by a factor of lO or so, and the task would become man

ageable. But now take a look at the bad algorithms, the 2N and NN

ones. Even the faster of the two is so incredibly time-consuming as

to require, in the worse case, 400 trillion centuries for a single input

of size 1 00. For larger inputs (even only moderately larger), it is far,

far slower than that. Worse functions, like NN, give rise to this kind

of devastating news much earlier, i.e. for much smaller inputs.

The really nasty parts of this table cannot be overcome by clever

tricks, neat programming languages, or snazzy Web page designs

on the Internet. Even a fully interactive, user-friendly, graphical,

s o me t i me s we c a n ' t a f f o r d t o d o i t 7 7

object-oriented, distributed approach (to use some fashionable

buzzwords) , full of bells and whistles, will have no noticeable

effect.

Faster hardware doesn't help either. You might not like our

assumption of one instruction per microsecond, claiming that,

even as we speak, faster computers are available and more are in the

making. Well, even if we had a machine 10 000 times faster (and

this is not something that will happen overnight) , the changes in

the interesting parts of the table would be laughably marginal. For

example, the entry labeled 'a 1 8S-digit number of centuries' for an

NN-time algorithm running on an input of size 1 00, would have to

be replaced by 'a 1 80-digit number of centuries'. Big deal, as the

phrase goes. More significantly, it would take only a very slight

increase in the size ofthe input to make the 10 OOO-fold faster com

puter run for the same 18S-digit number of centuries: we need only

go from size 1 00 to size 1 02. That's all. And this is exactly what the

steepness of the curves in Fig. 3.2 is all about.

All this leads to a fundamental classification of time complexity

functions, into 'good' and 'bad'. The good ones are the polynomial

functions (more precisely, the ones bounded from above by a poly

nomial) and the bad ones are all the rest, sometimes termed super
polynomial. I I Thus, logarithmic, linear and quadratic functions,

1 1 We abuse conventional terminology slightly by using the term super
polynomial when we should really say exponential. That this is an abuse
stems from the fact that there are functions, like Nlog,N for example, that
are super-polynomial but not quite exponential. The following papers
first recognized the importance of the dichotomy between polynomial
and super-polynomial time: M. O. Rabin (1 960) . 'Degree of Difficulty of
Computing a Function and a Partial Ordering of Recursive Sets',

continued on next page

7 8 c o m p u t e r s L t d .

for example, are good, as is N log2 N, whereas ones like 2N, Nl , and

NN are bad. Later we shall see functions that are even worse, and

those will be really, really ugly.

intractability

An algorithm or program whose worst-case time performance is

captured by a good (i .e. polynomial) function in the size of its

inputs is called a polynomial-time algorithm. An algorithm that,

in the worst case, requires super-polynomial time, is thus bad. This

is the classification for an algorithm.

We also want to classify algorithmic problems in terms of

whether or not they can be solved by good algorithms, and here we

must take into account all possible solutions. Accordingly, an algor

ithmic problem that admits a good algorithm as a solution is said

to be tractable, whereas a problem that is solvable but admits only

bad solutions is termed intractable. It is worth re-emphasizing

that to label an algorithmic problem intractable we must have a

proof that there is no good algorithm for it - not only among

those we have discovered. There are none at all. Not even awaiting

discovery. Simply failing to discover a polynomial-time algorithm

for a problem can render it a candidate for intractability, but for it

continued
Technical Report No. 2, Hebrew University, Branch of Applied Logic,
Jerusalem; A. Cobham (1965) . 'The Intrinsic Computational Difficulty
of Functions', Proc. 1 964 Int. Congress for Logic, Methodology, and Phil.
ofSci. (Y. Bar-Hillel, ed.) . North Holland, 24-30; J. Edmonds (1965) .
'Paths, Trees, and Flowers', Canad. J. Math. 1 7, 449-67; J . Hartmanis and
R. E. Stearns (1 965) . 'On the Computational Complexity of Algorithms',
Trans. Amer. Math. Soc. 1 1 7, 285-306.

s om e t i m e s we c a n ' t a f f o r d t o d o i t 7 9

to actually become intractable requires a proved lower bound of

exponential-time.

The numbers and charts in the previous section are intended to

support this dichotomy. Intractable problems require hopelessly

large amounts of time even on relatively small inputs, which is not

the case for tractable problems.

Actually, this is not quite as clear-cut as all that, and one can

question the wisdom of drawing the line precisely where we did.

We have already mentioned that an algorithm with time complex

ity Nloo (which is good by our definition) is worse than an algor

ithm with the bad complexity 2N for inputs of size 996 or less, and

the turning point is much larger if we compare Nloo with, say,

1 .00 1 N, which is still termed bad. Nevertheless, the majority of bad

algorithms are really not very useful, and most good ones are suffi

ciently useful to warrant the distinction made. The truth is that the

majority of polynomial-time algorithms for real applications

usually have quadratic time or cubic time complexity, i.e. N2 or

N3, and not NIOO. Similarly, you won't find intractable problems

whose best algorithms are of complexity 1 .00 1 N. Rather, they have

complexities like 2N or N!, or worse.

There is another thing, though. Recall the Church-Turing thesis,

which asserts that the class of computable problems is robust,

being insensitive to the differences between models of computa

tion. This justified the line drawn in Fig. 2 . 1 . The truth is that, in

general , models of computation are polynomially related,

meaning that not only can a problem that is solvable in your

model be solved in mine too, but the difference in running time

will be polynomial, i.e. good. My machine might be far slower

than yours. It could be 10 times or 1 00 times slower, or it could

take time that is the square of yours, or yours raised to the third or

80 c o m p u t e r s L t d .

fifth power. But it doesn't take exponentially more time. What's

good on yours is good on mine too.

This applies even to primitive models such as Turing machines.

Despite being discouragingly slow, having to shuttle back and

forth along a tape, remembering and changing single symbols,

Turing machines are not unreasonably slow. They are only polyno

mially less efficient than even the fastest and most intricate com

puters, working with the most advanced languages, techniques

and software.

The conclusion is this: not only is the class of computable prob

lems robust, but so is the class of tractable problems. This is a

refinement of the CT thesis that takes running time into consider

ation too, and is sometimes called the sequential computation
thesis.

What is good is good everywhere, and what is bad is bad every

where, or, paraphrasing the famous nursery rhyme about the brave

old Duke of York: 1 2

And when they are up they are up

And when they are down they are down

Now a reservation. Unlike the CT thesis, for which there isn't a

shred of evidence that we might have to revise our beliefs at some

point in the future, here there is a shade of doubt. The relatively

new and exciting area of quantum computing seems poised to

offer a possible challenge to the sequential computation thesis.

There is a chance (a very small one, if you count the researchers

1 2 See W. S. Baring-Gould and C. Baring-Goul (1 962) . Annotated Mother
Goose, Clarkson N. Potter, New York, p. 1 38. (Many people misquote,
calling him the grand old Duke of York.)

s ome t i m e s we c a n ' t a f f o r d t o d o i t 8 1

who think so) , that this model o f computation will manage t o turn

intractable problems into ones that are tractable and manageable

in practice. We shall discuss this further in Chapter 5 . However,

even if this happens, it is still a very long way off, so for now we

shall proceed with this stronger thesis intact, and with the know

ledge that tractability is a strong and robust notion, insensitive to

anything we know about now.

The sphere of algorithmic problems that appeared in Fig. 2. 1

now gets what we might term a 'facedrop', and a third dividing line

is added; see Fig. 3 .3 . The new line is the most important one,

since it separates problems that can be solved in practice from

those that cannot. It doesn't make much difference if your

problem is undecidable or 'merely' intractable - either way you

won't be able to solve it, at least in the puristic worst-case sense of

'has to work correctly and efficiently for each and every possible

input'.

The
noncomputable

The
intractable

The

®' , .'0 '
,

. .

Fig. 3.3. The sphere of algorithmic problems: Version III.

82 c o m p u t e r s L t d .

roadblocks and ches s

All this sounds very nice in theory. We have solvable and unsolv

able problems, and within the former we have a subdivision that

labels as bad those that do not give rise to polynomial-time solu

tions. But maybe there aren't any such cases unless the outputs are

required to be unreasonably long. Do inherently intractable prob

lems even exist, or are all decidable and computable problems also

tractable? Are there problems with proven lower bounds of expo

nential time, whose intractability is not the result of their need to

pour forth exponentially long outputs, but, rather, is inherent in

their very computational nature?

The answer is a resounding yes. Just as there are many problems

that are undecidable, so are there many problems that have been

proved to require wholly unreasonable time to solve, using any

algorithm, running on any kind of machine.

Here is an example; again, a rather playful one like tiling rooms.

It is called Roadblock. It is played by two players, Alice and Bob,

on a network of intersecting roads, each road segment colored

with one of several colors. Certain intersections are marked 'Alice
wins' or 'Bob wins', and each player owns a fleet of cars occupying

certain intersections. In his or her turn, a player may move one

self-owned car along a stretch of road to a new intersection. There

are two restrictions: (i) all intersections along the stretch must be

free of cars, including the player's own cars and including the

target intersection, and (i i) the player has to stick to one color in

each turn, and can switch colors of the road segments only in the

next turn. The winner is the first player to reach one of his or her

winning points.

The input to the Roadblock problem is a description of a

network, with cars placed at certain intersections. The problem

s o m e t i me s we c a n ' t a f f o r d t o d o i t 8 3

asks whether Alice (whose turn i t is) has a winning strategy, 1 3

Figure 3 .4 shows a Roadblock configuration in which the circled

'!\s and 'B's mark the locations of Alice's and Bob's cars, respect

ively, and different line types denote different colors, For this par

ticular input, that is, starting from this particular configuration

with Alice to move, she can win no matter what Bob does (how?) .

Notice that this i s a decision problem; we are not asking how, just

whether. All we want is a 'Yes' or a 'No'.

The Roadblock problem has been proved to have a 2N lower

bound on time. The size N of the input is the number of inter

sections in the network. Thus, while smallish Roadblock configur

ations might be easy to analyze (e.g. that of Fig. 3 .4) , and some

Fig. 3.4. A Roadblock configuration that Alice can win.

1 3 A winning strategy in a game is a recipe (actually an algorithm) for
the starting player, which prescribes a move for him or her to make for
every one of his or her opponent's moves, such that no matter what the
opponent chooses to do at each stage the starting player is guaranteed to
win eventually.

84 c o m p u t e r s L t d .

larger ones might not be too difficult either, the worse-case per

formance of any algorithm whatsoever will be absolutely terrible:

for the very best algorithm we might design, there will always be

reasonably sized configurations that will cause it to run for an

unacceptable amount of time. 1 4

Thus, there i s no practical algorithmic method, and there never

will be, for determining in general whether a given player has a

guaranteed strategy for winning a Roadblock game. And notice

that this is the decision problem version: if we wanted to see Alice's

winning strategy if she has one, or an example of Bob's possible

win if she doesn't, things would be at least as bad as this, possibly

even worse.

Since we are talking about games and winning strategies, con

sider the corresponding problem for chess. Does white have a

guaranteed winning strategy from a given chess configuration?

Interestingly, although chess is clearly a very difficult game in its

classical 8 x 8 format, it is not amenable to standard time perform

ance assessments. The reason is that the input size is fixed, so we

can't talk about the increase in running time as the size of the

input grows. Since there are only finitely many configurations in

the entire game - albeit a very large number of them - the

winning-strategy problem for chess is a finite problem, and we

can't really talk about its order-of-magnitude complexity. I S We

need inputs whose size is unlimited, like in Roadblock.

To make it possible to talk about the computational complexity

of fixed-size board games, researchers define generalized versions,

1 4 L. J. Stockmeyer and A. K. Chandra (1 979). 'Provably Difficult
Combinatorial Games', SIAM J. Comput. 8, 1 5 1-74.

15 We will discuss computerized chess in Chapter 7.

s o me t i m e s we c a n ' t a f f o r d t o d o i t 8 5

in which there i s a different game for each board size. The N-game

is played on an N x N board, and the set of pieces and allowed

moves are generalized appropriately. There are natural ways to do

this for chess and checkers, which we shall not describe here. What

is interesting, however, is that the winning-strategy problems for

generalized versions of both have been shown to be intractable

toO. 1 6

problems that are even harder

All the examples of decidable but intractable problems that we

have seen so far (the Towers of Hanoi, Roadblock, and generalized

chess and checkers) have upper bounds of exponential time. In

other words, they can all be solved in time 2N or 3N, or the like.

Reality is a lot crueler: there are decidable problems that are much

worse than that.

Consider a logical formalism, in which you can state things like

'if statement P is true then statement Q is false'. Suppose that we

want the 'P's and ' Q's to be meaningful assertions about math

ematical objects like the integers. For example, we might want to

say something like 'if X = 1 5 then there is no Y such that X = Y +

Y'. This statement happens to be true, since 1 5 is odd (and all

values must remain integers) . In the interests of trying to mech

anize absolute mathematical truth, computer scientists seek

efficient methods for determining the truth of such statements.

1 6A. S. Fraenkel and D. Lichtenstein (1 98 1) . 'Computing a Perfect
Strategy for n x n Chess Requires Time Exponential in n� J.
Combinatorial Theory A3 1 , 1 99-2 14; J. M. Robson (1 984) . 'N by N
Checkers is Exptime Complete', SIAM J. Comput. 13 , 252-67.

86 c o m p u t e r s L t d .

How hard is this particular truth-determination problem?

Before addressing this question, we should explain double expo

nentials. Consider the function 22N, which is 2 times itself, not N

times, but 2N Times. If N is a mere 5, the value of 22N is over four

billion, while if N is 7, the value is orders of magnitude larger than

our friend the number of microseconds since the Big Bang. In fact,

22N relates to the very bad function 2N just as 2N relates to the very

good function N. It is therefore doubly bad.

Here are the facts regarding the problem of establishing the

truth or fallacy of statements about the integers. Let us restrict the

logic of integers so that the only arithmetic operations we are

allowed to use in our statements is addition (the aforementioned

statement about X = 1 5 is thus OK) . More elaborate operations,

such as multiplication or division, are forbidden. The resulting

formalism, called Presburger arithmetic, has been shown to have

double exponential-time upper and lower bounds. Any algorithm

that can determine truth in this logic of integer addition - and

there are such algorithms - is guaranteed to run for horrendous
amounts of time on some very, very short statementsY

While truth in Presburger arithmetic is provably double expo

nential, another logical formalism for talking about arithmetic,

with the cryptic name WS I S, is far worse. In this logic we can talk

not only about the integers, but also about sets of integers, and all

we need to allow here in way of operations is the addition of 1 .

1 7 M . J. Fischer and M . o. Rabin (1 974) . 'Super-Exponential Complexity
of Pres burger Arithmetic', in Complexity oJ Computation (R. M. Karp.
ed.) . Amer. Math. Soc., Providence, RI, pp. 27-4 1 . The length N of an
input formula in these logics is obtained by counting appearances of the
arithmetical operations, ' = ', ' + ', and 'x ' (in the second case) , and the
logical operators like 'and', 'or', 'not', 'there exists', and so on .

s o m e t i me s we c a n ' t a f f o r d t o d o i t 8 7

That is, we can say things like 'there i s a set of numbers S, every
one of which has the property that if you add 1 to it then . . . '. WS 1 S
is unimaginably difficult to deal with algorithmically. Consider the
triple exponential function 22'". To get a sense of how fast this func
tion grows, if we were to plot it in the table given earlier, then on
an input of size only 4, it would show the algorithm running for a
1 9 7 1 3-digit number of centuries (compare this with the 445-digit
number for an NN algorithm on an input of size 200) . Can you
fathom that?

So what's the story for WS 1S? Well, first of all, WS 1S is decid
able. Algorithms have been devised to determine whether state
ments made within it are true or false. However, on the negative
side, WS 1S has been shown to admit no multiple exponential algo
rithm, for any multiple. This means that given any algorithm that
is capable of determining truth in this logic, you can pile up as
many 2s as you want in a cascade of exponentials of the form 22' ...

"
,

and there will be formulas of length N that will require your algor
ithm to run for more than that amount of time! 18 In such devas
tating cases, not only is the problem intractable, it is not even
doubly, triply or quadruply intractable. We might simply say that,
although in principle decidable, such a problem is highly
intractable, or is of unlimited intractability.

If we take Presburger arithmetic, i.e. the ability to talk about
integers, but relax the restriction on operations, allowing multi
plication too, we get a formalism called first-order arithmetic.
Interestingly, deciding truth in first-order arithmetic is undecidable!

1 8 A. R. Meyer (1 975) . 'Weak Monadic Second Order Theory of Successor
is not Elementary Recursive', in Logic Colloquium (R. Parikh, ed.) , Lecture
Notes in Mathematics, Vol. 453, Springer-Verlag, Berlin, pp. 1 32-1 54.

88 c o m p u t e r s L t d .

Even all the time in the world cannot help then. 1 9 Without wanting

to make all this sound too depressing, if we combine the options

in all of these logics, allowing the ability to talk about both integers

and sets of integers, with the normal operations like addition and

multiplication, we get second-order arithmetic, which is highly
undecidable.20

We summarize the status of these four logics in the following

table:

Logical formalism Talks about Time complexity

Presburger arithmetic Integers with + intractable
(double exponential)

WS I S Sets of integers with + Highly intractable

First-order arithmetic Integers with + and x Undecidable

Second-order arithmetic Sets of integers with + Highly undecidable
and x

unreas onable memory req uirements

In the course of this chapter we concentrated on time perform

ance, and we shall continue to do so in the next chapter. But before

that we must spend a moment contemplating unreasonably bad

consumption of memory space. There are algorithmic problems

that have provable lower bounds of exponential space. This means

1 9 K. Godel (1 93 1) . 'Dber formal unentscheidbare Satze der Principia
Mathematica und verwandter Systeme, 1 ', Monatshefte fur Mathematik
und Physik 38, 1 73-98.
20 S. C. Kleene (1 943) . 'Recursive Predicates and Quantifiers', Trans.
Amer. Math. Soc. 53, 4 1-73.

s o me t i me s we c a n ' t a f f o r d t o d o i t 8 9

that any algorithm solving them will require something like 2N
memory cells on certain inputs of size N.

This can have mind-boggling consequences. If a problem has a

2N lower bound on memory space, then for any computer solving

it (even if we were to build a special-purpose computer dedicated
solely to that problem) there will be inputs of quite moderate size

- less than 270, to be specific - that would require so much

space for the intermediate steps of the computation, that even if

each bit were the size of a proton, the whole known universe would

not suffice to accommodate the machine!

Such unacceptably large resources are no joke. You just can't do

it, regardless of money or brains, power or patience, race, color,

age, or sex. This stuff is devastatingly bad, and the bad is for real.

chapter 4

s ometi mes we
j us t don't know

Have you ever tried putting together a class schedule, pairing

courses, time slots, and classrooms with teachers and instructors

who have all kinds of constraints? Ever tackled a really hard j igsaw

puzzle, full of look-alike pieces? Ever had to pack lots of bulky

items of varying sizes and shapes into given boxes, trying to get

them all in?

These are difficult tasks, you would have to admit. In carrying

them out we seem to make local decisions one at a time, often

reaching a dead end. If that happens, we backtrack a little, undo a

recent decision and try something else instead. We then make some

more progress, then backtrack again, maybe even further back than

before, and so on. The entire process can take a long, long time.

These examples belong to a rich and diverse class of problems,

many of which are of extreme importance in applications.

Figuring out how hard they really are - specifically, whether or

not they are tractable - is still wide open, and is one of the most

profound and important unresolved questions in the world of

computing.

9 2 c o m p u t e r s L t d .

the monkey p u z z l e

Let us start with a colorful example, not unlike the tiling problem

of Chapter 2. A monkey puzzle involves nine square cards, whose

sides depict the upper and lower halves of colored monkeys. The

objective is to arrange the cards in a 3 x 3 square, such that

wherever edges meet, the two monkey-halves match and the colors

are identical (see Fig. 4. 1) .
Again, this i s a puzzle, but cute puzzles are not our business.

We are interested in the general algorithmic problem, of which the

3 x 3 monkey puzzle is but one small instance. The general

problem receives as input the descriptions of N cards, where N is

some square number. The output is a square arrangement of the N

cards, if there is one, so that the colors and shapes match. Figure

Fig. 4. 1 . The monkey puzzle.

s o m e t i m e s we j u s t d o n ' t k n o w 9 3

4. 1 shows an instance with N = 9 . 1 In fact, we concentrate on the

easier-looking yes/no version, which simply asks whether any such

arrangement exists without asking for one to be exhibited.

A naive solution comes immediately to mind. Since each input

involves only a finite number of cards, and only finitely many loca

tions are available for placing them, there are only finitely many dif

ferent ways of arranging the cards into a square. And since it is easy

to test the color-matching legality of any particular arrangement, an

algorithm can be designed to work its way through all possible

arrangements, testing each one in turn, and terminating with a 'Yes'

if the arrangement at hand is legal (i .e. colors and monkey-halves

match) . If all possible arrangements have been considered, and have

all been found to be illegal, the algorithm terminates and says 'No'.

Let us see what happens if the input is just slightly larger than

the common 3 x 3 puzzle. Say N is 25, meaning that we are looking

for 5 X 5 arrangements. How many candidate arrangements are

there? Well, assuming we start at the bottom left-hand corner,

there are 25 possible choices for the first card to be placed, and the

particular card chosen can then be oriented in any of four possible

directions. This gives 1 00 possibilities for the first 'move'. There are

now 24 remaining cards, each of which can be placed in the second

location and can also be oriented in four ways, yielding 96 poss

ibilities for the second move. Since for each move made we must

consider every possible choice of the next move, if we want to

count possibilities, we must take the product of these two numbers,

yielding a total of 9600 ways of carrying out the first two moves. By

1 In contrast to the tiling problem, whose input consists of the types of
tiles and a tiling can involve an unlimited supply of each type, here we
are given the set of actual cards that have to be used.

94 c o m p u t e r s L t d .

the same reasoning, the third move can be carried out in 23 x 4 =
92 ways, which must be multiplied by the 9600, yielding 873 200
ways of making the first three moves. And so on. Continuing in

this fashion, the total number of candidate arrangements of all 25

positions of the 5 x 5 square totals

(25 x 4) x (24 x 4) x (23 x 4) x . . . x (3 x 4) x (2 x 4) x (1 x 4) ,

a number that can be written as 25 ! x 425. All of these will have to

be checked by our naive algorithm, one by one.

We shall not repeat the general properties of exponential func

tions that were discussed in Chapter 2. Still, it is worth reminding

ourselves what this means: 25! X 425 is so amazingly large that a

computer capable of checking a million arrangements per second

(including all the bookkeeping involved) will take well over 533

trillion trillion years in the worst case to solve a single 25-card

instance of the monkey puzzle! And recall that the Big Bang was a

mere 1 2-1 5 billion years ago.

Thus, for the general N-card case, the worst-case running time

of this naive algorithm is proportional to N! x 4N, which is the

product of two very nasty exponential functions. Of course, the

algorithm can be designed more intelligently, but even the most

sophisticated versions discovered to date are not that much better.2

2 An improved version would operate in the backtrack fashion outlined
above: put some card at the bottom left-hand corner; now try to find a
card that fits above it, then one that fits to its right; and so on. At each
stage, if no card from among those that are left fits, backtrack, by
removing the last-positioned card and trying another in its place. This
solution avoids the need to consider extensions of partial arrangements
that have already been found to be illegal, and often dramatically cuts
down on the total number of arrangements tested. In the worst case,

continued on next page

s o m e t i m e s we j u s t d o n ' t k n o w 9 5

So, i s that it, then? I s the problem really intractable, o r does it

admit some clever polynomial-time solution? Unfortunately, no

one knows the answer to this. The question is open.

N P - complete problems

You may feel that the monkey puzzle problem is amusing, but

perhaps unworthy of further discussion. After all, isn't it just a

puzzle?

Not at all. In truth, it is but one of hundreds and hundreds3 of

spectacularly diverse algorithmic problems, which, besides the

monkey puzzle problem, include the ones mentioned in the

opening paragraph of the chapter. They all exhibit precisely

the same phenomena: they are decidable, but are not known to be

tractable. They all admit exponential-time solutions, but for none

of them has anyone ever found a polynomial-time algorithm.

Moreover, no one has been able to prove that any of them require

super-polynomial-time, and, in fact, the best known lower bounds

for most of them are linear or quadratic. This means that it is con

ceivable (though unlikely) that they admit very efficient algor

ithms. We thus don't know what their inherent optimal solution is,

and are faced with a disturbing algorithmic gap. The problems in

this class are termed NP-complete, for reasons to be explained later.

continued
however, even this more efficient procedure will cause the inspection of
almost all possible arrangements. The same thing happens if we try to
recognize symmetric arrangements, or to use other such time-saving tricks;
the numbers would be smaller, but in the worst case insignificantly so.

3 The number is several thousand if you count less conservatively,
labeling certain variants of the same problem as different.

9 6 c o m p u t e r s L t d .

The algorithmic gap associated with the NP-complete problems is

enormous. The lower bounds we have for them are perfectly reason

able, so that if we found upper bounds (i.e. algorithms) to match, the

problems would all be nicely and efficiently computable. However,

the best upper bounds we have are devastatingly bad! The issue is not

whether their running time is N, or Nlog2N, or N3, or whether we

need 20 comparisons for a search or a million. Rather, it boils down

to the ultimate question of whether or not we can ever hope to really

solve these problems, even by the most powerful computers, with the

very best software, programmed by the most talented people.

Are they good, these problems, or bad? The location of the NP

complete problems in the sphere of Fig 3 .3 is thus unknown, since

their upper and lower bounds lie on either side of the line dividing

the tractable from the intractable. The question of where they actu

ally reside surfaced in all its prominence in the early 1970s, follow

ing the work of Steven Cook, Leonid Levin, and Richard Karp, and

is referred to as the P vs. NP question. It is still open, despite close

to 30 years of intensive work by some of the best researchers in

computer science.4

Two additional properties characterize the NP-complete prob

lems, making their story all the more remarkable. One of the two

4 S. A. Cook (197 1) . 'The Complexity of Theorem Proving Procedures',
Proc. 3rd ACM Symp. on Theory of Computing, ACM, New York, pp.
1 5 1-8; L. A. Levin (1973) . 'Universal Search Problems', Problemy Peredaci
Informacii 9, 1 1 5- 16 (in Russian), English translation in Problems of
Information Transmission 9, 265-6; R. M. Karp (1972) . 'Reducibility
Among Combinatorial Problems', in Complexity of Computer
Computations (R. E. Miller and J. W. Thatcher, eds.) . Plenum Press,
New York, pp. 85-104. See also M. R. Garey and D. S. Johnson (1979) .
Computers and Intractability: A Guide to NP-Completeness, W. H. Freeman
& Co., San Francisco, CA.

s o me t i m e s we j u s t d o n ' t k n o w 9 7

is, i n fact, quite astonishing. Before discussing them, however, we

should see some more examples.

NP-complete problems abound in such scientific fields as com

binatorics, operations research, economics, graph theory, game

theory, and logic. They also arise daily in diverse real-world appli

cations, ranging from telecommunication and banking to city

planning and circuit design. As a result of this, and given the

fundamental importance of separating the tractable from the

intractable, the P vs. NP question has acquired a status unparalleled

in the world of computing.

fi nding s hort paths

In the sample problems of Chapter 1 there are two that involve find

ing paths in road maps. Problem 6 asks for the shortest path between

two given cities, A and B, and Problem 7, a decision problem, asks if

there is a path whose total length is no more than some allowed

bound, and which passes through all the cities in the map.

For easier comparison between them, let us modify these two

problems as follows. We make the first a decision problem, to be

more like the second, and add the two designated cities to the

second, to be more like the first:

Problem 6'

Input: A road map of cities, with distances attached to road

segments, two designated cities therein, A and B, and a

number K.

Output: 'Yes' if it is possible to take a trip from A to B of length

no greater than K miles, and 'No' if such a trip is impossible.

98 c o m p u t e r s L t d .

Problem 7'

Input A road map of cities, with distances attached to road

segments, two designated cities therein, A and B, and a

number K.

Output: 'Yes' if it is possible to take a trip from A to B, which

passes through all the cities and is of total length no greater

than K miles, and 'No' if such a trip is impossible.

The inputs to the two problems are now identical, and the ques

tions are very similar: in both cases we want to know whether or

not there is a certain kind of short path between A and B (without

asking for any output other than 'Yes' or 'No') , but Problem 7'

requires the path to 'visit' each of the cities. To illustrate Problem

7', which is often called the traveling salesman problem, consider

Fig. 4.2. It contains a seven-city road map, or network, in which

the shortest tour from A to B that passes through all the other

cities is of length 28. The answer should thus be 'Yes' if the bound

K is, say, 30 or 28, and 'No' if it is 27 or 25. On the other hand, if

Total cost: 28

Fig. 4.2. The traveling salesman problem (not drawn to scale) .

s o m e t i m e s we j u s t d o n ' t k n ow 9 9

the input were to be exactly the same, but the question posed was

that of Problem 6', which is a yes/no version of the shortest path
problem, the answer would be 'Yes' even with a bound of 25, since

it is easy to find a path from A to B, not necessarily passing

through all cities, whose length is less than that.

Neither of these problems is a toy example, and neither has to be

about road maps and cities. They both arise in the design of com

munication systems and circuits, in planning construction lines

and factory floors, and in the programming of industrial robots, to

mention but a few applications. Shortest paths are crucial in plan

ning real trips from place to place, in routing telephone calls and

in network package transmission, for example. The traveling sales

man problem is crucial in constructing newspaper distribution

routes and the like, but it also occurs in an industrial setting.

Suppose we are in the integrated circuit business, and we have to

prepare a large number of identical circuit boards. As part of the

task, we have a computerized drill that has to be programmed to

drill, say, 200 holes in each board, at fixed locations. Clearly, since

this has to be done many, many times, over and over again, it

would be really nice if we could construct an optimal movement

plan for the drill, starting at some point and making the trip

through all locations. (Or, in the decision version, at least find out

if this can be done within some limit of time or distance.)

Which of the two problems is harder, or are they roughly of the

same complexity? In terms of the candidate paths that have to be

taken into account, Problem 6' - the shortest path problem -

definitely seems to require more work. It has all possible paths

from A to B to consider, whereas Problem 7' - the traveling sales

man problem - has to consider only the ones that pass through

all the cities, and there are far fewer of those. The facts, however,

1 0 0 c o m p u t e r s L t d .

are quite different, illustrating once again the shortcomings of

simplistic intuition: the shortest path problem admits a fast algor

ithm (that runs in quadratic time, in fact) , whereas the traveling

salesman problem is NP-complete.

Recall what the latter fact implies: the traveling salesman problem

is solvable, yes, but the only algorithms ever found for it are uselessly

bad. (A straightforward one simply inspects all of the roughly N!

possible tours, for a map of N cities.) Even the best algorithms

known for traveling salesmen (or saleswomen) are so bad as to be

hopeless in the worst case for maps of 1 50 or 200 cities. And we must

realize that while 1 50 cities might sound a lot to a traveling salesman

with a suitcase full of bits and pieces, it is an extremely modest

number for some of the real-world applications of the problem.

Its NP-completeness thus renders the traveling salesman

problem unsolvable in practice - at least as far as our current

knowledge goes.

s cheduling and matching

Many NP-complete problems are concerned in one way or another

with scheduling or matching. The class scheduling example men

tioned earlier, sometimes called the timetable problem, is one. Say

we are trying to get a new academic year set up in a high-school.

Suppose we are given the availability of each teacher, the particu

lar hours each of the classes can be scheduled, and the number of

hours (possibly 0) that each of the teachers has to teach each of the

classes. A satisfactory timetable is an assignment of teachers to

classes to hours, so that all the given constraints are met, so that no

two teachers teach the same class at the same time, and so that no

two classes are taught by the same teacher at the same time. We

don't even have to include other kinds of constraints, such as class-

s om e t i m e s we j u s t d o n ' t k n o w 1 01

room size or student abilities, to make our point; things are bad

enough even this way.

The timetable problem is NP-complete, as is the yes/no version

that doesn't ask to exhibit a timetable, but wants to know only

whether one exists.

Obviously, this problem is applicable to far more than just class

room scheduling. Teachers, time-slots, and classes can be replaced

by pilots, aircraft, and missions, by FBI agents, motor-cycles, and

crooks, by cars, garage lifts, and servicing procedures, or by com

puter tasks, processors, and system software routines.

Thus for timetable problems. As to matching, here too, many are

NP-complete. They include fitting items into boxes or trucks

(sometimes called the bin-packing problem) , or assigning students

to dormitories so that certain capacity requirements are satisfied.

It is not too difficult to come up with exponential-time algor

ithms for timetable and matching problems. They all have ex

ponentially many candidate solutions, and an algorithm can be

designed to carefully inspect them all. For example, all possible ways

to schedule the teachers with the hours and the classes can be listed

and checked, or all possible ways to pack the items into the boxes.

Again, these naiVe algorithms are hopelessly time-consuming, even

for very reasonably sized inputs, since there are so many possibilities

to check. And again, that these problems are NP-complete means

that as of now no-one has been able to discover any substantially

better way to solve them.

The fact that no good solution has been found for the timetable

problem often raises eyebrows. Indeed there are software packages

for this kind of thing, and people do use them. You don't hear

complaints that they take zillions of years to run on the data of a

local college or high-school. So what is going on? Well, the thing is

that these 'solutions' compromise. Surprising as this may sound to

1 0 2 c o m p u t e r s L t d .

their users, none of them is guaranteed to work in good (polyno

mial) time and to produce the right answer for each possible input

situation. There will always be inputs, perhaps somewhat con

trived, for which such software will either take far, far more time

than we can afford to wait, or (and this is more common) it will

overlook possibilities, stating that a particular set of constraints

cannot be satisfied when in fact it can. A typical case would be for

such a program to fail to find a constraint-satisfying timetable for

a pilot/aircraft/mission instance of the problem, and to 'ask' for a

couple of additional F- 1 6s and a few more pilots, when it really

could have done without them. Such software can be extremely

helpful, and it very often discovers satisfactory timetables and

matchings. However, in our present puristic setup, in which we

require algorithms that are guaranteed to be always and absolutely

correct, and to always terminate with the right answer within a

polynomial amount of time, the timetable problem and the bin

packing problem and all their friends remain unsolved.

All this notwithstanding, there are many similar-looking schedul

ing and matching problems that are tractable. For example, if we

have only two kinds of objects to fit into a timetable - say, teachers

and hours, but with only one class to be taught, or hours and classes

but with only one teacher - the problem does have good solutions.

more on puz z les

Getting back into the puzzle atmosphere, some of the most tanta

lizingly appealing NP-complete problems are based on two

dimensional arrangement tasks, l ike the monkey puzzle. Airlines

used to hand out small kits containing a number of irregular

shapes that had to be laid out to form a rectangle (see Fig. 4.3). You

can buy these in many places, such as the gift-shops of science

s om e t i me s we j u s t d o n ' t k n o w 103

Fig. 4.3. An airline puzzle.

museums. The general decision problem that asks whether N such

shapes can indeed form a rectangle is also NP-complete.

Now consider j igsaw puzzles. The standard kind, in which the

picture is sufficiently heterogeneous, might be tedious to sit down

and do by hand, but from a computational point of view it is not

that hard; the work at each step is just a matter of running through

all the unused pieces and finding the single one that fits. A non-fit

can usually be detected by sight or when attempting to force the

piece into place. The point is that backtracking is not really needed

for such puzzles, a blessing that results in a quadratic time, per

fectly reasonable algorithm.s

5 Why quadratic time? Because when working on a heterogeneous jigsaw
puzzle with N pieces in an orderly fashion from, say, the bottom left-hand
corner, there are N possibilities for the first piece to place and four ways
to place it; N - 1 for the second piece and four ways to place it; N - 2 for
the third piece, etc. Since there is no backtracking to be done, you run
through the 4N possibilities for the first move, find the one single piece
that fits and that's that. Then through the 4(N - 1) possibilities for the
second move, find the one that fits and that's that. And so on. The total
number of steps is thus the sum (not the product) of 4N, 4(N - 1) , and so
on, which is roughly 2N2.

1 0 4 c o m p u t e r s L t d .

So much for the ordinary, 'well-behaved: heterogeneous cases,

where you look for the one and only fitting piece at each stage, find

it, place it, and go on to bigger and better things. However, anyone

who's ever labored on a j igsaw puzzle with lots of sky or sea knows

that they are not that easy. Besides the confusion that comes from

the homogeneous portions of the picture, many of the puzzle's

pieces might be cut to fit perfectly in a given place. An error might

be discovered only after several steps, making 'deep' backtracking

necessary. And it is this need that gives rise to devastatingly time

consuming exponential time algorithms.

The general j igsaw problem, which has to cope with all possible

input puzzles, including the really nasty ones, is also NP-complete.

Thus, j igsaw puzzles, monkey puzzles, and airline arrangement

puzzles are essentially all the same, and we shall see later that this

'sameness' is shared by all the NP-complete problems, not only

those that are puzzle-like.

coloring networ ks

Here i s another NP-complete problem, that involves coloring

networks. Don't let its playful nature deceive you: this problem

embodies the essence of several important applications. Further

more, in Chapter 6 we shall be turning its NP-completeness

around, exploiting to our advantage the glum prospects of it ever

becoming tractable.

The input is a network of points and lines, similar to a road map

for the traveling salesman problem, but with no distances. Each

point (or city) has to be colored, but in such a way that no two

'neighboring' points, that is, ones connected by a direct line, are

colored the same. The problem asks for the minimal number of

s om e t i m e s we j u s t d o n ' t k n o w 10 5

colors required to color a network. In the yes/no decision version,

we are given a number K as an additional input, and simply have

to say whether there is any way to K-color the input network (i.e.

whether it can be colored using only K colors) .

Figure 4.4 shows an example of a network colored legally with five

colors. (We use shading and iconics to depict colors.) This particu

lar network cannot be colored with less than that, so that if K is 5 or

larger the answer should be 'Yes', but for 4 and below it is 'No'.

This problem, even in its yes/no guise, is NP-complete for any

fixed K from 3 up. Thus, for input networks with something like

200 points, you can forget about being able to tell whether they can

be colored with even a mere three colors.6

Fig. 4.4. Five-coloring a network.

6 This problem is reminiscent of, but subtly different from, the famous
four-color question, formulated in 1 852 and considered to be one of the
most interesting problems in all of mathematics. It went unsolved for
over 120 years, and was finally settled in 1 976. See K. I. Appel and
W. Haken (1976) . 'Every Planar Map is Four Colorable', Bull. Amer.
Math. Soc. 82, 7 1 1-12; T. L. Saaty and P. C. Kainen (1986). The Four

continued on next page

1 0 6 c o m p u t e r s L t d .

magic coins

It is now time to discuss the two additional properties of the NP

complete problems alluded to earlier. The first has to do with con

viction and magic. Here is how it goes.

We know that it is apparently very, very difficult to figure out

whether an NP-complete problem is to say 'Yes' or 'No' on a given

input. But say you happen to know that the answer is 'Yes', and you

are trying to convince someone of that fact. Interestingly, there is

an easy way to do the convincing. For any NP-complete problem,

each input has associated with it a so-called certificate, containing

conclusive evidence to the effect that the answer on that input is

'Yes' if indeed it is 'Yes'. Moreover, this certificate is short - it is of

continued
Color Problem: Assaults and Conquest. Dover Publishers, New York. This
mathematical problem involves coloring country maps, of the kind found
in an atlas, by associating a color with each country, but in such a way
that no two countries that share a border are colored with the same color.
The question was whether four colors are sufficient to color any country
map. At first sight, it seems that you could construct increasingly intricate
maps, requiring ever-larger numbers of colors, as can be done for the
problem of coloring networks. This, however, is not true, since countries
reside in a two-dimensional world, and you can't have countries crawling
under and over each other. In fact, the result proved in 1 976 established
that four colors indeed suffice. What is the connection with algorithmics?
Since we now know that any country map can be colored with four
colors, the algorithmic problem of determining whether a given input
map can be 4-colored is trivial - simply output 'Yes' on all inputs. Not
very interesting. For two colors, it is possible to show that a map is
2-colorable if, and only if, it contains no point that is at the junction of
an odd number of countries. And since this property is easy to check,
2-colorability is not very interesting either. Three colors, however, is
interesting: the problem of whether a country map can be 3-colored is
NP-complete.

s om e t i m e s we j u s t d o n ' t k n o w 107

length that is polynomial in the size of the input in question -

and can therefore be checked by the person you are trying to con

vince in an acceptable amount of time.

For example, it is notoriously difficult to tell whether a map of

cities has a traveling salesman tour of length no more than a given

number of miles. On the other hand, if such a path exists, it can be

exhibited (as in Fig. 4.2) and easily checked by a doubtful party to

satisfy the requirements. It thus serves as an excellent certification

of the fact that the answer is 'Yes'. Similarly, although it is

extremely difficult to satisfy the teachers/hours/classes constraints

in the timetable problem, convincing someone that they can be

satisfied (if you know that they can) is easy: simply exhibit a

timetable. Checking that it satisfies the constraints, and thus justi

fying a 'Yes' answer, can be done in polynomial time. Likewise,

exhibiting a legal arrangement of monkey puzzle cards provides an

easily checkable certificate that the answer for this particular input

is 'Yes'.

Thus, figuring out whether an NP-complete problem says 'Yes' to

an input appears to be very hard, but certifying that it indeed does,

when it does, is easy. Figuring out that an input yields a 'Yes' can

be viewed as consisting of two parts: coming up with a candidate

certificate, and checking that it is indeed a witnessing one.

Checking is easy. Finding the certificate is the problematic part.

All this can be explained with magic. Let us assume that in

solving some NP-complete problem we adopt the naIve approach

of trying out all possibilities and backtracking when we get stuck.

But say we have a special magic coin to help us out. Whenever a

partial solution can be extended in more than one way (for

example, several cards in the monkey puzzle can be legally placed

in the current location, or the traveling salesman can proceed in

1 0 8 c o m p u t e r s L t d .

one of several directions) , the coin is flipped and the choice is

made according to the outcome.? This coin, however, does not fall

at random. It possesses magical insight, always indicating the best

possibility: if one of the choices leads to a 'Yes', that is, to a full

good solution, the magic coin points you there. If both possibili

ties lead to a 'Yes', or if none do, the coin acts like a normal random

one, since it doesn't matter which way you go. The technical term

used for such magic is nondeterminism; with it we no longer need

a deterministic procedure to plow through all available options.

We are guaranteed to reach the desired 'Yes' solution, if there is

one.

As to the running time of such nondeterministic processes, it so

happens that a little magic goes a long way. Although no-one knows

whether the NP-complete problems are tractable, i.e. whether they

can be solved properly (without magic) in a polynomial amount of

time, what we do know is that every NP-complete problem has a

polynomial-time nondeterministic algorithm. So magic - admit

tedly an imaginary resource - makes them all 'good'. This fact is

intimately related to the existence of short certificates.8

We can now explain the cryptic acronym 'NP' in the term NP

completeness: it stands for nondeterministic polynomial-time:

problems that become tractable when magic is allowed.

7 If there are more than two possibilities, the coin is flipped several times.

8 A short certificate can be gleaned directly from a polynomial-time
'magical' execution. To certify a 'Yes' answer, just follow the instructions
of the magic coin and when the process terminates simply check
whether it constructed a complete legal solution. Since the coin always
indicates the best possibility, we can safely say 'No' if the solution is in
violation of the rules. A legal solution would have been found by the
coin if one existed.

s o m e t i me s we j u s t d o n ' t k n ow 1 0 9

s tanding or f alling together

The final property of the NP-complete problems, and perhaps the

most remarkable one, is their common fate. Either they are all

tractable, or none of them is! The term 'complete' is used to signify

this bind.

Let us sharpen this statement: if someone were to find a

polynomial-time algorithm for any single NP-complete problem,

thus establishing its tractability, there would immediately be

polynomial-time algorithms for all of them. And this, in turn,

implies the dual fact: if someone were to prove an exponential

time lower bound for any single NP-complete problem, thus

establishing its intractability, an immediate consequence would be

that no such problem is tractable. In terms of Fig. 3.3, we don't

know on which side of the tractable/intractable line the NP

complete problems really reside, but what we do know is that they

are all either here or there together.
This is the ultimate in solidarity, and it is not a conjecture - it

has been proved: all the NP-complete problems stand or fall

together. We just don't know which way it goes. Paraphrasing

again the brave old Duke of York,9 we might say:

And when they are up they are up

And when they are down they are down

And since they can't be halfway up

They are either up or down

It is often difficult to see what causes such diverse problems to

share their fate. But, in fact, they are all very closely related. A

9 See W. S. Baring-Gould and C. Baring-Gould (1 962) . Annotated
Mother Goose, Clarkson N. Potter, New York, p. 1 38.

1 1 0 c o m p u t e r s L t d .

criss-cross collection of reductions has been established between

all the many NP-complete problems, establishing that if a polyno

mial time algorithm were ever found for any one of them it would

transform immediately into an actual polynomial time algorithm

for any other one. 1 O If you find a good solution to the monkey

puzzle problem, for example, then you immediately have amaz

ingly good news for timetable preparers, traveling salesmen (and

1 0 In practice, all you need to find in order to prove that a newly
considered problem is NP-complete are two polynomial-time
reductions: one to some already established NP-complete problem and
one from such a problem. That such reductions exist between the new
problem and each NP-complete problem then follows by the fact that a
chain of polynomial time reductions is polynomial time too. For this
reduction-finding to start somewhere, someone had to find a 'first'
problem, and establish its NP-completeness by direct means. This was
done in 1 9 7 1 by Steven A. Cook in 'The Complexity of Theorem
Proving Procedures', Proc. 3rd ACM Symp. on Theory of Computing,
ACM, New York, 1 5 1-8 (1 97 1) , and around the same time by Leonid
A. Levin, independently, in 'Universal Search Problems', Problemy
Peredaci Informacii 9, 1 1 5- 1 6 (l 973) (in Russian) , or Problems of
Information Transmission 9, 265-6. They proved that determining truth
in the simple logical formalism, called the propositional calculus, was
NP-complete. In this logic, the abstract propositions, the 'F 's and ' G 's
below can be combined to form more complex statements, using simple
logical connectives such as 'and', 'or', 'not' and ' implies'. Thus, for
example, the statement

not (F implies G) and (G or (E implies not F))

states that it is not the case that the truth of E implies the truth of G,
and, besides that, either G is true or the truth of E implies that F is
false. The algorithmic problem calls for determining whether an input
statement is satisfiable, i .e. whether 'true's and 'false's can be assigned
to the basic symbols so that the whole statement becomes true. The
Cook/Levin theorem is considered to be one of the most important
results in the theory of algorithmic complexity.

s o m e t i m e s we j u s t d o n ' t k n o w 1 1 1

saleswomen) , bin-packers, etc. And vice versa: if you manage to

prove that the monkey puzzle does not have a polynomial-time

solution, you can inform all these people that what they thought is

bad news, really is bad news. It will then not be just that we haven't

yet managed to find good solutions to their problems; we will

know for sure that there aren't any such solutions to be found. The

waiting and the hoping can end. The optimists will have lost. Just

like that.

the 9 rea t my s t e r y : ; s P e q ua 1 to

N P ?

The classes of problems we have been discussing have been given

technical names by computer scientists. PTIME, or sometimes

simply P, denotes what we have been calling the good, or

tractable, problems; namely, those that admit polynomial-time

algorithms. NP (without the 'complete') denotes the class of

problems that admit magical, nondeterministic polynomial-time

algorithms. The NP-complete problems are the 'hardest' prob

lems in NP, in the stand-or-fall-together sense: if one of them

turns out to be in P then all the problems that are in NP are also

in P. Using these names, the profound unsolved question really

boils down to whether or not P, as a class of problems, is equal to

NP.

The P vs. NP question has been open since it was identified by

Cook and Levin in 1 97 1 , and is one of the most difficult un

resolved problems in computer science. It is definitely the most

intriguing and the most important. Either all of these interesting

and critically useful problems can be solved well by computer, or

none of them can. Furthermore, you need only figure out the

1 1 2 c o m p u t e r s L t d .

status of one of them to have put the entire issue at rest. Enormous

research efforts have been made in trying to solve this problem,

but to no avail. Most researchers believe that P :/:. NP, meaning that

the NP-complete problems are inherently intractable, but no one

knows for sure. In any case, showing that an algorithmic problem

is NP-complete is regarded as weighty evidence of its apparent

intractability. Lacking proofs of true intractability for many prob

lems, a proof of NP-completeness is the next best thing (or should

we say the next worse thing) .

Some problems are known to be in NP, i .e . they have fast

magical solutions and short witnessing certificates, but are not

known to be NP-complete. That is, we do not know whether they

are among the select class of hardest problems in NP; we don't

know if their fate is so intimately linked with timetables, traveling

salesmen, and monkey puzzles. A well-known example involves

testing a number for primality, Problem 3 in the list of Chapter 1 .

Despite the fact that n o one has been able to find a polynomial

time algorithm for this, and despite the fact that primes have

been shown to admit short certificates, i .e. the problem has a

fast magical solution and thus is in NP, l l it is not known to be

NP-complete.

1 1 v. R. Pratt (1 975) . 'Every Prime has a Succinct Certificate', SIAM J.
Comput. 4, 2 1 4-20. Recall that the length of the input number K is what
counts - i.e. the number of digits needed to write it down - not its
value. If we were to use the value to determine time-complexity, then the
simple primality test that runs through all odd numbers between 3 and
the square root of K would be fine, since it takes time that is polynomial
in K. However, the running time is exponential in K's length. We discuss
this in more detail in Chapter 5.

s o me t i me s we j u s t d o n ' t k n o w 1 1 3

can we come clos e?

Many of the NP-complete problems we have discussed are yes/no

versions of optimization problems, in which we are interested in

minimizing or maximizing something. The traveling salesman

problem is a good example. Its original version asks for an optimal

tour of all cities in the road map, that is, a tour of minimal length.

Now, although we don't know how to find the best tour, it is con

ceivable that we can find one that is not too much longer. In other

words, we might be able to solve the problem in a way that is less

than perfect, yet still of considerable practical value. Algorithms

designed for this purpose are called approximation algorithms,
and they are based on the assumption that taking a less-than

optimal tour is better than staying home, and finding a timetable

with a few constraint violations is better than having total chaos.

One type of approximation algorithm produces results that

are guaranteed to be not too far from the optimal solution. For

example, there is a rather clever approximation algorithm for the

traveling salesman problem, that runs in cubic time (that is, time

N3) and produces a tour guaranteed to be no longer than It times

the (unknown) optimal tour.

Another type of approximation yields solutions that are not

guaranteed to be always close to the optimum, but, rather, to be

very close to the optimum almost always. For example, there is a

fast algorithm for the traveling salesman problem that for some

input road maps might yield tours much longer than the optimum,

but in the vast majority of cases it yields almost optimal tours.

Do NP-complete problems always admit fast approximation

algorithms? That is, if we are willing to be slightly flexible in our

requirements for optimality, can we be sure to succeed? Well, this

1 1 4 c o m p u t e r s L t d .

is a difficult question. People had harbored hopes that powerful

approximation algorithms could be found for most NP-complete

problems even without knowing the answer to the real P vs. NP

question. The hope was that we may be able to come close to the

optimal result even though finding the true optimum would still be

beyond our reach. Recently, however, this hope has been delivered

a crippling blow with the discovery of more bad news: for many

NP-complete problems (not all) , approximations turn out to be no

easier than full solutions! Finding a good approximation algorithm

for any one of these problems has been shown to be tantamount to

finding a good non-approximate solution. Flexibility will take you

nowhere you couldn't already have gone in full rigidity. 1 2

This has the following striking consequence. Finding a good

approximation algorithm for one of these special NP-complete

problems is enough to render all the NP-complete problems truly

tractable; that is, it would establish that P = NP. Put the other way

around, if P t:. NP, then not only do the NP-complete problems

have no good full solutions, but many of them can't even be

approximated!

As an example, consider the network coloring problem. Since

finding the smallest number of colors needed to color a given

network is NP-complete, researchers looked for an approximation

algorithm that would come close to the optimal number in a good,

i.e. polynomial, amount of time. So perhaps there is a method,

1 2 U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy (1 996) .
'Approximating clique i s almost NP-complete', J. Assoc. Comput. Mach.
43, 268-92; S. Arora and S. Safra (1 996) . 'Probabilistic Checkable Proofs:
A New Characterization of NP', J. Assoc. Comput. Mach. 45, 70-1 22;
S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy (1 998) . 'Proof
Verification and Intractability of Approximation Problems', J. Assoc.
Comput. Mach. 45, 50 1-55.

s o m e t i me s we j u s t d o n ' t k n o w 1 1 5

which, given an input network, finds a number that is never more

than 10% or 20% larger than the minimal number of colors

needed to color the network. Well, it turns out that even for 50%

this is as hard as the real thing: researchers have recently proved

that if any polynomial-time algorithm can find a coloring with no

more than twice the minimal number of colors needed to color a

network, then there is a polynomial-time algorithm for the orig

inal problem of finding the optimal number itself. 1 3 This has the

far-reaching ramifications just explained: discovering a good

approximation algorithm for coloring networks is just as difficult

as showing that P = NP. So there goes the hope for that.

s ometimes we s ucceed

The P vs. NP question is one of many unknowns in the theory of

algorithmic complexity - perhaps the most significant one. But

there are many others too. For example, it is not known whether

reasonable space is any different from reasonable time: is there a

problem solvable with a polynomial amount of memory space that

cannot be solved in polynomial-time? This is the P vs. PSPACE

question. In fact, NP, the class of problems solvable in polynomial

time with magical nondeterminism, lies between PTIME and

PSPACE, but no-one knows whether it is equal to one or the other,

or whether all three are distinct.

This does not mean that we are not treated once in a while to

spectacular good news. Sometimes a polynomial-time algorithm is

found for a problem whose tractability/intractability status was

unknown. An important example is linear planning, better known

1 3 C. Lund and M. Yannakakis (1 994). 'On the Hardness of Approximating
Minimization Problems', J. Assoc. Comput. Mach. 41 (5) , 960-8 1 .

1 1 6 c o m p u t e r s L t d .

as linear programming. This is a general framework that encom

passes certain kinds of planning problems where time and resource

constraints have to be met in a cost-efficient way. The linear plan

ning problem, it must be emphasized, is not NP-complete, but the

best solution anyone was able to find for it was a well-known expo

nential-time algorithm called the simplex method, invented in

1 947 by G. B. Dantzig. 1 4 This algorithm, by the way, is not all that

bad: despite the fact that certain inputs force it to run for an expo

nential amount of time, they are rather contrived, and tend not to

arise in practice. When used for most real problems of realistic size,

the simplex method performs very well. Nevertheless, the problem

was not known to be tractable in the strict sense of the word, nor

was there a lower bound to show that it wasn't.

In 1 979, a rather ingenious polynomial-time algorithm was found

for the problem, but it was something of a disappointment. The

exponential-time simplex method outperformed it in many of the

cases arising in practice. Nevertheless, it did show that linear pro

gramming is in P. Recent work based on this algorithm has produced

more efficient versions, and people currently believe that before long

there will be a fast polynomial-time algorithm for linear planning

that will be useful in practice for all inputs of reasonable size. I s

* * *

1 4 G. B. Dantzig (1 963) . Linear Programming and Extensions. Princeton
University Press, Princeton, NJ.

I S 1. G. Khachiyan (1 979) . 'A Polynomial Algorithm in Linear
Programming', Doklady Akademiia Nauk SSSR 244, 1 093-6 (in Russian),
English translation in Soviet Mathematics Doklad 20, 1 9 1-4; N.
Karmarkar (1 984) . 'A New Polynomial-Time Algorithm for Linear
Programming', Combinatorica 4, 373-95.

s o m e t i m e s we j u s t d o n ' t k n o w 1 1 7

In Chapters 2 and 3 we discussed algorithmic problems that we

know to be unsolvable, and others that we know cannot be solved

in practice, Obviously, these will not bring us any joy. Nor is there

comfort in the problems of this chapter, for which we don't know

whether we should laugh or cry: they appear to be bad, are

conjectured by many to be bad, but we don't know for sure.

But what about the everyday? Is it true that most problems

arising in common applications can be solved efficiently?

Unfortunately, the answer is no. Not at all. It's just that we often

tend to equate 'everyday' and 'common' with situations that we

know how to tackle. In actuality, a growing number of problems

arising in real applications turn out to be NP-complete or worse,

and for some of these we can't even resort to approximation

algorithms.

Bad news. Bad news indeed.

chapter 5

try i ng to eas e
th e

.

pal n

The fact that computing doesn't bring only good news has pushed

researchers in a number of directions, intended to try to alleviate

the problem. In this chapter we shall discuss some of the most

interesting of these: parallelism (or concurrency) , randomization,
quantum computing, and molecular computing. Each of the first

two represents a new algorithmic paradigm by relaxing a fund

amental assumption underlying conventional computing. The

third transfers computation into the mysterious realm of quantum

mechanics, and the fourth represents an attempt to have molecules

do the work.

To get a feeling for parallelism, consider the following. Several

years ago there was a contest in the Los Angeles area for the world

title in fast house building. Certain rigid rules had to be adhered to,

involving things like the number of rooms, the utilities required,

and allowed building materials. No prefabrication was permitted,

but the foundations could be prepared ahead of time. A house

was deemed finished when people could literally start living in it;

all plumbing and electricity had to be in place and functioning

1 2 0 c o m p u t e r s L t d .

perfectly, trees and grass had to adorn the yard, and so on. No limit

was placed on the size of the building team.

The winning company used a team of about 200 builders, and

had the house ready in a little over four hours!
This is a striking illustration of the benefits of parallelism: a

single person working alone would need a lot more time to com

plete the house. It was only by working together, amid incredible

feats of cooperation, coordination, and mutual effort, that the task

could be accomplished in so short a time. Parallel computation

allows many computers, or many processors within a single com

puter, to work on a problem together, in parallel.

As to randomization, Russian roulette is a good illustration.

While some people might consider unlikely the chances of getting

killed in playing this 'game', most people would not and would

never agree to participate. Fine. But let's now suppose that instead

of a mere six bullet positions, the revolver has 2200 of them. A

simple calculation shows that, in terms of risk, this is the same as

saying that the trigger in an ordinary six-bullet revolver is actually

pulled only if the single bullet always end up in the shooting posi

tion in 77 consecutive spins. The chances of getting killed in a 77-

spin game are many, many orders of magnitude smaller than the

chances of achieving the same effect by drinking a glass of water,

driving to work or taking a deep breath of air. If you have some

important reason to participate in a 2200-position or 77-spin game,

then you have absolutely no reason to worry about the risk

involved; the probability of a catastrophe is unimaginably minute.

In line with this example, randomization allows algorithms to

toss fair coins (or spin revolver barrels, if you will) in the course of

their action, yielding random outcomes. The consequences are

surprising. Rather than introducing chaotic and unpredictable

t ry i n g t o e a s e t h e p a i n 1 2 1

results, we shall see that this new ability can be extremely useful. It

often yields fast randomized, or probabilistic, solutions to prob

lems for which the only conventional solutions known are far less

efficient. The price paid is the possibility of error, but, as in the

roulette scenario, this possibility can be safely ignored.

Quantum computing is a brand new approach to computation,

based on quantum mechanics, that tantalizing and paradoxical

piece of 20th century physics. So far, a few surprisingly efficient

quantum algorithms have been discovered for problems not

known to be tractable in the 'classical ' sense. However, to work

they require the construction of a special quantum computer,
something that as of now is still very much nonexistent. Molecular,

or DNA computing, another very recent paradigm, has enabled

researchers to coax a molecular solvent to solve instances of certain

NP-complete problems, which raises interesting and exciting

possibilities.

The rest of the chapter discusses these ideas in varying levels of

detail. However, being true to our goal of presenting bad news, we

shall concentrate on whether even these more liberal ways of

solving algorithmic problems are able to overcome the inherent

limitations discussed in the previous chapters.

parallelis m . or j oining forces

The house-building story makes it clear that doing many things in

parallel can work wonders. Still, it's important to realize that you

can't parallelize just anything. Consider digging a ditch, one foot

deep, one foot wide, and ten feet long, and assume that a single

person can dig a cubic-foot hole in an hour. A single digger would

need ten hours to dig a ten foot ditch, but ten people could do the

1 2 2 c o m p u t e r s L t d .

job in one hour by working concurrently, side by side. Parallelism

is at its best here. But say that we want a well, not a ditch, and a well

is one foot wide, one foot long, and ten feet deep. Here parallelism

achieves nothing, and even a hundred people would need ten

hours to get the job done.

A similar example involves nine couples trying to join forces in

having a child in one month

Some algorithmic problems can be nicely 'parallelized', despite

the fact that the first solutions that come to mind are sequential in

nature) Consider the salary summation problem of Chapter 1. It

might appear necessary to do what we did, namely, to run through

the list of employees linearly, adding the salaries one at a time; just

like digging a well. Not so. Figure 5 . 1 illustrates a simple parallel

algorithm for salary summation that runs in logarithmic time -

a momentous improvement over linear time, as shown in Chapter
3. The method is to first consider the entire list of N employees two

by two, in pairs;

< 1 st, 2nd>, <3rd, 4th> , <5th, 6th> . . . ,

and to sum the two salaries in all pairs simultaneously, yielding a

list of half the length of the original. This takes the time of a single

addition only, since all NI2 summations of the pairs are carried out

at the same time. The new list (of length N12) is then arranged

similarly in pairs, and the two numbers in each pair are again

added simultaneously, yielding a new list of N/4 numbers. This

continues until there is only one number left, which is the sum of

1 The term sequential processing is usually used to contrast with parallel
processing, and denotes the usual way of computing with a single
computer, or processor.

t r y i n g t o e a s e t h e p a i n 1 2 3

Step 1 Step 2
(N/2 processors) (N/4 processors)

Fig. 5 . 1 . Summing salaries using parallelism.

Step log2N
(1 processor)

the salaries in the entire list. The total number of steps this takes is

the logarithm base 2 of N, so the entire logarithm runs in time

proportional to log N.

With the table of Chapter 3 in mind, this logarithmic running

time means that l OOO salaries can summed in the time that it takes

to carry out just 1 0 additions, and a million salaries can be

summed in the time of only 20 additions. Great savings indeed.

But we should also talk about the hardware required for this,

namely, the number of processors we would need. This complex

ity measure is sometimes termed hardware size. To simultaneously

carry out the half million additions of two salaries required in the

first step of summing a million salaries, we need half a million

1 2 4 c o m p u t e r s L t d .

processors. The same ones can then be used to carry out the

250 000 additions of the second stage (half of them, of course,

would be idle) , followed by the 125 000 additions of the third

stage, and so on. In general, then, to bring the time performance

of summing N salaries down from linear time to logarithmic time

we need NI2 processors, a number that depends on N.

This is necessarily the case, for if we only had a fixed number of

processors, one that didn't grow with N, we could not improve

things beyond a constant factor: we might be able to sum salaries

twice as fast, or 1 00 times as fast, but the overall time perform

ance would still be proportional to N, that is, it would be linear

time. To achieve an order-of-magnitude improvement requires

expanding parallelism, where the number of processors grows as

N grows.2

can parallelis m eliminate the bad

news ?

So parallelism can improve things: many problems can be solved

faster, even in order-of-magnitude terms, if parallelism is allowed.

2 You might conceivably claim that a growing number of processors is
just not feasible, since computers are of fixed size. In a puristic sense this
is true, but a similar argument could be made about memory space, and
perhaps also about time. The purpose of complexity measures is to
provide means for estimating how the amount of resources grows as
inputs get larger. We must be able to solve an algorithmic problem for
tomorrow's inputs too, without having to come up with a new algorithm
each time. In this respect, processors are considered a resource as any
other, and we want to know how large the hardware has to be for
ever-larger inputs.

t r y i n g t o e a s e t h e p a i n 1 2 5

Not all problems, o f course, but some. Digging ditches yes, but

digging wells no. You can feed nine babies fast with nine pairs of

parents, but you can't produce one baby faster than the norm, even

with such a team.

Good. So can we put all this bad news nonsense aside now?

Let's see. The first thing to ask is whether parallelism can solve

problems that could not have been solved at all otherwise. Can we

devise a parallel algorithm for a noncomputable or undecidable

problem? The answer is no. Any parallel algorithm can be simu

lated sequentially, by a single processor that runs around doing

everyone's work. This will typically take much longer than the par

allel algorithm, but it can be done. An immediate consequence is

that the Church-Turing thesis applies to parallel models of com

putation too: the class of problems solvable by algorithmic devices

is insensitive even to the addition of parallelism. Even harnessing

all the world's computers in a mighty universal effort would not

solve the tiling problem or enable us to detect Y2K bugs. So much

for that.

The next question is whether parallelism can turn intractable

problems into tractable ones. Is there a problem requiring an

unacceptable (that is, super-polynomial) amount of time for

sequential solution that can be solved in parallel in acceptable (that

is, polynomial) time?

To be able to better appreciate the subtlety of this question,

consider the NP problems of Chapter 4. As you may recall, all

problems in NP have good nondeterministic solutions. They can

be solved efficiently with the aid of a magic coin, which, if tossed

when confronted with a choice, will use its wizardry to point in

the direction that leads to the best answer - a 'Yes' for a deci

sion problem - if there is such a direction. Now here is the

1 2 6 c o m p u t e r s L t d .

interesting fact: if we have parallelism we don't need the magic

coin. Whenever a 'crossroad' is reached, lacking magic we simply

send off new processors to follow all the possibilities simultane

ously. If one of them ever comes back and says 'Yes', the entire

process halts and says 'Yes' too; if a predetermined polynomial

amount of time has elapsed and none of them has said 'Yes', the

process halts and says 'No'. The fact that the problem is in NP

means that a 'Yes' answer (if the answer is indeed 'Yes') would

have been discovered using a magic coin in this amount of time,

so that our exhaustive, multiple-processor traversal of all poss

ibilities will find the 'Yes' in the same amount of time too. If it

doesn't find a 'Yes' within the allotted time, the answer must be

'No'.

Consequently, all problems in NP, including the NP-complete

ones, such as monkey puzzles, traveling salesmen, timetables, and

box-packing, have polynomial-time parallel solutions.

Neat. So, is this not intractability made tractable?

Well, no, not quite. Two comments are in order, before we rush

off telling everyone that intractability is but a bothersome conse

quence of old-fashioned one-processor computing, and that it can

be eliminated by using parallelism.

First, we only know how to make NP-complete problems good:

but we don't know how to do so for the provably bad ones (like

Roadblock; for example) . None of the NP-complete problems is

known to be intractable - they are merely conjectured to be so.

Thus, the fact that we can solve NP-complete problems in poly

nomial time using parallelism doesn't imply that parallelism

can rid even a single problem of its inherent intractability, since

we don't know whether the NP-complete problems are really
intractable.

t r y i n g t o e a s e t h e p a i n 1 2 7

Second, and more importantly, the hardware size needed for

carrying out a good parallel algorithm will very often be bad!

In particular, this is true for the above method for solving NP

complete problems: if we try to avoid the need for a magic coin by

parallel consideration of all possibilities, we are in for a big sur

prise. Exponentially big, in fact! Using parallelism to figure out in

less than zillions and zillions and zillions of years whether class

schedules can be found that satisfy the constraints of high schools,

you would need a wholly unreasonable computer containing zil

lions and zill ions and zillions of intricately connected processors.

Moreover, even though the parallel algorithm has a polynomial

time bound, it is by no means obvious that it can actually be run

in polynomial time on a real parallel computer. Researchers have

proved that under quite liberal assumptions about the width of

communication lines and the speed of communication, a super

polynomial number of processors would often require a super

polynomial amount of actual time to carry out even a polynomial
number of steps, no matter how the processors are packed

together. These results are based on the inherent limitations of

three-dimensional space) Put more concisely, good parallel time

often comes with the unwanted guest of extremely bad hardware

size, and moreover, this good time doesn't necessarily stay good

when the hardware is bad.

The question thus remains: can we use parallelism, even with

unreasonably sized hardware, to solve in an acceptable amount of

time a problem that is provably unsolvable sequentially in an

acceptable amount of time? This question is still open, leaving a

3 P. M. B. Vitanyi (1 988) . 'Locality, Communication and Interconnect
Length in Multicomputers', SIAM J. Comput. 1 7, 659-72.

1 2 8 c o m p u t e r s L t d .

big gap in our understanding of what can really be achieved by

entities working together.4

4 Interestingly, parallel-PTIME (problems solvable in polynomial-time
using parallelism) turns out to be equivalent to the class PSPACE
(problems solvable sequentially using a polynomial amount of memory
space) . Therefore, the question of whether parallel-PTIME is strictly
larger than PTIME is really equivalent to a question involving sequential
computation only, namely, whether PSPACE is strictly larger than
PTIME. This P vs. PSPACE question is considered by researchers to be
very difficult, and not unlike the P vs. NP question of Chapter 4. Another
central question that arises is what we really mean when we refer to
'good' in the presence of parallelism. Parallel PTIME might not be the
right choice, since, as mentioned, polynomial time parallel algorithms
may require an exponential number of processors, and may take more
than a polynomial amount of time to run on a real parallel machine.
Also, one of the purposes of introducing parallelism is to reduce running
time, drastically if possible. We often want sublinear algorithms, that
exploit parallelism to such an extent that they don't even have to read the
entire input in order to do their work. An interesting response to this
challenge involves a class of problems called NC, defined as those that
admit extremely fast parallel solutions, much faster even than linear time
(poly-logarithmic time, in fact) , and require only polynomially many
processors. See N. Pippenger (1 979) . 'On Simultaneous Resource Bounds
(preliminary version) " Proc. 20th IEEE Symp. On Foundations of
Computer Science. IEEE, New York, pp. 307-1 1 ; S. A. Cook (1 98 1) .
'Towards a Complexity Theory of Synchronous Parallel Computation',
L'Enseignement Mathematique 27, 99-1 24. Although many problems,
such as sorting, turn out to be in NC, there are still many things we don't
know about this class. For example, no-one knows whether this kind of
speedup is possible for all problems in PTIME. Thus, while it is known
that NC is contained in PTIME - which, in turn, is contained in NP,
which, in turn, is contained in PSPACE - it is not known whether these
three inclusions are strict, but many computer scientist� believe that they
are. The situation is thus as follows, where the symbol C means 'is a
smaller set than, but is not known to be strictly smaller than' :

NC C PTIME C NP C PSPACE (= parallel-PTIME)
continued on next page

t ry i n g t o e a s e t h e p a i n 1 2 9

But there i s more to research i n this area than trying to solve

such as-of-now unyielding open questions. Parallelism, or concur

rency, is a fact of life, and the better we understand it the more we

can use it to our advantage. As it stands, recent algorithmic and

technological advances in this area seem to be ahead of each other.

Many of the best parallel algorithms devised cannot be imple

mented because existing parallel computers are inadequate in

some way or another. In fact, very few parallel algorithms have

ever been run effectively on real parallel computers, and this

includes some of the fastest ones invented. On the other hand, we

still don't have a good enough understanding of what can be algor

ithmically parallelized to take full advantage of the features those

same computers offer.

randomiz ation . or tos s ing coins

Parallelism landed us outside the world of conventional algorithms,

in that it allowed the utilization of more than one processor. This

continued

Put in words, the conjectures (from right to left) are as follows: (i) There
are problems that can be solved sequentially with a good amount of
memory space - which is the same as being solvable in parallel in
good time (but possibly bad hardware size) - that cannot be solved
sequentially in good time even with magical nondeterminism. (i i) There
are problems that can be solved sequentially in good time with magical
nondeterminism that cannot be solved sequentially in good time
without it. (i i i) There are problems that can be solved sequentially in
good time that cannot be solved in parallel in extremely little time with
good hardware size. These are three of the deepest, most important
and most difficult open questions in computer science. Proving or
disproving any one of them would constitute a major breakthrough
in understanding the true fundamentals of computation.

1 3 0 c o m p u t e r s L t d .

new freedom is easily seen to improve things, and required little

justification. We now extend conventional computing in a totally

different way, by allowing algorithms to toss coins during their exe

cution, yielding random outcomes. Such algorithms are termed

probabilistic, or randomized.

Computers tossing coins?! Doesn't that introduce chaotic,

unpredictable behavior into the otherwise orderly, carefully

specified, step-by-step world of algorithmic processing? Well, yes it

does, but in many cases we can exploit the unpredictability of

tossing a coin, making it work for us instead of against us. There

are basically two ways to do this. In the first, dubbed the Las Vegas
approach,s a correct but inefficient algorithm is constructed, and

randomness is used to help expedite its execution with high prob

ability. In a nutshell, Las Vegas algorithms are characterized by

being always correct and probably fast.

An example involves quicksort, a very popular sorting algo

rithm. Quicksort happens to have a rather disappointing worst

case running time (N2, which for sorting is slow - see Chapter 3) ,

but a very good average case one, namely about 1 .5 x N log2N,

which often makes it the sorting algorithm of choice. However,

certain applications give rise to uneven collections of input lists

that cause quicksort to perform badly, closer to the quadratic

worst-case bound. Curiously, if the input list is already sorted, and

thus requires no work at all, the algorithm will not detect this fact

and will perform its absolute worst, running in quadratic time!

What can be done about this, to cause inputs to act like average

5 The terms 'Las Vegas' and 'Monte Carlo' are not particularly telling,
but for some reason they are the ones used by computer scientists, and
they seem to have stuck.

t r y i n g t o e a s e t h e p a i n 1 3 1

ones? Simple: we will first shake up the input i n a n arbitrary

fashion. More precisely, we carry out a preprocessing stage prior to

applying the quicksort procedure itself, in which coin tossing is

used to shuffle up the input list according to a random permuta

tion. This guarantees that the list sent off to be sorted will be an

'average' list. Far from making things any worse, this strange trick

causes the running time, with high probability, to be much closer

to the excellent average case bound. The resulting 'mix

and-then-sort' algorithm is of the Las Vegas type. It always sorts

correctly and is very fast with high probability. With some small

probability it could run in the not-so-good time of N2.

The other kind of randomized algorithm is termed Monte
Carlo. This approach takes a far more radical leap, renouncing our

most sacred requisite, namely, that a solution to an algorithmic

problem must solve that problem correctly for all possible inputs.

Of course, we can't abandon correctness completely, since then any

algorithm would 'solve' any problem. Nor do we recommend that

people use algorithms that they hope will work, but whose per

formance they can only speculate about, and not analyze. Rather,

we are interested in algorithms that might not always be correct,

but whose possible incorrectness is something that can be safely

ignored. And we insist that this fact be justifiable on rigorous

mathematical grounds. In contrast to Las Vegas algorithms, which

are always correct, and probably fast, Monte Carlo algorithms are

always fast, but are only probably correct. The probability,

however, must be very, very high.

Here is an example. Suppose you are organizing a large dinner

party where the guests are to bring the food. But you want some

order. Instead of each guest bringing whatever they want, you

would like about a quarter of them to bring appetizers, about a half

1 3 2 c o m p u t e r s L t d .

to bring main courses, and the remaining quarter to bring desserts.

(You provide the wine and beer.) A naive way to arrange this is for

you to determine the assignments yourself, according to your

quarter/half/quarter scheme. A randomized approach, which is

easier for you (because you don't have to keep track of who was told

what and you avoid the inevitable arguments with people about

their assignments) , is as follows. Simply tell each guest to toss a coin

at home. If the outcome is 'Heads', they bring a main course,

otherwise they toss again. If the outcome on the second throw is

'Heads', they bring an appetizer, and if it is 'Tails' they bring a

dessert. With very high probability (that gets higher as the dinner

party gets larger) , the food will be as you wanted. Not always, and

not exactly, but it will come very close most of the time.

more on Monte C arlo algorithms

Randomized algorithms are used for things far more critical than

making sure you're not stuck with a table full of appetizers.

Consider the following situation, which is not unlike the Russian

roulette story discussed earlier, but involves money rather than

lives. Assume that, for some reason, all your money was tied up to

the monkey puzzle problem of Chapter 4 in the following way. You

are given a single large instance of the problem (say a 1 5 x 1 5

version with 225 cards) , and are told that your money will be

doubled if you can say correctly whether the cards can be arranged

in a legal I S x 1 5 square. You are also told that you lose the lot if

you give the wrong answer. To discourage indecision, the money is

unavailable until you give some answer. Since the monkey puzzle

problem is NP-complete, you have a real problem. What do you

do?

t ry i n g t o e a s e t h e p a i n 1 3 3

You could run your favorite exponential-time monkey puzzle

algorithm on the input cards, hoping that this particular case is an

easy one and will be solved reasonably fast, or you could position

yourself on the floor and start trying things out on your own.

Alternatively, realizing that these options are useless, you might

simply guess 'Yes' or 'No' and hope for the best. At least there you

have a 50% chance of succeeding.

Is there any better way?

Suppose some kind soul approached you just as you were about

to make your wild guess, and offered you (cheaply) a Monte Carlo

algorithm that solved the monkey puzzle problem fast, but with a

slight chance of error: it was guaranteed that it gave the wrong

answer only once in every 2200 runs. Is that good news? It sure is.

You money is as safe as any. Take the deal. Run this algorithm on

the input cards and present your tormenter with the answer. As in

the 2200-position version of Russian roulette, the chances of losing

your money are far, far less than the chances of a hardware error

occurring in all the bank's computers together, precisely during

this execution, or the chances of your bank going bankrupt anyway

the very next day.

The fact is that for many algorithmic problems, including some

that appear to be intractable, such extremely-small-probability-of

error algorithms exist, and are usually very time-efficient. Whether

or not such solutions exist for the monkey puzzle problem or for

other NP-complete problems is still not known, but for many

similar problems they do. So our little scenario about your money

is not yet doable with the monkey puzzle, but it is doable with other

problems, such as the one described in the next section. For all con

ceivable practical purposes, a randomized algorithm of the Monte

Carlo type is perfectly satisfactory, whether it is an individual's

1 3 4 c o m p u t e r s L t d .

money or life that is at stake, a company's financial future, or an

entire country's security. The chances of a mishap are negligible,

and, as we shall see, you are the one who gets to determine ahead of

time how large a risk you are willing to take.

tes ting for primality

An important utilization of randomization is in testing a number

for primality. Problem 3 on the list of Chapter 1 was this:

Problem 3

Input: A positive integer K.

OlltpUt: 'Yes' if K is prime and 'No' if it isn't.

The primes constitute the most interesting class of numbers ever

to have caught mathematicians' attention. They play a central role

in the branch of mathematics known as number theory and have

many remarkable properties. Their investigation has led to some

of the most beautiful results in all of mathematics. Also, as we shall

see in Chapter 6, prime numbers are fast becoming indispensable

in several exciting applications of algorithmics, such as cryptogra

phy, where it is important to be able to quickly test the primality

of large numbers.

How do we determine whether a number K is a prime? Chapter

1 mentioned the naIve method of dividing K by all the integers

between 2 and VK. We pronounce K composite if any one of

these potential divisors is found to divide it without a remainder,

and decide that it is prime if all divisions have been carried out and

have all yielded remainders. This algorithm is fine. It is simple, it

t r y i n g t o e a s e t h e p a i n 1 3 5

i s correct, and i t works quite nicely for numbers o f 2 0 digits o r so.

Unfortunately, many of the interesting applications require much

larger primes - say, 1 50- or 200-digit ones. We have to know how

the naIve algorithm behaves as K grows, and the number of digits

is the right thing to be looking at, since in primality testing, as in

most other number theoretic algorithmic problems, the size of the

input is not the value of the numbers at hand but their length in

digits. Thus, we would like to know just how fast this primality

testing algorithm is as a function of N, the number of digits in the

input number K.6

The sad fact is that even with the best improvements known,

such as passing over multiples of candidate dividers that have

already been tested, this common primality testing algorithm is

unreasonably inefficient; its time complexity is exponential in N.
On a 200-digit number it could take many, many billions of years

using even the fastest computers. There are better algorithms than

this, but they are still not polynomial time, and the problem is not

known to be tractable in the usual sense.?

6 The basis of the digital representation is unimportant here: there are
only linear differences between the length of a number written in binary
or in decimal representation, or in any other representation that utilizes
at least two digits.

7 In contrast to the NP-complete problems, there are many people who
believe that primality testing is in PTIME. In fact, there are algorithms for
primality testing that run in 'almost' polynomial time, at least in terms of
order-of-magnitude complexity. The best one currently runs in time 0
(NO(log, log,N ») , which can be considered very close to polynomial time,
since the function log2 log2 N grows very slowly; the first N for which it
exceeds 5 is more than four billion, and it doesn't reach 6 until N is well
over 18 billion billion. See L. Adelman, C. Pomerance, and R. S. Rumely

continued on next page

1 3 6 c o m p u t e r s L t d .

randomized primality tes ting

This bleak news notwithstanding, in the mid- 1970s, following early

work of Michael Rabin on probabilistic computing, a couple of

ingenious Monte Carlo algorithms were discovered for testing pri

mality. They were among the first randomized solutions to be

found for hard algorithmic problems, and have triggered extensive

research that has led to improved solutions to many other problems

too. The running times of these primality testing algorithms are

(low-order) polynomials in the length N of input number K. They

can test the primality of a 200-digit number with negligible prob

ability of error remarkably fast on even a very small computer!S

The algorithms are based on searching at random for a certain

kind of certificate, or witness, to K's compositeness. Such a witness

is a number whose special mathematical properties serve as a true

proof of the fact that K is composite. If a witness is found, the

algorithm can safely stop and say 'No, K is not prime', since it has

acquired undisputable evidence of that fact. However, the setup

continued
(1 983) . 'On Distinguishing Prime Numbers from Composite Numbers',
Ann. Math. 1 1 7, 173-206. If we disregard constant factors for a moment,
this means that on an input number with a billion digits - that is, a
number K whose length N is a billion - the algorithm still runs within
a time bound of roughly NS, and K has to have over 18 billion billion
digits before it starts behaving according to the bound of N6.
Nevertheless, this is still super-polynomial time performance, since
eventually it will reach N6, and then N1, and so on, without limit.

8 M. O. Rabin (1 980) . 'Probabilistic Algorithm for Testing Primality',
J. Number Theory 1 2, 1 28-38; G. L. Miller (1 976) . 'Riemann's
Hypothesis and Tests for Primality', J. Comput. Syst. Sci. 1 3, 300- 1 7;
R. Solovay and V. Strassen (1 977) . 'A Fast Monte-Carlo Test for
Primality', SIAM J. Comput. 6, 84-5.

t ry i n g t o e a s e t h e p a i n 1 3 7

must b e such that a t some reasonably early point i n time the algor

ithm will be able to stop searching and declare that K is prime,

with a very small chance of being wrong.

To help appreciate the difficulty of defining such witnesses, let's

see what happens if we try to work with the obvious candidates,

namely, K's factors. Say we define a witness to be any number

between 2 and K - 1 that divides K exactly. We now go ahead

trying to find such a number by random guesses. The random

search for a factor is fast: we use the coin repeatedly to 'guess' digit

after digit of the candidate, and then check whether the resulting

number is indeed a good witness by carrying out a simple division.

If we find that K divides the candidate evenly, we have conclusive

evidence that K is composite, exactly as needed. The problem,

however, is what to do if the division leaves a remainder. There are

exponentially many numbers between 2 and K - 1 (that is, expo

nential in N, the length of K), and even if we manage to avoid

checking multiples, there are still exponentially many candidates

that might have to be checked if we want to stop trying at some

point and declare K to be prime with only a very small chance of

being wrong.

Put in simple words, there are too many potential places to look

for a witness, and the actual witnesses are distributed too sparsely,

so that trying to find one at random is like looking for a needle in

a very large haystack.

To be able to utilize the witness idea, we must come up with dif

ferent kinds of witnesses for non-primality. Just like factors, the

new witnesses must also provide undisputable evidence of K's

compositeness, but they must be distributed a lot more densely, so

that a random probe is far more likely to find one - if there is one.

Such witness definitions have indeed been discovered, and they are

1 3 8 c o m p u t e r s L t d .

at the heart of the fast primality testing algorithms. We shall not

get into the details of these witnesses here, but we should say a few

words about their effect.

In one of these probabilistic primality testing algorithms, things

are set up in such a way that if the input number K is composite,

more than half of the numbers between 1 and K- l are witnesses.

This means that if you pick a number in this range at random, and

it turns out not to be a witness to K's compositeness, you can be

more than 50% certain that K is prime, since the probability of

missing a witness when K is not prime is less than t. If you carry

out the same thing again, choosing some other potential witness at

random, and you don't hit upon a witness this time either, you can

be 75% sure that K is prime. This is because the two random

probes were carried out independently, so that the probabilities are

multiplied, resulting in the probability of a miss becoming t. For

three probes, the chance of missing a witness when K is composite

is t, and our confidence in K's primality goes up to 87.5%, and so

on. Thus, if we carry out R probes, the chance of missing a witness

is 1 in 2R.9

This translates immediately into an extremely fast probability

testing algorithm. (See Fig. 5 .2 for a schematic description.)

Choose, say, 200 random numbers between 1 and K-l and test

each for being a witness to K's composite ness; stop and say 'No, K

is not prime' if and when any one of them is found to be a witness,

and stop and say 'Yes, K is prime' if they all pass the witness-testing

9 We should add that checking whether a candidate number is a true
witness can be done very efficiently, but since we have not provided the
technical definition of a witness, we shall say no more on this matter
here.

t ry i n g t o e a s e t h e p a i n 1 3 9

Fig. 5.2. Randomized primality testing.

procedure in the negative. We can always believe a 'No' coming

from this algorithm, since finding a valid witness provides unshak

able evidence that K is composite. When it outputs a 'Yes' we can

believe it too, since although the algorithm might be wrong the

chances are less than 1 in 2200, which is unimaginably minute.

Recalling the Russian roulette story here, we conclude that this

performance is more than adequate for any practical purpose. It

can - and should! - be used freely even for cases where people's

money or lives are at stake. Moreover, if such an incredible prob-

1 4 0 c o m p u t e r s L t d .

ability of success is not good enough, you can simply instruct the

algorithm to test 20 1 random candidates for witness, instead of 200,

cutting the chances of error yet again in half, or 500 candidates:

making the probability of error the ridiculously small: 1 in 2500. We

might add that, in practice, testing 50 candidates has proved to be

perfectly adequate for an input number of 200 digits or so. .

can randomiz ation eliminate the

bad news ?

We now know that besides parallelism randomization is also cap

able of providing dramatic improvements in algorithmic per

formance. Great. So, can we now forget about this bad news stuff?

No, not really. As far as raw computability and decidability go,

the Church - Turing thesis extends to randomized algorithms too:

like parallelism, randomization cannot be used to solve the non

computable, since every randomized algorithm can be simulated

by a conventional one.

How about tractability? Can we turn an intractable problem into

a tractable one using randomization? As in the case of parallelism,

no-one knows. Some problems that are not known to be in

PTIME, like primality testing, can be solved very fast using ran

domization, but we don't know if this can be done for a provably
intractable problem. In fact, some problems that are conjectured

to be intractable in the usual sense are conjectured to remain so

even in the face of randomization. Factoring numbers is one

example. Most researchers believe that the factoring problem,

which asks for the factors of a composite number, is not solvable

in polynomial time, even with coin-tossing (although we shall

soon see that in the quantum world this is no longer true) . We

t r y i n g t o e a s e t h e p a i n 1 4 1

should add that allowing both parallelism and randomization

doesn't make things significantly better, so that even in the pres

ence of both kinds of liberty discussed so far, the bad news of the

previous chapters remains standing, tall and firm.lo

can computers s imulate true

randomnes s ?

An issue that we should address is the way computers can be

made to toss fair, unbiased coins. The problem is that a real digital

computer is a totally deterministic entity; all of its actions can be

! O The class RP stands for random-PTIME, problems solvable in
polynomial time using Monte Carlo-type coin tossing algorithms for
the 'Yes' direction. More precisely, RP contains the decision problems
for which there is a polynomial-time coin tossing Turing machine with
the following property. If the correct answer for an input X is 'No', the
machine says 'No' with probability 1, and if the correct answer is 'Yes',
it says 'Yes' with probability greater than 1. Of course, the interest in RP
stems from the fact that these possibly erroneous computations can
be reiterated many times, achieving an exponentially diminishing
probability of error, as explained for the fast primality testing algorithm.
RP lies between PTIME and NP. Here too, many researchers believe that
the inclusions are strict. Spelled out in words, these beliefs read as
follows: (i) There are problems that can be solved in good time with
magical nondeterminism that cannot be solved in good time without it
even using randomization. (i i) There are problems that can be solved in
good time with randomization that cannot be solved in good time
without it. Adding RP to the symbolic summary given in an earlier
footnote, we get:

NC t. PTIME t. RP t. NP t. PSPACE (= parallel-PTIME)

It is thus interesting that in the realm of polynomial time we don't know
whether coin tossing provides any real additional power, or whether
magical coin tossing provides even more.

1 4 2 c o m p u t e r s L t d .

predicted in advance - at least in principle. Consequently, com

puters can't generate truly random numbers, and hence they can't

simulate the truly random tossing of fair coins. So what can we

do?

We could perhaps appeal to a physical source. For example, our

computer could be attached to a small robot hand that scoops up

some sand from a large container, counts the sand grains in the

scoop, and decides 'Heads' if the number is even and 'Tails' other

wise. This approach has several obvious drawbacks. A more prac

tical idea involves pseudo-random numbers. A pseudo-random

sequence of 'O's and ' l 's is one that cannot be distinguished from a

truly random sequence in polynomial time. So, it's not really
random but you'll never be able to tell the difference. This is per

fectly satisfactory for our purposes, which will always involve

solving problems in polynomial time: if no process can tell the dif

ference between our computer's tosses and real random tosses in

an acceptable amount of time, we are in good shape.

Unfortunately, however, no-one knows if pseudo-random

numbers can themselves be generated in polynomial time!

Computers that run randomized algorithms indeed have access to

random number generators, and these appear to be satisfactory in

practice. But whether the sequences they produce are actually

pseudo-random (that is, whether they are really indistinguishable

from true random ones in polynomial time) depends on open

problems of the kind discussed earlier. Thus, rather curiously, not

only do we not know whether randomized algorithms can turn

intractable problems into tractable ones, but the very ability to

generate the random numbers that are needed in such algorithms

hinges on unknowns about the very nature of intractability. Yes,

that does sound a little strange, but it's true nevertheless.

t r y i n g t o e a s e t h e p a i n 1 4 3

q uantum computing

So what's all this fashionable new quantum computing stuff? Well,

it is a deep and complicated topic, and one that is very hard to

describe in the expository fashion of this book. It hinges upon

quantum mechanics, a remarkable topic in modern physics, which

is unfortunately slippery and difficult to grasp, and is often

counter-intuitive. A lot of mathematics is needed to explain what is

going on, since trying to employ worldly common sense to the

quantum world can easily become a hindrance to comprehension

rather than an aid. The following sections will thus read more like

high-level ramblings than like a careful attempt at responsible

exposition. My apologies for that (and several pointers to surveys in

the literature for the more curious, mathematically adept readerl l) .

O n the brighter side, there i s a chance - a very small one as of

the time of writing - that quantum computing could bring with

it good news of the kind alluded to in this book. How, why, and

when, are the questions we shall try to address, very briefly, and

very superficially.

One of the main advantages of quantum physics is its ability to

make sense out of certain experimental phenomena on the parti

cle level, which classical physics seemed unable to do. Two of the

main curiosities of the quantum world, stated very informally, are

I I C. P. Williams and S. H. Clearwater (1 998) . Explorations in Quantum
Computing. Springer-Verlag, New York; D. Aharonov (1 998) . 'Quantum
Computation', Annual Reviews of Computational Physics VI; A. Berthiaume
(1 997). 'Quantum Computation', in Complexity Theory Retrospective II
(Hemaspaandra and Selman, eds) . Springer-Verlag, New York, pp. 23-5 1 ;
M . Hirvensalo (1 998) . 'An introduction to quantum computation', Bull.
Europ. Assoc. for Theor. Compo Sci. 66, October, 100-2 1 .

1 44 c o m p u t e r s L t d .

that a particle can no longer be considered to be at a single loca

tion in space at a particular time, and that its situation (including

location) can change as a result of merely observing it. The first of

these seems like good news for computing: might we not be able to

exploit the property of being at many places simultaneously to

carry out massive parallelization of a computation? The second,

however, seems like bad news: trying to 'see' or 'touch' a value

during a computation, say, to carry out a comparison or an

update, could change that value unpredictably!

Quantum computation has its roots in early work by Bennett

and Benioff, but is considered to have first been proposed in 1982

by Richard Feynman, followed by a more detailed proposal by

David Deutsch. 1 2 The motivating idea was that if a computer could

be built that operates according to the laws of quantum physics,

rather than those of classical physics, one might be able to obtain

an exponential speedup for certain computations.

A quantum computer, like a classical one, is to be based on some

kind of finite-state element, analogous to the classical 2-state bit.

The quantum analog of a bit, called a qubit, can be envisioned

physically in a number of ways: by the direction of photon polar

ization (horizontal or vertical) , by nuclear spin (a special 2-valued

quantum observable) , or by the energy level of an atom (ground

1 2 C. Bennett (1 973) . 'Logical Reversibility of Computation', IBM J.
Research and Development 1 7, 525-32; P. Benioff (1 980) . 'The Computer
as a Physical System: A Microscopic Quantum Mechanical Hamiltonian
Model of Computers as Represented by Turing Machines', J. Stat. Phys.
22, 563-9 1 ; R. Feynman (1 982) . 'Quantum Mechanical Computers',
Optics News 1 1 , 1 1-20; D. Deutsch (1 985) . 'Quantum Theory, the
Church-Turing Principle, and the Universal Quantum Computer', Proc.
R. Soc. London A400, 97-1 1 7.

t r y i n g t o e a s e t h e p a i n 1 4 5

o r excited) . The two so-called basis states o f a qubit, analogous to

the 0 and 1 of an ordinary bit, are denoted by 1 0) and 1 1), respec

tively. What we don't have in a quantum system is the simple deter

ministic notion of the qubit being in one basis state or another.

Rather, its notion of being or not being is indeterminate: all we can

say about the status of a qubit is that it is in both of the states

simultaneously, each with a certain 'probability'. (Should we call

this ' To qubee or not to qubee'?) But, as if to deliberately make

things even less comprehensible to mortals, these are not ordinary,

positive-valued probabilities, like being in state 10) with prob

ability t and in 1 1) with probability t . The 'probabilities' can be

negative, even imaginary (Le. complex numbers that involve

square roots of negatives) , and the resulting combination state is

called a superposition. Once we 'take a look' at a qubit, i.e. make

a measurement, it suddenly decides where to be, we see it in one

basis state or the other, the probabilities disappear and the super

position is forgotten. 1 3 This kind of 'forced discreteness' is what

leads to the adjective 'quantum'.

So much for a single qubit. What happens with many qubits taken

together, side by side, which we need as the basis for true quantum

computation? How are the states of several qubits combined to

obtain a compound state of the entire computing device? In the

classical case, any collection of N bits, each of which can be in two

states 0 or 1 , gives rise to 2N compound states. In the quantum world

of qubits we also start with the 2N compound states built from the

1 3 Specifically, a superposition is what is sometimes called a complex
unit-length linear combination of the basis states. That is, the
coefficients are two complex numbers Co and c[satisfying ICo l 2 + I c[1 2 = 1 .
After measuring, we will 'see' a 0 with probability ICo l 2 And a 1 with
probability I c[1 2 .

1 4 6 c o m p u t e r s L t d .

basis states of N qubits (in the case of two qubits, for example, the

four compound states are denoted 100), 10 1), 1 1 0) and 1 1 1 ». To these

we then apply complex combinations, just as we did for a single

qubit. However, here, the way the combinations are defined gives

rise to an additional crucial twist called, appropriately, entangle

ment: some of the compound states are clean composites that can be

obtained - using an operation called a 'tensor product' - from the

states of the original qubits, but some can't; they are entangled.

Entangled qubits, a term that comes with a precise mathematical

rendition, represent an intrinsically non-separable 'mish-mash' of

the original qubits. They have the weird property of instant com

munication: observing one and thus fixing its state causes the other

to lock in the dual state simultaneously, no matter how far away they

are from each other. Entanglement turns out to be a fundamental

and indispensable notion in quantum computation, but unfortu

nately further discussion of its technicalities and the way it is

exploited in the computations themselves is beyond the scope of this

book.

q uantum algorithms

What have people been able to do with quantum computation?

A few facts have to be stated up front. First, full, general-purpose

quantum computing subsumes classical computation. That is, if

and when built, a quantum computer will be able to emulate class

ical computations without any significant loss of time. Second,

although seemingly weaker, a classical computer can still simulate

any quantum computation, but this could entail an exponential

loss of time. The fact that this simulation is possible means that

quantum computation cannot destroy the Church-Turing thesis:

t r y i n g t o e a s e t h e p a i n 1 4 7

computability remains intact i n the world o f quantum computa

tion too. If and when actual quantum computers are built, they

will not be able to solve problems not solvable without them.

This having been said, the big question is whether the exponen

tial loss of time in the second statement is indeed insurmountable.

Exactly as we did with parallelism and randomization, we ask

whether there are provably intractable problems that become

tractable in the quantum world. That is, is there a problem with an

exponential-time lower bound in the classical models of computa

tion that has a polynomial-time quantum algorithm? 1 4

Computation complexity aside, and the technological issue of

actually building a quantum computer notwithstanding, there

have already been some extremely exciting developments in

quantum algorithmics. Here are some of the highlights.

Deutsch showed how to achieve quantum parallelism, whereby

superposition of the inputs is used to produce a superposition of

outputs. I S Interestingly, although this seems as though one is

indeed computing lots of stuff in parallel, the outputs cannot be

naively separated out and read from their superposition; any

attempt at reading, or measuring, will produce only one output

1 4 And as we did in earlier footnotes, if we use QP to stand for quantum
PTIME, the open issues become:

PTIME t: RP t: QP t: PSPACE (= parallel-PTIME)

Thus, good quantum time lies around the same place as NP, i .e. between
good random time and good memory space. Unfortunately, as before,
we do not know whether any of the inclusions are strict.

1 5 D. Deutsch (1 985) . 'Quantum Theory, the Church-Turing Principle,
and the Universal Quantum Computer', Proc. R. Soc. London A400,
97-l l 7.

1 4 8 c o m p u t e r s L t d .

and the rest will simply be lost. What is needed is for the algorithm

to cleverly compute joint properties common to all outputs, and

make do with them. Examples might include certain arithmetical

aggregate values of numerical outputs, or the 'and's and 'or's of

logical yes/no outputS. 1 6

Later, Grover discovered a rather surprising quantum algorithm

for searching in an unordered list, say a large database. Instead of

using around N operations, an item can be found with v'N oper

ations only (the square root of N). This is counter-intuitive, almost

paradoxical, since it would appear necessary to at least look at all N

inputs in order to figure out whether what you are searching for is

indeed there, l 7

However, the big surprise, and indeed the pinnacle of quantum

algorithms so far, is Peter Shor's factoring algorithm. We have

mentioned factoring several times in the book, and its importance

as a central algorithmic problem is undisputable. As we have seen,

factoring has not yet been shown to be tractable in the usual sense

- it is not known to be in PTIME, and the very fact that it appears

to be computationally difficult plays a critical role in cryptography,

as we shall see in Chapter 6. So much so, in fact, that a significant

part of the walls that hold up modern cryptography would come

16 However, there are results that show that this ability is inherently
limited. While the use of quantum parallelism can often yield significant
gains in efficiency, it is unable to deliver each and every desired joint
property. See R. Josza (1 99 1) . 'Characterizing Classes of Functions
Computable by Quantum Parallelism', Proc. R. Soc. London A435, 563-74.

1 7 L. Grover (1 996) . 'A Fast Quantum Mechanical Algorithm for
Database Search', Proc. 28th Ann. ACM Symp. on Theory of Computing,
pp. 2 1 2-19 . This technique enables similar quadratic speedups for all
problems in NP.

t ry i n g t o e a s e t h e p a i n 1 4 9

tumbling down i f a n efficient factoring algorithm would become

available. It is against this background that one should view the

significance of Shor's work, which provides a polynomial-time

quantum algorithm for the problem. IS
To appreciate the subtlety of quantum factoring, consider a

naive algorithm that attempts to find the factors of a number N by

trial and error, going through all pairs of potential factors and

multiplying them to see if their product is exactly N. Why shouldn't

we be able to do this using grand-scale quantum parallelism? We

could use quantum variables to hold a superposition of all candi

date factors (say, all numbers between 0 and v'N), then compute,

in parallel, and in the best quantum spirit, all products of all pos

sible pairs of these numbers. We could then try to check whether

there was a pair that did the job. Unfortunately, this wouldn't

work, since taking a look at - that is, carrying out a measurement

of - this enormous superposed output would not say much. We

might just happen to hit upon a factorization, but we might also

land on any other of the many products that are different from N.

And as we have already mentioned, once you measure, that's what

you get to see, and the rest is lost. So, just the mish-mashing of lots

of information, that alone, is not enough.

It turns out that things have to be arranged so that there is inter
ference. This is a quantum notion, whereby the possible solutions

'fight' each other for supremacy in subtle ways. The ones that turn

1 8 P. Shor (1 994) . 'Algorithms for Quantum Computation: Discrete
Logarithms and Factoring', Proc. 35th Ann. Symp. On Found. Compo Sci. ,
pp. 1 24-34; P. Shor (1 997) . SIAM J. Compo 26(5) , 1 484. Shor's work
relies on D. Simon (1 994) . 'On the Power of Quantum Computation',
Proc. 35th Ann. IEEE Symp. On Found. Compo Sci. , pp. 1 1 6-23.

1 5 0 c o m p u t e r s L t d .

out not to be good solutions (in our case, pairs of numbers whose

product is not N) will interfere destructively in the superposition,

and the ones that are good solutions (their product is N) will inter

fere constructively. The results of this fight will then show up as

varying amplitudes in the output, so that measuring the output

superposition will give the good solutions a much better shot at

showing up. We should remark that it is the negative numbers in

the definition of superposition that make this kind of interference

possible in a quantum algorithm.

This is easier said than done, and it is here that the mathematics

of quantum computing gets complicated and is beyond the scope

and level of our exposition. But what we can say is that the right

kind of entanglement has been achieved for factoring. The algo

rithm itself is quite remarkable, both in its technique, and as we

shall see later, in its ramifications. 1 9

This algorithm hasn't yet turned a provably intractable problem

into a tractable one, for two reasons, one of which we have repeat

edly mentioned and one of which we have hinted at but will

shortly address in more detail . First, factoring isn't known to be

intractable; we simply haven't been able to find a polynomial-time

algorithm for it. It is conjectured to be hard, but we are not sure.

Second, no-one yet knows how to build a quantum computer

capable of implementing Shor's algorithm.

1 9 Its time performance is roughly cubic, that is, not much more than
M3, where M is the number of digits in the input number N. For the
more technically interested reader, what Shor actually did was to find an
efficient quantum method to compute the order of a number Y modulo
N, that is, to find the least integer a such that ya = 1 (mod N). This is
known to be enough to enable fast factoring, and the rest of the work is
done using conventional algorithms.

t r y i n g t o e a s e t h e p a i n 1 5 1

can there be a q uantum computer?

When discussing parallelism earlier, we noted that there is a

certain mismatch between existing parallel algorithms and the

parallel computers that have been built to run them. To be

efficiently implemented, many known algorithms require hard

ware features not yet available, and, dually, the theory of parallel

algorithms has yet to catch up with what the available hardware is
able to do.

In the realm of quantum computation the situation is less sym

metric. We have at our disposal some really nice quantum algor

ithms, but no machines whatsoever to run them on.

Why? Again, the issue revolves around deep technicalities, but

this time the barrier preventing a detailed exposition here is not

the mathematics but the physics. So, again, we shall only provide a

very brief account, and the interested reader will have to seek more

information elsewhere.2o

At the time of writing (actually, the proof-reading; early-2000) ,

the largest quantum 'computer' that has actually been built con

sists of a mere seven qubits. This is not a typing error; seven qubits.
What is the problem? Why can't we scale up?

Despite the fact that the quantum algorithms themselves, and

Shor's in particular, are designed to work according to rigorous

and widely accepted principles of quantum physics, there are

severe technical problems around the actual building of a

20 D. P DiVincenzo (1 995) . 'Quantum Computation', Science 270,
25!HJ l ; A. Berthiaume (1 997) . 'Quantum Computation', in Complexity
Theory Retrospective II (Hemaspaandra and Selman, eds.) . Springer
Verlag, New York, pp. 23-5 1 ; C. P. Williams and S. H. Clearwater (1 998) .
Explorations in Quantum Computing. Springer-Verlag, New York.

1 5 2 c o m p u t e r s L t d .

quantum computer. First, experimental physicists have not

managed to be able to put even a small number of qubits (say, 20)

together and control them in some reasonable way. The difficulties

seem beyond present-day laboratory techniques. A particularly

troubling issue is decoherence: even if you could gather a good

number of qubits and cause them to behave nicely themselves,

things that reside close to a quantum system have the pushy habit

of affecting it. The quantum behavior of anything surrounding a

quantum computer - the casing, the walls, the people, the key

board, anything! - can mess up the delicate setup of constructive

and destructive interference within the quantum computation.

Even a single naughty electron can affect the interference pattern

that is so crucial for the correct execution of the algorithm, by

becoming entangled with the qubits participating in that execu

tion, and as a result the desired superposition could fail.

The computer thus has to be relentlessly isolated from its envir

onment. But it also has to read inputs and produce an output, and

its computational process might have to be controlled by some

external elements. Somehow, these contradictory requirements

have to be reconciled.

What kind of sizes do we really need? Some small-scale quantum

coding protocols require only something like 1 5-20 qubits, and even

Shor's algorithm needs only a few thousand qubits to be applicable

in real-world situations. But since experimental physics can barely

deal with six or seven qubits right now, and even that is extremely
difficult, many people are pessimistic. A true breakthrough is not

expected any time soon. On the brighter side, the excitement sur

rounding the topic is already bringing about a flurry of ideas and

proposals, accompanied by complex laboratory experimentation, so

that we are bound to see interesting advances in the near future.

t r y i n g t o e a s e t h e p a i n 1 5 3

In summary, Shor's factoring algorithm constitutes a major

advance by any measure. However, at the moment it must be rele

gated to the status of shelfware, and it is probably destined to

remain that way for quite some time.

Intractability hasn't been beaten yet.

molecular com puting

To wrap up our discussion of models of computation aimed at

trying to alleviate some of the bad news, we mention one more:

molecular computing, sometimes called DNA computing.
The main approach here, which was first exhibited in 1 994 by

Len Adleman2 1 , is based on letting the computation happen essen

tially on its own, in a carefully concocted 'soup' of molecules, that

play with each other, splitting, joining and merging. Thus, you get

billions or trillions of molecules to tackle a hard problem by brute

force, setting things up cleverly so that the winning cases can later

be isolated and identified.

In the experiment Adleman actually carried out he got mole

cules to solve a small instance of the Hamiltonian path problem,

which is a sort of unit-length version of the traveling salesman

problem. Later, other problems - essentially all problems in NP

- were shown to be amenable to similar techniques.22

2 1 1. M. Adelman (1 994) . 'Molecular Computation of Solutions to
Combinatorial Problems', Science 266, 1 02 1-4.

22 R. J. Lipton (1 994) . 'DNA Solution of Hard Computational Problems',
Science 268, 542-5; 1. M. Adelman (1 998) . 'Computing with DNA',
Scientific American 279 (2) , 34-4 1 . A recent book on the topic is
G. Paun, G. Rozenberg, and A. Salomaa (1 998) . DNA Computing.

continued on next page

1 5 4 c o m p u t e r s L t d .

That nature can be tuned to solve real-world algorithmic prob

lems, essentially all by itself, and on a molecular scale, is rather

astonishing. While Adleman's original experiment, for a seven-city

instance, took about a week in the laboratory, the problem was

solved later by others in less of a brute-force fashion, and for much

larger instances (50-60 cities) . Dedicating molecular biology labs

to this kind of work can result in a significant speeding up of the

process, and indeed lots of work is under way to try to get the tech

niques to scale up.

From a puristic point of view, things are reminiscent of conven

tional parallel algorithms: although in principle the time complex

ity of such molecular algorithms is polynomial because of the high

degree of parallelism that goes on within the molecular soup, the

number of molecules involved in the process grows exponentially.

But on the positive side, one of the main advantages of using DNA

is its incredible information density. Some results show that DNA

computations may use a billion times less energy than an elec

tronic computer doing the same things, and could store data in a

trillion times less space.23

In any case, molecular computing is definitely another exciting

area of research, catching the imagination and energy of many

talented computer scientists and biologists. We are bound to see a

continued
Springer-Verlag, Berlin. Surveys are S. A. Kurtz, S. R. Mahaney, J. S. Royer,
and J. Simon (1 997) . 'Biological Computing', in Complexity Theory
Retrospective II, (Hemanspaandra and Selman eds.) . Springer-Verlag,
New York, pp. 1 79-95; L. Kari (1 997) . 'DNA computing: The arrival of
biological mathematics', The Mathematical Intelligencer 19 (2) , 9-22.

23 E. Baum (1 995) . 'Building an associative memory vastly larger than
the brain', Science 268 (April) , 583-5.

t r y i n g t o e a s e t h e p a i n 1 5 5

lot of exciting work i n this area i n the future, and some specific

difficult problems might very well become doable for reasonably

sized inputs. Still, we must remember that molecular computing

can definitely not eliminate noncomputability, nor is it expected to

do away with the woeful effects of intractability.

This brings our account of the bad news in algorithmics to an

end. Ignoring the slim rays of hope offered by quantum and mol

ecular computing, a brief summary of Chapters 2-5 might go like

this:

What we know about for sure is bad enough already.

Figuring out the answers to the questions that remain open

might make things a little better

but will probably make them a lot worse.

And what's really frustrating

is the uncertainty that comes from not really knowing.

chapter 6

turni ng
good

bad i nto

This chapter is devoted to cryptography, one of the most interest

ing application areas of algorithmics and a wonderful source of

research challenges.

Increasingly, computers are used for storing, manipulating, gen

erating, and transmitting data. This includes critical and delicate

information, such as commercial contracts, military and intel

ligence reports, business transactions, and personal items of

confidential nature such as credit card numbers and medical or

financial data. This situation, in turn, makes problems of eaves

dropping, theft, and forgery all the more acute, resulting in the

need for extensive cryptographic mechanisms for the secure and

reliable communication of information.

Modern day cryptography is of particular relevance to this book

because of its most unusual and striking feature: subtle and

unabashed exploitation of the bad news in computing. This is sur

prising. In fact, it sounds impossible, and appears to have very few

counterparts in other branches of human endeavor. How can you

use one thing's impossibility to make another thing possible that

1 5 8 c o m p u t e r s L t d .

was otherwise impossible too? If we pause to think about it, we

would expect nothing of any value to come of negative results in

algorithmics, except in helping prevent people from wasting time

trying to do things that can't be done. Nevertheless, problems for

which we have no good solutions are crucial here; in fact, if they

turn out to have good solutions we are in big trouble!

No news is good news, the saying goes. This chapter will show

that bad news can sometimes be good news too.

clas s ical cry ptography

The basic activities in cryptography are encoding and decoding,

often called encryption and decryption. We want to be able to

encode a message in such a way that the recipient should be able to

decode it, but an eavesdropper shouldn't. As an example, a general

might want to order a subordinate colonel to attack at dawn,

without the enemy being able to intercept and decipher the

message.

But there is more to this scenario than just secrecy and defend

ing against eavesdropping. If the attack is undertaken and it fails,

the colonel might want to blame the general for having given a bad

order; or the general might want to shake off responsibility by

claiming that he didn't send the message (he could claim that the

enemy did it to lure them into an ambush, or that the colonel

forged the message for some reason) . This leads to the need to

allow the sender to 'sign' messages. In this way, (i) the recipient can

be sure that the sender alone could have sent it, (i i) the sender

cannot later deny having sent it, and (iii) the recipient, having

received the signed message, cannot forge the signature and sign

another message in the sender's name, not even a copy of the orig-

t u r n i n g b a d i n t o g o o d 1 5 9

inal message. The signature issue adds another level o f difficulty to

the basic encryption issue, but it is central to many applications of

cryptography, such as military communications, money transfer

orders, and signing contracts.

Conventional cryptosystems are based on keys, which are used

to translate a message M - sometimes called the plaintext - into

its encrypted form M* - sometimes called the ciphertext - and

then to decrypt M* back into its original form. If we denote the

general encryption procedure associated with the key by encode,

and the corresponding decryption procedure by decode, we may

write:

M* = encode(M) and M = decode(M*)

I n words, the encrypted version M* i s obtained b y applying the

encode procedure to the message M. The original M in turn can

be retrieved from M* by applying the decode procedure to it.

What do keys look like? A simple example that we have all used

in our childhood calls for the key to be a number K between 1 and

25, chosen and shared by both parties, the sender (encoder) and

the receiver (decoder) . The encode procedure replaces every letter

with the one residing K positions further along in the alphabet,

and decode replaces every letter with the one residing K positions

earlier. In this way, encode and decode are mutually dual: you use

decode to undo what encode did, and vice versa. For the purpose

of counting letters, the alphabet is considered to be cyclic, so that

a follows z. For example, if K is 6, (My Fair Lady' becomes (Se Lgox
Rgje'. Pretty indeed

This simple approach can be illustrated using the metaphor of a

locked box. To set up a method to exchange secret messages with a

friend, you first prepare a box with a securable latch. The two of

1 6 0 c o m p u t e r s L t d .

you then go out and buy a padlock with two identical keys, one

for you and one for your friend. Thereafter, sending a message

involves putting it in the box, locking the box using the key, and

sending the box to its destination. No-one without access to the

key can read the message en route. Since there are only two keys,

kept by the sender and the intended recipient, the system is secure.

This approach has several drawbacks. First, it requires that the

two parties cooperate in the selection and safe distribution of keys.

Either they must both go out together to buy the lock and keys, or

the one who buys them must later find a way to transfer one of the

keys safely and securely to the other. If we leave the locked box

metaphor for a moment, returning to computerized communica

tion, this means that setting up a secure channel requires first

sending something over a secure channel, which is rather ridicu

lous. We can't use the usual computerized network for distributing

keys because the cryptographic framework hasn't been set up yet

and an eavesdropper would be able to get hold of them and ruin

the whole thing. Moreover, real applications involve many parties,

often located at great distances - just think of people wanting to

send each other credit card numbers over the Internet. To enable

private communication between any two of the parties we have to

distribute different keys to each different pair. Using specialized

secure methods for this, such as personal delivery by a trusted

courier, is simply out of the question.

The other major drawback of naIve cryptographic methods is

that they don't address the signature issue at all. If it's not just

friendly communication that is taking place, but, say, secret

trading negotiations between competing companies, all kinds of

nasty things can happen. The recipient can make up fake messages

and claim they were sent by the sender; the sender can deny having

t u r n i n g b a d i n t o g o o d 1 6 1

sent authentic messages, and so on. The ability to sign a message is

thus very important.

public - key cry ptography

In 1 976, Diffie and Hellman proposed a novel approach to the

encryption, decryption, and signature problems, called public-key
cryptography. l It can also be explained by the locked box

metaphor. The idea is to use a different kind of padlock: a key is

required to unlock it, but it can be locked by a simple click,

without a key. To set up the communication system, each of the

two participants goes out all alone and purchases a personal click

close padlock and key. Each of them then writes his or her name

on the padlock, and places it on the table, in public view. The key

is not disclosed or shown to anyone else at all. Now, assume party

B - say, Bob - wants to send a message to party A - say, Alice.

Bob puts the message into a box, goes to the public table, picks up

Alice's padlock and locks the box with it. This he does simply by

clicking her padlock shut; he doesn't need her key. The box is then

sent to Alice, who uses her key to open the lock and read the

message. Since no-one has had access to her key except for Alice

herself, the message is safe. Remarkably, no prior communication

or cooperation between Alice and Bob is needed. Moreover, this

scheme is not limited to two participants. The public table can

host as many padlocks as there are parties who want to participate

in mutual communication. As long as each participant has his or

her own padlock and keeps the key safe, they are all in business!

1 W. Diffie and M. Hellman (1 976) . 'New Directions in Cryptography',
IEEE Trans. Inform. Theory IT-22, 644-54.

1 6 2 c o m p u t e r s L t d .

To understand how public-key systems can be used in digital,

computerized environments, we assume that messages are

(perhaps lengthy) sequences of digits. Thus, some direct and

straightforward method of translating letters and symbols into

digits has already been applied. Alice's padlock is really just an

encryption function encode that transforms numbers into other

numbers, and her key embodies a secret way of computing the

decryption function decode. Thus, each party makes its encryp

tion procedure public but keeps its decryption procedure private.

For the most part, we shall stick to two participants - our friends

Alice and Bob. To distinguish between the different functions they

use, we shall denote Alice's by encode A and decode A' and Bob's by

encode B and decode B.

In order to send the number M as a message to Alice, Bob uses

Alice's public encryption procedure encode A and sends her the

ciphertext encodeA(M), which is the number obtained by applying

the function encode A to the number M. Again, it is Alice's function

that Bob uses, just as in the padlock analogy. Alice would then

decipher this number using her private decryption procedure

decodeA, yielding the original message M (Le. the plaintext) . This

is illustrated in Fig. 6. 1 . As a simple example (which can't really be

used, as we shall see, but is nevertheless illustrative) Alice might

have chosen her encryption procedure encode A to be the function

that squares its argument, and decode A to be the function that

extracts square roots. Thus Bob would send her the number M2 as

the ciphertext and she would compute ViJ2 to obtain the original

plaintext M.
For the method to work, both functions must be easy to

compute, and the two must be perfect inverses of each other, just

as with squaring and extracting roots. Specifically, the following

Alice

Bob's original
message M L-______ --'

t u r n i n g b a d i n t o g o o d 1 6 3

Bob

. Bob's original
�---r--� me�� M

Bob's encrypted me�ge

Fig, 6. 1 . Public-key encryption and decryption.

equation must be true for every possible message M, meaning that

encoding M and decoding the encoding (both done using Alice's

functions) must result in the original M.

decodeA(encodeA (M)) = M

But that's not all. It must be impossible to deduce a method for

figuring out the decryption function decode A from the publicly

known encryption function encodeA' We want Alice to be able to

decrypt easily, but for no-one else to be able to do so, even by

closely inspecting the publicly known encryption function. This

requirement is clearly violated by the squaring and root-taking

1 6 4 c o m p u t e r s L t d .

functions, since once you know that encryption involves squaring,

you know that decryption involves extracting the square root,

which would be as easy for anyone to carry out as it is for Alice

herself.

What we really need is a one-way trapdoor function, and here is

where the keys enter the game. We want the encryption function

encode A to be computable easily, but not the decryption function

decode A" This we take to mean that the former should be in poly
nomial time and the latter shouldn't, unless Alice's secret key is

known. The key is what Alice needs in order to decode efficiently

(again, just like in the padlock metaphor) . The same should apply

to Bob's functions encodeB and decodeiP that is, encodeB should

be computable in acceptable time, but not decodeB except for Bob,

who has his key. The term 'one-way' is used to hint at the easiness

of computing one direction - encoding - vs. the difficulty of

computing the other - decoding - without a key. The analogy to

trapdoors is this: a trapdoor cannot be activated unless you know

the location of the secret lever (the key) .

It is by no means clear how to find such functions. We can try to

elaborate on the squaring and root-taking idea, with Alice setting up

her encryption function to raise the plaintext to some higher power,

for example, to compute M7. This will make the extraction of the

7th root somewhat harder, but neither of the two crucial require

ments is met: first, once you know that encryption involves raising

the plaintext to the 7th power, you know what to do for decryption,

and second, decryption is still no harder for you than it is for Alice.

The mathematical setup will have to be more sophisticated, and

must involve a secret piece of information - the key - that makes

decryption easy (for Alice) , but whose absence renders it very, very

hard (e.g. for Bob) . We shall discuss this issue a little later.

t u r n i n g b a d i n t o g o o d 1 6 5

s igning mes s ages

What makes a signature a signature? It goes without saying that a

signature must be specialized for the person doing the signing: to

prevent forgery the signatures of any two people must be suffi

ciently different. But a conventional handwritten signature doesn't

have to depend on the document. In fact, a handwritten signature

should look the same whenever and wherever it is used. In con

trast, digital signatures of the kind we would like to use in a com

puterized cryptosystem, must be different not only for any two

signers but also for any two messages being signed. Otherwise,

when in dispute, a recipient could make changes to a signed

message before showing it to a neutral judge, or could even attach

the signature to a completely different message. If the message is a

money-transfer order, the recipient could simply add a couple of

carefully-placed zeros to the sum and claim the new signed

message to be authentic. Our signatures must thus depend on both

the signer and the message being signed.

A remarkable fact about the public-key cryptographic frame

work is that it can be used for signatures too. All we need is that

the one-way trapdoor functions used for encryption and decryp

tion be mutual inverses. This means that not only should the

decryption of any encrypted message yield the original plaintext,

but the encryption of a decrypted message should also yield the

original message. With squaring and root-extracting not only does

v'W - taking the root of a square - yield the original M, but so

does (yM")2 - squaring the root. Thus, for Alice's functions we

require not only that

decodeA(encodeA(M)) = M

but also that

1 6 6 c o m p u t e r s L t d .

encodeA(decodeA(M) = M

And the same for Bob's.

Why on earth would anyone be interested in decrypting a

message that wasn't even encrypted? The answer: in order to sign

it. Here is how it works (see Fig. 6.2) . 2 If Bob wants to send Alice a

signed message, he first applies his own private decryption func

tion decodeB to the message M. This yields a number S, which we

shall regard as Bob's special message-dependent signature:

S = decode B(M)

Then, instead of encrypting the original plaintext M for Alice, Bob

encrypts the signed version thereof, S. This he does in the usual

public-key fashion, using Alice's public encryption function

encodeA" He then sends her the result, namely encodeA(S) , which

is really encodeA(decodeB(M) .

Cut now to Alice. Upon receiving this strange-looking number,

Alice first decrypts it using her private decryption function

decodeA" The result is decodeA(encodeA(S» . However, since

decode A undoes anything encode A has 'messed up', i .e. the

decode A and the encode A cancel each other out, the result of this

will be S, which is really just decodeB(M) . At this point, Alice can't

read the message M yet, nor can she be sure that Bob was really the

sender. But what she does now is to apply Bob's public encryption

function encodeB to S. This yields M, because

encodeB(S) = encodeidecodeB(M) = M

2 The locked-box metaphor is inappropriate for explaining how
public-key signatures work, as it makes little sense to unlock a box that
wasn't even closed.

Bob's signed
message 5

Bob's original

Alice

t u r n i n g b a d i n t o g o o d 1 6 7

Bob

.
. Bob·s original

L-_-, __ ...J message M

. . . . , . Bob·s signed
message 5

A-=-

�_'_�i ___ �
// encodeA (decodeB

('attack at dawn'»
.

" .
Bob'� encrypted
and signed message

Basic public key
cryptographic protocol

message M L-____ --'

Fig. 6.2. Encryption with signatures.

Thus, all at once, Alice gets to see the original message M and can

also be quite sure that only Bob could have sent it. How is this?

Well, since the functions we use are carefully selected mutual

inverses, no number except decodeB(M) will result in M when

subjected to encodew So it couldn't be anything else that happened

1 6 8 c o m p u t e r s L t d .

to yield the plaintext M; it had to have been Bob's decoding func

tion applied to M. But no-one besides Bob could have produced

decodeB(M), since the decryption function decodeB is Bob's closely

guarded secret! It must have been Bob. Elementary, Watson . . .

Alice can't sign any other message in Bob's name, since signing

requires subjecting the new or modified message to Bob's secret

function decodeR> to which she has no access. But there is still a

problem. Alice can send the very same message M - but with Bob's

signature - to someone else, say Carol. The reason is that during the

process Alice has access to decodeB(M), which she can then encrypt

using Carol's public encryption function encodee> and send the

result to Carol, who will think it came from Bob. This could be crit

ical with a message like 'I, General Bob, hereby order you to attack at
dawn'. To prevent this situation, identifying details, such as the name

of the addressee and possibly also the date and time, should be added

to the message prior to encrypting and signing, as in 'I, General Bob,
hereby order you, Colonel Alice, on this day . . . and time . . . to attack at
dawn'. Now Alice has no way to do mischief at Carol's expense,

because she can't apply Bob's secret decryption function decodeB to

any message that is even slightly different from M.

can this be made to work ?

All this sounds very promising. A group of participants can com

municate safely, guarded against eavesdroppers and other evils.

They can send, receive, sign, verify, identify, etc. But how do we

actually do it? What is the math needed? We have to figure out a

method of defining the keys for each participant and the cor

responding encode and decode procedures, but in such a way that

all the nice properties we have discussed will hold true. Encoding

t u r n i n g b a d i n t o g o o d 1 6 9

must b e easy, and decoding not, unless you have the key, and

encoding and decoding must be perfect mutual inverses. Also, we

have to be able to generate lots of different pairs of such functions,

one for each participant (just as there are many different padlocks

in a hardware store - with different keys) .

At first glance, the requirements appear to be paradoxical.

Where do we find a function that is easy to compute but has a

really hard-to-compute inverse that becomes easy only when some

secret key is available? As we saw earlier, squaring vs. extracting

roots fails miserably, as do simple K-step shifts in the alphabet.

So, are there any such one-way trapdoor functions?

From a puristic point of view, the answer is that we don't know.

However, in an important pragmatic sense the answer is a resound

ing yes, and public-key cryptography - signatures and all - is very

much alive, well, kicking and working. First, though, we should elab

orate on what it means for a public-key cryptosystem to be broken,

or cracked. The integrity of the whole setup hinges on the fact that

without access to the private key it is very difficult to apply a parti

cipant's decode function to a given number. To use the terminology

of the last two chapters, very hard is intractable: we want decode, as

an algorithmic problem, to be tractable if the key is given, but to be

intractable without it. It should be computable in polynomial time

with the key, but not computable in polynomial time without it. In

contrast, the encode function should be tractable as it is; no key is

needed. This means that to break the system you have to find a poly

nomial-time algorithm for computing the decode function without

the key; that is, to show that the desired intractability fails.

Thus, cracking a public-key cryptosystem doesn't involve sly

detective work or clever guessing. It is not even a matter of brute

force number-crunching on a large and fast computer. It is not

1 7 0 c o m p u t e r s L t d .

World War II-style battles of the brains, with cryptographic teams

alternately outsmarting each other. Rather, it entails coming up

with a polynomial-time algorithm for a problem that is believed to

be of inherent super-polynomial-time behavior. And this is algor

ithmic work par excellence.
The best thing would be to base public-key cryptography on a

provably intractable decode function. For example, if the hard

direction of the one-way trapdoor function could be based in

some way on the roadblock problem of Chapter 3, the system

would be provably unbreakable, and therefore as secure as could

be. As it stands, this has not yet been achieved. The only one-way

trapdoor functions that have been discovered to date are based on

decode functions whose intractability is conjectured, not actually

known. They are believed to be secure, but we don't know for sure.

The conjectured-to-be-intractable problems lying at the heart of

most public-key cryptosystems are well known, and have with

stood long and extensive attempts by many mathematicians and

computer scientists at finding polynomial-time algorithms. We

can thus be pretty confident of their intractability. That a person

or agency interested in breaking a cryptosystem would have been

able to solve some celebrated and long-standing open problem in

the deep mathematics of intractability is unlikely.

the R S A cry ptos y s tem

The first successful implementation of public-key cryptography

has become known as the RSA method.3 While a number of other

3 RSA stands for the initials of its inventors; see R. L. Rivest, A. Shamir,
and L. Adleman (1 978) . 'A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems', Comm. Assoc. Comput. Mach. 2 1 , 1 20-6.

t u r n i n g b a d i n t o g o o d 1 7 1

methods exist, the RSA approach is probably the most interesting

of them all. It is now over 20 years old, and, as we shall see, there's

good reason to believe that it is really unbreakable.

The RSA method is based on the contrast between testing a

number for primality and finding its factors. The heart of the

method is the choice of keys and padlocks. Each participant, say

Alice, secretly and at random, chooses two large prime numbers P

and Q, of length, say, around 200 digits, and multiplies them,

resulting in the product P x Q, which would have around 400

digits.

Alice keeps her two primes secret, but makes their product

public. It suffices to say that, given the product, no-one can find

the two prime factors in an acceptable amount of time. As dis

cussed in Chapter 5, there are no known fast methods, not even

probabilistic ones, for factoring very large numbers, and Shor's

polynomial-time quantum algorithm will not become imple

men table in the forseeable future.

Alice's encryption function encodeA is constructed from the

product P x Q. Her decryption function decode A requires the

product too, but also the primes P and Q themselves. Thus, anyone

can encrypt a message addressed to her using the publicly available

number P x Q, but decrypting is possible only by Alice herself,

since she is the only person with access to P and Q. Anyone else

wanting to get their hands on P and Q in order to decrypt a

message would have to factor P x Q. We shall not get into details

of the method itself here, as it is technically involved, but we

should discuss how Alice is able to choose the large primes to

begin with.

The infinitely many prime numbers are spread out over the

entire spectrum of positive integers in a rather dense way. For

example, there are 168 primes less than 1 000, and about 78 500

1 7 2 c o m p u t e r s L t d .

primes less than a million. Among all 1 00-digit numbers, roughly

one in every 300 is prime, and for 200-digit numbers it is about

one in every 600.4 To generate a new large prime number of length,

say, between 1 80 and 220 digits, Alice uses the fact that testing for

primality can be carried out very fast, using the probabilistic algor

ithms discussed in Chapter 5. And what she actually does is this:

she generates, at random, odd numbers in that range repeatedly

(by tossing coins to choose the digits and to decide exactly how

long the number should be) , and tests each one for primality until

she hits one that is prime. There is an extremely high likelihood

that she will find one within the first 1 500 attempts, and a pretty

good chance that she will find one much earlier. In any event, if she

is careful not to choose the same number twice, she is sure to find

one very fast using even a small personal computer. The problem

of generating large primes efficiently is therefore reduced to that of

testing the primality of large numbers, which we know how to

carry out efficiently.

We thus have a cryptographic method that exploits the crucial

difference between testing numbers for primality and factoring

them into their prime factors. It makes essential use of good news

- clever probabilistic algorithms for finding primes - and relies in

a crucial way on bad news too - the apparent intractability of

factoring large numbers. If anyone ever manages to factor large

numbers acceptably fast, the entire RSA system would immediately

collapse, since an adversary could take the public product P x Q ,

find its factors P and Q, and use them to decode Alice's messages. In

particular, if the polynomial-time quantum algorithm for factoring

4 More generally, the number of primes less than a given number K is of
the order of KIlog2 K.

t u r n i n g b a d i n t o g o o d 1 7 3

ever becomes practical, i.e. if appropriate quantum computers

somehow get built, the RSA method will probably become useless.

Still, people do rely on RSA, they know it is safe now and believe

it will remain so. Another way of putting it is that the many users

of the RSA method start their day praying that what we think is

bad news regarding the factoring problem will indeed remain SO. 5

interactive proofs

Cryptography and cryptographic protocols are useful for much

more than transmitting messages. Recent years have seen an

5 Two points are in line here. First, the size of the numbers to be factored
is very important, even without a general polynomial-time algorithm at
our disposal. In early 1 999, a 1 40-digit number was factored using
several hundred computers running for several months. Soon afterwards
an optical device called Twinkle was devised by A. Shamir (but at the
time of writing this has not yet been actually built) . With around a
dozen Twinkles - assuming they can be built - we would be able to
factor 1 60-digit numbers within a few days only. This would force many
RSA users to enlarge their keys considerably, since most applications of
RSA use 5 1 2-bit numbers, which are between 1 54 and 1 55 decimal digits
long and fall easily within the 1 60-digit range. The second point involves
the converse of the statement that if we can factor fast, RSA must
collapse: does the collapse of RSA actually entail fast factoring, or is
there perhaps another way of breaking the RSA? This is not known, as
no-one in a large community of expert researchers has yet proposed an
approach to breaking the RSA system that does not entail a fast solution
to the factoring problem. However, there is a slightly different version
of the RSA system, due to M. O. Rabin, whose breakability is provably
equivalent to fast factoring. In other words, for this particular
cryptosystem it has been proved mathematically that any possible
method for cracking it will yield a fast factoring algorithm. It would be
nice to be able to make this stronger statement about the original RSA
system too. However, no-one has been able to prove it yet.

1 7 4 c o m p u t e r s L t d .

extraordinary surge in the development of sophisticated methods

for carrying out all manner of computerized interaction in the

presence of adversaries, with the latter not being limited to eaves

droppers only. The rapid proliferation of the Internet, and its use

in increasingly varied application areas, is a rich source of new

problems. These then give rise to new ideas and methods.

In many of these applications, interaction is a central feature.

Here is an example. Suppose two parties want to toss a coin

between them, but they are far away and don't trust each other. A

realistic case could be a couple getting divorced. The husband and

wife cannot, or will not, get together face to face - perhaps they

live in different cities - but they want to divide their property.

They might be at the point of deciding about the house vs. the

Picasso in the living room, and for this they want to toss a coin.

Being connected to each other via computers and modems (or

their lawyers being so connected) , it seems that this is not possible.

Say they somehow agree on who's Heads and who's Tails, how do

they actually toss the coin? If one does the tossing the other might

not believe the reported result or the tosser might lie about the

result. Possibly both. Can this be done electronically by two

untrusting parties located remotely and connected by their home

computers only? The answer is yes. There is a clever and very fast

protocol for this. It requires the two computers to interact back

and forth electronically, and rather extensively. Again, we do not

provide the details of this protocol, but we should remark that it

too is based on factoring: on the assumption that factoring is

indeed intractable, the result of this interaction will be a totally

impartial association of Heads with one of the parties and Tails

with the other. The husband and wife can both be perfectly

confident that no cheating of any kind was possible, and neither of

t u r n i n g b a d i n t o g o o d 1 7 5

them can later try to get out o f the deal, since the results can be

subjected to legal scrutiny.6

To explain interactive protocols in a more general setting, let us

return for a moment to the class NP. A problem is in NP if it can

be solved in polynomial time with the help of a magic coin. As

explained in Chapter 4, this is equivalent to saying that whenever

the answer is 'Yes' there is a short (that is, polynomial sized)

certificate to that effect. (Nothing is claimed here about 'No'

inputs.) This characterization can be rephrased in terms of a game

between a prover and a verifier. Alice, the prover, is all-powerful,

and she is trying to convince Bob, the verifier, who has only ordi

nary polynomial-time computing power, that an input to the

problem at hand is a 'Yes' input.

For illustration, let us take a specific problem in NP; say, color

ing a network of points and lines with three colors. Alice wants to

convince Bob that the particular input network G is 3-colorable.

Recall that no two neighboring points - points connected by a

line - may be monochromatic. Since the problem is NP-com

plete, no-one knows of a polynomial-time algorithm for solving it,

so that Bob, having only polynomial-time computing power, has

no way of verifying Alice's claim on his own. He needs her to

supply a proof. This she can do easily, by simply sending him a 3-

coloring of G (see, for example, Fig. 4.4) , which is really just the

short 'Yes' certificate. Even with his limited power, Bob can then

verify that the coloring is legal. Obviously, this kind of proof will

never cause Bob to wrongly believe that Alice can 3-color G if she

really can't.

6 M. Blum (1 983) . 'How to Exchange (Secret) Keys', ACM Trans.
Comput. Syst. 1 , 1 75-93.

1 7 6 c o m p u t e r s L t d .

Thus, we may say that a decision problem P is in NP if, when

ever an input is a 'Yes' input, Alice can convince Bob of that fact in

polynomial time, but if it is a 'No' input then neither Alice nor any

other prover can convince Bob otherwise.

This little proving game is quite simple, and it requires a single

round only: Alice sends the polynomially sized certificate to Bob,

who promptly verifies that it is indeed a certificate.

There is a nice generalization of the prover/verifier concept that

leads to a stronger notion of proof, the power of which we shall

illustrate in the next section. The idea is to turn the process into an

interactive one, with many rounds, and to allow the verifier to flip

coins and ask the prover questions, all in polynomial time. The

coin flipping helps Bob ask Alice random questions that she has

no way of predicting. (Bob can hide his coin flips from Alice .)

Thus, Alice remains all-powerful, but Bob now has the power to

compute probabilistically in polynomial time. Moreover, the very

notion of proving is also probabilistic: we no longer require an

absolute proof, but only that Alice convince Bob of the 'Yes' -ness

of an input with overwhelmingly high probability, in the sense of

Chapter 5 . We do allow mistakes (concluding that a 'No' input is

really a 'Yes' input) , but only with negligibly low probability.7

It is worth pausing to assess the philosophical significance of this

notion. The one-round proving game associated with NP is very

much like the standard way of proving a statement to someone in

writing, say, as part of a lecture or a published article in math

ematics: you supply what you claim is a complete proof, using all

7 S. Goldwasser, S. Micali, and C. Rackoff (I 989) . 'The Knowledge
Complexity of Interactive Proof Systems', SIAM J. Compo 1 8 , 1 86-208.

t u r n i n g b a d i n t o g o o d 1 7 7

the ingenuity you can muster, and I - the student i n the lecture

or the reader of the article - then check it as thoroughly as I can,

to see whether I believe it or not. This is the normal 'you prove I

check' way of proving things. In contrast, an interactive proof is a

powerful, yet very natural, extension, more akin to the way math

ematicians prove statements to each other orally: you supply some

information, and I might then ask you questions, often tough ones

you couldn't have predicted; you then supply answers and more

information, and I continue to pester you with questions; and so

on. This continues until I become convinced - in the probabil

istic sense of the word, that is, with as high probability as I want

(since we go on with this until I am happy) - that you are right,

and then we stop. Of course, we require that the entire procedure

take only a polynomial amount of time.

The really nice thing about interactive proofs is that in many

cases they can be carried out without giving away any crucial

information. So Alice can convince Bob of the 'Yes' -ness of an

input without giving away the reasons for the 'Yes' -ness. Let us

take a closer look at this additional possibil ity and its uses.

zero - knowledge proofs

Suppose I want to convince you that I know a certain secret. Say I

claim to know what color socks the President of the United States

is wearing at this very moment. Obviously, you don't believe me,

and want a proof, right? The natural proof procedure that comes

to mind is this: I tell you what color I claim they are, and we then

immediately invite the President (who must be waiting outside)

into the room to exhibit his socks, thus either refuting or verifying

my claim. This protocol sounds fine. On the assumption that there

1 7 8 c o m p u t e r s L t d .

were no microphones or moles in the room, you come away

believing that I was right all along. You started out thinking I was

lying - I simply couldn't have known this fact - and you end up

convinced you were mistaken and that I indeed knew. (Let's also

agree here that my chances of simply succeeding by a lucky guess

are very slim, due to the large number of possible colors.) There is

one problem, however. At the end of the day, when all is said and

done, not only are you convinced that I wasn't lying and that I did

indeed know the secret, but now you know the secret itself too! But

perhaps I don't want you to. Maybe I don't even want you to know

whether the President's socks are light or dark, or are a warm or a

cool color. When the game is over, I want you to have no know

ledge whatsoever of the secret itself; I would like you to come away

with only the firm conviction that I know it, and nothing more.

This sounds absurd: how can I convince you that I know some

thing without telling you that very something and having you

verify it? Why on earth should you believe me about knowing

something that is very hard to know (is there any reader out there

who could have indeed found out, within minutes of being asked,

what color the President's socks are?) , if you yourself are not even

allowed to see that something too and check for yourself?

Presidents and socks aside, the issue in question is to devise a

method for Alice to prove to Bob the 'Yes' -ness of an input to some

algorithmic problem, but without giving Bob any information

about the reasons the input is a 'Yes' one. And we want to do this

with an algorithmic problem for which Bob can't easily find out

the 'Yes' -ness for himself. Returning to the 3-colorability of a

network G as our example, we want Alice to be able to prove to

Bob that she can color G with three colors, but we don't want Bob

to get to know anything about the coloring itself. That is, not any-

t u r n i n g b a d i n t o g o o d 1 7 9

thing h e couldn't have found out o n his own. At the end o f the

proof we want Bob to know with overwhelming confidence that

Alice wasn't lying. But we also want that to be the only new inform

ation he will have gained from the process. In particular, he will

not be able to color G himself (in polynomial time) , or even to

repeat Alice's proof to someone else! Such seemingly paradoxical

protocols are termed zero-knowledge (for obvious reasons) .

We are making essential use of bad news here. In the socks

example, you had no choice but to disbelieve me, since, although

not a very interesting secret, the color of the President's socks is a

secret indeed, and not something you can easily discover by making

a couple of well-placed phone calls. In the same way, the fact that

figuring out whether a network is 3-colorable is NP-complete

renders Alice's claim a real secret: Bob cannot simply say 'big deal,

I can find that out for myself'. He can't find it out, since he doesn't

have more than a polynomial amount of time available for work,

and no-one knows how to determine unaided whether Alice is a liar

or not in an unacceptable amount of time. It is for this reason that

Bob must start out assuming she does not know how to 3-color the

network, and Alice must prove it to him.

Before showing how this can be done, it is worth remarking that

zero-knowledge protocols have many applications in cryptography

and secure communication. For example, we might want to devise

smartcards to screen people entering a sensitive establishment

(say, the headquarters of some top-secret intelligence agency) , but

we don't always want the establishment's personnel to know the

identity of the people admitted, only that they were rightfully

admitted. Or suppose a group of people want to set up a joint bank

account. They would like to be able to withdraw and transfer

money electronically, and would like the bank to enforce certain

1 8 0 c o m p u t e r s L t d .

rules regarding who can withdraw money and how much can be

withdrawn. But suppose they also want to prevent any bank

employee from knowing exactly who withdraws; he or she may

only know that the money was withdrawn legally, according to the

rules. Such cases call for the ability to convince a verifier that you

know some secret, some key or code (e.g. your legal entry id) , but

without divulging the secret itself, only the fact that you know it.

i can 3 - color a network

Here then is a zero-knowledge protocol for coloring a network

with three colors.s It is described here as if it takes place between

two people, but it can be turned into a full-fledged algorithmic

protocol, suitable for electronic applications. Also, we use a 1 0-

point network for illustration, but if you had a powerful computer

with you, we would have simply used a larger network, say, with

200 points, and its 3-colorability would have then really been

beyond discovery.9

Alice shows Bob a network (see Fig. 6.3) , and claims that it can

be colored with three colors. Bob, in the polynomial time available

to him, cannot verify that fact on his own, since the problem is

NP-complete, so Alice attempts to prove it to him. She takes the

network away, and secretly colors it with three colors, say, yellow,

8 O. Goldreich, S. Micali, and A. Wigderson (1 99 1) . 'Proofs that yield
nothing but their validity or all languages in NP have zero-knowledge
proof systems', J. Assoc. Comput. Mach. 38, 69 1-729.

9 It is easy for Alice to prepare such a network. Just lay out 200 points,
color them at random with three colors, and then in some fashion,
randomly if you want, connect some of the points having different
colors by lines.

t u r n i n g b a d i n t o g o o d 1 8 1

Fig. 6.3. A network.

red, and blue. She then carefully covers the colored points with

small coins, and places the network in Bob's view (see Fig. 6.4(a» .

She also tells Bob what colors she has used. I O Bob is, of course,

skeptical, but despite the fact that Alice is interested in eliminating

his skepticism, she is not willing to expose the coloring. In fact, she

is not willing to expose even a single pair of points not connected

by a line, since whether these are colored with the same color or

with different ones is part of her coloring strategy, about which she

wants to give absolutely nothing away. Instead, she tells Bob that

she is willing to expose any pair of neighboring points, that is, ones

connected by a line. So Bob chooses a line in the network, at

random if he wishes, and Alice removes the coins from the points

at its end (see Fig. 6.4(b» . Bob then verifies that these two points

are colored with different colors, as they should, and that the two

colors are from among the three Alice listed. Clearly, if the exposed

points violate one of these properties - she used, say, green, or

1 0 When this protocol is carried out electronically, the secret coloring and
covering, and all the stages that follow, are carried out using appropriate
encoding and decoding, so that no cheating is possible.

1 8 2 c o m p u t e r s L t d .

(a)

(b)

Colors

o
o

•

Fig. 6.4. Covering a 3-colored network and exposing two neighbors.

has colored both the points red - Bob has shown that the color

ing is not legal, thus shattering Alice's proof. However, if indeed

the two colors are different, and they are from among the three

Alice listed, he can't complain, but neither is he sure yet that the

entire network is colored legally.

What now?

Rather than agreeing to expose more points, Alice takes back

the coin-covered network, recolors it - this time using, say,

brown, black, and white - and covers the new colors with the

coins. She again tells Bob which colors she used, and again shows

him the network. He again chooses a line in the network, and Alice

promptly uncovers the two points at its ends. Again, Bob sees dif

ferent colors, and they are indeed from among the three she said

she had used. Once again he hasn't been able to refute Alice's

claim.

t u r n i n g b a d i n t o g o o d 1 8 3

This procedure i s carried out repeatedly, a s many times a s Bob

wants, until he is happy.

Why should Bob ever become really happy? Let's look at things

from his point of view. The example network of Fig. 6.3 contains

23 connecting lines. After Alice passed the first test, meaning that

Bob couldn't refute her claim from what he exposed, he is still far

from being sure that Alice can 3-color the entire network. But he

did have a chance of 1 in 23 of catching her lying if indeed she

cannot color it. The reason for this is that Bob himself got to

choose the pair of neighboring points that Alice was obliged to

expose, and she had no idea ahead of time which pair he would

choose. In fact, if Alice is indeed lying, and she cannot color the

network, she knows that with this initial probe Bob has a chance

of at least 1 in 23 of exposing her as a liar, since she must have

either used a fourth color or colored two neighboring points the

same. If we assume for the sake of the argument that Bob starts out

with complete skepticism, that is, he is 1 00% sure (confident with

probability 1) that she really can't 3-color the network, this

confidence now goes down to �; , which is less than 96%. This is

the situation at the end of the first probe, or round.

Turning now to the second probe, from Alice's point of view this

one was completely independent of the first one, and, as we know,

independent probabilities are multiplied. Thus, the probability

that Alice could pass the first two tests without really knowing how

to 3-color the network is �; x �; , or (�;)2, which also represents

Bob's new, lower, confidence in the fact that she is lying. This is

about 9 1 .5%. After a third test, his belief in her lying goes down to

(�;)3, which is 87.5%, and so on. As the process continues and the

number of successful tests increases, this confidence decreases

through increasingly larger powers of �; , thus rapidly - expo

nentially, in fact - approaching O.

1 8 4 c o m p u t e r s L t d .

Fig. 6.5. A legal 3-coloring of the network of Fig. 6.3.

Bob can therefore stop the process whenever he is satisfied, and

he will then be overwhelmingly convinced that Alice can 3-color

the network (and in our example he is right; see Fig. 6 .5) , since he

himself sets the level of confidence he wants.

In the general case of a network with N connecting lines, the

probability goes down through powers of (N-I)/N. This is an

exponential decrease, so that in practice you don't need too many

rounds for the possibility to get really, really low, and several thou

sand rounds can still be carried out extremely fast by a smartcard

interacting with a host computer. I I
What about Bob's knowledge? What wisdom has he gained by

going through this interactive proof protocol? Well, since he sees a

different set of colors each time around, and since Alice doesn't

indicate the correspondence between the color sets in the various

tests, Bob has no knowledge of the color relationships between any

I I Zero-knowledge protocols based on other NP-complete problems have
an even faster decrease in probability. Many have a decrease rate that
does not depend on N. If the decrease is 50% in each round, a game of
1 00 rounds brings Bob's belief in the fact that Alice is lying down to the
negligibly small lI21OO•

t u r n i n g b a d i n t o g o o d 1 8 5

points i n the network, except t o have seen several isolated pairs of

neighboring points colored with different colors, as they should

be. Such fragmented knowledge is of no help to him at all, since

the colors used are changed around each time. l 2 This argument

can be formalized to show that Bob gains absolutely nothing - a

zero amount of knowledge - about Alice's coloring scheme.

Technically, this means that there is nothing he can find out in

polynomial time now, after going through the entire proof proto

col, that he couldn't have found out in polynomial time before he

started probing Alice. In particular, as mentioned earlier, he can't

even prove to someone else that the network can be 3-colored,

although he himself is fully convinced! So Alice hasn't provided

him with anything new, except what she had planned to, which

was to convince him that she could 3-color the network.

This is a zero-knowledge protocol par excellence, and is once

again an extremely interesting case of utilizing both the good and

the bad news that algorithmics has to offer, in a powerful and

crucial way. And again, we must remark that just like in public-key

cryptography, where the conjectured-to-be-intractable problem

of factoring is used as the hard problem, no-one knows whether

a provably intractable problem can serve as the basis for zero

knowledge interaction. As of now, NP-complete problems are

usually used for this. If P is ever shown to be equal to NP - that

is, if the NP-complete problems are shown to have good solutions

- all this will collapse; 3-coloring a network will then no longer

be a difficult-to-discover secret.

1 2 Actually, Alice can use the same three colors each time, but permuted,
so that given any two tests Bob never knows the actual correspondence
between the colors.

1 8 6 c o m p u t e r s L t d .

on millionaires . ballots . and

more

Here are a couple of additional cases for which interactive proto

cols have been found.

Suppose a group of millionaires want to find out who is the

richest, but they don't want to divulge any actual numbers about

their own personal wealth. A protocol can be carried out that will

result in everyone knowing who is the richest, but without giving

away any further information. As explained earlier, giving away no

further information means that no-one can find out anything

about anyone else's wealth in polynomial time after the protocol is

carried out, that he or she couldn't have found out in polynomial

time beforehand. This includes absolute knowledge about one

person's riches, or relative knowledge such as whether Joan is

richer than Joe. Of course, knowledge that follows in polynomial

time from the exposed information, such as the fact that everyone

else has less money than the richest one, they do know. i 3

A similar protocol exists for managing secret votes, ballots, or

elections. The way an anonymous electronic vote is usually carried

out in a voting body, such as a parliament or a house of represen

tatives, is by each voter pressing a 'Yes'I'No' button. This is fine,

and if so desired the only results the voters will get to see are the

general statistics and not the votes by name. The problem is that

there will always be someone who can quite easily find out what the

individual votes were (the software or hardware experts running

the voting system, for example) . Here too, recently developed

1 3 A. C. Yao (1 986) . 'How to Generate and Exchange Secrets', Proc. 27th
IEEE Symp. Found. Comput. Sci. , pp. 1 62-7.

t u r n i n g b a d i n t o g o o d 1 8 7

computerized protocols make i t possible to run a voting operation

so that no information about individual votes is divulged to

anyone, only the final desired count. In principle, such a protocol

could also be carried out in a large nationwide election, and this

could turn out to be the way things will be done in the future.

These two examples are special cases of a more general situation,

whereby we are interested in computing some function F applied to

N values. In the first example, the values represent the N million

aires' individual worth and the function F points to the maximum

value (that is, it says which of the N values is largest) . Had we

wanted to compute the millionaires' average fortune, F would have

provided that and nothing else. In the second example, the values

are the individual 'Yes'I'No' votes of the N voters and the function

F is the majority function, producing a grand 'Yes! ! ' or 'No ! ! '

depending on which of the two values appears more often.

Researchers have managed to devise a general interactive protocol

that computes F in polynomial-time, and gives away nothing
besides the value of F itself, and this for any function F in PTIME,

i.e. one that is itself computable in the conventional way in polyno

mial-time. As usual, when it comes to intractable functions F, we

know how to do this only with conjectured-to-be-intractable prob

lems, such as factoring or certain NP-complete problems, but not

provably intractable ones. Even so, the general technique is quite

remarkable, and has many more potential applications. 1 4

* * *

1 4 O. Goldreich, S. Micali, and A. Wigderson (1 987) . 'How to Play Any
Mental Game - A Completeness Theorem for Protocols with Honest
Majority', Proc. 1 9th ACM Symp. on Theory of Computing, pp. 2 1 8-29.

1 88 c o m p u t e r s L t d .

Public-key cryptosystems, zero-knowledge interactive proofs, and

many other ideas in this area, all exploit the bad news we have been

discussing in this book in a most novel way. Still, they seem to

leave us with mixed feelings, since no-one has been able to place

the protocols involved on truly firm ground: their validity and

security rests on news that we think is bad but don't know for sure.

If it weren't such serious business, the situation would be almost

laughable: we find ourselves hoping that the news will stay bad!

chapter 7

can we
do any

ours elv es
better?

Our treatment of the 'hard-core' bad news inherent in computing

was actually completed at the end of Chapter 5, and the story we

have set out to tell could have ended there. Chapter 6 was con

cerned with the questions of whether, when, and how things can be

turned around, and we could have stopped there too. Nevertheless,

it seems appropriate to end the book with bad news of a different

kind, taking a brief look at some of the difficulties that arise when

we think of computers as potentially intelligent.

One type of brain scanning technology has a computer ana

lyzing, in real time, an enormous amount of data generated by

numerous X-ray images of a human patient's brain, taken from

increasing angles. The analyzed data is then used to automatically

generate a cross-cut picture of the brain, providing information on

tissue structure, and enabling identification of tumors or excess

fluids. In striking contrast, no currently available computer can

analyze a single, ordinary picture of the very same patient's face

and determine the patient's age with an error margin of, say, five

years, which most humans can.

1 9 0 c o m p u t e r s L t d .

Computers are able to control extremely sophisticated industrial

robots that construct entire automobiles from their numerous

parts. In contrast, to day's most advanced computers are incapable

of directing a robot to somehow organize my rather cluttered

office (a task an average human could carry out easily - if hard

pressed, of course) , or to construct a bird's nest from a pile of twigs

(a feat an average bird can perform) .

AI, or artificial intelligence, as i t i s called, I i s a fascinating and

exciting area of research. It is also controversial and speculative.

Since it too involves computers running programs, AI is clearly

susceptible to all the bad news we have already discussed. However,

it suffers also from bad news of a 'softer' nature, which stems from

the difficulty of characterizing true intelligence and figuring out

how to emulate it.

The question of whether computers can think, someone once

said, is just like the question of whether submarines can swim.2

This analogy is quite apt. We all know more or less what sub

marines are capable of - and indeed they can do things that are

akin to swimming - but 'real' swimming is something we associ

ate with entities of organic nature, such as humans and fish, not

with submarines. In analogy, while we might have a pretty good

idea of the capabilities of computational devices, real thinking is

associated in our minds with homo sapiens, and perhaps also with

some advanced mammals like apes and dolphins, but not with

silicon-based collections of bits and bytes. Be this as it may, it is not

a priori out of the question that we could mimic human intel

ligence with computers. But it's certainly not that simple.

1 The term is due to J. McCarthy.

2 This is due to E. W. Dijkstra.

c a n we o u r s e l v e s d o a n y b e t t e r ? 1 9 1

algorithmic intelligence?

So how can a computerized robot put together a car? Why a car, but

not a bird's nest? Why a CAT-scanner, but not a reliable face recog

nition system? What is so hard about building a computer that can

be wheeled into my office on a platform, equipped with a battery of

sophisticated video cameras, advanced robotic arms, and state-of

the-art software for a brain, that can take a good look around (emit

ting a 'tsk, tsk, David') , and can then efficiently figure out what is

what, sort out and organize papers, books, files, and letters, store

stationery and desktop items in the appropriate drawers, clean up

coffee mugs and litter, dust, sweep, and shake out the rug, and leave

a nice note saying 'your cleaning person for today has been R2D6'?

Well, there is no contradiction. In automobile manufacture,

robots are programmed to carry out long and intricate sequences

of operations by carefully prepared recipes, finding components in

carefully predefined locations and doing carefully predefined

things with them. Sometimes they can be reprogrammed to carry

out different tasks, and some state-of-the-art ones are able to

adapt their behavior somewhat to accommodate limited changing

situations. But, in general, computerized robots are not able to

take a look at new surroundings, comprehend and assess the situ

ation, decide what has to be done, and then make a plan and

execute it to completion. Brain tomography is carried out with the

aid of complex, but well-defined, algorithmic procedures, whereas

the ability to deduce a person's age from a photograph requires

real intelligence.

There have been some successes - spectacular, when you know

how hard it really is - in dealing with limited and carefully

defined situations, such as telling different models of cars apart in

pictures taken from new angles, or in a 'blocks world' in which a

1 9 2 c o m p u t e r s L t d .

computer responds to things like 'place a red cube on top of two

green cylinders and the yellow block'.3 But we don't know how to

deal with a pile of twigs of all shapes and sizes, or with a highly

heterogeneous environment, like an office. Dealing with these

requires levels of intelligence that are far, far beyond present-day

algorithmic capabilities. Even the ability to take in a simple scene

like a normal living room and 'understand' it, something every

child can do, is far beyond the current capabilities of visualization

systems.

Computerizing intelligence, making it algorithmic, is something

we know far too little about. The very phrase 'artificial intelligence'

- or, to rename it to fit in with the rest of the book, algorithmic
intelligence - seems to be a contradiction in terms. We tend to

view intelligence as our quintessential nonprogrammable, and

hence nonalgorithmic, characteristic. To many people the very

idea of an intelligent machine doesn't sound quite right.

the Turing tes t

Many arguments have been put forward to render unthinkable the

concept of an intelligent thinking machine. To think, some say,

necessarily involves emotions and feelings, and no computer can

hate, love, or become angry. Others claim that thinking intel

ligently necessarily entails originality and consciousness, and no

computer can originate anything unless programmed ahead of

time to do so, in which case it is no longer original. And we haven't

even tried to deal with true consciousness yet. There are counter-

3 T. Winograd (I 972) . Understanding Natural Language. Academic Press,
New York.

c a n we o u r s e l v e s d o a n y b e t t e r ? 1 9 3

arguments to many o f these claims, but they are outside the scope

of this book.4 What can be said, though, is that a machine claimed

to be intelligent must, at the very least, be able to exhibit human

like intelligent behavior. For this we do not require it to walk, see

or talk like a human, only to reason and respond like one.

Furthermore, whatever the agreed-on criteria for intelligence turn

out to be, someone ought to be able to check whether a candidate

machine fulfills them. And who is qualified to carry out such a test

if not a real, intelligent human being? This leads to the idea that a

machine ought to be labeled intelligent if it can convince an

average human being that in terms of its intellect it is no different

from another average human being.

Exactly fifty years ago Alan Turing proposed a way to set up such

an experiment, now commonly called the Turing test.5 The test

takes place in three rooms. In the first there is a human interroga

tor (call her Alice) , in the next there is another human, and in the

third the candidate computer. The interrogator Alice knows the

other two only by the names Bob and Carol, but doesn't know

4 See J. R. Lucas (1 96 1) . 'Minds, Machines, and Godel', Philosophy 36,
i l 2-1 7; H. Dreyfus (1 979). What Computers Can't Do (rev. edn) . Harper
& Row, New York; Y. Wilks (1 976). 'Dreyfus's Disproofs', British J. Philos.
Sci. 27, 1 77-85; D. R. Hofstadter (1 979) . Godel, Escher, Bach: An Eternal
Golden Braid. Basic Books, New York; H. Gardner (1 985) . The Mind's
New Science. Basic Books, New York; J. V. Grabiner (1 986) . 'Computers
and the Nature of Man: A Historian's Perspective on Controversies about
Artificial Intelligence', Bull. Amer. Math. Soc. 1 5, 1 1 3-1 26; R. Penrose
(1 990) . The Emperor's New Mind: Concerning Computers, Minds, & the
Laws of Physics. Viking Penguin, New York; J. R. Searle (1 984) . Minds,
Brains, and Science. Harvard University Press, Cambridge, MA.

s A. M. Turing (1 950). 'Computing Machinery and Intelligence', Mind
59, 433-60.

1 9 4 c o m p u t e r s L t d .

''T/
Bob: human or computer

Alice: human interrogator

Fig. 7. 1 . The Turing test.

which is the human and which is the computer. The three rooms

are equipped with computer terminals, with Alice's being con

nected to those of Bob and Carol (see Fig. 7. 1) . Now, Alice is given

some fixed amount of time, say, 30 minutes, in which she must

determine the correct identities of Bob and Carol. She is free to

address any questions or statements whatsoever to either of them,

and the computer has to make its best effort to deceive Alice, giving

the impression of being human. The computer is said to pass the

test if after the allotted time Alice doesn't know which of Bob or

Carol is really the computer. In order to downplay the effect of a

simple guess on Alice's part, the computer is actually required to

pass several one-session tests, perhaps with different interrogators.6

6 The programmed computer must be able to converse freely in a natural
language such as English, but we waive the need for it to hear and talk;
hence the electronic links.

c a n we o u r s e l v e s d o a n y b e t t e r ? 1 9 5

Before proceeding, we should make i t clear that n o computer

has ever come even marginally close to passing this test, and many

researchers believe that none ever will.

Let us try to get a feel for the immense difficulty involved.

Consider how an intelligent program would have to react to the

following questions by Alice:

1. Are you a computer?

2. What is the time?

3 . When was President Kennedy assassinated?

4. What is 454 866 296 x 66 407?

5. Can White win in less than four moves from the following chess

position: . . . ?

6. Describe your parents.

7. How does the following poem strike you: . . . ?

8. What do you think of Charles Dickens?

9. What do you think of the upkeep cost for NATO, in view of the

fact that millions of people around the globe are suffering from

starvation?

The first two questions are rather easy for a computer to deal with.

It should say 'No' when asked Question 1, and for Question 2 it

can use the computer's built-in clock. Question 3 requires the

program to be able to access a large pool of knowledge, compar

able to the knowledge of a human being. That is fine, but the

program's designer will just have to decide which items to include;

simply giving it access to the World Almanac and the entire

Encyclopedia Britannica, even in their electronic hyperlinked

guises, won't do, for many reasons (one of which is that the sheer

quantity of knowledge the computer might exhibit could easily

1 9 6 c o m p u t e r s L t d .

give away its identity) . Question 4 looks easy - computers seem

to be best at this kind of feat - but it is also quite subtle: we might

want to program the computer to wait a while before answering,

because lightning speed will also give it away. Question 5, of

course, requires it to have some knowledge of chess, including the

ability to reason about a new position. But, then again, should we

teach it checkers, Go, poker and bridge too? As to Question 6,

although answers to such questions could be prepared in advance,

Alice might respond to an answer by pursuing a certain unex

pected detail that just wasn't provided with a ready-made answer

(e.g. 'why exactly did your father decide to grow a beard? ') .

Questions 7, 8, and 9 are far more difficult. They require exhibit

ing preferences, opinions, feelings and the results of upbringing,

together with an ability to explain the underpinnings of these and

relate them to others. In short, the computer under scrutiny must

be endowed with a real personality.

Hard stuff.

E L I Z A and z upchoks

One of the difficulties in programming a computer to pass the

Turing test is the great diversity of areas that the conversation can

lead into. There has been some success in imitating human con

versation in very limited areas of discourse. A program called

ELIZA, written almost 35 years ago, was able to give an impressive

performance as a psychoanalyst.? So impressive, in fact, that

7 J. Weizenbaum (1 966) . 'ELIZA - A Computer Program for the Study
of Natural Language Communication between Man and Machine',
Comm. Assoc. Comput. Mach. 9, 36-45.

c a n we o u r s e l v e s d o a n y b e t t e r ? 1 9 7

people were known to actually 'confide' i n i t the way they would

never confide in a fellow human! Here are a couple of typical

exchanges:

Person: 'My wife says I am often depressed.'

ELIZA: 'I'm sorry to hear you are depressed.'

Person: 'The truth is I am quite unhappy.'

ELIZA: 'Do you think coming here will help you not to be

unhappy?'

Person: 'Well, perhaps by talking to you I will find out why I

hate my brother.'

ELIZA: 'Tell me more about your family.'

The interesting thing about ELIZA is the fact that it is not intel

ligent by any reasonable measure. It is actually quite dumb. In so

far as it gives the impression of being a thoughtful therapist, it is

really a shrewd cheat. Most often, it simply zeros in on a particu

lar word or phrase it has been taught to look out for and responds

by choosing, virtually at random, one of a small number of fixed

responses. An excellent example of this is the response 'Tell me

more about your family', triggered by the word 'brother'. Other

times, ELIZA merely turns an incoming sentence into a question

or a rather meaningless statement, as in the exchange concerning

the person's unhappiness. To do all this, it utilizes a simple mech

anism for figuring out the coarse structure of the input sentences.

Strange things happen when you really try to test ELIZA's intel

ligence, instead of just spurting forth your problems. In fact, if we

said 'I was a sister in a monastery in Burma', or even 'I admired

Sister Teresa', the program might very well respond with the same

nonsensical 'Tell me more about your family'. Its response to the

1 9 8 c o m p u t e r s L t d .

question about NATO is bound to be equally amusing. ELIZA, of

course, has no chance of passing the Turing test. In fact, it was not

intended to. The motivation behind ELIZA - and in this respect

it was enormously successful - was to show that it is easy to

appear intelligent; at least for a short while, to a sympathetic

observer, and within a narrow domain of discourse. To be really
intelligent is quite a different matter.

To further appreciate the difference between the genuine intel

ligence required to pass Turing's test, and the shallow, yet devi

ously deceptive conversational abilities of programs such as

ELIZA, here is a hypothetical exchange between the Turing test

interrogator Alice and a really intelligent candidate, say Bob:8

Alice: 'What is a zupchok?'

Bob: ' I have no idea.'

Alice: 'A zupchok is a flying, novel-writing whale. It has been

carefully cultivated in a laboratory over several generations

to ensure that its fins evolve into wing-like things that

enable it to fly. It has also been gradually taught to read and

write. It has a thorough knowledge of modern literature,

and has the ability to write publishable mystery stories.'

Bob: 'How weird ! '

Alice: 'Do you think zupchoks exist? '

Bob: 'No way. They cannot.'

Alice: 'Why?'

8 Adapted from I. Poh) and A. Shaw (1 98 1) . The Nature of Computation:
An Introduction to Computer Science. Computer Sc ience Press, Rockville,
MD.

c a n we o u r s e l v e s d o a n y b e t t e r ? 1 9 9

Bob: 'For many reasons. First of all, our genetic engineering

capabilities are far from adequate when it comes to turning

fins into wings, not to mention our inability to cause 10 -

ton engineless creatures to defy gravity just by flapping

those things. Secondly, the novel-writing part doesn't even

deserve response, since producing a good story requires

much more than the technical ability to read and write. The

whole idea seems ridiculous. Don't you have anything more

interesting to talk about? '

To carry out this conversation, Bob, be it human or computer,

must display extremely sophisticated abilities. He (or it) must

possess a large amount of knowledge on specific topics, such as

whales, flying, novel-writing, and gravity. It must be able to learn
about a totally new concept, taking in the definitions and relating

them to what it already knows. And it must be able to deduce
things from its newly acquired knowledge, such as the fact that

genetic engineering is more relevant to zupchoks than, say, alge

braic topology or Chinese philosophy. (In this particular case it

must also have a sense of humor.) Indeed, knowledge, learning,

and deduction are three fundamental areas of artificial intelligence

research.

heuris tics

Game playing is one of the specialized areas in which AI research

has achieved significant results.9 For example, there are many

9 D. Michie (1 995) . 'Game Mastery and Intelligence', in Machine
Intelligence 14 (K. Furakawa, D. Michie, and S. Muggleton, eds.) .
Clarendon Press, Oxford.

2 0 0 c o m p u t e r s L t d .

programs that play checkers extremely well, routinely beating their

designers. The best-known of these is an incredibly good program

called Chinook. lO The same goes for other games too. More than

20 years ago, for example, a computer program was already able to

beat the world champion in backgammon. (This did not make the

program the new champion, as the game was not played in an

official tournament, but the win was a win nevertheless.) These

days, a program called TD-Gammon routinely plays on the level of

the world's top backgammon players.

As to computerized chess, this is a topic with a remarkable

history, involving amazingly sophisticated software, first-line

human players, prize-carrying challenges, public matches, and

triumphs and frustrations on both sides. The main computerized

players included programs with names like Chess Genius,

Zugzwang, StarSocrates, and Deep Thought, and the most formid

able kid on the block: Deep Blue. 1 1 The bottom line is this: in May

1 997, Gary Kasparov, world chess champion and one of the best

chess players of all time, played against Deep Blue, a program

written by a group of IBMers and running on a supercomputer.

The six-game match was won by Deep Blue, 3 .5 to 2.5 . 1 2 Though

somehow expected, this victory stunned the world. To many

people it is obvious that a computer program will eventually

1 0 J. Schaeffer (1 997) . One Jump Ahead: Challenging Human Supremacy
in Checkers. Springer-Verlag, New York.
I I D. Levy and M. Newborn (1 99 1) . How Computers Play Chess.
Computer Science Press, New York; M. Newborn and M. Newborn
(1 996) . Kasparov Versus Deep Blue: Computer Chess Comes of Age.
Springer-Verlag, New York.
12 B. Pandolfini (1 997) . Kasparov and Deep Blue: The Historic Chess
Match Between Man and Machine. Fireside, New York.

c a n we o u r s e l v e s d o a n y b e t t e r ? 2 0 1

become the official world champion i n chess. At present, the inter

national federations still refuse to rate chess programs, and the US

chess authorities have been very reluctant to have them compete in

official activities. But these are technicalities, it seems. Sooner or

later an official title will be bestowed upon Deep Blue or one of its

descendants.

This does not mean that such programs are perfect. If they were,

they would never lose a game. Why can't programs play perfect
chess or checkers, and hence routinely and easily beat the very best

human players? Why can't a computer run through all possible

moves and always choose the best one? The answer lies in the

number of possibilities. For some simple games there is no

problem. In tic-tac-toe (noughts and crosses) , the first player has

nine possible moves, to which the opponent can respond in one of

eight ways, to which the first player can respond in one of seven,

and so on, all the way down to one last move. The total number of

possibilities to check in an entire game is thus no more than 9 ! , or

362 880. This means that a computer can be easily programmed to

play perfect tic-tac-toe.

With chess, on the other hand, the story is quite different. White

has 20 possible first moves, and the average number of next moves

from an arbitrary chess position is around 35. The number of

moves in a game (twice the number of rounds) can easily reach 80

or 1 00. This means that the number of possibilities to check in a

typical game might be something like 35 100• In Chapter 3 we saw

some such numbers: 35 100 is many, many, many orders of magni

tude larger than the number of protons in the universe, or the

number of microseconds or nanoseconds since whenever Even

if we ignore the bookkeeping and memory space involved in a

brute-force trip through all possible moves, and assume that each

2 0 2 c o m p u t e r s L t d .

move can be tested in, say, a nanosecond, there is simply no way

that computers can explicitly contemplate each and every possibil

ity in any reasonable amount of time. So there is no hope for a

perfect chess program. A world champion yes, but a perfect

program noP

How, then, do good chess programs operate? Well, this is too

complex a topic to get into here, but - very briefly - one of their

methods is to use heuristics, or rules of thumb. A typical heuristic

search uses intuitive rules, incorporated into the program by the

programmer, instructing it to ignore certain portions of the sea of

possibilities. For example, one kind of rule might prescribe that if

during the last four moves nothing has changed within the two

square vicinity of a certain pawn, that pawn will not be moved, and

the search can ignore all possibilities that follow from moving it.

This rule might turn out to be very insightful - it definitely results

in less work on the part of the program - but, of course, it could

cost us the game; Kasparov might have advanced that very pawn to

win the game in five moves. Obviously, this is a very simple-minded

example, and the heuristics embodied in real chess-playing pro

grams are far more sophisticated. They are heuristics nevertheless,

and a program guided by them can very well miss the best move.

A nice way to explain the nature of heuristic search is to consider

what happens when you lose a contact lens. You could carry out a

blind search, by bending over and feeling around for the lens at

random. You could carry out a systematic search, by methodically

searching ever-larger circles around a central starting point. This

search is bound to succeed eventually, but it might be very time-

1 3 The numbers for checkers are not quite as large, but perfect checkers
is also out of the question.

c a n we o u r s e l v e s d o a n y b e t t e r ? 2 0 3

consuming. A third possibility i s analytic search, whereby the

precise mathematical equations governing the fall of the lens are

formulated and solved, taking into account wind, gravity, and air

friction, as well as the precise topography, tension, and texture of

the surface. This too, if carried out correctly, is guaranteed to

succeed, but for obvious reasons is impractical .

In contrast to these methods, most of us would use a heuristic
search. We would first identify the approximate direction of the

fall and make an educated guess as to the distance the lens could

have gone by falling; we would then limit the search to the result

ing area. Still, heuristics cannot guarantee success; after all, rules of

thumb are only rules of thumb. (There is, of course, a fifth

approach, the lazy search, which calls for searching for the closest

optician and purchasing a new lens.)

In a sense, using heuristics is like tossing coins. In Chapter 5 we

saw how things can be improved by following the whims of ran

domness; the set of possibilities we thought we had to search

through is significantly reduced, and many are left unexplored. We

were thus willing to label a number 'prime' although we hadn't

checked every possible witness to its non-primality. Since success

is not guaranteed there either, it is tempting to view coin tossing as

a blind heuristic, a sort of intuitionless rule of thumb. But there is

a major difference. With probabilistic algorithms, analysis replaces

intuition. By considering carefully defined sets of ignorable possi

bilities, and using randomization to decide which to actually

ignore, we are able to analyze the probability of success rigorously,

making precise statements about the algorithm's performance.

This is often not true for algorithms that use heuristics.

This account of heuristics is overly simplistic. In actuality there

is much more going on than a few simple rules that cause the

2 0 4 c o m p u t e r s L t d .

program to ignore some of the possibilities in a search. There has

to be a way to evaluate the quality of such situations in the search.

For example, the designers of chess-playing algorithms must deal

with the issue of what is the 'value' to White of a given board

configuration. The problem of evaluating situations to help the

algorithm reach a decision is one of the main challenges of

heuristic programming.

In a medical diagnosis system the number of possibilities is also

enormous, and a heuristic search must take place, with the

patient's observable symptoms and his or her answers to queries

driving the system's navigation among the directions and possi

bilities. The evaluation problem here, which determines how rel

evant a particular set of possibilities is to the sought-after final

diagnosis, is incredibly difficult. Indeed, one of the most useful

outcomes of research in AI has been the development of sophis

ticated evaluation techniques for heuristic search.

what ; s knowledge?

Heuristics and heuristic search constitute just one aspect of algor

ithmic intelligence. We also have to find ways to represent the

knowledge that intelligent algorithms manipulate. The what-to

do-next parts of many AI programs are special, being based upon

the 'soft' notion of heuristics, rather than on the 'harder', deter

ministic, analysis-driven basis of conventional algorithmics. In

analogy, many of the what-are-we-talking-about parts of AI pro

grams are also special, being based upon the 'soft' notion of asso

ciative knowledge and erratically connected data, rather than on

the well-organized, carefully regulated data structures and data

bases of conventional algorithmics.

c a n we o u r s e l v e s d o a n y b e t t e r ? 2 0 5

S o what is knowledge?

That twice four is eight and that France is in Europe is knowledge,

but so is the fact that all giraffes have long necks, that Isaac Newton

was brilliant, and that academics who do not publish perish. But

what is 'long' and what is 'brilliant', and is 'perish' to be taken lit

erally? How do we represent such facts in our minds or in our

computer's knowledge bases, and how do we use them? No

program can be labeled intelligent - be it one that operates in a

narrow domain, such as chess or a blocks world, or a general

purpose candidate for passing the Turing test - unless it has an

appropriate mechanism for storing, retrieving, and manipulating

knowledge.

The difficulty is rooted in the observation that human knowledge

does not consist merely of a large collection of facts. It is not only

the sheer number and volume of the facts that is overwhelming

(some researchers estimate the number at 30-50 million) , but, to a

much larger extent, their interrelationships and dynamics. Items of

knowledge are intertwined in the most intricate and complex ways,

having numerous components, attributes, and levels of abstraction.

And they constantly change, grow, and shift, as do the interconnec

tions. We know very little about the way we ourselves store and

manipulate the immense quantities of knowledge accumulated

over our lifetime. It is easy to say that we too are but finite

machines, and are therefore amenable to simulation. The fact of the

matter is that a human's knowledge base is incredibly complex, and

works in ways that are still far beyond our comprehension.

Still, impressive advances have been made in computerized

knowledge representation, and many models have been suggested

for use by intelligent programs. Some of these are based on standard

kinds of database systems, and others on carefully constructed

2 0 6 c o m p u t e r s L t d .

logical formalisms. One of the most interesting proposals for this

involves neural nets, a computational model that attempts to

simulate the relationships and transfer of information between

neurons in our brains. However, once outside a small well-defined

domain of discourse, the relationships become far more intricate

than we know how to model in this fashion, and current neural nets

become vastly inadequate. Retrieving the knowledge items that are

relevant to some decision that an intelligent program has to make is

a truly formidable task. Neural nets have been used beneficially for

many kinds of computerized jobs, taking advantage of their flexibil

ity and ability to adapt, and thus learn (we shall be discussing learn

ing shortly), but they too are far from exhibiting true intelligence.

Particular kinds of knowledge-intensive programs are called

expert systems. These are based on rules that a human expert

employs in solving a particular problem. A typical expert system is

constructed by questioning the expert about the ways that he or

she utilizes expertise in tackling the problem at hand. The

(human) questioner, sometimes called a knowledge engineer,

attempts to discover and formulate the rules used by the expert,

and the expert system then uses these rules the guide to search for

a solution to a given instance of the problem.

Expert systems with acceptable - often excellent - levels of

performance have been constructed for carrying out some forms

of medical diagnosis, for determining the structure of a molecule

from its atomic formula and its mass spectrogram, for finding oil

rich areas, and for helping in the configuration of computer

systems. We must realize, however, that in addition to relying on

heuristic search, the rules that control the operation of an expert

system are formed by questioning experts who might not always

operate according to rigid rules. The chances of unexpected,

c a n we o u r s e l v e s d o a n y b e t t e r ? 2 0 7

perhaps catastrophic, behavior in an expert system are therefore

non-negligible. Some people put it this way: in an emergency,

would you be willing to be taken care of by a computerized inten

sive care unit that was programmed according to the expert system

paradigm? Under a rare set of circumstances, the unit could

administer the wrong medicine or shut a crucial valve at the wrong

moment, since its behavior is governed by rules that reflect inter

views with expert doctors who might not necessarily act in an

unusual case according to well-formed rules that they are able to

articulate.

The knowledge representation problem becomes particularly

acute when we consider learning and planning. Consider the task

of constructing a checkers program that learns from its mistakes.

How can this be done? How do we represent the relevant data?

Should the program simply make a list of the positions and moves

that turned out to be bad in previous games, and then run through

them each time to avoid repeating a mistake, or should it try to

remember and update more general rules of good play, to be used

for modifying its heuristics? These questions become all the more

difficult when the subject area is wider: how do children learn?

How do they represent the knowledge that enables them to recog

nize objects or to synthesize sentences? How do adults remember

and retrieve the vast amount of knowledge that enables them to

learn how to write an essay, how to organize personal finances, or

how to adapt to a new environment?

The ability to plan is another intelligent skill. Some sophisticated

mobile robots, operating within relatively simple surroundings,

are capable of planning a sequence of movements that will take

them to their destination. How do they do so? Do they simply

carry out a search through all possibilities, or do they utilize more

2 0 8 c o m p u t e r s L t d .

subtle knowledge that enables them to look ahead, so to speak, and

really plan with the goal in mind? Again, broader domains make

things much harder: how does a person plan a trip, outline a

scheme for ending the year with a positive balance, or devise a

strategy to win a war? Way too little is known about how we our

selves deal with these tasks, and as a result we are very far from

being able to teach them to a computer, even with the aid of learn

ing mechanisms such as neural nets.

unders tanding natural language

A nice way to better appreciate the difficulty of mechanizing intel

ligence is to look a little closer at the comprehension of ordinary

natural language.

We shall concentrate here on understanding the language - not

merely on recognizing the words - but it is instructive to first see

what can happen when a speech-recognition program makes mis

takes. The sentence

Her presence made all the difference

can be easily misunderstood and interpreted as

Her presents made all the difference

Similarly,

Any Japanese car responds well

can be heard as

Any Japanese corresponds well

and the well-known American statement

I pledge allegiance to the flag

c a n we o u r s e l v e s d o a n y b e t t e r ? 2 0 9

when mumbled fast, a s school-kids will, can be understood as

I led the pigeons to the flag

Speech-recognition programs are a pun lover's paradise . I 4

When i t comes to semantics the subtleties are much greater.

Many sentences can't be understood without the context, and

without the special nuances, phrases, and slang of the language at

hand. Sometimes it is also necessary to be familiar with the idio

syncrasies of the person speaking. A famous example involves the

aphorism

The spirit is willing but the flesh is weak

As the story goes, this sentence was subjected first to a simple

dictionary-based computer translation into Russian, followed by a

similar translation back into English. The result was

The vodka is strong but the meat is rotten

Ambiguity is the main culprit. Consider the following:

lim sat down at the table and found a large fruit salad on a plate next

to the basket of bread. It took him a while, but he finally managed to

eat and digest it all.

What did Jim eat? Was it the salad, the bread, or both? In some

contexts it might be the plate or the basket; it could even be the

table! Here grammar alone won't help much. The intended

meaning, probably hinted at subtly by the context, is what counts.

14 Hearing the pledge of allegiance as having to do with pigeons was
described by W. Safire in one of his 'On Language' columns in The New
York Times some years ago. See W. Satire (1 980) . On Language, Times
Books.

2 1 0 c o m p u t e r s L t d .

The following sentences are grammatically identical but they

differ in the relationships between their various parts:

The lost children were found by the searchers

The lost children were found by the mountain

The lost children were found by nightfall

Obviously, the correct interpretation depends on the meaning of

the words 'searchers', 'mountain', and 'nightfall'. And these kinds of

things are incredibly difficult to predict and computerize, given

the vast number of words in English. The same phenomenon

occurs in these sentences:

The thieves stole the jewels, and some of them were later sold

The thieves stole the jewels, and some of them were later caught

The thieves stole the jewels, and some of them were later found

In this case, the word 'sold' refers to the jewels, 'caught' refers to the

thieves, and 'found' can refer to either. Actually, even that much is

not obvious. It is possible that the story takes place in a country

where thieves are sold as slaves, rendering the first sentence ambi

guous too. If the second sentence had 'threw the jewels out of the

window' instead of 'stole the jewels', it would also be ambiguous.

Here again, semantics and understanding, and the issue of know

ledge, appear in all their severity. We utilize an enormous amount of

knowledge in disambiguating and understanding ordinary English,

besides just the words and the grammar. Identifying that knowledge,

and representing it in ways that capture its intricate interrelation

ships and enable useful retrieval, re-emerges as the central and most

fundamental problem in computerizing natural language.

We are not saying that it is impossible or hopeless, just that it is

far, far more difficult than it seems, and it involves far, far more

than meets the eye.

c a n we o u r s e l v e s d o a n y b e t t e r ? 2 1 1

To end this chapter, here are three hypothetical exchanges between

a human being and a futuristic intelligent phone-answering

machine, in, say, 25 years. I S When reading them, it is worth putting

amusement aside for a moment. Try to think of the way we humans

would have dealt with the situations they raise, and of the hopeless

ness of programming a computer to deal with them intelligently.

Con versati on 1
Machine: 'Hello, this is Jim's phone.'

Voice: 'Oh, it's you. Listen,. this is his boss. I really need to get Jim

right away. Can you locate him and have him call me?'

Machine: ' I 'm sorry, Mr Hizboss, Jim is playing golf this after

noon and left orders not to be disturbed.'

Voice: 'He is, is he? Well, look, I'm thin on patience this after

noon. This is his boss calling, you idiot, not Mr Hizboss.

Get Jim. Now!'

Machine: ' I 'm pleased to hear that you are spending time with

your patients this afternoon, Dr Thin. Business must be

good. If you want to reach Jim's boss just dial 553-886 1 .
Certainly you would never find him here i n Jim's office;

we have him listed in our directory under the alias of

The Monster.'

Voice: 'Take this message, you son of a chip, and get it straight.

Tell him he is not worth the spacebar on your keyboard.

He is fired! '

(. . . Click . . .)

1 5 Adapted with permission from R. W. Lucky (1 986) . 'The Phone
Surrogate', IEEE Spectrum 23(5) , 6.

2 1 2 c o m p u t e r s L t d .

Con versati on 2
Machine: 'Hello, this is Jim's phone.'

Voice: 'Oh, hello, you darling machine. I just wanted to check

that we're still on for dinner and whatever.'

Machine: 'Of course, Sue. I have you with him for Thursday at the

usual spot.'

Voice: 'This is Jim's fiancee, Barbara. Who is Sue?'

Machine: 'Oh, Barbara, I didn't recognize your voice. I've never

heard of anyone named Sue.'

Voice: 'But you just said he was meeting with Sue on Thursday.'

Machine: 'Oh, that Sue. Are you sure you have the right number?

This is Martin Finch's phone.'

Voice: 'You can't pull that trick on me. Tell Jim it's all over!'

Machine: 'You have reached a nonworking number. Please check

your listing and redial.'

(. . . Click . . .)

Con versati on 3
Machine: 'Hello, this is Jim's phone.'

Voice: 'Are you satisfied with your present investments? Have

you considered the advantages of tax-free municipal

bonds? To hear more, please give your name and

address after the beep.'

(. . . Beep . . .)
Machine: 'Err, . . . this is Jim's phone.'

Voice: 'Thank you Mr Jimzfone. Let me tell you more about

our unusual investment opportunities . . . '

pos tramble

We have already said that computers are amazing. Bookstores and

bookshelves are brimming with books that talk about what com

puters can do and how to get the most out of them. This is the

good news, and this book concentrated on the bad.

Instead of summarizing the hard facts and the unknowns, it

seems appropriate to close with another amusing story. This time

an imaginary scene, in which four robots, built in four of the

leading AI labs in the USA, are trying to use their intelligence to

get across a busy highway. l

The first comes from a laboratory in which logical deduction

and planning are crucial parts of its AI research. This robot stands

by the side of the road, looking here and there, dizzied by the cars

and trucks whizzing by, and waiting for the situation to stabilize so

that it can use its deep and contemplative deduction abilities to

devise a plan for crossing. This, of course, never happens.

The second robot is from a lab that excels in the complex robot

ics of mechanical propulsion: walking, rolling, and hopping. This

one-legged Pogo-stick robot is in the midst of the traffic, franti

cally jumping up and down and to and fro, again and again barely

I This is based loosely on a folklore joke that is reproduced in
K. J. Hammond (I 989) . Case-Based Planning: Viewing Planning as a
Memory Task. Academic Press, New York, pp. xxi-xxii.

2 1 4 c o m p u t e r s L t d .

avoiding being hit, but making no progress whatsoever towards

the other side.

The third originates in a large and rich lab that does many dif

ferent kinds of grand-scale AI research and manages to attract big

grant money. The road is littered with the crushed remains of

many of this lab's robots. Many more of these gallant and loyal

robots are waiting on the side, to be sent out to try again, one after

the other, just like infantry charging out of the trenches in World

War !'

The fourth lab views the heart and soul of AI to be the compre

hension, analysis, and synthesis of natural language. Its robot sits

at the side of the road, nods slowly and says, 'Yes, I know; and that

reminds me of another story . . . '.

i ndex

AI. see algorithmic intelligence
airline arrangement puzzle 1 02-4

NP-completeness of 1 04

algorithm 2-5

approximation 1 1 3- 1 5

coding 2 1

cooking analogy 2-4

correctness 2 1-6

Euclidian 4

level of detail 6-7

logical errors 25

need for human comprehensibility 6

need for unambiguous input 1 0. 1 8

polynomial-time. see PTIME
practicality 59-60

problems not solvable by 27-58

syntax errors 25

algorithmic gap 68-9

for NP-complete problems 95-6

algorithmic intelligence [A l l 1 89-2 14

see also Turing test
algorithmic problem 1 0- 14

computable 28 . 44-5

decidable 28. 44-5

description 1 0- 1 1

effectively solvable 44-5

highly undecidable 56-7
generality of solution 14- 1 5

kinds o f input 14

noncomputable 28 . 44-5

real-world 1 5

solution 1 6- 1 8

undecidable 28. 44-5

al-Khowarizmi. Mohammed 4

ambiguity in natural language
209-10

approximation algorithm 1 1 3

for NP-complete problems 1 1 4- 1 5

arithmetic calculation [Problem I I
1 1 . 1 7

artificial intelligence [Al l . see

algorithmic intelligence
assembly language 2 1 -2

average case 62

backgammon 200

backtracking 9 1 . 94. 1 03

basis state 145

binary search algorithm 63-5

bin-packing problem 9 1 . 1 0 1

NP-completeness 1 0 1

bits 2

see also qubits
blocks world 1 9 1-2

body of loop 1 9-20

brain tomography [CAT scanningl
1 89. 1 9 1

bug. computer 2 5

CAT scanning. see brain tomography
certificate 1 06-8. 1 36

see also witness

2 1 6 i n d e x

checkers 85, 200, 207

intractability of winning-strategy
problem 85

chess 1 5, 84-5, 200-2

algorithms to play 200

complexity 201-2

difficulty of estimating time
complexity 84

intractability of winning-strategy
problem 85

world championship 200-2

Church-Turing thesis [CT thesis]
40-5

for parallel algorithms 1 25

for quantum algorithms 1 46-7

for randomized algorithms 1 40

reasons for confidence in 42-5

ciphertext 1 59

closed problem 68

coding 2 1

coloring, see four-color problem;
network coloring problem; three
color problem

compiler 2 1 -2

complexity, see computational
complexity

composite number 1 2 , 1 36-40

computable problem 28, 44-5

see also effective computability
computation

model of 34-40

undecidability of properties 53-4

computational complexity 60-1

hardware size 1 23-4

open problems 1 28-9, 1 4 1 , 1 47

see also memory space; running time
computer program, see program
concurrency, see parallel computation
Cook-Levin theorem 1 1 0

counter 1 7

counter program 44-5

cryptography 1 34, 1 57-88

drawbacks of naIve methods 1 60-1

general usefulness 1 73-4

signatures 1 58-9, 1 65-8

see also factoring problem; public-key
cryptography

CT thesis, see Church-Turing thesis

debugging 25

decidability 28, 44-5

levels of 55-6

decision problem 1 2- 1 5

decoding 1 58-9

decoherence 1 52

decryption, see decoding
deduction, in AI 1 99

digital signature 1 58-9, 1 65-8

dinner party organization, Monte
Carlo approach 1 3 1 -2

DNA computing, see molecular
computing

domino problem, see domino snake
problem; tiling problems

domino snake problem 46-8

decidable and undecidable variants
47-8

equivalence to halting problem
54-5

double exponential function 86

draughts, see checkers

effective computability, see Church
Turing thesis

effective solvability, see Church-Turing
thesis

encoding 1 58-9

encryption, see encoding
entanglement of quantum states 1 46

Euclidian algorithm 4

expanding parallelism 1 24

expert systems 206-7

exponential function 73-8

see also double exponential function
exponential time 73-8

factorial function 74-5, 94

factoring problem 1 40

conjectured intractability 1 40

polynomial-time quantum algorithm
148-50, 1 52-3

see also RSA cryptosystem
finitary problems 29

first-order arithmetic 87-8

four-color problem 1 05-6

graph problems, see network coloring
problem; Hamiltonian path
problem; K-coloring problem;
shortest path problem; traveling
salesman problem

halting problem 50-3

equivalent to tiling and domino
snake problems 54-5

undecidability 52

Hamiltonian path problem 1 53

hardware 3

error 25

in cooking analogy 5

size 1 23-4, 1 27

heapsort 65

heuristics 202-4

highly intractable problem 87-8

highly undecidable problem 56-7, 88

high noncomputability 56-7, 88

high undecidability 56-7, 88

example of problem 57, 88

inherently intractable problem 82,

86-8

input 2, 3, 9-1 1

legal, for a particular algorithm 1 0

unusual 1 0

integer-summing problem [Problem 2 J

12, 1 7, 1 9

i n d e x 2 1 7

interaction, computerized 1 73-87

interactive proof 1 73-88

interference 1 49-50

intractable problem 78, 82, 86-8

use of parallelism 125-8

use of quantum computation
1 47-50

use of randomization 140-1

see also highly intractable problem;
inherently intractable problem;
unlimited intractability

jigsaw puzzles 9 1 , 1 03-4

NP-completeness 1 04

K-coloring 104-5

key, in cryptography 1 59-6 1

knowledge 204-9

in AI 1 99

associative 204

complexity of human 205-8

limits of 28

representation 204-6

lambda calculus 42-3

language, see natural language
Las Vegas algorithm 1 30-1

use to expedite inefficient algorithms
1 30

learning, in AI 1 99, 207

length of computation, see

computational complexity
linear planning, see linear

programming
linear programming 1 1 5- 16

linear time 63

list comparison [Problem 5J 1 3

list searching problem 61-5

list sorting, see sorting problem
logarithmic-time 64

2 1 8 i n d e x

logical formalism
truth-determination problem 85-8

see also first -order arithmetic;
Presburger arithmetic;
propositional calculus; second
order arithmetic; WS I S

loop 1 9-20

infinite 26

machine code 2 1-22

machine language 2 1-22

magic, see non-determinism
magic coin 1 06-8

matching problems 1 0 1

medical diagnosis 204

see also expert systems
memory space 60- 1 , l i S, 1 28-9, 1 4 1 ,

1 47

see also PSPACE
unreasonable requirements 88-9

mergesort 65

millennium bug 23-4, 49-50

molecular computing 1 1 9, 1 2 1 , 1 53-5

monkey puzzle 92-5, 1 02, 1 04,

1 1 0- 1 1

NP-completeness 1 04

Monte Carlo algorithm 1 30-4

practical uses 1 32-4

primality testing 1 36-40

multiplication with a Turing machine
38-40

natural language 208- 1 2

not understood by computers 1 9

NC 1 28

network coloring problem 1 04-5,

1 1 4-1 5, 1 80-5

NP-completeness 105

zero-knowledge protocol for three
coloring 1 80-5

neural nets 206

New York City telephone book 65

noncomputable problem, see

undecidable problem
non-determinism 1 08

noughts and crosses, see tic-tac-toe
NP 1 08, I I I , 1 25-8, 1 4 1 , 1 47, 1 53,

1 75-6, 185

see also P vs. NP question
NP-completeness 95- 1 1 7, 1 26-8,

1 80, 1 85

NP-complete problems 92- 1 05, 1 80

existence of fast approximation
algorithms 1 1 3- 1 5

number theory 1 34

see also factoring problem; primality
testing; prime numbers; 3x+ I

problem

O(N) 63

optimization 13, 1 1 3- 1 5

oracle 55

output of algorithmic problem 2, 3,

1 0- 1 1

P i l i , see also PTIME
P=NP, see P vs. NP question
parallel algorithm
parallel computation 1 1 9-20, 1 2 1-4,

14 1

Church-Turing thesis 1 25

difficulties of implementation 1 29

hardware size 1 23-4, 1 27

intractable problems 1 25-6, 1 28

NP-complete problems 1 26

practical time constraints 127

sequential simulation 1 25

see also expanding parallelism
parallel-PTIME 1 28, 1 47

plaintext 1 59

planning, in AI 207-8

polynomial function 73-8

polynomially related models of
computation 79

Presburger arithmetic 86-8

primality testing [Problem 3 J 1 2 , 1 7 ,

1 1 2, 1 34-40
inefficiency of known algorithms

1 35

probabilistic algorithms 1 36-40,

1 72

see also RSA cryptosystem
prime factoring, see primality testing
prime numbers 1 2

applications t o cryptography 1 34,

1 7 1-3

distribution 1 7 1-2

probabilistic algorithm, see

randomized algorithm
Problem I, see arithmetic calculation
Problem 2, see integer-summing

problem
Problem 3, see primality testing
Problem 4, see sorting problem
Problem 5, see list comparison
Problem 6, see shortest path problem
Problem 7, see traveling salesman

problem
Problem 8 1 4, 26

see also halting problem
production systems 43

program 1 8

cooking analogy 4-7

errors 2 1 -5

undecidability of properties 53-4

programming language 1 8-22

cooking analogy 4

semantics 20

syntax 1 9

program verification 48-54

practical importance 50

undecidability 50

proof
interactive 1 77-85

mathematical 1 76-7

i n d e x 2 1 9

zero-knowledge 1 77-85

propositional calculus 1 10

NP-completeness of satisfiability
1 1 0

pseudo-random numbers 1 42

PSPACE 1 1 5, 1 28, 1 4 1 , 1 47

psychoanalytic conversation, imitated
by computer program 1 96-8

PTIME 78, I l l , 1 1 4, 1 28, 1 35, 1 4 1 ,

1 47

public-key cryptography 1 6 1 -73,

1 88

cracking 1 69-70

use of one-way trapdoor functions
1 68-70

vulnerability to quantum
computation 1 72-3

see also RSA cryptosystem
P vs. NP question 96-97, 1 1 1- 12,

1 1 5, 1 28, 1 35, 1 4 1

relevance t o zero-knowledge
protocols 1 85

P vs. PSPACE question 1 1 5, 1 28, 1 4 1 ,

1 47

QP, see quantum-PTIME
quadratic time 65, 1 00

quantum algorithms 1 46-50

Church-Turing thesis 1 46-7

factoring 1 48-50

searching 1 48

quantum computer 1 2 1

technical problems o f building
1 50-3

quantum computing 80-1 , 1 1 9, 1 2 1 ,

1 43-53

quantum parallelism 1 47

quantum-PTIME 1 47

qubits 1 44

basis states 145

physical realizations 1 44--5, 1 5 1-3

quicksort 1 30

2 2 0 i n d e x

randomization 1 19-2 1 , 1 29-42

randomized algorithm 129-40

Church-Turing thesis 140

see also Las Vegas algorithm; Monte
Carlo algorithm

randomness, simulation by computers
14 1-2

random number generator 142

random-PTIME 1 4 1 , 1 47

real-time system 6 1

recurring dominoes problem 57

recursive functions 43

see also computable problems;
decidibility

reduciblity of problems 55

reduction 1 1 0

Rice's theorem 53-4

Roadblock 82-4, 1 26

inherent intractability 83-4

RP, see random-PTIME
RSA cryptosystem 1 70-3

running time 60-1

methods to improve 61-5

see also exponential time; linear
time; NP; PTIME; QP; quadratic
time; RP

salary summation problem
algorithm 7-9, 60

parallel algorithm 1 22-3

search problem 1 3

quantum algorithm 148

second-order arithmetic 88

sequential computation thesis 80

doubt concerning 80-1

see also Church-Turing thesis
sequential processing 122

Shor's factoring algorithm 1 48-50,

1 52-3

shortest path problem [Problem 6J

13 , 1 7-18 , 97-100

quadratic time algorithm 1 00

relevance to applications 99

signature, see digital signature
simplex method 1 16

software 3

cooking analogy 5

error 2 1-3

solvable problem
finitary 29

formal models 43

independence of formalism 43-5

see also Church-Turing thesis;
effective solvability

sorting problem [Problem 4J 1 3, 17 ,

65-6

in NC 128

space, see memory space; PSPACE
speech-recognition 208

subroutines 6

super-polynomial 77

superposition of quantum states 145

termination 26

three-coloring a network, see network
coloring problem

three-color problem 1 06

NP-completeness 106

3x+ l problem 5 1 -2

tic-tac-toe 201

tiling problem 30-3

equivalence to halting problem
54-5

highly undecidable variant 57

unboundedness does not imply
undecidability 46-7

undecidability 32-3

variants 33

time, see running time
time complexity 65-9

dependence on language and
compiler 66

not determined by length of output
72-3

practical issues 66

upper and lower bounds 65-9

see also exponential time; linear time;
NP; PTIME; QP; quadratic time;
RP

timetable problem 9 1 , 1 00-2

NP-completeness 10 1

practical compromise solutions
1 01-2

tractable variants 1 02

Towers of Hanoi 69-73

algorithm for solution 7 1

time complexity 72

tractable problem 78, 9 1

see also P ; PTIME
trapdoor function 1 64, 1 69-70

traveling salesman problem
[Problem 7J 1 3, 17- 18, 97-1 00,

1 53

approximation algorithm 1 1 3

NP-completeness 1 00

relevance to applications 99

Turing machine 36-40

multiplication algorithm 38-40

slowness not unreasonable 80

solvability using 40

status as universal machine 40-2

Turing test 1 92-6

Twinkle 1 73

i n d e x 2 2 1

undecidable problem 28, 32-6,

47-58

degrees of hardness 54-8

unlimited intractability 87-8

unsolvable problem 27

see also undecidable problem

variable 8

verification of programs 48-50

verification problem 53-4

more undecidable than halting
problem 55-6

voting 1 86-7

witness 1 36

see also certificate
worst case 62

WS 1 S 86-8

unlimited intractability 87

Y2K problem 23, 49-50

year 2000 bug 23, 49-50

zero-knowledge protocol 1 77-85

cryptographic applications 1 79-80

for three-coloring a network 1 80-5

P vs. NP question 185

	Preamble
	Acknowledgments
	Table of Contents
	Chapter 1: What's it All About?
	Chapter 2: Sometimes We Can't Do It
	Chapter 3: Sometimes We Can't Afford To Do It
	Chapter 4: Sometimes We Just Don't Know
	Chapter 5: Trying to Ease the Pain
	Chapter 6: Turning Bad into Good
	Chapter 7: Can We Ourselves Do Any Better?
	Postramble
	Index

