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preamble 

In 1 984, TIME magazine ran a cover story on computer software. 

In the excellent article, the editor of a certain software magazine 

was quoted as saying: 

Put the right kind of software into a computer, and it will do what

ever you want it to. There may be limits on what you can do with 

the machines themselves, but there are no limits on what you can 

do with software. 

Wrong. Totally wrong. In fact, a simple way of summarizing this 

book is that it is devoted to describing and explaining the facts that 

refute - no, shatter! - this claim. 

Of course, computers are incredible. They are without doubt the 

most important invention of the 20th century, having dramatically 

and irrevocably changed the way we live, and mostly for the better. 

But that is the good news, and good news is what most computer 

books are about. This book concentrates on the bad; on the nega

tive side of things. 

Computers are expensive, which is already bad news. They frus

trate us: programming them is laborious and using them can be 

difficult; they are seductive, luring us away from more important 

things; they err; they crash; they contract viruses; and on and on. 

But it is not these kinds of bad news that concern us here. The goal 

of the book is to explain and illustrate one of the most important 
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and fundamental facets of the world of computing - its inherent 

limitations. 

Typically, when people have difficulties bending computers to 

their will, their excuses fall into three categories: insufficient 

money, insufficient time, and insufficient brains. Being richer, the 

argument goes, could buy us larger and more sophisticated com

puters, supported by better software; being younger or having a 

longer life-span would enable us to wait longer for time-consum

ing programs to terminate; and being smarter could lead to solu

tions that we don't seem able to find. These are strong and valid 

points, and we are not about to contest them: a more generous 

supply of any of these three commodities could indeed take us a 

long way. However, for the most part, our book is not about these 

kinds of hardships either. It concentrates on bad news that is 

proven, lasting and robust, concerning problems that computers 

are simply not able to solve, regardless of our hardware, software, 

talents or patience. And when we say 'proven', we mean really 

proven; that is, mathematically, and not just experimentally. 

* * * 

Why are we interested in bad news? Shouldn't computer scientists 

be spending their time making things smaller, faster, easier, more 

accessible and more powerful? Well, they should, and the vast 

majority of us actually do. But even so, starting in the 1 930s, and 

increasingly so by the year, many researchers have been working 

hard to better understand the other side of the coin, that of hum

bling the computer, by discovering and better understanding its 

inherent weaknesses. 

The motivation for this quest is four-fold: 
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• To satisfy intellectual curiosity. Just as physicists want to deter

mine the ultimate confines of the universe or the constraints 

imposed by the laws of physics, so computer scientists want to 

discover what can be computed and what cannot, and how 

costly it is when it can. I 
• To discourage futile efforts. Many people, among them know

ledgeable computer experts, try to tackle computational prob

lems that happen to be subject to devastating bad news. The 

more we understand these problems and their inherent nature, 

the less we shall waste our time and energy on such endeavors. 

• To encourage development of new paradigms. Parallelism, ran

domization, heuristics, and quantum and molecular comput

ing, five of the most promising and exciting topics in computer 

science research, would not be developing the way they are 

without the push resulting from the bad news. 

• To make possible the otherwise impossible. To make possible the 

impossible?! This is surely paradoxical. How on earth can we 

hope to projit from bad news? Well, to keep up the suspense until 

Chapter 6, we shall only remark here that this is an unexpected 

aspect of our story, but also a surprisingly beneficial one. 

So much for motivation. As to the nature of the bad news we 

discuss, consider the large body of very exciting work aimed at 

endowing computers with human-like intelligence. In its wake, a 

host of questions arise concerning the limits of computation, such 

I To get a broad perspective on the kind of limitations scientists are 
interested in, see Barrow, J. D. (1998) .  Impossibility: The Limits of Science 
and the Science of Limits. Oxford University Press, Oxford. 
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as whether computers can run companies, carry out medical diag

nosis, compose music or fall in love. While promising, and often 

quite amazing, progress has been made in addressing these issues 

(not very much on the last one, however), these questions are 

posed in an imprecise and vague manner. With the exception of 

the last chapter of the book, we avoid them. In contrast, we con

centrate on precisely defined computational problems, that come 

complete with clear-cut objectives. This, in turn, makes it possible 

to make equally clear-cut statements about whether or not they 

can be solved satisfactorily. 

The issues we discuss are not debatable, and do not involve 

philosophical, quasi-scientific arguments. Rather, we concentrate 

on hard facts, rigorously stated and mathematically proved. You 

don't go looking for triangles whose angles add up to 1 500 or 2000 

- although no-one has ever been able to inspect each and every 

triangle - simply because there is a proof that no such triangles 

exist.2 In a similar way, if a computational problem has been 

proved to admit no solution, and we shall discuss such problems, 

then seeking a solution is pointless. The same goes for problems 

that do have solutions, but have been proved to require wholly 

unreasonably large computers (say, much larger than the entire 

known universe) or to take wholly unreasonable amounts of com

putation time (say, a lot more than has elapsed since the Big Bang) ,  

and we shall discuss many of these too. 

* * * 

2 Planar ones, of course. On a spherical or almost spherical surface, such 
as the planet Earth, the sum of the angles of a triangle is in fact greater 
than 180°. 
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By and large, people are unaware of the issues this book addresses. 

Sadly and surprisingly, this is true also for many members of the 

computing profession itself, as the quote from TIME shows. This 

is really unfortunate. If the bad news were some esoteric, recently 

discovered phenomenon, not having come across it could be 

understood. The truth is that some parts of our story have been 

known for some 60 years, long before real computers were built, 

and most of the others have been steadily unfolding for the last 30. 
To a large extent, the blame is on us - researchers in computer 

science. We have done far too little in exposing, exemplifying, 

illustrating, and making comprehensible the basics of our science 

in general, and its negative facets in particular. This leaves the 

public in general blissfully unstirred, free to follow with awe the 

technological advances in hardware and software, to delight in the 

excitement of new applications, and to gloat over the futuristic 

possibilities raised by instantaneous telecommunication, multi

media, virtual reality, artificial intelligence, and the global nature 

of the internet revolution. 

There is no reason to break up the party. We should continue to 

strive for bigger and better things. But even so, a measure of 

humility is in place: computers are not omnipotent - far from it. 

Moreover, the problem is real, and it is here to stay. 
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chapter 1 

what's 
about? 

i t a 11 

Computers are amazing. They seem to have it all. They fly aircraft 

and spaceships, and control power stations and hazardous chem

ical plants. Companies cannot be run without them, and many 

medical procedures cannot be performed in their absence. They 

serve lawyers and judges who seek judicial precedents, and help 

scientists and engineers to perform immensely involved math

ematical computations. They route and control millions of simul

taneous telephone calls and manage the remarkable movement of 

Internet data in enormous global networks. They execute tasks 

with great precision - from map-reading and typesetting to 

image processing, robot-aided manufacturing and integrated 

circuit design. They help individuals in many boring daily chores 

and at the same time provide entertainment through computer 

games or the delight of surfing the Web. Moreover, the computers 

of today are hard at work helping design the even more powerful 

computers of tomorrow. 

It is all the more remarkable, therefore, that the digital computer 

- even the most modern and complex one - is merely a large 
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collection of switches, called bits, each of which can be on or off. 

On is denoted by 1 and off by o. Typically, the value of a bit is deter

mined by some electronic characteristic, such as whether a certain 

point has a positive or negative charge. In a technical sense, a com

puter can really execute only a small number of extremely simple 

operations on bits, like flipping a bit's value, zeroing it, or testing it 

(that is, doing one thing if the bit is on and another if it is off) . 

Computers may differ in size, i .e. in the number of bits available, 

and in internal organization, as well as in the types of elementary 

operations allowed and the speed at which they are performed. 

They can also differ in outward appearance and in their connec

tions with the external world. However, appearances are peri

pheral when compared to the bits and their internal arrangement. 

It is the bits that 'sense' the input stimuli arriving from the outside 

world, and it is the bits that 'decide' how to react to them by 

output stimuli. The inputs can arrive via keyboards, touch screens, 

control panels, electronic communication lines, or even micro

phones, cameras, and chemical sensors. The outputs are fed to the 

outside world via display screens, communication lines, printers, 

loudspeakers, beepers, robot arms, or whatever. 

How do they do it? What is it that transforms simple operations 

like flipping zeros and ones into the incredible feats computers 

perform? The answer lies in the concepts that underlie the science 

of computing: the computational process, and the algorithm, or 

program, that causes it to take place. 

algorithms 

Imagine a kitchen, containing a supply of ingredients, an array of 

baking utensils, an oven, and a (human) baker. Baking is a process 
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that produces a cake, from the ingredients, by the baker, aided by 
the oven, and, most significantly, according to the recipe. The 

ingredients are the input to the process, the cake is its output, and 

the recipe is the algorithm. In the world of electronic computa

tion, the recipes, or algorithms, are embodied in software, whereas 

the utensils and oven represent the hardware. See Fig. 1 . 1 .  

Just like computers carrying out bit operations, the baker with 

his or her oven and utensils, has very limited direct abilities. This 

cake-baking hardware can pour, mix, spread, drip, knead, light the 

oven, open the oven door, measure time, measure quantities, etc. 

It cannot directly bake cakes. The recipes - those magical pre

scriptions that convert the limited abilities of novice bakers and 

kitchen hardware into cakes - are at the heart of the matter; not 

the ovens or the bakers. 

Ingredients 

(Software) 

B 

Fig. 1 . 1 .  Baking a cake. 

(Hardware) 

Oven, 
utensils 
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In our world, recipes are called algorithms, and the study, 

knowledge, and expertise that concerns algorithms has been 

termed algorithmics. 1 

The analogy with cooking can be understood as follows: the 

recipe, which is an abstract entity, is the algorithm; the formal 

written version of the recipe, such as is found in a particular cook

book, is analogous to a computer program - the precise repre

sentation of an algorithm, written in a special computer-readable 

formalism called a programming language. It is important to 

realize that, just as a recipe remains the same whether written in 

English, French, or Latin, and regardless of where and by whom it 

is carried out, so does an algorithm remain the same whether 

written in Fortran, C, Cobol, or Java, and regardless of the com

puter it runs on, be it an ultra-light laptop or a room-size main

frame. The generic term software actually refers to programs 

rather than to the abstract notion of algorithms, since software is 

I The word 'algorithm' is derived from the name of the Arabic/Persian 
mathematician of the ninth century, Mohammed al-Khowarizmi, who 
is credited with providing the step-by-step rules for carrying out the 
fundamental operations of decimal arithmetic. In Latin the name 
became Algorismus, from which 'algorithm' is derived. Historically, the 
first nontrivial algorithm was invented somewhere between 400 and 
300 Be by the great Greek mathematician Euclid. The Euclidian 
algorithm, as it is called, finds the greatest common divisor (gcd) of two 
positive integers, i.e. the largest integer that exactly divides them both. 
For example, the gcd of 80 and 32 is 16. The word 'algorithmics' was 
apparently coined by J. F. Traub ( 1 964). Iterative Methods for the Solution 
of Equations, Prentice Hall. It was proposed as the name for the relevant 
field of study by D. E. Knuth (1985). 'Algorithmic Thinking and 
Mathematical Thinking', American Math. Monthly 92, 170-181, and by 
the present author in Algorithmics: The Spirit of Computing, Addison
Wesley ( 1 987) .  
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written for real computers. However, we shall blur the distinction, 

since the story told in the following chapters applies just as well to 

both. 

bas ic ins tructions 

Let us take the gastronomical analogy a little further. Here is a 

recipe for chocolate mousse.2 The ingredients - that is, the 

recipe's input - include 8 ounces of semi-sweet chocolate pieces, 

2 tablespoons of water, a 1 /4 cup of powdered sugar, 6 separated 

eggs, and so on. The output is described as six to eight servings of 

delicious mousseline au chocolat: 

Melt chocolate and 2 tablespoons water in double boiler. When 

melted, stir in powdered sugar; add butter bit by bit. Set aside. Beat 

egg yolks until thick and lemon-colored, about 5 minutes. Gently 

fold in chocolate. Reheat slightly to melt chocolate, if necessary. 

Stir in rum and vanilla. Beat egg whites until foamy. Beat in 2 

tablespoons sugar; beat until stiff peaks form. Gently fold whites 

into chocolate-yolk mixture. Pour into individual serving dishes. 

Chill at least 4 hours. Serve with whipped cream, if desired. Makes 

6 to 8 servings. 

This is the 'software' relevant to the preparation of the mousse; it 

is the algorithm that prescribes the process that produces mousse 

from the ingredients. The process itself is carried out by the person 

preparing the mousse, together with the 'hardware', in this case the 

various utensils: double boiler, heating apparatus, beater, spoons, 

timer, and so on. 

2 From Sinclair and Malinowski (1978) .  French Cooking. Weathervane 
Books, p. 73. 
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One of the basic instructions, or basic actions, present in this 

recipe is 'stir in powdered sugar'. Why does the recipe not say ' take 
a little powdered sugar, pour it into the melted chocolate, stir it in, 
take a little more, pour, stir, . . .  '? Even more specifically, why does it 

not say ' take 2,365 grains of powdered sugar, pour them into the 
melted chocolate, pick up a spoon and use circular movements to stir 
it in, . . . '? Or, to be even more precise, why not 'move your arm 
towards the ingredients at an angle of 14°, at an approximate veloc
ity of 18 inches per second, . .  . ' ? The answer, of course, is obvious. 

The 'hardware' knows how to stir powdered sugar into melted 

chocolate, and does not need further details. 

This begs the question of whether the hardware knows how to 

prepare sugared and buttered chocolate mixture, in which case the 

entire first part of the recipe could be replaced by the simple 

instruction 'prepare chocolate mixture'. Taking this to the extreme, 

perhaps the hardware knows how to do the whole thing. This 

would make it possible to replace the entire recipe by 'prepare 
chocolate mousse', indeed a perfect recipe for producing the choco

late mousse; it is clear and precise, contains no mistakes, and is 

guaranteed to produce the desired output just as required. 

Obviously, the level of detail is very important when it comes to 

an algorithm's elementary instructions. The actions that the algor

ithm asks to be carried out must be tailored to fit the capabilities of 

the hardware that does this carrying out. Moreover, the actions 

should also match the comprehension level of a human. This is 

because humans construct algorithms, humans must become con

vinced that they operate correctly, and humans are the ones who 

maintain those algorithms and possibly modify them for future use. 
Consider another example, which is closer to conventional com

putation: multiplying integers manually. Suppose we are asked to 

multiply 52 8 by 46. The usual 'recipe' for this is to first multiply 
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the 8 by the 6, yielding 48, to write down the units digit of the 

result, 8, and to remember the tens digit, 4. The 2 is then multi

plied by the 6, and the 4 is added, yielding 16 .  The units digit 6 is 

then written down to the left of the 8 and the tens digit 1 is remem

bered. And so on. 

The same questions can be asked here too. Why 'multiply the 8 
by the 6'? Why not ' look up the entry appearing in the eighth row 
and sixth column of a multiplication table', or 'add 6 to itself 8 
times'? Similarly, why can't we solve the entire problem in one 

stroke by the simple and satisfactory algorithm 'multiply 528 by 
46'? This last question is rather subtle: we are allowed to multiply 

8 by 6 directly, but not 528 by 46. Why? 
Again, the level of detail plays a crucial part in our acceptance of 

the multiplication algorithm. We assume that the relevant hard

ware (in this case, ourselves) is capable of carrying out 8 times 6 

directly, but not 528 times 46, so that the former can be used as a 

basic instruction in an algorithm for carrying out the latter. 

Another point illustrated by these examples is that different 

problems are naturally associated with different kinds of basic 

actions. Recipes entail stirring, mixing, pouring, and heating; mul

tiplying numbers entails addition, digit multiplication, and 

remembering a digit; looking up a telephone number might entail 

turning a page, moving a finger down a list, and comparing a given 

name to the one being pointed out. Interestingly, we shall see later 

that when it comes to algorithms intended for computers these 

differences are inessential. 

the text vs . the proces s 

Suppose we are given a list of personnel records, one for each 

employee in the company. Each record contains an employee's 
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name, some other details, and his or her salary. We are interested in 

the total sum of the salaries of all employees. Here is an algorithm 

for this: 

1. make a note of the number 0; 

2.  proceed through the list, adding the current employee's 

salary to the noted number; 

3 .  having reached the end of the list, produce the noted number 

as output. 

Clearly, the algorithm does the job. The 'noted' number can be 

thought of as a sort of empty box containing a single number, 

whose value can change. Such an object is often called a variable. 

In our case, the noted number starts out with the value zero. After 

the addition in line 2 is carried out for the first employee, its value 

is that employee's salary. After the addition for the second 

employee, its value is the sum of the salaries of the first two 

employees, and so on. At the end, the value of the noted number 

is the sum of all salaries (see Fig. 1 .2 ) .  

I t  i s  interesting that the text of  this algorithm i s  short and i s  fixed 

in length, but the process it describes varies with the size of the 

employee list, and can be very, very long. Two companies, the first 

with 10 employees and the second with a million, can both use the 

very same algorithm to sum their respective employees' salaries. 

The process, though, will be much faster for the first company 

than for the second. Moreover, not only is the text of the algorithm 

short and of fixed size, but both companies require only a single 

variable (the noted number) to do the job. So the quantity of 

'utensils' is also small and fixed. Of course, the value of the noted 

number will be larger for a larger company, but only a single 

number is required to be 'noted' all along. 



w h a t ' s  i t  a l l a b o u t ?  9 

Start 
Name Salary 0 Value of noted number � 

John Brown $21 000 2 1 000 1 
Mary White $34 400 55 400 1 
Mike Green $ 1 8 000 73 400 1 

Joan Silver $26 000 1 7 547 200 1 

End 

Fig. 1 .2. Summing salaries. 

Thus we have a fixed algorithm, that requires no change in order 

to be used in different situations ( i .e. for each and every different 

input list ) ,  but the processes it prescribes can differ in length and 

duration for different input situations. 

inputs 

Even the simple example of salary summation shows a variety of 

possible inputs: small companies, large companies, companies in 

which some salaries are zero, or ones in which all salaries are equal. 

The algorithm might also have to deal with unusual or even 

bizarre inputs, such as companies with no employees at all or with 

employees who receive negative salaries (that is, the employee pays 

the company for the pleasure of working for it) .  

Actually, the salary algorithm i s  supposed to  perform satisfactor

ily for an infinite number of perfectly acceptable lists of employees. 

This is an extreme way of appreciating the 'short-algorithm-for

lengthy-process' principle. Not only the contrast in duration, or 
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length, is interesting; the very number of processes prescribed by a 

single algorithm of fixed length can be large, and most often is 

infinite.3 

An algorithm's inputs must be legal relative to its purpose. This 

means that the New York Times list of bestsellers would be un

acceptable as an input to the salary summation algorithm, just as 

peanut butter and jelly are unacceptable as ingredients for the 

mousse recipe. This means that we need a specification of the 

allowed inputs. Someone must decide precisely which employee 

lists are legal and which ones are not, where an employee record 

ends and another begins, where exactly in each record the salary is 

to be found and whether it is given in longhand (for example, 

$32 000) or in some abbreviated form (e.g. $32K) ,  and so on. 

what do algorithms s olve? 

All this leads us to the central notion underlying the world of 

algorithmics and computation - the algorithmic problem, which 

is what an algorithm is designed to solve. The description of an 

algorithmic problem must include two items (see Fig. 1 .3 ) :  

• a precise definition o f  the set o f  legal inputs; 

• a precise characterization of the required output as a function of 

the input. 

3 This issue of an infinite number of potential inputs doesn't quite fit the 
recipe analogy, since although a recipe should work perfectly well no 
matter how many times it is used, ingredients are usually described in 
fixed quantities. Hence, the recipe really has only one potential input. 
However, the chocolate mousse recipe could have been made generic, to 
fit varying but proportional quantities of ingredients. 
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Any legal 
input 

The desired 
output 

An algorithm solving the problem 

Fig. 1 .3. The algorithmic problem and its solution. 

When we discuss an algorithmic problem as applied to a particular 

input (like the salary summation problem applied to some con

crete list of employees), we call it an instance of the problem. 

Here now are some additional examples of algorithmic prob

lems. Each one is defined, as is proper, by its set of legal inputs 

and a description of the desired output. They are numbered, 

and we will refer to them at various points in the following 

chapters. 

Problem 1 

Input: Two integers, J and K. 
Output. The number J2 + 3K. 

This is a simple problem that calls for an arithmetic calcula

tion on two input numbers. 
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Problem 2 

Input: A positive integer K. 
Output: The sum of the integers from 1 to K. 

This problem also involves arithmetic, but the number of 

elements it deals with varies, and itself depends on the 

input. 

Problem 3 

Input: A positive integer K. 
Output: 'Yes' if K is prime and 'No' if it isn't. 

This is what we shall be referring to as a decision problem. It 

calls for deciding the status of its input number. (Recall that 

a prime number is a positive integer that can be divided 

without a remainder only by 1 and itself. For example, 2, 1 7, 

and 113 are primes, whereas 6, 91, and 133 are not. Non

primes are termed composite. ) Solving this problem will 

surely involve arithmetic, but it does not provide a numeric 

output, only a 'Yes' or a 'No'. 

Problem 4 

Input: A list L of words in English. 

Output: The list L sorted in alphabetic (lexicographic) 

order. 

This is a non-arithmetical problem, but like Problem 2 it has 

to deal with a varying number of elements; in this case 

words. 
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Problem 5 

Input: Two texts in English. 

Output: A list of the words common to the two texts. 

This too involves words, rather than numbers. We assume 

that texts have been defined appropriately, say, as a string of 

symbols consisting of letters, spaces and punctuation marks. 

A word in a text would be a string of letters enclosed by 

spaces or punctuation marks. 

Problem 6 
Input: A road map of cities with distances attached to road 

segments, and two designated cities therein. A and B. 
Output: A description of the shortest possible path (trip) 

between A and B. 

This is a search problem. involving points and distances 

between them. It calls for some kind of optimization process 

to find the shortest path. 

Problem 7 

Input: A road map of cities, with distances attached to road 

segments, and a number K. 
Output: 'Yes' if it is possible to take a trip that passes through 

all the cities, and whose total length is no greater than K 

miles, and 'No' if such a trip is impossible. 

This too asks to search for a short path, not between two 

points but, rather. a path that traverses all points. Also, this 

problem is not phrased as requiring an optimization ( i.e. 

find the 'best' path) ,  but as a decision problem that asks just 

whether there is some path shorter than the given limit. 
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ProblemS 

Input: A program P written in Java, with integer input vari

able X and output variable Y, and a number K. 
Output: The number 2K if the program P always sets Ys 

value to be equal to X2, and 3Kif not. 

This problem is about algorithms, in their formal attire as 

programs. It wants to know something about the behavior of 

a given program in general; not of a particular input. 

So algorithmic problems have all kinds of inputs: numbers, 

words, texts, maps, and even other algorithms or programs. Also, 

some problems are truly computational in nature, some involve 

rearrangements ( sorting) ,  some require information retrieval 

(finding common words) ,  some are optimization problems (short

est path) ,  and some are decision problems (primality testing and 

all-point trips). Thus, a decision problem is a yes/no algorithmic 

problem. Decision problems appear not to compute, retrieve or 

optimize, only to decide, determining whether some property is 

true or false. Some algorithmic problems are hybrids: Problem 8, 

for example, combines decision with computation; its output is the 

result of one of two simple computations, but which of these it will 

be depends on a property of the input that has to be decided. 

All these sample problems have infinite sets of legal inputs. To 

solve them, we have to be able to deal with arithmetic on all num

bers, with sorting all lists of words, with finding the shortest trip in 

all city maps, etc. Put another way, each problem requires that we 

devise a method, a common procedure or recipe, that will solve 

any given instance of the problem. The number of potential 

instances is infinite. Such a method constitutes an algorithm. 
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Many algorithmic problems i n  the real everyday world are not so 

easy to define. Sometimes the difficulty is in specifying the 

required output, as when asking for the best move from a legal 

board position in chess (what exactly is 'best ' ? ) .  In other cases, 

describing the inputs can be complicated. Suppose 20 000 news

papers are to be distributed to 1000 delivery points in 100 towns 

using 50 trucks. The input contains the road distances between the 

towns and between the delivery points in each town, the number of 

newspapers required at each point, the present location of each 

truck, details of available drivers, including their present where

abouts, and each truck's newspaper carrying ability, gasoline 

capacity and miles-per-gallon performance. The output is to be a 

list, matching drivers and destinations to trucks, in a way that min

imizes the total cost to the distributing company. Actually, the 

problem calls for an algorithm that works for any number of news

papers, towns, delivery points, and trucks. 

Some problems have hard-to-pin-down inputs as well as hard

to-specify outputs, such as the ones required to predict the weath

er or to evaluate stock market investments. 

In this book, we shall stick to simple-looking algorithmic prob

lems, usually with easy to describe inputs and outputs. In fact, for 

the most part, we will concentrate on decision problems. So 

describing our problems will  be easy, and the outputs will  usually 

be just 'Yes's and 'No's. 

is n't our s etup too s implis tic? 

Aren't we overly simplifying things? Computers are busy struggling 

with tasks far more complicated than merely reading a simple 

input, doing some work, producing a 'Yes' or a 'No' and quitting. 

Aren't we greatly weakening our presentation by avoiding modern 
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real-world computational frameworks, such as interactive comput

ing, distributed systems, real-time embedded systems, graphics

intensive applications, multimedia, and the entire world of the 

Internet? 

To me, the author, you might be saying under your breath 'Are 

you just another one of those stuffy academics? Don't you know 

anything about computing? Stop giving us this chit-chat about 

simple input/work/output computations. Just get real, will you?'. 

The answer is: indeed, yes. We are simplifying things, and in fact 

quite radically. But for a very good reason. Remember that we are 

dealing with the bad news. This book is not about making things 

better, smaller, stronger, or faster. It is about showing that very often 

things cannot be improved in these ways. That things can become 

very, very nasty. That certain tasks are simply impossible. Now, given 

that we are after bad news here, our arguments and claims become 

stronger, not weaker, by considering a simpler class of problems! We 

will be showing that even in a simple computational framework 

things can be devastatingly bad; all the more so in an intricate and 

seemingly more powerful one. The fact that computers are hope

lessly limited is more striking with a simple input-output paradigm 

for computation than with a more complex one. Moreover, since the 

book is devoted almost exclusively to decision problems, we are also 

implying that the bad news has nothing to do with the need for 

complicated and lengthy outputs. The desire to generate even a 

simple 'Yes' or 'No' is enough to yield real nightmares. 

s olving algorithmic problems 

An algorithmic problem is solved when an appropriate algorithm 

has been found. What is 'appropriate'? Well, the algorithm must 

provide correct outputs for all legal inputs: if the algorithm is exe-
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cuted, or run, on any one of the legal inputs defined in the prob

lem, it must produce the output specified in the problem for that 

input. A solution algorithm that works well for some of the inputs 

is not good enough. 

Finding solutions to most of the sample problems described ear

lier is easy. Computing J2 + 3K is trivial (assuming, of course, that 

we have basic operations for addition and multiplication ) ,  and 

likewise summing the integers from 1 to K. In the latter case, of 

course, we must use a counter to keep track of how far we have 

gone and to stop the process when we have dealt with K itself. 

To test whether a number K is prime (Problem 3), we divide it by 

all the integers from 2 to K - 1, stopping and saying 'No' if one of 

them is found to divide K without a remainder, and stopping and 

saying 'Yes' only when all the divisions have been completed and 

they have all yielded a remainder.4 

Problem 4 can be solved by numerous different sorting algor

ithms. A simple one involves repeatedly searching for the smallest 

element in the input list L, removing it from L and adding it to the 

accumulating output list. The process stops when the original list is 

empty. Problems 6 and 7 can both be solved by considering all 

possible paths between cities (that is, one-way paths between A 

4 Of course, this algorithm can be improved: we can stop the process of 
testing for divisors at YK, the square root of K, rather than at K - 1 .  
The reason is that i f  K has a clean divisor that is larger than YK it must 
also have one that is smaller. We can also avoid testing multiples of the 
numbers already tested, thus further expediting the process. Some of the 
other problems can also be solved more efficiently than the ways we 
mention. However, efficiency and practicality of algorithms are not 
addressed until later in the book, so we shall not dwell on these issues 
right now. Here we impose only the minimal requirement - that the 
algorithm does, in fact, solve the problem, providing correct outputs for 
all legal inputs, even though it might do so inefficiently. 
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and B in Problem 6, and round-trip paths that traverse all the cities 

in Problem 7) ,  and computing their lengths. Since the number of 

cities is finite, the number of paths is finite too, so that an algor

ithm can be set up to run through them all. This has to be done 

with care, however, so as not to miss any paths, and not to consid

er paths more times than is needed. 

As mentioned, we shall return to several of these sample prob

lems in the following chapters. 

programming 

An important issue that we should address, although it is not real

ly critical to the central concerns of the book, is the way algorithms 

are executed by real computers. How do computers bridge the gap 

between their extremely modest capability to carry out operations 

on bits and the high-level actions humans use to describe algor

ithms? For example, how can bit manipulation be made to accom

plish even such a simple-looking task as 'proceed through the list, 
adding the current employee's salary to the noted number? What list? 

Where does the computer find the list? How does it proceed 

through the list? Where exactly is the salary to be found? How is the 

'noted number' accessed? And so on. 

We have already mentioned that algorithms must be presented to 

the computer in a rigorous, unambiguous fashion, since when it 

comes to precision and unambiguity, 'proceed through the list' is not 

much better than ' beat egg whites until foamy'. This rigor is achieved 

by presenting the computer with a program, which is a carefully 

formulated version of the algorithm, suitable for computer execu

tion. It is written in a programming language, which provides the 

notation and rules by which one writes programs for the computer. 
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A programming language must have a rigid syntax, allowing the 

use of only special words and symbols. Any attempt to stretch this 

syntax might turn out to be disastrous. For example, if 'input K is 

written in a language whose input commands are of the form 'read 
K, chances are that the result will be something like 'SYNTAX 

ERROR E45 14 IN LINE 1 08'. And of course, we cannot hope to 

address the computer with the like of 'please read a value for K from 
the input', or 'how about getting me a value for K. These might result 

in a long string of obscure error messages. It is true that nice, talk

ative instructions, such as the ones we find in recipes, are more 

pleasant and perhaps less ambiguous than their terse and imper

sonal equivalents. It is also true that we strive to make computers 

as user-friendly as possible. But since we are still far from comput

ers that can understand free-flowing natural language like English 

(see Chapter 7 ) ,  a formal, concise, and rigid set of syntactic rules is 

essential. 

An algorithm for summing the numbers from 1 to K might be 

written in a typical programming language as follows: 

input K 

x:=o 

for Yfrom 1 to K do 
X:=X + Y 

end 
output X 

The intended meaning of this program is as follows. First, K is 

received as an input and the variable X (a 'noted number' ) is 

assigned an initial value of zero. Its role will be to accumulate the 

running sum we are calculating. Next, a loop is carried out, calling 

for its body - in our case the X :  = X + Y that appears between the 
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for command and the end - to be executed again and again. The 

loop is controlled by the variable Y, which starts out with the value 

1 and increases repeatedly by 1 until it reaches K, which is the last 

time the X :  = X + Y is executed. This causes the computer to con

sider all the integers from 1 to K, in that order, and in each iteration 

through the loop the integer considered is added to the current 

value of X. In this way X accumulates the required sum. When the 

loop is completed, the final sum is output. 

Of course, this is what we intend the program to mean, which is 

not enough. The computer must somehow be told about the 

intended meaning of programs. This is done by a carefully devised 

semantics that assigns an unambiguous meaning to each syntacti

cally allowed phrase in the programming language. Without this, 

the syntax is worthless. If meanings for instructions in the lan

guage have not been provided and somehow 'explained' to the 

computer, the program segment 'for Y from 1 to K do' might, for 

all we know, mean 'subtract Y from 1 and store the result in K, 
instead of it being the controlling command of the loop, as we 

intended. Worse still, who says that the keywords from, to, do, for 

example, have anything at all to do with their meaning in English? 

Maybe the very same program segment means 'erase the com

puter's entire memory, change the values of all variables to zero, 

output "TO HELL WITH PROGRAMMING LANGUAGES", and 

stop! '. Who says that ' : =' stands for 'assign to', and that '+' denotes 

addition? And on and on. We might be able to guess what is meant, 

since the language designer probably chose keywords and special 

symbols intending their meaning to be similar to some accepted 

norm. But a computer cannot be made to act on such assumptions. 

To summarize, a programming language comes complete with 

rigid rules that prescribe the allowed form of a legal program, and 
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also with rules, just as rigid, that prescribe its meaning. We can now 

phrase, or code our algorithms in the language, and they will be 

unambiguous not only to a human observer, but to the computer 

too. 

Once the program is read in by the computer, it undergoes a 

number of computerized transformations, aimed at bringing it 

down to the bit-manipulation level that the computer really 'under

stands'. At this point the program (or, rather, its low-level equiva

lent) can be run, or executed, on a given input (see Fig. 1.4).5 

errors and correctnes s 

Coming up with a bright idea for an algorithm, constructing the 

algorithm itself carefully and then writing it up formally as a pro

gram, doesn't mean we are done. Consider the following: 

• Several years ago, around her 1 07th birthday, an elderly lady 

received a computerized letter from the local school authorities 

in a Danish county, with registration forms for first grade in ele

mentary school. It turned out that only two digits were allotted 

to the 'age' field in the population database . 

• In January 1 990, one of AT&T's switching systems in New 

York City failed, causing a major crash of the national AT&T 

telephone system. For nine hours, almost half of the calls made 

through AT&T failed to connect. As a result, the company lost 

5 The main transformation among these is called compilation. The 
compiler, which is itself a piece of software, transforms the high-level 
program into a functionally equivalent program written in a low-level 
format called assembly language, which is much closer to the machine 
language of bit manipulation. 
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Fig. 1 .4. Transforming an algorithm into machine code. 
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more than $60 million, not to mention the enormous losses 

accrued by airlines, hotels, banks, and all kinds of other estab

lishments that rely critically on the telephone network. The 

failure was caused by a software flaw, and escaped detection even 



w h a t ' s  i t  a l l a b o u t ?  2 3  

by  the complex software-testing methods of  AT&T, Moreover, 

although the error was in a single program, it caused a cascade 

of failures that avalanched through the entire system, resulting 

in what turned out to be essentially a collapse of the entire 

network. 

• In June 1996, less than a minute into its first flight, the French 

rocket Ariane 5 self-destructed, causing direct and indirect losses 

of several billions of dollars, and many months of setback for the 

entire Ariane space program. In the words of the inquiry board, 

the failure was caused by 'the complete loss of guidance and atti

tude information 37 seconds after start ofthe main engine ignition 

sequence: and that this was 'due to specification and design errors 

in the software of the inertial reference system'. The error, it turned 

out, was in a single line of code that attempted to load a 64-bit 

number into a 16-bit location in the computer, causing overflow. 

These are just three of numerous tales of software failures, many of 

which have ended in catastrophes, at times with loss of life. It is 

naive to assume that the algorithms and programs we write will 

always do exactly what we had in mind. Getting them to be correct 

takes lots and lots of very hard work, and is often unsuccessful. 

The correctness issue has surfaced recently in all its severity 

around the so called Y2K problem, or the 2000 year bug, which is 

expected to come to a climax at the turn of the century, when com

puters that used two digits for storing years will have to start deal

ing with dates that have a year component of 00 or 05.  At the time 

of writing (mid- 1999) no-one knows the extent of the difficulties 

or catastrophes this will cause; immense efforts and enormous 

amounts of money have been put into minizing its impact.6 Put 

very simply, definitions of algorithmic problems in the past did not 

normally take into account years that go beyond 1 999. 

Footnote 6 can be found on p. 24 
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Establishing correctness is particularly difficult because algo

rithms are required to produce the right outputs when run on any 

one of the legal inputs specified in the problem. Partial solutions 

are unacceptable. To use the example of testing a number for pri

mality (Problem 3 ) ,  it would be laughable if someone were to pro

pose an algorithm that works well for half of the inputs - the even 

numbers .7  As a more extreme example, consider the following 

trivial algorithm for summing salaries: 

1 .  produce 0 as output. 

This 'algorithm' works perfectly well for several interesting lists of 

employees: those with no employees at all, those in which everyone 

earns $0.00, or those with a payroll that reflects a perfect balance 

between positive and negative salaries. Clearly, this is not good 

enough. Our algorithms have to work as required for all legal 

inputs. This is a strict requirement: we want complete, foolproof 

solutions. No almosts. ( In Chapter 6 we shall relax this somewhat, 

but for now these are the rules of the game.)  

A frequent kind of error stems from abusing the syntax of the 

programming language. If we write 'read X' when the program

ming language requires 'input X', or even merely misspell the word 

input, there is no way for the computer to know what we meant, 

and the program will not be able to run or will produce garbage. So 

we must be careful with that. Nevertheless, syntax errors are but a 

troublesome manifestation of the fact that algorithms run by com-

6 Added in proof-reading (early 2000) :  fortunately, the morning of 
January 1, 2000 went by without too much trouble. Curiously, instead of 
applauding, and being grateful for all this work, some people have tried 
to claim that the whole issue was a hoax to begin with. 

7 The only even prime is 2. 



w h a t ' s  i t  a l l a b o u t ?  2 5  

puter are required to b e  presented i n  formal attire.s Much worse are 

logical errors. These do not mean that something is wrong with the 

program as is, but simply that it doesn't solve the algorithmic prob

lem we had in mind. Unlike syntax errors, logical errors can be 

notoriously elusive. They often reflect flaws in the very design of the 

algorithm. Someone once said that logical errors are like mermaids 

- the fact that you haven't seen one doesn't mean they don't exist.9 

The quest to eliminate logical errors in algorithmics is a deep 

and complex topic, and is outside the scope of this book. The naIve 

method is to repeatedly execute the program on many different test 

inputs, checking the results. This process is called debugging, a 

name with an interesting history: one of the early computers 

stopped working one day and was found to have a large insect 

jammed in a crucial part of its circuitry. Since then, errors, usually 

logical errors, are affectionately termed bugs. 

All this has to do with the algorithms and programs - the soft

ware. As far as hardware goes, computers make less mistakes. A 

hardware error is quite a rarity these days, despite the famed 1 997 

bug in Intel's Pentium II chip. In fact, when our bank statement is 

in error and we are told that the computer made a mistake, it was 

most certainly not the computer that erred but one of the humans 

involved in the bank's computerization process. Either incorrect 

data was input to the program, or the program itself, written, of 

course, by a human, contained an error. 

8 Many compilers are made to spot syntax errors, and will notify the 
programmer, who will typically be able to correct them with little effort. 

9 See G. D. Bergland (1981) .  'A Guided Tour of Program Design 
Methodologies', Computer 14, 1 3-37. 
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termination 

An algorithm that completes its work but produces the wrong out

put is just one kind of worry. When it comes to the need for our 

algorithms and programs to do what we expect, there is something 

else we have to worry about - an algorithm that doesn't terminate 

at all, but, rather, keeps running on its input forever. This is clearly 

an error too. We don't want our programs to loop forever, i.e. to get 

stuck in an infinite non-terminating computation. The execution 

of a program on any one of its legal inputs should terminate with

in a finite amount of time, and its output must be the correct one. 

Often, we can see rather easily how to make sure that our algor

ithm terminates. As a simple example, suppose we are devising an 

algorithm to check the primality of a number. We might have decid

ed, rather stupidly, to base our approach directly on the definition of 

a prime number, verbatim. That is, in an attempt to find a factor (a 

divider) of the input number, we instruct our algorithm to try to 

divide it by each and every number from 2 on, in turn, with no 

bounds set. This rather silly algorithm would clearly loop indefin

itely when run on a number that was indeed prime. Fortunately, as 

we have seen, there are obvious ways to bound the number of candi

date divisors that need to be tested, and these guarantee termination. 

Contrast this example with Problem 8 of the list given earlier, in 

which we don't seem to be that lucky: a solution algorithm is 

required to give one answer if the input program P behaves in some 

particular way, and another answer if it doesn't. There appears to 

be no way for us to make the decision without actually running P, 

a process that can itself fail to terminate. Worse, it seems that we 

have to run P on infinitely many inputs, not just on one or two. 

We shall return to this example in the next chapter. 



chapter 2 

s ometi mes 
can't do 

we 
i t 

The message of this chapter is simple and clear. Computers are not 

omnipotent. They can't do everything. Far from it. 

We shall discuss problems that cannot be solved by any comput

er, past, present or future, running any program that can be 

devised, even if given unlimited amounts of time and even if 

endowed with unlimited storage space and other resources it might 

need. We still require, of course, that algorithms and programs 

terminate for each legal input in a finite amount of time, but we 

allow that time to be unlimited. The algorithm can take as long as 

it wishes, and can use whatever resources it asks for in the process, 

but it must eventually stop and produce the right output. 

Nevertheless, even under these generous conditions, we shall see 

interesting and important problems for which there simply are no 

algorithms, and it doesn't matter how smart we are, or how sophis

ticated and powerful our computers, our software, our program

ming languages and our algorithmic methods. Figure 2. 1 is intend

ed to set the stage for what is to come. 
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® 

Fig. 2. 1 .  The sphere of algorithmic problems: Version 1 .  

These facts have deep philosophical implications, not only on 

the limits of machines like computers, but also on our own limits 

as beings with finite mass. Even if we were given unlimited 

amounts of pencil and paper, and an unlimited lifespan, there 

would be well-defined problems we could not solve. It is also 

important to stress that this is not just a fact about computing, by 

brain or by machine. It is a fact about knowing. In a strong sense, 

what we can compute is what we are able to figure out by careful 

step-by-step processes from what we already know. The limits of 

computation are the limits of knowledge. We may have insight and 

depth, and some people have astonishing brilliance, but there is a 

strong case to the effect that what is deducible from facts is what 

can be computed from them algorithmically. 

Some people are opposed to drawing such sweeping conclusions 

from mere algorithmic results, and indeed we shall not get into this 

more general issue. It definitely deserves a broader treatment. 

Instead, we shall stick to the mathematically rigorous aspects of 

pure algorithmics, leaving the speculative and controversial facets 

of our story to philosophers and cognitive scientists. 
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fi nite problems are s olvable 

The first thing to notice is that any algorithmic problem with a 

finite set of inputs is solvable. That is, if all it will ever have to deal 

with is a finite, limited set of possible inputs, there is an algorithm 

to solve it. Suppose we have a decision problem whose sole legal 

inputs are the items inputl , input2, . . .  , inputK. Then there is an 

algorithm that 'contains' a table providing each of the K inputs 

with the appropriate output. It might look like this: 

1 .  read the input; 

2. if it is inputl then output 'Yes' and stop; 

3. if it is input2 then output 'Yes' and stop; 

4. if it is input3 then output 'No' and stop; 

K + 1. if it is inputK then output 'Yes' and stop. 

This works, of course, because it is possible to 'hard-wire' into an 

algorithm the entire algorithmic problem in all its glory by tabu

lating all the (finitely many) input-output pairs. It might be 

difficult to figure out the tabulation itself, that is, to construct such 

a table-driven algorithm, but we are not interested in this meta

difficulty here. For the present discussion, it suffices to know that 

for finitary problems solutions exist, and we ignore the issue of 

how to find them. 

In contrast, algorithmic problems that have infinite sets of legal 

inputs are the really interesting ones. For these, we don't even 

know if there exists a finite algorithm to tackle the infinitely many 

different cases, and it is those that will keep us busy. 
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the tiling problem 

Our first example of a noncomputable problem involves covering 

large areas using colored tiles. A tile is defined to be I x I square, 

divided into four by the diagonals, each quarter colored with some 

color. We assume that the tiles have fixed orientation and cannot 

be rotated, l 

An input is a finite number of tile descriptions, collectively 

denoted by T. Each tile type in T is defined by its four colors in 

order. The problem asks whether any finite area, of any size (with 

integer dimensions, of course) ,  can be covered using only tiles of 

the kinds described in T, but adhering to the following restriction: 

the colors on the touching edges of any two adjacent tiles must be 

identical. An unlimited number of tiles of each type is available, 

but in T there is only a finite, limited number of types of tiles. 

Think of tiling your living room. The input T is a description of 

the various types of tile available, and the color-matching restric

tion reflects a rule enforced by your interior designer for esthetic 

reasons. The question we would like answered ahead of time is this: 

can any room, of any size, be tiled using only the available tile 

types, without violating the color-matching rule? 

This algorithmic problem and its variants are commonly known 

as tiling problems, and are sometimes called domino problems 
because of the domino-like restriction on touching edges. 

I After you finish reading this section you might want to try to convince 
yourself that this assumption is, in fact, necessary. We should add, 
however, that it is necessary only in the version we discuss here. It is easy 
to define a variant of the tiling problem, where instead of colors having 
to be identical, they have to match up in pairs (e.g. red against blue, 
green against orange, etc . ) .  In such a version, the rotations-forbidden 
constraint is redundant, and the bad news is exactly the same. 
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In way of illustration, consider Fig. 2.2, which shows three tile 

types and a 5 x 5 tiling. The reader will have no difficulty verifying 

that the pattern in the figure can be extended in all directions, to 

yield a tiling of any sized room whatsoever. As can also be seen, 

this tiled portion uses only the three available types, and it adheres 

to the color-matching rule. However, exchange the bottom colors 

of tiles (2 )  and ( 3 )  as in Fig. 2 .3 ,  and the situation changes 

dramatically. It is now quite easy to show that even very small 

rooms cannot be tiled at all, since no matter how you attempt to 

lay down the tiles you will be forced very quickly into situations 

with mismatched colors. Figure 2.3 illustrates this. An algorithm 

for the til ing problem, thus should answer 'Yes' to the input 

consisting of the three tile types of Fig. 2.2, and 'No' to those of 

Fig. 2.3. 
Can we somehow mechanize or 'algorithmicize' the reasoning 

employed in generating these answers? 

( I )  (2) (3) 

Fig. 2.2.  Tile types that can tile any room, of any size. 
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( I )  (2) (3)  

�--.... ! !  

Fig. 2.3. Tile types that cannot tile even very small rooms. 

The answer is no,2 and this must be said in the strongest possible 

way: 

There is no algorithm, and there never will be, for solving the tiling 

problem! 

You can try to devise one, and it might actually work quite well 

some of the time, on some of the inputs. Still, there will always be 

inputs upon which your algorithm will misbehave: it will either 

run forever and never halt, or will produce the wrong output. 

This problem does not ask for a complicated output, such as a 

sample tiling when the answer is 'Yes', or an illustration of the 

impossibility of tiling when it is 'No'; all we want is a bare indica

tion as to which of these is the case. Even so, the problem cannot be 

solved. And to repeat a point made in the Preamble, this fact has 

been proved mathematically. The problem has no solution and it 

never will. Period. 

2 H. Wang (1961). 'Proving Theorems by Pattern Recognition', Bell Syst. 
Tech. ]. 40, 1-42; R. Berger ( 1 966). 'The Undecidability of the Domino 
Problem', Memoirs Amer. Math. Soc. 66. 
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An algorithmic problem that admits no solution i s  termed non
computable; if it is a decision problem, as is the case here and in 

most of the examples that follow, it is termed undecidable. The 

tiling problem is thus undecidable: there is no way we can construct 

an algorithm, to be run on a computer, any computer, regardless of 

the amount of time and memory space required, that will be able to 

distinguish between tile types that can tile all areas and those that 

cannot.3 This problem, then, lies above the line of Fig. 2. 1 .  

do we really mean it? 

Are we really claiming that this problem has no algorithmic solu

tion at all? How can we justify drawing the grand line of Fig. 2 . 1 ?  

What gives us the right to use such all-inclusive terms like non

computable and undecidable? 'Maybe', the reader might claim, 

'you can't solve it, on your computer, with your ancient system 

software, mediocre programming language and old-fashioned 

algorithmic methods and tricks. But not me. I have an amazingly 

powerful supercomputer, I am smart and I work with incredibly 

sophisticated programming languages and state-of-the-art 

methodologies; I can surely do it! . . .  '. 

3 There is a subtly different version of the tiling problem. We asked 
whether the tile set T can be used to tile any finite area, of any size. 
Instead, we could have asked whether T can be used to tile the entire 
infinite two-dimensional plane. Interestingly, these two problems are 
completely equivalent: a 'Yes' for the first version is a 'Yes' for the second 
version too, and a 'No' for the first is a 'No' for the second too. One 
direction of this equivalence (if we can tile the entire infinite plane then 
we can tile any finite area) is trivial, but the argument that establishes 
the other direction is quite delicate. You are encouraged to try to find it. 
Thus, the infinite-plane version is also undecidable. 
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Well, no, dear reader, you cannot. When we label a problem non

computable or undecidable, we really and truly mean it. You can't 

solve it, and neither can anyone else, no matter how rich or patient 

or smart. 

Still, the claim does sound very strange if we don't restrict the 

basic operations. Surely, if anything is allowed, the following two

step procedure solves the tiling problem: 

1 .  If the tile types in the input set T can tile rooms of any size, 

output 'Yes' and stop; 

2. Otherwise, output 'No' and stop. 

So, is this not a solution? It consists of but two basic operations, 

and thus terminates in a finite amount of time, as it should. And 

surely it will always produce the correct output too. 

Well, we must be a little more careful. Suppose we choose a fixed 

programming language Lang as the medium for expressing algor

ithms, and a fixed computer Comp as the machine on which they 

are to run (with the understanding that Comp can grant any 

amount of time, additional storage space, and any other tangible 

resource requested by a program during a computation ) .  Suppose 

that we also agree that, for the moment, whenever we talk about an 

algorithm we really mean 'a program written in Lang and running 

on Comp'. With this setup, when we say 'no algorithm exists' we 

really mean that no program can be written in the specific lan

guage Lang for the specific computer Compo This sounds a little less 

wild: it is conceivable that some problems will indeed be unsolv

able if one is limited to working with a specific hardware/ software 

framework (sometimes called a model of computation) .  In fact, a 

reasonable way to dismiss the above two-line 'solution' to the tiling 

problem is to convince its proposers that there is no way to imple-
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ment the test i n  line 1 using their chosen language Lang running on 

their machine Camp. 
'OK', those proposing the two-line solution might say, 'so we 

can't solve the problem on this particular computer and with this 

particular language, but we could solve it had we a more powerful 

computer and a more sophisticated language.' Isn't the issue 

merely a question of coming up with the right algorithmic idea, 

designing the corresponding software and running it on a 

sufficiently powerful piece of hardware?4 

No, it isn't. Not at all. 

Actually, the situation is far more striking. It is not only that each 

model of computation can be shown to be fallible, by exhibiting 

some special problem it cannot solve, but there are fixed problems 

(the tiling problem is one of them) that are bad news for each and 

every model. That is, these problems are noncomputable regard

less of the model chosen. They are thus inherently noncomputable. 

Worse, we computer scientists believe that this applies not only to 

currently known models, but to any effectively implementable lan

guage, running on any computer of any type, size or shape, now or 
at any time in the future. And this is what we mean when we say 

that a problem is noncomputable. 

Amazingly, all that is needed in order to establish that a problem 

is noncomputable in this all-embracing sense is to show that it 

can't be solved within an extremely simple-looking model of com

putation, which we now set out to describe. That it actually can't 

be solved in any known model whatsoever, including the most 

4 This is probably what the TIME magazine interviewee quoted in the 
Preamble had in mind. 
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powerful computers invented and those that will be invented in 

the future, will follow from this modest-looking fact. 

elementary computing devices 

Let us see how simple we can make a general computing model. 

The first thing to notice is that any item of data used by an algor

ithm can be viewed as a string of symbols. An integer is but a string 

of digits, and a fractional number is a string of digits with a deci

mal point. A word in English is a string ofletters, and an entire text 

is really just a string of symbols consisting of letters, blanks, and 

punctuation marks. More complicated objects, such as lists, tables, 

city-connection networks, graphs, pictures, video sequences, and 

even whole databases, can also be encoded this way, by using 

special delimiting symbols to signify new items, line breaks, file 

borderlines, and so on. 

The number of different symbols used in all such encodings is 

actually finite, and can always be fixed ahead of time. This is the 

ingenuity of a standard numbering scheme, such as the decimal 

system: we do not need infinitely many symbols, one for each 

number - 10 symbols suffice to encode them all.5  The same obvi

ously applies to words, texts, and pictures, since only a finite num

ber of letters, punctuation marks, color codes, and special symbols 

are used in writing or in rendering images for computerization. 

Consequently, in principle, we can write any data of interest along 

a one-dimensional tape, perhaps a long one, which consists of a 

sequence of squares, each containing a single symbol taken from 

some finite alphabet. In order to allow for additional 'scrap paper' 

5 The binary system uses just two, 0 and l .  
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to  be used during the execution, the tape will be of unlimited 

length. We are not saying that it is convenient to work with data 

encoded in this primitive fashion, only that it is possible to do so. 

So much for simplifying the data. 

Now to the algorithmic/computational work itself. Instead of 

our device being able to do great things in manipulating data and 

computing thereon, we endow it with only the most trivial cap

abilities. It is allowed to look at one square of the tape at a time, 

examine the symbol it sees there, overwrite it with some other 

symbol of the finite alphabet if it wishes to, and move one square to 

the right or the left in preparation for its next action. To help the 

device decide which symbol to write and in what direction to move 

after the writing, it will be equipped with an extremely limited 

'mind: in the form of a sort of gearbox, whose various positions -

and there are only finitely many of them - are called states. At any 

given point in time, the device is said to be in one of the states ( i .e .  

engaged in one of the gears ) ,  and depending on that state and the 

symbol it sees on the square it is looking at,  it will make its deci

sions regarding how to rewrite the symbol it is looking at and 

whether to move to the left or the right. 

The mechanism resulting from all this is called a Turing 
machine, after the British mathematician Alan M. Turing, who 

conceived of it in 1 936.6 A Turing machine is thus extremely sim

ple ( see Fig. 2 .4) . It chugs along a one-dimensional tape, one 

square at a time, in one of a finite number of gears, or states. In so 

doing, it uses an 'eye' of very limited power (actually called a head) 

6 A. Turing (1936). 'On Computable Numbers with an Application to 
the Entscheidungsproblem', Proc. London Math. Soc. 42, 230-65. 
Corrections appeared in: ibid. (1937) , 43, 544-6. 
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Fig. 2.4. A Turing machine. 

to contemplate and possibly change the symbol it finds on the cur

rent square. It then 'changes gear', and hops over to a neighboring 

square for its next step. That's all. 

Here is an informal description of a Turing machine that has 

been programmed to add two decimal numbers X and Y. (You can 

skip to the next section if you feel you might be bored by a rather 

tedious description of how a primitive-looking machine adds 

numbers . )  The input numbers are given on the tape, separated by 

the symbol +, and the rest of the tape contains blanks, which are 

denoted here by #. See Fig. 2.5, which shows, from top to bottom, 

some snapshots of the tape as the computation proceeds. 

Initially, the head is positioned at the leftmost symbol of the first 

number X - in this case, it is the 7. The machine then travels to 

the rightmost digit of X - the 6 - one square at a time, without 

making changes, until it reaches the separating symbol +, and then 
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# # # # # # # # # 7 3 6 + 6 3 5 9 # # 

# # # # # # # 5 7 3 # + 6 3 5 # # # 

# # # # # # 5 5 7 # # + 6 3 5 # # # # 

# # # # # 2 5 5 # # # + 6 3 # # # # # 

# # # # 4 2 5 5 # # # + 6 # # # # # # 

# # # 6 4 2 5 5 # # # + # # # # # # # 

# # 6 4 2 5 5 # # # + # # # # # # # 

Fig. 2.5. Adding numbers with a Turing machine. 

moves one square to its left. It then erases this digit, i.e. replaces it 

with a blank, while 'remembering' the erased digit as its state; it 

will need 10 different states for this, one for each digit. The 

machine then travels over to the rightmost digit of Y - the 9 -

and erases it too, entering a state that remembers the sum digit of 

the two numbers, and whether or not there is a carry. This state 

depends only on the current digit and the memorized one, and 

hence 20 different states are needed - one for each of the possible 

combinations of the 10 sum digits and the carry/no-carry indica

tion. The machine then moves to the left of what remains of X and 

writes the sum digit down - a 5 in this case - having prepared a 

new separating symbol, say, an exclamation mark, ' ! '. This situation 

is illustrated in the second line of the figure. 

The next step is similar, but involves the currently rightmost dig

its (which were second from the right in the original numbers -

here the 3 and the 1 ) , and takes the carry into account, if there is 

one. The new sum digit - here 5 because of the carry - is written 

down to the left of the previous one, and the process continues. Of 

course, any one of the two input numbers might run out of digits 

before the other, in which case, after adding the carry (if there is 

one) to the remaining portion of the larger number, that portion is 
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just copied down on the left, tediously, digit by digit. Finally, a 

second exclamation mark is written down on the extreme left, to 

identify the machine's output as consisting of the portion of the 

tape enclosed by the two exclamation marks, and the machine halts. 

Phew . . .  

the church- turing thes is 

This example is a little surprising. Turing machines have only 

finitely many states, that is, a finite 'brain', and the only thing they 

can do is to rewrite symbols on a linear tape one at a time. 

Nevertheless, they can be programmed to add numbers of any size 

and shape. The task can be frustrating and thankless, and the 

machine's method of execution can be painfully slow and simple

minded (try to describe a Turing machine to multiply numbers or 

to compute the average of N salaries) ,  yet it gets the job done. 

With this in mind, let us forget about tedium, frustration and 

efficiency for the moment, and ask ourselves what indeed can be 

done with Turing machines, for whatever cost and no matter how 

painstakingly? Which algorithmic problems can be solved by an 

appropriately programmed Turing machine? 

The answer to this is not a little surprising, but very surprising 

indeed: Turing machines are capable of solving any effectively solv

able algorithmic problem! Put differently, any algorithmic problem 

for which we can find an algorithm that can be programmed in 

some programming language, any language, running on some 

computer, any computer - even one that has not been built yet 

(but, in principle, can be built ) ,  and even one that requires 

unbounded amounts of time and memory space for ever-larger 

inputs - is also solvable by a Turing machine! 
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This statement is one version of the so-called Church-Turing 
thesis, after Alonzo Church and Turing, who arrived at it inde

pendently in the 1 930s, following the work of Kurt Godel on the 

incompleteness of mathematics. 7 

It is important to realize that the CT thesis, as we shall call it 

(both for Church-Turing and for computability theory) ,  is a thesis, 

not a theorem, since part of it cannot be proved mathematically. 

The reason for this is that one of the concepts it involves is infor

mal and imprecise, namely, effective solvability, or effective com
putability. The thesis equates the mathematically precise notion of 

'solvable by a Turing machine' with the informal, intuitive notion 

of 'effectively solvable', which alludes to all real computers and all 

programming languages, past, present, and future. It thus sounds 

more like a wild speculation than what it really is: a deep and far

reaching statement, put forward by two of the most respected pio

neers of the science of computing. And, as we shall see, while its 

futuristic facet cannot be proved until the future materializes, its 

past and present facts have been proved. 

Turing machines are a little like typewriters. A typewriter is 

also a very primitive kind of machine. All it enables us to do is to 

type sequences of symbols on blank paper. Yet despite this, any 

7 K. Godel (1931) .  'Ober formal unentscheidbare Siitze der Principia 
Mathematica und verwandter Systeme, I ', Monatshefte fur Mathematik 
und Physik 38, 1 73-98; A. Turing ( 1 936). 'On Computable Numbers 
with an Application to the Entscheidungsproblem', Proc. London Math. 
Soc. 42, 230-65; A. Church ( 1 936). 'An Unsolvable Problem of 
Elementary Number Theory', Amer. J. Math. 58, 345-63. See also 
S. C. Kleene (1981). 'Origins of Recursive Function Theory', Ann. Hist. 
Comput. 3, 52-67, and M. Davis (1982). 'Why Godel Didn't Have 
Church's Thesis', Inf. and Cont. 54, 3-24. 
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typewriter can be used to type anything, even Hamlet or War and 
Peace. Of course, it might take a Shakespeare or a Tolstoy to 

'instruct' the machine to do so, but it can be done. In analogy, it 

might take very talented people to program Turing machines to 

solve difficult algorithmic problems, but the basic model, so the 

CT thesis tells us, suffices for all problems that, in principle, can be 

solved by some device. 

On the face of it, there is little reason to choose the Turing 

machine model to be the one the CT thesis mentions explicitly. 

The thesis might have talked about the model underlying a large 

IBM mainframe or a powerful Silicon Graphics workstation. In 

fact, one of the most striking formulations of the thesis doesn't 

mention a particular model at all, but states simply that all com

puters and all programming languages are equivalent in computa

tional power, given unlimited computation time and memory 

space. 

computability is robus t 

Why should we believe the CT thesis, when even its proponents 

admit that the yet-to-be-seen parts of it can't be proven? What evi

dence is there for it, and how does that evidence fare in an age of 

incredible day-to-day advances in both hardware and software? 

Let us go back to the 1 930s. At that time, several researchers were 

busy devising various algorithmic models, with the goal of trying 

to capture the slippery and elusive notion of effective comput

ability, i.e. the ability to compute mechanically or electronically. 

Long before the first actual computers were invented, Turing sug

gested his limited-looking machines and Church devised a simple 

mathematical formalism of functions called the lambda calculus. 
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Around the same time, Emil Post defined certain symbol-manipu

lating mechanisms called production systems, and Stephen 

Kleene defined a class of mathematical objects called recursive 
functions. All these people tried, and succeeded, in showing that 

their models were able to solve many algorithmic problems for 

which 'effectively executable' algorithms were known. Actually, 

collectively, they also succeeded in showing that their formalisms 

were all equivalent in terms of the class of problems they could 

solve. Other people have since proposed numerous different mod

els for the universal algorithmic device. Some of these models 

underly real computers, and some are purely mathematical in 

nature. But the crucial fact is that they have all been proven to be 

computationally equivalent; the class of algorithmic problems they 

can solve is the same. And this fact is still true today, even for the 

most powerful models conceived.s 

Thus, the strongest, most powerful computer you know, 

coupled with the richest, most sophisticated programming lan

guage it supports, cannot do any more than can be done with a 

8 A. Turing ( 1 936) .  'On Computable Numbers with an Application to 
the Entscheidungsproblem', Proc. London Math. Soc. 42, 230--65; 
corrections appeared in: ibid ( 1 937) . 43, 544-6; A. Church ( l 936) .  'An 
Unsolvable Problem of Elementary Number Theory', Amer. J. Math. 58, 
345-63; S. C. Kleene ( 1 935) .  'A Theory of Positive Integers in Formal 
Logic', Amer. J. Math. 57, 1 53-73, 2 1 9-44; E. Post ( 1 943) .  'Formal 
Reductions of the General Combinatorial Decision Problem', Amer. J. 
Math. 65, 197-2 1 5; S. C. Kleene ( l 936) .  'General Recursive Functions 
of Natural Numbers', Math. Ann. 1 1 2, 727-42. For proofs of the 
equivalence of these formalisms, see S. C. Kleene ( 1936) .  'A-Definability 
and Recursiveness', Duke Math. J. 2, 340-53 ;  E. Post ( l 936) .  'Finite 
Combinatory Processes - Formulation 1 ', J. 5ymb. Logic 1, 1 03-5; 
A. M. Turing ( 1 937) .  'Computability and A-Definability', J. 5ymb. Logic 
2, 1 53-63. 
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simple laptop and a very modest language. Or, for that matter, 

any more than can be done by the ultimate in computational 

simplicity - the ever so primitive Turing machine mode1.9 

Noncomputable (or undecidable) problems, such as the tiling 

problem, are solvable on neither, and computable (or decidable) 

problems, such as sorting words or testing a number for primality, 

are solvable on both. All this, mind you, on condition that running 

time and memory space are not an issue: there must be as much of 

those available as is needed. 

This means that the class of computable, effectively solvable, or 

decidable algorithmic problems is, in fact, extremely robust. It is 

invariant under changes in the computer model, the operating 

system, the programming language, the software development 

methodology, etc. Proponents of a particular computer architec-

9 Another extremely primitive model of computation that is nevertheless 
as powerful as Turing machines and is therefore also of universal power 
and subject to the CT thesis, is that of counter programs, or counter 
machines. A counter program is a sequence of simple instructions on 
non-negative integers that can assign 0 to a variable (X � 0) ,  and can 
increase or decrease a variable by one (X � Y + 1 and X � Y - 1 ) .  It 
can also branch conditionally, based on the zero-ness of a variable 
(if X = 0 goto G, where G labels some other instruction in the sequence) .  
Surprisingly, merely incrementing and decrementing integers by 1 and 
testing values against 0 can be used to do anything any computer can do. 
Turing machines and counter programs are dual models in the following 
interesting sense: they both have access to unlimited amounts of 
memory, but in different ways. With Turing machines, the number of 
memory items (the tape's squares) is unlimited, but the amount of 
information in each is finite and is bounded ahead of time (one symbol 
from a fixed and finite alphabet) .  With counter programs it is the other 
way around: there are only finitely many variables in a given program, 
but each can contain an arbitrarily large number as its value, thus 
encoding a potentially unlimited amount of information. 
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ture o r  programming discipline must find reasons other than raw 

solving power to justify their recommendations, since anything 

doable with one is also doable with the other, and all are equiva

lent to the primitive machines of Turing or the various formalisms 

of Church, Post, Kleene, and others. 

That so many people, working with such a diversity of tools and 

concepts, captured the very same notion (long before any actual 

computers were built, we should add ! ) ,  is evidence for the pro

fundity of that notion. That they were all after the same intuitive 

concept and ended up with different-looking, but equivalent, 

models, is justification for equating that intuitive notion with 

those precise models. Hence the CT thesis. 

Thus, if we set efficiency aside for now, not caring about how 

much time or space an algorithm actually requires, but simply 

giving it anything it wants, the line drawn between the com

putable and the noncomputable in Fig. 2. 1 is fully justified. 

Moreover, as we proceed in our discussions, we can safely allude 

to some favorite computer Camp and programming language 

Lang as the model on which algorithmic problems are to be 

solved, just as we did earlier on a temporary basis, because it 

makes no difference ! Nevertheless, it is intellectually satisfying to 

be able to point to a most simple model - Turing machines -

that is as powerful as anything of its kind. 1 o  

10 Another advantage of  knowing that simple-looking models like Turing 
machines or counter programs are universally powerful, is that they are 
better suited for establishing bad news. As stated earlier, to prove that a 
problem is undecidable, for example, all one has to show is that it 
cannot be solved using Turing machines. That it cannot be solved on 
any model will then follow from the CT thesis. 
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domino s nakes 

Let us return for a moment to the tiling problem. Some people 

react to its undecidability by saying: 'well, obviously the problem 

is undecidable, since a single input can give rise to a potentially 

infinite number of cases to check; and there is no way you can get 

an infinite job done by an algorithm that has to terminate after 

finitely many steps.' Indeed, a single input (that is, a single set T of 

tile types) apparently requires all rooms of all sizes to be checked 

(or, equivalently, a single infinite 'room' ) ,  and there appears to be 

no way to set a bound on the number of cases that have to be con

sidered. 

This unboundedness-implies-undecidability hypothesis is 

unbased, and can be very misleading. In fact, it is often simply 

wrong. To drive the point home, here is a similar tiling problem, 

whose status violates this hypothesis in a surprising way. As before, 

the input contains a finite set T of tile types, but here it also con

tains the coordinates of two points on the infinite plane, V and W. 
The problem doesn't talk about tiling whole rooms, but, in the 

spirit of real domino games, it asks if it is possible to connect Vand 

W by a 'domino snake' consisting of tiles from T, and with the 

same color-matching restriction: every two adjacent edges must 

have identical colors (see Fig. 2.6 ) .  Note that a snake originating at 

V might twist and turn erratically, reaching unboundedly distant 

points before converging to W. So, to decide whether or not there 

is such a snake, we might have to check ever-larger portions of the 

infinite plane (the infinitely large room) - perhaps all of it -

before we either find such a snake or conclude that none exists. 

Hence, this problem also seems to require an infinite search, 

prompting us to presume that it too is undecidable. 
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Fig, 2.6. A domino snake connecting V t o  W 

Curiously, the decidability of the domino snake problem 

depends on the portion of the plane available for placing tiles, and 

in a very counter-intuitive fashion. If snakes are allowed to go 

anywhere (that is, if the allowed portion is the entire infinite 

plane) ,  the problem is decidable; but if the allowed area is limited 

to, say, the upper half of the plane, the problem becomes undecid

able! That is, if snakes can run around anywhere, with no limita

tions, there is an algorithm to decide whether there is a snake going 

from V to W, but if we do limit its habitat, there is no algorithm. 

Surprising, right? 

The latter case is 'more bounded' than the former, and therefore 

should be 'more decidable'. The facts, however, are quite the other 

way around. I I  

I I If the available portion of the infinite plane is finite, the problem is 
trivially decidable, since only finitely many possible snakes can be 
positioned in a given finite area, and an algorithm can be easily designed 

continued on next page 
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program verifi cation 

In Chapter 1 we discussed the need for algorithms and programs 

to be correct. Establishing the fact that a candidate program 

indeed solves the algorithmic problem you are working on is no 

easy feat. So it is tempting to ask whether computers can do this 

for us. We would really like an automatic verifier, a piece of soft

ware whose input consists of (the description of) an algorithmic 

problem and (the text of) an algorithm, or program. We would 

like the verifier to determine algorithmically whether the given 

program solves the given problem. In other words, we want a 'Yes' 

if for each of the input problem's legal inputs the input program, 

had we run it on that legal input, would terminate with the correct 

output, and a 'No' if for even a single legal input the input 

program would either fail to terminate or would terminate with 

the wrong output (see Fig. 2 .7) .  The verifier must be able to do this 

continued 
to examine them all. Far more interesting is the fact that the snake 
domino problem has been proved to be undecidable for almost any 
conceivable infinite restriction of the plane, as long as the portion under 
consideration is unbounded in both directions. The most striking 
contrast is best described by saying that only a single point stands 
between decidability and undecidability, since the strongest result 
known is this: while the problem, as we have seen, is decidable in the 
whole plane, it becomes undecidable if even a single point is removed 
from the plane, meaning that candidate snakes are allowed to go 
anywhere except through a third given point, U. See H.-D. Ebbinghaus 
( 1 982) .  'Undecidability of Some Domino Connectability Problems', 
Zeitschr. Math. Logik und Grundlagen Math. 28, 33 1-6; Y. Etzion
Petrushka, D. Harel, and D. Myers ( 1994). 'On the Solvability of 
Domino Snake Problems', Theoret. Comput. Sci. 1 3 1 , 243-69. 
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1 .  Program A 
2. Algorithmic problem P 

'Yes: program A 
correctly solves 

problem P' 

Fig. 2.7. A hypothetical program verifier. 

'No: program A 
does not correctly 
solve problem P' 

for every choice of algorithmic problem and for every choice of a 

candidate program, 12 

As a particularly pressing example, wouldn't it be nice if 

someone were to establish a start-up company and construct a 

general-purpose Y2K verifier? We could have then subjected any 

piece of software to the verifier, and found out whether what it 

would have done on 1 January 2000 is the same as what it did on 

31 December 1999, Is this possible? 

12 Here too, it is convenient to fix a computer model and programming 
language in advance. Actually, since in this case programs are part of the 
input, we must adopt a language with well-defined syntax and semantics, 
so as to be able to hand the program verifier a real, tangible object as 
input. By the CT thesis, however, such a choice does not detract from 
the generality of what we have to say here. 
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Well, the general verification problem is undecidable, as is the 

special case of verifying compliance with the year 2000. A candi

date verifier might work nicely for many of its inputs; it might be 

able to verify certain kinds of programs against certain limited 

kinds of specifications, but as a general verifier it is bound to fail. 

There will always be algorithms or programs that such a verifier 

will not be able to verify. We can thus forget about a computerized 

solution to the Y2K problem or any other such sweeping attempt 

at establishing the correctness of software by computer. 

In contrast to tiling and snake domino problems, which you 

might dismiss as toy problems of no practical value, program 

verification is an extremely important computer-related task, 

coming from the real world. The fact that it is unsolvable dashes 

our hope for a software system that would make sure that our 

computers do what we want them to. 

the halting problem 

It turns out that the news is as bad already for a lot less than the 

full correctness of programs. We cannot even decide whether a 

program merely terminates on its inputs. Worse, it is not even 

decidable whether it terminates on one specific input! These issues 

of termination, or halting, are at the heart of Problem 8 in the list 

given in Chapter 1 ,  and they deserve special attention. 

Consider the following algorithm (call it A):  

1 .  while X*, 1 do the following: set X f- X - 2; 

2 .  stop. 

In words, the algorithm A repeatedly decreases its input number X 

by 2 until it becomes equal to 1 .  Assuming that the legal inputs 

consist of the positive integers 1, 2, 3,  etc., it is quite obvious that 
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A halts precisely for the odd numbers. An even number will be 

decreased repeatedly by 2, will 'miss' the 1, running forever 

through 0, -2, -4, -6, etc. Hence the problem of deciding whether 

a legal input will cause this particular algorithm to halt is trivial: 

all we have to do is to check whether the input is odd or even, and 

answer accordingly. 

Here is a slightly more complicated algorithm, B: 

1 .  while X t:. 1 do the following: 

1 . 1 .  if X is even, set X f- XI2; 

1 .2. otherwise ( i .e. X is odd) ,  set X f- 3X + 1 ;  

2 .  stop. 

This algorithm repeatedly halves its input if it is even, but increases 
it more than threefold if it is odd. And it too halts if and when it 

reaches the value 1 .  For example, if B is run on the number 7, the 

sequence of values is: 7, 22, 1 1 , 34, 1 7, 52, 26, 1 3 , 40, 20, 1 0, 5 , 16 ,  

8, 4, 2, 1 ,  a s  you can easily check, following which execution halts. 

Actually, if we try running algorithm B on an arbitrary positive 

integer, even using a powerful computer, we will find that it either 

terminates, or progresses through an erratic-looking sequence, 

reaching surprisingly high values, and fluctuating unpredictably. 

In the latter case, one gives up after a while, having not observed 

either termination or a periodic sequence of values (which, of 

course, would have indicated that the computation will not term

inate ) .  Indeed, over the years, B has been tested on numerous 

inputs, and on large and fast computers. On the one hand, no peri

odicity has been observed, and no-one has been able to come up 

with an input for which B can be proved not to terminate. On the 

other hand, no-one has been able to prove that B terminates for all 
positive integers (although people believe it does) .  Which of these 

is the case is actually a difficult unresolved question in the branch 
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of mathematics known as number theory, and it has been open for 

some 60 years. I 3  

So, here we  are, with two algorithms, the uninteresting A and the 

far more interesting B. While some mathematicians in the field of 

number theory would probably give a lot to find out whether B 
halts on all its inputs, B is still but one specific algorithm. In the 

study of algorithmics we are not that interested in the halting 

behavior of specific programs, even tantalizing ones like B. Rather, 

we are interested in the generic problem of determining the halting 

behavior of an unknown given algorithm or program. This general 

decision problem is called the halting problem. 
As input, the halting problem is fed the text of a legal program 

A in our chosen programming language Lang, and a potential 

input X, which is really nothing more than a string of symbols. The 

problem asks whether or not A would have terminated had we run 

it on the input X (see Figure 2.8 ) .  

The halting problem, just like the more demanding verification 

problem, cannot be solved by algorithmic means; it is undecidable. 

This means that there is no way to tell, in general, and in a finite 

amount of time, whether the execution of a given program will 

terminate on a given input. 14  

1 3 J. c. Lagarias ( 1 985) .  'The 3x + 1 Problem and its Generalizations', 
Amer. Math. Monthly 92, 3-23. This is perhaps the simplest-to-describe 
open problem in mathematics. To understand it you need to know 
nothing except basic arithmetic symbols. Is it or is it not the case that 
any positive integer eventually reaches 1 if it is repeatedly halved when 
even and tripled and increased by one when odd? 

1 4 This is due to Turing. See his 1936 paper referenced in footnote 6 of 
this chapter. See also G. Rozenberg and A. Salomaa ( 1 994). Cornerstones 
of Undecidability. Prentice Hall, New York, NY. 
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Program, or 
algorithm 

Potential 
input 

It is tempting to try to solve the problem by a simulation algor

ithm that simply mimics running the program A on the input X and 

waits to see what happens. The point is that if and when execution 

terminates we can justifiably stop and conclude that the answer is 

'Yes': had we indeed run A on X it would have terminated. The 

difficulty is in deciding when to stop waiting and say 'No'. We cannot 

simply give up after a long wait and conclude that since the simula

tion has not yet terminated it never will. Perhaps if we had left it to 

run just a little longer - maybe one more microsecond would do it 

- it would have terminated. Simulating the given program's behav

ior on the given input, therefore, does not do the job, and, as stated, 

nothing can do the job, since the problem is undecidable. 

nothing ab out comp u t ation c an b e  

compute d !  

This phenomenon is actually much deeper and more devastating. 

There is a remarkable result, called Rice's theorem, that shows that 
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not only can we not verify programs or determine their halting 

status, but we can't really figure out anything about them. l s  No 

algorithm can decide any nontrivial property of computations. 

More precisely, let us say we are interested in deciding some prop

erty of programs, which is ( i )  true of some programs but not of 

others, and ( i i )  insensitive to the syntax of the program, that is, it 

is a property of the underlying algorithm and not of the particular 

form it takes in a programming language. For example, we might 

want to know whether a program runs in less than a particular 

amount of time, whether it ever outputs a 'Yes', whether it always 

produces numbers, whether it is equivalent to some other 

program, etc., etc. 

What Rice's theorem tells us is that no such properties of pro

grams can be decided. They are all undecidable. We can really 

forget about being able to reason automatically about programs. 

Virtually nothing about computation is computable! 

s ome problems are even wors e 

As it turns out, three of the undecidable problems mentioned so 

far - the tiling problem, the domino snake problem on the half

plane, and the halting problem - are computationally equiva

lent . 1 6  This is not a simple notion, since obviously these problems 

look very different: tiling rooms and determining whether pro-

1 5 H. G. Rice ( 1953) .  'Classes of recursively enumerable sets and their 
decision problems', Trans. Amer. Math. Soc. 74, 358-66. 
1 6  To be technically precise, the halting problem has to be negated for 
this equivalence to hold. In other words, the version that is equivalent to 
the others is the non-halting problem, in which we want a 'Yes' if the 
given program does not halt on the given input, and a 'No' if it does halt. 
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grams terminate, for example, don't seem to  have anything to  do 

with each other. In fact, they have everything to do with each other. 

What exactly do we mean by two undecidable problems being 

computationally equivalent? Well, the key notion is inter

reducibility. Each one of the two problems is reducible to the 

other, in that sense that one can be decided with the aid of an 

imaginary solution, or oracle, for the other. Thus, if we had an 

algorithm to decide, in general, whether programs halt on inputs 

(we can't have a real algorithm for this because the problem is 

undecidable, but say we had a hypothetical one, the oracle) we 

could use it to decide whether tiles can tile living rooms. And 

perhaps more surprisingly, vice versa: if we could decide about 

tiling living rooms, we could decide about computer programs 

halting. Imagine that! 

Having an imaginary solution is like having an immortal oracle 

who gives you answers to certain questions for free. Thus, if you had 

an oracle who could answer tiling questions whenever asked, you 

could solve the halting problem. 

A rather striking addendum to the equivalence between these 

noncomputable problems is that some problems - program 

verification for example - are even less decidable. What on earth 

can we mean by this? What can be worse for an algorithmic problem 

than to have no solution at all? Here too, the key is reducibility: the 

halting problem can be reduced to program verification, meaning 

that an imaginary solution to the latter can be used to solve the 

former. The converse, however, is not true. Even with a free (imag

inary) oracle for the halting problem, or the tiling problem, or the 

half-plane snake domino problem (or even with oracles for all of 

these) we could not verify programs. The verification problem is 

thus harder than the halting problem; it is less decidable, so to speak. 
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This oracle-based way of comparing undecidable problems, 

making some of them 'better' than others, induces a classification 

of algorithmic problems into levels of undecidability, or levels of 

noncomputability. Layers upon layers of problems exist, coming 

with worse and worse news! The three equivalent problems we 

mentioned, halting, tiling, and half-plane snakes, turn out to be on 

one of the lowest such levels. You might say that they are almost 
decidable. Sadly, however, many problems reside far higher up in 

the hierarchies of ever more terrible news, so that they are much 

less decidable than the ones lower down. 

One interesting level is sometimes termed high noncomputabil
ity, or high undecidability, and it deserves a zone of its own in the 

sphere of algorithmic problems (see Fig. 2.9 ) .  Highly noncom

putable problems are much, much worse than the 'ordinarily' 

noncomputable ones we have discussed. In fact, they are infinitely 
worse. Even an infinite lineup of increasingly more sophisticated 

oracles wouldn't suffice to solve them. Thus, above the almost 

The 
noncomputable 

The 
computable 

(8)' /0' , . . 

® 

Fig. 2.9. The sphere of algorithmic problems: Version II. 
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computable, o r  almost decidable problems (tiling, halting, and 

their friends) there are infinitely many different problems, each 

more difficult than the ones lower down, and each one not com

putable even with the aid of oracles for all those below it. The 

problems we have termed highly undecidable are even worse than 

all those. I 7  

* * * 

1 7 S. C. Kleene ( 1943) .  'Recursive predicates and Quantifiers', Trans. Amer. 
Math. Soc. 53, 4 1-73. The high undecidability we discuss here is called 
the l: ltn l level, in technical terminology. A simple example of a highly 
undecidable problem is the following variant of the tiling problem (we 
use the version of tiling that asks whether the set T of tile types can tile 
the entire infinite plane, rather than the one that asks about tiling all 
finite areas) .  The new variant adds but a small requirement: we want to 
know whether T can tile the infinite plane, but in such a way that the 
tiling contains infinitely many copies of the first tile listed in T; i.e. a 
recurrence of the designated tile type. We want a 'Yes' if there is a T-tiling 
of the plane containing a recurrence of this particular tile, and a 'No' if 
no such tiling exists. Note that the answer must be 'No' even if there are 
legal tilings of the whole plane using the tiles in T, but none of them has 
the first tile of T recurring infinitely often. This extra requirement doesn't 
look as though it should make a big difference, because if you can tile the 
infinite plane using a finite set of tile types, then some of the types must 
occur in the tiling infinitely often. The difference is that here we want 
a specific tile to recur. Despite the apparent similarity, this recurring 
dominoes problem, as it is called, is highly undecidable. It is not 
decidable even with the use of imaginary solutions to the infinitely many 
other problems residing on lower levels of the undecidability hierarchies. 
See D. Harel ( 1 986) .  'Effective Transformations on Infinite Trees, with 
Applications to High Undecidability, Dominoes, and Fairness', J Assoc. 
Comput. Mach. 33, 224-48. But don't think that this is as bad as it can 
get. Some problems are even worse than the highly undecidable ones, 
but we will ease off now, and let it go at that. 



58 c o m p u t e r s  L t d . 

In summary, we have learned that the world of algorithmic/com

putational problems is divided into the computable, or decidable, 

vs. the noncomputable, or undecidable, and that among them

selves the problems in the latter class exhibit various degrees of 

hardness. We have also seen that these facts are extremely robust 

and lasting: the dividing lines of Fig. 2.9 are mathematically 

precise and firmly defined, and are insensitive to variations in 

computational models, languages, methodologies, hardware or 

software. 

So our hopes for computer omnipotence are shattered. We now 

know that not all algorithmic problems are solvable by computers, 

even with unlimited access to resources like time and memory 

space. 

Can we finish our story here? Isn't this the bad news alluded to 

in the Preamble? What else can go wrong? 



chapter 3 

s ometi mes we 
can't af ford 
do i t  

to 

The fact that some tasks cannot be computerized is bad enough 

already. But we are not done yet. Let us now concentrate on the 

ones that can. 

Say we are asked to construct a bridge over a river. The bridge 

could be 'incorrect'; it might not be wide enough for the required 

lanes, it might not be strong enough to carry rush-hour traffic, or 

it might not reach the other side at all! However, even a 'correct' 

design may be unacceptable. It might call for too large a workforce, 

or too many materials or components. It might also require far too 

much time to bring to completion. In other words, although it will 

result in a good bridge, a design might be too expensive. 
The field of algorithmics is susceptible to similar concerns. Even 

if a problem is computable, or decidable, and a correct solution 

algorithm is found, that algorithm might be far too costly in its use 

of resources, and hence impractical. The term 'impractical' sounds 

mild, but it's not: we shall discuss problems that require such 
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formidable amounts of running time or memory space, as to 

become just as unsolvable as the ones of the previous chapter. 

res ources : time and memory s pace 

Lumber, steel, screws, and bolts - the stuff of bridges - are not 

relevant here. Instead, we have the resources consumed by com

puter programs, particularly running time and memory space. 

These are often referred to as measures of computational com
plexity, and are called simply time and space. Time is measured by 

the number of basic actions carried out during an execution, and 

space by the area in the computer's memory required to store the 

data generated and manipulated in that execution. These depend 

on the computer running the algorithm, of course, an issue we 

shall return to later. 

The amount of time and space used by an algorithm will typically 

differ from input to input, and algorithmic performance must be 

assessed accordingly. The salary summation algorithm clearly takes 

longer on lengthier lists, but this doesn't mean that its time perfor

mance cannot be formulated precisely; all it means is that the for

mulation will have to account for the fact that the running time 

depends on ( is a function of) , the length of the input list. The 

symbol N is often used generically to denote input size; if we say 

that an algorithm runs in time SN we mean that it never performs 

more than 5 times N basic actions on any given input of size N. 
The important thing is the input's size, not the input itself. The 

time it takes to multiply two integers should not be much different 

for pairs of inputs with the same number of digits, but will typi

cally grow with longer numbers. The same goes for finding paths 

in city maps, for searching and sorting lists, etc. 
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Time is a crucial factor i n  computation. I n  many day-to-day 

applications there is vast room for improvement. Time is money, 

and computer time is no exception . l  As to memory space, 

although in many cases this resource can be every bit (no pun 

intended) as crucial as time, we shall concentrate mostly on time 

complexity. 

improving running time 

Sometimes running time can be improved with simple tricks. 

Consider a straightforward procedure for seeking a name in a long 

list. We go through the names on the list one by one, repeatedly 

inspecting the current name to see if it is the one we are after, and 

then checking to see that we are not at the list's end before moving 

on to the next name. So we carry out two basic actions for each 

name we check. If the list is oflength N, the time complexity is 2N. 
To improve things, we can start out by adding the sought-for 

name to the end of the list, in an artificial manner. If the name did 

not appear in the original list at all, it now appears once, at its end, 

and if it did it now appears twice, once in the original place and 

once at the end. What is the advantage of this addition? Well, it 

enables us to expedite the entire process, by omitting the end-of

list check that was carried out again and again, for each name 

inspected. Now that the sought-for name appears at the end, we 

are bound to bump into it even if it were not in the original list. 

1 In fact, where computers are concerned, time can be absolutely critical: 
certain kinds of computerized applications involve real-time systems, 
especially those found in the aerospace and defense industry, and even in 
automobiles. They must respond to external stimuli in 'real time', since 
failing to do so could be fatal. 
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Once we find it, we check just once if we are at the list's end. If we 

are, we may safely conclude that the name did not originally 

appear; and if we are not at the list's end, then the place we are at 

right now is the original appearance of the name in the list. 

This yields a 50% improvement in time: assuming that the 

inspection of a name costs roughly the same as checking whether 

we are at the end of the list - one basic action - the running time 

drops from 2N to around N. Both versions work their way through 

the list item by item. In both cases, if the sought-for name is not 

on the list, or if it happens to be positioned last, we will have to 

inspect all the N names. The difference is in how much each 

inspection costs. 

An important point is that the 2N for the first version and the N 
for the second are both worst case estimates. That is, there are 

'bad' inputs (the ones where the name does not appear in the list 

at all) that force the algorithm to indeed run through the entire 

list. In other words, the algorithm could presumably run for much 

less on certain inputs (those in which the name appears early in 

the list ) ,  perhaps on most inputs, but it never runs for more, even 

on the worst input of its size. We shall stick to worst case com

plexity throughout most of the book.2 

Now, although the two algorithms for the name-searching 

problem differ by a factor of 2, both run in time that is propor-

2 W:orst case analysis is not the only way to view time complexity. 
People also study and analyze algorithms for their average case time 
performance, obtaining insight into the duration of an algorithm's 
rUIJ.,on a typical input. This analysis can cause unpleasant surprises, 
however, since running the algorithm on a bad input can take much 
longer than the average case predicts. In any case, as mentioned, we 
shall concentrate on the worst case. 
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tional to  N. The running time grows linearly with N. When the 

worst case running time of an algorithm is proportional to the 

length of the input, we say that it runs in linear time. This phrase 

blurs the distinction between N and 2N, so that with this term

inology it is as if the 50% trick doesn't make a real difference; we 

have a linear-time algorithm either way.3 

Impressive as a 50% cut in running time sounds, we can often 

do much better. When we say better, we don't mean just fixed-rate 

improvements of 50%, 60%, or even 90%, which would all retain 

the linear-time status of an algorithm, but ones whose rate gets 

increasingly better as the size of the input increases. These are 

order of magnitude improvements. 

One of the best-known examples of this involves searching for a 

name, as before, but this time in an ordered, or sorted list; say, a 

telephone book with the names ordered lexicographically. Here, 

the naive linear search can be dramatically improved. Instead of 

simply going through the names in some order, one by one, the 

idea is to use a splitting technique, whereby the first name we 

inspect is the one appearing smack in the middle of the list. If this 

does not turn out to be the name we are after, then, depending on 

whether it is lexicographically larger or smaller than the sought

for name, we can discard the entire first or second half of the list, 

concentrating our search on the remaining half only. In this way 

we manage to decrease the size of the problem to half of its orig

inal size, by inspecting a single name only. We now do the same to 

the remaining half: we inspect its middle name and compare it to 

3 The term 'linear time' applies to any algorithm whose running time is 
bounded from above by KN for some constant K >  O. Thus, even N/ l OO 
is linear time. There is a special notation for this: D(N), read 'big-D of 
N, or 'order of N. 



64 c o m p u t e r s  L t d . 

the sought-for name, thus reducing the size of the problem to a 

quarter of the original size. Half of this half-list is discarded and 

the middle name of the remaining portion is inspected; and so on. 

When the ever-decreasing portion in hand gets so small as to 

contain only one name and this too is not the one we are looking 

for, the search ends in failure. This binary search algorithm works 

by a divide and conquer kind of principle: you repeatedly halve the 

list, check the middle name, and are then left with having to 

'conquer' only one of the resulting half-lists. 

Binary search runs in time proportional to 10gzN, the base-2 

logarithm of N, in the worst case. We thus say that it is a logarithmic
time algorithm.4 The precise mathematical definition of the logar

ithmic function is not important here, so don't feel bad if you are not 

familiar with it, but what is important is that logarithmic time 

embodies an incredible improvement over linear time. One that is 

not only better by some constant factor of 50% or 90%, but is better 

in the order of magnitude sense of the word. The improvement itself 
grows rapidly with the growth of N, as the following table shows: 

Length of List, Number of comparison, 

N log2 N 

10  4 

100 7 

1000 10  

1 000 000 20 

1 000 000 000 30 

10 1 8  60 

4 The words 'logarithm' and 'algorithm' are not related. 
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Consider this: to find a number i n  New York City's telephone 

book, which must have around a million names, you don't need to 

inspect more than 20 numbers! For a telephone book with a 

billion names (China's, perhaps, or maybe the whole world's? ) ,  

you need inspect only 30.  Even with the overhead required to halve 

the lists and keep track of where we are searching, this is a very, 

very fast algorithm. 

upper and lower bounds 

The sorting problem, Problem 4 on the list of Chapter 1 ,  is 

another case where the time complexity of a naive algorithm can 

be vastly improved. We can think of it as asking for a method of 

transforming a jumbled telephone book into an ordered one. 

An obvious sorting method that comes to mind is to repeatedly 

find the smallest element in the list, output it, and remove it from 

the list, in preparation for a search for the next smallest one. In 

the worst case, this process takes about N2/2 comparisons, which 

is proportional to N-squared (that is, to N2) ,  and is thus termed 

quadratic time. However, there are several more sophisticated 

algorithms for sorting, with such names as heapsort and merge
sort.s These are much faster. They run in time proportional to N 

times the logarithm of N, or in symbols N log2 N, rather than N2, 

which is a vast improvement: using these methods, a jumbled 

New York City telephone book can be arranged in lexicographical 

5 See D. E. Knuth ( 1 973) .  The Art of Computer Programming, Vol. 3 :  
Sorting and Searching. Addison-Wesley, Reading, MA, 2nd ed. 1 998; 
T. H. Cormen, C. E. Leiserson, and R. L. Rivest ( 1 990) .  Introduction to 
Algorithms. MIT Press, Cambridge, MA. 
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order using only several million comparisons, instead of many 

billions.6 

So we can search for a name in an ordered list in logarithmic 

time, and we can sort an unsorted list in less than quadratic time. 

Fine. But can we do better? Is it possible to search for an element 

in a million-name telephone book with less than 20 comparisons 

in the worst case? Is there some unknown search algorithm out 

there that requires time of only, say, the square root of the logar

ithm of N in the worst case? How about sorting? Can we sort a list 

in, say, linear time, rather than in time N log2 N? 

To put these questions into perspective, think of an algorithmic 

problem as sitting out there, possessing an inherent optimal solu

tion, which is what we are after. Along comes someone with, say, a 

quadratic-time algorithm. Once we become convinced that the 

algorithm is correct, i .e. it indeed solves the problem, we know for 

sure that the optimal solution can't be any worse than quadratic 

6 Time complexity is obviously a relative concept that makes sense only 
in conjunction with an agreed-upon set of basic instructions. In the case 
of searching and sorting these typically include comparisons of names 
and numbers. Coding an algorithm in a specific language, or using a 
specific compiler, can obviously make a difference in the final running 
time. But on the assumption that algorithms are designed to use 
conventional basic instructions, the differences will most often be in the 
constant factor that is hidden in the term 'order-of-magnitude' (the 
big-O notation mentioned in an earlier footnote) ,  so that the order-of
magnitude time complexity will not be affected. This robustness, 
coupled with the fact that, in the majority of cases, algorithms that are 
better in the order-of-magnitude sense are also better in practice, 
renders the study of order-of-magnitude time complexity the most 
interesting to computer scientists. Keep in mind, however, that this 
approach may hide issues of possible practical importance, such as 
constant factors. 
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time, We have a quadratic time solution. We then say that w e  have 

approached the desired inherent optimum from above. Later on, 

someone else discovers a better algorithm, running, say, in time 

N log2 N, thus coming closer to the desired optimum, also from 

above. We now know that the problem cannot be inherently worse 

than that; the previous algorithm becomes obsolete, and the 

process continues. Accordingly, an efficient algorithm is said to 

place an upper bound on the algorithmic problem. Better algor

ithms approach the problem's best-known time bound from 

above, pushing it downward, closer to the unknown inherent 

complexity of the problem itself. 

But how far can these improvements go? Can we approach the 

optimal complexity from below? What we are after is a lower 
bound, which would mean finding, not an algorithm, but a proof 
that you can't do any better. If we can prove rigorously that our 

problem cannot be solved by any algorithm that uses less than, say, 

logarithmic time (in the worst case) ,  we can stop trying to find 

better algorithms, for there aren't any. Such a proof constitutes a 

lower bound on the algorithmic problem, in that no algorithm can 

bring about an improvement, and it doesn't matter how clever we 

are or how hard we work on devising one. 

Discovering a fast algorithm shows that the problem's inherent 

time performance is no worse than some bound, while discovering 

a lower bound proof shows that it is no better than some bound. 

In both cases, a property of the algorithmic problem has been dis

covered, not a property of a particular algorithm. This is a subtle 

and confusing difference that is worth carefully taking in. 

Establishing a lower bound on a problem entails somehow consid

ering all possible algorithms for it, while an upper bound is 

achieved by constructing one particular algorithm. 
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Lower bound proofs can be difficult to come by, but once found 

they put an end to futile attempts to search for better algorithms. 

Such bounds have been established for searching and sorting, for 

example. Searching in an ordered list has a lower bound of logar

ithmic time, so that the binary search algorithm is optimal. There 

simply is no better algorithm, and that's that. Similarly, sorting has 

a lower bound of N log2 N, so algorithms that achieve this running 

time, such as heapsort and mergesort, are optimal too. We thus say 

that searching and sorting are closed problems.? We have discov

ered their inherent time-complexity. End of quest. 

Many algorithmic problems are not yet closed. Their upper and 

lower bounds do not meet, and we say that they give rise to algo
rithmic gaps. In the next chapter we shall see striking examples of 

gaps that are unacceptably large. For now, however, it suffices to 

realize that if a problem is not closed, the deficiency is not in the 

problem, but in our knowledge about it. We have failed either in 

finding the best algorithm for it or in proving that a better one 

7 The terms 'optimal solution' and 'closed problem' are used here in the 
order-of-magnitude sense. Matching upper and lower bounds means 
that we have found the optimum to within a constant factor. This still 
leaves open the possibility of improvements of the 50% and 90% kind, or 
improvements in other resources, such as space. Moreover, the lower 
bounds for searching and sorting are based on models of computation in 
which information about the input can be obtained only by comparing 
elements. If we know more about the input, the lower bound argument 
might fail, and a better algorithm may be found. As an extreme example, 
if we are told that the inputs to the sorting problem will always be 
distinct integers between 1 and some number M, linearly related to the 
length of the input list, we can sort in linear time: simply prepare an 
indexed array of length M, put each incoming number directly in its 
corresponding place and then read off the nonempty values in the 
resulting array as output. 
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does not exist, o r  i n  both, The inherent 'truth' i s  indeed out there 

somewhere; it is either the upper bound or the lower bound, or 

resides somewhere in between. 

s o  what? 

So we know that algorithmic problems will often admit solutions 

that are more time-efficient than the naIve approaches. A sorted 

list can be searched in logarithmic time, and we can sort a list in 

far less than quadratic time. In general, there are often more 

efficient algorithms to be found. So what? 

Computers are the ones who have to carry out algorithms, you 

might think, and computers are fast. You might claim to be 

sufficiently 'rich' to afford to pay a million or a billion compar

isons for searching through a list, and that a few extra seconds of 

computer time make no difference. If worst comes to worst, you 

could be saying to yourself, there are always faster machines to be 

bought. With this attitude, algorithmic gaps might not be bother

some either. So we don't know the exact optimal solution to our 

problem; so what? Once a reasonably good algorithm has been 

found, we may not be interested in better algorithms or in proofs 

that they don't exist. 

Is the whole issue of algorithmic efficiency a tempest in a teacup? 

the towers of H ano; 

Let us start answering this question by way of a rather playful 

puzzle example: it is known as the Towers of Hanoi. 

We are given three towers, or pegs, A, B, and C. Three rings are 

piled in descending size on the first peg, A, and the other pegs are 
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empty (see Fig. 3 . 1 ) . We want to move the rings from A to one of 

the other pegs, perhaps using the third peg in the process. The rule 

is that rings are to be moved one at a time, but a larger ring may 

never be placed atop a smaller one. 

This puzzle can be solved in seven steps, as follows: 

move the top ring from A to B; 

move the top ring from A to C; 

move the top ring from B to C; 

move the top ring from A to B; 

move the top ring from C to A; 

move the top ring from C to B; 

move the top ring from A to B. 

It is not difficult to see that this series of actions really does the job; 

it complies with the rules of the game, and results in the rings all 

piled on peg B. Try to solve the same puzzle with four rings on peg 

A, not three (the number of pegs does not change ) .  It shouldn't 

take you too long to find a sequence of i s -move instructions for 

this case. 

Such puzzles may be entertaining and challenging, but our busi

ness is algorithmics, not puzzles. We are far more interested in the 

n n 
A B c 

Fig. 3. 1 .  The Towers of Hanoi. 
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general problem associated with the Towers of Hanoi than with 

this or that particular instance. The input to this algorithmic 

problem is any positive integer N, and a solution algorithm is 

required to issue a list of move instructions that will solve the 

puzzle for N rings. Once we have such an algorithm, any indi

vidual Towers of Hanoi puzzle, be it the 3-ring, the 4-ring, or 

3 1 78-ring version, can be solved by simply running the algorithm 

with the appropriate number of rings as input. 

As it happens, there is a very simple algorithm for this, which 

can be carried out even by a small child.s To describe it, assume 

that the three pegs are arranged in a circle (the names of the pegs 

are unimportant) :  

1 .  do the following repeatedly, until step 1 . 2  can n o  longer be 

carried out: 

1 . 1 .  move the smallest ring to the peg residing next to it 

in clockwise order; 

1 .2. make the only legal move possible that does not 

involve the smallest ring; 

2. stop. 

Step 1 .2 means moving some ring other than the very smallest one 

to some peg other than the one it is on right now. Of course, this 

must be done in such a way that the ring moved is laid on top of a 

larger ring. The only situation in which this step cannot be carried 

out is when all the rings have been correctly transferred to some 

other peg; no ring is then exposed except the smallest. Note that 

when step 1 .2 can be carried out, it is well defined and unambigu-

8 P. Buneman and L. Levy ( 1 980). 'The Towers of Hanoi Problem', In! 
Proc. Lett. 10,  243-4. 
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ous, since one of the pegs has to have the smallest ring on top, and 

of the two remaining pegs one has a smaller ring on top than the 

other (or the other one has no rings on it at all ) .  Thus, the only 

move not involving the smallest ring is to transfer that smaller ring 

to the other peg. 

A time analysis of this algorithm shows that the number of 

single-ring moves it produces is precisely 2N - 1, that is, 1 less than 

2 to the power of N (2 times itself N times) .  Since N appears in the 

exponent, such a function is termed exponential. It can be shown 

that 2N - 1 is also a lower bound for this problem: there is no way 

to get N rings transferred adhering to the rules, with less than 

2N - 1 move instructions. Hence, our solution is optimal. 

But is it a good solution? Being optimal in our business doesn't 

necessarily mean you are happy, only that you can't do any better. 

Is 2N - 1 a good time bound, like N or N log2 N? Maybe it is even 

a truly excellent one like log2 N. 

By way of answering these questions, we should mention that the 

original version of the puzzle had the same three pegs, and it 

involved not three rings, but 64, moved by Tibetan monks. Given 

the 2N -1 time complexity, even if the monks were to brush up their 

act and move a million rings every second, it would still take them 

more than half a million years to complete the 64-ring process! If, 

somewhat more realistically, they were to move one ring every five 

seconds, it would take them almost three trillion years to get the job 

done. No wonder they believed the world would end before they 

managed to finish. The Towers of Hanoi problem, at least for 64 

rings or more, is thus hopelessly time-consuming. 

Bad news indeed. 

Somehow, this statement leaves us feeling somewhat uncon

vinced. It doesn't seem to signify real bad news in the world of 
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computing a s  much a s  i t  illustrates the fact that the output here 

happens to be very long. For better or for worse, the puzzle has 

been set up in a way that requires 2N - 1 actions to get N rings 

transferred, and the algorithmic problem asks for a list of these 

actions. The computations themselves are extremely easy; it is the 

output that is long. To exhibit such a seemingly boring pheno

menon, we could have discussed a 'problem' that inputs N and 

asks for a printout of 2N - 1 copies of the letter a. That too would 

take time 2N - 1, and couldn't be done in less. 

So our question is really this: does such devastating time per

formance, requiring zillions of years of running time, show up 

only when the outputs are devastatingly lengthy? Can we find 

problems with short outputs that behave as badly? How about 

decision problems? An algorithm that says only 'Yes' or 'No' 

spends all of its time reaching a verdict, not issuing it. Can such 

problems be that bad too? 

Before we go any further, we should take a closer look at the 

kind of truly formidable time behavior represented by the likes of 

2N - 1 . 

the good , the bad , and the ugly 

Exponential functions, such as 2N, yield very large numbers much 

sooner than linear or quadratic ones. Say N is 1 00. Then N2 will be 

only 10 000, whereas 2N is an enormous number; it is far, far larger 

than the number of microseconds that have elapsed since the Big 

Bang (see Fig. 3 .2 ) .  In fact, exponential functions easily dwarf all 

polynomial functions, which are those of the form NK for some 

fixed number K, like N2 or N 1 5. It is true that N1OO, for example, is 

larger than 2N for all the values of N up to some point (996, to be 



7 4  c o m p u t e r s  L t d . 

1040 

NN 2 N 

1 035 

1030 

1 025 

1 020 

1 0 1 5 

A trillion 

A billion 

A million 

1 000 
1 00 

1 0  

Fig. 3.2. Polynomial vs. exponential growth. 

SN 

Number of 
microseconds 
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Big Bang 

Number of 
microseconds 

in one day 

precise) .  However, from that point on, 2N starts leaving NlOO far 

behind, very, very quickly. And this is true for any choice of a 

fixed K. 
Other functions exhibit similarly unacceptable growth rates. 

For example, N!, which is called N-factorial, and is defined as 

1 x 2 x 3 x . . .  x N, grows much faster than even 2N. And the func

tion NN, which is N times itself N times, grows even faster than 
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that. I f  N is 20, the value of 2 N  is over a million ( 1  048 576, to be 

precise9) ,  the value of N! is well over 2 billion billions, and the 

value of NN is more than 1 04 trillion trillions. If N is 1 50, the 

value of 2N is billions of times larger than the number of protons 

in the entire known universe, and N! and NN cause that number 

to be reached for much smaller values of N. 

Figure 3.2 shows the relative growth rates of some of these. It is 

a special kind of graph (termed logarithmic) ,  in which the axes 

grow exponentially instead of linearly. This has the effect of 

causing all polynomials to come out as straight lines but exponen

tials to curve wildly upwards. Admittedly, this is something of a 

visual enhancement, but it serves nicely to show the difference 

between the two families of functions under discussion. 1O 

Let us see what happens when such functions represent the time 

complexity of algorithms. The following table shows the running 

times of four algorithms on various quite modest input sizes. It 

assumes that they are run on a computer capable of a million 

instructions per second: 

9 This is closely related to the fact, mentioned earlier in searching New 
York's telephone book, that the logarithm of a million (with the 
fractional part dropped) is 20, since 2N relates to N exactly as N does 
to log2N. 
10 H. R. Lewis and C. H. Papadimitriou ( 1 978 ) .  'The Efficiency of 
Algorithms', Scientific American 238( 1 ) , 96--109; L. J. Stockmeyer and 
A. K. Chandra ( 1 979) .  'Intrinsically Difficult Problems', Scientific 
American 240(5) ,  124-33 . 
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Input length 

1 0  20 50 1 00 200 

N2 1 1 1 0  000 1 12500 1 1400 1 1 100 1 125 
second second second second second 

N5 1 1 1 0  3.2 5.2 2.8 3.7 
second seconds minutes hours days 

2N 1 / 1 000 35.7 Over 400 trillion A 45-digit no. 
second second years centuries of centuries 

NN 2.8 3.3 trillion A 70-digit no. A 1 85-digit no. A 445-digit no. 
hours years of centuries of centuries of centuries 

For comparison, the Big Bang was 1 2- 15  billion years ago. 

The first two lines in the table represent two typical polynomials, 

N2 and N5. The last two are exponential. Our point is that these 

two pairs are acutely different. The running time behaviors of the 

former are reasonable and we can live with them. The latter two 

are not and we can't. 

Admittedly, the N5 algorithm indeed behaves quite badly on an 

input of size 200, but with a faster machine and some tight opti

mization techniques we would probably be able to decrease the 

3 .7 days by a factor of lO or so, and the task would become man

ageable. But now take a look at the bad algorithms, the 2N and NN 

ones. Even the faster of the two is so incredibly time-consuming as 

to require, in the worse case, 400 trillion centuries for a single input 

of size 1 00. For larger inputs (even only moderately larger), it is far, 

far slower than that. Worse functions, like NN, give rise to this kind 

of devastating news much earlier, i.e. for much smaller inputs. 

The really nasty parts of this table cannot be overcome by clever 

tricks, neat programming languages, or snazzy Web page designs 

on the Internet. Even a fully interactive, user-friendly, graphical, 
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object-oriented, distributed approach (to use some fashionable 

buzzwords) ,  full of bells and whistles, will have no noticeable 

effect. 

Faster hardware doesn't help either. You might not like our 

assumption of one instruction per microsecond, claiming that, 

even as we speak, faster computers are available and more are in the 

making. Well, even if we had a machine 10 000 times faster (and 

this is not something that will happen overnight) ,  the changes in 

the interesting parts of the table would be laughably marginal. For 

example, the entry labeled 'a 1 8S-digit number of centuries' for an 

NN-time algorithm running on an input of size 1 00, would have to 

be replaced by 'a 1 80-digit number of centuries'. Big deal, as the 

phrase goes. More significantly, it would take only a very slight 

increase in the size ofthe input to make the 10 OOO-fold faster com

puter run for the same 18S-digit number of centuries: we need only 

go from size 1 00 to size 1 02. That's all. And this is exactly what the 

steepness of the curves in Fig. 3.2 is all about. 

All this leads to a fundamental classification of time complexity 

functions, into 'good' and 'bad'. The good ones are the polynomial 

functions (more precisely, the ones bounded from above by a poly

nomial) and the bad ones are all the rest, sometimes termed super
polynomial. I I  Thus, logarithmic, linear and quadratic functions, 

1 1 We abuse conventional terminology slightly by using the term super
polynomial when we should really say exponential. That this is an abuse 
stems from the fact that there are functions, like Nlog,N for example, that 
are super-polynomial but not quite exponential. The following papers 
first recognized the importance of the dichotomy between polynomial 
and super-polynomial time: M. O. Rabin ( 1 960) .  'Degree of Difficulty of 
Computing a Function and a Partial Ordering of Recursive Sets', 

continued on next page 
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for example, are good, as is N log2 N, whereas ones like 2N, Nl , and 

NN are bad. Later we shall see functions that are even worse, and 

those will be really, really ugly. 

intractability 

An algorithm or program whose worst-case time performance is 

captured by a good ( i .e. polynomial) function in the size of its 

inputs is called a polynomial-time algorithm. An algorithm that, 

in the worst case, requires super-polynomial time, is thus bad. This 

is the classification for an algorithm. 

We also want to classify algorithmic problems in terms of 

whether or not they can be solved by good algorithms, and here we 

must take into account all possible solutions. Accordingly, an algor

ithmic problem that admits a good algorithm as a solution is said 

to be tractable, whereas a problem that is solvable but admits only 

bad solutions is termed intractable. It is worth re-emphasizing 

that to label an algorithmic problem intractable we must have a 

proof that there is no good algorithm for it - not only among 

those we have discovered. There are none at all. Not even awaiting 

discovery. Simply failing to discover a polynomial-time algorithm 

for a problem can render it a candidate for intractability, but for it 

continued 
Technical Report No. 2, Hebrew University, Branch of Applied Logic, 
Jerusalem; A. Cobham ( 1965) .  'The Intrinsic Computational Difficulty 
of Functions', Proc. 1 964 Int. Congress for Logic, Methodology, and Phil. 
ofSci. (Y. Bar-Hillel, ed. ) .  North Holland, 24-30; J. Edmonds ( 1965) .  
'Paths, Trees, and Flowers', Canad. J. Math. 1 7, 449-67; J .  Hartmanis and 
R. E. Stearns ( 1 965) .  'On the Computational Complexity of Algorithms', 
Trans. Amer. Math. Soc. 1 1 7, 285-306. 
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to actually become intractable requires a proved lower bound of 

exponential-time. 

The numbers and charts in the previous section are intended to 

support this dichotomy. Intractable problems require hopelessly 

large amounts of time even on relatively small inputs, which is not 

the case for tractable problems. 

Actually, this is not quite as clear-cut as all that, and one can 

question the wisdom of drawing the line precisely where we did. 

We have already mentioned that an algorithm with time complex

ity Nloo (which is good by our definition) is worse than an algor

ithm with the bad complexity 2N for inputs of size 996 or less, and 

the turning point is much larger if we compare Nloo with, say, 

1 .00 1 N, which is still termed bad. Nevertheless, the majority of bad 

algorithms are really not very useful, and most good ones are suffi

ciently useful to warrant the distinction made. The truth is that the 

majority of polynomial-time algorithms for real applications 

usually have quadratic time or cubic time complexity, i.e. N2 or 

N3, and not NIOO. Similarly, you won't find intractable problems 

whose best algorithms are of complexity 1 .00 1 N. Rather, they have 

complexities like 2N or N!,  or worse. 

There is another thing, though. Recall the Church-Turing thesis, 

which asserts that the class of computable problems is robust, 

being insensitive to the differences between models of computa

tion. This justified the line drawn in Fig. 2 . 1 .  The truth is that, in 

general , models of computation are polynomially related, 

meaning that not only can a problem that is solvable in your 

model be solved in mine too, but the difference in running time 

will be polynomial, i.e. good. My machine might be far slower 

than yours. It could be 10 times or 1 00 times slower, or it could 

take time that is the square of yours, or yours raised to the third or 
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fifth power. But it doesn't take exponentially more time. What's 

good on yours is good on mine too. 

This applies even to primitive models such as Turing machines. 

Despite being discouragingly slow, having to shuttle back and 

forth along a tape, remembering and changing single symbols, 

Turing machines are not unreasonably slow. They are only polyno

mially less efficient than even the fastest and most intricate com

puters, working with the most advanced languages, techniques 

and software. 

The conclusion is this: not only is the class of computable prob

lems robust, but so is the class of tractable problems. This is a 

refinement of the CT thesis that takes running time into consider

ation too, and is sometimes called the sequential computation 
thesis. 

What is good is good everywhere, and what is bad is bad every

where, or, paraphrasing the famous nursery rhyme about the brave 

old Duke of York: 1 2 

And when they are up they are up 

And when they are down they are down 

Now a reservation. Unlike the CT thesis, for which there isn't a 

shred of evidence that we might have to revise our beliefs at some 

point in the future, here there is a shade of doubt. The relatively 

new and exciting area of quantum computing seems poised to 

offer a possible challenge to the sequential computation thesis. 

There is a chance (a very small one, if you count the researchers 

1 2 See W. S. Baring-Gould and C. Baring-Goul ( 1 962) .  Annotated Mother 
Goose, Clarkson N. Potter, New York, p. 1 38. (Many people misquote, 
calling him the grand old Duke of York. ) 
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who think so ) ,  that this model o f  computation will manage t o  turn 

intractable problems into ones that are tractable and manageable 

in practice. We shall discuss this further in Chapter 5 .  However, 

even if this happens, it is still a very long way off, so for now we 

shall proceed with this stronger thesis intact, and with the know

ledge that tractability is a strong and robust notion, insensitive to 

anything we know about now. 

The sphere of algorithmic problems that appeared in Fig. 2. 1 

now gets what we might term a 'facedrop', and a third dividing line 

is added; see Fig. 3 .3 .  The new line is the most important one, 

since it separates problems that can be solved in practice from 

those that cannot. It doesn't make much difference if your 

problem is undecidable or 'merely' intractable - either way you 

won't be able to solve it, at least in the puristic worst-case sense of 

'has to work correctly and efficiently for each and every possible 

input'. 

The 
noncomputable 

The 
intractable 

The 

®' , .'0 '
, 

. . 

Fig. 3.3. The sphere of algorithmic problems: Version III. 
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roadblocks and ches s 

All this sounds very nice in theory. We have solvable and unsolv

able problems, and within the former we have a subdivision that 

labels as bad those that do not give rise to polynomial-time solu

tions. But maybe there aren't any such cases unless the outputs are 

required to be unreasonably long. Do inherently intractable prob

lems even exist, or are all decidable and computable problems also 

tractable? Are there problems with proven lower bounds of expo

nential time, whose intractability is not the result of their need to 

pour forth exponentially long outputs, but, rather, is inherent in 

their very computational nature? 

The answer is a resounding yes. Just as there are many problems 

that are undecidable, so are there many problems that have been 

proved to require wholly unreasonable time to solve, using any 

algorithm, running on any kind of machine. 

Here is an example; again, a rather playful one like tiling rooms. 

It is called Roadblock. It is played by two players, Alice and Bob, 

on a network of intersecting roads, each road segment colored 

with one of several colors. Certain intersections are marked 'Alice 
wins' or 'Bob wins', and each player owns a fleet of cars occupying 

certain intersections. In his or her turn, a player may move one 

self-owned car along a stretch of road to a new intersection. There 

are two restrictions: ( i )  all intersections along the stretch must be 

free of cars, including the player's own cars and including the 

target intersection, and ( i i )  the player has to stick to one color in 

each turn, and can switch colors of the road segments only in the 

next turn. The winner is the first player to reach one of his or her 

winning points. 

The input to the Roadblock problem is a description of a 

network, with cars placed at certain intersections. The problem 



s o m e t i me s  we c a n ' t  a f f o r d  t o  d o  i t  8 3  

asks whether Alice (whose turn i t  is) has a winning strategy, 1 3  

Figure 3 .4  shows a Roadblock configuration in  which the circled 

'!\s and 'B's mark the locations of Alice's and Bob's cars, respect

ively, and different line types denote different colors, For this par

ticular input, that is, starting from this particular configuration 

with Alice to move, she can win no matter what Bob does (how? ) .  

Notice that this i s  a decision problem; we are not asking how, just 

whether. All we want is a 'Yes' or a 'No'. 

The Roadblock problem has been proved to have a 2N lower 

bound on time. The size N of the input is the number of inter

sections in the network. Thus, while smallish Roadblock configur

ations might be easy to analyze (e.g. that of Fig. 3 .4) ,  and some 

Fig. 3.4. A Roadblock configuration that Alice can win. 

1 3 A winning strategy in a game is a recipe (actually an algorithm) for 
the starting player, which prescribes a move for him or her to make for 
every one of his or her opponent's moves, such that no matter what the 
opponent chooses to do at each stage the starting player is guaranteed to 
win eventually. 
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larger ones might not be too difficult either, the worse-case per

formance of any algorithm whatsoever will be absolutely terrible: 

for the very best algorithm we might design, there will always be 

reasonably sized configurations that will cause it to run for an 

unacceptable amount of time. 1 4  

Thus, there i s  no practical algorithmic method, and there never 

will be, for determining in general whether a given player has a 

guaranteed strategy for winning a Roadblock game. And notice 

that this is the decision problem version: if we wanted to see Alice's 

winning strategy if she has one, or an example of Bob's possible 

win if she doesn't, things would be at least as bad as this, possibly 

even worse. 

Since we are talking about games and winning strategies, con

sider the corresponding problem for chess. Does white have a 

guaranteed winning strategy from a given chess configuration? 

Interestingly, although chess is clearly a very difficult game in its 

classical 8 x 8 format, it is not amenable to standard time perform

ance assessments. The reason is that the input size is fixed, so we 

can't talk about the increase in running time as the size of the 

input grows. Since there are only finitely many configurations in 

the entire game - albeit a very large number of them - the 

winning-strategy problem for chess is a finite problem, and we 

can't really talk about its order-of-magnitude complexity. I S  We 

need inputs whose size is unlimited, like in Roadblock. 

To make it possible to talk about the computational complexity 

of fixed-size board games, researchers define generalized versions, 

1 4  L. J. Stockmeyer and A. K. Chandra ( 1 979). 'Provably Difficult 
Combinatorial Games', SIAM J. Comput. 8, 1 5 1-74. 

15 We will discuss computerized chess in Chapter 7. 
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in  which there i s  a different game for each board size. The N-game 

is played on an N x N board, and the set of pieces and allowed 

moves are generalized appropriately. There are natural ways to do 

this for chess and checkers, which we shall not describe here. What 

is interesting, however, is that the winning-strategy problems for 

generalized versions of both have been shown to be intractable 

toO. 1 6  

problems that are even harder 

All the examples of decidable but intractable problems that we 

have seen so far (the Towers of Hanoi, Roadblock, and generalized 

chess and checkers) have upper bounds of exponential time. In 

other words, they can all be solved in time 2N or 3N, or the like. 

Reality is a lot crueler: there are decidable problems that are much 

worse than that. 

Consider a logical formalism, in which you can state things like 

'if statement P is true then statement Q is false'. Suppose that we 

want the 'P's and ' Q's to be meaningful assertions about math

ematical objects like the integers. For example, we might want to 

say something like 'if X = 1 5  then there is no Y such that X = Y + 

Y'. This statement happens to be true, since 1 5  is odd (and all 

values must remain integers) .  In the interests of trying to mech

anize absolute mathematical truth, computer scientists seek 

efficient methods for determining the truth of such statements. 

1 6A. S. Fraenkel and D. Lichtenstein ( 1 98 1 ) . 'Computing a Perfect 
Strategy for n x n Chess Requires Time Exponential in n� J. 
Combinatorial Theory A3 1 ,  1 99-2 14; J. M. Robson ( 1 984) .  'N by N 
Checkers is Exptime Complete', SIAM J. Comput. 13 , 252-67. 
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How hard is this particular truth-determination problem? 

Before addressing this question, we should explain double expo

nentials. Consider the function 22N, which is 2 times itself, not N 

times, but 2N Times. If N is a mere 5, the value of 22N is over four 

billion, while if N is 7, the value is orders of magnitude larger than 

our friend the number of microseconds since the Big Bang. In fact, 

22N relates to the very bad function 2N just as 2N relates to the very 

good function N. It is therefore doubly bad. 

Here are the facts regarding the problem of establishing the 

truth or fallacy of statements about the integers. Let us restrict the 

logic of integers so that the only arithmetic operations we are 

allowed to use in our statements is addition (the aforementioned 

statement about X = 1 5  is thus OK) .  More elaborate operations, 

such as multiplication or division, are forbidden. The resulting 

formalism, called Presburger arithmetic, has been shown to have 

double exponential-time upper and lower bounds. Any algorithm 

that can determine truth in this logic of integer addition - and 

there are such algorithms - is guaranteed to run for horrendous 
amounts of time on some very, very short statementsY 

While truth in Presburger arithmetic is provably double expo

nential, another logical formalism for talking about arithmetic, 

with the cryptic name WS I S, is far worse. In this logic we can talk 

not only about the integers, but also about sets of integers, and all 

we need to allow here in way of operations is the addition of 1 .  

1 7  M .  J. Fischer and M .  o. Rabin ( 1 974) .  'Super-Exponential Complexity 
of Pres burger Arithmetic', in Complexity oJ Computation ( R. M. Karp. 
ed. ) .  Amer. Math. Soc., Providence, RI, pp. 27-4 1 .  The length N of an 
input formula in these logics is obtained by counting appearances of the 
arithmetical operations, ' = ', ' + ', and 'x ' ( in the second case ) ,  and the 
logical operators like 'and', 'or', 'not', 'there exists', and so on .  
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That is, we can say things like 'there i s  a set of  numbers S, every 
one of which has the property that if you add 1 to it then . . .  '. WS 1 S 
is unimaginably difficult to deal with algorithmically. Consider the 
triple exponential function 22'". To get a sense of how fast this func
tion grows, if we were to plot it in the table given earlier, then on 
an input of size only 4, it would show the algorithm running for a 
1 9  7 1 3-digit number of centuries (compare this with the 445-digit 
number for an NN algorithm on an input of size 200 ) .  Can you 
fathom that? 

So what's the story for WS 1S? Well, first of all, WS 1S  is decid
able. Algorithms have been devised to determine whether state
ments made within it are true or false. However, on the negative 
side, WS 1S  has been shown to admit no multiple exponential algo
rithm, for any multiple. This means that given any algorithm that 
is capable of determining truth in this logic, you can pile up as 
many 2s as you want in a cascade of exponentials of the form 22' ... 

"
, 

and there will be formulas of length N that will require your algor
ithm to run for more than that amount of time! 18 In such devas
tating cases, not only is the problem intractable, it is not even 
doubly, triply or quadruply intractable. We might simply say that, 
although in principle decidable, such a problem is highly 
intractable, or is of unlimited intractability. 

If we take Presburger arithmetic, i.e. the ability to talk about 
integers, but relax the restriction on operations, allowing multi
plication too, we get a formalism called first-order arithmetic. 
Interestingly, deciding truth in first-order arithmetic is undecidable! 

1 8 A. R. Meyer ( 1 975) .  'Weak Monadic Second Order Theory of Successor 
is not Elementary Recursive', in Logic Colloquium (R. Parikh, ed. ) ,  Lecture 
Notes in Mathematics, Vol. 453, Springer-Verlag, Berlin, pp. 1 32-1 54. 
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Even all the time in the world cannot help then. 1 9  Without wanting 

to make all this sound too depressing, if we combine the options 

in all of these logics, allowing the ability to talk about both integers 

and sets of integers, with the normal operations like addition and 

multiplication, we get second-order arithmetic, which is highly 
undecidable.20 

We summarize the status of these four logics in the following 

table: 

Logical formalism Talks about Time complexity 

Presburger arithmetic Integers with + intractable 
(double exponential) 

WS I S  Sets of  integers with + Highly intractable 

First-order arithmetic Integers with + and x Undecidable 

Second-order arithmetic Sets of integers with + Highly undecidable 
and x 

unreas onable memory req uirements 

In the course of this chapter we concentrated on time perform

ance, and we shall continue to do so in the next chapter. But before 

that we must spend a moment contemplating unreasonably bad 

consumption of memory space. There are algorithmic problems 

that have provable lower bounds of exponential space. This means 

1 9 K. Godel ( 1 93 1 ) . 'Dber formal unentscheidbare Satze der Principia 
Mathematica und verwandter Systeme, 1 ', Monatshefte fur Mathematik 
und Physik 38, 1 73-98. 
20 S. C. Kleene ( 1 943) .  'Recursive Predicates and Quantifiers', Trans. 
Amer. Math. Soc. 53, 4 1-73. 
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that any algorithm solving them will require something like 2N 
memory cells on certain inputs of size N. 

This can have mind-boggling consequences. If a problem has a 

2N lower bound on memory space, then for any computer solving 

it (even if we were to build a special-purpose computer dedicated 
solely to that problem) there will be inputs of quite moderate size 

- less than 270, to be specific - that would require so much 

space for the intermediate steps of the computation, that even if 

each bit were the size of a proton, the whole known universe would 

not suffice to accommodate the machine! 

Such unacceptably large resources are no joke. You just can't do 

it, regardless of money or brains, power or patience, race, color, 

age, or sex. This stuff is devastatingly bad, and the bad is for real. 





chapter 4 

s ometi mes we 
j us t  don't know 

Have you ever tried putting together a class schedule, pairing 

courses, time slots, and classrooms with teachers and instructors 

who have all kinds of constraints? Ever tackled a really hard j igsaw 

puzzle, full of look-alike pieces? Ever had to pack lots of bulky 

items of varying sizes and shapes into given boxes, trying to get 

them all in? 

These are difficult tasks, you would have to admit. In carrying 

them out we seem to make local decisions one at a time, often 

reaching a dead end. If that happens, we backtrack a little, undo a 

recent decision and try something else instead. We then make some 

more progress, then backtrack again, maybe even further back than 

before, and so on. The entire process can take a long, long time. 

These examples belong to a rich and diverse class of problems, 

many of which are of extreme importance in applications. 

Figuring out how hard they really are - specifically, whether or 

not they are tractable - is still wide open, and is one of the most 

profound and important unresolved questions in the world of 

computing. 
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the monkey p u z z l e 

Let us start with a colorful example, not unlike the tiling problem 

of Chapter 2. A monkey puzzle involves nine square cards, whose 

sides depict the upper and lower halves of colored monkeys. The 

objective is to arrange the cards in a 3 x 3 square, such that 

wherever edges meet, the two monkey-halves match and the colors 

are identical (see Fig. 4. 1 ) .  
Again, this i s  a puzzle, but cute puzzles are not our business. 

We are interested in the general algorithmic problem, of which the 

3 x 3 monkey puzzle is but one small instance. The general 

problem receives as input the descriptions of N cards, where N is 

some square number. The output is a square arrangement of the N 

cards, if there is one, so that the colors and shapes match. Figure 

Fig. 4. 1 .  The monkey puzzle. 
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4. 1 shows an  instance with N = 9 . 1  In fact, we  concentrate on the 

easier-looking yes/no version, which simply asks whether any such 

arrangement exists without asking for one to be exhibited. 

A naive solution comes immediately to mind. Since each input 

involves only a finite number of cards, and only finitely many loca

tions are available for placing them, there are only finitely many dif

ferent ways of arranging the cards into a square. And since it is easy 

to test the color-matching legality of any particular arrangement, an 

algorithm can be designed to work its way through all possible 

arrangements, testing each one in turn, and terminating with a 'Yes' 

if the arrangement at hand is legal (i .e. colors and monkey-halves 

match) .  If all possible arrangements have been considered, and have 

all been found to be illegal, the algorithm terminates and says 'No'. 

Let us see what happens if the input is just slightly larger than 

the common 3 x 3 puzzle. Say N is 25, meaning that we are looking 

for 5 X 5 arrangements. How many candidate arrangements are 

there? Well, assuming we start at the bottom left-hand corner, 

there are 25 possible choices for the first card to be placed, and the 

particular card chosen can then be oriented in any of four possible 

directions. This gives 1 00 possibilities for the first 'move'. There are 

now 24 remaining cards, each of which can be placed in the second 

location and can also be oriented in four ways, yielding 96 poss

ibilities for the second move. Since for each move made we must 

consider every possible choice of the next move, if we want to 

count possibilities, we must take the product of these two numbers, 

yielding a total of 9600 ways of carrying out the first two moves. By 

1 In contrast to the tiling problem, whose input consists of the types of 
tiles and a tiling can involve an unlimited supply of each type, here we 
are given the set of actual cards that have to be used. 
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the same reasoning, the third move can be carried out in 23 x 4 = 
92 ways, which must be multiplied by the 9600, yielding 873 200 
ways of making the first three moves. And so on. Continuing in 

this fashion, the total number of candidate arrangements of all 25 

positions of the 5 x 5 square totals 

(25 x 4) x (24 x 4) x (23 x 4) x . . .  x (3 x 4) x (2 x 4) x ( 1  x 4) ,  

a number that can be written as 25 !  x 425. All of these will have to 

be checked by our naive algorithm, one by one. 

We shall not repeat the general properties of exponential func

tions that were discussed in Chapter 2. Still, it is worth reminding 

ourselves what this means: 25! X 425 is so amazingly large that a 

computer capable of checking a million arrangements per second 

( including all the bookkeeping involved) will take well over 533 

trillion trillion years in the worst case to solve a single 25-card 

instance of the monkey puzzle! And recall that the Big Bang was a 

mere 1 2-1 5 billion years ago. 

Thus, for the general N-card case, the worst-case running time 

of this naive algorithm is proportional to N! x 4N, which is the 

product of two very nasty exponential functions. Of course, the 

algorithm can be designed more intelligently, but even the most 

sophisticated versions discovered to date are not that much better.2 

2 An improved version would operate in the backtrack fashion outlined 
above: put some card at the bottom left-hand corner; now try to find a 
card that fits above it, then one that fits to its right; and so on. At each 
stage, if no card from among those that are left fits, backtrack, by 
removing the last-positioned card and trying another in its place. This 
solution avoids the need to consider extensions of partial arrangements 
that have already been found to be illegal, and often dramatically cuts 
down on the total number of arrangements tested. In the worst case, 

continued on next page 
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So, i s  that it, then? I s  the problem really intractable, o r  does it 

admit some clever polynomial-time solution? Unfortunately, no

one knows the answer to this. The question is open. 

N P - complete problems 

You may feel that the monkey puzzle problem is amusing, but 

perhaps unworthy of further discussion. After all, isn't it just a 

puzzle? 

Not at all. In truth, it is but one of hundreds and hundreds3 of 

spectacularly diverse algorithmic problems, which, besides the 

monkey puzzle problem, include the ones mentioned in the 

opening paragraph of the chapter. They all exhibit precisely 

the same phenomena: they are decidable, but are not known to be 

tractable. They all admit exponential-time solutions, but for none 

of them has anyone ever found a polynomial-time algorithm. 

Moreover, no one has been able to prove that any of them require 

super-polynomial-time, and, in fact, the best known lower bounds 

for most of them are linear or quadratic. This means that it is con

ceivable (though unlikely) that they admit very efficient algor

ithms. We thus don't know what their inherent optimal solution is, 

and are faced with a disturbing algorithmic gap. The problems in 

this class are termed NP-complete, for reasons to be explained later. 

continued 
however, even this more efficient procedure will cause the inspection of 
almost all possible arrangements. The same thing happens if we try to 
recognize symmetric arrangements, or to use other such time-saving tricks; 
the numbers would be smaller, but in the worst case insignificantly so. 

3 The number is several thousand if you count less conservatively, 
labeling certain variants of the same problem as different. 
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The algorithmic gap associated with the NP-complete problems is 

enormous. The lower bounds we have for them are perfectly reason

able, so that if we found upper bounds ( i.e. algorithms) to match, the 

problems would all be nicely and efficiently computable. However, 

the best upper bounds we have are devastatingly bad! The issue is not 

whether their running time is N, or Nlog2N, or N3, or whether we 

need 20 comparisons for a search or a million. Rather, it boils down 

to the ultimate question of whether or not we can ever hope to really 

solve these problems, even by the most powerful computers, with the 

very best software, programmed by the most talented people. 

Are they good, these problems, or bad? The location of the NP

complete problems in the sphere of Fig 3 .3 is thus unknown, since 

their upper and lower bounds lie on either side of the line dividing 

the tractable from the intractable. The question of where they actu

ally reside surfaced in all its prominence in the early 1970s, follow

ing the work of Steven Cook, Leonid Levin, and Richard Karp, and 

is referred to as the P vs. NP question. It is still open, despite close 

to 30 years of intensive work by some of the best researchers in 

computer science.4 

Two additional properties characterize the NP-complete prob

lems, making their story all the more remarkable. One of the two 

4 S. A. Cook ( 197 1 ) .  'The Complexity of Theorem Proving Procedures', 
Proc. 3rd ACM Symp. on Theory of Computing, ACM, New York, pp. 
1 5 1-8; L. A. Levin ( 1973) .  'Universal Search Problems', Problemy Peredaci 
Informacii 9, 1 1 5- 16  (in Russian), English translation in Problems of 
Information Transmission 9, 265-6; R. M. Karp ( 1972) .  'Reducibility 
Among Combinatorial Problems', in Complexity of Computer 
Computations (R. E. Miller and J. W. Thatcher, eds. ) .  Plenum Press, 
New York, pp. 85-104. See also M. R. Garey and D. S. Johnson ( 1979) .  
Computers and Intractability: A Guide to NP-Completeness, W. H. Freeman 
& Co., San Francisco, CA. 
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is, i n  fact, quite astonishing. Before discussing them, however, we 

should see some more examples. 

NP-complete problems abound in such scientific fields as com

binatorics, operations research, economics, graph theory, game 

theory, and logic. They also arise daily in diverse real-world appli

cations, ranging from telecommunication and banking to city 

planning and circuit design. As a result of this, and given the 

fundamental importance of separating the tractable from the 

intractable, the P vs. NP question has acquired a status unparalleled 

in the world of computing. 

fi nding s hort paths 

In the sample problems of Chapter 1 there are two that involve find

ing paths in road maps. Problem 6 asks for the shortest path between 

two given cities, A and B, and Problem 7, a decision problem, asks if 

there is a path whose total length is no more than some allowed 

bound, and which passes through all the cities in the map. 

For easier comparison between them, let us modify these two 

problems as follows. We make the first a decision problem, to be 

more like the second, and add the two designated cities to the 

second, to be more like the first: 

Problem 6' 

Input: A road map of cities, with distances attached to road 

segments, two designated cities therein, A and B, and a 

number K. 

Output: 'Yes' if it is possible to take a trip from A to B of length 

no greater than K miles, and 'No' if such a trip is impossible. 
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Problem 7' 

Input A road map of cities, with distances attached to road 

segments, two designated cities therein, A and B, and a 

number K. 

Output: 'Yes' if it is possible to take a trip from A to B, which 

passes through all the cities and is of total length no greater 

than K miles, and 'No' if such a trip is impossible. 

The inputs to the two problems are now identical, and the ques

tions are very similar: in both cases we want to know whether or 

not there is a certain kind of short path between A and B (without 

asking for any output other than 'Yes' or 'No' ) ,  but Problem 7' 

requires the path to 'visit' each of the cities. To illustrate Problem 

7', which is often called the traveling salesman problem, consider 

Fig. 4.2. It contains a seven-city road map, or network, in which 

the shortest tour from A to B that passes through all the other 

cities is of length 28. The answer should thus be 'Yes' if the bound 

K is, say, 30 or 28, and 'No' if it is 27 or 25. On the other hand, if 

Total cost: 28 

Fig. 4.2. The traveling salesman problem (not drawn to scale) .  
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the input were to  be  exactly the same, but the question posed was 

that of Problem 6', which is a yes/no version of the shortest path 
problem, the answer would be 'Yes' even with a bound of 25,  since 

it is easy to find a path from A to B, not necessarily passing 

through all cities, whose length is less than that. 

Neither of these problems is a toy example, and neither has to be 

about road maps and cities. They both arise in the design of com

munication systems and circuits, in planning construction lines 

and factory floors, and in the programming of industrial robots, to 

mention but a few applications. Shortest paths are crucial in plan

ning real trips from place to place, in routing telephone calls and 

in network package transmission, for example. The traveling sales

man problem is crucial in constructing newspaper distribution 

routes and the like, but it also occurs in an industrial setting. 

Suppose we are in the integrated circuit business, and we have to 

prepare a large number of identical circuit boards. As part of the 

task, we have a computerized drill that has to be programmed to 

drill, say, 200 holes in each board, at fixed locations. Clearly, since 

this has to be done many, many times, over and over again, it 

would be really nice if we could construct an optimal movement 

plan for the drill, starting at some point and making the trip 

through all locations. (Or, in the decision version, at least find out 

if this can be done within some limit of time or distance. )  

Which of the two problems is harder, or are they roughly of the 

same complexity? In terms of the candidate paths that have to be 

taken into account, Problem 6' - the shortest path problem -

definitely seems to require more work. It has all possible paths 

from A to B to consider, whereas Problem 7' - the traveling sales

man problem - has to consider only the ones that pass through 

all the cities, and there are far fewer of those. The facts, however, 
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are quite different, illustrating once again the shortcomings of 

simplistic intuition: the shortest path problem admits a fast algor

ithm (that runs in quadratic time, in fact) ,  whereas the traveling 

salesman problem is NP-complete. 

Recall what the latter fact implies: the traveling salesman problem 

is solvable, yes, but the only algorithms ever found for it are uselessly 

bad. (A straightforward one simply inspects all of the roughly N! 

possible tours, for a map of N cities. )  Even the best algorithms 

known for traveling salesmen (or saleswomen) are so bad as to be 

hopeless in the worst case for maps of 1 50 or 200 cities. And we must 

realize that while 1 50 cities might sound a lot to a traveling salesman 

with a suitcase full of bits and pieces, it is an extremely modest 

number for some of the real-world applications of the problem. 

Its NP-completeness thus renders the traveling salesman 

problem unsolvable in practice - at least as far as our current 

knowledge goes. 

s cheduling and matching 

Many NP-complete problems are concerned in one way or another 

with scheduling or matching. The class scheduling example men

tioned earlier, sometimes called the timetable problem, is one. Say 

we are trying to get a new academic year set up in a high-school. 

Suppose we are given the availability of each teacher, the particu

lar hours each of the classes can be scheduled, and the number of 

hours (possibly 0) that each of the teachers has to teach each of the 

classes. A satisfactory timetable is an assignment of teachers to 

classes to hours, so that all the given constraints are met, so that no 

two teachers teach the same class at the same time, and so that no 

two classes are taught by the same teacher at the same time. We 

don't even have to include other kinds of constraints, such as class-
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room size or student abilities, to make our point; things are bad 

enough even this way. 

The timetable problem is NP-complete, as is the yes/no version 

that doesn't ask to exhibit a timetable, but wants to know only 

whether one exists. 

Obviously, this problem is applicable to far more than just class

room scheduling. Teachers, time-slots, and classes can be replaced 

by pilots, aircraft, and missions, by FBI agents, motor-cycles, and 

crooks, by cars, garage lifts, and servicing procedures, or by com

puter tasks, processors, and system software routines. 

Thus for timetable problems. As to matching, here too, many are 

NP-complete. They include fitting items into boxes or trucks 

(sometimes called the bin-packing problem) ,  or assigning students 

to dormitories so that certain capacity requirements are satisfied. 

It is not too difficult to come up with exponential-time algor

ithms for timetable and matching problems. They all have ex

ponentially many candidate solutions, and an algorithm can be 

designed to carefully inspect them all. For example, all possible ways 

to schedule the teachers with the hours and the classes can be listed 

and checked, or all possible ways to pack the items into the boxes. 

Again, these naiVe algorithms are hopelessly time-consuming, even 

for very reasonably sized inputs, since there are so many possibilities 

to check. And again, that these problems are NP-complete means 

that as of now no-one has been able to discover any substantially 

better way to solve them. 

The fact that no good solution has been found for the timetable 

problem often raises eyebrows. Indeed there are software packages 

for this kind of thing, and people do use them. You don't hear 

complaints that they take zillions of years to run on the data of a 

local college or high-school. So what is going on? Well, the thing is 

that these 'solutions' compromise. Surprising as this may sound to 
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their users, none of them is guaranteed to work in good (polyno

mial ) time and to produce the right answer for each possible input 

situation. There will always be inputs, perhaps somewhat con

trived, for which such software will either take far, far more time 

than we can afford to wait, or (and this is more common) it will 

overlook possibilities, stating that a particular set of constraints 

cannot be satisfied when in fact it can. A typical case would be for 

such a program to fail to find a constraint-satisfying timetable for 

a pilot/aircraft/mission instance of the problem, and to 'ask' for a 

couple of additional F- 1 6s and a few more pilots, when it really 

could have done without them. Such software can be extremely 

helpful, and it very often discovers satisfactory timetables and 

matchings. However, in our present puristic setup, in which we 

require algorithms that are guaranteed to be always and absolutely 

correct, and to always terminate with the right answer within a 

polynomial amount of time, the timetable problem and the bin

packing problem and all their friends remain unsolved. 

All this notwithstanding, there are many similar-looking schedul

ing and matching problems that are tractable. For example, if we 

have only two kinds of objects to fit into a timetable - say, teachers 

and hours, but with only one class to be taught, or hours and classes 

but with only one teacher - the problem does have good solutions. 

more on puz z les 

Getting back into the puzzle atmosphere, some of the most tanta

lizingly appealing NP-complete problems are based on two

dimensional arrangement tasks, l ike the monkey puzzle. Airlines 

used to hand out small kits containing a number of irregular 

shapes that had to be laid out to form a rectangle (see Fig. 4.3). You 

can buy these in many places, such as the gift-shops of science 
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Fig. 4.3. An airline puzzle. 

museums. The general decision problem that asks whether N such 

shapes can indeed form a rectangle is also NP-complete. 

Now consider j igsaw puzzles. The standard kind, in which the 

picture is sufficiently heterogeneous, might be tedious to sit down 

and do by hand, but from a computational point of view it is not 

that hard; the work at each step is just a matter of running through 

all the unused pieces and finding the single one that fits. A non-fit 

can usually be detected by sight or when attempting to force the 

piece into place. The point is that backtracking is not really needed 

for such puzzles, a blessing that results in a quadratic time, per

fectly reasonable algorithm.s 

5 Why quadratic time? Because when working on a heterogeneous jigsaw 
puzzle with N pieces in an orderly fashion from, say, the bottom left-hand 
corner, there are N possibilities for the first piece to place and four ways 
to place it; N - 1 for the second piece and four ways to place it; N - 2 for 
the third piece, etc. Since there is no backtracking to be done, you run 
through the 4N possibilities for the first move, find the one single piece 
that fits and that's that. Then through the 4(N - 1 )  possibilities for the 
second move, find the one that fits and that's that. And so on. The total 
number of steps is thus the sum (not the product) of 4N, 4(N - 1 ) , and so 
on, which is roughly 2N2. 
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So much for the ordinary, 'well-behaved: heterogeneous cases, 

where you look for the one and only fitting piece at each stage, find 

it, place it, and go on to bigger and better things. However, anyone 

who's ever labored on a j igsaw puzzle with lots of sky or sea knows 

that they are not that easy. Besides the confusion that comes from 

the homogeneous portions of the picture, many of the puzzle's 

pieces might be cut to fit perfectly in a given place. An error might 

be discovered only after several steps, making 'deep' backtracking 

necessary. And it is this need that gives rise to devastatingly time

consuming exponential time algorithms. 

The general j igsaw problem, which has to cope with all possible 

input puzzles, including the really nasty ones, is also NP-complete. 

Thus, j igsaw puzzles, monkey puzzles, and airline arrangement 

puzzles are essentially all the same, and we shall see later that this 

'sameness' is shared by all the NP-complete problems, not only 

those that are puzzle-like. 

coloring networ ks 

Here i s  another NP-complete problem, that involves coloring 

networks. Don't let its playful nature deceive you: this problem 

embodies the essence of several important applications. Further

more, in Chapter 6 we shall be turning its NP-completeness 

around, exploiting to our advantage the glum prospects of it ever 

becoming tractable. 

The input is a network of points and lines, similar to a road map 

for the traveling salesman problem, but with no distances. Each 

point (or city) has to be colored, but in such a way that no two 

'neighboring' points, that is, ones connected by a direct line, are 

colored the same. The problem asks for the minimal number of 
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colors required to color a network. In the yes/no decision version, 

we are given a number K as an additional input, and simply have 

to say whether there is any way to K-color the input network ( i.e. 

whether it can be colored using only K colors ) .  

Figure 4.4 shows an example of a network colored legally with five 

colors. (We use shading and iconics to depict colors.) This particu

lar network cannot be colored with less than that, so that if K is 5 or 

larger the answer should be 'Yes', but for 4 and below it is 'No'. 

This problem, even in its yes/no guise, is NP-complete for any 

fixed K from 3 up. Thus, for input networks with something like 

200 points, you can forget about being able to tell whether they can 

be colored with even a mere three colors.6 

Fig. 4.4. Five-coloring a network. 

6 This problem is reminiscent of, but subtly different from, the famous 
four-color question, formulated in 1 852 and considered to be one of the 
most interesting problems in all of mathematics. It went unsolved for 
over 120 years, and was finally settled in 1 976. See K. I. Appel and 
W. Haken ( 1976) .  'Every Planar Map is Four Colorable', Bull. Amer. 
Math. Soc. 82, 7 1 1-12; T. L. Saaty and P. C. Kainen ( 1986). The Four 

continued on next page 
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magic coins 

It is now time to discuss the two additional properties of the NP

complete problems alluded to earlier. The first has to do with con

viction and magic. Here is how it goes. 

We know that it is apparently very, very difficult to figure out 

whether an NP-complete problem is to say 'Yes' or 'No' on a given 

input. But say you happen to know that the answer is 'Yes', and you 

are trying to convince someone of that fact. Interestingly, there is 

an easy way to do the convincing. For any NP-complete problem, 

each input has associated with it a so-called certificate, containing 

conclusive evidence to the effect that the answer on that input is 

'Yes' if indeed it is 'Yes'. Moreover, this certificate is short - it is of 

continued 
Color Problem: Assaults and Conquest. Dover Publishers, New York. This 
mathematical problem involves coloring country maps, of the kind found 
in an atlas, by associating a color with each country, but in such a way 
that no two countries that share a border are colored with the same color. 
The question was whether four colors are sufficient to color any country 
map. At first sight, it seems that you could construct increasingly intricate 
maps, requiring ever-larger numbers of colors, as can be done for the 
problem of coloring networks. This, however, is not true, since countries 
reside in a two-dimensional world, and you can't have countries crawling 
under and over each other. In fact, the result proved in 1 976 established 
that four colors indeed suffice. What is the connection with algorithmics? 
Since we now know that any country map can be colored with four 
colors, the algorithmic problem of determining whether a given input 
map can be 4-colored is trivial - simply output 'Yes' on all inputs. Not 
very interesting. For two colors, it is possible to show that a map is 
2-colorable if, and only if, it contains no point that is at the junction of 
an odd number of countries. And since this property is easy to check, 
2-colorability is not very interesting either. Three colors, however, is 
interesting: the problem of whether a country map can be 3-colored is 
NP-complete. 
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length that is polynomial in the size of the input in question -

and can therefore be checked by the person you are trying to con

vince in an acceptable amount of time. 

For example, it is notoriously difficult to tell whether a map of 

cities has a traveling salesman tour of length no more than a given 

number of miles. On the other hand, if such a path exists, it can be 

exhibited (as in Fig. 4.2 ) and easily checked by a doubtful party to 

satisfy the requirements. It thus serves as an excellent certification 

of the fact that the answer is 'Yes'. Similarly, although it is 

extremely difficult to satisfy the teachers/hours/classes constraints 

in the timetable problem, convincing someone that they can be 

satisfied ( if you know that they can) is easy: simply exhibit a 

timetable. Checking that it satisfies the constraints, and thus justi

fying a 'Yes' answer, can be done in polynomial time. Likewise, 

exhibiting a legal arrangement of monkey puzzle cards provides an 

easily checkable certificate that the answer for this particular input 

is 'Yes'. 

Thus, figuring out whether an NP-complete problem says 'Yes' to 

an input appears to be very hard, but certifying that it indeed does, 

when it does, is easy. Figuring out that an input yields a 'Yes' can 

be viewed as consisting of two parts: coming up with a candidate 

certificate, and checking that it is indeed a witnessing one. 

Checking is easy. Finding the certificate is the problematic part. 

All this can be explained with magic. Let us assume that in 

solving some NP-complete problem we adopt the naIve approach 

of trying out all possibilities and backtracking when we get stuck. 

But say we have a special magic coin to help us out. Whenever a 

partial solution can be extended in more than one way (for 

example, several cards in the monkey puzzle can be legally placed 

in the current location, or the traveling salesman can proceed in 
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one of several directions) ,  the coin is flipped and the choice is 

made according to the outcome.? This coin, however, does not fall 

at random. It possesses magical insight, always indicating the best 

possibility: if one of the choices leads to a 'Yes', that is, to a full 

good solution, the magic coin points you there. If both possibili

ties lead to a 'Yes', or if none do, the coin acts like a normal random 

one, since it doesn't matter which way you go. The technical term 

used for such magic is nondeterminism; with it we no longer need 

a deterministic procedure to plow through all available options. 

We are guaranteed to reach the desired 'Yes' solution, if there is 

one. 

As to the running time of such nondeterministic processes, it so 

happens that a little magic goes a long way. Although no-one knows 

whether the NP-complete problems are tractable, i.e. whether they 

can be solved properly (without magic) in a polynomial amount of 

time, what we do know is that every NP-complete problem has a 

polynomial-time nondeterministic algorithm. So magic - admit

tedly an imaginary resource - makes them all 'good'. This fact is 

intimately related to the existence of short certificates.8 

We can now explain the cryptic acronym 'NP' in the term NP

completeness: it stands for nondeterministic polynomial-time: 

problems that become tractable when magic is allowed. 

7 If there are more than two possibilities, the coin is flipped several times. 

8 A short certificate can be gleaned directly from a polynomial-time 
'magical' execution. To certify a 'Yes' answer, just follow the instructions 
of the magic coin and when the process terminates simply check 
whether it constructed a complete legal solution. Since the coin always 
indicates the best possibility, we can safely say 'No' if the solution is in 
violation of the rules. A legal solution would have been found by the 
coin if one existed. 



s o m e t i me s  we j u s t  d o n ' t  k n ow 1 0 9  

s tanding or f alling together 

The final property of the NP-complete problems, and perhaps the 

most remarkable one, is their common fate. Either they are all 

tractable, or none of them is! The term 'complete' is used to signify 

this bind. 

Let us sharpen this statement: if someone were to find a 

polynomial-time algorithm for any single NP-complete problem, 

thus establishing its tractability, there would immediately be 

polynomial-time algorithms for all of them. And this, in turn, 

implies the dual fact: if someone were to prove an exponential

time lower bound for any single NP-complete problem, thus 

establishing its intractability, an immediate consequence would be 

that no such problem is tractable. In terms of Fig. 3.3, we don't 

know on which side of the tractable/intractable line the NP

complete problems really reside, but what we do know is that they 

are all either here or there together. 
This is the ultimate in solidarity, and it is not a conjecture - it 

has been proved: all the NP-complete problems stand or fall 

together. We just don't know which way it goes. Paraphrasing 

again the brave old Duke of York,9 we might say: 

And when they are up they are up 

And when they are down they are down 

And since they can't be halfway up 

They are either up or down 

It is often difficult to see what causes such diverse problems to 

share their fate. But, in fact, they are all very closely related. A 

9 See W. S. Baring-Gould and C. Baring-Gould ( 1 962 ) .  Annotated 
Mother Goose, Clarkson N. Potter, New York, p. 1 38.  
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criss-cross collection of reductions has been established between 

all the many NP-complete problems, establishing that if a polyno

mial time algorithm were ever found for any one of them it would 

transform immediately into an actual polynomial time algorithm 

for any other one. 1 O If you find a good solution to the monkey 

puzzle problem, for example, then you immediately have amaz

ingly good news for timetable preparers, traveling salesmen (and 

1 0 In practice, all you need to find in order to prove that a newly 
considered problem is NP-complete are two polynomial-time 
reductions: one to some already established NP-complete problem and 
one from such a problem. That such reductions exist between the new 
problem and each NP-complete problem then follows by the fact that a 
chain of polynomial time reductions is polynomial time too. For this 
reduction-finding to start somewhere, someone had to find a 'first' 
problem, and establish its NP-completeness by direct means. This was 
done in 1 9 7 1  by Steven A. Cook in 'The Complexity of Theorem 
Proving Procedures', Proc. 3rd ACM Symp. on Theory of Computing, 
ACM, New York, 1 5 1-8 ( 1 97 1 ) , and around the same time by Leonid 
A. Levin,  independently, in 'Universal Search Problems', Problemy 
Peredaci Informacii 9, 1 1 5- 1 6  ( l 973) (in Russian) ,  or Problems of 
Information Transmission 9, 265-6. They proved that determining truth 
in the simple logical formalism, called the propositional calculus, was 
NP-complete. In this logic, the abstract propositions, the 'F 's and ' G 's 
below can be combined to form more complex statements, using simple 
logical connectives such as 'and', 'or', 'not' and ' implies'. Thus, for 
example, the statement 

not (F implies G) and ( G  or (E implies not F) ) 

states that it is not the case that the truth of E implies the truth of G, 
and, besides that, either G is true or the truth of E implies that F is 
false. The algorithmic problem calls for determining whether an input 
statement is satisfiable, i .e. whether 'true's and 'false's can be assigned 
to the basic symbols so that the whole statement becomes true. The 
Cook/Levin theorem is considered to be one of the most important 
results in the theory of algorithmic complexity. 
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saleswomen) ,  bin-packers, etc. And vice versa: if you manage to 

prove that the monkey puzzle does not have a polynomial-time 

solution, you can inform all these people that what they thought is 

bad news, really is bad news. It will then not be just that we haven't 

yet managed to find good solutions to their problems; we will 

know for sure that there aren't any such solutions to be found. The 

waiting and the hoping can end. The optimists will have lost. Just 

like that. 

the 9 rea t my s t e r y :  ; s P e q ua 1 to 

N P ? 

The classes of problems we have been discussing have been given 

technical names by computer scientists. PTIME, or sometimes 

simply P, denotes what we have been calling the good, or 

tractable, problems; namely, those that admit polynomial-time 

algorithms. NP (without the 'complete' ) denotes the class of 

problems that admit magical, nondeterministic polynomial-time 

algorithms. The NP-complete problems are the 'hardest' prob

lems in NP, in the stand-or-fall-together sense: if one of them 

turns out to be in P then all the problems that are in NP are also 

in P. Using these names, the profound unsolved question really 

boils down to whether or not P, as a class of problems, is equal to 

NP. 

The P vs. NP question has been open since it was identified by 

Cook and Levin in 1 97 1 ,  and is one of the most difficult un

resolved problems in computer science. It is definitely the most 

intriguing and the most important. Either all of these interesting 

and critically useful problems can be solved well by computer, or 

none of them can. Furthermore, you need only figure out the 
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status of one of them to have put the entire issue at rest. Enormous 

research efforts have been made in trying to solve this problem, 

but to no avail. Most researchers believe that P :/:. NP, meaning that 

the NP-complete problems are inherently intractable, but no one 

knows for sure. In any case, showing that an algorithmic problem 

is NP-complete is regarded as weighty evidence of its apparent 

intractability. Lacking proofs of true intractability for many prob

lems, a proof of NP-completeness is the next best thing (or should 

we say the next worse thing) .  

Some problems are known to be in NP, i .e .  they have fast 

magical solutions and short witnessing certificates, but are not 

known to be NP-complete. That is, we do not know whether they 

are among the select class of hardest problems in NP; we don't 

know if their fate is so intimately linked with timetables, traveling 

salesmen, and monkey puzzles. A well-known example involves 

testing a number for primality, Problem 3 in the list of Chapter 1 .  

Despite the fact that n o  one has been able to find a polynomial

time algorithm for this, and despite the fact that primes have 

been shown to admit short certificates, i .e. the problem has a 

fast magical solution and thus is in NP, l l  it is not known to be 

NP-complete. 

1 1  v. R. Pratt ( 1 975 ) .  'Every Prime has a Succinct Certificate', SIAM J. 
Comput. 4, 2 1 4-20. Recall that the length of the input number K is what 
counts - i.e. the number of digits needed to write it down - not its 
value. If we were to use the value to determine time-complexity, then the 
simple primality test that runs through all odd numbers between 3 and 
the square root of K would be fine, since it takes time that is polynomial 
in K. However, the running time is exponential in K's length. We discuss 
this in more detail in Chapter 5. 
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can we come clos e? 

Many of  the NP-complete problems we  have discussed are yes/no 

versions of optimization problems, in which we are interested in 

minimizing or maximizing something. The traveling salesman 

problem is a good example. Its original version asks for an optimal 

tour of all cities in the road map, that is, a tour of minimal length. 

Now, although we don't know how to find the best tour, it is con

ceivable that we can find one that is not too much longer. In other 

words, we might be able to solve the problem in a way that is less 

than perfect, yet still of considerable practical value. Algorithms 

designed for this purpose are called approximation algorithms, 
and they are based on the assumption that taking a less-than

optimal tour is better than staying home, and finding a timetable 

with a few constraint violations is better than having total chaos. 

One type of approximation algorithm produces results that 

are guaranteed to be not too far from the optimal solution. For 

example, there is a rather clever approximation algorithm for the 

traveling salesman problem, that runs in cubic time (that is, time 

N3) and produces a tour guaranteed to be no longer than It times 

the (unknown) optimal tour. 

Another type of approximation yields solutions that are not 

guaranteed to be always close to the optimum, but, rather, to be 

very close to the optimum almost always. For example, there is a 

fast algorithm for the traveling salesman problem that for some 

input road maps might yield tours much longer than the optimum, 

but in the vast majority of cases it yields almost optimal tours. 

Do NP-complete problems always admit fast approximation 

algorithms? That is, if we are willing to be slightly flexible in our 

requirements for optimality, can we be sure to succeed? Well, this 
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is a difficult question. People had harbored hopes that powerful 

approximation algorithms could be found for most NP-complete 

problems even without knowing the answer to the real P vs. NP 

question. The hope was that we may be able to come close to the 

optimal result even though finding the true optimum would still be 

beyond our reach. Recently, however, this hope has been delivered 

a crippling blow with the discovery of more bad news: for many 

NP-complete problems (not all ) ,  approximations turn out to be no 

easier than full solutions! Finding a good approximation algorithm 

for any one of these problems has been shown to be tantamount to 

finding a good non-approximate solution. Flexibility will take you 

nowhere you couldn't already have gone in full rigidity. 1 2 

This has the following striking consequence. Finding a good 

approximation algorithm for one of these special NP-complete 

problems is enough to render all the NP-complete problems truly 

tractable; that is, it would establish that P = NP. Put the other way 

around, if P t:. NP, then not only do the NP-complete problems 

have no good full solutions, but many of them can't even be 

approximated! 

As an example, consider the network coloring problem. Since 

finding the smallest number of colors needed to color a given 

network is NP-complete, researchers looked for an approximation 

algorithm that would come close to the optimal number in a good, 

i.e. polynomial, amount of time. So perhaps there is a method, 

1 2 U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy ( 1 996) .  
'Approximating clique i s  almost NP-complete', J. Assoc. Comput. Mach. 
43, 268-92; S. Arora and S. Safra ( 1 996) .  'Probabilistic Checkable Proofs: 
A New Characterization of NP', J. Assoc. Comput. Mach. 45, 70-1 22; 
S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy ( 1 998 ) .  'Proof 
Verification and Intractability of Approximation Problems', J. Assoc. 
Comput. Mach. 45, 50 1-55. 
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which, given an input network, finds a number that is never more 

than 10% or 20% larger than the minimal number of colors 

needed to color the network. Well, it turns out that even for 50% 

this is as hard as the real thing: researchers have recently proved 

that if any polynomial-time algorithm can find a coloring with no 

more than twice the minimal number of colors needed to color a 

network, then there is a polynomial-time algorithm for the orig

inal problem of finding the optimal number itself. 1 3  This has the 

far-reaching ramifications just explained: discovering a good 

approximation algorithm for coloring networks is just as difficult 

as showing that P = NP. So there goes the hope for that. 

s ometimes we s ucceed 

The P vs. NP question is one of many unknowns in the theory of 

algorithmic complexity - perhaps the most significant one. But 

there are many others too. For example, it is not known whether 

reasonable space is any different from reasonable time: is there a 

problem solvable with a polynomial amount of memory space that 

cannot be solved in polynomial-time? This is the P vs. PSPACE 

question. In fact, NP, the class of problems solvable in polynomial

time with magical nondeterminism, lies between PTIME and 

PSPACE, but no-one knows whether it is equal to one or the other, 

or whether all three are distinct. 

This does not mean that we are not treated once in a while to 

spectacular good news. Sometimes a polynomial-time algorithm is 

found for a problem whose tractability/intractability status was 

unknown. An important example is linear planning, better known 

1 3 C. Lund and M. Yannakakis ( 1 994). 'On the Hardness of Approximating 
Minimization Problems', J. Assoc. Comput. Mach. 41 (5) ,  960-8 1 .  
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as linear programming. This is a general framework that encom

passes certain kinds of planning problems where time and resource 

constraints have to be met in a cost-efficient way. The linear plan

ning problem, it must be emphasized, is not NP-complete, but the 

best solution anyone was able to find for it was a well-known expo

nential-time algorithm called the simplex method, invented in 

1 947 by G. B. Dantzig. 1 4  This algorithm, by the way, is not all that 

bad: despite the fact that certain inputs force it to run for an expo

nential amount of time, they are rather contrived, and tend not to 

arise in practice. When used for most real problems of realistic size, 

the simplex method performs very well. Nevertheless, the problem 

was not known to be tractable in the strict sense of the word, nor 

was there a lower bound to show that it wasn't. 

In 1 979, a rather ingenious polynomial-time algorithm was found 

for the problem, but it was something of a disappointment. The 

exponential-time simplex method outperformed it in many of the 

cases arising in practice. Nevertheless, it did show that linear pro

gramming is in P. Recent work based on this algorithm has produced 

more efficient versions, and people currently believe that before long 

there will be a fast polynomial-time algorithm for linear planning 

that will be useful in practice for all inputs of reasonable size. I s  

* * * 

1 4 G. B. Dantzig ( 1 963) .  Linear Programming and Extensions. Princeton 
University Press, Princeton, NJ. 

I S 1. G. Khachiyan ( 1 979) .  'A Polynomial Algorithm in Linear 
Programming', Doklady Akademiia Nauk SSSR 244, 1 093-6 (in Russian),  
English translation in Soviet Mathematics Doklad 20, 1 9 1-4; N. 
Karmarkar ( 1 984) .  'A New Polynomial-Time Algorithm for Linear 
Programming', Combinatorica 4, 373-95. 
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In Chapters 2 and 3 we discussed algorithmic problems that we 

know to be unsolvable, and others that we know cannot be solved 

in practice, Obviously, these will not bring us any joy. Nor is there 

comfort in the problems of this chapter, for which we don't know 

whether we should laugh or cry: they appear to be bad, are 

conjectured by many to be bad, but we don't know for sure. 

But what about the everyday? Is it true that most problems 

arising in common applications can be solved efficiently? 

Unfortunately, the answer is no. Not at all. It's just that we often 

tend to equate 'everyday' and 'common' with situations that we 

know how to tackle. In actuality, a growing number of problems 

arising in real applications turn out to be NP-complete or worse, 

and for some of these we can't even resort to approximation 

algorithms. 

Bad news. Bad news indeed. 





chapter 5 

try i ng to eas e 
th e 

. 

pal n  

The fact that computing doesn't bring only good news has pushed 

researchers in a number of directions, intended to try to alleviate 

the problem. In this chapter we shall discuss some of the most 

interesting of these: parallelism (or concurrency) , randomization, 
quantum computing, and molecular computing. Each of the first 

two represents a new algorithmic paradigm by relaxing a fund

amental assumption underlying conventional computing. The 

third transfers computation into the mysterious realm of quantum 

mechanics, and the fourth represents an attempt to have molecules 

do the work. 

To get a feeling for parallelism, consider the following. Several 

years ago there was a contest in the Los Angeles area for the world 

title in fast house building. Certain rigid rules had to be adhered to, 

involving things like the number of rooms, the utilities required, 

and allowed building materials. No prefabrication was permitted, 

but the foundations could be prepared ahead of time. A house 

was deemed finished when people could literally start living in it; 

all plumbing and electricity had to be in place and functioning 
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perfectly, trees and grass had to adorn the yard, and so on. No limit 

was placed on the size of the building team. 

The winning company used a team of about 200 builders, and 

had the house ready in a little over four hours! 
This is a striking illustration of the benefits of parallelism: a 

single person working alone would need a lot more time to com

plete the house. It was only by working together, amid incredible 

feats of cooperation, coordination, and mutual effort, that the task 

could be accomplished in so short a time. Parallel computation 

allows many computers, or many processors within a single com

puter, to work on a problem together, in parallel. 

As to randomization, Russian roulette is a good illustration. 

While some people might consider unlikely the chances of getting 

killed in playing this 'game', most people would not and would 

never agree to participate. Fine. But let's now suppose that instead 

of a mere six bullet positions, the revolver has 2200 of them. A 

simple calculation shows that, in terms of risk, this is the same as 

saying that the trigger in an ordinary six-bullet revolver is actually 

pulled only if the single bullet always end up in the shooting posi

tion in 77 consecutive spins. The chances of getting killed in a 77-

spin game are many, many orders of magnitude smaller than the 

chances of achieving the same effect by drinking a glass of water, 

driving to work or taking a deep breath of air. If you have some 

important reason to participate in a 2200-position or 77-spin game, 

then you have absolutely no reason to worry about the risk 

involved; the probability of a catastrophe is unimaginably minute. 

In line with this example, randomization allows algorithms to 

toss fair coins (or spin revolver barrels, if you will) in the course of 

their action, yielding random outcomes. The consequences are 

surprising. Rather than introducing chaotic and unpredictable 
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results, we shall see that this new ability can be extremely useful. It 

often yields fast randomized, or probabilistic, solutions to prob

lems for which the only conventional solutions known are far less 

efficient. The price paid is the possibility of error, but, as in the 

roulette scenario, this possibility can be safely ignored. 

Quantum computing is a brand new approach to computation, 

based on quantum mechanics, that tantalizing and paradoxical 

piece of 20th century physics. So far, a few surprisingly efficient 

quantum algorithms have been discovered for problems not 

known to be tractable in the 'classical ' sense. However, to work 

they require the construction of a special quantum computer, 
something that as of now is still very much nonexistent. Molecular, 

or DNA computing, another very recent paradigm, has enabled 

researchers to coax a molecular solvent to solve instances of certain 

NP-complete problems, which raises interesting and exciting 

possibilities. 

The rest of the chapter discusses these ideas in varying levels of 

detail. However, being true to our goal of presenting bad news, we 

shall concentrate on whether even these more liberal ways of 

solving algorithmic problems are able to overcome the inherent 

limitations discussed in the previous chapters. 

parallelis m .  or j oining forces 

The house-building story makes it clear that doing many things in 

parallel can work wonders. Still, it's important to realize that you 

can't parallelize just anything. Consider digging a ditch, one foot 

deep, one foot wide, and ten feet long, and assume that a single 

person can dig a cubic-foot hole in an hour. A single digger would 

need ten hours to dig a ten foot ditch, but ten people could do the 
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job in one hour by working concurrently, side by side. Parallelism 

is at its best here. But say that we want a well, not a ditch, and a well 

is one foot wide, one foot long, and ten feet deep. Here parallelism 

achieves nothing, and even a hundred people would need ten 

hours to get the job done. 

A similar example involves nine couples trying to join forces in 

having a child in one month . . . . 

Some algorithmic problems can be nicely 'parallelized', despite 

the fact that the first solutions that come to mind are sequential in 

nature) Consider the salary summation problem of Chapter 1. It 

might appear necessary to do what we did, namely, to run through 

the list of employees linearly, adding the salaries one at a time; just 

like digging a well. Not so. Figure 5 . 1 illustrates a simple parallel 

algorithm for salary summation that runs in logarithmic time -

a momentous improvement over linear time, as shown in Chapter 
3. The method is to first consider the entire list of N employees two 

by two, in pairs; 

< 1 st, 2nd>, <3rd, 4th> ,  <5th, 6th> . . . , 

and to sum the two salaries in all pairs simultaneously, yielding a 

list of half the length of the original. This takes the time of a single 

addition only, since all NI2 summations of the pairs are carried out 

at the same time. The new list (of length N12) is then arranged 

similarly in pairs, and the two numbers in each pair are again 

added simultaneously, yielding a new list of N/4 numbers. This 

continues until there is only one number left, which is the sum of 

1 The term sequential processing is usually used to contrast with parallel 
processing, and denotes the usual way of computing with a single 
computer, or processor. 
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Step 1 Step 2 
(N/2 processors) (N/4 processors) 

Fig. 5 . 1 .  Summing salaries using parallelism. 

Step log2N 
( 1  processor) 

the salaries in the entire list. The total number of steps this takes is 

the logarithm base 2 of N, so the entire logarithm runs in time 

proportional to log N. 

With the table of Chapter 3 in mind, this logarithmic running 

time means that l OOO salaries can summed in the time that it takes 

to carry out just 1 0  additions, and a million salaries can be 

summed in the time of only 20 additions. Great savings indeed. 

But we should also talk about the hardware required for this, 

namely, the number of processors we would need. This complex

ity measure is sometimes termed hardware size. To simultaneously 

carry out the half million additions of two salaries required in the 

first step of summing a million salaries, we need half a million 
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processors. The same ones can then be used to carry out the 

250 000 additions of the second stage (half of them, of course, 

would be idle ) ,  followed by the 125 000 additions of the third 

stage, and so on. In general, then, to bring the time performance 

of summing N salaries down from linear time to logarithmic time 

we need NI2 processors, a number that depends on N. 

This is necessarily the case, for if we only had a fixed number of 

processors, one that didn't grow with N, we could not improve 

things beyond a constant factor: we might be able to sum salaries 

twice as fast, or 1 00 times as fast, but the overall time perform

ance would still be proportional to N, that is, it would be linear 

time. To achieve an order-of-magnitude improvement requires 

expanding parallelism, where the number of processors grows as 

N grows.2 

can parallelis m eliminate the bad 

news ? 

So parallelism can improve things: many problems can be solved 

faster, even in order-of-magnitude terms, if parallelism is allowed. 

2 You might conceivably claim that a growing number of processors is 
just not feasible, since computers are of fixed size. In a puristic sense this 
is true, but a similar argument could be made about memory space, and 
perhaps also about time. The purpose of complexity measures is to 
provide means for estimating how the amount of resources grows as 
inputs get larger. We must be able to solve an algorithmic problem for 
tomorrow's inputs too, without having to come up with a new algorithm 
each time. In this respect, processors are considered a resource as any 
other, and we want to know how large the hardware has to be for 
ever-larger inputs. 
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Not all problems, o f  course, but some. Digging ditches yes, but 

digging wells no. You can feed nine babies fast with nine pairs of 

parents, but you can't produce one baby faster than the norm, even 

with such a team. 

Good. So can we put all this bad news nonsense aside now? 

Let's see. The first thing to ask is whether parallelism can solve 

problems that could not have been solved at all otherwise. Can we 

devise a parallel algorithm for a noncomputable or undecidable 

problem? The answer is no. Any parallel algorithm can be simu

lated sequentially, by a single processor that runs around doing 

everyone's work. This will typically take much longer than the par

allel algorithm, but it can be done. An immediate consequence is 

that the Church-Turing thesis applies to parallel models of com

putation too: the class of problems solvable by algorithmic devices 

is insensitive even to the addition of parallelism. Even harnessing 

all the world's computers in a mighty universal effort would not 

solve the tiling problem or enable us to detect Y2K bugs. So much 

for that. 

The next question is whether parallelism can turn intractable 

problems into tractable ones. Is there a problem requiring an 

unacceptable (that is, super-polynomial) amount of time for 

sequential solution that can be solved in parallel in acceptable ( that 

is, polynomial ) time? 

To be able to better appreciate the subtlety of this question, 

consider the NP problems of Chapter 4. As you may recall, all 

problems in NP have good nondeterministic solutions. They can 

be solved efficiently with the aid of a magic coin, which, if tossed 

when confronted with a choice, will use its wizardry to point in 

the direction that leads to the best answer - a 'Yes' for a deci

sion problem - if there is such a direction. Now here is the 
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interesting fact: if we have parallelism we don't need the magic 

coin. Whenever a 'crossroad' is reached, lacking magic we simply 

send off new processors to follow all the possibilities simultane

ously. If one of them ever comes back and says 'Yes', the entire 

process halts and says 'Yes' too; if a predetermined polynomial 

amount of time has elapsed and none of them has said 'Yes', the 

process halts and says 'No'. The fact that the problem is in NP 

means that a 'Yes' answer ( if the answer is indeed 'Yes' ) would 

have been discovered using a magic coin in this amount of time, 

so that our exhaustive, multiple-processor traversal of all poss

ibilities will find the 'Yes' in the same amount of time too. If it 

doesn't find a 'Yes' within the allotted time, the answer must be 

'No'. 

Consequently, all problems in NP, including the NP-complete 

ones, such as monkey puzzles, traveling salesmen, timetables, and 

box-packing, have polynomial-time parallel solutions. 

Neat. So, is this not intractability made tractable? 

Well, no, not quite. Two comments are in order, before we rush 

off telling everyone that intractability is but a bothersome conse

quence of old-fashioned one-processor computing, and that it can 

be eliminated by using parallelism. 

First, we only know how to make NP-complete problems good: 

but we don't know how to do so for the provably bad ones ( like 

Roadblock; for example) .  None of the NP-complete problems is 

known to be intractable - they are merely conjectured to be so. 

Thus, the fact that we can solve NP-complete problems in poly

nomial time using parallelism doesn't imply that parallelism 

can rid even a single problem of its inherent intractability, since 

we don't know whether the NP-complete problems are really 
intractable. 
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Second, and more importantly, the hardware size needed for 

carrying out a good parallel algorithm will very often be bad! 

In particular, this is true for the above method for solving NP

complete problems: if we try to avoid the need for a magic coin by 

parallel consideration of all possibilities, we are in for a big sur

prise. Exponentially big, in fact! Using parallelism to figure out in 

less than zillions and zillions and zillions of years whether class 

schedules can be found that satisfy the constraints of high schools, 

you would need a wholly unreasonable computer containing zil

lions and zill ions and zillions of intricately connected processors. 

Moreover, even though the parallel algorithm has a polynomial 

time bound, it is by no means obvious that it can actually be run 

in polynomial time on a real parallel computer. Researchers have 

proved that under quite liberal assumptions about the width of 

communication lines and the speed of communication, a super

polynomial number of processors would often require a super

polynomial amount of actual time to carry out even a polynomial 
number of steps, no matter how the processors are packed 

together. These results are based on the inherent limitations of 

three-dimensional space) Put more concisely, good parallel time 

often comes with the unwanted guest of extremely bad hardware 

size, and moreover, this good time doesn't necessarily stay good 

when the hardware is bad. 

The question thus remains: can we use parallelism, even with 

unreasonably sized hardware, to solve in an acceptable amount of 

time a problem that is provably unsolvable sequentially in an 

acceptable amount of time? This question is still open, leaving a 

3 P. M. B. Vitanyi ( 1 988) .  'Locality, Communication and Interconnect 
Length in Multicomputers', SIAM J. Comput. 1 7, 659-72. 
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big gap in our understanding of what can really be achieved by 

entities working together.4 

4 Interestingly, parallel-PTIME (problems solvable in polynomial-time 
using parallelism) turns out to be equivalent to the class PSPACE 
(problems solvable sequentially using a polynomial amount of memory 
space) .  Therefore, the question of whether parallel-PTIME is strictly 
larger than PTIME is really equivalent to a question involving sequential 
computation only, namely, whether PSPACE is strictly larger than 
PTIME. This P vs. PSPACE question is considered by researchers to be 
very difficult, and not unlike the P vs. NP question of Chapter 4. Another 
central question that arises is what we really mean when we refer to 
'good' in the presence of parallelism. Parallel PTIME might not be the 
right choice, since, as mentioned, polynomial time parallel algorithms 
may require an exponential number of processors, and may take more 
than a polynomial amount of time to run on a real parallel machine. 
Also, one of the purposes of introducing parallelism is to reduce running 
time, drastically if possible. We often want sublinear algorithms, that 
exploit parallelism to such an extent that they don't even have to read the 
entire input in order to do their work. An interesting response to this 
challenge involves a class of problems called NC, defined as those that 
admit extremely fast parallel solutions, much faster even than linear time 
(poly-logarithmic time, in fact) ,  and require only polynomially many 
processors. See N. Pippenger ( 1 979) .  'On Simultaneous Resource Bounds 
(preliminary version) "  Proc. 20th IEEE Symp. On Foundations of 
Computer Science. IEEE, New York, pp. 307-1 1 ;  S. A. Cook ( 1 98 1 ) . 
'Towards a Complexity Theory of Synchronous Parallel Computation', 
L'Enseignement Mathematique 27, 99-1 24. Although many problems, 
such as sorting, turn out to be in NC, there are still many things we don't 
know about this class. For example, no-one knows whether this kind of 
speedup is possible for all problems in PTIME. Thus, while it is known 
that NC is contained in PTIME - which, in turn, is contained in NP, 
which, in turn, is contained in PSPACE - it is not known whether these 
three inclusions are strict, but many computer scientist� believe that they 
are. The situation is thus as follows, where the symbol C means 'is a 
smaller set than, but is not known to be strictly smaller than' : 

NC C PTIME C NP C PSPACE ( = parallel-PTIME) 
continued on next page 
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But there i s  more to research i n  this area than trying to solve 

such as-of-now unyielding open questions. Parallelism, or concur

rency, is a fact of life, and the better we understand it the more we 

can use it to our advantage. As it stands, recent algorithmic and 

technological advances in this area seem to be ahead of each other. 

Many of the best parallel algorithms devised cannot be imple

mented because existing parallel computers are inadequate in 

some way or another. In fact, very few parallel algorithms have 

ever been run effectively on real parallel computers, and this 

includes some of the fastest ones invented. On the other hand, we 

still don't have a good enough understanding of what can be algor

ithmically parallelized to take full advantage of the features those 

same computers offer. 

randomiz ation . or tos s ing coins 

Parallelism landed us outside the world of conventional algorithms, 

in that it allowed the utilization of more than one processor. This 

continued 

Put in words, the conjectures (from right to left) are as follows: ( i )  There 
are problems that can be solved sequentially with a good amount of 
memory space - which is the same as being solvable in parallel in 
good time (but possibly bad hardware size) - that cannot be solved 
sequentially in good time even with magical nondeterminism. ( i i )  There 
are problems that can be solved sequentially in good time with magical 
nondeterminism that cannot be solved sequentially in good time 
without it. (i i i)  There are problems that can be solved sequentially in 
good time that cannot be solved in parallel in extremely little time with 
good hardware size. These are three of the deepest, most important 
and most difficult open questions in computer science. Proving or 
disproving any one of them would constitute a major breakthrough 
in understanding the true fundamentals of computation. 
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new freedom is easily seen to improve things, and required little 

justification. We now extend conventional computing in a totally 

different way, by allowing algorithms to toss coins during their exe

cution, yielding random outcomes. Such algorithms are termed 

probabilistic, or randomized. 

Computers tossing coins?! Doesn't that introduce chaotic, 

unpredictable behavior into the otherwise orderly, carefully 

specified, step-by-step world of algorithmic processing? Well, yes it 

does, but in many cases we can exploit the unpredictability of 

tossing a coin, making it work for us instead of against us. There 

are basically two ways to do this. In the first, dubbed the Las Vegas 
approach,s a correct but inefficient algorithm is constructed, and 

randomness is used to help expedite its execution with high prob

ability. In a nutshell, Las Vegas algorithms are characterized by 

being always correct and probably fast. 

An example involves quicksort, a very popular sorting algo

rithm. Quicksort happens to have a rather disappointing worst 

case running time (N2, which for sorting is slow - see Chapter 3 ) ,  

but a very good average case one, namely about 1 .5 x N log2N, 

which often makes it the sorting algorithm of choice. However, 

certain applications give rise to uneven collections of input lists 

that cause quicksort to perform badly, closer to the quadratic 

worst-case bound. Curiously, if the input list is already sorted, and 

thus requires no work at all, the algorithm will not detect this fact 

and will perform its absolute worst, running in quadratic time! 

What can be done about this, to cause inputs to act like average 

5 The terms 'Las Vegas' and 'Monte Carlo' are not particularly telling, 
but for some reason they are the ones used by computer scientists, and 
they seem to have stuck. 
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ones? Simple: we will first shake up the input i n  a n  arbitrary 

fashion. More precisely, we carry out a preprocessing stage prior to 

applying the quicksort procedure itself, in which coin tossing is 

used to shuffle up the input list according to a random permuta

tion. This guarantees that the list sent off to be sorted will be an 

'average' list. Far from making things any worse, this strange trick 

causes the running time, with high probability, to be much closer 

to the excellent average case bound. The resulting 'mix

and-then-sort' algorithm is of the Las Vegas type. It always sorts 

correctly and is very fast with high probability. With some small 

probability it could run in the not-so-good time of N2. 

The other kind of randomized algorithm is termed Monte 
Carlo. This approach takes a far more radical leap, renouncing our 

most sacred requisite, namely, that a solution to an algorithmic 

problem must solve that problem correctly for all possible inputs. 

Of course, we can't abandon correctness completely, since then any 

algorithm would 'solve' any problem. Nor do we recommend that 

people use algorithms that they hope will work, but whose per

formance they can only speculate about, and not analyze. Rather, 

we are interested in algorithms that might not always be correct, 

but whose possible incorrectness is something that can be safely 

ignored. And we insist that this fact be justifiable on rigorous 

mathematical grounds. In contrast to Las Vegas algorithms, which 

are always correct, and probably fast, Monte Carlo algorithms are 

always fast, but are only probably correct. The probability, 

however, must be very, very high. 

Here is an example. Suppose you are organizing a large dinner 

party where the guests are to bring the food. But you want some 

order. Instead of each guest bringing whatever they want, you 

would like about a quarter of them to bring appetizers, about a half 
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to bring main courses, and the remaining quarter to bring desserts. 

(You provide the wine and beer. ) A naive way to arrange this is for 

you to determine the assignments yourself, according to your 

quarter/half/quarter scheme. A randomized approach, which is 

easier for you (because you don't have to keep track of who was told 

what and you avoid the inevitable arguments with people about 

their assignments) ,  is as follows. Simply tell each guest to toss a coin 

at home. If the outcome is 'Heads', they bring a main course, 

otherwise they toss again. If the outcome on the second throw is 

'Heads', they bring an appetizer, and if it is 'Tails' they bring a 

dessert. With very high probability (that gets higher as the dinner 

party gets larger) ,  the food will be as you wanted. Not always, and 

not exactly, but it will come very close most of the time. 

more on Monte C arlo algorithms 

Randomized algorithms are used for things far more critical than 

making sure you're not stuck with a table full of appetizers. 

Consider the following situation, which is not unlike the Russian 

roulette story discussed earlier, but involves money rather than 

lives. Assume that, for some reason, all your money was tied up to 

the monkey puzzle problem of Chapter 4 in the following way. You 

are given a single large instance of the problem (say a 1 5  x 1 5  

version with 225 cards) ,  and are told that your money will be 

doubled if you can say correctly whether the cards can be arranged 

in a legal I S  x 1 5  square. You are also told that you lose the lot if 

you give the wrong answer. To discourage indecision, the money is 

unavailable until you give some answer. Since the monkey puzzle 

problem is NP-complete, you have a real problem. What do you 

do? 
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You could run your favorite exponential-time monkey puzzle 

algorithm on the input cards, hoping that this particular case is an 

easy one and will be solved reasonably fast, or you could position 

yourself on the floor and start trying things out on your own. 

Alternatively, realizing that these options are useless, you might 

simply guess 'Yes' or 'No' and hope for the best. At least there you 

have a 50% chance of succeeding. 

Is there any better way? 

Suppose some kind soul approached you just as you were about 

to make your wild guess, and offered you (cheaply) a Monte Carlo 

algorithm that solved the monkey puzzle problem fast, but with a 

slight chance of error: it was guaranteed that it gave the wrong 

answer only once in every 2200 runs. Is that good news? It sure is. 

You money is as safe as any. Take the deal. Run this algorithm on 

the input cards and present your tormenter with the answer. As in 

the 2200-position version of Russian roulette, the chances of losing 

your money are far, far less than the chances of a hardware error 

occurring in all the bank's computers together, precisely during 

this execution, or the chances of your bank going bankrupt anyway 

the very next day. 

The fact is that for many algorithmic problems, including some 

that appear to be intractable, such extremely-small-probability-of

error algorithms exist, and are usually very time-efficient. Whether 

or not such solutions exist for the monkey puzzle problem or for 

other NP-complete problems is still not known, but for many 

similar problems they do. So our little scenario about your money 

is not yet doable with the monkey puzzle, but it is doable with other 

problems, such as the one described in the next section. For all con

ceivable practical purposes, a randomized algorithm of the Monte 

Carlo type is perfectly satisfactory, whether it is an individual's 
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money or life that is at stake, a company's financial future, or an 

entire country's security. The chances of a mishap are negligible, 

and, as we shall see, you are the one who gets to determine ahead of 

time how large a risk you are willing to take. 

tes ting for primality 

An important utilization of randomization is in testing a number 

for primality. Problem 3 on the list of Chapter 1 was this: 

Problem 3 

Input: A positive integer K. 

OlltpUt: 'Yes' if K is prime and 'No' if it isn't. 

The primes constitute the most interesting class of numbers ever 

to have caught mathematicians' attention. They play a central role 

in the branch of mathematics known as number theory and have 

many remarkable properties. Their investigation has led to some 

of the most beautiful results in all of mathematics. Also, as we shall 

see in Chapter 6, prime numbers are fast becoming indispensable 

in several exciting applications of algorithmics, such as cryptogra

phy, where it is important to be able to quickly test the primality 

of large numbers. 

How do we determine whether a number K is a prime? Chapter 

1 mentioned the naIve method of dividing K by all the integers 

between 2 and VK. We pronounce K composite if any one of 

these potential divisors is found to divide it without a remainder, 

and decide that it is prime if all divisions have been carried out and 

have all yielded remainders. This algorithm is fine. It is simple, it 
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i s  correct, and i t  works quite nicely for numbers o f  2 0  digits o r  so. 

Unfortunately, many of the interesting applications require much 

larger primes - say, 1 50- or 200-digit ones. We have to know how 

the naIve algorithm behaves as K grows, and the number of digits 

is the right thing to be looking at, since in primality testing, as in 

most other number theoretic algorithmic problems, the size of the 

input is not the value of the numbers at hand but their length in 

digits. Thus, we would like to know just how fast this primality 

testing algorithm is as a function of N, the number of digits in the 

input number K.6 

The sad fact is that even with the best improvements known, 

such as passing over multiples of candidate dividers that have 

already been tested, this common primality testing algorithm is 

unreasonably inefficient; its time complexity is exponential in N. 
On a 200-digit number it could take many, many billions of years 

using even the fastest computers. There are better algorithms than 

this, but they are still not polynomial time, and the problem is not 

known to be tractable in the usual sense.? 

6 The basis of the digital representation is unimportant here: there are 
only linear differences between the length of a number written in binary 
or in decimal representation, or in any other representation that utilizes 
at least two digits. 

7 In contrast to the NP-complete problems, there are many people who 
believe that primality testing is in PTIME. In fact, there are algorithms for 
primality testing that run in 'almost' polynomial time, at least in terms of 
order-of-magnitude complexity. The best one currently runs in time 0 
(NO(log, log,N » ) ,  which can be considered very close to polynomial time, 
since the function log2 log2 N grows very slowly; the first N for which it 
exceeds 5 is more than four billion, and it doesn't reach 6 until N is well 
over 18 billion billion. See L. Adelman, C. Pomerance, and R. S. Rumely 

continued on next page 
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randomized primality tes ting 

This bleak news notwithstanding, in the mid- 1970s, following early 

work of Michael Rabin on probabilistic computing, a couple of 

ingenious Monte Carlo algorithms were discovered for testing pri

mality. They were among the first randomized solutions to be 

found for hard algorithmic problems, and have triggered extensive 

research that has led to improved solutions to many other problems 

too. The running times of these primality testing algorithms are 

( low-order) polynomials in the length N of input number K. They 

can test the primality of a 200-digit number with negligible prob

ability of error remarkably fast on even a very small computer!S 

The algorithms are based on searching at random for a certain 

kind of certificate, or witness, to K's compositeness. Such a witness 

is a number whose special mathematical properties serve as a true 

proof of the fact that K is composite. If a witness is found, the 

algorithm can safely stop and say 'No, K is not prime', since it has 

acquired undisputable evidence of that fact. However, the setup 

continued 
( 1 983 ) .  'On Distinguishing Prime Numbers from Composite Numbers', 
Ann. Math. 1 1 7, 173-206. If we disregard constant factors for a moment, 
this means that on an input number with a billion digits - that is, a 
number K whose length N is a billion - the algorithm still runs within 
a time bound of roughly NS, and K has to have over 18 billion billion 
digits before it starts behaving according to the bound of N6. 
Nevertheless, this is still super-polynomial time performance, since 
eventually it will reach N6, and then N1, and so on, without limit. 

8 M. O. Rabin ( 1 980) .  'Probabilistic Algorithm for Testing Primality', 
J. Number Theory 1 2, 1 28-38; G. L. Miller ( 1 976) .  'Riemann's 
Hypothesis and Tests for Primality', J. Comput. Syst. Sci. 1 3, 300- 1 7; 
R. Solovay and V. Strassen ( 1 977) .  'A Fast Monte-Carlo Test for 
Primality', SIAM J. Comput. 6, 84-5. 
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must b e  such that a t  some reasonably early point i n  time the algor

ithm will be able to stop searching and declare that K is prime, 

with a very small chance of being wrong. 

To help appreciate the difficulty of defining such witnesses, let's 

see what happens if we try to work with the obvious candidates, 

namely, K's factors. Say we define a witness to be any number 

between 2 and K - 1 that divides K exactly. We now go ahead 

trying to find such a number by random guesses. The random 

search for a factor is fast: we use the coin repeatedly to 'guess' digit 

after digit of the candidate, and then check whether the resulting 

number is indeed a good witness by carrying out a simple division. 

If we find that K divides the candidate evenly, we have conclusive 

evidence that K is composite, exactly as needed. The problem, 

however, is what to do if the division leaves a remainder. There are 

exponentially many numbers between 2 and K - 1 (that is, expo

nential in N, the length of K), and even if we manage to avoid 

checking multiples, there are still exponentially many candidates 

that might have to be checked if we want to stop trying at some 

point and declare K to be prime with only a very small chance of 

being wrong. 

Put in simple words, there are too many potential places to look 

for a witness, and the actual witnesses are distributed too sparsely, 

so that trying to find one at random is like looking for a needle in 

a very large haystack. 

To be able to utilize the witness idea, we must come up with dif

ferent kinds of witnesses for non-primality. Just like factors, the 

new witnesses must also provide undisputable evidence of K's 

compositeness, but they must be distributed a lot more densely, so 

that a random probe is far more likely to find one - if there is one. 

Such witness definitions have indeed been discovered, and they are 



1 3 8  c o m p u t e r s  L t d . 

at the heart of the fast primality testing algorithms. We shall not 

get into the details of these witnesses here, but we should say a few 

words about their effect. 

In one of these probabilistic primality testing algorithms, things 

are set up in such a way that if the input number K is composite, 

more than half of the numbers between 1 and K- l are witnesses. 

This means that if you pick a number in this range at random, and 

it turns out not to be a witness to K's compositeness, you can be 

more than 50% certain that K is prime, since the probability of 

missing a witness when K is not prime is less than t. If you carry 

out the same thing again, choosing some other potential witness at 

random, and you don't hit upon a witness this time either, you can 

be 75% sure that K is prime. This is because the two random 

probes were carried out independently, so that the probabilities are 

multiplied, resulting in the probability of a miss becoming t. For 

three probes, the chance of missing a witness when K is composite 

is t, and our confidence in K's primality goes up to 87.5%, and so 

on. Thus, if we carry out R probes, the chance of missing a witness 

is 1 in 2R.9 

This translates immediately into an extremely fast probability 

testing algorithm. (See Fig. 5 .2 for a schematic description.) 

Choose, say, 200 random numbers between 1 and K-l and test 

each for being a witness to K's composite ness; stop and say 'No, K 

is not prime' if and when any one of them is found to be a witness, 

and stop and say 'Yes, K is prime' if they all pass the witness-testing 

9 We should add that checking whether a candidate number is a true 
witness can be done very efficiently, but since we have not provided the 
technical definition of a witness, we shall say no more on this matter 
here. 
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Fig. 5.2. Randomized primality testing. 

procedure in the negative. We can always believe a 'No' coming 

from this algorithm, since finding a valid witness provides unshak

able evidence that K is composite. When it outputs a 'Yes' we can 

believe it too, since although the algorithm might be wrong the 

chances are less than 1 in 2200, which is unimaginably minute. 

Recalling the Russian roulette story here, we conclude that this 

performance is more than adequate for any practical purpose. It 

can - and should! - be used freely even for cases where people's 

money or lives are at stake. Moreover, if such an incredible prob-
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ability of success is not good enough, you can simply instruct the 

algorithm to test 20 1 random candidates for witness, instead of 200, 

cutting the chances of error yet again in half, or 500 candidates: 

making the probability of error the ridiculously small: 1 in 2500. We 

might add that, in practice, testing 50 candidates has proved to be 

perfectly adequate for an input number of 200 digits or so. . 

can randomiz ation eliminate the 

bad news ? 

We now know that besides parallelism randomization is also cap

able of providing dramatic improvements in algorithmic per

formance. Great. So, can we now forget about this bad news stuff? 

No, not really. As far as raw computability and decidability go, 

the Church - Turing thesis extends to randomized algorithms too: 

like parallelism, randomization cannot be used to solve the non

computable, since every randomized algorithm can be simulated 

by a conventional one. 

How about tractability? Can we turn an intractable problem into 

a tractable one using randomization? As in the case of parallelism, 

no-one knows. Some problems that are not known to be in 

PTIME, like primality testing, can be solved very fast using ran

domization, but we don't know if this can be done for a provably 
intractable problem. In fact, some problems that are conjectured 

to be intractable in the usual sense are conjectured to remain so 

even in the face of randomization. Factoring numbers is one 

example. Most researchers believe that the factoring problem, 

which asks for the factors of a composite number, is not solvable 

in polynomial time, even with coin-tossing (although we shall 

soon see that in the quantum world this is no longer true ) .  We 
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should add that allowing both parallelism and randomization 

doesn't make things significantly better, so that even in the pres

ence of both kinds of liberty discussed so far, the bad news of the 

previous chapters remains standing, tall and firm.lo  

can computers s imulate true 

randomnes s ?  

An issue that we should address is the way computers can be 

made to toss fair, unbiased coins. The problem is that a real digital 

computer is a totally deterministic entity; all of its actions can be 

! O The class RP stands for random-PTIME, problems solvable in 
polynomial time using Monte Carlo-type coin tossing algorithms for 
the 'Yes' direction. More precisely, RP contains the decision problems 
for which there is a polynomial-time coin tossing Turing machine with 
the following property. If the correct answer for an input X is 'No', the 
machine says 'No' with probability 1, and if the correct answer is 'Yes', 
it says 'Yes' with probability greater than 1. Of course, the interest in RP 
stems from the fact that these possibly erroneous computations can 
be reiterated many times, achieving an exponentially diminishing 
probability of error, as explained for the fast primality testing algorithm. 
RP lies between PTIME and NP. Here too, many researchers believe that 
the inclusions are strict. Spelled out in words, these beliefs read as 
follows: (i) There are problems that can be solved in good time with 
magical nondeterminism that cannot be solved in good time without it 
even using randomization. ( i i )  There are problems that can be solved in 
good time with randomization that cannot be solved in good time 
without it. Adding RP to the symbolic summary given in an earlier 
footnote, we get: 

NC t. PTIME t. RP t. NP t. PSPACE ( = parallel-PTIME) 

It is thus interesting that in the realm of polynomial time we don't know 
whether coin tossing provides any real additional power, or whether 
magical coin tossing provides even more. 
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predicted in advance - at least in principle. Consequently, com

puters can't generate truly random numbers, and hence they can't 

simulate the truly random tossing of fair coins. So what can we 

do? 

We could perhaps appeal to a physical source. For example, our 

computer could be attached to a small robot hand that scoops up 

some sand from a large container, counts the sand grains in the 

scoop, and decides 'Heads' if the number is even and 'Tails' other

wise. This approach has several obvious drawbacks. A more prac

tical idea involves pseudo-random numbers. A pseudo-random 

sequence of 'O's and ' l 's is one that cannot be distinguished from a 

truly random sequence in polynomial time. So, it's not really 
random but you'll never be able to tell the difference. This is per

fectly satisfactory for our purposes, which will always involve 

solving problems in polynomial time: if no process can tell the dif

ference between our computer's tosses and real random tosses in 

an acceptable amount of time, we are in good shape. 

Unfortunately, however, no-one knows if pseudo-random 

numbers can themselves be generated in polynomial time! 

Computers that run randomized algorithms indeed have access to 

random number generators, and these appear to be satisfactory in 

practice. But whether the sequences they produce are actually 

pseudo-random (that is, whether they are really indistinguishable 

from true random ones in polynomial time) depends on open 

problems of the kind discussed earlier. Thus, rather curiously, not 

only do we not know whether randomized algorithms can turn 

intractable problems into tractable ones, but the very ability to 

generate the random numbers that are needed in such algorithms 

hinges on unknowns about the very nature of intractability. Yes, 

that does sound a little strange, but it's true nevertheless. 
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q uantum computing 

So what's all this fashionable new quantum computing stuff? Well, 

it is a deep and complicated topic, and one that is very hard to 

describe in the expository fashion of this book. It hinges upon 

quantum mechanics, a remarkable topic in modern physics, which 

is unfortunately slippery and difficult to grasp, and is often 

counter-intuitive. A lot of mathematics is needed to explain what is 

going on, since trying to employ worldly common sense to the 

quantum world can easily become a hindrance to comprehension 

rather than an aid. The following sections will thus read more like 

high-level ramblings than like a careful attempt at responsible 

exposition. My apologies for that (and several pointers to surveys in 

the literature for the more curious, mathematically adept readerl l ) .  

O n  the brighter side, there i s  a chance - a very small one as of 

the time of writing - that quantum computing could bring with 

it good news of the kind alluded to in this book. How, why, and 

when, are the questions we shall try to address, very briefly, and 

very superficially. 

One of the main advantages of quantum physics is its ability to 

make sense out of certain experimental phenomena on the parti

cle level, which classical physics seemed unable to do. Two of the 

main curiosities of the quantum world, stated very informally, are 

I I C. P. Williams and S. H. Clearwater ( 1 998) .  Explorations in Quantum 
Computing. Springer-Verlag, New York; D. Aharonov ( 1 998) .  'Quantum 
Computation', Annual Reviews of Computational Physics VI; A. Berthiaume 
( 1 997). 'Quantum Computation', in Complexity Theory Retrospective II 
(Hemaspaandra and Selman, eds) .  Springer-Verlag, New York, pp. 23-5 1 ;  
M .  Hirvensalo ( 1 998) .  'An introduction to quantum computation', Bull. 
Europ. Assoc. for Theor. Compo Sci. 66, October, 100-2 1 .  
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that a particle can no longer be considered to be at a single loca

tion in space at a particular time, and that its situation ( including 

location) can change as a result of merely observing it. The first of 

these seems like good news for computing: might we not be able to 

exploit the property of being at many places simultaneously to 

carry out massive parallelization of a computation? The second, 

however, seems like bad news: trying to 'see' or 'touch' a value 

during a computation, say, to carry out a comparison or an 

update, could change that value unpredictably! 

Quantum computation has its roots in early work by Bennett 

and Benioff, but is considered to have first been proposed in 1982 

by Richard Feynman, followed by a more detailed proposal by 

David Deutsch. 1 2 The motivating idea was that if a computer could 

be built that operates according to the laws of quantum physics, 

rather than those of classical physics, one might be able to obtain 

an exponential speedup for certain computations. 

A quantum computer, like a classical one, is to be based on some 

kind of finite-state element, analogous to the classical 2-state bit. 

The quantum analog of a bit, called a qubit, can be envisioned 

physically in a number of ways: by the direction of photon polar

ization (horizontal or vertical ) ,  by nuclear spin (a special 2-valued 

quantum observable ) ,  or by the energy level of an atom (ground 

1 2 C. Bennett ( 1 973 ) .  'Logical Reversibility of Computation', IBM J. 
Research and Development 1 7, 525-32; P. Benioff ( 1 980) .  'The Computer 
as a Physical System: A Microscopic Quantum Mechanical Hamiltonian 
Model of Computers as Represented by Turing Machines', J. Stat. Phys. 
22, 563-9 1 ;  R. Feynman ( 1 982) .  'Quantum Mechanical Computers', 
Optics News 1 1 , 1 1-20; D. Deutsch ( 1 985) .  'Quantum Theory, the 
Church-Turing Principle, and the Universal Quantum Computer', Proc. 
R. Soc. London A400, 97-1 1 7. 
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o r  excited) . The two so-called basis states o f  a qubit, analogous to 

the 0 and 1 of an ordinary bit, are denoted by 1 0) and 1 1 ), respec

tively. What we don't have in a quantum system is the simple deter

ministic notion of the qubit being in one basis state or another. 

Rather, its notion of being or not being is indeterminate: all we can 

say about the status of a qubit is that it is in both of the states 

simultaneously, each with a certain 'probability'. (Should we call 

this ' To qubee or not to qubee'?) But, as if to deliberately make 

things even less comprehensible to mortals, these are not ordinary, 

positive-valued probabilities, like being in state 10) with prob

ability t and in 1 1 ) with probability t .  The 'probabilities' can be 

negative, even imaginary (Le. complex numbers that involve 

square roots of negatives) ,  and the resulting combination state is 

called a superposition. Once we 'take a look' at a qubit, i.e. make 

a measurement, it suddenly decides where to be, we see it in one 

basis state or the other, the probabilities disappear and the super

position is forgotten. 1 3 This kind of 'forced discreteness' is what 

leads to the adjective 'quantum'. 

So much for a single qubit. What happens with many qubits taken 

together, side by side, which we need as the basis for true quantum 

computation? How are the states of several qubits combined to 

obtain a compound state of the entire computing device? In the 

classical case, any collection of N bits, each of which can be in two 

states 0 or 1 ,  gives rise to 2N compound states. In the quantum world 

of qubits we also start with the 2N compound states built from the 

1 3 Specifically, a superposition is what is sometimes called a complex 
unit-length linear combination of the basis states. That is, the 
coefficients are two complex numbers Co and c[ satisfying ICo l 2  + I c[ 1 2 = 1 .  
After measuring, we will 'see' a 0 with probability ICo l 2  And a 1 with 
probability I c[ 1 2 .  
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basis states of N qubits ( in the case of two qubits, for example, the 

four compound states are denoted 100), 10 1 ), 1 1 0) and 1 1 1 ». To these 

we then apply complex combinations, just as we did for a single 

qubit. However, here, the way the combinations are defined gives 

rise to an additional crucial twist called, appropriately, entangle

ment: some of the compound states are clean composites that can be 

obtained - using an operation called a 'tensor product' - from the 

states of the original qubits, but some can't; they are entangled. 

Entangled qubits, a term that comes with a precise mathematical 

rendition, represent an intrinsically non-separable 'mish-mash' of 

the original qubits. They have the weird property of instant com

munication: observing one and thus fixing its state causes the other 

to lock in the dual state simultaneously, no matter how far away they 

are from each other. Entanglement turns out to be a fundamental 

and indispensable notion in quantum computation, but unfortu

nately further discussion of its technicalities and the way it is 

exploited in the computations themselves is beyond the scope of this 

book. 

q uantum algorithms 

What have people been able to do with quantum computation? 

A few facts have to be stated up front. First, full, general-purpose 

quantum computing subsumes classical computation. That is, if 

and when built, a quantum computer will be able to emulate class

ical computations without any significant loss of time. Second, 

although seemingly weaker, a classical computer can still simulate 

any quantum computation, but this could entail an exponential 

loss of time. The fact that this simulation is possible means that 

quantum computation cannot destroy the Church-Turing thesis: 
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computability remains intact i n  the world o f  quantum computa

tion too. If and when actual quantum computers are built, they 

will not be able to solve problems not solvable without them. 

This having been said, the big question is whether the exponen

tial loss of time in the second statement is indeed insurmountable. 

Exactly as we did with parallelism and randomization, we ask 

whether there are provably intractable problems that become 

tractable in the quantum world. That is, is there a problem with an 

exponential-time lower bound in the classical models of computa

tion that has a polynomial-time quantum algorithm? 1 4  

Computation complexity aside, and the technological issue of  

actually building a quantum computer notwithstanding, there 

have already been some extremely exciting developments in 

quantum algorithmics. Here are some of the highlights. 

Deutsch showed how to achieve quantum parallelism, whereby 

superposition of the inputs is used to produce a superposition of 

outputs. I S  Interestingly, although this seems as though one is 

indeed computing lots of stuff in parallel, the outputs cannot be 

naively separated out and read from their superposition; any 

attempt at reading, or measuring, will produce only one output 

1 4 And as we did in earlier footnotes, if we use QP to stand for quantum
PTIME, the open issues become: 

PTIME t: RP t: QP t: PSPACE ( = parallel-PTIME) 

Thus, good quantum time lies around the same place as NP, i .e. between 
good random time and good memory space. Unfortunately, as before, 
we do not know whether any of the inclusions are strict. 

1 5 D. Deutsch ( 1 985) .  'Quantum Theory, the Church-Turing Principle, 
and the Universal Quantum Computer', Proc. R. Soc. London A400, 
97-l l 7. 
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and the rest will simply be lost. What is needed is for the algorithm 

to cleverly compute joint properties common to all outputs, and 

make do with them. Examples might include certain arithmetical 

aggregate values of numerical outputs, or the 'and's and 'or's of 

logical yes/no outputS. 1 6  

Later, Grover discovered a rather surprising quantum algorithm 

for searching in an unordered list, say a large database. Instead of 

using around N operations, an item can be found with v'N oper

ations only (the square root of N). This is counter-intuitive, almost 

paradoxical, since it would appear necessary to at least look at all N 

inputs in order to figure out whether what you are searching for is 

indeed there, l 7  

However, the big surprise, and indeed the pinnacle of  quantum 

algorithms so far, is Peter Shor's factoring algorithm. We have 

mentioned factoring several times in the book, and its importance 

as a central algorithmic problem is undisputable. As we have seen, 

factoring has not yet been shown to be tractable in the usual sense 

- it is not known to be in PTIME, and the very fact that it appears 

to be computationally difficult plays a critical role in cryptography, 

as we shall see in Chapter 6. So much so, in fact, that a significant 

part of the walls that hold up modern cryptography would come 

16 However, there are results that show that this ability is inherently 
limited. While the use of quantum parallelism can often yield significant 
gains in efficiency, it is unable to deliver each and every desired joint 
property. See R. Josza ( 1 99 1 ) . 'Characterizing Classes of Functions 
Computable by Quantum Parallelism', Proc. R. Soc. London A435, 563-74. 

1 7 L. Grover ( 1 996) .  'A Fast Quantum Mechanical Algorithm for 
Database Search', Proc. 28th Ann. ACM Symp. on Theory of Computing, 
pp. 2 1 2-19 .  This technique enables similar quadratic speedups for all 
problems in NP. 
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tumbling down i f  a n  efficient factoring algorithm would become 

available. It is against this background that one should view the 

significance of Shor's work, which provides a polynomial-time 

quantum algorithm for the problem. IS  
To appreciate the subtlety of quantum factoring, consider a 

naive algorithm that attempts to find the factors of a number N by 

trial and error, going through all pairs of potential factors and 

multiplying them to see if their product is exactly N. Why shouldn't 

we be able to do this using grand-scale quantum parallelism? We 

could use quantum variables to hold a superposition of all candi

date factors (say, all numbers between 0 and v'N ), then compute, 

in parallel, and in the best quantum spirit, all products of all pos

sible pairs of these numbers. We could then try to check whether 

there was a pair that did the job. Unfortunately, this wouldn't 

work, since taking a look at - that is, carrying out a measurement 

of - this enormous superposed output would not say much. We 

might just happen to hit upon a factorization, but we might also 

land on any other of the many products that are different from N. 

And as we have already mentioned, once you measure, that's what 

you get to see, and the rest is lost. So, just the mish-mashing of lots 

of information, that alone, is not enough. 

It turns out that things have to be arranged so that there is inter
ference. This is a quantum notion, whereby the possible solutions 

'fight' each other for supremacy in subtle ways. The ones that turn 

1 8 P. Shor ( 1 994) .  'Algorithms for Quantum Computation: Discrete 
Logarithms and Factoring', Proc. 35th Ann. Symp. On Found. Compo Sci. , 
pp. 1 24-34; P. Shor ( 1 997) .  SIAM J. Compo 26(5) ,  1 484. Shor's work 
relies on D. Simon ( 1 994) .  'On the Power of Quantum Computation', 
Proc. 35th Ann. IEEE Symp. On Found. Compo Sci. , pp. 1 1 6-23. 
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out not to be good solutions (in our case, pairs of numbers whose 

product is not N) will interfere destructively in the superposition, 

and the ones that are good solutions ( their product is N) will inter

fere constructively. The results of this fight will then show up as 

varying amplitudes in the output, so that measuring the output 

superposition will give the good solutions a much better shot at 

showing up. We should remark that it is the negative numbers in 

the definition of superposition that make this kind of interference 

possible in a quantum algorithm. 

This is easier said than done, and it is here that the mathematics 

of quantum computing gets complicated and is beyond the scope 

and level of our exposition. But what we can say is that the right 

kind of entanglement has been achieved for factoring. The algo

rithm itself is quite remarkable, both in its technique, and as we 

shall see later, in its ramifications. 1 9  

This algorithm hasn't yet turned a provably intractable problem 

into a tractable one, for two reasons, one of which we have repeat

edly mentioned and one of which we have hinted at but will 

shortly address in more detail . First, factoring isn't known to be 

intractable; we simply haven't been able to find a polynomial-time 

algorithm for it. It is conjectured to be hard, but we are not sure. 

Second, no-one yet knows how to build a quantum computer 

capable of implementing Shor's algorithm. 

1 9 Its time performance is roughly cubic, that is, not much more than 
M3, where M is the number of digits in the input number N. For the 
more technically interested reader, what Shor actually did was to find an 
efficient quantum method to compute the order of a number Y modulo 
N, that is, to find the least integer a such that ya = 1 ( mod N). This is 
known to be enough to enable fast factoring, and the rest of the work is 
done using conventional algorithms. 
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can there be a q uantum computer? 

When discussing parallelism earlier, we noted that there is a 

certain mismatch between existing parallel algorithms and the 

parallel computers that have been built to run them. To be 

efficiently implemented, many known algorithms require hard

ware features not yet available, and, dually, the theory of parallel 

algorithms has yet to catch up with what the available hardware is 
able to do. 

In the realm of quantum computation the situation is less sym

metric. We have at our disposal some really nice quantum algor

ithms, but no machines whatsoever to run them on. 

Why? Again, the issue revolves around deep technicalities, but 

this time the barrier preventing a detailed exposition here is not 

the mathematics but the physics. So, again, we shall only provide a 

very brief account, and the interested reader will have to seek more 

information elsewhere.2o 

At the time of writing (actually, the proof-reading; early-2000) ,  

the largest quantum 'computer' that has actually been built con

sists of a mere seven qubits. This is not a typing error; seven qubits. 
What is the problem? Why can't we scale up? 

Despite the fact that the quantum algorithms themselves, and 

Shor's in particular, are designed to work according to rigorous 

and widely accepted principles of quantum physics, there are 

severe technical problems around the actual building of a 

20 D. P DiVincenzo ( 1 995) .  'Quantum Computation', Science 270, 
25!HJ l ;  A. Berthiaume ( 1 997) .  'Quantum Computation', in Complexity 
Theory Retrospective II (Hemaspaandra and Selman, eds. ) .  Springer
Verlag, New York, pp. 23-5 1 ;  C. P. Williams and S. H. Clearwater ( 1 998 ) .  
Explorations in  Quantum Computing. Springer-Verlag, New York. 
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quantum computer. First, experimental physicists have not 

managed to be able to put even a small number of qubits (say, 20) 

together and control them in some reasonable way. The difficulties 

seem beyond present-day laboratory techniques. A particularly 

troubling issue is decoherence: even if you could gather a good 

number of qubits and cause them to behave nicely themselves, 

things that reside close to a quantum system have the pushy habit 

of affecting it. The quantum behavior of anything surrounding a 

quantum computer - the casing, the walls, the people, the key

board, anything! - can mess up the delicate setup of constructive 

and destructive interference within the quantum computation. 

Even a single naughty electron can affect the interference pattern 

that is so crucial for the correct execution of the algorithm, by 

becoming entangled with the qubits participating in that execu

tion, and as a result the desired superposition could fail. 

The computer thus has to be relentlessly isolated from its envir

onment. But it also has to read inputs and produce an output, and 

its computational process might have to be controlled by some 

external elements. Somehow, these contradictory requirements 

have to be reconciled. 

What kind of sizes do we really need? Some small-scale quantum 

coding protocols require only something like 1 5-20 qubits, and even 

Shor's algorithm needs only a few thousand qubits to be applicable 

in real-world situations. But since experimental physics can barely 

deal with six or seven qubits right now, and even that is extremely 
difficult, many people are pessimistic. A true breakthrough is not 

expected any time soon. On the brighter side, the excitement sur

rounding the topic is already bringing about a flurry of ideas and 

proposals, accompanied by complex laboratory experimentation, so 

that we are bound to see interesting advances in the near future. 



t r y i n g  t o  e a s e  t h e  p a i n  1 5 3 

In summary, Shor's factoring algorithm constitutes a major 

advance by any measure. However, at the moment it must be rele

gated to the status of shelfware, and it is probably destined to 

remain that way for quite some time. 

Intractability hasn't been beaten yet. 

molecular com puting 

To wrap up our discussion of models of computation aimed at 

trying to alleviate some of the bad news, we mention one more: 

molecular computing, sometimes called DNA computing. 
The main approach here, which was first exhibited in 1 994 by 

Len Adleman2 1 ,  is based on letting the computation happen essen

tially on its own, in a carefully concocted 'soup' of molecules, that 

play with each other, splitting, joining and merging. Thus, you get 

billions or trillions of molecules to tackle a hard problem by brute 

force, setting things up cleverly so that the winning cases can later 

be isolated and identified. 

In the experiment Adleman actually carried out he got mole

cules to solve a small instance of the Hamiltonian path problem, 

which is a sort of unit-length version of the traveling salesman 

problem. Later, other problems - essentially all problems in NP 

- were shown to be amenable to similar techniques.22 

2 1 1. M. Adelman ( 1 994) .  'Molecular Computation of Solutions to 
Combinatorial Problems', Science 266, 1 02 1-4. 

22 R. J. Lipton ( 1 994) .  'DNA Solution of Hard Computational Problems', 
Science 268, 542-5; 1. M. Adelman ( 1 998) .  'Computing with DNA', 
Scientific American 279 (2 ) ,  34-4 1 .  A recent book on the topic is 
G. Paun, G. Rozenberg, and A. Salomaa ( 1 998 ) .  DNA Computing. 

continued on next page 
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That nature can be tuned to solve real-world algorithmic prob

lems, essentially all by itself, and on a molecular scale, is rather 

astonishing. While Adleman's original experiment, for a seven-city 

instance, took about a week in the laboratory, the problem was 

solved later by others in less of a brute-force fashion, and for much 

larger instances (50-60 cities) .  Dedicating molecular biology labs 

to this kind of work can result in a significant speeding up of the 

process, and indeed lots of work is under way to try to get the tech

niques to scale up. 

From a puristic point of view, things are reminiscent of conven

tional parallel algorithms: although in principle the time complex

ity of such molecular algorithms is polynomial because of the high 

degree of parallelism that goes on within the molecular soup, the 

number of molecules involved in the process grows exponentially. 

But on the positive side, one of the main advantages of using DNA 

is its incredible information density. Some results show that DNA 

computations may use a billion times less energy than an elec

tronic computer doing the same things, and could store data in a 

trillion times less space.23 

In any case, molecular computing is definitely another exciting 

area of research, catching the imagination and energy of many 

talented computer scientists and biologists. We are bound to see a 

continued 
Springer-Verlag, Berlin. Surveys are S. A. Kurtz, S. R. Mahaney, J. S. Royer, 
and J. Simon ( 1 997) .  'Biological Computing', in Complexity Theory 
Retrospective II, (Hemanspaandra and Selman eds. ) .  Springer-Verlag, 
New York, pp. 1 79-95; L. Kari ( 1 997) .  'DNA computing: The arrival of 
biological mathematics', The Mathematical Intelligencer 19 (2 ) ,  9-22. 

23 E. Baum ( 1 995) .  'Building an associative memory vastly larger than 
the brain', Science 268 (April) ,  583-5. 
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lot of exciting work i n  this area i n  the future, and some specific 

difficult problems might very well become doable for reasonably 

sized inputs. Still, we must remember that molecular computing 

can definitely not eliminate noncomputability, nor is it expected to 

do away with the woeful effects of intractability. 

This brings our account of the bad news in algorithmics to an 

end. Ignoring the slim rays of hope offered by quantum and mol

ecular computing, a brief summary of Chapters 2-5 might go like 

this: 

What we know about for sure is bad enough already. 

Figuring out the answers to the questions that remain open 

might make things a little better 

but will probably make them a lot worse. 

And what's really frustrating 

is the uncertainty that comes from not really knowing. 





chapter 6 

turni ng 
good 

bad i nto 

This chapter is devoted to cryptography, one of the most interest

ing application areas of algorithmics and a wonderful source of 

research challenges. 

Increasingly, computers are used for storing, manipulating, gen

erating, and transmitting data. This includes critical and delicate 

information, such as commercial contracts, military and intel

ligence reports, business transactions, and personal items of 

confidential nature such as credit card numbers and medical or 

financial data. This situation, in turn, makes problems of eaves

dropping, theft, and forgery all the more acute, resulting in the 

need for extensive cryptographic mechanisms for the secure and 

reliable communication of information. 

Modern day cryptography is of particular relevance to this book 

because of its most unusual and striking feature: subtle and 

unabashed exploitation of the bad news in computing. This is sur

prising. In fact, it sounds impossible, and appears to have very few 

counterparts in other branches of human endeavor. How can you 

use one thing's impossibility to make another thing possible that 
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was otherwise impossible too? If we pause to think about it, we 

would expect nothing of any value to come of negative results in 

algorithmics, except in helping prevent people from wasting time 

trying to do things that can't be done. Nevertheless, problems for 

which we have no good solutions are crucial here; in fact, if they 

turn out to have good solutions we are in big trouble! 

No news is good news, the saying goes. This chapter will show 

that bad news can sometimes be good news too. 

clas s ical cry ptography 

The basic activities in cryptography are encoding and decoding, 

often called encryption and decryption. We want to be able to 

encode a message in such a way that the recipient should be able to 

decode it, but an eavesdropper shouldn't. As an example, a general 

might want to order a subordinate colonel to attack at dawn, 

without the enemy being able to intercept and decipher the 

message. 

But there is more to this scenario than just secrecy and defend

ing against eavesdropping. If the attack is undertaken and it fails, 

the colonel might want to blame the general for having given a bad 

order; or the general might want to shake off responsibility by 

claiming that he didn't send the message (he could claim that the 

enemy did it to lure them into an ambush, or that the colonel 

forged the message for some reason) .  This leads to the need to 

allow the sender to 'sign' messages. In this way, ( i )  the recipient can 

be sure that the sender alone could have sent it, ( i i )  the sender 

cannot later deny having sent it, and ( iii) the recipient, having 

received the signed message, cannot forge the signature and sign 

another message in the sender's name, not even a copy of the orig-
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inal message. The signature issue adds another level o f  difficulty to 

the basic encryption issue, but it is central to many applications of 

cryptography, such as military communications, money transfer 

orders, and signing contracts. 

Conventional cryptosystems are based on keys, which are used 

to translate a message M - sometimes called the plaintext - into 

its encrypted form M* - sometimes called the ciphertext - and 

then to decrypt M* back into its original form. If we denote the 

general encryption procedure associated with the key by encode, 

and the corresponding decryption procedure by decode, we may 

write: 

M* = encode(M) and M = decode( M* )  

I n  words, the encrypted version M* i s  obtained b y  applying the 

encode procedure to the message M. The original M in turn can 

be retrieved from M* by applying the decode procedure to it. 

What do keys look like? A simple example that we have all used 

in our childhood calls for the key to be a number K between 1 and 

25, chosen and shared by both parties, the sender (encoder) and 

the receiver (decoder) .  The encode procedure replaces every letter 

with the one residing K positions further along in the alphabet, 

and decode replaces every letter with the one residing K positions 

earlier. In this way, encode and decode are mutually dual: you use 

decode to undo what encode did, and vice versa. For the purpose 

of counting letters, the alphabet is considered to be cyclic, so that 

a follows z. For example, if K is 6, (My Fair Lady' becomes (Se Lgox 
Rgje'. Pretty indeed . . . .  

This simple approach can be illustrated using the metaphor of a 

locked box. To set up a method to exchange secret messages with a 

friend, you first prepare a box with a securable latch. The two of 
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you then go out and buy a padlock with two identical keys, one 

for you and one for your friend. Thereafter, sending a message 

involves putting it in the box, locking the box using the key, and 

sending the box to its destination. No-one without access to the 

key can read the message en route. Since there are only two keys, 

kept by the sender and the intended recipient, the system is secure. 

This approach has several drawbacks. First, it requires that the 

two parties cooperate in the selection and safe distribution of keys. 

Either they must both go out together to buy the lock and keys, or 

the one who buys them must later find a way to transfer one of the 

keys safely and securely to the other. If we leave the locked box 

metaphor for a moment, returning to computerized communica

tion, this means that setting up a secure channel requires first 

sending something over a secure channel, which is rather ridicu

lous. We can't use the usual computerized network for distributing 

keys because the cryptographic framework hasn't been set up yet 

and an eavesdropper would be able to get hold of them and ruin 

the whole thing. Moreover, real applications involve many parties, 

often located at great distances - just think of people wanting to 

send each other credit card numbers over the Internet. To enable 

private communication between any two of the parties we have to 

distribute different keys to each different pair. Using specialized 

secure methods for this, such as personal delivery by a trusted 

courier, is simply out of the question. 

The other major drawback of naIve cryptographic methods is 

that they don't address the signature issue at all. If it's not just 

friendly communication that is taking place, but, say, secret 

trading negotiations between competing companies, all kinds of 

nasty things can happen. The recipient can make up fake messages 

and claim they were sent by the sender; the sender can deny having 
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sent authentic messages, and so on. The ability to sign a message is 

thus very important. 

public - key cry ptography 

In 1 976, Diffie and Hellman proposed a novel approach to the 

encryption, decryption, and signature problems, called public-key 
cryptography. l It can also be explained by the locked box 

metaphor. The idea is to use a different kind of padlock: a key is 

required to unlock it, but it can be locked by a simple click, 

without a key. To set up the communication system, each of the 

two participants goes out all alone and purchases a personal click

close padlock and key. Each of them then writes his or her name 

on the padlock, and places it on the table, in public view. The key 

is not disclosed or shown to anyone else at all. Now, assume party 

B - say, Bob - wants to send a message to party A - say, Alice. 

Bob puts the message into a box, goes to the public table, picks up 

Alice's padlock and locks the box with it. This he does simply by 

clicking her padlock shut; he doesn't need her key. The box is then 

sent to Alice, who uses her key to open the lock and read the 

message. Since no-one has had access to her key except for Alice 

herself, the message is safe. Remarkably, no prior communication 

or cooperation between Alice and Bob is needed. Moreover, this 

scheme is not limited to two participants. The public table can 

host as many padlocks as there are parties who want to participate 

in mutual communication. As long as each participant has his or 

her own padlock and keeps the key safe, they are all in business! 

1 W. Diffie and M. Hellman ( 1 976) .  'New Directions in Cryptography', 
IEEE Trans. Inform. Theory IT-22, 644-54. 
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To understand how public-key systems can be used in digital, 

computerized environments, we assume that messages are 

(perhaps lengthy) sequences of digits. Thus, some direct and 

straightforward method of translating letters and symbols into 

digits has already been applied. Alice's padlock is really just an 

encryption function encode that transforms numbers into other 

numbers, and her key embodies a secret way of computing the 

decryption function decode. Thus, each party makes its encryp

tion procedure public but keeps its decryption procedure private. 

For the most part, we shall stick to two participants - our friends 

Alice and Bob. To distinguish between the different functions they 

use, we shall denote Alice's by encode A and decode A' and Bob's by 

encode B and decode B. 

In order to send the number M as a message to Alice, Bob uses 

Alice's public encryption procedure encode A and sends her the 

ciphertext encodeA(M),  which is the number obtained by applying 

the function encode A to the number M. Again, it is Alice's function 

that Bob uses, just as in the padlock analogy. Alice would then 

decipher this number using her private decryption procedure 

decodeA, yielding the original message M (Le. the plaintext ) .  This 

is illustrated in Fig. 6. 1 .  As a simple example (which can't really be 

used, as we shall see, but is nevertheless illustrative) Alice might 

have chosen her encryption procedure encode A to be the function 

that squares its argument, and decode A to be the function that 

extracts square roots. Thus Bob would send her the number M2 as 

the ciphertext and she would compute ViJ2 to obtain the original 

plaintext M. 
For the method to work, both functions must be easy to 

compute, and the two must be perfect inverses of each other, just 

as with squaring and extracting roots. Specifically, the following 
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Fig, 6. 1 .  Public-key encryption and decryption. 

equation must be true for every possible message M, meaning that 

encoding M and decoding the encoding (both done using Alice's 

functions) must result in the original M. 

decodeA(encodeA (M)) = M 

But that's not all. It must be impossible to deduce a method for 

figuring out the decryption function decode A from the publicly 

known encryption function encodeA' We want Alice to be able to 

decrypt easily, but for no-one else to be able to do so, even by 

closely inspecting the publicly known encryption function. This 

requirement is clearly violated by the squaring and root-taking 
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functions, since once you know that encryption involves squaring, 

you know that decryption involves extracting the square root, 

which would be as easy for anyone to carry out as it is for Alice 

herself. 

What we really need is a one-way trapdoor function, and here is 

where the keys enter the game. We want the encryption function 

encode A to be computable easily, but not the decryption function 

decode A" This we take to mean that the former should be in poly
nomial time and the latter shouldn't, unless Alice's secret key is 

known. The key is what Alice needs in order to decode efficiently 

(again, just like in the padlock metaphor) .  The same should apply 

to Bob's functions encodeB and decodeiP that is, encodeB should 

be computable in acceptable time, but not decodeB except for Bob, 

who has his key. The term 'one-way' is used to hint at the easiness 

of computing one direction - encoding - vs. the difficulty of 

computing the other - decoding - without a key. The analogy to 

trapdoors is this: a trapdoor cannot be activated unless you know 

the location of the secret lever (the key) . 

It is by no means clear how to find such functions. We can try to 

elaborate on the squaring and root-taking idea, with Alice setting up 

her encryption function to raise the plaintext to some higher power, 

for example, to compute M7. This will make the extraction of the 

7th root somewhat harder, but neither of the two crucial require

ments is met: first, once you know that encryption involves raising 

the plaintext to the 7th power, you know what to do for decryption, 

and second, decryption is still no harder for you than it is for Alice. 

The mathematical setup will have to be more sophisticated, and 

must involve a secret piece of information - the key - that makes 

decryption easy (for Alice) ,  but whose absence renders it very, very 

hard (e.g. for Bob) .  We shall discuss this issue a little later. 
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s igning mes s ages 

What makes a signature a signature? It goes without saying that a 

signature must be specialized for the person doing the signing: to 

prevent forgery the signatures of any two people must be suffi

ciently different. But a conventional handwritten signature doesn't 

have to depend on the document. In fact, a handwritten signature 

should look the same whenever and wherever it is used. In con

trast, digital signatures of the kind we would like to use in a com

puterized cryptosystem, must be different not only for any two 

signers but also for any two messages being signed. Otherwise, 

when in dispute, a recipient could make changes to a signed 

message before showing it to a neutral judge, or could even attach 

the signature to a completely different message. If the message is a 

money-transfer order, the recipient could simply add a couple of 

carefully-placed zeros to the sum and claim the new signed 

message to be authentic. Our signatures must thus depend on both 

the signer and the message being signed. 

A remarkable fact about the public-key cryptographic frame

work is that it can be used for signatures too. All we need is that 

the one-way trapdoor functions used for encryption and decryp

tion be mutual inverses. This means that not only should the 

decryption of any encrypted message yield the original plaintext, 

but the encryption of a decrypted message should also yield the 

original message. With squaring and root-extracting not only does 

v'W - taking the root of a square - yield the original M, but so 

does (yM")2 - squaring the root. Thus, for Alice's functions we 

require not only that 

decodeA(encodeA(M) )  = M 

but also that 
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encodeA(decodeA( M) = M 

And the same for Bob's. 

Why on earth would anyone be interested in decrypting a 

message that wasn't even encrypted? The answer: in order to sign 

it. Here is how it works (see Fig. 6.2 ) . 2  If Bob wants to send Alice a 

signed message, he first applies his own private decryption func

tion decodeB to the message M. This yields a number S, which we 

shall regard as Bob's special message-dependent signature: 

S = decode B(M) 

Then, instead of encrypting the original plaintext M for Alice, Bob 

encrypts the signed version thereof, S. This he does in the usual 

public-key fashion, using Alice's public encryption function 

encodeA" He then sends her the result, namely encodeA( S) ,  which 

is really encodeA(decodeB( M) . 

Cut now to Alice. Upon receiving this strange-looking number, 

Alice first decrypts it using her private decryption function 

decodeA" The result is decodeA(encodeA( S» . However, since 

decode A undoes anything encode A has 'messed up', i .e. the 

decode A and the encode A cancel each other out, the result of this 

will be S, which is really just decodeB(M) .  At this point, Alice can't 

read the message M yet, nor can she be sure that Bob was really the 

sender. But what she does now is to apply Bob's public encryption 

function encodeB to S. This yields M, because 

encodeB( S) = encodeidecodeB( M) = M 

2 The locked-box metaphor is inappropriate for explaining how 
public-key signatures work, as it makes little sense to unlock a box that 
wasn't even closed. 
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Fig. 6.2. Encryption with signatures. 

Thus, all at once, Alice gets to see the original message M and can 

also be quite sure that only Bob could have sent it. How is this? 

Well, since the functions we use are carefully selected mutual 

inverses, no number except decodeB(M) will result in M when 

subjected to encodew So it couldn't be anything else that happened 
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to yield the plaintext M; it had to have been Bob's decoding func

tion applied to M. But no-one besides Bob could have produced 

decodeB(M),  since the decryption function decodeB is Bob's closely 

guarded secret! It must have been Bob. Elementary, Watson . . .  

Alice can't sign any other message in Bob's name, since signing 

requires subjecting the new or modified message to Bob's secret 

function decodeR> to which she has no access. But there is still a 

problem. Alice can send the very same message M - but with Bob's 

signature - to someone else, say Carol. The reason is that during the 

process Alice has access to decodeB(M), which she can then encrypt 

using Carol's public encryption function encodee> and send the 

result to Carol, who will think it came from Bob. This could be crit

ical with a message like 'I, General Bob, hereby order you to attack at 
dawn'. To prevent this situation, identifying details, such as the name 

of the addressee and possibly also the date and time, should be added 

to the message prior to encrypting and signing, as in 'I, General Bob, 
hereby order you, Colonel Alice, on this day . . .  and time . . .  to attack at 
dawn'. Now Alice has no way to do mischief at Carol's expense, 

because she can't apply Bob's secret decryption function decodeB to 

any message that is even slightly different from M. 

can this be made to work ? 

All this sounds very promising. A group of participants can com

municate safely, guarded against eavesdroppers and other evils. 

They can send, receive, sign, verify, identify, etc. But how do we 

actually do it? What is the math needed? We have to figure out a 

method of defining the keys for each participant and the cor

responding encode and decode procedures, but in such a way that 

all the nice properties we have discussed will hold true. Encoding 
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must b e  easy, and decoding not, unless you have the key, and 

encoding and decoding must be perfect mutual inverses. Also, we 

have to be able to generate lots of different pairs of such functions, 

one for each participant (just as there are many different padlocks 

in a hardware store - with different keys) .  

At first glance, the requirements appear to  be  paradoxical. 

Where do we find a function that is easy to compute but has a 

really hard-to-compute inverse that becomes easy only when some 

secret key is available? As we saw earlier, squaring vs. extracting 

roots fails miserably, as do simple K-step shifts in the alphabet. 

So, are there any such one-way trapdoor functions? 

From a puristic point of view, the answer is that we don't know. 

However, in an important pragmatic sense the answer is a resound

ing yes, and public-key cryptography - signatures and all - is very 

much alive, well, kicking and working. First, though, we should elab

orate on what it means for a public-key cryptosystem to be broken, 

or cracked. The integrity of the whole setup hinges on the fact that 

without access to the private key it is very difficult to apply a parti

cipant's decode function to a given number. To use the terminology 

of the last two chapters, very hard is intractable: we want decode, as 

an algorithmic problem, to be tractable if the key is given, but to be 

intractable without it. It should be computable in polynomial time 

with the key, but not computable in polynomial time without it. In 

contrast, the encode function should be tractable as it is; no key is 

needed. This means that to break the system you have to find a poly

nomial-time algorithm for computing the decode function without 

the key; that is, to show that the desired intractability fails. 

Thus, cracking a public-key cryptosystem doesn't involve sly 

detective work or clever guessing. It is not even a matter of brute

force number-crunching on a large and fast computer. It is not 
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World War II-style battles of the brains, with cryptographic teams 

alternately outsmarting each other. Rather, it entails coming up 

with a polynomial-time algorithm for a problem that is believed to 

be of inherent super-polynomial-time behavior. And this is algor

ithmic work par excellence. 
The best thing would be to base public-key cryptography on a 

provably intractable decode function. For example, if the hard 

direction of the one-way trapdoor function could be based in 

some way on the roadblock problem of Chapter 3, the system 

would be provably unbreakable, and therefore as secure as could 

be. As it stands, this has not yet been achieved. The only one-way 

trapdoor functions that have been discovered to date are based on 

decode functions whose intractability is conjectured, not actually 

known. They are believed to be secure, but we don't know for sure. 

The conjectured-to-be-intractable problems lying at the heart of 

most public-key cryptosystems are well known, and have with

stood long and extensive attempts by many mathematicians and 

computer scientists at finding polynomial-time algorithms. We 

can thus be pretty confident of their intractability. That a person 

or agency interested in breaking a cryptosystem would have been 

able to solve some celebrated and long-standing open problem in 

the deep mathematics of intractability is unlikely. 

the R S A  cry ptos y s tem 

The first successful implementation of public-key cryptography 

has become known as the RSA method.3 While a number of other 

3 RSA stands for the initials of its inventors; see R. L. Rivest, A. Shamir, 
and L. Adleman ( 1 978) .  'A Method for Obtaining Digital Signatures and 
Public-Key Cryptosystems', Comm. Assoc. Comput. Mach. 2 1 , 1 20-6. 
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methods exist, the RSA approach is probably the most interesting 

of them all. It is now over 20 years old, and, as we shall see, there's 

good reason to believe that it is really unbreakable. 

The RSA method is based on the contrast between testing a 

number for primality and finding its factors. The heart of the 

method is the choice of keys and padlocks. Each participant, say 

Alice, secretly and at random, chooses two large prime numbers P 

and Q, of length, say, around 200 digits, and multiplies them, 

resulting in the product P x Q, which would have around 400 

digits. 

Alice keeps her two primes secret, but makes their product 

public. It suffices to say that, given the product, no-one can find 

the two prime factors in an acceptable amount of time. As dis

cussed in Chapter 5, there are no known fast methods, not even 

probabilistic ones, for factoring very large numbers, and Shor's 

polynomial-time quantum algorithm will not become imple

men table in the forseeable future. 

Alice's encryption function encodeA is constructed from the 

product P x Q. Her decryption function decode A requires the 

product too, but also the primes P and Q themselves. Thus, anyone 

can encrypt a message addressed to her using the publicly available 

number P x Q, but decrypting is possible only by Alice herself, 

since she is the only person with access to P and Q. Anyone else 

wanting to get their hands on P and Q in order to decrypt a 

message would have to factor P x Q. We shall not get into details 

of the method itself here, as it is technically involved, but we 

should discuss how Alice is able to choose the large primes to 

begin with. 

The infinitely many prime numbers are spread out over the 

entire spectrum of positive integers in a rather dense way. For 

example, there are 168 primes less than 1 000, and about 78 500 
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primes less than a million. Among all 1 00-digit numbers, roughly 

one in every 300 is prime, and for 200-digit numbers it is about 

one in every 600.4 To generate a new large prime number of length, 

say, between 1 80 and 220 digits, Alice uses the fact that testing for 

primality can be carried out very fast, using the probabilistic algor

ithms discussed in Chapter 5. And what she actually does is this: 

she generates, at random, odd numbers in that range repeatedly 

(by tossing coins to choose the digits and to decide exactly how 

long the number should be) ,  and tests each one for primality until 

she hits one that is prime. There is an extremely high likelihood 

that she will find one within the first 1 500 attempts, and a pretty 

good chance that she will find one much earlier. In any event, if she 

is careful not to choose the same number twice, she is sure to find 

one very fast using even a small personal computer. The problem 

of generating large primes efficiently is therefore reduced to that of 

testing the primality of large numbers, which we know how to 

carry out efficiently. 

We thus have a cryptographic method that exploits the crucial 

difference between testing numbers for primality and factoring 

them into their prime factors. It makes essential use of good news 

- clever probabilistic algorithms for finding primes - and relies in 

a crucial way on bad news too - the apparent intractability of 

factoring large numbers. If anyone ever manages to factor large 

numbers acceptably fast, the entire RSA system would immediately 

collapse, since an adversary could take the public product P x Q ,  

find its factors P and Q, and use them to decode Alice's messages. In 

particular, if the polynomial-time quantum algorithm for factoring 

4 More generally, the number of primes less than a given number K is of 
the order of KIlog2 K. 
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ever becomes practical, i.e. if appropriate quantum computers 

somehow get built, the RSA method will probably become useless. 

Still, people do rely on RSA, they know it is safe now and believe 

it will remain so. Another way of putting it is that the many users 

of the RSA method start their day praying that what we think is 

bad news regarding the factoring problem will indeed remain SO. 5 

interactive proofs 

Cryptography and cryptographic protocols are useful for much 

more than transmitting messages. Recent years have seen an 

5 Two points are in line here. First, the size of the numbers to be factored 
is very important, even without a general polynomial-time algorithm at 
our disposal. In early 1 999, a 1 40-digit number was factored using 
several hundred computers running for several months. Soon afterwards 
an optical device called Twinkle was devised by A. Shamir (but at the 
time of writing this has not yet been actually built ) .  With around a 
dozen Twinkles - assuming they can be built - we would be able to 
factor 1 60-digit numbers within a few days only. This would force many 
RSA users to enlarge their keys considerably, since most applications of 
RSA use 5 1 2-bit numbers, which are between 1 54 and 1 55 decimal digits 
long and fall easily within the 1 60-digit range. The second point involves 
the converse of the statement that if we can factor fast, RSA must 
collapse: does the collapse of RSA actually entail fast factoring, or is 
there perhaps another way of breaking the RSA? This is not known, as 
no-one in a large community of expert researchers has yet proposed an 
approach to breaking the RSA system that does not entail a fast solution 
to the factoring problem. However, there is a slightly different version 
of the RSA system, due to M. O. Rabin, whose breakability is provably 
equivalent to fast factoring. In other words, for this particular 
cryptosystem it has been proved mathematically that any possible 
method for cracking it will yield a fast factoring algorithm. It would be 
nice to be able to make this stronger statement about the original RSA 
system too. However, no-one has been able to prove it yet. 
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extraordinary surge in the development of sophisticated methods 

for carrying out all manner of computerized interaction in the 

presence of adversaries, with the latter not being limited to eaves

droppers only. The rapid proliferation of the Internet, and its use 

in increasingly varied application areas, is a rich source of new 

problems. These then give rise to new ideas and methods. 

In many of these applications, interaction is a central feature. 

Here is an example. Suppose two parties want to toss a coin 

between them, but they are far away and don't trust each other. A 

realistic case could be a couple getting divorced. The husband and 

wife cannot, or will not, get together face to face - perhaps they 

live in different cities - but they want to divide their property. 

They might be at the point of deciding about the house vs. the 

Picasso in the living room, and for this they want to toss a coin. 

Being connected to each other via computers and modems (or 

their lawyers being so connected) ,  it seems that this is not possible. 

Say they somehow agree on who's Heads and who's Tails, how do 

they actually toss the coin? If one does the tossing the other might 

not believe the reported result or the tosser might lie about the 

result. Possibly both. Can this be done electronically by two 

untrusting parties located remotely and connected by their home 

computers only? The answer is yes. There is a clever and very fast 

protocol for this. It requires the two computers to interact back 

and forth electronically, and rather extensively. Again, we do not 

provide the details of this protocol, but we should remark that it 

too is based on factoring: on the assumption that factoring is 

indeed intractable, the result of this interaction will be a totally 

impartial association of Heads with one of the parties and Tails 

with the other. The husband and wife can both be perfectly 

confident that no cheating of any kind was possible, and neither of 
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them can later try to get out o f  the deal, since the results can be 

subjected to legal scrutiny.6 

To explain interactive protocols in a more general setting, let us 

return for a moment to the class NP. A problem is in NP if it can 

be solved in polynomial time with the help of a magic coin. As 

explained in Chapter 4, this is equivalent to saying that whenever 

the answer is 'Yes' there is a short (that is, polynomial sized) 

certificate to that effect. (Nothing is claimed here about 'No' 

inputs.)  This characterization can be rephrased in terms of a game 

between a prover and a verifier. Alice, the prover, is all-powerful, 

and she is trying to convince Bob, the verifier, who has only ordi

nary polynomial-time computing power, that an input to the 

problem at hand is a 'Yes' input. 

For illustration, let us take a specific problem in NP; say, color

ing a network of points and lines with three colors. Alice wants to 

convince Bob that the particular input network G is 3-colorable. 

Recall that no two neighboring points - points connected by a 

line - may be monochromatic. Since the problem is NP-com

plete, no-one knows of a polynomial-time algorithm for solving it, 

so that Bob, having only polynomial-time computing power, has 

no way of verifying Alice's claim on his own. He needs her to 

supply a proof. This she can do easily, by simply sending him a 3-

coloring of G (see, for example, Fig. 4.4 ) ,  which is really just the 

short 'Yes' certificate. Even with his limited power, Bob can then 

verify that the coloring is legal. Obviously, this kind of proof will 

never cause Bob to wrongly believe that Alice can 3-color G if she 

really can't. 

6 M. Blum ( 1 983) .  'How to Exchange (Secret) Keys', ACM Trans. 
Comput. Syst. 1 ,  1 75-93. 
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Thus, we may say that a decision problem P is in NP if, when

ever an input is a 'Yes' input, Alice can convince Bob of that fact in 

polynomial time, but if it is a 'No' input then neither Alice nor any 

other prover can convince Bob otherwise. 

This little proving game is quite simple, and it requires a single 

round only: Alice sends the polynomially sized certificate to Bob, 

who promptly verifies that it is indeed a certificate. 

There is a nice generalization of the prover/verifier concept that 

leads to a stronger notion of proof, the power of which we shall 

illustrate in the next section. The idea is to turn the process into an 

interactive one, with many rounds, and to allow the verifier to flip 

coins and ask the prover questions, all in polynomial time. The 

coin flipping helps Bob ask Alice random questions that she has 

no way of predicting. (Bob can hide his coin flips from Alice . )  

Thus, Alice remains all-powerful, but Bob now has the power to 

compute probabilistically in polynomial time. Moreover, the very 

notion of proving is also probabilistic: we no longer require an 

absolute proof, but only that Alice convince Bob of the 'Yes' -ness 

of an input with overwhelmingly high probability, in the sense of 

Chapter 5 .  We do allow mistakes (concluding that a 'No' input is 

really a 'Yes' input ) ,  but only with negligibly low probability.7  

It is worth pausing to assess the philosophical significance of this 

notion. The one-round proving game associated with NP is very 

much like the standard way of proving a statement to someone in 

writing, say, as part of a lecture or a published article in math

ematics: you supply what you claim is a complete proof, using all 

7 S. Goldwasser, S. Micali, and C. Rackoff ( I 989) .  'The Knowledge 
Complexity of Interactive Proof Systems', SIAM J. Compo 1 8 ,  1 86-208. 
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the ingenuity you can muster, and I - the student i n  the lecture 

or the reader of the article - then check it as thoroughly as I can, 

to see whether I believe it or not. This is the normal 'you prove I 

check' way of proving things. In contrast, an interactive proof is a 

powerful, yet very natural, extension, more akin to the way math

ematicians prove statements to each other orally: you supply some 

information, and I might then ask you questions, often tough ones 

you couldn't have predicted; you then supply answers and more 

information, and I continue to pester you with questions; and so 

on. This continues until I become convinced - in the probabil

istic sense of the word, that is, with as high probability as I want 

(since we go on with this until I am happy) - that you are right, 

and then we stop. Of course, we require that the entire procedure 

take only a polynomial amount of time. 

The really nice thing about interactive proofs is that in many 

cases they can be carried out without giving away any crucial 

information. So Alice can convince Bob of the 'Yes' -ness of an 

input without giving away the reasons for the 'Yes' -ness. Let us 

take a closer look at this additional possibil ity and its uses. 

zero - knowledge proofs 

Suppose I want to  convince you that I know a certain secret. Say I 

claim to know what color socks the President of the United States 

is wearing at this very moment. Obviously, you don't believe me, 

and want a proof, right? The natural proof procedure that comes 

to mind is this: I tell you what color I claim they are, and we then 

immediately invite the President (who must be waiting outside) 

into the room to exhibit his socks, thus either refuting or verifying 

my claim. This protocol sounds fine. On the assumption that there 
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were no microphones or moles in the room, you come away 

believing that I was right all along. You started out thinking I was 

lying - I simply couldn't have known this fact - and you end up 

convinced you were mistaken and that I indeed knew. (Let's also 

agree here that my chances of simply succeeding by a lucky guess 

are very slim, due to the large number of possible colors. ) There is 

one problem, however. At the end of the day, when all is said and 

done, not only are you convinced that I wasn't lying and that I did 

indeed know the secret, but now you know the secret itself too! But 

perhaps I don't want you to. Maybe I don't even want you to know 

whether the President's socks are light or dark, or are a warm or a 

cool color. When the game is over, I want you to have no know

ledge whatsoever of the secret itself; I would like you to come away 

with only the firm conviction that I know it, and nothing more. 

This sounds absurd: how can I convince you that I know some

thing without telling you that very something and having you 

verify it? Why on earth should you believe me about knowing 

something that is very hard to know ( is there any reader out there 

who could have indeed found out, within minutes of being asked, 

what color the President's socks are? ) ,  if you yourself are not even 

allowed to see that something too and check for yourself? 

Presidents and socks aside, the issue in question is to devise a 

method for Alice to prove to Bob the 'Yes' -ness of an input to some 

algorithmic problem, but without giving Bob any information 

about the reasons the input is a 'Yes' one. And we want to do this 

with an algorithmic problem for which Bob can't easily find out 

the 'Yes' -ness for himself. Returning to the 3-colorability of a 

network G as our example, we want Alice to be able to prove to 

Bob that she can color G with three colors, but we don't want Bob 

to get to know anything about the coloring itself. That is, not any-
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thing h e  couldn't have found out o n  his own. At the end o f  the 

proof we want Bob to know with overwhelming confidence that 

Alice wasn't lying. But we also want that to be the only new inform

ation he will have gained from the process. In particular, he will 

not be able to color G himself ( in polynomial time) ,  or even to 

repeat Alice's proof to someone else! Such seemingly paradoxical 

protocols are termed zero-knowledge (for obvious reasons ) .  

We are making essential use of  bad news here. In the socks 

example, you had no choice but to disbelieve me, since, although 

not a very interesting secret, the color of the President's socks is a 

secret indeed, and not something you can easily discover by making 

a couple of well-placed phone calls. In the same way, the fact that 

figuring out whether a network is 3-colorable is NP-complete 

renders Alice's claim a real secret: Bob cannot simply say 'big deal, 

I can find that out for myself'. He can't find it out, since he doesn't 

have more than a polynomial amount of time available for work, 

and no-one knows how to determine unaided whether Alice is a liar 

or not in an unacceptable amount of time. It is for this reason that 

Bob must start out assuming she does not know how to 3-color the 

network, and Alice must prove it to him. 

Before showing how this can be done, it is worth remarking that 

zero-knowledge protocols have many applications in cryptography 

and secure communication. For example, we might want to devise 

smartcards to screen people entering a sensitive establishment 

(say, the headquarters of some top-secret intelligence agency) ,  but 

we don't always want the establishment's personnel to know the 

identity of the people admitted, only that they were rightfully 

admitted. Or suppose a group of people want to set up a joint bank 

account. They would like to be able to withdraw and transfer 

money electronically, and would like the bank to enforce certain 
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rules regarding who can withdraw money and how much can be 

withdrawn. But suppose they also want to prevent any bank 

employee from knowing exactly who withdraws; he or she may 

only know that the money was withdrawn legally, according to the 

rules. Such cases call for the ability to convince a verifier that you 

know some secret, some key or code (e.g. your legal entry id) ,  but 

without divulging the secret itself, only the fact that you know it. 

i can 3 - color a network 

Here then is a zero-knowledge protocol for coloring a network 

with three colors.s It is described here as if it takes place between 

two people, but it can be turned into a full-fledged algorithmic 

protocol, suitable for electronic applications. Also, we use a 1 0-

point network for illustration, but if you had a powerful computer 

with you, we would have simply used a larger network, say, with 

200 points, and its 3-colorability would have then really been 

beyond discovery.9 

Alice shows Bob a network (see Fig. 6.3 ) ,  and claims that it can 

be colored with three colors. Bob, in the polynomial time available 

to him, cannot verify that fact on his own, since the problem is 

NP-complete, so Alice attempts to prove it to him. She takes the 

network away, and secretly colors it with three colors, say, yellow, 

8 O. Goldreich, S. Micali, and A. Wigderson ( 1 99 1 ) .  'Proofs that yield 
nothing but their validity or all languages in NP have zero-knowledge 
proof systems', J. Assoc. Comput. Mach. 38, 69 1-729. 

9 It is easy for Alice to prepare such a network. Just lay out 200 points, 
color them at random with three colors, and then in some fashion, 
randomly if you want, connect some of the points having different 
colors by lines. 
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Fig. 6.3. A network. 

red, and blue. She then carefully covers the colored points with 

small coins, and places the network in Bob's view (see Fig. 6.4(a» . 

She also tells Bob what colors she has used. I O Bob is, of course, 

skeptical, but despite the fact that Alice is interested in eliminating 

his skepticism, she is not willing to expose the coloring. In fact, she 

is not willing to expose even a single pair of points not connected 

by a line, since whether these are colored with the same color or 

with different ones is part of her coloring strategy, about which she 

wants to give absolutely nothing away. Instead, she tells Bob that 

she is willing to expose any pair of neighboring points, that is, ones 

connected by a line. So Bob chooses a line in the network, at 

random if he wishes, and Alice removes the coins from the points 

at its end (see Fig. 6.4(b» . Bob then verifies that these two points 

are colored with different colors, as they should, and that the two 

colors are from among the three Alice listed. Clearly, if the exposed 

points violate one of these properties - she used, say, green, or 

1 0 When this protocol is carried out electronically, the secret coloring and 
covering, and all the stages that follow, are carried out using appropriate 
encoding and decoding, so that no cheating is possible. 
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(a) 

(b) 

Colors 
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Fig. 6.4. Covering a 3-colored network and exposing two neighbors. 

has colored both the points red - Bob has shown that the color

ing is not legal, thus shattering Alice's proof. However, if indeed 

the two colors are different, and they are from among the three 

Alice listed, he can't complain, but neither is he sure yet that the 

entire network is colored legally. 

What now? 

Rather than agreeing to expose more points, Alice takes back 

the coin-covered network, recolors it - this time using, say, 

brown, black, and white - and covers the new colors with the 

coins. She again tells Bob which colors she used, and again shows 

him the network. He again chooses a line in the network, and Alice 

promptly uncovers the two points at its ends. Again, Bob sees dif

ferent colors, and they are indeed from among the three she said 

she had used. Once again he hasn't been able to refute Alice's 

claim. 
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This procedure i s  carried out repeatedly, a s  many times a s  Bob 

wants, until he is happy. 

Why should Bob ever become really happy? Let's look at things 

from his point of view. The example network of Fig. 6.3 contains 

23 connecting lines. After Alice passed the first test, meaning that 

Bob couldn't refute her claim from what he exposed, he is still far 

from being sure that Alice can 3-color the entire network. But he 

did have a chance of 1 in 23 of catching her lying if indeed she 

cannot color it. The reason for this is that Bob himself got to 

choose the pair of neighboring points that Alice was obliged to 

expose, and she had no idea ahead of time which pair he would 

choose. In fact, if Alice is indeed lying, and she cannot color the 

network, she knows that with this initial probe Bob has a chance 

of at least 1 in 23 of exposing her as a liar, since she must have 

either used a fourth color or colored two neighboring points the 

same. If we assume for the sake of the argument that Bob starts out 

with complete skepticism, that is, he is 1 00% sure (confident with 

probability 1 )  that she really can't 3-color the network, this 

confidence now goes down to �; ,  which is less than 96%. This is 

the situation at the end of the first probe, or round. 

Turning now to the second probe, from Alice's point of view this 

one was completely independent of the first one, and, as we know, 

independent probabilities are multiplied. Thus, the probability 

that Alice could pass the first two tests without really knowing how 

to 3-color the network is �; x �; , or ( �; )2, which also represents 

Bob's new, lower, confidence in the fact that she is lying. This is 

about 9 1 .5%. After a third test, his belief in her lying goes down to 

( �; )3, which is 87.5%, and so on. As the process continues and the 

number of successful tests increases, this confidence decreases 

through increasingly larger powers of �; , thus rapidly - expo

nentially, in fact - approaching O. 
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Fig. 6.5. A legal 3-coloring of the network of Fig. 6.3. 

Bob can therefore stop the process whenever he is satisfied, and 

he will then be overwhelmingly convinced that Alice can 3-color 

the network (and in our example he is right; see Fig. 6 .5) ,  since he 

himself sets the level of confidence he wants. 

In the general case of a network with N connecting lines, the 

probability goes down through powers of (N-I )/N. This is an 

exponential decrease, so that in practice you don't need too many 

rounds for the possibility to get really, really low, and several thou

sand rounds can still be carried out extremely fast by a smartcard 

interacting with a host computer. I I 
What about Bob's knowledge? What wisdom has he gained by 

going through this interactive proof protocol? Well, since he sees a 

different set of colors each time around, and since Alice doesn't 

indicate the correspondence between the color sets in the various 

tests, Bob has no knowledge of the color relationships between any 

I I Zero-knowledge protocols based on other NP-complete problems have 
an even faster decrease in probability. Many have a decrease rate that 
does not depend on N. If the decrease is 50% in each round, a game of 
1 00 rounds brings Bob's belief in the fact that Alice is lying down to the 
negligibly small lI21OO• 
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points i n  the network, except t o  have seen several isolated pairs of 

neighboring points colored with different colors, as they should 

be. Such fragmented knowledge is of no help to him at all, since 

the colors used are changed around each time. l 2 This argument 

can be formalized to show that Bob gains absolutely nothing - a 

zero amount of knowledge - about Alice's coloring scheme. 

Technically, this means that there is nothing he can find out in 

polynomial time now, after going through the entire proof proto

col, that he couldn't have found out in polynomial time before he 

started probing Alice. In particular, as mentioned earlier, he can't 

even prove to someone else that the network can be 3-colored, 

although he himself is fully convinced! So Alice hasn't provided 

him with anything new, except what she had planned to, which 

was to convince him that she could 3-color the network. 

This is a zero-knowledge protocol par excellence, and is once 

again an extremely interesting case of utilizing both the good and 

the bad news that algorithmics has to offer, in a powerful and 

crucial way. And again, we must remark that just like in public-key 

cryptography, where the conjectured-to-be-intractable problem 

of factoring is used as the hard problem, no-one knows whether 

a provably intractable problem can serve as the basis for zero

knowledge interaction. As of now, NP-complete problems are 

usually used for this. If P is ever shown to be equal to NP - that 

is, if the NP-complete problems are shown to have good solutions 

- all this will collapse; 3-coloring a network will then no longer 

be a difficult-to-discover secret. 

1 2 Actually, Alice can use the same three colors each time, but permuted, 
so that given any two tests Bob never knows the actual correspondence 
between the colors. 
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on millionaires . ballots . and 

more 

Here are a couple of additional cases for which interactive proto

cols have been found. 

Suppose a group of millionaires want to find out who is the 

richest, but they don't want to divulge any actual numbers about 

their own personal wealth. A protocol can be carried out that will 

result in everyone knowing who is the richest, but without giving 

away any further information. As explained earlier, giving away no 

further information means that no-one can find out anything 

about anyone else's wealth in polynomial time after the protocol is 

carried out, that he or she couldn't have found out in polynomial 

time beforehand. This includes absolute knowledge about one 

person's riches, or relative knowledge such as whether Joan is 

richer than Joe. Of course, knowledge that follows in polynomial 

time from the exposed information, such as the fact that everyone 

else has less money than the richest one, they do know. i 3  

A similar protocol exists for managing secret votes, ballots, or 

elections. The way an anonymous electronic vote is usually carried 

out in a voting body, such as a parliament or a house of represen

tatives, is by each voter pressing a 'Yes'I'No' button. This is fine, 

and if so desired the only results the voters will get to see are the 

general statistics and not the votes by name. The problem is that 

there will always be someone who can quite easily find out what the 

individual votes were (the software or hardware experts running 

the voting system, for example) .  Here too, recently developed 

1 3 A. C. Yao ( 1 986) .  'How to Generate and Exchange Secrets', Proc. 27th 
IEEE Symp. Found. Comput. Sci. , pp. 1 62-7. 
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computerized protocols make i t  possible to  run a voting operation 

so that no information about individual votes is divulged to 

anyone, only the final desired count. In principle, such a protocol 

could also be carried out in a large nationwide election, and this 

could turn out to be the way things will be done in the future. 

These two examples are special cases of a more general situation, 

whereby we are interested in computing some function F applied to 

N values. In the first example, the values represent the N million

aires' individual worth and the function F points to the maximum 

value (that is, it says which of the N values is largest) .  Had we 

wanted to compute the millionaires' average fortune, F would have 

provided that and nothing else. In the second example, the values 

are the individual 'Yes'I'No' votes of the N voters and the function 

F is the majority function, producing a grand 'Yes! ! '  or 'No ! ! '  

depending on which of  the two values appears more often. 

Researchers have managed to devise a general interactive protocol 

that computes F in polynomial-time, and gives away nothing 
besides the value of F itself, and this for any function F in PTIME, 

i.e. one that is itself computable in the conventional way in polyno

mial-time. As usual, when it comes to intractable functions F, we 

know how to do this only with conjectured-to-be-intractable prob

lems, such as factoring or certain NP-complete problems, but not 

provably intractable ones. Even so, the general technique is quite 

remarkable, and has many more potential applications. 1 4  

* * * 

1 4 O. Goldreich, S. Micali, and A. Wigderson ( 1 987) .  'How to Play Any 
Mental Game - A Completeness Theorem for Protocols with Honest 
Majority', Proc. 1 9th ACM Symp. on Theory of Computing, pp. 2 1 8-29. 
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Public-key cryptosystems, zero-knowledge interactive proofs, and 

many other ideas in this area, all exploit the bad news we have been 

discussing in this book in a most novel way. Still, they seem to 

leave us with mixed feelings, since no-one has been able to place 

the protocols involved on truly firm ground: their validity and 

security rests on news that we think is bad but don't know for sure. 

If it weren't such serious business, the situation would be almost 

laughable: we find ourselves hoping that the news will stay bad! 



chapter 7 

can we 
do any 

ours elv es 
better? 

Our treatment of the 'hard-core' bad news inherent in computing 

was actually completed at the end of Chapter 5,  and the story we 

have set out to tell could have ended there. Chapter 6 was con

cerned with the questions of whether, when, and how things can be 

turned around, and we could have stopped there too. Nevertheless, 

it seems appropriate to end the book with bad news of a different 

kind, taking a brief look at some of the difficulties that arise when 

we think of computers as potentially intelligent. 

One type of brain scanning technology has a computer ana

lyzing, in real time, an enormous amount of data generated by 

numerous X-ray images of a human patient's brain, taken from 

increasing angles. The analyzed data is then used to automatically 

generate a cross-cut picture of the brain, providing information on 

tissue structure, and enabling identification of tumors or excess 

fluids. In striking contrast, no currently available computer can 

analyze a single, ordinary picture of the very same patient's face 

and determine the patient's age with an error margin of, say, five 

years, which most humans can. 
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Computers are able to control extremely sophisticated industrial 

robots that construct entire automobiles from their numerous 

parts. In contrast, to day's most advanced computers are incapable 

of directing a robot to somehow organize my rather cluttered 

office (a task an average human could carry out easily - if hard

pressed, of course) ,  or to construct a bird's nest from a pile of twigs 

(a feat an average bird can perform) .  

AI, or artificial intelligence, as  i t  i s  called, I i s  a fascinating and 

exciting area of research. It is also controversial and speculative. 

Since it too involves computers running programs, AI is clearly 

susceptible to all the bad news we have already discussed. However, 

it suffers also from bad news of a 'softer' nature, which stems from 

the difficulty of characterizing true intelligence and figuring out 

how to emulate it. 

The question of whether computers can think, someone once 

said, is just like the question of whether submarines can swim.2 

This analogy is quite apt. We all know more or less what sub

marines are capable of - and indeed they can do things that are 

akin to swimming - but 'real' swimming is something we associ

ate with entities of organic nature, such as humans and fish, not 

with submarines. In analogy, while we might have a pretty good 

idea of the capabilities of computational devices, real thinking is 

associated in our minds with homo sapiens, and perhaps also with 

some advanced mammals like apes and dolphins, but not with 

silicon-based collections of bits and bytes. Be this as it may, it is not 

a priori out of the question that we could mimic human intel

ligence with computers. But it's certainly not that simple. 

1 The term is due to J. McCarthy. 

2 This is due to E. W. Dijkstra. 
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algorithmic intelligence? 

So how can a computerized robot put together a car? Why a car, but 

not a bird's nest? Why a CAT-scanner, but not a reliable face recog

nition system? What is so hard about building a computer that can 

be wheeled into my office on a platform, equipped with a battery of 

sophisticated video cameras, advanced robotic arms, and state-of

the-art software for a brain, that can take a good look around (emit

ting a 'tsk, tsk, David' ) ,  and can then efficiently figure out what is 

what, sort out and organize papers, books, files, and letters, store 

stationery and desktop items in the appropriate drawers, clean up 

coffee mugs and litter, dust, sweep, and shake out the rug, and leave 

a nice note saying 'your cleaning person for today has been R2D6'? 

Well, there is no contradiction. In automobile manufacture, 

robots are programmed to carry out long and intricate sequences 

of operations by carefully prepared recipes, finding components in 

carefully predefined locations and doing carefully predefined 

things with them. Sometimes they can be reprogrammed to carry 

out different tasks, and some state-of-the-art ones are able to 

adapt their behavior somewhat to accommodate limited changing 

situations. But, in general, computerized robots are not able to 

take a look at new surroundings, comprehend and assess the situ

ation, decide what has to be done, and then make a plan and 

execute it to completion. Brain tomography is carried out with the 

aid of complex, but well-defined, algorithmic procedures, whereas 

the ability to deduce a person's age from a photograph requires 

real intelligence. 

There have been some successes - spectacular, when you know 

how hard it really is - in dealing with limited and carefully 

defined situations, such as telling different models of cars apart in 

pictures taken from new angles, or in a 'blocks world' in which a 
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computer responds to things like 'place a red cube on top of two 

green cylinders and the yellow block'.3 But we don't know how to 

deal with a pile of twigs of all shapes and sizes, or with a highly 

heterogeneous environment, like an office. Dealing with these 

requires levels of intelligence that are far, far beyond present-day 

algorithmic capabilities. Even the ability to take in a simple scene 

like a normal living room and 'understand' it, something every 

child can do, is far beyond the current capabilities of visualization 

systems. 

Computerizing intelligence, making it algorithmic, is something 

we know far too little about. The very phrase 'artificial intelligence' 

- or, to rename it to fit in with the rest of the book, algorithmic 
intelligence - seems to be a contradiction in terms. We tend to 

view intelligence as our quintessential nonprogrammable, and 

hence nonalgorithmic, characteristic. To many people the very 

idea of an intelligent machine doesn't sound quite right. 

the Turing tes t 

Many arguments have been put forward to render unthinkable the 

concept of an intelligent thinking machine. To think, some say, 

necessarily involves emotions and feelings, and no computer can 

hate, love, or become angry. Others claim that thinking intel

ligently necessarily entails originality and consciousness, and no 

computer can originate anything unless programmed ahead of 

time to do so, in which case it is no longer original. And we haven't 

even tried to deal with true consciousness yet. There are counter-

3 T. Winograd ( I  972 ) .  Understanding Natural Language. Academic Press, 
New York. 
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arguments to many o f  these claims, but they are outside the scope 

of this book.4 What can be said, though, is that a machine claimed 

to be intelligent must, at the very least, be able to exhibit human

like intelligent behavior. For this we do not require it to walk, see 

or talk like a human, only to reason and respond like one. 

Furthermore, whatever the agreed-on criteria for intelligence turn 

out to be, someone ought to be able to check whether a candidate 

machine fulfills them. And who is qualified to carry out such a test 

if not a real, intelligent human being? This leads to the idea that a 

machine ought to be labeled intelligent if it can convince an 

average human being that in terms of its intellect it is no different 

from another average human being. 

Exactly fifty years ago Alan Turing proposed a way to set up such 

an experiment, now commonly called the Turing test.5 The test 

takes place in three rooms. In the first there is a human interroga

tor (call her Alice ) ,  in the next there is another human, and in the 

third the candidate computer. The interrogator Alice knows the 

other two only by the names Bob and Carol, but doesn't know 

4 See J. R. Lucas ( 1 96 1 ) .  'Minds, Machines, and Godel', Philosophy 36, 
i l 2-1 7; H. Dreyfus ( 1 979).  What Computers Can't Do ( rev. edn) .  Harper 
& Row, New York; Y. Wilks ( 1 976).  'Dreyfus's Disproofs', British J. Philos. 
Sci. 27, 1 77-85; D. R. Hofstadter ( 1 979) .  Godel, Escher, Bach: An Eternal 
Golden Braid. Basic Books, New York; H. Gardner ( 1 985) .  The Mind's 
New Science. Basic Books, New York; J. V. Grabiner ( 1 986) . 'Computers 
and the Nature of Man: A Historian's Perspective on Controversies about 
Artificial Intelligence', Bull. Amer. Math. Soc. 1 5, 1 1 3-1 26; R. Penrose 
( 1 990) .  The Emperor's New Mind: Concerning Computers, Minds, & the 
Laws of Physics. Viking Penguin, New York; J. R. Searle ( 1 984) .  Minds, 
Brains, and Science. Harvard University Press, Cambridge, MA. 

s A. M. Turing ( 1 950).  'Computing Machinery and Intelligence', Mind 
59, 433-60. 
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''T/ 
Bob: human or computer 

Alice: human interrogator 

Fig. 7. 1 .  The Turing test. 

which is the human and which is the computer. The three rooms 

are equipped with computer terminals, with Alice's being con

nected to those of Bob and Carol (see Fig. 7. 1 ) .  Now, Alice is given 

some fixed amount of time, say, 30 minutes, in which she must 

determine the correct identities of Bob and Carol. She is free to 

address any questions or statements whatsoever to either of them, 

and the computer has to make its best effort to deceive Alice, giving 

the impression of being human. The computer is said to pass the 

test if after the allotted time Alice doesn't know which of Bob or 

Carol is really the computer. In order to downplay the effect of a 

simple guess on Alice's part, the computer is actually required to 

pass several one-session tests, perhaps with different interrogators.6 

6 The programmed computer must be able to converse freely in a natural 
language such as English, but we waive the need for it to hear and talk; 
hence the electronic links. 
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Before proceeding, we should make i t  clear that n o  computer 

has ever come even marginally close to passing this test, and many 

researchers believe that none ever will. 

Let us try to get a feel for the immense difficulty involved. 

Consider how an intelligent program would have to react to the 

following questions by Alice: 

1. Are you a computer? 

2. What is the time? 

3 .  When was President Kennedy assassinated? 

4. What is 454 866 296 x 66 407? 

5. Can White win in less than four moves from the following chess 

position: . . .  ? 

6. Describe your parents. 

7. How does the following poem strike you: . . .  ? 

8. What do you think of Charles Dickens? 

9. What do you think of the upkeep cost for NATO, in view of the 

fact that millions of people around the globe are suffering from 

starvation? 

The first two questions are rather easy for a computer to deal with. 

It should say 'No' when asked Question 1, and for Question 2 it 

can use the computer's built-in clock. Question 3 requires the 

program to be able to access a large pool of knowledge, compar

able to the knowledge of a human being. That is fine, but the 

program's designer will just have to decide which items to include; 

simply giving it access to the World Almanac and the entire 

Encyclopedia Britannica, even in their electronic hyperlinked 

guises, won't do, for many reasons (one of which is that the sheer 

quantity of knowledge the computer might exhibit could easily 
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give away its identity) . Question 4 looks easy - computers seem 

to be best at this kind of feat - but it is also quite subtle: we might 

want to program the computer to wait a while before answering, 

because lightning speed will also give it away. Question 5, of 

course, requires it to have some knowledge of chess, including the 

ability to reason about a new position. But, then again, should we 

teach it checkers, Go, poker and bridge too? As to Question 6, 

although answers to such questions could be prepared in advance, 

Alice might respond to an answer by pursuing a certain unex

pected detail that just wasn't provided with a ready-made answer 

(e.g. 'why exactly did your father decide to grow a beard? ' ) .  

Questions 7, 8,  and 9 are far more difficult. They require exhibit

ing preferences, opinions, feelings and the results of upbringing, 

together with an ability to explain the underpinnings of these and 

relate them to others. In short, the computer under scrutiny must 

be endowed with a real personality. 

Hard stuff. 

E L I Z A and z upchoks 

One of  the difficulties in  programming a computer to  pass the 

Turing test is the great diversity of areas that the conversation can 

lead into. There has been some success in imitating human con

versation in very limited areas of discourse. A program called 

ELIZA, written almost 35 years ago, was able to give an impressive 

performance as a psychoanalyst.? So impressive, in fact, that 

7 J. Weizenbaum ( 1 966) .  'ELIZA - A Computer Program for the Study 
of Natural Language Communication between Man and Machine', 
Comm. Assoc. Comput. Mach. 9, 36-45. 
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people were known to actually 'confide' i n  i t  the way they would 

never confide in a fellow human! Here are a couple of typical 

exchanges: 

Person: 'My wife says I am often depressed.' 

ELIZA: 'I'm sorry to hear you are depressed.' 

Person: 'The truth is I am quite unhappy.' 

ELIZA: 'Do you think coming here will help you not to be 

unhappy?' 

Person: 'Well, perhaps by talking to you I will find out why I 

hate my brother.' 

ELIZA: 'Tell me more about your family.' 

The interesting thing about ELIZA is the fact that it is not intel

ligent by any reasonable measure. It is actually quite dumb. In so 

far as it gives the impression of being a thoughtful therapist, it is 

really a shrewd cheat. Most often, it simply zeros in on a particu

lar word or phrase it has been taught to look out for and responds 

by choosing, virtually at random, one of a small number of fixed 

responses. An excellent example of this is the response 'Tell me 

more about your family', triggered by the word 'brother'. Other 

times, ELIZA merely turns an incoming sentence into a question 

or a rather meaningless statement, as in the exchange concerning 

the person's unhappiness. To do all this, it utilizes a simple mech

anism for figuring out the coarse structure of the input sentences. 

Strange things happen when you really try to test ELIZA's intel

ligence, instead of just spurting forth your problems. In fact, if we 

said 'I  was a sister in a monastery in Burma', or even 'I  admired 

Sister Teresa', the program might very well respond with the same 

nonsensical 'Tell me more about your family'. Its response to the 
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question about NATO is bound to be equally amusing. ELIZA, of 

course, has no chance of passing the Turing test. In fact, it was not 

intended to. The motivation behind ELIZA - and in this respect 

it was enormously successful - was to show that it is easy to 

appear intelligent; at least for a short while, to a sympathetic 

observer, and within a narrow domain of discourse. To be really 
intelligent is quite a different matter. 

To further appreciate the difference between the genuine intel

ligence required to pass Turing's test, and the shallow, yet devi

ously deceptive conversational abilities of programs such as 

ELIZA, here is a hypothetical exchange between the Turing test 

interrogator Alice and a really intelligent candidate, say Bob:8 

Alice: 'What is a zupchok?' 

Bob: ' I  have no idea.' 

Alice: 'A zupchok is a flying, novel-writing whale. It has been 

carefully cultivated in a laboratory over several generations 

to ensure that its fins evolve into wing-like things that 

enable it to fly. It has also been gradually taught to read and 

write. It has a thorough knowledge of modern literature, 

and has the ability to write publishable mystery stories.' 

Bob: 'How weird ! '  

Alice: 'Do you think zupchoks exist? '  

Bob: 'No way. They cannot.' 

Alice: 'Why?' 

8 Adapted from I. Poh) and A. Shaw ( 1 98 1 ) . The Nature of Computation: 
An Introduction to Computer Science. Computer Sc ience Press, Rockville, 
MD. 
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Bob: 'For many reasons. First of all, our genetic engineering 

capabilities are far from adequate when it comes to turning 

fins into wings, not to mention our inability to cause 10 -

ton engineless creatures to  defy gravity just by flapping 

those things. Secondly, the novel-writing part doesn't even 

deserve response, since producing a good story requires 

much more than the technical ability to read and write. The 

whole idea seems ridiculous. Don't you have anything more 

interesting to talk about? ' 

To carry out this conversation, Bob, be it human or computer, 

must display extremely sophisticated abilities. He (or it) must 

possess a large amount of knowledge on specific topics, such as 

whales, flying, novel-writing, and gravity. It must be able to learn 
about a totally new concept, taking in the definitions and relating 

them to what it already knows. And it must be able to deduce 
things from its newly acquired knowledge, such as the fact that 

genetic engineering is more relevant to zupchoks than, say, alge

braic topology or Chinese philosophy. (In this particular case it 

must also have a sense of humor. )  Indeed, knowledge, learning, 

and deduction are three fundamental areas of artificial intelligence 

research. 

heuris tics 

Game playing is one of the specialized areas in which AI research 

has achieved significant results.9 For example, there are many 

9 D. Michie ( 1 995) .  'Game Mastery and Intelligence', in Machine 
Intelligence 14  (K. Furakawa, D. Michie, and S. Muggleton, eds. ) .  
Clarendon Press, Oxford. 
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programs that play checkers extremely well, routinely beating their 

designers. The best-known of these is an incredibly good program 

called Chinook. lO The same goes for other games too. More than 

20 years ago, for example, a computer program was already able to 

beat the world champion in backgammon. (This did not make the 

program the new champion, as the game was not played in an 

official tournament, but the win was a win nevertheless. ) These 

days, a program called TD-Gammon routinely plays on the level of 

the world's top backgammon players. 

As to computerized chess, this is a topic with a remarkable 

history, involving amazingly sophisticated software, first-line 

human players, prize-carrying challenges, public matches, and 

triumphs and frustrations on both sides. The main computerized 

players included programs with names like Chess Genius, 

Zugzwang, StarSocrates, and Deep Thought, and the most formid

able kid on the block: Deep Blue. 1 1  The bottom line is this: in May 

1 997, Gary Kasparov, world chess champion and one of the best 

chess players of all time, played against Deep Blue, a program 

written by a group of IBMers and running on a supercomputer. 

The six-game match was won by Deep Blue, 3 .5  to 2.5 . 1 2 Though 

somehow expected, this victory stunned the world. To many 

people it is obvious that a computer program will eventually 

1 0 J. Schaeffer ( 1 997) .  One Jump Ahead: Challenging Human Supremacy 
in Checkers. Springer-Verlag, New York. 
I I  D. Levy and M. Newborn ( 1 99 1 ) . How Computers Play Chess. 
Computer Science Press, New York; M. Newborn and M. Newborn 
( 1 996) .  Kasparov Versus Deep Blue: Computer Chess Comes of Age. 
Springer-Verlag, New York. 
12 B. Pandolfini ( 1 997) .  Kasparov and Deep Blue: The Historic Chess 
Match Between Man and Machine. Fireside, New York. 
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become the official world champion i n  chess. At present, the inter

national federations still refuse to rate chess programs, and the US 

chess authorities have been very reluctant to have them compete in 

official activities. But these are technicalities, it seems. Sooner or 

later an official title will be bestowed upon Deep Blue or one of its 

descendants. 

This does not mean that such programs are perfect. If they were, 

they would never lose a game. Why can't programs play perfect 
chess or checkers, and hence routinely and easily beat the very best 

human players? Why can't a computer run through all possible 

moves and always choose the best one? The answer lies in the 

number of possibilities. For some simple games there is no 

problem. In tic-tac-toe (noughts and crosses) ,  the first player has 

nine possible moves, to which the opponent can respond in one of 

eight ways, to which the first player can respond in one of seven, 

and so on, all the way down to one last move. The total number of 

possibilities to check in an entire game is thus no more than 9 ! ,  or 

362 880. This means that a computer can be easily programmed to 

play perfect tic-tac-toe. 

With chess, on the other hand, the story is quite different. White 

has 20 possible first moves, and the average number of next moves 

from an arbitrary chess position is around 35. The number of 

moves in a game (twice the number of rounds) can easily reach 80 

or 1 00. This means that the number of possibilities to check in a 

typical game might be something like 35 100• In Chapter 3 we saw 

some such numbers: 35 100 is many, many, many orders of magni

tude larger than the number of protons in the universe, or the 

number of microseconds or nanoseconds since whenever . . . . Even 

if we ignore the bookkeeping and memory space involved in a 

brute-force trip through all possible moves, and assume that each 
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move can be tested in, say, a nanosecond, there is simply no way 

that computers can explicitly contemplate each and every possibil

ity in any reasonable amount of time. So there is no hope for a 

perfect chess program. A world champion yes, but a perfect 

program noP 

How, then, do good chess programs operate? Well, this is too 

complex a topic to get into here, but - very briefly - one of their 

methods is to use heuristics, or rules of thumb. A typical heuristic 

search uses intuitive rules, incorporated into the program by the 

programmer, instructing it to ignore certain portions of the sea of 

possibilities. For example, one kind of rule might prescribe that if 

during the last four moves nothing has changed within the two

square vicinity of a certain pawn, that pawn will not be moved, and 

the search can ignore all possibilities that follow from moving it. 

This rule might turn out to be very insightful - it definitely results 

in less work on the part of the program - but, of course, it could 

cost us the game; Kasparov might have advanced that very pawn to 

win the game in five moves. Obviously, this is a very simple-minded 

example, and the heuristics embodied in real chess-playing pro

grams are far more sophisticated. They are heuristics nevertheless, 

and a program guided by them can very well miss the best move. 

A nice way to explain the nature of heuristic search is to consider 

what happens when you lose a contact lens. You could carry out a 

blind search, by bending over and feeling around for the lens at 

random. You could carry out a systematic search, by methodically 

searching ever-larger circles around a central starting point. This 

search is bound to succeed eventually, but it might be very time-

1 3 The numbers for checkers are not quite as large, but perfect checkers 
is also out of the question. 
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consuming. A third possibility i s  analytic search, whereby the 

precise mathematical equations governing the fall of the lens are 

formulated and solved, taking into account wind, gravity, and air 

friction, as well as the precise topography, tension, and texture of 

the surface. This too, if carried out correctly, is guaranteed to 

succeed, but for obvious reasons is impractical . 

In contrast to these methods, most of us would use a heuristic 
search. We would first identify the approximate direction of the 

fall and make an educated guess as to the distance the lens could 

have gone by falling; we would then limit the search to the result

ing area. Still, heuristics cannot guarantee success; after all, rules of 

thumb are only rules of thumb. (There is, of course, a fifth 

approach, the lazy search, which calls for searching for the closest 

optician and purchasing a new lens. ) 

In a sense, using heuristics is like tossing coins. In Chapter 5 we 

saw how things can be improved by following the whims of ran

domness; the set of possibilities we thought we had to search 

through is significantly reduced, and many are left unexplored. We 

were thus willing to label a number 'prime' although we hadn't 

checked every possible witness to its non-primality. Since success 

is not guaranteed there either, it is tempting to view coin tossing as 

a blind heuristic, a sort of intuitionless rule of thumb. But there is 

a major difference. With probabilistic algorithms, analysis replaces 

intuition. By considering carefully defined sets of ignorable possi

bilities, and using randomization to decide which to actually 

ignore, we are able to analyze the probability of success rigorously, 

making precise statements about the algorithm's performance. 

This is often not true for algorithms that use heuristics. 

This account of heuristics is overly simplistic. In actuality there 

is much more going on than a few simple rules that cause the 
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program to ignore some of the possibilities in a search. There has 

to be a way to evaluate the quality of such situations in the search. 

For example, the designers of chess-playing algorithms must deal 

with the issue of what is the 'value' to White of a given board 

configuration. The problem of evaluating situations to help the 

algorithm reach a decision is one of the main challenges of 

heuristic programming. 

In a medical diagnosis system the number of possibilities is also 

enormous, and a heuristic search must take place, with the 

patient's observable symptoms and his or her answers to queries 

driving the system's navigation among the directions and possi

bilities. The evaluation problem here, which determines how rel

evant a particular set of possibilities is to the sought-after final 

diagnosis, is incredibly difficult. Indeed, one of the most useful 

outcomes of research in AI has been the development of sophis

ticated evaluation techniques for heuristic search. 

what ; s  knowledge? 

Heuristics and heuristic search constitute just one aspect of algor

ithmic intelligence. We also have to find ways to represent the 

knowledge that intelligent algorithms manipulate. The what-to

do-next parts of many AI programs are special, being based upon 

the 'soft' notion of heuristics, rather than on the 'harder', deter

ministic, analysis-driven basis of conventional algorithmics. In 

analogy, many of the what-are-we-talking-about parts of AI pro

grams are also special, being based upon the 'soft' notion of asso

ciative knowledge and erratically connected data, rather than on 

the well-organized, carefully regulated data structures and data 

bases of conventional algorithmics. 
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S o  what is knowledge? 

That twice four is eight and that France is in Europe is knowledge, 

but so is the fact that all giraffes have long necks, that Isaac Newton 

was brilliant, and that academics who do not publish perish. But 

what is 'long' and what is 'brilliant', and is 'perish' to be taken lit

erally? How do we represent such facts in our minds or in our 

computer's knowledge bases, and how do we use them? No 

program can be labeled intelligent - be it one that operates in a 

narrow domain, such as chess or a blocks world, or a general

purpose candidate for passing the Turing test - unless it has an 

appropriate mechanism for storing, retrieving, and manipulating 

knowledge. 

The difficulty is rooted in the observation that human knowledge 

does not consist merely of a large collection of facts. It is not only 

the sheer number and volume of the facts that is overwhelming 

(some researchers estimate the number at 30-50 million) ,  but, to a 

much larger extent, their interrelationships and dynamics. Items of 

knowledge are intertwined in the most intricate and complex ways, 

having numerous components, attributes, and levels of abstraction. 

And they constantly change, grow, and shift, as do the interconnec

tions. We know very little about the way we ourselves store and 

manipulate the immense quantities of knowledge accumulated 

over our lifetime. It is easy to say that we too are but finite 

machines, and are therefore amenable to simulation. The fact of the 

matter is that a human's knowledge base is incredibly complex, and 

works in ways that are still far beyond our comprehension. 

Still, impressive advances have been made in computerized 

knowledge representation, and many models have been suggested 

for use by intelligent programs. Some of these are based on standard 

kinds of database systems, and others on carefully constructed 
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logical formalisms. One of the most interesting proposals for this 

involves neural nets, a computational model that attempts to 

simulate the relationships and transfer of information between 

neurons in our brains. However, once outside a small well-defined 

domain of discourse, the relationships become far more intricate 

than we know how to model in this fashion, and current neural nets 

become vastly inadequate. Retrieving the knowledge items that are 

relevant to some decision that an intelligent program has to make is 

a truly formidable task. Neural nets have been used beneficially for 

many kinds of computerized jobs, taking advantage of their flexibil

ity and ability to adapt, and thus learn (we shall be discussing learn

ing shortly), but they too are far from exhibiting true intelligence. 

Particular kinds of knowledge-intensive programs are called 

expert systems. These are based on rules that a human expert 

employs in solving a particular problem. A typical expert system is 

constructed by questioning the expert about the ways that he or 

she utilizes expertise in tackling the problem at hand. The 

(human) questioner, sometimes called a knowledge engineer, 

attempts to discover and formulate the rules used by the expert, 

and the expert system then uses these rules the guide to search for 

a solution to a given instance of the problem. 

Expert systems with acceptable - often excellent - levels of 

performance have been constructed for carrying out some forms 

of medical diagnosis, for determining the structure of a molecule 

from its atomic formula and its mass spectrogram, for finding oil

rich areas, and for helping in the configuration of computer 

systems. We must realize, however, that in addition to relying on 

heuristic search, the rules that control the operation of an expert 

system are formed by questioning experts who might not always 

operate according to rigid rules. The chances of unexpected, 
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perhaps catastrophic, behavior in  an  expert system are therefore 

non-negligible. Some people put it this way: in an emergency, 

would you be willing to be taken care of by a computerized inten

sive care unit that was programmed according to the expert system 

paradigm? Under a rare set of circumstances, the unit could 

administer the wrong medicine or shut a crucial valve at the wrong 

moment, since its behavior is governed by rules that reflect inter

views with expert doctors who might not necessarily act in an 

unusual case according to well-formed rules that they are able to 

articulate. 

The knowledge representation problem becomes particularly 

acute when we consider learning and planning. Consider the task 

of constructing a checkers program that learns from its mistakes. 

How can this be done? How do we represent the relevant data? 

Should the program simply make a list of the positions and moves 

that turned out to be bad in previous games, and then run through 

them each time to avoid repeating a mistake, or should it try to 

remember and update more general rules of good play, to be used 

for modifying its heuristics? These questions become all the more 

difficult when the subject area is wider: how do children learn? 

How do they represent the knowledge that enables them to recog

nize objects or to synthesize sentences? How do adults remember 

and retrieve the vast amount of knowledge that enables them to 

learn how to write an essay, how to organize personal finances, or 

how to adapt to a new environment? 

The ability to plan is another intelligent skill. Some sophisticated 

mobile robots, operating within relatively simple surroundings, 

are capable of planning a sequence of movements that will take 

them to their destination. How do they do so? Do they simply 

carry out a search through all possibilities, or do they utilize more 
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subtle knowledge that enables them to look ahead, so to speak, and 

really plan with the goal in mind? Again, broader domains make 

things much harder: how does a person plan a trip, outline a 

scheme for ending the year with a positive balance, or devise a 

strategy to win a war? Way too little is known about how we our

selves deal with these tasks, and as a result we are very far from 

being able to teach them to a computer, even with the aid of learn

ing mechanisms such as neural nets. 

unders tanding natural language 

A nice way to better appreciate the difficulty of mechanizing intel

ligence is to look a little closer at the comprehension of ordinary 

natural language. 

We shall concentrate here on understanding the language - not 

merely on recognizing the words - but it is instructive to first see 

what can happen when a speech-recognition program makes mis

takes. The sentence 

Her presence made all the difference 

can be easily misunderstood and interpreted as 

Her presents made all the difference 

Similarly, 

Any Japanese car responds well 

can be heard as 

Any Japanese corresponds well 

and the well-known American statement 

I pledge allegiance to the flag 
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when mumbled fast, a s  school-kids will, can be understood as 

I led the pigeons to the flag 

Speech-recognition programs are a pun lover's paradise . I 4  

When i t  comes to  semantics the subtleties are much greater. 

Many sentences can't be understood without the context, and 

without the special nuances, phrases, and slang of the language at 

hand. Sometimes it is also necessary to be familiar with the idio

syncrasies of the person speaking. A famous example involves the 

aphorism 

The spirit is willing but the flesh is weak 

As the story goes, this sentence was subjected first to a simple 

dictionary-based computer translation into Russian, followed by a 

similar translation back into English. The result was 

The vodka is strong but the meat is rotten 

Ambiguity is the main culprit. Consider the following: 

lim sat down at the table and found a large fruit salad on a plate next 

to the basket of bread. It took him a while, but he finally managed to 

eat and digest it all. 

What did Jim eat? Was it the salad, the bread, or both? In some 

contexts it might be the plate or the basket; it could even be the 

table! Here grammar alone won't help much. The intended 

meaning, probably hinted at subtly by the context, is what counts. 

14 Hearing the pledge of allegiance as having to do with pigeons was 
described by W. Safire in one of his 'On Language' columns in The New 
York Times some years ago. See W. Satire ( 1 980) .  On Language, Times 
Books. 
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The following sentences are grammatically identical but they 

differ in the relationships between their various parts: 

The lost children were found by the searchers 

The lost children were found by the mountain 

The lost children were found by nightfall 

Obviously, the correct interpretation depends on the meaning of 

the words 'searchers', 'mountain', and 'nightfall'. And these kinds of 

things are incredibly difficult to predict and computerize, given 

the vast number of words in English. The same phenomenon 

occurs in these sentences: 

The thieves stole the jewels, and some of them were later sold 

The thieves stole the jewels, and some of them were later caught 

The thieves stole the jewels, and some of them were later found 

In this case, the word 'sold' refers to the jewels, 'caught' refers to the 

thieves, and 'found' can refer to either. Actually, even that much is 

not obvious. It is possible that the story takes place in a country 

where thieves are sold as slaves, rendering the first sentence ambi

guous too. If the second sentence had 'threw the jewels out of the 

window' instead of 'stole the jewels', it would also be ambiguous. 

Here again, semantics and understanding, and the issue of know

ledge, appear in all their severity. We utilize an enormous amount of 

knowledge in disambiguating and understanding ordinary English, 

besides just the words and the grammar. Identifying that knowledge, 

and representing it in ways that capture its intricate interrelation

ships and enable useful retrieval, re-emerges as the central and most 

fundamental problem in computerizing natural language. 

We are not saying that it is impossible or hopeless, just that it is 

far, far more difficult than it seems, and it involves far, far more 

than meets the eye. 



c a n  we o u r s e l v e s  d o  a n y b e t t e r ?  2 1 1  

To end this chapter, here are three hypothetical exchanges between 

a human being and a futuristic intelligent phone-answering 

machine, in, say, 25 years. I S  When reading them, it is worth putting 

amusement aside for a moment. Try to think of the way we humans 

would have dealt with the situations they raise, and of the hopeless

ness of programming a computer to deal with them intelligently. 

Con versati on 1 
Machine: 'Hello, this is Jim's phone.' 

Voice: 'Oh, it's you. Listen,. this is his boss. I really need to get Jim 

right away. Can you locate him and have him call me?' 

Machine: ' I 'm sorry, Mr Hizboss, Jim is playing golf this after

noon and left orders not to be disturbed.' 

Voice: 'He is, is he? Well, look, I'm thin on patience this after

noon. This is his boss calling, you idiot, not Mr Hizboss. 

Get Jim. Now!'  

Machine: ' I 'm pleased to hear that you are spending time with 

your patients this afternoon, Dr Thin. Business must be 

good. If you want to reach Jim's boss just dial 553-886 1 .  
Certainly you would never find him here i n  Jim's office; 

we have him listed in our directory under the alias of 

The Monster.' 

Voice: 'Take this message, you son of a chip, and get it straight. 

Tell him he is not worth the spacebar on your keyboard. 

He is fired! '  

( .  . .  Click . . .  ) 

1 5 Adapted with permission from R. W. Lucky ( 1 986) .  'The Phone 
Surrogate', IEEE Spectrum 23(5) ,  6. 
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Con versati on 2 
Machine: 'Hello, this is Jim's phone.' 

Voice: 'Oh, hello, you darling machine. I just wanted to check 

that we're still on for dinner and whatever.' 

Machine: 'Of course, Sue. I have you with him for Thursday at the 

usual spot.' 

Voice: 'This is Jim's fiancee, Barbara. Who is Sue?' 

Machine: 'Oh, Barbara, I didn't recognize your voice. I've never 

heard of anyone named Sue.' 

Voice: 'But you just said he was meeting with Sue on Thursday.' 

Machine: 'Oh, that Sue. Are you sure you have the right number? 

This is Martin Finch's phone.' 

Voice: 'You can't pull that trick on me. Tell Jim it's all over!' 

Machine: 'You have reached a nonworking number. Please check 

your listing and redial.' 

( . . .  Click . . .  ) 

Con versati on 3 
Machine: 'Hello, this is Jim's phone.' 

Voice: 'Are you satisfied with your present investments? Have 

you considered the advantages of tax-free municipal 

bonds? To hear more, please give your name and 

address after the beep.' 

( . . .  Beep . . .  ) 
Machine: 'Err, . . .  this is Jim's phone.' 

Voice: 'Thank you Mr Jimzfone. Let me tell you more about 

our unusual investment opportunities . .  . ' 



pos tramble 

We have already said that computers are amazing. Bookstores and 

bookshelves are brimming with books that talk about what com

puters can do and how to get the most out of them. This is the 

good news, and this book concentrated on the bad. 

Instead of summarizing the hard facts and the unknowns, it 

seems appropriate to close with another amusing story. This time 

an imaginary scene, in which four robots, built in four of the 

leading AI labs in the USA, are trying to use their intelligence to 

get across a busy highway. l 

The first comes from a laboratory in which logical deduction 

and planning are crucial parts of its AI research. This robot stands 

by the side of the road, looking here and there, dizzied by the cars 

and trucks whizzing by, and waiting for the situation to stabilize so 

that it can use its deep and contemplative deduction abilities to 

devise a plan for crossing. This, of course, never happens. 

The second robot is from a lab that excels in the complex robot

ics of mechanical propulsion: walking, rolling, and hopping. This 

one-legged Pogo-stick robot is in the midst of the traffic, franti

cally jumping up and down and to and fro, again and again barely 

I This is based loosely on a folklore joke that is reproduced in 
K. J. Hammond ( I 989) .  Case-Based Planning: Viewing Planning as a 
Memory Task. Academic Press, New York, pp. xxi-xxii. 
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avoiding being hit, but making no progress whatsoever towards 

the other side. 

The third originates in a large and rich lab that does many dif

ferent kinds of grand-scale AI research and manages to attract big 

grant money. The road is littered with the crushed remains of 

many of this lab's robots. Many more of these gallant and loyal 

robots are waiting on the side, to be sent out to try again, one after 

the other, just like infantry charging out of the trenches in World 

War !'  

The fourth lab views the heart and soul of AI to be the compre

hension, analysis, and synthesis of natural language. Its robot sits 

at the side of the road, nods slowly and says, 'Yes, I know; and that 

reminds me of another story . . .  '. 
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