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Preface

Contemporary cognitive science is in a state of flux. For three decades or
more the field has been dominated by an artificial intelligence (Al)-based
computational paradigm which models cognition as the sequential manipula-
tion of discrete symbolic structures. Recently, however, this paradigm has
taken on a decidedly weary cast; progress has slowed, and limitations and
anomalies mount up. Now, more than at any time since the 1950s, researchers
throughout cognitive science are actively investigating alternative frame-
works within which to develop models and descriptions. Of these alterna-
tives, arguably the most general, widespread, and powerful is the dynamical
approach.

Right across cognitive science, researchers are applying the concepts and
tools of dynamics to the study of cognitive processes. The strategy itself is
not new; the use of dynamics was prominent in the “cybernetics” period
(1945-1960), and there have been active dynamical research programs ever
since. Recent years, however, have seen two important developments. First,
for various reasons, including the relative decline in authority of the com-
putational paradigm, there has been a dramatic increase in the amount of
dynamical research. Second, there has been the realization in some quarters
that dynamics provides not just a set of mathematical tools but a deeply
different perspective on the overall nature of cognitive systems. Dynamicists
from diverse areas of cognitive science share more than a mathematical lan-
guage; they have a common worldview.

Mind as Motion presents a representative sampling of contemporary
dynamical research. It envisions the dynamical approach as a fully fledged
research program standing as an alternative to the computational approach.
Accordingly, this book has a number of aims. One is to help introduce
dynamical work to a wider audience than the research efforts might have
reached individually. A second aim is to articulate and clarify the dynamical
approach itself, both in its conceptual foundations and as a set of specific
methods for investigating cognitive phenomena. Third, and most important,
this book is intended as a contribution to progress in cognitive science. It is
an investigation into the nature of cognitive systems.



viii

Mind as Motion has been designed to render contemporary, state-of-the-
art dynamical research accessible to a general audience in cognitive science,
including readers who might have no particular background in dynamics.
Consequently, the book provides a conceptual and historical overview of
the dynamical approach to cognition (chapter 1), a tutorial introduction to
dynamics for cognitive scientists (chapter 2), and a glossary covering the
most frequently used terms. Additionally, each chapter finishes with a Guide
to Further Reading which usually lists introductory or background material
as well as further research in the same area.

Dynamics tends to be difficult. Most cognitive scientists have relatively
little training in the mathematics of dynamics (calculus, differential equations,
dynamical systems theory, etc.) compared with their background in the dis-
crete mathematics of computer science (logic, complexity theory, program-
ming, etc.). Consequently, some of the chapters can be quite formidable, and
readers new to the dynamic approach may have difficulty appreciating the
arguments and why they are interesting. To help deal with this problem, we
have provided each chapter with a brief introduction which surveys the main
moves and helps locate the chapter’s particular contribution in the wider
landscapes of the dynamical approach and of cognitive science. We are of
course very much aware that a few paragraphs cannot do justice to the depth
and complexity of the ideas presented in the chapters themselves; we hope
only that they serve adequately as guides and incentives.

The chapters in this book span a great deal of contemporary cognitive
science. We have been particularly concerned to demonstrate that it would
be mistaken to suppose that dynamics is naturally suited for “peripheral” or
“lower” aspects of cognition, while “central” or “higher” aspects are best
handled with computational models. On the one hand, many of the chapters
are targeted at aspects of cognition that have traditionally been regarded
as the home turf of computational modeling. Thus, for example, language
receives more attention in this volume than any other broad cognitive phe-
nomenon; the chapters by Saltzman; Browman and Goldstein; Elman; Petitot;
Pollack; van Geert; and Port, Cummins, and McAuley all focus on one aspect
or another of our ability to speak and understand. Similarly, Townsend and
Busemeyer demonstrate that dynamics applies to another aspect of cognition
that is traditionally regarded as “central,” namely decision-making.

On the other hand, the dynamical approach aims to break down the
dichotomy itself. The distinction between higher or central and lower or
peripheral cognitive processes is a contemporary remnant of the traditional
philosophical view that mind is somehow fundamentally distinct in nature
from the material world (the body and the external physical world). From this
point of view, cognitive science studies the inner, abstract, disembodied pro-
cesses of pure thought, while other sciences such as mechanics study the
behavior of the body and physical environment. This dichotomy also usually
regards cognitive processes as complex and difficult to study, whereas the
body is relatively unproblematic, a simple machine.
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The dynamical approach rejects this dichotomy in most of its guises. Cog-
nitive processes span the brain, the body, and the environment; to understand
cognition is to understand the interplay of all three. Inner reasoning processes
are no more essentially cognitive than the skillful execution of coordinated
movement or the nature of the environment in which cognition takes place.
The interaction between “inner” processes and “outer” world is not periph-
eral to cognition, it is the very stuff of which cognition is made. Conse-
quently, Mind as Motion is even-handed in its treatment of the inner, the
bodily, and the environmental. Certain chapters focus on phenomena that
primarily take place internally (e.g., Townsend and Busemeyer; Elman; Petitot;
Grossberg; Metzger), others focus primarily on phenomena in the environ-
ment (e.g.. Bingham), while the majority focus either on bodily processes
or span these various domains (e.g., Beer; Turvey and Carello; Thelen; van
Geert; Saltzman; Browman and Goldstein; Port, Cummins, and McAuley;
Reidbord and Redington).

It must be stressed that the dynamical approach is not some wholly new
way of doing research that is separate from all existing research paradigms in
cognitive science and hopes to displace them. Rather, to see that there is a
dynamical approach is to see a way of redrawing one’s conceptual map of
cognitive science in accordance with the deepest similarities between various
forms of existing research. Thus, most chapters in this book also belong to
some other school of thought. For example, neural networks are dynamical
systems which constitute an excellent medium for dynamical modeling, and
many chapters in Mind as Motion also count as connectionist or neural
network research (e.g., Beer; Elman; Pollack; Port, Cummins, and McAuley;
Grossberg). Other chapters represent research of the kind that has been
taking place under the banner of ecological psychology (e.g.. Bingham;
Turvey and Carello), while others fall into the mainstream of developmental
psychology (e.g.. Thelen; van Geert) or cognitive psychology (e.g., Town-
send and Busemeyer; Metzger). One form of dynamical research into cogni-
tion that is notably absent from Mind as Motion is neuroscientific investiga-
tion. It is now so uncontroversial that the behaviors of the internal building
blocks of cognitive processes—synapses, neurons, and assemblies of neurons
—are best described in dynamical terms that, under our space constraints, it
seemed reasonable to cover other aspects of cognition instead.

The origins of Mind as Motion lie in a conference held at Indiana Univer-
sity in November 1991. This informal 3-day gathering brought together a
selection of researchers from diverse branches of cognitive science to discuss
their work under the general heading “Dynamic Representation in Cogni-
tion.” Despite their many differences, it was apparent to all involved that
dynamics provides a general framework for a powerful and exciting research
paradigm in cogpnitive science. An edited book was planned in order to build
on the momentum of the conference and to articulate this alternative vision
of how cognitive science might be done. The book grew in size and scope to
the point where a good number of the major figures in the area are included.
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Nevertheless, the book makes no pretense to being exhaustive in this regard.
Many significant lines of current research that would fit the purposes of this
book very well are represented only in citations or in the Guides to Further
Reading. Surely others have been missed altogether.

The broad perspective on cognitive science advanced by Mind as Motion
has grown directly out of the exceptionally active and fertile dynamics re-
search environment at Indiana University. For feedback, ideas, and encour-
agement we are particularly grateful to the Dynamoes, an informal inter-
disciplinary group of faculty members interested in dynamical research; these
include Geoffrey Bingham, David Jones, Richard McFall, William Timberlake,
Linda Smith, Esther Thelen, James Townsend, Margaret Intons-Peterson, and
Richard Shiffrin. We are also grateful to Indiana University for various kinds
of support of this group’s activities. Among the students, former students,
and postdoctoral fellows who have also contributed to the dynamics environ-
ment are John Merrill, Sven Anderson, Jungyul Suh, and Devin McAuley.
Numerous people helped with the book in various ways, including Diane
Kewley-Port, Joe Stampfli, Devin McAuley, Louise McNally, Mike Gasser,
Gregory Rawlins, Charles Watson, Scott Kelso, Gary Kidd, Brian Garrett, and
Gregor Schoner. Special mention must be made of the efforts of Fred
Cummins and Alec Norton, who are not only contributors to the volume
but also assisted in numerous other ways as well. We are grateful to Karen
Loffland, Linda Harl, and Mike Mackenzie for secretarial assistance, and to
Trish Zapata for graphics. Harold Hawkins and the Office of Naval Research
supported both the original conference and the production of this volume
through grants to Robert Port (N0001491-J-1261, N0001493, and N0001492-
J-1029). Timothy van Gelder was supported in 1993—1995 by a Queen Eliza-
beth II Research Fellowship from the Australian Research Council. The editors
shared the work of preparing this book equally; for purposes of publica-
tion, names are listed alphabetically. Finally, and perhaps most important, the
editors are grateful to all the contributors for their patience and willingness
to deal with our seemingly endless requests for revisions.
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It's About Time: An Overview of the
Dynamical Approach to Cognition

Timothy van Gelder and Robert F. Port

How do we do what we do? How do we play tennis, have conversations,
go shopping? At a finer grain, how do we recognize familiar objects such as
bouncing balls, words, smiles, faces, jokes? Carry out actions such as returning
a serve, pronouncing a word, selecting a book off the shelf? Cognitive scien-
tists are interested in explaining how these kinds of extraordinarily sophisti-
cated behaviors come about. They aim to describe cognition: the underlying
mechanisms, states, and processes.

For decades, cognitive science has been dominated by one broad approach.
That approach takes cognition to be the operation of a special mental com-
puter, located in the brain. Sensory organs deliver up to the mental computer
representations of the state of its environment. The system computes a speci-
fication of an appropriate action. The body carries this action out.

According to this approach, when I return a serve in tennis, what happens
is roughly as follows. Light from the approaching ball strikes my retina and
my brain’s visual mechanisms quickly compute what is being seen (a ball) and
its direction and rate of approach. This information is fed to a planning sys-
tem which holds representations of my current goals (win the game, return
the serve, etc.) and other background knowledge (court conditions, weak-
nesses of the other player, etc.). The planning system then infers what I must
do: hit the ball deep into my opponent’s backhand. This command is issued to
the motor system. My arms and legs move as required.

In its most familiar and successful applications, the computational approach
makes a series of further assumptions. Representations are static structures of
discrete symbols. Cognitive operations are transformations from one static
symbol structure to the next. These transformations are discrete, effectively
instantaneous, and sequential. The mental computer is broken down into a
number of modules responsible for different symbol-processing tasks. A
module takes symbolic representations as inputs and computes symbolic rep-
resentations as outputs. At the periphery of the system are input and output
transducers: systems which transform sensory stimulation into input repre-
sentations, and output representations into physical movements. The whole
system, and each of its modules, operates cyclically: input, internal symbol
manipulation, output.



The computational approach provides a very powerful framework for
developing theories and models of cognitive processes. The classic work of
pioneers such as Newell, Simon, and Minsky was carried out within it. Liter-
ally thousands of models conforming to the above picture have been pro-
duced. Any given model may diverge from it in one respect or another, but
all retain most of its deepest assumptions. The computational approach is
nothing less than a research paradigm in Kuhn's classic sense. It defines a
range of questions and the form of answers to those questions (i.e., computa-
tional models). It provides an array of exemplars—classic pieces of research
which define how cognition is to be thought about and what counts as a
successful model. Philosophical tomes have been devoted to its articulation
and defense. Unfortunately, it has a major problem: Natural cognitive sys-
tems, such as people, aren’t computers.

This need not be very surprising. The history of science is full of epi-
sodes in which good theories were developed within bad frameworks. The
Ptolemaic earth-centered conception of the solar system spawned a succes-
sion of increasingly sophisticated theories of planetary motion, theories with
remarkably good descriptive and predictive capabilities. Yet we now know
that the whole framework was structurally misconceived, and that any theory
developed within it would always contain anomalies and reach explanatory
impasses. Mainstream cognitive science is in a similar situation. Many impres-
sive models of cognitive processes have been developed within the computa-
tional framework, yet none of these models are wholly successful even in
their own terms, and they completely sidestep numerous critical issues. Just as
in the long run astronomy could only make progress by displacing the earth
from the center of the universe, so cognitive science has to displace the inner
computer from the center of cognitive performance.

The heart of the problem is time. Cognitive processes and their context unfold
continuously and simultaneously in real time. Computational models specify a
discrete sequence of static internal states in arbitrary “step” time (f,, ¢,, etc.).
Imposing the latter onto the former is like wearing shoes on your hands. You
can do it, but gloves fit a whole lot better.

This deep problem manifests itself in a host of difficulties confronting par-
ticular computational models throughout cognitive science. To give just one
example, consider how you might come to a difficult decision. You have a
range of options, and consider first one, then another. There is hesitation,
vacillation, anxiety. Eventually you come to prefer one choice, but the attrac-
tion of the others remains. Now, how are decision-making processes concep-
tualized in the computational worldview? The system begins with symbolic
representations of a range of choices and their possible outcomes, with asso-
ciated likelihoods and values. In a sequence of symbol manipulations, the
system calculates the overall expected value for each choice, and determines
the choice with the highest expected value. The system adopts that choice.
End of decision. There are many variations on this basic “expected utility”
structure. Different models propose different rules for calculating the choice
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the system adopts. But none of these models accounts perfectly for all the
data on the choices that humans actually make. Like Ptolemaic theories of the
planets, they become increasingly complex in attempting to account for resid-
ual anomalies, but for every anomaly dealt with another crops up elsewhere.
Further, they say nothing at all about the temporal course of deliberation:
how long it takes to reach a decision, how the decision one reaches depends
on deliberation time, how a choice can appear more attractive at one time,
less attractive at another, etc. They are intrinsically incapable of such predic-
tions, because they leave time out of the picture, replacing it only with ersatz
“time”: a bare, abstract sequence of symbolic states.

What is the alternative to the computational approach? In recent years,
many people have touted connectionism—the modeling of cognitive processes
using networks of neural units—as a candidate. But such proposals often
underestimate the depth and pervasiveness of computationalist assumptions.
Much standard connectionist work (e.g., modeling with layered backprop
networks) is just a variation on computationalism, substituting activation pat-
terns for symbols. This kind of connectionism took some steps in the right
direction, but mostly failed to take the needed leap out of the computational
mindset and info time (see section 1.3, Relation to Connectionism, for elabora-
tion).

The alternative must be an approach to the study of cognition which begins
from the assumption that cognitive processes happen in time. Real time. Con-
veniently, there already is a mathematical framework for describing how pro-
cesses in natural systems unfold in real time. It is dynamics. It just happens
to be the single most widely used, most powerful, most successful, most
thoroughly developed and understood descriptive framework in all of natural
science. It is used to explain and predict phenomena as diverse as subatomic
motions and solar systems, neurons and 747s, fluid flow and ecosystems.
Why not use it to describe cognitive processes as well?

The altemnative, then, is the dynamical approach. Its core is the application
of the mathematical tools of dynamics to the study of cognition. Dynamics
provides for the dynamical approach what computer science provides for the
computational approach: a vast resource of powerful concepts and modeling
tools. But the dynamical approach is more than just powerful tools; like the
computational approach, it is a worldview. The cognitive system is not a
computer, it is a dynamical system. It is not the brain, inner and encapsu-
lated; rather, it is the whole system comprised of nervous system, body, and
environment. The cognitive system is not a discrete sequential manipula-
tor of static representational structures; rather, it is a structure of mutually
and simultaneously influencing change. Its processes do not take place in the
arbitrary, discrete time of computer steps; rather, they unfold in the real time
of ongoing change in the environment, the body, and the nervous system.
The cognitive system does not interact with other aspects of the world by
passing messages or commands; rather, it continuously coevolves with them.
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The dynamical approach is not a new idea: dynamical theories have been a
continuous undercurrent in cognitive science since the field began (see section
1.4). It is not just a vision of the way things might be done; it's the way a
great deal of groundbreaking research has already been carried out, and the
amount of dynamical research undertaken grows every month. Much of the
more recent work carried out under the connectionist banner is thoroughly
dynamical; the same is true of such diverse areas as neural modeling, cogni-
tive neuroscience, situated robotics, motor control, and ecological psychol-
ogy. Dynamical models are increasingly prominent in cognitive psychology,
developmental psychology, and even some areas of linguistics. In short,
the dynamical approach is not just some new kid on the block; rather, to
see that there is a dynamical approach is to see a new way of conceptually
reorganizing cognitive science as it is currently practiced.

This introductory chapter provides a general overview of the dynamical
approach: its essential commitments, its strengths, its relationship to other
approaches, its history. It attempts to present the dynamical approach as a
unified, coherent, plausible research paradigm. It should be noted, however,
that dynamicists are a highly diverse group, and no single characterization
would describe all dynamicists perfectly. Consequently, our strategy in this
chapter is to characterize a kind of standard dynamicist position, one which
can serve as a useful point of reference in understanding dynamical research.

The chapter is generally pitched in a quite abstract terms. Space limitations
prevent us from going into particular examples in much detail. We urge
readers who are hungry for concrete illustrations to turn to any of the 15
chapters of this book which present examples of actual dynamical research in
cognitive science. It is essential for the reader to understand that defailed
demonstrations of all major points made in this overview are contained in chapters of
the book.

Before proceeding we wish to stress that our primary concern is only to
understand natural cognitive systems—evolved biological systems such as
humans and other animals. While the book is generally critical of the main-
stream computational approach to the study of cognitive systems, it has no
objections at all to investigations into the nature of computation itself, and
into the potential abilities of computational systems such as take place in
many branches of artificial intelligence (Al). While we think it unlikely that
it will be possible to reproduce the kind of intelligent capacities that are
exhibited by natural cognitive systems without also reproducing their basic
noncomputational architecture, we take no stand on whether it is possible to
program computers to exhibit these, or other, intelligent capacities.

1.1 WHAT IS THE DYNAMICAL APPROACH?
The heart of the dynamical approach can be succinctly expressed in the

form of a very broad empirical hypothesis about the nature of cognition.
For decades, the philosophy of cognitive science has been dominated by the
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computational hypothesis, that cognitive systems are a special kind of com-
puter. This hypothesis has been articulated in a number of ways, but perhaps
the most famous statement is Newell and Simon’s Physical Symbol System
Hypothesis, the claim that physical symbol systems (computers) are necessary
and sufficient for intelligent behavior (Newell and Simon, 1976). According to
this hypothesis, natural cognitive systems are intelligent by virtue of being
physical symbol systems of the right kind. At this same level of generality,
dynamicists can be seen as embracing the Dynamical Hypothesis: Natural cog-
nitive systems are dynamical systems, and are best understood from the
perspective of dynamics. Like its computational counterpart, the Dynamical
Hypothesis forms a general framework within which detailed theories of
particular aspects of cognition can be constructed. It can be empirically vindi-
cated or refuted, but not by direct tests. We will only know if the Dynamical
Hypothesis is true if, in the long run, the best theories of cognitive processes
are expressed in dynamical terms.

The following sections explore the various components of the Dynamical
Hypothesis in more detail.

Natural Cognitive Systems Are Dynamical Systems

What Are Dynamical Systems? The notion of dynamical systems occurs
in a wide range of mathematical and scientific contexts, and as a result the
term has come to be used in many different ways. In this section our aim is
simply to characterize dynamical systems in the way that is most useful for
understanding the dynamical approach to cognition.

Roughly speaking, we take dynamical systems to be systems with numeri-
cal states that evolve over time according to some rule. Clarity is critical at
this stage, however, so this characterization needs elaboration and refinement.

To begin with, a system is a set of changing aspects of the world. The over-
all state of the system at a given time is just the way these aspects happen
to be at that time. The behavior of the system is the change over time in its
overall state. The totality of overall states the system might be in makes
up its state sef, commonly referred to as its state space. Thus the behavior of
the system can be thought of as a sequence of points in its state space.

Not just any set of aspects of the world constitutes a system. A system is
distinguished by the fact that its aspects somehow belong together. This
really has two sides. First, the aspects must interact with each other; the way
any one of them changes must depend on the way the others are. Second, if
there is some further aspect of the world that interacts in this sense with
anything in the set, then clearly it too is really part of the same system. In
short, for a set of aspects to qualify as a system, they must be interactive
and self contained: change in any aspect must depend on, and only on, other
aspects in the set.

For example, the solar system differs from, say, the set containing just the
color of my car and the position of my pencil, in that the position of any one
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planet makes a difference to where the other planets will be. Moreover, to a
first approximation at least, the future positions of the planets are affected
only by the positions, masses, etc, of the sun and other planets; there is
nothing else we need take into account. By contrast, the position of my pencil
is affected by a variety of other factors; in fact, it is unlikely that there is any
identifiable system to which the position of my pencil (in all the vicissitudes
of its everyday use) belongs.

Dynamical systems are special kinds of systems. To see what kind, we first
need another notion, that of state-determined systems (Ashby, 1952). A system
is state-determined only when its current state always determines a unique
future behavior. Three features of such systems are worth noting. First, in
such systems, the future behavior cannot depend in any way on whatever
states the system might have been in before the current state. In other words,
past history is irrelevant (or at least, past history only makes a difference
insofar as it has left an effect on the current state). Second, the fact that the
current state determines future behavior implies the existence of some rule of
evolution describing the behavior of the system as a function of its current
state. For systems we wish to understand, we always hope that this rule can
be specified in some reasonably succinct and useful fashion. One source of
constant inspiration, of course, has been Newton’s formulation of the laws
govemning the solar system. Third, the fact that future behaviors are uniquely
determined means that state space sequences can never fork. Thus, if we
observe some system that proceeds in different ways at different times from
the same state, we know we do not have a state-determined system.

The core notion of a state-determined system, then, is that of a self-
contained, interactive set of aspects of the world such that the future states of
the system are always uniquely determined, according to some rule, by the
current state. Before proceeding, we should note an important extension of
this idea, for cases in which changing factors external to the system do in
fact affect how the system behaves. Suppose we have a set S of aspects
{s1....,5m} whose change depends on some further aspect s, of the world,
but change in s, does not in turn depend on the state of S, but on other
things entirely. Then, strictly speaking, neither S nor S + s, form systems, since
neither set is self contained. Yet we can freat S as a state-determined system
by thinking of the influence of s, as built into its rule of evolution. Then the
current state of the system in conjunction with the rule can be thought of as
uniquely determining future behaviors, while the rule changes as a function
of time. For example, suppose scientists discovered that the force of gravity
has actually been fluctuating over time, though not in a way that depends on
the positions and motions of the sun and planets. Then the solar system
still forms a state-determined system, but one in which the rules of planetary
motion must build in a gravitational constant that is changing over time.
Technically, factors that affect, but are not in turn affected by, the evolution
of a system are known as parameters. If a parameter changes over time, its
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changing effect can be taken into account in the rule of evolution, but then
the rule itself is a function of time and the system is known as nonhomogeneous.

Now, according to some (e.g., Giunti, chapter 18), dynamical systems are
really just state-determined systems. This identification is certainly valuable for
some purposes. In fact, it is really this very inclusive category of systems (or
at least, its abstract mathematical counterpart) that is studied by that branch
of mathematics known as dynamical systems theory. Nevertheless, if our aim is
to characterize the dynamical approach to cognition—and in particular, to
contrast it with the computational approach—it turns out that a narrower
definition is more useful. This narrower definition focuses on specifically
numerical systems.

The word “dynamical” is derived from the Greek dynamikos, meaning
“forceful” or “powerful.” A system that is dynamical in this sense is one in
which changes are a function of the forces operating within it. Whenever
forces apply, we have accelerations or decelerations; i.e., there is change in
the rate at which the states are changing at any given moment. The standard
mathematical tools for describing rates of change are differential equations.
These can be thought of as specifying the way a system is changing at any
moment as a function of its state at that moment.! For example, the differ-
ential equation
) k
f=——x

m
describes the way (in ideal circumstances) a heavy object on the end of a
spring will bounce back and forth by telling us the instantaneous accelera-
tion () of the object as a function of its position (x); k and m are constants
(parameters) for the spring tension and mass, respectively.

State-determined systems governed by differential equations are paradigm
examples of dynamical systems in the current sense, but the latter category
also includes other systems which are similar in important ways.

Whenever a system can be described by differential equations, it has n
aspects or features (position, mass, etc.) evolving simultaneously and con-
tinuously in real time. Each of these features at a given point in time can be
measured as corresponding to some real number. Consequently we can think
of the overall state of the system as corresponding to an ordered set of n real
numbers, and the state space of the system as isomorphic to a space of real
numbers whose n dimensions are magnitudes corresponding (via measure-
ment) to the changing aspects of the system. Sometimes this numerical space
is also known as the system’s state space, but for clarity we will refer to it as
the system'’s phase space® (figure 1.1). The evolution of the system over time
corresponds to a sequence of points, or trajectory, in its phase space. These
sequences can often be described mathematically as functions of an indepen-
dent variable, time. These functions are solutions to the differential equations
which describe the behavior of the system.
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Figure 1.1 Mass-springs and computers are two different kinds of concrete state-determined
system. (Our figure depicts an abacus; strictly speaking, the abacus would have to be auto-
mated to count as a computer.) Such systems are always in a particular state at a given point in
time. This state is only one of many states that it could be in. The total set of possible states is
commonly known as the system’s state space. Corresponding to the state space is a set of
abstract elements that is also commonly known as the system’s state space, but which for
clarity we refer to as its phase space. Possible states of the system are mapped onto elements of
the phase space by some form of classification. In the computational case, tokens of symbols in
the concrete system are classified into types, allowing the total state of the system to be
classified as instantiating a particular configuration of symbol types. In the dynamical case,
aspects of the system are measured (i.e., some yardstick is used to assign a number to each
aspect), thereby allowing an ordered set of numbers to be assigned to the total state. Se-
quences of elements in the phase space can be specified by means of rules such as algorithms
(in the computational case) and differential equations (in the dynamical case). A phase space
and a rule are key elements of abstract state-determined systems. A concrete system realizes an
abstract system when its states can be systematically classified such that the sequences of
actual states it passes through mirror the phase space sequences determined by the rule.
Typically, when cognitive scientists provide a model of some aspect of cognition, they provide
an abstract state-determined system, such that the cognitive system is supposed to realize that
abstract system or one relevantly like it.
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Now, phase-space trajectories can be specified in a variety of ways. Differ-
ential equations constitute one particularly compact way of describing the
shape of all possible trajectories in a given system. This kind of specification
is useful for some purposes but not for others. A common alternative is to
specify trajectories by means of a discrete mapping of any given point in
the phase space onto another point. For example, perhaps the most-studied
family of dynamical systems is the one whose rule is the “logistic equation”
or “quadratic map” (Devaney, 1986)3:

E@) = ux(1 — 1)

For any particular value of the parameter 4, this equation determines a partic-
ular mapping of every point x in the phase space onto another point F,(x). A
mapping like this can be regarded as giving us the state of a system at a
subsequent point in time (¢ + 1) if we know the state of the system at any
given time (f). When the rule is written so as to bring this out, it is known as
a difference equation, taking the general form

xt + 1) = F(x(¥))

If we take any given point in the phase space and apply (“iterate”) the map-
ping many times, we obtain a phase-space trajectory.

Mathematicians and scientists often describe dynamical systems by means
of discrete mappings rather than differential equations. In many cases these
mappings are closely related to particular differential equations describing
essentially the same behavior. This is not always the case, however. Conse-
quently, a more liberal definition of dynamical system is: any state-determined
system with a numerical phase space and a rule of evolution (including differ-
ential equations and discrete maps) specifying trajectories in this space.

These systems, while only a subset of state-determined systems in general,
are the locus of dynamical research in cognitive science. They find their most
relevant contrast with computational systems. These systems have states that
are configurations of symbols,* and their rules of evolution specify transfor-
mations of one configuration of symbols into another. Whereas the phase
space of a dynamical system is a numerical space, the phase space of a compu-
tational system is a space of configurations of symbol types, and trajectories
are sequences of such configurations.

Why is it that dynamical systems (in our sense) are the ones chosen
for study by dynamicists in cognitive science? Here we briefly return to the
traditional idea that dynamics is a matter of forces, and therefore essentially
involves rates of change. In order to talk about rates of change, we must be
able to talk about amounts of change in amounts of time. Consequently, the
phase space must be such as to allow us to say how far the state is changing,
and the time in which states change must involve real durations, as opposed to
a mere linear ordering of temporal points.

Now, these notions make real sense in the context of dynamical systems as
defined here. Numerical phase spaces can have a metric that determines dis-
tances between points. Further, if the phase space is rich enough (e.g., dense)
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then between any two points in the phase space we can find other points, and
so we can talk of the state of the system at any time between any two other
times. Thus the notion of time in which the system operates is also one
to which a substantial notion of “length” can be applied; in other words, it
comes to possess some of the same key mathematical properties as real time.
Note that neither of these properties is true of computational systems such as
Turing machines; there, there is no natural notion of distance between any
two total states of the system, and “time” (f,, t,, etc.) is nothing more than
order. Consequently it is impossible to talk of how fast the state of the
system is changing, and as a matter of fact, nobody ever tries; the issue is in
a deep way irrelevant.

The importance of being able to talk about rates of change is that all actual
processes in the real world (including cognitive processes) do in fact unfold at
certain rates in real time. Further, for many such systems (including cognitive
systems) timing is essential: they wouldn't be able to function properly unless
they got the fine details of the timing right. Therefore, in order to provide
adequate scientific descriptions of the behavior of such systems, we need to
understand them as systems in which the notion of rates of change makes
sense (see Cognition and Time, below). Dynamicists in cognitive science pro-
pose dynamical models in the current sense because they are such systems. It
may well be that there are other, less well-known mathematical frameworks
within which one could model change in real time without using specifically
numerical systems. As things stand, however, dynamical systems in cognitive
science are in fact state-determined numerical systems.

A wide variety of fascinating questions can be raised about the relations
between dynamical and computational systems. For example, what is the
relationship between an ordinary digital computer and the underlying electri-
cal dynamical system that in some sense makes it up? Or, what is the relation
between a dynamical system and a computational simulation or emulation of
it? Even more abstractly, how “powerful” is the class of dynamical systems, in
comparison with computational systems? However, we must be very careful
not to allow the fact that there are many such relationships, some of them
quite intimate, to blind us to an important philosophical, and ultimately prac-
tical, truth: dynamical and computational systems are fundamentally different
kinds of systems, and hence the dynamical and computational approaches to
cognition are fundamentally different in their deepest foundations.

Natural Cognitive Systems as Dynamical Systems Describing natural
phenomena as the behavior of some dynamical system lies at the very heart
of modern science. Ever since Newton, scientists have been discovering more
and more aspects of the natural world that constitute dynamical systems
of one kind or another. Dynamicists in cognitive science are claiming that
yet another naturally occurring phenomenon, cognition, is the behavior of an
appropriate kind of dynamical system. They are thus making exactly the same
kind of claim for cognitive systems as scientists have been making for so
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many other aspects of the natural world. In the Dynamical Hypothesis, this
is expressed as the idea that natural cognitive systems are dynamical systems.

Demonstrating that some aspect of the world constitutes a dynamical sys-
tem requires picking out a relevant set of quantities, and ways of measuring
them, such that the resulting phase-space trajectories conform to some speci-
fiable rule. These trajectories must correspond to the behaviors of theoretical
interest. So, if we are interested in cognitive systems, then the behaviors of
interest are their cognitive performances (perceiving, remembering, conversing,
etc.), and it is these behaviors, at their characteristic time scales, that must
unfold in a way described by the rule of evolution. Consequently, the claim
that cognitive systems are dynamical systems is certainly not trivial. Not
everything is a dynamical system, and taking some novel phenomenon and
showing that it is the behavior of a dynamical system is always a significant
scientific achievement. If the Dynamical Hypothesis is in fact true, we will
only know this as a result of much patient scientific work.’

Natural cognitive systems are enormously subtle and complex entities in
constant interaction with their environments. It is the central conjecture of
the Dynamical Hypothesis that these systems constitute single, unified dy-
namical systems. This conjecture provides a general theoretical orientation for
dynamicists in cognitive science, but it has not been (and in fact may never
be) demonstrated in detail, for nobody has specified the relevant magnitudes,
phase space, and rules of evolution for the entire system. Like scientists con-
fronting the physical universe as a whole, dynamicists in cognitive science
strive to isolate particular aspects of the complex, interactive totality that are
relatively self-contained and can be described mathematically. Thus, in prac-
tice, the Dynamical Hypothesis reduces to a series of more specific assertions,
to the effect that particular aspects of cognition are the behavior of distinct,
more localized systems. For example, Turvey and Carello (see chapter 13)
focus on our ability to perceive the shape of an object such as a hammer
simply by wielding it. They show how to think of the wielding itself as a
dynamical system, and of perception of shape as attunement to key parame-
ters of this system. The Dynamical Hypothesis, that entire cognitive systems
constitute dynamical systems, is thus comparable to the Laplacean hypothesis
that the entire physical world is a single dynamical system.

Many cognitive processes are thought to be distinguished from other
kinds of processes in the natural world by the fact that they appear to depend
crucially on knowledge which must somehow be stored and utilized. At the
heart of the computational approach is the idea that this knowledge must
be represented, and that cognitive processes must therefore be operations on
these representations. Further, the most powerful known medium of represen-
tation is symbolic, and hence cognitive processes must manipulate symbols,
i.e, must be computational in nature.

In view of this rather compelling line of thought, it is natural to ask: How
can dynamicists, whose models do not centrally invoke the notion of repre-
sentation, hope to provide theories of paradigmatically cognitive processes? If
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cognition depends on knowledge, how can there be a dynamical approach to
cognition? The answer is that, while dynamical models are not based on trans-
formations of representational structures, they allow plenty of room for repre-
sentation. A wide variety of aspects of dynamical models can be regarded as
having a representational status: these include states, attractors, trajectories,
bifurcations, and parameter settings. So dynamical systems can store knowl-
edge and have this stored knowledge influence their behavior. The crucial
difference between computational models and dynamical models is that in the
former, the rules that govern how the system behaves are defined over the
entities that have representational status, whereas in dynamical models, the
rules are defined over numerical states.® That is, dynamical systems can be
representational without having their rules of evolution defined over repre-
sentations. For example, in simple connectionist associative memories such as
that described in Hopfield (1982), representations of stored items are point
attractors in the phase space of the system. Recalling or recognizing an item
is a matter of settling into its attractor, a process that is governed by purely
numerical dynamical rules.

The Nature of Cognitive Systems The claim that cognitive systems are
computers, and the competing claim that natural cognitive systems are dy-
namical systems, each forms the technical core of a highly distinctive vision
of the nature of cognitive systems.

For the computationalist, the cognitive system is the brain, which is a kind
of control unit located inside a body which in turn is located in an external
environment. The cognitive system interacts with the outside world via its
more direct interaction with the body. Interaction with the environment is
handled by sensory and motor transducers, whose function is to translate
between the physical events in the body and the environment, on the one
hand, and the symbolic states, which are the medium of cognitive processing.
Thus the sense organs convert physical stimulation into elementary symbolic
representations of events in the body and in the environment, and the motor
system converts symbolic representations of actions into movements of the
muscles. Cognitive episodes take place in a cyclic and sequential fashion; first
there is sensory input to the cognitive system, then the cognitive system
algorithmically manipulates symbols, coming up with an output which then
causes movement of the body; the whole cycle then begins again. Internally,
the cognitive system has a modular, hierarchical construction; at the highest
level, there are modules corresponding to vision, language, planning, etc., and
each of these modules breaks down into simpler modules for more elemen-
tary tasks. Each module replicates in basic structure the cognitive system as a
whole; thus, the modules take symbolic representations as inputs, algorithmi-
cally manipulate those representations, and deliver a symbolic specification
as output. Note that because the cognitive system traffics only in symbolic
representations, the body and the physical environment can be dropped from
consideration; it is possible to study the cognitive system as an autonomous,
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bodiless, and worldless system whose function is to transform input represen-
tations into output representations.

Now, the dynamical vision differs from this picture at almost every point.
As we have seen, dynamical systems are complexes of parts or aspects which
are all evolving in a continuous, simultaneous, and mutually determining
fashion. If cognitive systems are dynamical systems, then they must likewise
be complexes of interacting change. Since the nervous system, body, and
environment are all continuously evolving and simultaneously influencing
one another, the cognitive system cannot be simply the encapsulated brain;
rather, it is a single unified system embracing all three. The cognitive system
does not interact with the body and the external world by means of periodic
symbolic inputs and outputs; rather, inner and outer processes are coupled,
so that both sets of processes are continually influencing each other. Cog-
nitive processing is not cyclic and sequential, for all aspects of the cognitive
system are undergoing change all the time. There is a sense in which the sys-
tem is modular, since for theoretical purposes the total system can be broken
down into smaller dynamical subsystems responsible for distinct cognitive
phenomena. Standardly these smaller systems are coupled, and hence co-
evolving, with others, but significant insight can be obtained by “freezing”
this interaction and studying their independent dynamics. Of course, cogni-
tive performances do exhibit many kinds of sequential character. Speaking a
sentence, for example, is behavior that has a highly distinctive sequential
structure. However, in the dynamical conception, any such sequential charac-
ter is something that emerges over time as the overall trajectory of change in
an entire system (or relevant subsystem) whose rules of evolution specify not
sequential change but rather simultaneous, mutual coevolution.

Natural Cognitive Systems Are Best Understood Using Dynamics

In science, as in home repair, the most rapid progress is made when you have
the right tools for the job. Science is in the business of describing and explain-
ing the natural world, and has a very wide range of conceptual and method-
ological tools at its disposal. Computer science provides one very powerful
collection of tools, and these are optimally suited for understanding complex
systems of a particular kind, namely computational systems. If cognitive systems
are computational systems, then they will be best understood by bringing
these tools to bear. If the Dynamical Hypothesis is right, however, then the
most suitable conceptual tools will be those of dynamics. So, whereas in the
previous sections we described what it is for natural cognitive systems to be
dynamical systems, in the following discussion we describe what is involved
in applying dynamics in understanding such systems.

What Is Dynamics? Dynamics is a very broad field overlapping both pure

and applied mathematics. For current purposes, it can be broken down into
two broad subdivisions. Dynamical modeling is describing natural phenomena
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as the behavior of a dynamical system in the sense outlined in the previous
discussion. It involves finding a way of isolating the relevant system, a way
of measuring the states of the system, and a mathematical rule, such that
the phenomena of interest unfold in exactly the way described by the rule.
Obviously, effective dynamical modeling involves considerable exploration
of both the real system being studied, and the mathematical properties of the
governing equations.

Dynamical systems theory is the general study of dynamical systems. As
a branch of pure mathematics, it is not directly concerned with the empiri-
cal description of natural phenomena, but rather with abstract mathematical
structures. Dynamical systems theory is particularly concerned with complex
systems for which the solutions of the defining equations (i.e., functions that
specify trajectories as a function of time) are difficult or impossible to write
down. It offers a wide variety of powerful concepts and tools for describing
the general properties of such systems. Perhaps the most distinctive feature of
dynamical systems theory is that it provides a geometric form of understand-
ing: behaviors are thought of in terms of locations, paths, and landscapes in
the phase space of the system.”

Some natural phenomena can be described as the evolution of a dynamical
system governed by particularly straightforward equations. For such systems,
the traditional techniques of dynamical modeling are sufficient for most ex-
planatory purposes. Other phenomena, however, can only be described as
the behavior of systems governed by nonlinear equations for which solutions
may be unavailable. Dynamical systems theory is essential for the study of
such systems. With the rapid development in the twentieth century of the
mathematics of dynamical systems theory, an enormous range of natural
systems have been opened up to scientific description. There is no sharp
division between dynamical modeling and dynamical systems theory, and
gaining a full understanding of most natural systems requires relying on both
bodies of knowledge.

Understanding Cognitive Phenomena Dynamically Dynamics is a large
and diverse set of concepts and methods, and consequently there are many
different ways that cognitive phenomena can be understood dynamically. Yet
they all occupy a broadly dynamical perspective, with certain key elements.

At the heart of the dynamical perspective is time. Dynamicists always focus
on the details of how behavior unfolds in real time; their aim is to describe
and explain the temporal course of this behavior. The beginning point and
the endpoint of cognitive processing are usually of only secondary interest, if
indeed they matter at all. This is in stark contrast with the computationalist
orientation, in which the primary focus is on input-output relations, i.e., on
what output the system delivers for any given input.

A second key element of the dynamical perspective is an emphasis on total
state. Dynamicists assume that all aspects of a system are changing simultane-
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ously, and so think about the behavior of the system as a matter of how the
total state of a system is changing from one time to the next. Computa-
tionalists, by contrast, tend to suppose that most aspects of a system (e.g., the
symbols stored in memory) do not change from one moment to the next.
Change is assumed to be a local affair, a matter of replacement of one symbol
by another.

Because dynamicists focus on how a system changes from one total state
to another, it is natural for them to think of that change as a matter of
movements in the space of all possible total states of the system; and since the
phase spaces of their systems are numerical, natural notions of distance apply.
Thus, dynamicists conceptualize cognitive processes in geometric terms. The
distinctive character of some cognitive process as it unfolds over time is a
matter of how the total states the system passes through are spatially located
with respect to one another and the dynamical landscape of the system.

Quantitative Modeling Precise, quantitative modeling of some aspect of
cognitive performance is always the ultimate goal of dynamical theorizing in
cognitive science. Such research always requires two basic components: data
and model. The data take the form of a time series: a series of measurements
of the phenomenon to be understood, taken as that phenomenon unfolds
over time. The model is a set of equations and associated phase space. The
modeling process is a matter of distilling out the phenomenon to be under-
stood, obtaining the time-series data, developing a model, and interpreting
that model as capturing the data (i.e., setting up correspondences between the
numerical sequences contained in the model and those in the data). When
carried out successfully, the modeling process yields not only precise descrip-
tions of the existing data but also predictions which can be used in evaluating
the model.

For an excellent example of quantitative dynamical modeling, recall the
process of reaching a decision described briefly in the introductory para-
graphs. We saw that traditional computational (expected-utility theory) ap-
proaches to decision-making have had some measure of success in account-
ing for what decisions are actually reached, but say nothing at all about
any of the temporal aspects of the deliberation process. For Busemeyer and
Townsend (Busemeyer and Townsend, 1993; see also chapter 4), by contrast,
describing these temporal aspects is a central goal. Their model of decision-
making is a dynamical system with variables corresponding to quantities such
as values of consequences and choice preferences. The model describes the
multiple simultaneous changes that go on in an individual decision-maker in
the process of coming to a decision. It turns out that this model not only
recapitulates the known data on outcomes as well as or better than traditional
computational models; it also explains a range of temporal phenomena such
as the dependence of preference on deliberation time, and makes precise
predictions which can be experimentally tested.
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Qualitative Modeling Human cognitive performance is extraordinarily di-
verse, subtle, complex, and interactive. Every human behaves in a somewhat
different way, and is embedded in a rich, constantly changing environment.
For these kinds of reasons (among others), science has been slow in coming to
be able to apply to cognition the kinds of explanatory techniques that have
worked so successfully elsewhere. Even now, only a relatively small number
of cognitive phenomena have been demonstrated to be amenable to precise,
quantitative dynamical modeling. Fortunately, however, there are other ways
in which dynamics can be used to shed light on cognitive phenomena. Both
the data time series and the mathematical model that dynamical modeling
requires can be very difficult to obtain. Even without an elaborate data time
series, one can study a mathematical model which exhibits behavior that is at
least qualitatively similar to the phenomena being studied. Alternatively, in
the absence of a precise mathematical model, the language of dynamics can
be used to develop qualitative dynamical descriptions of phenomena that
may have been recorded in a precise data time series (see Dynamical Descrip-
tion, below).

Cognitive scientists can often develop a sophisticated understanding of an
area of cognitive functioning independently of having any elaborate data
time series in hand. The problem is then to understand what kind of system
might be capable of exhibiting that kind of cognitive performance. It can be
addressed by specifying a mathematical dynamical model and comparing its
behavior with the known empirical facts. If the dynamical model and the
observed phenomena agree sufficiently in broad qualitative outline, then in-
sight into the nature of the system has been gained.

Elman’s investigations into language processing are a good example of
qualitative dynamical modeling (Elman, 1991; see also chapter 8). In broad
outline, at least, the distinctive complexity of sentences of natural language is
well understood, and psycholinguistics has uncovered a wide range of infor-
mation on human abilities to process sentences. For example, it is a widely
known fact that most people have trouble processing sentences that have
three or more subsidiary clauses embedded centrally within them. In an
attempt to understand the internal mechanisms responsible for language
use, Elman investigates the properties of a particular class of connectionist
dynamical systems. When analyzed using dynamical concepts, these models
turn out to be in broad agreement with a variety of general constraints in the
data, such as the center-embedding limitation. This kind of agreement demon-
strates that it is possible to think of aspects of our linguistic subsystems in
dynamical terms, and to find there a basis for some of the regularities. This
model does not make precise temporal predictions about the changing values
of observable variables, but it does make testable gualitative predictions about
human performance.

Often, the system one wants to understand can be observed to exhibit any
of a variety of highly distinctive dynamical properties: asymptotic approach
to a fixed point, the presence or disappearance of maxima or minima, cata-
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strophic jumps caused by small changes in control variables, oscillations,
chaotic behavior, hysteresis, resistance to perturbation, and so on. Such prop-
erties can be observed even without knowing the specific equations which in
fact govern the evolution of the system. They are, however, a particularly
rich source of constraints for the process of qualitative dynamical modeling,
for they narrow down considerably the classes of equations that can exhibit
qualitatively similar behavior.

Dynamical Description In another kind of situation, we may or may not
have good time-series data available for modeling, but the complexity of the
phenomena is such that laying down the equations of a formal model ade-
quate to the data is currently not feasible. However, even here dynamics may
hold the key to advances in understanding, because it provides a general
conceptual apparatus for understanding the way systems—including, in par-
ticular, nonlinear systems—change over time. In this kind of scenario it is
dynamical systems theory which turns out to be particularly useful.

For example, Thelen (see chapter 3) is concerned with understanding the
development, over periods of months and even years, of basic motor skills
such as reaching out for an object. At this stage, no satisfactory mathematical
model of this developmental process is available. Indeed, it is still a major
problem to write down equations describing just the basic movements them-
selves! Nevertheless, adopting a dynamical perspective can make possible
descriptions which cumulatively amount to a whole new way of under-
standing how motor skills can emerge and change, and how the long-term
developmental process is interdependent with the actual exercise of the
developing skills themselves. From this perspective, particular actions are
conceptualized as attractors in a space of possible bodily movements, and
development of bodily skills is the emergence, and change in nature, of these
attractors over time under the influence of factors such as bodily growth and
the practice of the action itself. Adopting this general perspective entails
significant changes in research methods. For example, Thelen pays close
attention to the exact shape of individual gestures at particular intervals in
the developmental process, and focuses on the specific changes that occur in
each individual subject rather than the gross changes that are inferred by
averaging over many subjects. It is only in the fine details of an individual
subject’s movements and their change over time that the real shape of the
dynamics of development is revealed.

1.2 WHY DYNAMICS?

Why should we believe the Dynamical Hypothesis? Ultimately, as mentioned
above, the proof of the pudding will be in the eating. The Dynamical Hy-
pothesis is correct only if sustained empirical investigation shows that the
most powerful models of cognitive processes take dynamical form. Although
there are already dynamical models—including many described in this book

It's About Time



18

—which are currently the best available in their particular area, the jury is still
out on the general issue. Even if the day of final reckoning is a long way off,
however, we can still ask whether the dynamical approach is likely to be the
more correct, and if so, why.

The dynamical approach certainly begins with a huge head start. Dynamics
provides a vast resource of extremely powerful concepts and tools. Their
usefulness in offering the best scientific explanations of phenomena through-
out the natural world has been proved again and again. It would hardly be
a surprise if dynamics turned out to be the framework within which the
most powerful descriptions of cognitive processes were also forthcoming.
The conceptual resources of the computational approach, on the other hand,
are known to describe only one category of things in the physical universe:
manmade digital computers. Even this success is hardly remarkable: digital
computers were designed and constructed by us in accordance with the com-
putational blueprint. It is a bold and highly controversial speculation that
these same resources might also be applicable to natural cognitive systems,
which are evolved biological systems in constant causal interaction with a
messy environment.

This argument for the dynamical approach is certainly attractive, but it is
not grounded in any way in the specific nature of cognitive systems. What
we really want to know is: What general things do we already know about the
nature of cognitive systems that suggest that dynamics will be the framework
within which the most powerful models are developed?

We know, at least, these very basic facts: that cognitive processes always
unfold in real time; that their behaviors are pervaded by both continuities
and discretenesses; that they are composed of multiple subsystems which are
simultaneously active and interacting; that their distinctive kinds of structure
and complexity are not present from the very first moment, but emerge over
time; that cognitive processes operate over many time scales, and events at
different time scales interact; and that they are embedded in a real body and
environment. The dynamical approach provides a natural framework for the
description and explanation of phenomena with these broad properties. The
computational approach, by contrast, either ignores them entirely or handles
them only in clumsy, ad hoc ways.?

Cognition and Time

The argument presented here is simple. Cognitive processes always unfold in
real time. Now, computational models specify only a postulated sequence of
states that a system passes through. Dynamical models, by contrast, specify
in detail not only what states the system passes through, but also how those
states unfold in real time. This enables dynamical models to explain a wider
range of data for any cognitive functions, and to explain cognitive functions
whose dependence on real time is essential (e.g., temporal pattern processing).
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When we say that cognitive processes unfold in real time, we are really
saying two distinct things. First, real time is a continuous quantity best mea-
sured by real numbers, and for every point in time there is a state of the
cognitive system. For an example of a process unfolding in real time, con-
sider the movement of your arm as it swings beside you. At every one of
an infinite number of instants in time from the beginning to the end of the
motion, there is a position which your arm occupies. No matter how finely
time is sampled, it makes sense to ask what position your arm occupies at
every sampled point. The same is true of cognitive processes. As you recog-
nize a face, or reason through a problem, or throw a ball, various aspects of
your total cognitive system are undergoing change in real time, and no
matter how finely time is sampled, there is a state of the cognitive system
at each point. This is really just an obvious and elementary consequence
of the fact that cognitive processes are ultimately physical processes taking
place in real biological hardware.

The second thing we mean by saying that cognitive processes unfold in
real time is that—as a consequence of the first point—tfiming always matters.
A host of questions about the way the processes happen in time make per-
fect sense: questions about rates, durations, periods, synchrony, and so forth.
Because cognitive processes happen in time, they cannot take too little time
or too much time. The system must spend an appropriate amount of time in
the vicinity of any given state. The timing of any particular operation must
respect the rate at which other cognitive, bodily, and environmental processes
are taking place. There are numerous subtleties involved in correct timing,
and they are all real issues when we consider real cognitive processing.

Since cognitive processes unfold in real time, any framework for the de-
scription of cognitive processes that hopes to be fully adequate to the nature
of the phenomena must be able to describe not merely what processes occur
but how those processes unfold in time. Now, dynamical models based on
differential equations are the preeminent mathematical framework science
uses to describe how things happen in time. Such models specify how change
in state variables at any instant depends on the current values of those vari-
ables themselves and on other parameters. Solutions to the governing equa-
tions tell you the state that the system will be in at any point in time, as long
as the starting state and the amount of elapsed time are known. The use of
differential equations presupposes that the variables change smoothly and
continuously, and that time itself is a real-valued quantity. It is, in short, of
the essence of dynamical models of this kind to describe how processes unfold,
moment by moment, in real time.

Computational models, by contrast, specify only a bare sequence of states
that the cognitive system goes through, and tell us nothing about the timing
of those states over and above their mere order. Consider, for example, that
paradigm of computational systems, the Turing machine.® Every Turing ma-
chine passes through a series of discrete symbolic states, one after another.
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We talk about the state of the machine at time 1, time 2, and so forth. How-
ever, these “times” are not points in real time; they are merely indices which
help us keep track of the order that states fall into as the machine carries
out its sequence of computational steps. We use the integers to index states
because they have a very familiar order and there are always as many of
them as we need. However, we mustn't be misled into supposing that we
are talking about amounts of time or durations here. Any other ordered set
(e.g., people who ran the Boston Marathon, in the order they finished) would,
in theory, do just as well for indexing the states of a Turing machine, though
in practice they would be very difficult to use. To see that the integer “times”
in the Turing machine are not real times, consider the following questions:
What state was the machine in at time 1.57 How long was the machine in
state 17 How long did it take for the machine to change from state 1 to state
2? None of these questions are appropriate, though they would be if we were
talking about real amounts of time.

Now, let us suppose we have a particular Turing machine which adds
numbers, and we propose this machine as a model of the cognitive processes
going on in real people when they add numbers in their heads. The model
specifies a sequence of symbol manipulations, passing from one discrete state
to another; we suppose that a person passes through essentially the same
sequence of discrete states. Note, however, that the Turing machine model is
inherently incapable of telling us anything at all about the fiming of these
states and the transitions from one state to another. The model just tells us
“first this state, then that state ...”; it makes no stand on how long the person
will be in the first state, how fast the transition to the second state is, and so
forth; it cannot even tell us what state the person will be in halfway between
the time it enters the first state and the time it enters the second state, for
questions such as these make no sense in the model.

Of course, even as far as computational models go, Turing machines do
not make good models of cognitive processes. But the same basic points
hold true for all standard computational models. LISP programs, production
systems, generative grammars, and so forth, are all intrinsically incapable of
describing the fine temporal structure of the way cognitive processes unfold,
because all they specify—indeed, all they can specify—is which states the
system will go through, and in what order. To see this, just try picking up
any mainstream computational model of a cognitive process—of parsing, or
planning, for example—and try to find any place where the model makes any
commitment at all about such elementary temporal issues as how much time
each symbolic manipulation takes. One quickly discovers that computational
models simply aren’t in that business; they’re not dealing with time. “Time”
in a computational model is not real time, it is mere order.

Computationalists do sometimes attempt to extract from their models im-
plications for the timing of the target cognitive processes. The standard and
most appropriate way to do this is to assume that each computational step
takes a certain chunk of real time (say, 10 ms).'° By adding assumptions of
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this kind we can begin to make some temporal predictions, such as that a
particular computational process will take a certain amount of time, and that a
particular step will take place some number of milliseconds after some other
event. Yet the additional temporal assumptions are completely ad hoc; the
theorist is free to choose the step time, for example, in any way that renders
the model more consistent with the psychological data.!! In the long run,
it is futile to attempt to weld temporal considerations onto an essentially
atemporal kind of model. If one professes to be concerned with temporal
issues, one may as well adopt a modeling framework which builds temporal
issues in from the very beginning—i.e., take up the dynamical approach.
One refuge for the computationalist from these arguments is to insist that
certain physical systems are such that they can be described at an abstract
level where temporal issues can be safely ignored, and that the most tractable
descriptions of these systems must in fact take place at that level. This claim
is clearly true of ordinary desktop digital computers; we standardly describe
their behavior in algorithmic terms in which the precise details of timing are
completely irrelevant, and these algorithmic descriptions are the most tracta-
ble given our high-level theoretical purposes. The computationalist conjecture
is that cognitive systems will be like computers in this regard; high-level
cognitive processes can, and indeed can only be tractably described in com-
putational terms which ignore fine-grained temporal issues. Note, however,
that this response concedes that computational models are inherently in-
capable of being fully adequate to the nature of the cognitive processes
themselves, since these processes always do unfold in real time. Further, this
response concedes that if there were a tractable dynamical model of some
cognitive process, it would be inherently superior, since it describes aspects
of the processes which are out of reach of the computational model. Finally,
computationalists have not as yet done enough to convince us that the only
tractable models of these high-level processes will be computational ones.
Dynamicists, at least, are still working on the assumption that it will someday
be possible to produce fully adequate models of cognitive processes.
Computationalists sometimes point out that dynamical models of cogni-
tive processes are themselves typically “run” or simulated on digital com-
puters. Does this not establish that computational models are not inherently
limited in the way these arguments seem to suggest? Our answer, of course,
is no, and the reason is simple: a computational simulation of a dynamical
model of some cognitive process is not itself a model of that cognitive
process in anything like the manner of standard computational models in
cognitive science. Thus, the cognitive system is not being hypothesized to
pass through a sequence of symbol structures of the kind that evolve in the
computational simulation, any more than a weather pattern is thought to
pass through a sequence of discrete symbolic states just because we can simu-
late a dynamical model of the weather. Rather, all the computational simula-
tion delivers is a sequence of symbolic descriptions of points in the dynamical
model (and thereby, indirectly, of states of the cognitive system). What we
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have in such situations is a dynamical model plus an atemporal computational
approximation to it.!?

Continuity in State

Natural cognitive systems sometimes change state in continuous ways; some-
times, on the other hand, they change state in ways that can appear discrete.
Dynamics provides a framework within which continuity and discreteness can
be accounted for, even within the same model. The computational approach,
by contrast, can only model a system as changing state from one discrete
state to another. Consequently, the dynamical approach is inherently more
flexible—and hence more powerful—than the computational approach.

This argument must be carefully distinguished from the previous one.
There, the focus was continuity in time; the claim was that models must be
able to specify the state of the system at every point in time. Here, the focus
is continuity in state; the claim is that models must be capable of describing
change from one state to another arbitrarily close to it, as well as sudden
change from one state to another discretely distinct from it.

Standard computational systems only change from one discrete state to
another.!? Think again of a Turing machine. Its possible (total) states are con-
figurations of symbols on the tape, the condition of the head, and the posi-
tion of the head. Every state transition is a matter of adding or deleting a
symbol, changing the head condition, and changing its position. The possi-
bilities, however, are all discrete; the system always jumps directly from one
state to another without passing through any in-between. There simply are no
states in between; they are just not defined for the system. The situation is
like scoring points in basketball: the ball either goes through the hoop or it
doesn't. In basketball, you can’t have fractions of points.

When a computational system is used as a model for a natural cognitive
process, the natural cognitive system is hypothesized to go through the same
state transitions as the model. So a computational model can only attribute
discrete states, and discrete state transitions, to the cognitive system.

Now, quite often, state transitions in natural cognitive systems can be
thought of as discrete. For example, in trying to understand how people carry
out long division in their heads, the internal processes can be thought of
as passing through a number of discrete states corresponding to stages in
carrying out the division. However, there are innumerable kinds of tasks that
cogpnitive systems face which appear to demand a continuum of states in any
system that can carry them out. For example, most real problems of sensori-
motor coordination deal with a world in which objects and events can come
in virtually any shape, size, position, orientation, and motion. A system which
can flexibly deal with such a world must be able to occupy states that are
equally rich and subtly distinct. Similarly, everyday words as simple as truck
seem to know no limit in the fineness of contextual shading they can take on.
Any system that can understand Billy drove the truck must be able to accom-
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modate this spectrum of senses. Only a system that can occupy a continuum
of states with respect to word meanings stands a real chance of success.

Many dynamical systems, in the core sense that we have adopted in this
chapter, change in continuous phase spaces, and so the dynamical approach is
inherently well-suited to describing how cognitive systems might change
in continuous ways (see, e.g., Port, Cummins, and McAuley, this volume,
chapter 12). However,—and this is the key point—it can also describe dis-
crete transitions in a number of ways. The dynamical approach is therefore
more flexible—and hence, again, more powerful—than the computational
approach, which can only attribute discrete states to a system.

The dynamical approach can accommodate discrete state transitions in two
ways. First, the concepts and tools of dynamics can be used to describe the
behavior of systems with only discrete states. A dynamical model of an
ecosystem, for example, assumes that its populations always come in discrete
amounts; you can have 10 or 11 rabbits, but not 10.5 rabbits. However,
perhaps the most interesting respect in which dynamics can handle discrete-
ness is in being able to describe how a continuous system can undergo changes
that look discrete from a distance. This is more interesting because cognitive
systems appear to be thoroughly pervaded by both continuity and discrete-
ness; the ideal model would be one which could account for both together.
One kind of discrete change in a continuous system is a catastrophe: a sudden,
dramatic change in the state of a system when a small change in the parame-
ters of the equations defining the system lead to a qualitative change—a
bifurcation—in the “dynamics” or structure of forces operating in that sys-
tem (Zeeman, 1977; see also Petitot, chapter 9).!* Thus, high-level, appar-
ently discrete changes of state can be accounted for within a dynamical
framework in which continuity and discreteness coexist; indeed, the former is
the precondition and explanation for the emergence of the latter.

Multiple Simultaneous Interactions

Consider again the process of returning a serve in tennis. The ball is ap-
proaching; you are perceiving its approach, are aware of the other player’s
movements, are considering the best strategy for the return, and are shifting
into position to play the stroke. All this is happening at the same time. As you
move into place, your perspective on the approaching ball is changing, and
hence so is activity on your retina and in your visual system. It is your
evolving sense of how to play the point that is affecting your movement. The
path of the approaching ball affects which strategy would be best and hence
how you move. Everything is simultaneously affecting everything else.

Consider natural cognitive systems from another direction entirely. Neurons
are complex systems with hundreds, perhaps thousands of synaptic connec-
tions. There is some kind of activity in every one of these, all the time. From
all this activity, the cell body manages to put together a firing rate. Each cell
forms part of a network of neurons, all of which are active (to a greater
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or lesser degree) all the time, and the activity in each is directly affecting
hundreds, perhaps thousands of others, and indirectly affecting countless
more. The networks form into maps, the maps into systems, and systems into
the central nervous system (CNS), but at every level we have the same
principle, that there is constant activity in all components at once, and com-
ponents are simultaneously affecting one another. No part of the nervous
system is ever completely inactive. As neurophysiologist Karl Lashley (1960)
put it, “Every bit of evidence available indicates a dynamic, constantly active
system, or, rather, a composite of many interacting systems ...” (p. 526).

Clearly, any fully adequate approach to the study of cognitive systems
must be one that can handle multiple, simultaneous interactive activity. Yet
doing this is the essence of dynamics. Dynamical systems are just the simulta-
neous, mutually influencing activity of multiple parts or aspects. The dynam-
ical approach is therefore inherently well-suited to describe cognitive systems.

A classic example of a dynamical model in this sense is McClelland and
Rumelhart’s “interactive activation network” (McClelland and Rumelhart,
1981). This model was designed to account for how a letter embedded in the
context of a five-letter word of English could be recognized faster than the
same letter embedded within a nonword string of letters and even better than
the single letter presented by itself. This “word superiority effect” suggested
that somehow the whole word was being recognized at the same time as the
individual letters that make up the word. Thus, it implied a mechanism where
recognition of the word and the letters takes place simultaneously and in such
a way that each process influences the other. McClelland and Rumelhart pro-
posed separate cliques of nodes in their network that mutually influence one
another by means of coupled difference equations. The output activation of
some nodes served as an excitatory or inhibitory input to certain other nodes.
This model turned out to capture the word superiority effect and a number of
other related effects as well.

Almost all computational approaches attempt to superimpose on this mul-
tiple, simultaneous, interactive behavior a sequential, step-by-step structure.
They thereby appear to assume that nothing of interest is going on in any
component other than the one responsible for carrying out the next stage in
the algorithm. It is true, as computationalists will point out, that a compu-
tational model can—in principle—run in parallel, though it is devilishly diffi-
cult to write such a code. The “blackboard model” of the Hearsay-II speech
recognition system (Erman, Hayes-Roth, Lesser, et al. 1980) represents one
attempt at approaching parallelism by working within the constraints of
serial computationalism. The “blackboard,” however, was just a huge, static
data structure on which various independent analysis modules might asyn-
chronously post messages, thereby making partial analyses of each module
available for other modules to interpret. This is a step in the right direc-
tion, but it is a far cry from simultaneous interactive activation. Each module
in Hearsay-II can do no more than say “Here is what I have found so far, as
stated in terms of my own vocabulary,” rather than “Here is exactly how
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your activity should change on the basis of what has happened in my part of
the system,”—the kind of interaction that components governed by coupled
equations have with one another. Other methods of parallelism more so-
phisticated than this may certainly be postulated in principle, but apparently
await further technological developments.

Multiple Time Scales

Cognitive processes always take place at many time scales. Changes in the
state of neurons can take just a few milliseconds, visual or auditory recogni-
tion half a second or less, coordinated movement a few seconds, conversa-
tion and story understanding minutes or even hours, and the emergence of
sophisticated capacities can take months and years. Further, these time scales
are interrelated; processes at one time scale affect processes at another. For
example, Esther Thelen (see chapter 3) has shown how actually engaging in
coordinated movement promotes the development of coordination, and yet
development itself shapes the movements that are possible; it is in this inter-
active process, moreover, that we find the emergence of concepts such as
space and force. At finer scales, what we see (at the hundreds-of-milliseconds
time scale) affects how we move (at the seconds scale) and vice versa.

The dynamical approach provides ways of handling this variety and inter-
dependence of time scales. For example, the equations governing a dynamical
system typically include two kinds of variables: state variables and parame-
ters. The way the system changes state depends on both, but only the state
variables take on new values; the parameters are standardly fixed. However, it
is possible to think of the parameters as not fixed but rather changing as well,
though over a considerably longer time scale than the state variables. Thus
we can have a single system with both a “fast” dynamics of state variables on
a short time scale and a “slow” dynamics of parameters on a long time scale,
such that the slow dynamics helps shape the fast dynamics. It is even possible
to link the equations such that the fast dynamics shapes the slow dynamics; in
such a case, we have true interdependence of time scales.

Note that it is other features of the dynamical approach, such as continuity
in space and time, and multiple simultaneous interactive aspects, which make
possible its account of the interdependence of time scales. The computational
approach, by contrast, has no natural methods of handling this pervasive
structural feature of natural cognitive systems.

Self-Organization and the Emergence of Structure
Cognitive systems are highly structured, in both their behavior and their in-
ternal spatial and temporal organization. One kind of challenge for cognitive

science is to describe that structure. Another kind of challenge is to explain
how it got to be there. Since the computational framework takes inspiration
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from the organization of formal systems like logic and mathematics, the tra-
ditional framework characteristically tackles only the problem of describing
the structure that exists. Models in this framework typically postulate some
initial set of a priori structures from which more complex structures may
be derived by application of rules. The question of emergence—of where the
initial elements or structures come from—always remains a problem, usually
ignored.

A major advantage of the dynamical approach is that dynamical systems
are known to be able to create structure both in space and in time. By struc-
ture, we mean something nonrandom in form that endures or recurs in time.
Thus an archetypal physical object, such as a chair, is invariant in form over
time, while a transient event, like a wave breaking on a beach, may recur with
temporal regularity. The words in human languages tend to be constructed
out of units of speech sound that are reused in different sequences (e.g., gnat,
tan, ant, etc.), much like the printed letters with which we write words down.
But where do any such structures come from if they are not either assumed or
somehow fashioned from preexisting primitive parts? This is the question of
“morphogenesis,” the creation of forms. It has counterparts in many branches
of science, including cosmology. Why are matter and energy not uniformly
distributed in the universe? Study of the physics of relatively homogeneous
physical systems, like the ocean, the atmosphere, or a tank of fluid, can begin
to provide answers. Some form of energy input is required plus some appro-
priate dynamical laws. Under these circumstances most systems will tend to
generate regular structure of some sort under a broad range of conditions.

The atmosphere exhibits not only its all-too-familiar chaotic properties, but
it can also display many kinds of highly regular spatiotemporal structures that
can be modeled by the use of differential equations. For example, over the
Great Plains in the summer, one sometimes observes long “streets” of parallel
clouds with smooth edges like the waves of sand found in shallow water
along a beach or in the corduroy ridges on a well-traveled dirt road. How are
these parallel ridges created? Not with any form of rake or plow. These pat-
terns all depend on some degree of homogeneity of medium and a consis-
tently applied influx of energy. In other conditions (involving higher energy
levels), a fluid medium may, in small regions, structure itself into a highly
regular tornado or whirlpool. Although these “objects” are very simple struc-
tures, it is still astonishing that any medium so unstructured and so linear in
its behavior could somehow constrain itself over vast distances in such a way
that regular structures in space and time are produced. The ability of one
part of a system to “enslave” other parts, i.e., restrict the degrees of freedom
of other, distant parts, is now understood, at least for fairly simple systems
(Haken, 1988, 1991; Kelso, Ding, and Schéner, 1992; Thom, 1975).

The demonstration that structure can come into existence without either a
specific plan or an independent builder raises the possibility that many struc-
tures in physical bodies as well as in cognition might occur without any ex-
ternally imposed shaping forces. Perhaps cognitive structures, like embryo-
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logical structures, the weather and many other examples, simply organize
themselves (Kugler and Turvey, 1987; Thelen and Smith, 1994). Dynamical
models are now known to account for many spatial and temporal structures
in a very direct way (Madore and Freeman, 1987; Murray, 1989). They en-
able us to understand how such apparently unlikely structures could come to
exist and retain their morphology for some extended period of time. We
assume that cognition is a particular structure in space and time—one that
supports intelligent interaction with the world. So our job is to discover how
such a structure could turn out to be a stable state of the brain in the context
of the body and environment. The answer to this question depends both on
structure that comes from the genes and on structure that is imposed by
the world. No theoretical distinction need be drawn between learning and
evolution—they are both, by hypothesis, examples of adaptation toward
stable, cognitively effective states of a brain (or an artificial system). The pri-
mary difference is that they operate on different time scales.

In both computer science and in cognitive science, the role of adaptation as
a source of appropriate structure is under serious development (Forrest, 1991;
Holland, 1975; Kauffman, 1993). Most of these methods depend on differen-
tial or difference equations for optimization. Thus, a final reason to adopt the
dynamical perspective is the possibility of eventually accounting for how the
structures that support intelligent behavior could have come about. Detailed
models for specific instances of structure creation present many questions
and will continue to be developed. But the possibility of such accounts de-
veloping from dynamical models can no longer be denied.

If we follow common usage and use the term cognitive system to refer primar-
ily to the internal mechanisms that underwrite sophisticated performance,
then cognitive systems are essentially embedded, both in a nervous system
and, in a different sense, in a body and environment. Any adequate account
of cognitive functioning must be able to describe and explain this embedded-
ness. Now, the behavior of the nervous system, of bodies (limbs, muscles,
bone, blood), and of the immediate physical environment, are all best de-
scribed in dynamical terms. An advantage of the dynamical conception of
cognition is that, by describing cognitive processing in fundamentally similar
terms, it minimizes difficulties in accounting for embeddedness.

The embeddedness of cognitive systems has two rather different aspects.
The first is the relation of the cognitive system to its neural substrate. The
cognitive system somehow is the CNS, but what are the architectural and
processing principles, and level relationships, that allow us to understand
how the one can be the other? The other aspect is the relation of the cogni-
tive system to its essential surrounds—the rest of the body, and the physi-
cal environment. How do internal cognitive mechanisms “interact” with the
body and the environment?
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A computational perspective gives a very different kind of understanding
of the behavior of a complex system than a dynamical perspective. Given
that the behavior of the nervous system, the body, and the environment are
best described in dynamical terms, adopting the computational perspective
for internal cognitive mechanisms transforms the issue of embedding into a
problem: how can two kinds of systems, which are described in fundamen-
tally different terms, be related? That is, describing cognition in computational
terms automatically creates a theoretical gap between cognitive systems and
their surrounds, a gap which must then somehow be bridged.

In the case of the embeddedness of the cognitive system in a nervous
system, the problem is to account for how a system that is fundamentally
dynamical at one level can simultaneously be a computational system consid-
ered at another level. The challenge for the computationalist is to show how
such a dynamical system configures itself into a classical computational sys-
tem. It is a challenge because the two kinds of system are so deeply different.
Of course, it is not impossible to meet a challenge of this kind; standard digital
computers are systems that are continuous dynamical systems at one level
and discrete computational systems at another, and we can explain how one
realizes the other. However, this provides little reason to believe that a simi-
lar cross-level, cross-kind explanation will be feasible in the case of natural
cognitive systems, since computers were constructed precisely so that the
low-level dynamics would be severely, artificially constrained in exactly the
right way. Finding the components of a computational cognitive architecture
in the actual dynamical neural hardware of real brains is a challenge of an
altogether different order. It is a challenge that computationalists have not
even begun to meet.

The embeddedness of the cognitive system within a body and an environ-
ment is equally a problem for the computational approach. Again, the prob-
lem arises because we are trying to describe the relationship between systems
described in fundamentally different terms. The crux of the problem here is
time. Most of what organisms deal with happens essentially in time. Most of
the critical features of the environment which must be perceived—including
events of “high-level” cognitive significance, such as linguistic communica-
tion—unfold over time, and so produce changes in the body over time. In
action, the movement of the body, and its effects on the environment, happen
in time. This poses a real problem for models of cognitive processes which
are, in a deep way, atemporal. For the most part, computational approaches
have dealt with this problem by simply avoiding it. They have assumed that
cognition constitutes an autonomous domain that can be studied entirely
independently of embeddedness. The problem of how an atemporal cognitive
system interacts with a temporal world is shunted off to supposedly non-
cognitive transduction systems (i.e., somebody else’s problem). When compu-
tationalists do face up to problems of embeddedness, the interaction of the
cognitive system with the body and world is usually handled in ad hoc,
biologically implausible ways. Thus inputs are immediately “detemporalized”
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by transformation into static structures, as when speech signals are tran-
scribed into a spatial buffer. Outputs are handled by periodic intervention in
the environment, with the hope that these interventions will keep nudging
things in the right direction. Both methods require the addition to the model
of some independent timing device or clock, yet natural cognitive systems
don’t have clocks in anything like the required sense (Glass and Mackey,
1988; Winfree, 1980). The diurnal clocks observed in many animals, includ-
ing humans, do not help address the problem of rapid regular sampling that
would appear to be required to recognize speech (or a bird song or any other
distinctive pattern that is complex in time) using a buffered representation in
which time is translated into a labeled spatial axis.

The dynamical approach to cognition handles the embeddedness problem
by refusing to create it. The same basic mathematical and conceptual tools are
used to describe cognitive processes on the one hand and the nervous sys-
tem and the body and environment on the other. Though accounting for the
embeddedness of cognitive systems is still by no means trivial, at least the
dynamical approach to cognition does not face the problem of attempting
to overcome the differences between two very different general frameworks.
Thus the dynamics of central cognitive processes are nothing more than
aggregate dynamics of low-level neural processes, redescribed in higher-
level, lower-dimensional terms (see Relation to Neural Processes, below).
Dynamical systems theory provides a framework for understanding these
level relationships and the emergence of macroscopic order and complexity
from microscopic behavior. Similarly, a dynamical account of cognitive pro-
cesses is directly compatible with dynamical descriptions of the body and
the environment, since the dynamical account never steps outside time in the
first place. It describes cognitive processes as essentially unfolding over time,
and can therefore describe them as occurring in the very same time frame
as the movement of the body itself and physical events that occur in the
environment.

That cognitive processes must, for this general reason, ultimately be under-
stood dynamically can be appreciated by observing what happens when re-
searchers attempt to build serious models at the interface between internal
cognitive mechanisms and the body and environment. Thus Port et al. (see
chapter 12) aim to describe how it is possible to handle auditory patterns,
with all their complexities of sequence, rhythm, and rate, without biologically
implausible artificialities such as static input buffers or a rapid time-sampling
system. They find that the inner, cognitive processes themselves must unfold
over time with the auditory sequence, and that their qualitative properties
(like invariance of perception despite change in rate of presentation) are best
described in dynamical terms. In other words, attempting to describe how a
cognitive system might perceive its essentially temporal environment drives
dynamical conceptualizations inward, into the cognitive system itself. Simi-
larly, researchers interested in the production of speech (see Saltzman, chapter
6; Browman and Goldstein, chapter 7) find that to understand the control of
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muscle, jaw, etc., we need models of cognitive mechanisms underlying motor
control that unfold dynamically in time. That is, attempts to describe how
a cognitive system might control essentially temporal bodily movements
also drives dynamics inward into the cognitive system. In short, whenever
confronted with the problem of explaining how a natural cognitive system
might interact with another system that is essentially temporal, one finds that
the relevant aspect of the cognitive system itself must be given a dynamical
account. It then becomes a problem how this dynamical component of the
cognitive system interacts with even more “central” processes. The situation
repeats itself, and dynamics is driven further inward. The natural outcome of
this progression is a picture of cognitive processing in its entirety, from
peripheral input systems to peripheral output systems and everything in be-
tween, as all unfolding dynamically in real time: mind as motion.

1.3 RELATION TO OTHER APPROACHES

A careful study of the relation of the dynamical conception of cognition
to the various other research enterprises in cognitive science would require
a book of its own. Here we just make some brief comments on the relation
of the dynamical approach to what are currently the two most prominent
alternative approaches, mainstream computationalism and connectionism. In
addition, we discuss how the dynamical approach relates to the modeling
of neural processes and to chaos theory.

Relation to the Computational Approach

Much has already been said about the relation between the computational
and dynamical approaches. In this section we add some clarifying remarks on
the nature of the empirical competition between the two approaches.

Earlier we characterized cognition in the broadest possible terms as all the
processes that are causally implicated in our sophisticated behaviors. Now, it
has always been the computationalist position that some of these processes
are computational in nature and many others are not. For these other pro-
cesses, traditional dynamical modes of explanation would presumably be
quite appropriate. For example, our engaging in an ordinary conversation
depends not only on thought processes which enable us to decide what to
say next but also on correct movements of lips, tongue, and jaw. Only the
former processes would be a matter of internal symbol manipulation; the
muscular movements would be dynamical processes best described by differ-
ential equations of some sort. In other words, computationalists have always
been ready to accept a form of peaceful coexistence with alternative forms
of explanation targeted at a different selection of the processes underlying
sophisticated performance. As we mentioned in section 1.2, the computa-
tionalist position is that the processes that must be computational in nature
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are distinguished by their dependence on “knowledge”; this knowledge must
be represented somehow, and the best candidate is symbolically; hence the
processes must be computational (symbol manipulation). In fact, from this
perspective these knowledge-dependent, symbolic processes are the only gen-
uinely cognitive ones; all other processes are peripheral, or implementational,
or otherwise ancillary to real cognition.

Now, it has never been entirely clear exactly where the boundary between
the two domains actually lies. The conflict between the computational and
dynamical approaches can thus be seen as a kind of boundary dispute. The
most extreme form of the computationalist hypothesis places the boundary
in such a way as to include all processes underlying our sophisticated behav-
iors in the computational domain. Probably nobody has ever maintained such
a position, but during the heyday of Al and computational cognitive science
in the 1960s and 1970s many more processes were thought to have computa-
tional explanations than anyone now supposes. Similarly, the dynamical hy-
pothesis draws the boundary to include all processes within the dynamical
domain. According to this ambitious doctrine the domain of the computa-
tional approach is empty, and dynamical accounts will eliminate their com-
putational competitors across all aspects of cognition. It remains to be seen
to what extent this is true, but dynamicists in cognitive science are busily at-
tempting to extend the boundary as far as possible, tackling phenomena that
were previously assumed to lie squarely within the computational purview.

There is another sense in which computationalists have always been pre-
pared to concede that cognitive systems are dynamical systems. They have
accepted that all cognitive processes, including those centrally located in the
computational domain, are implemented as dynamical processes at a lower
level. The situation is exactly analogous to that of a digital desktop computer.
The best high-level descriptions of these physical systems are cast in terms of
the algorithmic manipulation of symbols. Now, each such manipulation is
simply a dynamical process at the level of the electrical circuitry, and there
is a sense in which the whole computer is a massively complex dynamical
system that is amenable (in principle at least) to a dynamical description.
However, any such description would be hopelessly intractable, and would
fail to shed any light on the operation of the system as computing. Likewise,
human thought processes are based ultimately on the firing of neurons and
myriad other low-level processes that are best modeled in dynamical terms;
nevertheless, the computationalist claims that only high-level computational
models will provide tractable, revealing descriptions at the level at which
these processes can be seen as cognitive performances.

It may even turn out to be the case that there is a high-level computational
account of some cognitive phenomenon, and a lower-level dynamical account
that is also theoretically tractable and illuminating. If they are both targeted
on essentially the same phenomenon, and there is some precise, systematic
mapping between their states and processes, then the computational account
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would not be eliminated but simply implemented. A relationship of this kind
has been recently been advocated for certain psycholinguistic phenomena by
Smolensky, Legendre, and Miyata (1992). An alternative possibility is that a
high-level, computational description of some phenomenon turns out to be
an approximation, framed in discrete, sequential, symbol-manipulating terms,
of a process whose most powerful and accurate description is in dynamical
terms. In such a case only certain of the states and processes in the computa-
tional model would stand in a kind of rough correspondence with features of
the dynamical model.

Relation to Connectionism

For the purposes of this discussion, we take connectionism to be that rather
broad and diverse research program which investigates cognitive processes
using artificial neural network models. Defined this way, connectionism is
perfectly compatible with the dynamical approach. Indeed, neural networks,
which are themselves typically continuous nonlinear dynamical systems, con-
stitute an excellent medium for dynamical modeling.

Thus the two approaches overlap, but only partially. On the one hand,
despite the fact that all connectionist networks are dynamical systems, many
connectionists have not been utilizing dynamical concepts and tools to any
significant degree. At one extreme, connectionists have used their networks
to directly implement computational architectures (e.g., Touretzky, 1990).
More commonly, they have molded their networks to conform to a broadly
computational outlook. In standard feedforward backpropagation networks,
for example, processing is seen as the sequential transformation, from one
layer to the next, of static representations. Such networks are little more
than sophisticated devices for mapping static inputs into static outputs. No
dynamics or temporal considerations are deployed in understanding the be-
havior of the network or the nature of the cognitive task itself. For example,
in the famous NETtalk network (Rosenberg and Sejnowski, 1987) the text
to be “pronounced” is sequentially fed in via a spatial input buffer and the
output is a phonemic specification; all the network does is sequentially trans-
form static input representations into static output representations. To the
extent that the difficult temporal problems of speech production are solved at
all, these solutions are entirely external to the network. Research of this kind
is really more computational than dynamical in basic orientation.

On the other hand, many dynamicists are not connectionists. This is obvi-
ous enough on the surface; their intellectual background, focus, and methods
are very different (see, e.g., Turvey and Carello, chapter 13; Reidbord and
Redington, chapter 17). But what, more precisely, is it that distinguishes the
two kinds of dynamicist? If we compare the various contributions to this
book, some features of a distinctively connectionist approach emerge. Most
obviously, connectionists deploy network dynamical models; they can thus
immediately be contrasted with dynamicists whose main contribution is dy-
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namical description (see discussion in section 1.1). Even among those that
offer formal dynamical models, there are contrasts between connectionists
and others, though the distinction is more one of degree and emphasis.

One kind of contrast is in the nature of the formal model deployed. Con-
nectionists standardly operate with relatively high-dimensional systems that
can be broken down into component systems, each of which is just a para-
metric variation on a common theme (i.e., the artificial neural units). Thus,
for example, the connectionist systems used by Randy Beer in his studies of
simple autonomous agents are defined by the following general differential
equation:

N
ti.‘./l' = —VY; + z wi,O’(y} - 0,) + Il(t) i= 1,2,...,N
j=1

In this equation each y; designates the activation level of i-th of the N individ-
ual neural units, and w; the weight which connects the i-th unit to the j-th
unit.!* This equation is thus really a schema, and if we were to write all the
equations out fully, we would have one each for y,, y,, etc. All these equa-
tions take the same form, which is to say that each of the component sub-
systems (the neural units) are just variations on a common type.

Now, the models deployed by nonconnectionist dynamicists typically can-
not be broken down in this way; they are not made up of individual sub-
systems that have essentially the same dynamical form. For example, the
model system deployed by Turvey and Carello (chapter 13) to describe co-
ordination patterns among human oscillating limbs

$ = Aw — asin(g) — 2ysin(2¢) + /Q&t

has only one state variable (¢, the phase difference between the limbs). (See
Norton [chapter 2] for plenty of other examples of dynamical systems—
including multivariable systems—that cannot be broken down in his way.)

Another kind of contrast is the connectionist tendency to focus on learning
and adaptation rather than on mathematical proofs to demonstrate critical
properties. Much effort in connectionist modeling is devoted to finding ways
to modify parameter settings (e.g., the connection weights) for networks of
various architectures so as to exhibit a certain desired behavior, using tech-
niques like backpropagation and genetic algorithms. Nonconnectionists, by
contrast, rely on equations using many fewer parameters, with their para-
meter settings often determined by hand, and typically concentrate propor-
tionately more attention on the fine detail of the dynamics of the resulting
system.

In section 1.1 we claimed that connectionism should not be thought of as
constituting an alternative to the computational research paradigm in cogni-
tive science. The reason is that there is a much deeper fault line running
between the computational approach and the dynamical approach. In our
opinion, connectionists have often been attempting, unwittingly and unsuc-
cessfully, to straddle this line: to use dynamical machinery to implement ideas
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about the nature of cognitive processes which owe more to computational-
ism. From the perspective of a genuinely dynamical conception of cognition,
classic PDP-style connectionism (as contained in, for example, the well-known
volumes Rumelhart and McClelland, 1986, and McClelland and Rumelhart,
1986) is little more than an ill-fated attempt to find a halfway house between
the two worldviews. This diagnosis is borne out by recent developments.
Since its heyday in the mid- to late-1980s, this style of connectionist work
has been gradually disappearing, either collapsing back in the computational
direction (hybrid networks, and straightforward implementations of compu-
tational mechanisms), or becoming increasingly dynamic (e.g., the shift to
recurrent networks analyzed with dynamical systems techniques). Connec-
tionist researchers who take the latter path are, of course, welcome partici-
pants in the dynamical approach.

Relation to Neural Processes

All cognitive scientists agree that cognition depends critically on neural pro-
cesses; indeed, it is customary to simply identify internal cognitive processing
with the activity of the CNS. Neuroscientists are making rapid progress
investigating these neural processes. Moreover, the predominant mathemati-
cal framework among neuroscientists for the detailed description of neural
processes is dynamics, at levels ranging from subcellular chemical transactions
to the activity of single neurons and the behavior of whole neural assemblies.
The CNS can therefore be considered a single dynamical system with a vast
number of state variables. This makes it tempting to suggest that dynamical
theories of cognition must be high-level accounts of the very same phenomena
that neuroscientists study in fine detail.

This would only be partially true, however. Not all dynamicists in cogni-
tive science are aiming to describe internal neural processes, even at a high
level. A central element of the dynamical perspective (see The Nature of
Cognitive Systems, above) is that cognitive processes span the nervous
system, the body, and the environment; hence cognition cannot be thought
of as wholly contained within the nervous system. Thus, in modeling cogni-
tion, dynamicists select aspects from a spectrum ranging from purely environ-
mental processes (e.g., Bingham, chapter 14) at one extreme to purely intra-
cranial processes (e.g., Petitot, chapter 9) at the other; in between are bodily
movements (e.g., Saltzman, chapter 6) and processes which straddle the divi-
sion between the intracranial and the body or environment (e.g., Turvey and
Carello, chapter 13). To select some local aspect of the total cognitive system
on which to focus is not to deny the importance or interest of other aspects;
choices about which aspect to study are made on the basis of factors such as
background, available tools, and hunches about where the most real progress
is likely to be made.

Clearly, the idea that the dynamical approach to cognition is just the high-
level study of the same processes studied by the neuroscientists is applicable
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only to those dynamicists whose focus is on processes that are completely or
largely within the CNS. Other dynamicists are equally studying cognition, but
by focusing on other aspects of the large system in which cognitive perfor-
mance is realized.

What is involved in studying processes at a higher level? This simple phrase
covers a number of different shifts in focus. Most obviously, dynamical cog-
nitive scientists are attempting to describe systems and behaviors that are
aggregates of vast numbers of systems and behaviors as described at the neural
level. Whereas the neuroscientist may be attempting to describe the dynamics
of a single neuron, the dynamicist is interested in the dynamics of whole
subsystems of the nervous system, comprised of millions, perhaps billions of
neurons. Second, the dynamicist obviously does not study this aggregate
system by means of a mathematical model with billions of dimensions.
Rather, the aim is to provide a low-dimensional model that provides a scien-
tifically tractable description of the same qualitative dynamics as is exhibited
by the high-dimensional system. Thus, studying systems at a higher level
corresponds to studying them in terms of lower-dimensional mathematical
models. Third, dynamical cognitive scientists often attempt to describe the
neural processes at a larger time scale (see Multiple Time Scales, above). The
cognitive time scale is typically assumed to lie between roughly a fifth of a
second (the duration of an eyeblink) on up to hours and years. It happens
to be approximately the range of time scales over which people have aware-
ness of some of their own states and about which they can talk in natural lan-
guages. Neuroscientists, by contrast, typically study processes that occur on a
scale of fractions of a second.

Relation to Chaos Theory

Chaos theory is a branch of dynamical systems theory concerned with sys-
tems that exhibit chaotic behavior, which for current purposes can be loosely
identified with sensitivity to initial conditions (see Norton, chapter 2, for fur-
ther discussion). Sometimes, especially in popular discussions, the term chaos
theory is even used to refer to dynamical systems theory in general, though
this blurs important distinctions. Chaos theory has been one of the most
rapidly developing branches of nonlinear dynamical systems theory, and
developments in both pure mathematics and computer simulation have
revealed the chaotic nature of a wide variety of physical systems. Chaos
theory has even come to provide inspiration and metaphors for many outside
the mathematical sciences. It is therefore natural to ask what connection there
might be between chaos theory and the dynamical approach to cognition.
The answer is simply that there is no essential connection between the
two. Rather, chaos theory is just one more conceptual resource offered by
dynamical systems theory, a resource that might be usefully applied in the
study of cognition, but only if warranted by the data. None of the contribu-
tors to this volume have deployed chaos theory in any substantial sense. In
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this early stage in the development of the dynamical approach, researchers
are still exploring how to apply simpler, more manageable models and
concepts. The very features that make a system chaotic constitute obvious
difficulties for anyone wanting to use that system as a model of cognitive
processes.

On the other hand, there are reasons to believe that chaos theory will play
some role in a fully developed dynamical account of cognition. Generically,
the kinds of systems that dynamicists tend to deploy in modeling cogni-
tive processes (typically continuous and nonlinear) are the home of chaotic
processes. Not surprisingly, certain classes of neural networks have been
mathematically demonstrated to exhibit chaotic behavior. Of more interest,
perhaps, chaos has been empirically observed in brain processes (Basar,
1990; Basar and Bullock, 1989). In one well-known research program, chaotic
behavior has been an integral part of a model of the neural processes under-
lying olfaction (Skarda and Freeman, 1987) (though here the role of chaos
was to provide a kind of optimal background or “ready” state rather than the
processes of scent recognition themselves). There have been fascinating initial
explorations of the idea that highly distinctive kinds of complexity in cogni-
tive performance, such as the productivity of linguistic capacities, might be
grounded in chaotic or near-chaos behavior (see, e.g., Pollack, chapter 10).
Accounting for such indications of chaos as already exist, and the further
uncovering of any role that chaotic notions might play in the heart of cog-
nitive processes, are clearly significant open challenges for the dynamical
approach.

1.4 A HISTORICAL SKETCH

The origins of the contemporary dynamical approach to cognition can be
traced at least as far back as the 1940s and 1950s, and in particular to that
extraordinary flux of ideas loosely gathered around what came to be known
as cybernetics (Wiener, 1948). At that time the new disciplines of computation
theory and information theory were being combined with elements of elec-
trical engineering, control theory, logic, neural network theory, and neuro-
physiology to open up whole new ways of thinking about systems that
can behave in adaptive, purposeful, or other mindlike ways (McCulloch, 1965;
Shannon and Weaver, 1949; von Neumann, 1958). There was a pervasive
sense at the time that somewhere in this tangled maze of ideas was the path
to a rigorous new scientific understanding of both biological and mental
phenomena. The problem for those wanting to understand cognition was to
identify this path, and follow it beyond toy examples to a deep understand-
ing of natural cognitive systems. What were the really crucial theoretical
resources, and how might they be forged into a paradigm for the study
of cognition?

Dynamics was an important resource in this period. It was the basis of
control theory and the study of feedback mechanisms, and was critical to the
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theory of analog computation. It figured centrally in neuroscience and in the
study of neural networks. The idea that dynamics might form the general
framework for a unified science of cognition was the basis of one of the most
important books of the period, Ashby’s Design for a Brain (Ashby, 1952).
Interestingly, it was so obvious to Ashby that cognitive systems should be
studied from a dynamical perspective that he hardly even bothered to explic-
itly assert it. Unfortunately, the book was mainly foundational and program-
matic; it was short on explicit demonstrations of the utility of this framework
in psychological modeling or AL

During this period two other important strands from the web of cybernetic
ideas were under intensive development. One was the theory of neural net-
works and its use in constructing “brain models” (abstract models of how
neural mechanisms might exhibit cognitive functions) (Rosenblatt, 1962). The
other was the theory of symbolic computation as manifested in the creation
and dominance of LISP as a programming language for Al and for models of
psychological processes. Potted histories of the subsequent relationship be-
tween these two approaches have become part of the folklore of cognitive
science, and the details have been traced in other places (e.g., Dreyfus, 1992).
For current purposes, it suffices to say that, although they were initially seen
as natural partners, and although research of both types was sometimes even
conducted by the same researchers, beginning in the late 1950s, neural net-
work research and computationalism separated into distinct and competing
research paradigms. The computational approach scored some early successes
and managed to grab the spotlight, appropriating to itself the vivid phrase
“artificial intelligence” and the lion’s share of research funding. In this way
computer science came to provide the theoretical core of mainstream cogni-
tive science for a generation. Neural network research, nevertheless, did con-
tinue throughout this period, and much of it was strongly dynamical in flavor.
Of particular note here is the work of Stephen Grossberg and colleagues, in
which dynamical ideas were being applied in a neural network context to a
wide range of aspects of cognitive functioning (see Grossberg, chapter 15).

By the early 1980s mainstream computational Al and cognitive science
had begun to lose steam, and a new generation of cognitive scientists began
casting around for other frameworks within which to tackle some of the
issues that caused problems for the computational approach. As is well
known, this is when neural network research burgeoned in popularity and
came to be known as connectionism (Hinton and Anderson, 1981; Rumelhart
and McClelland, 1986; McClelland and Rumelhart, 1986; Quinlan, 1991).
Since connectionist networks are dynamical systems, it was inevitable that
dynamical tools would become important for understanding their behavior
and thereby the nature of cognitive functions. The recent rapid emergence of
the dynamical approach is thus due, in large measure, to this reemergence of
connectionism and its development in a dynamical direction.

Apart from cybernetics and neural network research, at least three other
research programs deserve mention as antecedents to the contemporary
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dynamical approach. One is derived from the physical sciences via biology,
another from pure mathematics, and the third from experimental psychology.
The first began with the question: Can the basic principles of description and
explanation applied with such success in the physical sciences to simple
closed systems be somehow extended or developed to yield an understand-
ing of complex, open systems? In particular, can general mathematical laws
be deployed in understanding the kinds of behaviors exhibited by biological
systems? One natural target was the biological phenomenon of coordi-
nated movement, since it involves regular, mathematically describable motion.
Yet the study of coordinated movement cannot avoid eventually invoking
notions such as intention, information, and perception, and so must overlap
with psychology. At this nexus arose a distinctive program of research into
human motor and perceptual skills which relied on resources proposed by
physicists and mathematicians such as Pattee, Prigogine, Rosen, and Haken,
and was inspired by Bernstein’s insights into motor control (Bernstein, 1967).
This program is exemplified in the work of Turvey, Kugler, and Kelso (Kelso
and Kay, 1987; Kugler and Turvey, 1987).

Dynamics is, in the first instance, a branch of mathematics. Applications of
dynamics in various areas of science have often flowed directly from devel-
opments in pure mathematics. A particularly dramatic example of this phe-
nomenon has been applications derived from the development, principally by
René Thom, of catastrophe theory. This theory is an extension of dynamics, in
combination with topology, to describe situations in which there arise dis-
continuities, i.e., sudden, dramatic changes in the state of a system.'® Dis-
continuities are common in the physical, biological, cognitive, and social
domains, and are the basis for the formation of temporal structures, and so the
development of catastrophe theory led directly to new attempts to describe
and explain phenomena that had been beyond the scope of existing mathe-
matical methods. Of particular relevance here is application of catastrophe
theory to the investigation of language and cognition. Initial proposals by
Thom and Zeeman (Thom, 1975; Thom, 1983; Zeeman, 1977) have been
taken up and developed by Wildgen (1982) and Petitot (1985a,b) among
others. This work has involved some radical and ambitious rethinking of
problems of perception and the nature of language.

A third major source of inspiration for dynamical modeling came from
Gibson’s work in the psychology of perception (Gibson, 1979). Gibson
asserted that it was a mistake to devote too much attention to models of
internal mechanisms when the structure of stimulus information remained so
poorly understood. Since both the world and our bodies move about, it
seemed likely to Gibson that the structuring of stimulus energy (such as light)
by dynamical environmental events would play a crucial role in the achieve-
ment of successful real-time interaction with the environment. The resulting
focus on discovery of the sources of high-level information in the stimulus
turns out to dovetail nicely with continuous-time theories of dynamic percep-
tion and dynamic action. The inheritors of Gibson's baton have had many
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successes at specifying the dynamic information that underlies perceptual and
motor achievement (e.g., see Turvey and Carello, chapter, 13; Bingham, chap-
ter 14). The work of the ecological psychologists has been a key influence in
encouraging researchers to adopt a dynamical perspective in various other
areas of cognitive science.

These five lines of research have recently been joined by other dynamics-
based investigations into a wide variety of aspects of cognition. What explains
this recent surge in activity? Partly, of course, it is the spreading influence of
the research programs just described. But another important factor has been
the rapid development in mathematics of nonlinear dynamical systems theory
in the 1970s and 1980s, providing contemporary scientists with a much more
extensive and powerful repertoire of conceptual and analytical tools than
were available to Ashby or McCulloch, for example. At a more prosaic level,
the continuing exponential growth in computing resources available to scien-
tists has provided cognitive scientists with the computational muscle required
to explore complex dynamical systems. In recent years a number of new soft-
ware packages have made dynamical modeling feasible even for researchers
whose primary training is not in mathematics or computer science.

Finally, of course, there is the nature of cognition itself. If the dynamical
conception of cognition is largely correct, then a partial explanation of why
researchers are, increasingly, applying dynamical tools may lie simply in
the fact that cognitive systems are the kind of systems that call out for a
dynamical treatment.
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NOTES

1. Technically, a differential equation is any equation involving a function and one or more of
its derivatives. For more details on differential equations, and the mass-spring equation in
particular, see Norton, chapter 2.

2. The notion of phase, like that of dynamical system itself, differs from one context to
another. In some contexts, a phase space is taken to be one in which one of the dimensions is
a time derivative such as velocity. In other contexts, phase is taken to refer to position in a
periodic pattern, as when we talk of the phase of an oscillating signal. Our notion of phase here
is a generalization of this latter sense. Since the rule governing a state-determined system
determines a unique sequence of points for any given point, every point in the space can be
understood as occupying a position (or “phase”) in the total pattemn (or “dynamic”) fixed by
the rule. Our use thus accords with the common description of diagrams that sketch the overall
behavior of a dynamical system as phase portraits (see, e.g., Abraham and Shaw, 1982).
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3. For an example of the use of forms of the logistic equation, as a difference equation, in
cognitive modeling, see van Geert, chapter 11.

4. In fact, the total state of a computational system is more than just a configuration of
symbols. A Turing machine, for example, has at any time a configuration of symbols on its
tape, but it is also in a certain head state, and the head occupies a certain position; these must
also be counted as components of the total state of the system.

5. In particular, one could not demonstrate that cognitive systems are dynamical systems
merely by showing that any given natural cognitive system is governed by some dynamical
rule or other. Certainly, all people and animals obey the laws of classical mechanics; drop any
one from a high place, and it will accelerate at a rate determined by the force of gravitational
attraction. However, this does not show that cognitive systems are dynamical systems; it
merely illustrates the fact that heavy objects belong to dynamical systems.

6. A more radical possibility is that dynamical systems can behave in a way that depends
on knowledge without actually representing that knowledge by means of any particular, identi-
fiable aspect of the system.

7. For a more detailed introduction to dynamics, see Norton, chapter 2.

8. Of course, a range of general and quite powerful arguments have been put forward as
demonstrating that cognitive systems must be computational in nature (see, e.g., Fodor, 1975;
Newell and Simon, 1976; Pylyshyn, 1984). Dynamicists remain unconvinced by these argu-
ments, but we do not have space here to cover the arguments and the dynamicists’ responses
to them.

9. Turing machines are a particularly simple kind of computer, consisting of one long tape
marked with squares that can contain symbols, and a “head” (a central processing unit) which
moves from square to square making changes to the symbols. They are very often used in
discussions of foundational issues in cognitive science because they are widely known and,
despite their simplicity, can (in principle) perform computations just as complex as any other
computational system. For a very accessible introduction to Turing machines, see Haugeland
(1985).

10. One inappropriate way to extract temporal considerations from a computational model is
to rely on the timing of operations that follow from the model's being implemented in real
physical hardware. This is inappropriate because the particular details of a model’s hardware
implementation are irrelevant to the nature of the model, and the choice of a particular imple-
mentation is theoretically completely arbitrary.

11. Ironically, these kinds of assumptions have often been the basis for attacks on the plausibil-
ity of computational models. If you assume that each computational step must take some
certain minimum amount of time, it is not difficult to convince yourself that the typical compu-
tational model has no hope of completing its operations within a psychologically realistic
amount of time.

12. Precisely because discrete models are only an approximation of an underlying continuous
one, there are hard limits on how well the continuous function can be modeled. Thus, it is well
known to communications engineers that one must have at least two discrete samples for each
event of interest in the signal (often called Nyquist's theorem). The cognitive corollary of this
is that to model dynamical cognitive events that last on the order of a half-second and longer,
one must discretely compute the trajectory at least four times a second. Anything less may
result in artifactual characterization of the events. Since the time scale of cognitive events is
relatively slow compared to modern computers, this limit on discrete modeling of cognition
would not itself serve as a limiting constraint on real-time modeling of human cognitive
processes.
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13. This is true for computational systems when they are considered at the level at which
we understand them as computational. The same object (e.g., a desktop computer) can be seen
as undergoing continuous state changes when understood at some different level, e.g., the
level of electric circuits.

14. Note that when continuous systems bifurcate there can be genuinely discrete changes
in the attractor landscape of the system.

15. For a more detailed explanation of this equation, see Beer, chapter 5.

16. Note that this informal notion of discontinuity should not be confused with the precise
mathematical notion. It is a central feature of catastrophe theory that systems that are continu-
ous in the strict mathematical sense can exhibit discontinuities—dramatic, sharp changes—in
the more informal sense.
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Dynamics: An Introduction

Alec Norton

The word dynamics simply refers to the way a system changes or “behaves”
as time passes. In the scientific literature, the use of this word may merely
indicate that the author wishes to consider some system as evolving, rather
than static. Or the author may refer to an attempt to formulate a more precise
(either quantitative or qualitative) relation between an increasing time param-
eter and specific measurable elements of the system. Here, a large body of
mathematics called dynamical systems becomes relevant. This chapter intro-
duces the reader to certain basics of mathematical dynamical systems that will
be useful in understanding the various modeling problems treated in the rest
of this book.

We begin with a little background. For more details, the reader is referred
to the survey article (Hirsch, 1984). Terms that appear in italic type, if not
defined where they appear, are defined in the Glossary at the end of the book.

First, a system is some collection of related parts that we perceive as a
single entity. For example, the following are familiar systems: the solar sys-
tem, the capitalist system, the decimal system, the nervous system, the tele-
phone system. Hirsch notes:

A dynamical system is one which changes in time; what changes is the state
of the system. The capitalist system is dynamical (according to Marx), while
the decimal system is (we hope) not dynamical. A mathematical dynamical
system consists of the space of [all possible] states of the system together
with a rule called the dynamic for determining the state which corresponds
at a given future time to a given present state. Determining such rules for
various natural systems is a central problem of science. Once the dynamic is
given, it is the task of mathematical dynamical systems theory to investigate
the patterns of how states change in the long run. (Hirsch, 1984, p. 3).

Mathematical analysis requires that the state of a system be described by
some clearly defined set of variables that may change as a function of time. A
state is then identified with a choice of value for each of these variables. The
collection of all possible (or relevant) values of these variables is called the
state space (or sometimes phase space).

The most important dynamical system in scientific history is the solar
system. The sun, planets, and moon are the parts of the system, the states are
their possible configurations (and velocities), and the basic problem is to find



the dynamic by which one can predict future events like eclipses. Historically
this has been done by constructing various geometric or mathematical models
for the system, e.g., those of Ptolemy, Copernicus, Brahe, Kepler.

After Galileo, Newton, and Leibnitz, the concepts of instant, velocity, and
acceleration permitted the cosmos to be modeled by means of simple mathe-
matical laws in the form of differential equations. From these, the visible be-
havior of the planets could be mathematically deduced with the help of the
techniques of calculus. In the 18th and early 19th centuries, Euler, Laplace,
Lagrange, the Bernoullis, and others developed “Newtonian” mechanics and
the mathematics of differential equations (see section 2.1), used with great
success to model an ever-increasing number of different physical systems.

The technique of formulating physical laws by means of differential equa-
tions (whose solutions then give the behavior of the system for all time) was
so powerful that it was tempting to think of the entire universe as a giant
mechanism ruled by a collection of differential equations based on a small
number of simple laws. Since the solutions of a differential equation depend
on the starting values assigned to the variables, it would then simply be a
matter of specifying the initial conditions, e.g., the positions and velocities of
all the particles in the universe, to then be able to predict with certainty all
future behavior of every particle.

Today we know that sensitivity to initial conditions makes this impossible in
principle, and, even for very small systems with only a few variables, there is
another (related) serious difficulty inherent in this program: most differential
equations cannot be solved exactly by means of mathematical formulas. For
example, to this day the motion of three (or more) point masses in space act-
ing under the influence of their mutual gravitational attraction is understood
only in special cases, even though it is a simple matter to write down the dif-
ferential equations governing such motion.

This profound difficulty remained unapproachable until in 1881 Henri
Poincaré published the first of a series of papers inventing the point of view
of what we now call dynamical systems theory: the qualitative study of differ-
ential equations. Rather than seeking a formula for each solution as a function
of time, he proposed to study the collection of all solutions, thought of as
curves or trajectories in state space, for all time and all initial conditions at
once. This was a more geometric approach to the subject in that it appealed
to intuitions about space, motion, and proximity to interpret these systems.
This work also motivated his invention of a new discipline now called alge-
braic topology. Poincaré emphasized the importance of new themes from this
point of view: stability, periodic trajectories, recurrence, and generic behavior.

One of the prime motivating questions was (and still is): Is the solar system
stable? That is, will two of the planets ever collide, or will one ever escape
from or fall into the sun? If we alter the mass of one of the planets or change
its position slightly, will that lead to a drastic change in the trajectories? Or,
can we be sure that, except for tidal friction and solar evolution, the solar
system will continue as it is without catastrophe, even if small outside pertur-
bations occur?
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These are qualitative questions because we are not asking for specific
values of position or velocity, but rather for general global features of the
system over long time periods. This viewpoint requires thinking of the space
of all possible states of the system as a geometric space in which the solution
trajectories lie (as described below), and then using topological or geometric
reasoning to help understand such qualitative features.

After Poincaré, the twentieth century saw this viewpoint expand and
develop via pioneering work of Birkhoff (1930s), Kolmogorov (1950s),
Smale, Amol'd, and Moser (1960s), and others. The advent of computers and
graphics has assisted experimental exploration, permitted approximate com-
putation of solutions in many cases, and dramatized such phenomena as
chaos. Nowadays dynamical systems has expanded far beyond its origins
in celestial mechanics to illuminate many areas in physics, engineering, and
chemistry, as well as biological and medical systems, population biology,
economics, and so forth.

In the case of complex systems like the brain or the economy, the number
of different relevant variables is very large. Moreover, firms may enter or
leave a market, cells may grow or die; therefore the variables themselves are
difficult to firmly specify. Yet the state of mathematical art dictates that any
tractable mathematical model should not have too many variables, and that
the variables it does have must be very clearly defined. As a result, conceptu-
ally understandable models are sure to be greatly simplified in comparison
with the real systems. The goal is then to look for simplified models that are
nevertheless useful. With this caveat firmly in mind, we now proceed to
discuss some of the mathematics of dynamical systems theory.

In the following discussion, we assume only that the reader’s background
includes some calculus (so that the concept of derivative is familiar), and an
acquaintance with matrices. Some references for further reading appear in
section 2.4. (For a refresher on matrix algebra, see Hirsch and Smale, 1974.)

2.1 INTRODUCTORY CONCEPTS

In formulating the mathematical framework of dynamical systems, we may
wish to consider time as progressing continuously (continuous time), or in
evenly spaced discrete jumps (discrete time). This dichotomy corresponds to
the differences between differential equations and difference equations; flows and
diffeomorphisms. (These terms are defined below.)

We begin with the continuous time case, and proceed to discuss discrete
time.

Differential Equations in Several Variables
In this section, we remind the reader of the basic terminology of differential
equations. The real variable ¢ will denote time (measured in unspecified units),

and we use letters 1, y, z, ... to denote functions of time: x = x(#), etc. These
functions will be the (state) variables of the system under study. If we run out
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of letters, it is customary to use subscripts, as x,(f), x,(f), ..., 1,(f) in the case
of n variables, where n is some (possibly very large) positive integer. We
denote by R" the space of all n-tuples (x;, ..., x,) of real numbers, representing
n-dimensional Euclidean space.

The derivative (instantaneous rate of change) of x at time # is denoted x(¢)
(or sometimes x'(f) or (dx/db)(#). [Note that x is the name of the function
whose value at time ¢ is x(f).]

The derivative * of x is a function that itself usually has a derivative,
denoted %, the second derivative of x. This can continue indefinitely with the
third derivative ¥, fourth derivative, etc. (though frequently only the first and
second derivatives appear).

A differential equation in one variable (or one dimension) is simply an equa-
tion involving a function x and one or more of its derivatives. (Note that
we are speaking exclusively of ordinary differential equations—equations in
which all of the derivatives are with respect to a single variable (in this case
time £). Partial differential equations involve partial derivatives of functions of
more than one variable, and are not discussed in this chapter.)

Example 1 A simple frictionless mass-and-spring system is often modeled
by the equation

mi + kx = 0.

Here x is a function of time representing the linear displacement of a mass,
and m and k are constants, mass and the spring constant (or stiffness), respec-
tively. To be clear, we emphasize that this means that for each time ¢, the
number mi(f) + kx(f) is zero. This is satisfied by sinusoidal oscillations in
time.

Given this equation, the problem is to find a function x(f) that satisfies this
equation. Such a function is called a solution of the equation. In fact there will
be very many such solutions, in this case one corresponding to each choice
of the initial conditions x(0) and x(0). The general solution (see Hirsch and
Smale, 1974, or any beginning text on ordinary differential equations) is

x(H) = x(0) cos((</k/m)) + (/m/k)x(0) sin((./k/m)#).

Typically a system has more than one state variable, in which case its
evolution will be modeled by a system (or collection) of differential equations,
asin

Example 2
r=x+z
y=2r+y—z
z2=3y+ 4z

Here one seeks three functions x(#), y(f), and z(f), satisfying all three of
these equations. This is a linear system of equations because it can be written
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as a single vector equation in the following matrix form: X = AX, where

x x 1 0 1
X=|y|, X=l|y|, A=|2 1 -1/,
z z 0 3 4

and we are using ordinary matrix multiplication.

We say this is a three-dimensional system because it is expressed in terms of
three state variables x, y, z (and hence a solution (x(#), y(#), z(t)) defines a curve
in three-dimensional Euclidean space).

The virtue of a linear equation is that it is relatively easy to solve by
standard methods. In a strong sense, linear equations are completely under-
stood.

Of course, often systems of equations are not linear, like

Example 3
r=x—y°
V=—y+x.

If a system is not linear, all bets are off: typically nonlinear equations can-
not be solved explicitly. Nonlinear equations are important because (1) most
systems are modeled by nonlinear, rather than linear, equations, and (2) solu-
tions can have complicated and interesting behaviors, requiring various quali-
tative techniques of dynamical systems to analyze. (See examples 10 and 16.)

Vector Fields, Trajectories, and Flows

The matrix notation is very important because it provides us with a way of
viewing any system as a first-order system involving perhaps more variables
(first-order meaning that only the first derivatives of the variables are in-
volved).

Example 4 The system in example 3 can be written as a first-order system
by introducing new variables. Let u = x, v = y. Then our new state variables
are x, u, y, v, and the system in example 3 is equivalent to the four-dimen-
sional first-order system

T=u

w=u—y?
y=vo
v=—v+2.

From now on, we suppose that any given system of differential equations
has already been put into this first-order vector form. In general, we then
write it as

X = F(X), (1)
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where X = (x,,...,,) and F is a function from R" to R". Note that for a linear
system X = AX, the function F is simply the linear function F(X) = AX.
Within this framework, any differential equation can be specified simply by
specifying the function F, called a vector field. In coordinates, we can express
the value of F as

F(x,,....x,) = (Fi(xy,...,x,),..., E(xq,...,x,)),

where the functions F,,F, ..., F, are real-valued functions of n variables and
are called the component functions of the vector field F. Thus, in example 4, we
have

Fx,u,y,0) = uu — y3,0, —v + 23)

and the component functions are F(x,u,y,0) = u F(x,u,y,0) =u — y3,
Ex uyv) =09 E(xuyv)=—0o+ 2>
An initial condition for equation (1) is simply a choice of initial values

x,(0), x,(0), ..., x,(0)

for each of the state variables. Equivalently, this is a choice of an initial vector
X(0), which then determines a unique solution of equation (1).

Geometrically, you should think of a vector field on R" as the assignment
of a vector (direction and magnitude) at each point of R". Also, X(f) is to be
interpreted, for each ¢, as the coordinates of a point in R, so that the func-
tion X represents a trajectory, or curve, through space. The point X(f) moves
around continuously as t increases, tracing out its trajectory.

With this scheme, X(#) represents the velocity vector of the trajectory of X
at the point X(#), i.e., a vector tangent to the trajectory at that point, whose
magnitude is given by the instantaneous speed of the point X(#) along the
trajectory. Therefore equation (1) has a simple geometric interpretation: given
the vector field F, solutions of equation (1) are simply trajectories that are
everywhere tangent to F, and which have speed at each point equal to the
magnitude of F. In terms of states, the system of equation (1) simply tells us
how the rate of change X of the state variable X at time ¢ depends on its
position X(f) at that time (figure 2.1).

We have now arrived at our new view of differential equations: by con-
verting them into a system of equations in the form of equation (1), we think
of the problem in the following geometric way: given a vector field F, find
the solution trajectories that pass through the field in the proper way.

Note that starting at two different points in space will produce two differ-
ent solution trajectories (figure 2.2), unless the two points happen to lie on a
single trajectory to begin with. Typically any given starting point determines
a complete trajectory going forward and backward infinitely far in time.
Moreover no two trajectories can cross. These are consequences of the so-
called fundamental existence and uniqueness theorems for differential equa-
tions (see, e.g., Hirsch and Smale, 1974), and are true, for example, for any
smooth and bounded vector field.
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Figure 2.1 A vector field on R? along with a single solution trajectory.
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Figure 2.2 Two trajectories for the vector field F(x, y) = (y, —x). These trajectories are peri-
odic cycles.
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The object of interest in dynamics, then, is the whole pattern of all the
trajectories in the state space R". Each trajectory corresponds to a different
solution of the equations (corresponding to different initial conditions). We
now want to know various properties of this collection of trajectories and
how to interpret them in terms of the behavior of the system being modeled.
The picture of all the trajectories in the state space (also called the phase space)
is called the phase portrait.

In dynamical systems one denotes the full solution of equation (1) by the
flow ¢(t, x). This is just a fancy notation for the position of a point x after it
has followed its solution trajectory for a time . For fixed x, ¢(¢, x), thought
of as a function of ¢, is then simply a solution trajectory. For fixed f, ¢(t, x),
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J

Figure 2.3 A toroidal manifold is shown along with the phase portraits of solutions on
and approaching the manifold (in this case, a two-dimensional surface configured in three-
dimensional space).

thought of as a function of x, is a transformation of the state space that moves
each point along its own trajectory by the time . The flow ¢(¢, x) of a vector
field F, then, is in effect the complete solution of equation (1); it gives all of
the solutions for all possible initial conditions.

Sometimes only a certain collection of solution trajectories is relevant, all
of which happen to lie on some surface inside the full state space (or higher-
dimensional analog of a surface, called a manifold). By restricting attention to
such a manifold, one sometimes speaks of a vector field defined on the manifold
(figure 2.3). (See Guillemin and Pollack, 1974, for a treatment of the subject of
manifolds.)

Discrete Time Dynamics

Consider the simple differential equation in one variable
1 = g(x). (2)
The derivative x = dx/dt can be approximated by the difference quotient
Ax/At, where At =t; — t, is a small difference between two time values,
and Ar = x(t,) — x(t,) is the corresponding difference in the values of the
function x.

Hence equation (2) can be approximated by
Ax = g(x)At,
or, more explicitly,
x(ty) — x(to) = g(x(to)) (t, — to). 3)

Often we are interested in a discrete sequence of evenly spaced times, say
t=0,1,2,3,....1t is more common to use one of the letters i,j, k, |, m, n when
denoting integers. With this change our equation becomes

x(k + 1) — x(k) = g(x(k)),

a so-called difference equation. We can simplify a little bit by writing f(x) =
£(x) + x, so that equation (3) becomes
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x(k + 1) = f(x(k)) (k=0123,...) (4)

for some function f: R — R.
From equation (4), note that x(k) = f(x(k — 1)), so that

xk + 1) = f(fx(k — 1)) = f2(x(k — 1)),

where the notation f2(r) means f(f(x)), and in general f*(x) means
fUf(...f(x)...)) (k times).

Continuing, we get
x(k + 1) = f**'(x(0)) k=012...)
or, more simply,
k) =fx0) (k=12...) (5)

Equation (5) represents the most typical way of viewing a discrete dy-
namical system: it is one given by iterating a function f, starting from various
initial values. Moreover x can be a real number or more commonly a point in
R", in which case f is a function from R" to R".

One should be careful to distinguish this function f from the vector field F
described just previously, although the concepts are analogous since both
describe a change that depends on the current state. One thinks of a vector
field as a velocity vector at each point whose coordinates are the values of
the coordinate functions of the vector field. In contrast, for a discrete dynam-
ical system, the vector f(x) is thought of as the new location of the point x
after one iterate (unit of time).)

Iteration of the function f, starting with the initial value x,, produces the
(forward) orbit of x,: the sequence

X0, X1, %3, X3, ...,

where x; = fi(xo) fori =0,1,2,....
This is to be compared with the orbit of a vector field, which is a continu-
ous trajectory or curve through the state space.

Exercise Let f: R — R be defined by f(x) = 2x. The reader is encouraged to
investigate what happens to various points under iteration by f.

Time-One Maps, Poincaré Sections, and Diffeomorphisms

The finite difference approximation discussed above is only one way to arrive
at a discrete dynamical system from a differential equation. More commonly,
one considers the time-one map of a flow, or the induced map on a Poincaré
section.

Given the flow ¢(t, x) for a vector field F on R", one can define a function
f: R" = R" by the rule

fx) = ¢(1,2).
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through x

Figure 2.4 A Poincaré section for a vector field, showing a trajectory through x and its
next intersection with the cross-section, at f(x). A display of repeated iteration of the function
can be very revealing about the dynamic behavior of the trajectories of the vector field.

This function is called the time-one map of the flow; its action is simply to
move every point of the state space R" along its solution trajectory by one
unit of time. (Similarly we could just as well define the time-T map.)

Because of the standard properties of the flow of a nice-enough vector
field, the time-one map will be a diffeomorphism, i.e. a differentiable mapping f
of R that has a differentiable inverse (denoted f~!). By means of f ™! one can
move backward in time to obtain the backward orbit of x,,

X0 Xy, X_3,...,
where x_, = (f " }(xo) = f*(x,). One can also speak of the full orbit
IEETT S P SP 4,75 S PRI

Another very useful technique for passing from a flow to a diffeomorphism
is to consider a Poincaré section, or cross section, of the vector field. This is a
surface (of dimension one less than the dimension of the state space) that is
nowhere parallel to the vector field. Starting at some point on this surface, if
one follows the solution trajectory through that point, one will immediately
leave the surface, travel around in state space, and then perhaps return to
strike the surface once more (figure 2.4). Wherever this happens, one can
define a first-return mapping which takes the initial point on the Poincaré
section and sends it to the next intersection point of the trajectory with
the section. (The trajectory may never again intersect the cross section, in
which case the first-return map is not defined at that point.)

Orbits of the first-return map correspond closely with the trajectories of
the flow, and one can often study the latter simply by investigating the
former. The great merit of passing from a flow to a first-return map for some
cross section is that one thereby reduces by one the number of dimensions of
the problem, and this often makes a big difference in our ability to visualize
the dynamics. In practice real three-dimensional systems of differential equa-
tions are often studied by taking a cross section and looking at the first-return
map. Duffing’s equation is interpreted this way in example 16 below.

Alec Norton



55

.
-

0,0 1
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Figure 2.5 The top panel shows the torus opened up into a plane. Thus the left and right
edges represent the same sectional cut through the torus, and the top and bottom edges
similarly represent the same ring around the torus. A portion of an irrational trajectory is also
shown. The bottom panel shows the usual view of the torus embedded in R®.

Example 5 Consider the vector field on the torus given by irrational rota-
tion, as follows. We represent the torus as the unit square in the plane with
the opposite sides identified (glued together). On it define a constant vector
field with the time-one map F(x,y) = (1, «), where a is some irrational number
between 0 and 1. The solution trajectories are then lines parallel to the vector
(1, ) through every point on the torus (figure 2.5). (When a trajectory reaches
the right-hand edge, it reappears at the corresponding point on the left, and
similarly for top and bottom.)

We can take as our Poincaré section the vertical circle indicated by the
dotted line. The reader should convince himself or herself that the first return
map in this case is the irrational rotation of the circle f(x) = x + a(mod 1).
See example 13 below for this notation.

Not all diffeomorphisms arise as time-one mappings of flows. Given a ran-
dom diffeomorphism, one can still iterate it and thereby produce a dynamical
system. In fact it is not necessary that the function be invertible: any function
f: R® = R" can be iterated and so the forward orbits are always defined (but
perhaps not the backward orbits). A possibly noninvertible function from a
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space to itself is called an endomorphism (as opposed, e.g., to a function from
one space to another). Any such thing can be iterated and thought of as a
dynamical system, and in fact some very simple examples can produce very
interesting dynamics.

Example 6 The subject of much current research is the study of the dy-
namics of functions on the unit interval [0, 1] like f,(x) = ax(1 — x), where
a is some positive parameter, each different value of which yields a different
function. The problem here is to understand the dynamics of the functions f,
for different values of 4, and how the dynamics changes or bifurcates as the
parameter (hence the function) is changed.

For values of a between 0 and 1, the reader can discover that every point
in [0, 1] simply tends to 0 under iteration. As a increases past 1, 0 becomes a
repelling fixed point and a new attracting fixed point appears. The system has
undergone a bifurcation. Further increase in the value of a leads to successive
bifurcations in which the attracting fixed point splits into two attracting points
of period two, each of which later splits into pairs of period-four points,
etc. At the end of this so-called period doubling cascade, the map becomes
chaotic. The interested reader should see Devaney (1986) for more on this
topic.

Attractors and Bifurcations

There is no general agreement on the precise definition of an attractor, but
the basic idea is straightforward. Here is one version.

Let F be a vector field on R”, with flow ¢. A closed set A < R" is an
attractor for this flow if (1) all initial conditions sufficiently close to A have
trajectories that tend to A as time progresses, (2) all trajectories that start in A
remain there, and (3) A contains no smaller closed subsets with properties (1)
and (2).

More precisely, let d(x, A) denote the distance between a point x and the
set A. Condition (1) means there exists ¢ > 0 such that d(x, A) < ¢ implies
d(¢,(x),A) > 0ast > +00.

Condition (3) follows if A contains a dense orbit, that is, a trajectory that
visits every region of A infinitely often. Sometimes this stronger condition is
used instead of (3).

A similar definition can be made for diffeomorphisms (i.e., for the discrete
case).

Attractors are important because they represent the long-term states of
systems. If we imagine that most real systems have already been evolving for
some time before we observe them, then we would expect that attractors
represent the behaviors we actually observe in nature, at least for systems
that have settled into their long-term behaviors.

Often, as in a marble rolling around in a bowl], the attractor is simply the
fixed point corresponding to the resting position at the bottom [attracting
fixed point, or sink: examples 8, 11(ii)]. Other times the attractor is a periodic
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orbit representing a steady-state oscillating behavior [attracting periodic orbit:
example 9 (a < 0)).

One of the insights afforded us by dynamical systems theory is that these
are not the only regular long-term behaviors for systems: there are also strange
or chaotic attractors. In this case the attractor contains within it expanding
directions that force nearby trajectories to rapidly diverge from one another
as time progresses (examples 15, 16). Often such attractors have a fractal
geometric structure, with irregularity repeated at arbitrarily small scales.

A point of fundamental interest is to understand how an attractor changes
as the dynamical system (vector field, differential equation, diffeomorphism)
itself is changed. The system may contain various parameters that can take on
different values and lead to different dynamical behaviors. As the parameters
change gradually, it is of great importance to know how the attractors change.

Often, a small change in the parameters will lead to a correspondingly
small change in the shape of the attractor, but no change in its qualitative
features. Other times, a parameter value is reached at which a sudden change
in the qualitative type of the attractor occurs. When this happens, we say the
system has undergone a bifurcation.

The study of bifurcations is a large subject, but we can say a few words
here about the simplest cases of bifurcation of an attracting fixed point (see
Guckenheimer and Holmes, 1983, for more information).

Consider the following equations:

r=a—1° (saddle-node), @
r=y+ x@a— 2 —y? (ii)
y=—x+y@a—12—y?) (Hopf).

Next to the name of each of two standard bifurcations is an equation or set
of equations that exhibit that bifurcation as the parameter a passes through
the value zero. The following sequence of diagrams illustrates what happens
as a system undergoes a saddle-node bifurcation in one dimension (figure
2.6).

The case of the Hopf bifurcation is described further in example 9 below.

One point of importance here is that a “generic” (i.e., typical) system of
equations

— <—@—< —-~—>—0—<
a<0 a=0 a>0
no fixed point two fixed points,
one attracting, one repelling
A 8 (o]

Figure 2.6 With respect to equation (i) above, with @ < 0 there is no fixed point, as shown
in A; with a = 0 there is a saddle as in B; and with @ > 0, there are two fixed points, one stable
and one unstable, as shown in C.
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X = E(X),

depending on one real parameter y, will, at a bifurcation value for a fixed
point, undergo one of these bifurcations (Guckenheimer and Holmes, 1983).
That is, along some one- or two-dimensional subset of the state space con-
taining the equilibrium, the qualitative behavior of the system will look like
one of these. Therefore understanding the bifurcations (i) and (i) means under-
standing all at once the way attracting fixed points bifurcate for generic sys-
tems of even very large dimension.

There are other standard types of bifurcations that can occur when further
constraints are imposed on the systems being considered. Any specific family
of systems might have a nonstandard bifurcation, but then a small pertuba-
tion of the family may produce a standard one. Furthermore, systems that
depend on two or more parameters will generally undergo more complicated
types of bifurcations (as studied in the field of bifurcation theory).

2.2 STABILITY AND CHAOS

To introduce some further concepts, including stability and chaos, we devote
the remainder of this chapter to a series of basic illustrative examples.

Example 7 Here we return to consider the frictionless mass-and-spring
system of example 1 (figure 2.7),

mf + kxr = 0.

For simplicity we take m = k = 1. Letting x = u, we obtain the two-dimen-
sional first-order system

r=u

U= —x

Here, the vector field is simply F(x, u) = (4, —x), and the solution is
x(f) = xqcos(f) + uq sin(f)

for the initial conditions x(0) = x,, u(0) = u, (see Hirsch and Smale, 1974, to
learn how to solve such equations). The phase portrait in the phase plane (i.e.,

resting position
i
LJ\WW m
1
|
| >
|
(o) X

Figure 2.7 A simple, frictionless oscillator with a mass (m) at position x and with resting
position 0.
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state space R?) then consists of concentric circles centered at the origin (figure
2.8).

An initial condition corresponds to some starting point in the plane, and
then the state (x, u) of the system evolves according to (x, cos(t) + ug sin(f),
—xgsin(f) + uq cos(t)): i.e., it follows the circular trajectories in a clockwise
direction. (It is easier to see this in the case u, = 0, when the solution is of
the form (x, cos(f), —x, sin(#)).)

For the physical system, this corresponds to the mass oscillating back and
forth periodically about its equilibrium position at the origin. Since x repre-
sents position (distance from rest position) and u velocity, we see that the
speed of the mass is greatest as it is passing through its equilibrium position,
and the speed is zero when the spring is stretched or compressed the most.

The origin (0, 0) corresponds to the state in which the mass is sitting at rest
at its equilibrium position. This is called a fixed point of the flow, or a zero of
the vector field. A system starting out at a fixed point will remain there
forever.

An important question about a fixed point is: Is it stable? There are two
notions of stability of fixed points, as follows. A fixed point is Lyapunoo-
stable if points near the fixed point continue to remain nearby forever. The
fixed point is asymptotically stable if nearby points actually tend toward the
fixed point as time progresses.

For our mass-and-spring example, the origin is Lyapunov-stable but not
asymptotically stable: points near the origin follow circular trajectories that
remain nearby but do not tend to the origin in the limit as t — co.
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Figure 2.8 With no friction, the oscillator will sweep out concentric circles in the phase
plane. The diameter of the circle depends on the initial state. Larger circles mean wider excur-
sions along x as well as larger peak velocities along .
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Figure 2.9 The phase portrait of a mass-and-spring system with a friction term. Amplitude
of x and 1 approach zero over time.

Example 8 Since the drag force of sliding friction is roughly proportional
to velocity, adding friction to the mass-and-spring system of the previous
example is typically modeled by adding a first-derivative term to the equa-
tion, as in

f+x+x=0.
In terms of our variables z, u,
rT=u
W= —xr—u

The solution trajectories of this system turn out to spiral down toward
the origin (figure 2.9). Since the vector field is F(x,u) = (4, —x — u), (0, 0) is
again a fixed point. By inspecting the phase portrait, it is clear that this fixed
point is both Lyapunov-stable and asymptotically stable. We also say it is an
attracting fixed point, because all nearby points tend in toward the origin as
time proceeds. (An attracting fixed point is the simplest version of an atrac-

tor.) This makes physical sense because we expect friction to cause the oscil-
lations to die down toward the resting position.

Example 9 Let a be a real parameter, and consider the system
r=y+@—x*—y)x
y=—x+(@— 22 —y*)y.

For a < 0 we have a single attracting fixed point at the origin. Observe
what happens when 4 is gradually increased. When it reaches @ = 0, we still
barely have a single attracting fixed point toward which every trajectory
tends. When a > 0, the origin becomes a repelling fixed point—i.e., a fixed
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Figure 2.10 Phase portrait for a > 0. Note the attracting periodic orbit shown with the
thicker line. The origin is a repelling fixed point.

point toward which trajectories tend as time runs backward to —o0. Spring-
ing out from the origin is a new attractor: an attracting cycle (or attracting
periodic orbit). All trajectories, except for the fixed point at the origin, tend
toward this new cycle. This phemomenon is a simple example of a Hopf
bifurcation, in which, as a parameter changes across some critical value (in this
case 0), an attracting fixed point gives birth to an attracting cycle and itself
becomes repelling (figure 2.10).

Example 10 A simple frictionless pendulum, as shown in figure 2.11, can be
described by the variables x and u, where x is the angle of deviation from the
vertical, and u = 1 is the angular velocity (figure 2.11).

Newton’s laws lead to the equations of motion

T=u
y = —csinx,

where c is a constant proportional to the length of the pendulum.

Fixed points appear whenever the vector (4, —csinzx) is zero; i.e, u =0
and x = kx, and k is any integer. The phase portrait is shown in figure 2.12.

Here the origin is Lyapunov-stable, while the point p = (%, 0) is an un-
stable equilibrium called a saddle point. Two trajectories tend asymptotically
toward p in forward time, two in backward time, and other trajectories come
near but then veer away. This point corresponds to the pendulum at rest
pointed straight up, delicately balanced. Any small perturbation will tend to
push it onto one of the nearby trajectories—either one cycling around a rest
point (oscillating behavior), or one moving off toward infinity to the right or
left (the pendulum rotates continuously around in one direction).
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Figure 2.11 A simple pendulum has variables x, position, and %, velocity. Part of its phase
portrait, without friction, resembles figure 2.8, but is expanded in figure 2.12.
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Figure 2.12  The phase portrait of a frictionless pendulum. The three dots represent the same
critical point (at the bottom). The sinusoids are the separatrices leading to the unstable saddle
points when the pendulum remains straight up. The wavy lines at top and bottom are trajec-
tories that spin around over the top of the pendulum in opposite directions.

Example 11 We now turn to similar considerations for some discrete-time
dynamical systems, beginning with three simple functions of one variable:

(i) f(x) = 2x. This simple diffeomorphism has a single fixed point (zero)
which is repelling, meaning that nearby points move away under iteration (or:
nearby points tend to zero under backward iteration, i.e. application of the
inverse f~*). All other points tend to infinity under iteration. Figure 2.13A
shows behavior beginning at +1/2.

(i) g(x) = f~'(x) = (1/2)x. Here the origin is an attracting fixed point, and
all points on R tend to 0 under iteration.

(iii) h(x) = ¢* — 1. Here, points to the left of the origin tend, under intera-
tion, to 0, while points to the right tend away. Since 0 is then neither an
attracting nor a repelling fixed point, it is called a neutral fixed point.

Note that | f'(0)| > 1, |g'(0)| < 1, and |h’(0)] = 1. This is no accident: If x,
is a fixed point for £, and | f'(xo)| > 1, then x, is repelling; if less than 1, x, is
attracting; if equal to 1, the fixed point may be either repelling, attracting, or
neutral.
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Figure 2.13 A, B, and C illustrate iteration of the functions f(x) = 2x, g(x) = (1/2)x, and
h(z) = e* — 1, respectively.
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Figure 2.14 Illustration of example 12. Beginning near —1/2 or +1/2, points either con-
verge toward 0 or tend to infinity.

Exercise Find an example of a function f: R — R such that 0 is a repelling
fixed point, but | f'(0)] = 1.

Example 12 Let f(x) = x* — (3/4)x (figure 2.14). This function has three
fixed points: x = 0,1/2, —1/2. The reader should check that 0 is attracting
and 1/2, — 1/2 are repelling.

Example 13 The circle can be represented by the unit interval [0, 1] with
the endpoints identified; since 0 and 1 are then two representatives for the
same point, we omit 1 and take the notation [0, 1) as representing all magni-
tudes from 0 to 1, but excluding 1 itself.

We think of the numbers in [0, 1), then, as representing angles on the circle
(where a full turn is taken to have angle 1 instead of 2z to simplify notation).
Addition in [0, 1) is then just the addition of angles on the circle: (1/2) +
(3/4)(mod 1) = 5/4(mod 1) = 1/4 (mod 1). Here “mod 1" tells us to add or
subtract an integer so that the result lies in [0, 1).

Consider the rotation R,(x) = x + a(mod 1) for various rotation angles a.

(i) @ = 1/3. Here R, has no fixed points, but every point of the circle is a
periodic point of period 3: after three iterations of R,, each point return to itself
(figure 2.15).

In general, we say a point x, is a periodic point of period k for a map f if
fX(xo) = x,, and if k is the least positive integer with this property. A periodic
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Figure 2.15 A graphic representation of a periodic point with period 3. Successive rotations
of multiples of 1/3 lead only between the three angles shown.

point of period 1 is a fixed point. An attracting periodic point for f of period
k is one which is an attracting fixed point for the iterate f*. Similar definitions
hold for repelling and neutral periodic points. In the case of the rotation by
1/3, every point is a neutral periodic point of period 3.

(i) @ = 2/5. Check that each point of the circle [0, 1) is a periodic point of
period 5.

(iii) a = I/ﬁ. In this case R, has no periodic points of any period, be-
cause the angle of rotation is irrational. Instead of repgating after a finite
number of steps, the forward orbit of each point fills in the whole circle more
and more densely. We say that the map is transitive, because it has a dense
orbit (and in fact every orbit is dense).

Example 14 Let f:[0,1)—(0,1) be the angle doubling map of the circle,
defined by f(x) = 2x(mod 1). This map exhibits the basic features of “chaos,”
namely, sensitive dependence on initial conditions, transitivity, and dense periodic
points.

Sensitive dependence on initial conditions means that any two nearby
starting points rapidly diverge from each other as iteration continues. That is,
if x and y are two nearby points on the circle, then the distance between f*(x)
and f*(y) grows (exponentially fast) with k. The reason is that one can see
from the definition of f that the distance between any two nearby points
simply doubles with every iterate—until the distance between them is more
than 1/4. See below for more on this concept.

Dense periodic points: Any small interval on the circle contains a periodic
point (of some period) for f. To see this, the reader can verify that if r =
p/(2¥ — 1) for any integer p, that f*(x) = x(mod 1).

In particular, there are infinitely many periodic points for f (though only
finitely many for any given period).

Transitivity: This simply means there is a dense orbit. This is not hard to
prove, but we will not do so here. (See Devaney, 1986.)

Example 15 The solenoid map is a three-dimensional diffeomorphism de-

fined on the “solid torus” S = S' x D2, where S! denotes the unit circle
and D? = {(x,y)€ R*: x> + y* <1} is the unit disk in the plane (figure 2.16).
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Figure 2.16 This solenoid map is defined on a solid torus, as opposed to the two-dimen-
sional manifold of figure 2.5.

Figure 2.17 A single iteration of the mapping in example 15 generates a longer, narrower
solid torus that wraps around twice inside the first one.

Figure 2.18 Repeated iteration of the mapping in example 15 embeds additional tori within
each previous torus. This display is a cross-sectional cut through three iterations.

The mapping f: S — S is defined by
£0,x,y) = (26,(1/4)x + (1/2)cos 8, (1/4)y + (1/2)sin ).

The action of f is to stretch the solid torus out, wrap it around twice, and
place it inside the original solid torus (figure 2.17).

Then f2 takes the original solid torus to a very thin one wrapped four
times around the original, etc. The resulting attractor, obtained as the inter-
section of all these thinner and thinner tubes, is called a solenoid (figure 2.18).

Every point of the original solid torus tends toward this solenoid; points
on the solenoid itself experience a stretching apart very similar to that of the
angle-doubling map of the circle. In fact, f restricted to the solenoid exhibits
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all the chaotic properties of the angle-doubling map, so it is called a chaotic
attractor. (See Devaney, 1986.)

Example 16 Duffing's equation. We can illustrate a few more ideas with the
equation

T+ 6x—x+ 23 = ycos(wh),

used to model the forced vibration of a stiff metal beam suspended vertically
between two fixed magnets on either side (see Guckenheimer and Holmes,
1983; Vector Fields, Trajectories, and Flows, above). Here 4 is a small positive
constant, y represents the magnitude of the periodic forcing term, and w
represents the frequency of forcing. Though there is no general solution
expressible in terms of elementary formulas, we can still study the system as
follows.
Writing this as a first-order system, we get (changing x to #):

u=o
o =u—u®— v + ycos(wh).

Note that the vector field is time-dependent, so this is a nonautonomous sys-
tem. To deal with this, we convert the time variable into a third-space vari-
able as follows:

u=u

0 =u—u® — 6v + ycos(wh).

=1

Here u and v are as before and 6 is a new angular variable which increases at
constant rate from zero to 2n/w and then repeats. (This is permitted because
of the periodicity of cosine.) Therefore we can think of 8 as moving around a
circle of length 2n/w.

The state space is then R? x S!: the space of all triples (4, v, 8), where u
and v are real numbers and 0 represents an angle. In this case a convenient
cross-section is the two-dimensional set £ = {(1, v, 8): # = 0}, where we can
take u and v to be coordinates for .

The first-return map f: £ — Z of the flow to this cross-section is then
simply the time-27/w map of the flow for the three-dimensional system
above, restricted to Z. This is easy to present graphically by plotting the
orbits of various points with a computer: start at any point (1, v,0), and plot
the 4 and v coordinates of the trajectory after times in multiples of 27/w.
Here is the picture one obtains for the values w = 1, § = 0.2, y = 0.3 (figure
2.19).

The result is apparently a chaotic attractor (viewing it only in cross-
section). That is, nearby initial conditions tend closer to this set as time
progresses, but within the set, nearby orbits diverge from one another. See
Guckenheimer and Holmes (1983) for a more complete discussion of this
situation.
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Figure 2.19 The Poincaré section (first-return map) of Duffing’s equation is shown after
1000 iterations. This chaotic attractor shows how points will converge to this complex shape
under iteration, yet within this general pattern nearby points diverge from one another.

2.3 CONCLUSIONS

We have made a general survey of what dynamical systems are and how they
are analyzed by mathematicians. It should be clear that one way this research
has progressed is by relaxing the search for specific solutions for specific
initial conditions. The sensitive properties of dynamical systems force us to
do so, since very small differences in initial conditions may be magnified over
a short time to dramatically different states.

Instead, a wide range of methods have been developed during the 20th
century for describing and evaluating the qualitative properties of dynamic
models. These qualitative and topological properties turn out to offer many
insights into the behavior of actual complex systems.
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Time-Scale Dynamics and the
Development of an Embodied Cognition

Esther Thelen

EDITORS’ INTRODUCTION

Cognition is in many ways an emergent phenomenon. Mature cognitive systems are
the result of a long and always ongoing process of self-organization and adaptation,
and if we really want to fully understand the nature of the mature system we must
see it in this context. One of the strengths of the dynamical approach to cognition
is its ability to describe the emergence of complex structures and processes. Conse-
quently, the first of the applications-oriented chapters in this book is a sweeping view
of cognitive development from a dynamical perspective.

As a developmental psychologist, Esther Thelen's immediate concern is with ques-
tions such as: How do infants acquire such seemingly simple skills as reaching out
and grasping an object? She finds that dynamics provides the best framework within
which to formulate specific answers, but it also provides much more. Thelen argues
that taking up the dynamical perspective leads to dramatic reconceptualization of the
general nature of cognitive development, and indeed of the product of development,
mind itself.

Laying the foundation for these ambitious claims are highly detailed developmen-
tal studies. In this chapter Thelen describes two sets of studies, one of reaching and
grasping, and another of coordinated kicking. Both are cases of infants acquiring con-
trol over the forceful interactions of their bodies with their environments. Dynamics
provides a powerful vocabulary for describing these developmental processes.
Changes in behavior come to be understood in terms of attractors, stability, poten-
tial wells, parameter adjustment, and so forth. Taking over this vocabulary facili-
tates a whole new way of seeing how sophisticated capacities emerge. New abilities
take shape in a process of gradual adjustment of the dynamics governing the range of
movements currently available; this adjustment is effected by exploratory activity
itself. Since infants can begin this process of adjustment from very different start-
ing points, it is highly unlikely that there is any predetermined, genetically coded
program for development. It is rather a self-organizing process in which solutions
emerge to problems defined by the particular constraints of the infant's immediate
situation.

How does this connect with the nature of cognition and mind? Thelen adopts the
Piagetian perspective that “thought grows from action and that activity is the engine
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of change.” At the same time, however, she rejects Piaget's conception of the end-
state of cognitive development as an objective mind reasoning about the world by
means of abstract logical structures. This “objectivist” conception of mind has re-
cently been challenged by philosophers and cognitive scientists who insist that mind
is fundamentally embodied, and, in particular, that the bodily experience of force is
essential to thought and language. Consequently, to understand how infants come to
be able to control the forceful interactions of their bodies with their environment
is to gain insight into the nature of cognitive processes as they emerge. A dynamical
perspective on development, according to which change occurs at many time scales,
and change at one scale shapes and is shaped by change at others, thus provides a
general framework within which to understand the origin and nature of embodied
cognition, and in this sense, to help resolve the problem of the relation of mind to
body.

3.1 INTRODUCTION

As this book attests, the concepts and tools of dynamical systems offer
powerful and perhaps revolutionary ways of understanding human cognition.
For nearly half a century, the dominant metaphor for understanding mind,
brain, and behavior has been that of information processing, a metaphor
based on serial computation. Dynamics has the potential, I believe, to sup-
plant this accepted view with new principles that are more biologically plausi-
ble and yet apply across many levels of mental phenomena.

The implications of adopting a noncomputational view of mind are pro-
found and widespread. Such a view challenges long-held and cherished con-
structs such as symbolic representation, the modularity of knowledge, and the
distinction between knowledge and performance. But dynamics also holds
great promise for understanding some of the most recalcitrant issues in the
mind sciences. These may include such problems as the origins of novelty in
brain and behavior, the sources of individual differences, the nature of cate-
gory formation, and the fluid and context-sensitive aspects of human behav-
jor (see Smith and Thelen, 1993; Thelen and Smith, 1994).

One of the most persistent issues in the brain-mind sciences is that of
mind-body dualism. What is the relation between the abstract and reflective
mind and the qualities of the flesh and of the world in which mind sits? How
can these two levels coexist in the same individual? Is there a connection
between the domains of biology and physics and those of mind and cogni-
tion? Such questions have plagued philosophers and psychologists for millen-
nia, and still do. As Searle (1992) wrote, “... there really has been only one
major topic of discussion in the philosophy of mind for the past fifty years or
so, and that is the mind-body problem” (p. 29).

I suggest here that a dynamical systems analysis can offer insights into this
“major topic of discussion.” I argue that understanding transactions between
body and mind should begin with a developmental analysis based on dy-
namics, the study of processes that are continuous in time. In particular, if we
can show continuities in time between the physical and the mental—that they
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share the same dynamics—we can bridge the gulf between the traditional
duality of levels, body and mind. To understand continuities in time, we must
look toward development, growth, and change within an individual's life
span. Toward this goal, I will argue, as have other developmental psycholo-
gists before me, that the mundane physical events of infancy are indeed the
very foundations of thinking, the uniquely human way of adapting to the
world. But I want to go further. I will also claim that the way in which
infants acquire seemingly simple body skills supports a particular view of
human cognition, thinking grounded in and inseparable from bodily action.
That thought is thus embodied—containing within it the very essence of our
bodily experience—flows directly from considering minds’ origins and from
the assumption that the time scales of processes at different levels are tightly
interwoven. There can be no discontinuities in processes that occur over time.
What infants do in everyday life, what they perceive, how they act, and what
they remember are joined seamlessly to how they think. Since a major devel-
opmental task of infancy is gaining control of the body, cognition is thus
embodied as its origins deal with actions of the body in the world. Thus,
since the processes of perceiving and acting and the processes of thinking
continue to share the same time-scale dynamics, they cannot be separated in
levels. Mind and body are united at the beginning of life and nowhere along
life’s path do their processes split asunder.

3.2 MODELS AND METAPHORS

My line of reasoning depends on taking seriously the evocative title of this
book, Mind as Motion. What the editors had in mind, I believe, was to por-
tray mental activity not as a structure of static representations, but as flow
through time. An apt metaphor in this case is a mountain stream flowing over
a rocky bed. Both the global course of the stream and its local whirls and
eddies emerge from the architecture of the streambed and the force of the
water flow, but are in no way programmed by those constraints. The pattern
of a whirlpool may be quite stable as long as the water pressure and stream-
bed do not change. Or a new pattern may form in response to a stray rock
entering the bed or after a heavy rain. The eddy itself is not symbolically
represented anywhere, yet it contains within it both its past history—the
melting of the snow on the mountain and the configuration of the bed up-
stream—and its immediate constraints.

Under particular laboratory conditions, the behavior of water flow and
turbulence can be mathematically captured by systems of nonlinear dynamical
equations. Indeed the science of dynamical systems is preeminently a mathe-
matical science, born from just such problems of understanding complex and
time-based processes as patterns of flow. But whether or not our particular
mountain stream can, in practice, be mathematically described by us does not
alter the fundamental truth of its existence, that pattern lives in flow and lives

only in flow.
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Because mathematical modeling has also been a dominant tradition in the
cognitive sciences, there is a seductive danger of appropriating the mathe-
matics of dynamical systems with insufficient consideration of their funda-
mental truths. Fitting dynamical equations to behavioral data and simulating
behavior with dynamical models are critical steps in our understanding. But
to adopt mathematical dynamics without acknowledging the radical implica-
tions of a truly dynamical cognition reduces dynamics to just another model
du jour, or at worst, a redescription of the prevailing structural and computa-
tional state of affairs. Along with the mathematical language of dynamics,
must come, I believe, the fundamental assumption that pattern only emerges
in process, and thus a rejection of symbols, structures, and stages as “things”
that live in the head. I will also argue here that a dynamical approach erases
the traditional boundaries of mental life. There can be no description of a
purely “inner life”: every mental and behavioral act is always emergent in
context, just as are the eddies in the stream. Perception, action, and cognition
form a single process, with no distinction between what people really “know”
and what they perform. There are no distinctions between acting, learning,
and developing; processes of change all live within a single, nested time scale.

3.3 SOME BACKGROUND ON THE DEVELOPMENT OF BODY
AND MIND

I think the best way to put some life into these abstractions is to explain the
conventional wisdom about the relation of the simple motor skills of infancy
and the emergence of thought. Until quite recently motor skill development
was seen as a necessary, but psychologically uninteresting part of infant devel-
opment. Textbooks routinely published (most still do) illustrations and ex-
planations of the stagelike emergence of the major “motor milestones” such
as rolling over, sitting up, crawling, and walking. The message these texts
delivered was the amazing orderliness and universal character of the unfold-
ing skills. This view of development came directly from the work of Amold
Gesell and Myrtle McGraw in the 1930s and 1940s, who described these
stages in great detail (see, e.g., McGraw, 1940; Gesell and Ames, 1940).
More important was their developmental account: the ordered progression of
the emergence of skills reflected the maturation of the brain. They believed
that motor coordination and control was a product of autonomous brain
development, which happened as infants got older. Although some contem-
porary developmentalists still invoke maturation as a developmental mecha-
nism, there is no evidence that the brain autonomously matures from codes in
the genes, and like an independent executive, causes the body to obey.
Unwittingly perhaps, these early pioneers fostered a profoundly dualistic
view. They envisioned motor development as thoroughly biological and en-
capsulated. Although infants’ skills reflected changes in the brain, such skills
were not part of mind in any way. In fact, Gesell himself disdained mentalistic
descriptions and preferred to stick exclusively with observables in posture
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and movement. What has come through in the textbooks, and in the minds of
many developmentalists, is that the biological side of human existence lives
in the first few chapters, and having dispensed with our biological side, we
can now move on to more interesting chapters.

3.4 THE PIAGETIAN LEGACY

It was the seminal developmental theorist Jean Piaget who made develop-
mentalists consider another approach: that thought grows from action and that
activity is the engine of change. Piaget believed that infancy—the sensori-
motor period, he called it—formed the foundation of cognition through
building the mental structures in which higher thought was embedded. Piaget
(1952) described his own infants with brilliance and understanding, surely
the best developmental descriptions ever written. In his words, even the
baby’s simple acts—sucking and batting, looking and smiling—took on
profound meaning. According to Piaget, mental life was truly constructed
through the combination and change of these simple acts.

Where 1 and many other contemporary developmentalists differ from
Piaget is not in his account of the seamless connections between action and
thought, but in the very nature of mind that is the product of this develop-
mental process. Piaget believed that human cognition was a biological adap-
tation designed to know the truths about the world by logical structures.
He wanted to understand how people acquired and perfected these logical
structures during development. Piaget made several assumptions that may be
challenged by a dynamic cognition—first, that there are logical relations in
the world to be discovered, and second, that people symbolically represent
these relations in mind through a series of propositional structures.

Readers may recall that in the typical Piagetian developmental sequence of
understanding, say, objects or space, young infants are prisoners of their im-
mediate perceptions and they cannot escape the boundaries of their bodies.
They do not understand, for example, that an object still exists when it is
hidden from sight, or that the window stays in the same place when they
rotate their bodies. According to Piaget, therefore, infants and children must
shed their subjective, context-grounded, illogical, and embodied solutions for
the ideal abstractions of formal logic. That is, real cognition means rising
above the here-and-now of bodily existence, of perception and action in the
world, to a level of pure symbol manipulation, as development proceeds
inexorably toward real cognition. Thus, although Piaget broke from the matu-
rationists and gave experience a preeminent role as a developmental mecha-
nism, he retained their fundamental dualism.

3.5 ALTERNATIVES TO MIND-BODY DUALISM

Although rarely recognized or acknowledged, some form of mind-body dual-
ism is a continuing assumption behind, and the consequence of much contem-
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porary cognitive science. Cognitive models that seek to represent an objec-
tive and knowable world with formal systems of symbols, logic, and compu-
tation have been termed objectivist (Johnson, 1987; Lakoff, 1987), materialist
(Searle, 1992), and cognitivist (Varela, Thompson, and Rosch, 1993). These
critics point out that two kinds of profound dualism result from assuming that
the world is understood through propositional logic or computational struc-
tures or that mind is at core rational, encapsulated, abstract, and a priori. The
first is the denial of the relevance of the physical body in all its instantiations
through movement, feeling, and emotion. The second is the separation of
intelligent behavior from the subjective self, from consciousness, imagination,
and from commonsense understanding. In both cases, these critics argue,
cognitivist models are divorced from major and essential aspects of human
experience. .

There is a new, but growing, challenge to rational and propositional views
of mind. These thinkers reject the assumption that minds work like digital
computers. They suggest that knowing—categorizing the world, acting in
it, giving the world meaning, and reflecting upon our acts—is at core non-
propositional, fluid, messy, imaginative, personal, emergent, constructive,
contextual, and metaphorical. They consider that knowledge and conscious-
ness are not above experience, but directly grounded in it; the terms used are
embodied (Johnson, 1987; Lakoff, 1987; see also Talmy, 1988), enactive (Varela,
Thompson, and Rosch, 1993), and embedded in the background (Searle, 1992).
There is no separation of mind from body because there is no sense in which
the mental is abstracted from the material. All is process, all is emergent.
Consciousness, imagination, beliefs, and desires are coequal with reasoning
and language, and all are as much part and parcel of human neural activity as
is movement or perception.

3.6 EMBODIED COGNITION

One promising path to reconciliation of persistent dualism is through a psy-
chology of embodied cognition. According to Johnson (1987), humans make
sense of the world not through abstract, propositional logic (although they
can use logic to describe the world) but in a profound and fundamental way,
based on real, bodily experience. At the very core of meaning—the way we
categorize, remember, talk about, and act in the world—are our experiences
as physical beings within a physical world. For example, we encounter con-
tainment continually in our daily lives. As Johnson (1987) writes:

We are intimately aware of our bodies as three-dimensional containers into
which we put certain things (food, water, air) and out of which other things
emerge (food and water wastes, air, blood, etc.). From the beginning, we
experience constant physical containment in our surroundings (those things
that envelope us). We move in and out of rooms, clothes, vehicles, and
numerous kinds of bounded spaces. We manipulate objects, placing them in
containers (cups, boxes, cans, bags, etc.) In each of these cases there are
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repeatable spatial and temporal organizations. In other words, there are typi-
cal schemata for physical containment. (p. 21)

These ideas of containment, Johnson maintains, come to pervade not only
our actions but our thought and our language. For instance, he believes that
prepositions such as in, out, over, near, under, and so on have meaning only
because we have this pervasive, embodied notion of containment—we have
experienced it in daily life. The extensions of containment go beyond logic
into metaphor and imagery, so that understanding of the term leave out in
the sentence, “I don’t want to leave any relevant data out of my argument”
(p. 35) goes beyond the physical relationship to a more metaphorical one,
based nonetheless on the primal physical understanding.

Embodiment may be at the core of our understanding of literature as well.
For example, Turner (1991) suggests that our recognition of the symmetries
in poetic structure and metaphor has its origins in the symmetries and polari-
ties of the body, and that we learn these relationships because we have lived
with them in embodied form. “We have a felt, schematic, embodied under-
standing of bilateral symmetry, and we employ this schematic understand-
ing constantly, moment to moment, in every aspect of our existence, to
make sense of our world and to interact with it” (p. 70). The highest levels of
human art are part of these interactions.

Along with symmetry and containment, the idea of force embodiment
is particularly relevant to my developmental account here (Johnson, 1987;
Talmy, 1988). Physical force is something that we deal with at every instance
that we move. In order to move through space, we must control our muscle
forces. And all our causal relations with our environments require some sort
of forceful interaction as we act on objects or they act upon us. Because force-
ful interactions pervade our daily experience, they also come to infuse mean-
ing. In language, force is the root meaning of verbs expressing compulsion,
blockage, counterforce, diversion, enablement, attraction, and so on. Although
these verbs may be used in abstract ways, “I am attracted to the ideas of John
Dewey,” the meaning is of a forceful pull toward them. Likewise, the com-
mon verbs such as could, must, can, might, and so on are understood because
our experience has included forceful necessity, overcoming barriers, impul-
sion, and other acts of force on the environment. Language, in Johnson’s and
Talmy’s views, taps into prelinguistic meaning, rather than giving meaning.
Experience gives meaning.

3.7 DEVELOPMENTAL DYNAMICS AND EMBODIED COGNITION

Can we move from these philosophical issues of the nature of mind to consid-
eration of the processes and mechanisms by which real people acquire an
embodied cognition in their real minds and brains? Here is where I believe
that the solution will lie in dynamical conceptualizations, and especially by
looking at the origins of cognition from a dynamical perspective. But my
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claim is even stronger: that the developmental data are compelling in support
of these new anticomputational views. What is required is to reject both
Piaget’s objectivist vision of the end-state of development as looking like a
Swiss logician, and the maturationist conviction that there is an executive in
the brain or a code in the genes that directs the course of development.
Instead, I consider development to be a continuous, contingent, emergent,
embedded, nonlinear process that is captured by general principles of dy-
namical theory.

In particular, I will show in the remainder of the chapter how a dynamical
view of development supports force embodiment, a particular aspect of a
nonobjectivist cognition. To do this, I begin with a summary of a dynamical
systems approach to the development of action and cognition emphasizing
the notion of embedded time scales. Next I describe several experimental
studies that show that understanding and controlling body forces is a founda-
tional task of infancy. Finally, I offer a more abstract account of how the
simple motor tasks of infancy can become embedded in the dynamics of
higher cognition.

3.8 A DYNAMICAL SYSTEMS APPROACH TO DEVELOPMENT

A dynamical systems approach to development offers an alternative to both
the maturationist and Piagetian accounts 1 described earlier (readers are re-
ferred to the following for extended explications: Smith and Thelen, 1993;
Thelen, 1989; Thelen, Kelso, and Fogel, 1987; Thelen and Smith, 1994; Thelen
and Ulrich, 1991). A fundamental assumption in a dynamical approach
to development is that behavior and cognition, and their changes during
ontogeny, are not represented anywhere in the system beforehand either as
dedicated structures or symbols in the brain or as codes in the genes. Rather,
thought and behavior are “softly assembled” as dynamical patterns of activity
that arise as a function of the intended task at hand and an individual's
“intrinsic dynamics” or the preferred states of the system given its current
architecture and previous history of activity. Behaving organisms are systems
with high dimensionality: they are composed of many, heterogeneous sub-
systems—neural, physiological, mechanical, and so on—with a nearly infinite
number of possible combinations of elements. In dynamical terms, we can see
actions and mental life as manifestations of self-organization of these multiple
contributing elements. That is, the behavior represents a reduction of the
degrees of freedom of the contributing subsystems into a pattern that has
form over time. Using my mountain stream example, the flow pattern of
the water may be complex, but the pattern is an enormous reduction of the
system’s potential complexity arising from the configuration of the stream
bottom, the individual water molecules, rate of flow, temperature, wind, and
so on, all of which contribute to, but do not program the pattern. Similarly,
behavior, although complex, has “sucked in,” so to speak, the complexity of
the subsystems that support it.
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Figure 3.1 Potential well depiction of relative stability of states in a dynamical system.
(A) Attractor. (B) Shallow attractors showing multistable states. (C) Repellor.

Some of the resulting self-organized patterns of action and thought are
very stable because of the intrinsically preferred states of the system and the
particular situation at hand. Such patterns of thought and action may be
thought of as strong attractors in the behavior space. They attract nearby
trajectories, and performance is consistent and not easily perturbed. In the
conventional depiction, the potential well is narrow and deep (figure 3.1A).
Other patterns are unstable, they are easily perturbed by small changes in the
conditions, and performance within the same subject is highly variable and
not dependable. Their potential wells are shallow and the system easily shifts
between multiple patterns (figure 3.1B). Portions of the space may actually act
as repellors, representing coordinative patterns that rarely appear and are
highly unstable when they do (figure 3.1C).

Development, then, can be envisioned as a changing landscape of pre-
ferred, but not obligatory, behavioral states with varying degrees of stability
and instability, rather than as a prescribed series of structurally invariant
stages leading to progressive improvement. Although some behavioral pref-
erences are so stable that they take on the qualities of a developmental stage,
the stability is a function of the organism-in-context, not a set of prior in-
structions. In other words, development looks stagelike only because in the
immediate assembly of the activity within a context, certain patterns are
strongly preferred. Stages are not obligatory prescriptions; rather, they are
descriptions of probabilities of certain states.

Developmental change, in turn, can occur only as current preferred pat-
terns are modified by changes in the cooperating elements or the conditions
that assemble the pattern of activity. According to general dynamical prin-
ciples, change cannot occur if the system is rigidly stable—if the attractor is
too strong. As system parameters change, however, the coordination of the
participating elements may dissolve, resulting in the system searching for
a new pattern of stability. Thus, new forms of behavior—the first step or the
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first word or the ability to remember the location of the window—can be
seen as the product of the confluence of components within a specific prob-
lem context rather than the revelation of innate abilities or the inevitable
march of determined stages. Dynamical systems shift or bifurcate into new
attractors through the destabilization of existing stable forms. Development
is likewise a series of both gains and losses as old ways of solving problems
are replaced by more functional forms.

This series of evolving and dissolving attractors can be depicted as a
landscape of potential wells over time (figure 3.2). In the landscape, time is
represented as flowing from back to front. Each horizontal curve represents a
state space at a particular point in time: a stability landscape, or the prob-
ability that a particular pattern will emerge in a given situation. These are
depicted as potential wells, as in figure 3.1. Deep wells represent highly
probable behavioral outcomes, while flat portions of the curves indicate the
system will hardly ever take on that configuration. As the organism grows,
perceives, acts, remembers, and encounters new situations, the old stabilities
may be modified or lost completely to new forms as dynamic bifurcations
or phase shifts. In addition, the landscape may develop areas of multiple
stabilities, representing the more differentiated and adaptive abilities that
come with age. These are shown as wide attractors depicting a general cate-
gory of actions, and containing multiple small basins standing for multiple,
task-specific solutions. Note again that the landscape does not prescribe or
predetermine a class of behaviors; it is rather a representation of the prob-
abilities of certain actions given particular supporting contexts.

3.9 EMBEDDED TIME SCALES

In this approach, the continuity of time scales is of critical importance. Devel-
opment, which happens over weeks, months, and years, is part and parcel
of the same dynamics as real-time activity, the time scale of seconds and
minutes. Mental states and the actions they engender are fluid, flexible,
task-specific, and stochastic (not inevitable); they arise only in the confluence
of the organism'’s intrinsic dynamics and the task. Development has no inde-
pendent dynamics, but development happens because the organism is contin-
ually acting and thinking in the environment, and these activities themselves
change the organism. Thus, how individuals solve problems in the real-time scale
directly affects the solutions that evolve in ontogenetic time. Development begins
with the local dynamics; it is the local dynamics that shape the long-time
landscape.

To put this notion somewhat more formally, let us consider the transition
from spontaneous movements of limbs to intentional actions, as I describe
more concretely below. From birth, and long before infants can sit, crawl,
walk, or reach for objects, they are continually waving their arms and kick-
ing their legs. Moving limbs have many springlike characteristics, and in-
deed, early spontaneous movements in infants may be modeled by a simple,
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Figure 3.2 An ontogenetic landscape; development is depicted as a series of evolving
and dissolving attractors. Time moves from back to front. Each horizontal line portrays the
probability at any point in time that the system (as indexed by a collective variable) will
be in various attractor states. Deep and steep attractors are very stable. Note that the attrac-
tor states must flatten out—the system must lose stability—before a new landscape furrow
develops. As time progresses the landscape develops multiple stable behavioral attractors.
(From Muchisky, M., Gershkoff-Stowe, L., Cole, E., et al., in press.)
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damped mass-spring with a regular forcing function (Thelen, Corbetta, Kamm,
et al, 1993; Thelen, Kelso, and Fogel, 1987), represented by equation (1),

mx + kxr + Sx = F() (1)

where x is the displacement of the spring and its derivatives, m is mass, k is
the frictional or damping coefficient, S is stiffness, and F(f) is the time-depen-
dent energy burst provided by muscle contraction. In this equation of motion
describing the ongoing state of the limb system, the coefficients m, k, and S
are all parameters of the system, and F(#) can also be “parameterized,” or take
on many values. At any point in time, the mass and the frictional coefficient
are constant, as these are determined by the child’s anatomy and the elastic
and viscous properties of the muscles. However, for each instance of move-
ment, two contributions to the spring can be modulated: the stiffness, deter-
mined by the ratio of contraction of agonist and antagonist muscles, and the
timing and amplitude of the energy delivered to the limb through the forcing
function. In early infancy the settings of these parameters are likely not inten-
tional, but are rather a function of the infant’s generalized state of excitement
or arousal. That is, excited infants generate more stiff and more vigorous
movements, with consequent higher amplitudes and velocities. During nor-
mal everyday activities, therefore, infants experience a wide range of spring
parameters as they move in and out of a range of energy states, from highly
aroused to deep sleep.

Of course, flailing arms and legs are not very useful. In order to achieve
intended goals—to put an attractive toy into the mouth or to locomote
toward the family pet—infants must adjust their limb spring parameters
very specifically to achieve a requisite level of stiffness and they must impart
bursts of muscle energy at just the right level and time. They leam to do this,
I believe, from experiencing the many different values of the spring parame-
ters generated by their spontaneous movements and movements produced
in the presence of a goal. That is, the process involves exploring the range
of parameter values in the state space and selecting those values that match
the affordances of the environment and the goals of the child. Thus particu-
lar spring-parameter values emerge as attractors in the landscape for certain
classes of actions, as might be depicted in figure 3.2.!

Thus, the first way that the local dynamics evolve into developmental
dynamics is through the system continually learning as it acts, each action
providing information on the local landscape, and the cumulative effect cas-
cading into the developmental landscape. But there is a second way in which
the time scales of action are seamlessly woven with the time scales of de-
velopment. In equation (1), I characterized mass and damping as constants,
which they are over the course of a single activity. Over longer time scales,
however, both parameters change dramatically as infants gain weight and as
the composition of their limb tissues changes. Most important for our dynam-
ical account is that these changes, too, are a function of the local dynamics.
Just as adults can change their body architecture through athletic training,
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so too do infants directly modify their structures through movement and
weightbearing. Activity changes the biochemistry and the anatomy of
muscles and bones—it makes them larger, stronger, more dense, more effi-
cient, and so on. These changes occur over a more prolonged time scale than
do changes in behavior, but they are part and parcel of the same dynamic.
Thus, equation (1) both captures a self-organizing system in real time and
is embedded in a larger dynamic specifying a relation between activity and
parameters like mass and stiffness.

The spring dynamic may also account for phase shifts or discontinuities,
that is, the appearance or disappearance of novel forms. For instance, when
newborn infants are held upright, supported under the arms, and with their
feet on a table, they typically perform steplike movements. These leg move-
ments may be described by the spring equation. But over the next few
months, these stepping movements disappear. In earlier studies, Fisher and I
showed that newborn step disappearance was likely a result of the leg mass
increasing at a faster rate than muscle strength (Thelen and Fisher, 1983).
Babies’ legs get too fat for their muscles to lift up! In terms of equation (1), m
is increasing faster than F. The effect would be to decrease the displacement
and velocity to a point where the energy cannot overcome the mass, and no
movement is possible: a behavioral shift. (This shift has been simulated exper-
imentally by adding progressively heavier weights to infants’ legs; Thelen,
Fisher, Ridley-Johnson, et al, 1982.) Conversely, as infants gain relatively
more strength than mass in the latter part of the first year, they shift back to
being able to lift their legs in the upright position, and even to support their
weight.

The point of this example is to illustrate the impossibility of drawing dis-
tinctions between the time scales of change. Although change occurs in the
fractions of a second of a human action, in the days and weeks of learning, and
in the months or years of what we call development, all are embedded in
the same, interrelated dynamics. This notion of the continuity and embedded-
ness of time scales is made especially transparent in the example of limbs-as-
springs with tunable parameters. But I hope to show that the example goes
beyond biomechanics in two ways. First, I maintain that the developmental
processes by which infants learn to tune their limb springs—exploration and
selection—are the same for all behavioral development, including the de-
velopment of higher cognitive processes. And second, that “limb tuning”
itself, as a preeminent activity during infancy, lays a substantive foundation
for all mental activities.

3.10 DEVELOPMENTAL ORIGINS OF EMBODIED COGNITION
In section 3.1, I claimed that a major developmental task of infancy was
gaining control of the body. This becomes evident to any person who has

observed an infant even for a short time. Babies spend much of their waking
hours doing things with their bodies—poking, banging, bouncing, crawling,

Time-Scale Dynamics and the Development of an Embodied Cognition



82

waving, kicking, crying, babbling. These activities often look playful and
sometimes look rather disconnected from any particular intentional goal. I
will give some examples of studies of such movements. What the dynamical
approach suggests is that, because of the seamless continuities between time
scales and levels, these common and indeed unremarkable movements may be
laying the foundation of an embodied cognition. As infants explore and learn
how to control the forceful interactions of their bodies within their environ-
ment, they learn about forces in the specific and local context of those activi-
ties. As the force dynamics, in turn, pervade many and varied activities, a
more abstracted sense of force emerges and indeed becomes inherent in the
dynamics of all mental activity.

3.11 LEARNING ABOUT FORCES IN INFANCY

In this section I present several examples of infants exploring and learning
how to control the forceful interactions of their bodies with their environ-
ments. The situations are those in which infants have certain desires and goals
and need to solve force-environment problems in order to get what they
want. In each case, this involves multiple processes—some motivation to do
the task, the ability to perceive the task and the layout of the environment,
and the ability to control the limbs and body sufficiently to seek a match
between their motivation and the particular demands of the task. The exam-
ples are young infants learning new skills—in this case how to reach and
grasp an object and how to best kick their legs in order to get a overhead
mobile to move.

Reaching

We reach and grasp objects so many hundreds of times during the day that
it seems to be the most commonplace of acts. Reaching, in reality, requires
extraordinary coordination and control. To reach for your moming coffee,
you must first translate the three-dimensional position of the cup, transduced
through your visual system into a set of coordinates that allow you to move
your arm—in a sense converting head-eye coordinates into shoulder-hand
coordinates. This is so you can plan on where you want your hand to end up.
But that is just the beginning of your problems. Moving your hand is not
like controlling a video game with a joystick, where the input is directly
related to the output. The anatomy of your arm and the construction of
muscles makes the system highly nonlinear—muscles stretch in different
ways depending on what you are doing—and it is nearly impossible to get
your shoulder and elbow working together to get your hand to do some-
thing in a perfectly straight line (try rapidly drawing a long, perfectly straight
line on a blackboard!). If you move your arm forward rapidly, you need to
hold your trunk steady, or it will follow along. Also, a rapid movement
creates its own internal perturbations—forces generated at the shoulder
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knock the elbow off course. As adults, we have compensated for these non-
linearities so thoroughly that we do not even know they are there.

The neural, mechanical, and computational interface needed for human arm
trajectory formation poses a major, and yet unsolved problem engaging engi-
neers, neuroscientists, robotics specialists, and computer scientists. If the con-
trol problem has got them stymied at MIT, how in the world does a 2-month
old or a 10-month old infant do it? One way might be to build in solutions
beforehand. This would be the same as putting the solutions in the hardware
design—circuits and chips that have the computations figured out and wait
for the baby to turn them on. This leads us to the baby-in-the-head problem.
Who designed the chips? Did they get in the head through natural selection,
so that people with better reach programs grabbed more food and thus were
at a reproductive advantage?

Studying the problem of the origins of reaching from a dynamical systems
perspective begins with constructing an attractor landscape, as illustrated in
figure 3.2. That is, we want to know, across time, and for a particular situa-
tion, which patterns of behavior are stable and when they change. We need
to know when systems shift into new forms and when they stay the same.
This, in turn, will allow us to discover what parameters actually engender the
change. Of the many subsystems that contribute to the final behavior, which
are critical in the emergence of a stable reach attractor? To learn this about
reaching, my colleagues and I tracked the development of reaching in four
infants week by week from the time they were 3 weeks old, barely able to
lift even their heads, until they were 1 year old and grabbing things, feeding
themselves Cheerios, and playing pat-a-cake. Because, according to our
dynamical principles, new forms of behavior must be discovered from the
current inherent dynamics, we recorded not just infants’ reaching behavior
but their ongoing, spontaneous, nonreaching movements as well. Thus, we
were able to observe how new forms arose from the dynamics of the existing
modes.

The most dramatic transition in reaching were the infants’ first successful
attempts to touch objects held out for them (Thelen et al,, 1993). In our study,
two infants reached first at 12 and 15 weeks of age, and the other two, at 20
and 21 weeks. We discovered several important things about this transition
to first reaches. First, that infants fashioned reaching from their ongoing
movement dynamics. Second, that because individual infants had individually
different spontaneous prereaching movements, they had to solve different
problems to get the toys they wanted. Third, that all of the infants had to
solve problems of adjusting their limb forces to the task. To illustrate this, I
contrast in this chapter just two of the four infants, Gabriel and Hannah,
before, during, and after their reaching transition. Figure 3.3 is a photograph
of Gabriel in the experimental setup.

These two infants had dramatic differences in their overall movement
energy. Gabriel was a very active infant. When we placed him in an infant
seat, his posture was stiff, his head thrust forward, and he flapped his arms in
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Figure 3.3 Gabriel in the experimental setup, with movement sensors and electromyographic
electrodes tracking three-dimensional displacements of his arms and muscle activity.

seeming avid anticipation of the toy, almost seeming to fly out of the chair.
Gabriel's movements were characterized by wide excursions, high velocities,
and repetitive cycling. Hannah, on the other hand, was more of a looker than
a doer. She was alert and engaged, and she assessed the situation carefully
before moving. Her posture was relaxed, and her movements were smooth
and deliberate.

Gabriel's prereaching movements fit well the model of limb as oscillating
spring. Figure 3.4 illustrates Gabriel’s spontaneous flapping movements in the
week before he reached. I have plotted two examples of the excursions of his
hands over the 14 seconds of motion, recording on a phase plane, which plots
two dimensions of the movement, displacement and velocity, against each
other. Although this is a small sample of behavior, it resembles the periodic
dynamical behavior of a limit cycle, depicted as a closed orbit to which nearby
trajectories are attracted. In a damped system such as a limb, oscillations are
maintained by a periodic infusion of energy, provided in this case by bursts of
muscle contraction in Gabriel's shoulder muscles. These phase portraits are
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Figure 3.4 Two examples of Gabriel's spontaneous arm movements when he was 14 weeks
old (the week before the onset of reaching) depicted on a phase plane: direction in the x-axis
(movement from left to right; origin is to the infant’s left.) vs. velocity. Each hand trajectory is
about 14 seconds of movement.
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remarkable in their similarity to portraits generated by a forced mass-spring.
(Formal characterization of the attractor dimension is not possible because
normal infants never produce the long series of movements and thus, the
volume of data needed for such analyses.)

In contrast, I have no such recordings of Hannah's spontaneous arm move-
ments. Before she learned to reach, she kept her arms close to her body and
made mostly small movements of her hands. In terms of equation (1), she did
not provide sufficient force or stiffness to overcome the mass of her arm. Her
arms did not enter a limit cycle attractor because the energy parameters were
too low.

It should be apparent that in order to make the transition from their pre-
ferred spontaneous upper limb movements to limb movements in the service
of reaching out and getting a toy, Gabriel and Hannah faced different spring
problems. By 3 to 4 months of age, both infants seemed to have a pretty
good idea that they wanted the toy and they also seemed to “know” where
it was located in space. However, both of their problems were force-related
—in Gabriel’s case how to get his energetic, off-the-wall movements under
control so he could get his hand in the vicinity of the toy. Hannah, in con-
trast, had to add energy—she needed to stiffen her muscles and extend
her arm.

When we observed the actual first-reach dynamics, this is what we saw.
Gabriel's first reaches emerged right out of his flaps. He swatted at the toy
by going right from the flap to a reaching movement. His movements were
stiff, and largely generated from the shoulder. Hannah, in contrast, had
slow, well-coordinated movements initiated from a dead stop. She generated
low velocities and low forces. Figures 3.5 and 3.6 illustrate these differences
by presenting exemplar movements just before and during their very first
reaches. In each figure, the top panels show hand pathways as projected
onto a two-dimensional plane (like a movie screen in front of the infant). The
second set of panels gives the corresponding three-dimensional speeds of
the movements, and the third row of panels, the actual calculated torques
acting at the shoulder (for details of the model used to calculate torques, see
Schneider, Zernicke, Ulrich, et al, 1990; Thelen, Corbetta, Kamm, et al., 1993).

Hannah (see figure 3.5) solved her reaching problem by moving slowly
and deliberately, and her resulting movements are rather smooth, direct,
and mature-looking. Her hand takes a relatively direct course to the object;
she generates low velocities and corresponding low forces at the shoulder.
Although Gabriel (see figure 3.6) attempted to slow down his movements as
he approached the toy, he still seemed to be captured by his exuberant spring
dynamics. Note that his hand pathway has large loops and diversions on the
way to the target, and his movements are fast compared with Hannah's. His
movements generated high inertial torques and his muscles also produced
large forces. The continuity of Gabriel's reach with the spring dynamics of his
arms is especially clear when the reaches are viewed in the context of ongo-
ing movements in the phase plane: figure 3.7 gives two examples. The actual
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Figure 3.5 Hannah's first goal-directed reaches at age 22 weeks. (Top) Hand trajectory pro-
jected onto the frontal plane. (Middle) Resultant three-dimensional hand speed during the
reach segment. (Bottom) Active and passive torques acting on the shoulder joint during the
reach. Positive torques act to extend the joint; negative torques act to flex the joint. NET,
sum of all torques rotating the shoulder joint; GRA, torques due to the pull of gravity; MDT,
torques rotating the shoulder that result from the movement of other, mechanically linked
segments of the arm; MUS, torques rotating the shoulder arising from muscle contraction and
tissue deformation. (From Thelen, E., Corbetta, D., Kamm, K., et al,, 1993.)
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Figure 3.6 Gabriel's first goal-directed reaches at age 15 weeks. (Top) Hand trajectory pro-
jected onto the frontal plane. (Middle) Resultant three-dimensional hand speed during the
reach segment. (Bottom) Active and passive torques acting on the shoulder joint during the
reach. Positive torques act to extend the joint; negative torques act to flex the joint. NET,
sum of all torques rotating the shoulder joint; GRA, torques due to the pull of gravity; MDT,
torques rotating the shoulder that result from the movement of other, mechanically linked
segments of the arm; MUS, torques rotating the shoulder arising from muscle contraction and
tissue deformation. (From Thelen, E., Corbetta, D., Kamm, K., et al., 1993).
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Figure 3.7 Gabriel's first goal-directed reaches embedded in his spontaneous movements, as
depicted on the phase plane. S, start of movement; M, start of reach; T, end of reach; E, end of
movement.
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reach itself (the portion of the trajectory between the letters M and T) have
the same characteristic dynamics as the spontaneous movements that pre-
ceded and followed it.

The infants (and the two others we studied) generated individual solutions
to these problems. What we discovered was that the babies could not have
had engineers in their genes or their heads with the solutions already figured
out. How could a reach program know in advance the energy parameters of
the system? The only thing common to the infants’ actions was that they got
their hands to the toy and that they manipulated the forces involved to do it.
Where did their unique solutions come from?

Time-Scale Dynamics and Developmental Process

Although first reaches are novel acts, the processes that support them must,
of course, be continuous in time. That is, something that is going on within
the baby in his or her environment prior to reaching must allow the infant
to generate the first reach. Some of these processes occur over very long
time scales; the changes are slow. For example, body proportions change and
muscles get stronger. Vision improves, and infants learn to hold their heads
upright.

Other processes are occurring on short time scales. In particular, the inte-
grated acts of perceiving and moving occur within seconds and fractions of
seconds. Infants move and perceive many times every day for the 3 or 4
months before they reach. As infants look around, as they suckle, or cry, or as
they engage the people around them with smiling and cooing, they necessar-
ily cycle through periods of high excitement and periods of relaxation. What
is happening in these everyday encounters? As they move, infants must be
exploring what it feels like to deliver different levels of energy to their limbs
and also what it looks like to have their hands out in front of their faces or
clutching their blankets. This is activity on one particular time scale. Changes
occur—dynamics—within seconds or even fractions of a second as infants
modulate their muscle contractions in each particular context.

These early movements often look to be entirely without form or meaning.
But if what neuroscientists tell us about the plasticity of the brain and how
it changes is correct, infants are also continually learning something about
their perceptual-motor systems and their relations to the world in their re-
peated, spontaneous activity (see, e.g., Edelman, 1987; Merzenich, Allard, and
Jenkins, 1990). That is, what infants sense and what they feel in their ordinary
looking and moving are teaching their brains about their bodies and about
their worlds. They are in fact exploring what range of forces delivered to their
muscles get their arms in particular places and then learning from their explo-
ration, remembering how certain categories of forces get their hands forward
toward something interesting. Thus, the time scale of moving and perceiving
becomes part and parcel of the time scale of longer time changes, those of
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learning, and those we would normally call development. Babies do it them-
selves; they don’t need the additional baby in the head.

When this process is put into the metaphor of dynamics, ie., that the
activity of the system itself changes the ranges of the parameter values, such
an account of development may seem unremarkable. But in many contem-
porary developmental theories change is ascribed to some deus ex machina
—“the genes,” “maturation of the brain,” “a shift into a new stage,” or “an
increase of information-processing capacity.” The challenge of a dynamical
formulation is to understand how the system can generate its own change,
through its own activity, and within its own continuing dynamics, be it the
springlike attractors of the limbs or the neural dynamics of the brain. I now
report an experimental simulation of a system changing itself through explo-
ration and selection of leg-spring parameters.

Activating a Mobile: Exploration and Selection in a Novel Task

One way to confirm a dynamical view of development is to try to simulate
the processes of exploration and discovery in the laboratory. The notion is to
create a microgenesis experiment. The term microgenesis comes from the Soviet
psychologist L. S. Vygotsky (1978), who recognized that when a developing
system was at a point of transition, it could be coaxed into a more mature
phase by a facilitative task structure. In dynamical terms, the experimenter
is manipulating putative control parameters to shift the system into a new
state. The advantage of such experiments is the ability to trace the real-time
changes as an analog to those happening during development. It is like a
window on the developmental process, but on a more condensed time scale.

In order to do a microgenesis experiment, one must know the state dy-
namics of the developing system to identify times of transition. (Systems
that are highly stable resist phase shifts when parameter values are changed.)
In the experiment I describe here, the states are described by the patterns
of coordination of the legs of young infants as they produce spontaneous
kicking movements. In previous work (Thelen, 1985), I described the devel-
opmental course of bilateral leg coordination. Before 5 months of age, infants
in the supine position kick predominantly in two modes, either both legs
alternating or a single leg kicking while the other is relatively still. A third
pattern, both legs flexing and extending simultaneously, is much less stable
and less commonly seen, until about 5 months, when this pattern becomes
more prevalent.

One of the tenets of a dynamical approach is that when the attractor states
are relatively unstable, the system is free to explore new coordinative modes
in response to task demands. Indeed it is this flexibility to discover new solu-
tions that is the source of novel forms. Thus, I asked, if I presented infants
with a novel task that made the initially less stable form of coordination more
useful, could they could shift their coordination preferences over the course
of the experiment?

Time-Scale Dynamics and the Development of an Embodied Cognition



92

Figure 3.8 Infant in mobile kicking experiment showing elastic leg tether.

To do this, I tested 3-month-old infants in a well-known paradigm, that of
conjugate reinforcement (Rovee-Collier, 1991). In this procedure, infants’ left
legs are attached with a ribbon to an overhead mobile. Because their leg kicks
are reinforced by the movements and sounds of the attractive mobile, infants
learn an increased rate of kicking. To create a task that favored the less stable
simultaneous pattern of kicking over the more stable alternating or single-leg
form, in some infants I also yoked their ankles together with a soft piece of
sewing elastic attached to a foam cuff (Thelen, 1994). The elastic permitted
them to kick in single or alternating fashion, but made simultaneous kicking
much more effective for vigorous activation of the mobile because full excur-
sions otherwise required stretching the elastic (figure 3.8). Some infants were
tested without the tether. I assigned infants to one of four experimental
groups, based on whether their legs were yoked together (Y) or free (F)
during the three conditions: baseline (4 minutes, no reinforcement, i.e., their
leg kicks did not make the mobile jiggle), acquisition (10 minutes, reinforce-
ment; leg kicks activated the mobile), and extinction (2 minutes, no reinforce-
ment: group 1, YYF, group 2, FYF; group 3, FFF, and group 4, YFF). Would
the yoked infants, over the course of the experiment, discover the effective-
ness of the simultaneous pattern?

To trace the dynamics of the learning process itself, I tracked the excur-
sions of the infants’ legs during the 16 minutes of the experiment. Figure 3.8
illustrates what these movements look like. The top panel shows a 30-second
segment of the excursions of an infant’s leg (the tracked markers were placed
on the infants’ shins) as he moved in the direction toward and away from his
torso during the baseline condition when his kicks were not reinforced
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Figure 3.9 Examples from a single infant of leg coordination in the mobile kicking task. (Top)
Right and left leg excursions in the x-direction (toward and away from the torso) during the 30
seconds of the baseline condition. (Bottom) Right and left leg excursions in the x-direction
during 30 seconds of acquisition.

and he had no ankle tether. This baby kicked in a typical fashion, with the
right leg kicking quite a lot, and the left leg only occasionally. After several
minutes into the acquisition portion of the experiment, where he was activat-
ing the mobile and his legs were yoked together, the same infant’s coordina-
tion patterns changed dramatically, as seen in the bottom panel of figure 3.9.
Both legs were moving back and forth nearly perfectly in phase.

All the infants, both those whose legs were yoked and those whose legs
were free, increased the overall number of kicks when kicking was reinforced,
and they also increased the vigor of their kicks. However, the coordination
patterns of two groups diverged during the experiment, as shown in figure
3.10 (Thelen, 1994). This figure reports the percentage of values of a running
correlation performed on the leg excursion time series that equaled or ex-
ceeded r = .4.0.2 Clearly, the two groups of infants whose legs were yoked
during acquisition (YYF and FYF) increased their simultaneous kicking during
the acquisition period (A1—AS5), whereas those in the free condition (FFF
and YFF) decreased their inphase movements. During the extinction phase

Time-Scale Dynamics and the Development of an Embodied Cognition



94

70

PERCENT CORRELATED

40 Il 1 1 i i A L L
Bl B2 A1 A2 A3 A4 A5 E1 E2

TRIAL BLOCKS

Figure 3.10 Percent of right and left leg excursions correlated at r = .4 and above in the
four experimental groups. Y, yoked; F, free. Trial blocks are 2 minutes except for extinction
when they are 1 minute.

(E1 and E2) when kicks were no longer reinforced and the tether was
removed, the yoked infants dramatically resumed the originally favored
patterns.

This experiment demonstrated that within the time scale of a few minutes,
infants as young as 3 months can shift patterns in response to a novel task.
Infants clearly enjoyed making the mobile jiggle with their leg kicks, and they
also learned to do this efficiently “on-line”” When the task constraint was
removed during extinction, there was no longer any need to maintain the
novel pattern and they did not.

In dynamical terms, we can envision each leg as having adjustable spring
parameters and also there being a modifiable coupling function between the
legs. The experiment can be interpreted, therefore, as infants discovering an
optimal coupling pattern as well as adjusting the timing and the strength of
the energy bursts to the spring, delivering more frequent and stronger pulses.
In terms of the dynamical landscape of figure 3.2, the babies have created a
new potential well, a newly attractive parameter configuration emerging from
their on-line solution to getting the mobile to jiggle in an efficient way.

3.12 FROM ACTION TO COGNITION

Reaching and kicking a mobile are both about learning to adjust limb force
dynamics. These studies showed first, that infants generate individual solu-
tions to adjust body forces to do a task and second, that they can select
appropriate patterns of coordination from among several within the time
scale of acting and learning. What does this mean in terms of changes over
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longer time scales—development—and, particularly, in terms of my claim
that these mundane infant activities support the construct of an embodied
cognition?

The critical process here appears to be that of learning categories, in this
case, that a certain category of force dynamics is appropriate for a certain
class of tasks. As Thelen and Smith (1994) discuss at length, perceptual motor
category formation is foundational for all cognitive development (see also
Edelman, 1987, among others). The ability to recognize that particular per-
ceptual events and actions generalize is what lays the groundwork for being
able to make sense of the world. For instance, by watching objects move in
space, infants learn that edges that move together define the boundaries of
obijects, and they come to expect that even novel objects—things they have
not seen before—will act as a coherent whole. Likewise, they learn that small,
colorful objects 6 in. in front of their bodies mean something that may feel
good in the mouth and they acquire and remember a class of muscle parame-
ters for reaching and grasping for all suitable objects in reachable space.
Thelen and Smith (1994) use developmental evidence to show the dynamical
nature of categories. In particular, that category formation may also be de-
picted as a landscape of potential wells, where the local acts of perceiving and
acting come to form wider basins of attraction that represent more general
classes of solutions.

The mobile experiments provide insights into how the process of forming
higher-level categories from local activities may proceed. Recall that when I
tethered infants’ legs with elastic, they discovered a force solution, but when
the tether was removed, they reverted to different patterns. The appearance
and disappearance of the tether is in some ways like what infants encounter in
everyday life. Tasks and constraints appear and disappear. Opportunities for
action depend on the presence of desired objects, suitable support surfaces,
helping social support, and so on. In one way, every particular opportunity is
unique—toys are never in the same location or orientation in relation to the
infant. But infants commonly encounter similar classes of opportunities, for
example, the category “toys able to be reached.”

So an important developmental question remains: How do infants general-
ize from each unique opportunity to act—the here-and-now dynamics—to
novel, but similar situations? Then, how do the accumulated classes of solu-
tions themselves influence what we call the qualities of mind?

There are very few experimental studies that span the here-and-now dy-
namics and the dynamics of developmental time. Some of the most enlight-
ening, in my opinion, use the mobile kicking situation and have been done by
Carolyn Rovee-Collier and her colleagues (reviewed in Rovee-Collier, 1991).
What Rovee-Collier asked was, once infants learned to kick more in the
presence of the mobile, did they remember to do so days or even weeks later,
and then, under what conditions do they remember or forget how to match
their actions to the task?

Rovee-Collier found that 2- to 3-month-old infants could remember, and if
given the mobile the next day or even a week or two later, resumed kicking
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at the high rate they learned in the original session. (My preliminary evidence
is that infants also remember the new pattern of coordination elicited by leg
tethering.) Over time, this memory faded, although simply seeing the mobile
would reactivate it. Most important is that this action memory was highly
specific to the training situation. If Rovee-Collier changed the mobile, or
even the designs on the pads that lined the cribs in which infants originally
learned the task, infants forgot that kicking a lot makes the mobile move
more. The action memory was highly tied to the learning context. However,
if Rovee-Collier trained infants on the first day with one mobile or set of crib
liners, on the second day with a different set, and on the third day with yet
another set, the infants did remember to kick no matter what mobile they
were tested with—even a completely novel mobile. Whereas the first learn-
ing was highly specific, infants, given different mobiles, generalized from a
particular situation to a category of mobiles-to-be-activated-by-kicking. Thus,
they tied their bodily actions to a perceptual category such that the sight
of the mobile and the learned motor response were united. The common
attractor is now “mobileness” in general—depicted in a figure 3.2-type land-
scape as a broad attractor with several embedded potential wells.

The mobile studies created, of course, highly artificial situations for infants.
In normal life, they bang and reach and look and grasp not just one thing, but
many different things—toys of many kinds, textures, and weights; people,
pets, and in many different places; their crib, the grass, their blanket, and so
on. So real life gives abundant opportunity to leamn by doing, to discover,
and to generalize—that yes, a certain force delivered to my arm will get me
any object of a certain size and at a certain distance, but to pick up a Cheerio,
I may have to slow down and adjust my fingers. It is indeed this diversity,
this variability of experience, that allows more general solutions to emerge.

In both of the examples above, infants solved problems of how to control
the forces generated by their limbs and bodies in order to make the world
work for them. In each case, the infants must eventually not just meet the
situation at hand, but recall and use a category of action solutions that fits
what they perceive their task to be. If you think about the developmental
tasks of infancy, however, you quickly realize that this cycle of challenge,
exploration, discovery, and new challenge within the motor skill domain oc-
cupies a large part of the child’s waking hours. Although each task is unique,
the solutions must be generalized. As each new solution is discovered, that
solution opens up new opportunities to learn. It is through these successive
generalizations that cognition grows from action and perception (Thelen and
Smith, 1994).

3.13 TOWARD A FORCE EMBODIMENT
Indeed, I speculate here (following Johnson, 1987; Lakoff, 1987; Langacker,

1986; Talmy, 1988) that the solutions to force interactions with the world are
so pervasive and foundational in infancy and indeed throughout life, that
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Figure 3.11 Force embodiment pictured as first separate, and then overlapping clouds.

they are carried along, so to speak, as a superordinate category into the very
fabric of all cognition and language. Let me illustrate this with a very crude
model. Imagine that in some abstract mental space we represent solutions to
various force problems infants encounter as four clouds (clouds to indicate
their dynamical, nonstructural, processlike character). Initially, as the experi-
ments indicate, the solution space is small and constrained (figure 3.11). The
clouds are separate and accessed by constrained situations. Knowing how to
kick a mobile does not help with knowing how to adjust forces to stand up.
However, as infants gain a wide range of experience, these clouds enlarge—
the solutions are generalized and can thus be accessed by a wide variety
of situations. Eventually, the solution spaces intersect where the common
aspects of each solution overlap. In this case, one superordinate category that
may emerge from these specific experiences is a more abstract understanding
of force, abstracted from its specific instances by a process identical to how
infants learned “mobileness” or “reaching” or not to smash down on a small
delicate object. If, as has been suggested, bodily force is a parameter that
accompanies very many of our solutions in daily life, the abstraction cloud
would become very large indeed. The force cloud would be accessed then not
only by perceiving to act but by thinking about acting, by planning to act,
and by talking about acting. In this way, thought becomes developmentally
constructed. The seamless web of time and process gives bodily foundations
to emergent, higher-order abstractions. The root relationships are thus pre-
linguistic; language is built on connections that exist before language and
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continue to dominate everyday life. The notion is that we have lived in these
intersections so thoroughly that they are embedded and embodied.

Of course, forceful encounters between body and environment are only
one way in which we interact with our worlds. Social communication rarely
involves direct force, but provides rich information to many of our senses.
And social encounters are equally pervasive. We can think of the develop-
ment of social life also as a series of challenges. The tasks are to figure out
what Mom wants and to get her to figure out what you want. Many avenues
are explored (“Perhaps lying down, screaming, and kicking my feet will work”).
Some are functional, others are not. Over time, however, increasingly gen-
eral, individualized solutions that involve facial expressions, vocalizations,
gestures, postures, and of course language, are selected. As in body actions,
the solutions to communication will have many intersections in mental state
space. We may thus speculate that our cognition, our very way of thinking,
would be equally influenced by the root metaphors of our social exchange
and, in particular, by the patterns of social life peculiar to our families and
cultures. This has long been the claim of psychologists such as Vygotsky and
Luria, and lately Jerome Bruner, that patterns of thought reflect the very
societies in which they developed. Perhaps an account such as I have sug-
gested can give “embodiment” to these ideas as well.

NOTES

L It is important here to clarify the role of goals and intentions. To say that infants are
motivated to perform and repeat certain activities, like looking at moving mobiles or reaching
for toys, does not require putting an agent back into the baby’s head. What is required is that
the system come with a few, very general biases, e.g., looking at moving things is better than
not looking, having something in the mouth feels good, and so on. With just a minimum of
biasing tendencies, the developmental system self-organizes in relation to those tendencies,
and indeed creates an additional motivational cascade. For example, the biases “look at moving
things and get things in the mouth” are sufficient to provide the motivational basis for reaching,
grasping, and exploring. This is not the same as having a little executive in the head program-
ming behavior and its changes. Even the most simple organisms have trophic biases: toward
moderate amounts of heat, light, moisture, and so on. Thelen and Smith (1994) discuss further
the relation of simple biases and motivation, including its neurophysiological basis.

2. Quantifying patterns of coordination over time is difficult in infants because the phase
relations are always changing. To capture these shifting relations, I performed a moving win-
dow correlation of the x-displacements of both legs using a 1-second window and a step of
17 ms. I could then determine the frequency bins of each correlation value. Correlations near
+ 1 indicated both legs moving toward and away from the body exactly in phase, correlations
near —1 resulted from alternating movements, and correlations around 0 meant the move-
ments were unrelated. (See Corbetta and Thelen, 1993, for details.)
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Dynamic Representation of
Decision-Making

James T. Townsend and Jerome Busemeyer

EDITORS’ INTRODUCTION

Those unfamiliar with the dynamical approach often suspect that, while it might
be appropriate for low-level or peripheral aspects of cognition, it cannot be used to
describe high-level or central aspects. Yet nothing could be more central—more
paradigmatically cognitive—than processes of decision-making, the target of
Townsend and Busemeyer's work. Their decision field theory (DFT), described in this
chapter, is a general dynamical and stochastic framework for modeling decision-
making which accounts for data covered by traditional, static-deterministic theories,
but whose explanatory capacities go beyond those of traditional theories in a number
of respects.

Virtually all quantitative theories of decision-making in psychology, and in cogni-
tive science more generally, are versions of subjective expected utility theory. Many
beautiful mathematical theorems have been established that, at the very least, serve
as useful guides to optimal choices. Yet, for the great majority of theories and appli-
cations to empirical phenomena, there have been no explicit psychological dynamics
whatsoever—that is, no attempt to trace out the actual mental processes the subject
goes through in reaching a decision. The modus operandi has simply been to com-
pare two potential choices (i.e., gambles, etc.) and conclude that the decision-maker
should choose the one with the higher expected utility. When inevitable “paradoxes”
appear, in which human decision-makers do not behave as the theory proclaims, the
standard response is to alter the axioms (e.g., change the form of the utility function).

The DFT framework, by contrast, sets out with the explicit aim of modeling the
psychological processes involved in decision-making. In this framework the system
begins in a certain preference state with regard to certain choices, and this state
evolves over time according to dynamical equations which govern the relationship
among factors such as the motivational value of an outcome and the momentary
anticipated value of making a particular choice. Importantly, DFT models are able to
account for the standard psychological data on the kinds of choices people make, and
indeed predict certain data that appear paradoxical from the traditional perspective.

Since key variables in a DFT model evolve over time, the model builds in the
capacity to account for temporal features of the deliberation process, such as the way
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the decision a subject makes depends on deliberation time. Such temporal consider-
ations are inherently out of the reach of traditional models which are either entirely
static or specify at best just a bare sequence of steps. The DFT framework thus pro-
vides a powerful illustration of the explanatory advantages of adopting a dynamical
framework which supposes from the outset that cognitive processes essentially
evolve over real time.

4.1 INTRODUCTION

The deliberation may last for weeks or months, occupying at intervals the mind. The motives which
yesterday seemed full of urgency and blood and life to-day feel strangely weak and pale and dead. But
as little to-day as to-morrow is the question finally resolved. Something tells us that all this is provi-
sional; that the weakened reasons will wax strong again, and the stronger weaken; that equilibrium is
unreached; that testing our reasons, not obeying them, is still the order of the day, and that we must
wait awhile, patient or impatiently, until our mind is made up “for good and all.” This inclining
first to one then to another future, both of which we represent as possible, resembles the oscillations to
and fro of a material body within the limits of its elasticity. There is inward strain, but no outward
rapture. And this condition, plainly enough, is susceptible of indefinite continuance, as well in the
physical mass as in the mind. If the elasticity give way, however, if the dam ever do break, and the
current burst the crust, vacillation is over and decision is irrevocably there.

—William James, The Principles of Psychology (1890/1950, p. 529.).

This deliberation process, so eloquently described by William James more
than 100 years ago, seems to be engaged whenever we are confronted with
serious decisions such as getting married or divorced, having a child, quitting
a job, undergoing elective surgery, or other life-threatening decisions. This
process still occurs, but to a lesser extent, with more commonplace decisions
such as choosing a car, buying a computer, or planning a vacation. The pro-
cess is manifested by indecisiveness, vacillation, inconsistency, lengthy delib-
eration, and distress (Janis and Mann, 1977; Svenson, 1992).

It seems odd that many psychological theories of decision-making fail to
mention anything about this deliberation process. Many previous theories
of decision-making (e.g., the prospect theory of Kahneman and Tversky,
1979) assume that for any particular situation, individuals assign weights and
values to each possible outcome, and the final decision is simply a matter of
comparing the summed products of weights and values for each alternative.
The entire process is described in a deterministic and static manner. There is
no explanation for changes in state of preference over time, and there is
no mechanism for deriving the time needed for deliberation. This criticism
applies equally well to all static-deterministic theories of risky decision
making that have evolved from the basic expected utility formulation (von
Neumann and Morgenstern, 1947; Savage, 1954).

We are not claiming that static theories are irrelevant to the understanding
of human decision-making. On the contrary, ideas from these theories can be
incorporated into the present framework. Instead, we claim that these static
theories are seriously incomplete owing to their failure to explain the psycho-
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Table 4.1 Decision theory taxonomy

Static Dynamical
Deterministic Expected utility Affective balance
Probabilistic Thurstone utility Decision field theory

Note: Thurstone’s utility theory is an example of a more general class called random utility the-
ories (Thurstone, 1959). Affective balance theory was proposed by Grossberg and Gutowski
(1987).

logically important dynamical phenomena of human conflict—the evolution
of preferences over time during conflict resolution.

The new contribution of decision field theory can be characterized by
considering table 4.1, which provides a classification of theories according
to two attributes—“deterministic vs. probabilistic,” and “static vs. dynamic.”
Deterministic theories postulate a binary preference relation which is either
true or false for any pair of actions. Probabilistic theories postulate a probability
function that maps each pair of actions into the closed interval [0,1]. Static
theories assume that the preference relation (for deterministic models) or the
probability function (for probabilistic models) is independent of the length of
deliberation time. Dynamical theories specify how the preference relation or
probability function changes as a function of deliberation time. For the past
45 years, the deterministic-static category has dominated research on decision-
making under uncertainty. Decision field theory builds on this past work by
extending these theories into the stochastic-dynamical category.

The purpose of this chapter is to provide a general overview of an alter-
native framework for understanding decision-making called decision field
theory (DFT). Decision field theory provides a dynamical, stochastic descrip-
tion of the deliberation process involved in decision-making. It is unique in its
capability for deriving precise quantitative predictions for (a) the probability
of choosing each alternative as a function of deliberation time (Busemeyer
and Townsend, 1993), (b) the mean deliberation time needed to make a deci-
sion (Busemeyer and Townsend, 1993), (c) the distribution of selling prices,
buying prices, and certainty equivalents for gambles (Busemeyer and Gold-
stein, 1992), and (d) approach-avoidance movement behavior (Townsend
and Busemeyer, 1989).

Decision field theory is based on psychological principles drawn from
three different areas of psychology. The first is the early learning and moti-
vation theories of approach-avoidance conflict developed by Lewin (1935),
Hull (1938), and Miller (1944). The second is the more recent information-
processing theories of choice response time (see Townsend and Ashby, 1983;
Luce, 1986). The third is research and theory on human decision-making, es-
pecially the recent work by Coombs and Avrunin (1988).

The remainder of this chapter is organized as follows. The basic assump-
tions of DFT are summarized in section 4.2. A brief review of how the
theory is applied to choice and selling price preference tasks is presented in
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section 4.3. Then, in section 4.4, DFT is used to explain two different “para-
doxical” empirical findings. The main message of this chapter is the following:
often what appears to be “paradoxical” behavior from the viewpoint of static-
deterministic theories turns out to be emergent properties of the dynamical-
stochastic nature of the human deliberation process.

4.2 GENERAL THEORETICAL STRUCTURE

Figure 4.1 provides an outline of DFT. On the far left are the values of
all the potential consequences produced by each course of action. In the
figure, six consequences are shown: three rewards or gains, and three punish-
ments or losses. A distinction is made between rewards or attractive conse-
quences, and punishments or aversive consequences. The values of the six
consequences can be organized into a 6- x 1-vector M, where the first three
elements contain the values of the three gains (forming a 3- x I1-subvector

Valence System Decision and Motor Systems
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Decision Motor
System System

M = motivational value of a consequence

W = weight connecting a consequence to an action

V = valence = momentary anticipated value of an action

P = preference state = tendency to approach-avoid an act
X = output position = actual behavior of decision-maker

Figure 4.1 Diagram of DFT. At the far left are the gains and losses produced by each course
of action, denoted M. These inputs are then filtered by a set of attention weights that connect
each action to each consequence, denoted W. These filtered values form the valence or
momentary anticipated value of each action, denoted V. Valence corresponds to force in a
physical system. Then the valence is input to a decision system which temporally integrates
the valences to produce a preference state for each action as an output, denoted P. Preference
state corresponds to velocity in a physical system. Finally, the preference is input to a motor
system which temporally integrates the preferences over time to produce the observed action,
denoted X. The observed action corresponds to the physical position in a physical system.
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M,) and the last three elements contain the values of the three losses (forming
another 3- x 1-subvector M,).

Each course of action has some connection or association with each conse-
quence. The strength of an individual's belief in the connection between each
consequence and each action is represented by a weight W, ;(£). In the figure,
two acts lead to six possible consequences, producing a total of 12 connec-
tion weights. These 12 connection weights can be organized into a 2-x6-
weight matrix symbolized as W(t) = [W,(HIW (1], where W, (¢) is the 2-x 3-
submatrix of weights for the rewards, and W (#) is the 2-X3-submatrix of
weights for the punishments.

The connection weights fluctuate over time during deliberation, reflecting
changes in the decision-maker’s attention to the various consequences pro-
duced by each action. For example, at one moment the decision-maker may
think about the gains produced by choosing an action, but at a later moment
the decision-maker’s attention may shift toward the potential losses.

The set of connection weights act like a filter that modifies the impact
of the input values of the consequences M. The output of this filtering pro-
cess is a vector called the valence vector, denoted V(#) . In the figure, V() is
a 2-x1-vector because only two actions (V,(f) and V,(#)) are shown in the
figure. Each element of this valence vector represents the momentary antici-
pated value that would be produced by choosing a particular course of action.

The valence is transformed into action by passing through two differ-
ent dynamical systems—a decision system and then a motor system. First,
valence is the input for a decision system that produces a preference state as
output, representing the vector P(f). In the figure, there are only two actions
so that P(f) has two elements, P, (f) and P,(f). Each coordinate of P() repre-
sents the temporal integration of the valences generated by a course of ac-
tion. Thus, each coordinate of P(f) represents the current estimate of the
strength of preference for a course of action.

Finally, the preference state becomes the input for a motor system that
produces a response or overt movement as output. The physical position at
each time point of the motor mechanism used to execute an action is repre-
sented by a vector X().

The basic concepts of DFT shown in figure 4.1 are described in more
detail below, beginning with the observable end product (actions) and work-
ing backward to the unobservable driving force (valence).

Motor System

In general, the preference state is the input into a motor system that pro-
duces a movement as output. If X(#) is the physical position at time f, and
X(t + h) is the physical position at the next instant in time, then dX(t + h)) =
X(t + h) — X(#) is the change in physical position during the small time inter-
val h. The velocity of the movement, denoted dX(t + h)/h, is represented by
a difference equation:

Dynamic Representation of Decision-Making
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dX(t + h)/h = RIX(),P(t + h)]. (1

In other words, the velocity of the movement is a function of the previous
position and the current preference state. The physical position X(f) is the
integration of the velocity over time. The detailed specification of the re-
sponse function R depends on the nature of the movement. Later in this
chapter, we consider two different types of responses commonly used to
measure preference: choice and selling prices.

It is crucial to note that only the motor system changes when different
response measures are used for measuring preference. The valence system
and the decision system remain invariant. This provides strong leverage for
testing the theory; the parameters of the theory may be estimated using one
response measure, and then these same parameter values are used to make
parameter-free predictions for the remaining response measures. This cross-
validation method for testing the model is illustrated later in this chapter.

Decision System

The preference state is driven by the incoming valence associated with each
act (see figure 4.1). The valence at time f, denoted V(#), is a point within the
preference space that pushes or pulls the preference state at time f. The force
of the valence on the preference state is represented by a linear difference
equation:

dP(t + h)/h= —S-P() + C-V(t + h) (2)

In other words, the rate and direction of change in preference is a linear
function of the previous preference state and the incoming valence. The pref-
erence state P(f) is the integration of these forces over time.

The constant matrix S is called the stability matrix, and it controls the rate
of growth of preferences. This is similar to a learning rate parameter in a
linear operator learning model (cf. Bush and Mosteller, 1955). For example, if
a constant positive valence is applied to one act, then the preference for that
act gradually increases from the initial zero state toward the constant value. If
the valence is later reset to zero, then preference gradually decays from the
previous asymptote toward zero. The rate of growth and decay is deter-
mined by the stability matrix S.

The constant matrix C is called the contrast matrix, and it determines
how acts are compared to form preferences. To see how this works, assume
that there are three acts. If all three acts are evaluated independently, then
C = I, the identity matrix. In this case, preference for all three actions may
increase simultaneously, producing a “race” toward each goal.

Alternatively, one action may be compared to the average of the remain-
ing two

1 —-1/2 —1/2
C=-1/2 1 —-1/2.
—-1/2 —1/2 1
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In the above case, increasing the preference for one alternative corresponds
to a decrease in preference for the remaining two alternatives. This would be
appropriate if movement toward one goal entailed movement away from
other goals.

The linear form of the above difference equation was chosen for four
reasons. First, it is the simplest form capable of generating the desired type of
behavior. Second, it is mathematically tractable, which allows derivation of
interesting empirical tests. Third, it reduces as a special case to a number of
previously developed models of decision-making. Fourth, the linear form may
be considered a rough approximation to some nonlinear form. Linear approxi-
mations have proved to be useful in physics and engineering for analyzing
problems within a limited domain. Hopefully, the failures of the linear model
will indicate the type of nonlinearity needed to provide a more accurate
representation of the dynamics. Townsend and Busemeyer (1989) began a
probe of nonlinear dynamics within DFT.

Valence System

Valence is the motivational source of all movement. It is determined by
two factors (see figure 4.1): (a) an n- X m-weight matrix, W(f), represent-
ing the strength of connection between each act and consequence, and (b) an
m- X l-column vector, M(f), representing the motivational values of each
consequence. Valence is defined as the matrix product of the weight matrix
and the motivational value vector,

V) = W(H-M(@). 3)

Each element, V(#), is a weighted sum of motivational values.

The n- x m-weight matrix, denoted W(¥), represents the moment-to-
moment strength of connection between each act and each consequence. An
act-consequence connection refers to the expectation that, under a given set
of environmental conditions, an act produces a relevant consequence at some
later point in time. The weight Wj(f) connecting act i to consequence j at
time f ranges from zero to unity; 0 < Wy() < L; Wj(#) = 0 means that
the motivational value of consequence j has no influence on act i; Wy =5
means that the motivational value of consequence j is reduced by one half for
act i; Wj;(f) = 1 means that the full force of the motivational value of conse-
quence j is applied to act i. These weights are determined by the product
of six factors: attention, learning, relevance, probability, temporal distance,
and physical distance.

Attention to an act-consequence connection means that the connection has
been retrieved from long-term memory and it is active in short-term memory.
Models of memory retrieval (e.g., Raaijmakers and Shiffrin, 1981) may be use-
ful for predicting the effects of attention on decision-making.

Learning refers to changes in the strength of an act-consequence connec-
tion based on experience with previous decisions or instruction. Models of
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learning (e.g., Busemeyer and Myung, 1992) may be used to describe changes
in connection strength resulting from experience.

When the weights represent the temporal remoteness of the consequences,
then the valence of each act is equivalent to a temporal discounting model
(see Stevenson, 1986) at a specific moment.

When the weights represent the probabilities of the consequences, then
the valence of each act is equivalent to a subjective expected utility model
(e.g., Edwards, 1962) at a specific moment.

When the weights represent the importance of an attribute or dimension,
then the valence of each act is equivalent to a weighted sum of multiattribute
values (see von Winterfeldt and Edwards, 1986; Elman, chapter 8) at a specific
moment. Diederich (in press) has applied DFT to multiattribute, multiple alter-
native-choice situations.

The effect of physical distance on the weights is referred to as the goal
gradient hypothesis (cf., Hull, 1938; Lewin, 1935; Miller, 1944). Sensations
associated with the reward or punishment become much more salient as one
approaches the goal. For example, a hungry dieter may be able to see and
smell food better as he or she approaches it. The fear of a soldier approach-
ing battle rises as the thunder from the guns grows louder.

One final point is that the weights depend on the sign of a consequence.
This assumption is based on the principle that avoidance gradients are steeper
than approach gradients (Lewin, 1935; Miller, 1944). For example, positive
and negative consequences associated with equal delays and probabilities
receive different weights.

The motivational value vector, M(f), represents the decision-maker’s over-
all affective reaction to each of m possible consequences. Here we assume that
all desires, feelings, and emotional reactions to consequences can be tem-
porarily mapped onto a single common underlying scale similar to Wundt's
hedonic continuum (see Cofer and Appley, 1964). The explicit purpose of this
continuum is to compare consequences and make tradeoffs within a single
biological system in a manner similar to the way that a monetary continuum
is used in economic systems for trading between individuals. This is not
to say that feelings and emotions are one-dimensional. On the contrary,
motivational value is only a summary of these many dimensions temporarily
constructed for the purpose of guiding action.

This is where the internal needs, demands, or motivational states of the
decision-maker enter the decision process. Motivational value is derived from
the product of two factors: (a) internal demands or drives, and (b) the esti-
mated potential for a consequence to supply or satisfy these demands. The
dynamic nature of motivational value now becomes apparent. First, demands
often grow over time producing an increase in motivational value. Second,
actions yield consequences that satisfy these demands, and reduce motiva-
tional value (cf. Atkinson and Birch, 1970). Finally, experience with conse-
quences modifies one’s estimate of the potential satisfaction.
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The motivational values are positively or negatively signed. Positive values
attract a person toward a goal, negative values repel a person away from a
goal, and zero represents a neutral point. The sign of the values has an impor-
tant influence on the dynamic process. For example, avoidance processes
induced by two negative acts produce more vacillation than approach pro-
cesses induced by two positive acts, even when the difference in value be-
tween two negatives equals that for two positives. The neutral or reference
point can be influenced by context or “framing” (see Helson, 1959; Parducci,
1974; Tversky and Kahneman, 1981).

This concludes our overview of the general theoretical structure. For any
given decision task, a specific mathematical model can be constructed from
this general framework, and quantitative empirical tests can be derived. In
the next section, we outline two different specific models—one for choice
tasks and another for selling price tasks. Note that only the motor system
changes across these two decision tasks, and the valence and decision systems
are assumed to remain invariant across these two measures of preference.

4.3 RESPONSE MODELS FOR CHOICE AND SELLING PRICE TASKS
Binary Choice Response Model

Suppose the decision-maker is asked to choose between two actions by
pushing either a left or right response key on a computer. Figure 4.2 gives an
outline of the basic ideas of the choice model for this situation. The hori-
zontal axis indicates the deliberation time, and the vertical axis represents the
difference in preference states between the right and left actions (positive
differences produce a tendency to move toward the right key; negative differ-
ences produce a tendency to move toward the left key). The polygonal line is
a sample path of the difference in preference states during deliberation, and
note that it wanders up and down as the decision-maker considers the various
consequences of each action. The flat lines located at the top and bottom
of the figure are called the inhibitory thresholds. No movement is emitted
until the difference in preference states exceeds or overcomes this inhibitory
threshold magnitude. If the upper threshold is exceeded before the lower
threshold, then the right key is pushed. The vertical line on the right-hand
side of the figure indicates the time required to exceed the threshold and
make the decision.

Realistically, the inhibitory threshold would start at some large magnitude
at the beginning of deliberation, and gradually weaken or decay toward zero
as the deliberation process continued. However, for simplicity, the inhibitory
threshold was fixed to a constant value for the predictions computed in the
applications described later.

In sum, the first act to exceed the threshold wins the race and determines
the choice. The probability of choosing each action is given by the proba-
bility that an action will win the race, and the time required to make the de-
cision is determined by the mean time required to exceed the threshold. (See
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Figure 4.2 Choice model for DFT. The horizontal axis represents time or the number of
consequences sampled during deliberation. The vertical axis represents the difference in prefer-
ence states between two actions. Positive values represent a preference for taking the action
located on the right, and negative values represent a preference for taking the action on the
left. The horizontal lines parallel to the horizontal time axis represent threshold bounds. The
action on the right is taken as soon as the difference in preference exceeds the upper bound,
and the action on the left is taken as soon as the difference in preference exceeds the lower
bound.

Busemever and Townsend. 1992, for the derivation of the mathematical for-
mulas used to compute the choice probabilities and mean response times.)

Indifference Response Model

In some choice tasks, the decision-maker is permitted to express indifference.
Consider the case where three options are available: (1) press the left key for
one action, (2) press the right key for a second action, or (3) press the middle
key for indifference. The binary choice model described above is extended to
allow for indifference responses as follows. Each time the difference in pref-
erence states crosses zero (the neutral point), there is a probability that the
decision-maker will stop and push the indifference response key. The proba-
bility of stopping and pushing the indifference key in the neutral state is
called the exit probability. (See Busemeyer and Townsend, 1992, for the
derivation of the mathematical formulas used to compute the choice proba-
bilities for the indifference response.)

In general, the exit probability would be zero at the beginning of delibera-
tion and gradually increase during deliberation. However, for simplicity, the
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exit probability was fixed to a constant value for the predictions computed in
the applications described later.

Dynamic Matching Model

Suppose a decision-maker owns a risky venture which could yield a win of
$500 or a loss of $500 with equal probability. Now the owner considers sell-
ing this investment, and the minimum selling price needs to be determined.
The minimum selling price is the price at which the decision-maker is indif-
ferent between keeping the risky investment or taking the cash value. This
is closely related to finding the cash equivalent of a investment. Below we
present an account of how the minimum selling price or cash equivalent is
estimated by a dynamical matching process.

According to DFT, the decision-maker proceeds through a series of hypo-
thetical choices between the investment and candidate prices until an indiffer-
ence response is elicited with a candidate price. The matching process starts
by considering a hypothetical choice between the investment and an initial
selling price (e.g., the midpoint between the minimum and maximum possible
price). If the choice produces a response favoring the selling price, then this
initial price is too high, and the price is decreased by a fixed amount, é. If the
choice produces a response favoring the investment, then this initial price is
too low, and the price is increased by a fixed amount, §. In both of the above
cases, the matching process is repeated using the newly adjusted price. This
matching process continues until the choice between the investment and a
candidate price elicits an indifference response, at which point the price cur-
rently being considered is selected and reported.

The matching process is illustrated in figure 4.3. The horizontal axis repre-
sents candidate prices, with the minimum and maximum points fixed by the
minimum and maximum amounts that can be obtained from the investment.
The point indicated by the arrow in the figure represents a candidate price
currently being considered for the investment. There is a probability u of
making a step down, which is determined by the probability of choosing the
current price over the investment. There is another probability v of making a
step up, which is determined by the probability of choosing the investment
over the current price. Finally, there is a probability i of choosing the indiffer-
ence response, which would terminate the matching process at the current
price. (See Busemeyer and Townsend, 1992, for the derivation of the mathe-
matical formulas used to compute the distribution of selling prices for an
investment.)

This matching process is not restricted to selling prices or cash equivalents.
For example, it can also be used to find probability equivalents. In the latter
case, the decision-maker is asked to find a probability value that makes him
or her indifferent between a gamble and a fixed cash value. In this case, the
matching process is applied to the probability scale, and the decision-maker
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u = Pr[ step down ] = Pr[ prefer candidate price ]
v = Pr[ step up ] = Pr{ prefer gamble ]
i = Pr[ report as final price ] = Pr[ being indifferent ]

Figure 4.3 Dynamic matching model. A candidate price is compared to the gamble that is
being evaluated. A choice favoring the price is made with probability u, in which case the price
is reduced by an increment. A choice favoring the gamble is made with probability o, in which
case the price is increased by an increment. An indifference response is made with probability
i, in which case the matching process terminates, and the current price is selected.

performs a sequence of tests of probability values until an indifference re-
sponse is elicited.

In sum, minimum selling prices, cash equivalents, and probability equiva-
lents are determined by the binary choice and indifference response models
discussed previously. Thus, the same parameter values used to compute the
predictions for choice probabilities in binary choice tasks can also be used to
compute the distribution of prices selected in a selling price task. In the next
section, we show how the theory provides a simple explanation for what
were previously considered “paradoxical” findings from the view of more
traditional static-deterministic derivatives of expected utility theory.

4.4 INCONSISTENCIES AMONG PREFERENCE MEASURES

Static-deterministic decision theories (such as expected utility theory and its
variants) generally assume that decision-makers can precisely and reliably
determine their minimum selling price. In other words, static-deterministic
theories are based on the solvability axiom which states that decision-makers
can solve for the unique price such that they are indifferent between keeping
an investment or taking the cash value. In fact, empirical research indicates
that decision-makers are not very reliable in their estimates of minimum sell-
ing prices or cash equivalents. Schoemaker and Hershey (1993) reported a
test-retest correlation as low as .50 from management students who were
asked to give cash equivalents for simple gambles 1 week apart in time.
Although most decision theorists readily acknowledge that selling prices are
unreliable, the theoretical implications of this fact have not been thoroughly
explored. Below, we show that two different “paradoxical” findings from de-
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cision research can be explained as an emergent property of the fundamental
stochastic and dynamical nature of preference.

Inconsistencies Between Choice and Seiling Price

The two most popular methods for measuring an individual’s preference be-
tween two actions is the choice method and the minimum selling price method.
According to traditional deterministic-static decision theories, if L and R are
two actions, then each action can be assigned a utility, u(L) and u(R) respec-
tively, such that if u(R) > u(L), then action R should be chosen over action L,
and the selling price for R should be greater than the selling price for L. In
other words, the preference order measured by the choice method should be
consistent with the preference order measured by the selling price method.

One “paradoxical” finding in the decision-making literature is that under
certain well-known conditions, the preference ordering measured by choice
systematically disagrees with the preference ordering measured by selling
price (Lichtenstein and Slovic, 1971; Lindman, 1971; see Slovic and Lichten-
stein, 1983, for a review). In particular, suppose the decision-maker is asked
to consider two gambles called the P-bet and the D-bet. Both gambles are
approximately equal in expected value, but the P-bet has a high probability of
winning a small amount (e.g., .99 probability of winning $4 or else nothing),
and the D-bet has a low probability of winning a large amount (e.g., .33 prob-
ability of winning $12 or else nothing). The usual finding is that the P-bet is
chosen more frequently over the D-Bet, but the selling price for the D-bet is
more frequently larger than the selling price for the P-bet. This finding has
even been replicated at a Las Vegas gambling casino using casino players and
real money (Lichtenstein and Slovic, 1973)!

Previous theoretical explanations for this type of preference reversal
finding have been based on the idea that changing the way preference is
measured from choice to selling price changes the parameters that enter the
calculation of the utility of each gamble. For example, Tversky, Sattath, and
Slovic (1988) hypothesized that individuals assign separate weights to the
probability dimension and the value dimension for gambles of the form “win
X with probability P.” Furthermore, they hypothesize that these weights
change depending on whether the individual is asked to make a choice or
select a selling price. To account for the preference reversal finding, they
assume that more weight is given to probability in the choice task, but more
weight is given to the payoff value in the selling price task. Below, we pro-
vide an alternative explanation which does not require changes in parameters
to account for the inconsistencies between choice and selling price.

It turns out that this “paradoxical” inconsistency in preference ordering
between choice and selling prices is an emergent property of the dynamic-
stochastic choice and selling price models described above. Figure 4.4 illus-
trates the predictions computed from the mathematical formulas for the
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Figure 4.4 Distribution of selling prices predicted by DFT for the P-bet and the D-bet. The
horizontal axis represents the various possible prices. The vertical axis represents the relative
frequency that a price is selected. Predictions were generated using the exact same parameter
values that produced a probability of choosing the P-bet over the D-bet equal to .56.

choice and selling price models (see Busemeyer and Goldstein, 1992, for more
details).

First, the parameters of the choice model were selected so that the predic-
tions from the choice model accurately reproduced the observed choice rela-
tive frequencies. The figure illustrates an example where the probability of
choosing the P-bet over the D-bet was predicted by the choice model to be
.56, which is approximately the same as the empirically observed proportions
for this particular example choice problem.

Second (and this is the crucial point), these same exact parameter values were
used to calculate predictions from the selling price model to produce the
distributions of minimum selling prices shown in the figure. Note that the
predicted distribution of selling prices for the P-bet lies below that for the
D-bet, consistent with the observed results. Furthermore, note that the vari-
ance of the D-bet distribution is predicted to be larger than that for the P-bet,
which is also consistent with known results (e.g., Bostic, Herrnstein, and Luce,
1990). Thus, a systematic reversal in the preference ordering was predicted
using the same parameter values for the valence and decision systems and
simply changing the motor system.

The precise reason that DFT produces this reversal in preference is an
emergent property of the interactions of the dynamic and stochastic compo-
nents of the model. However, a heuristic explanation might help give the
reader some intuition about this mechanism. According to the model, the
initial candidate selling price starts near the middle of the price scale. Because
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of the way the gambles are constructed, the middle of the scale produces an
overestimate of the price for each gamble. According to the model, it is easy
to discriminate the preference difference between the cash value and the
worth of the P-bet because of the low variance of the P-bet. This high level of
discriminability causes the initial price to quickly adjust down toward the true
indifference point. Also according to the model, it is difficult to discriminate
the preference difference between the cash value and the worth of the D-bet
because of the high variance of the D-bet. This low level of discriminability
causes the initial price to slowly adjust down toward the true indifference
point, and the process wanders around and stops far short of a complete
adjustment needed to reach the true indifference point.

In sum, DFT provides a simple explanation of the inconsistencies between
two measures of preference—choice and selling price—in a coherent manner
by using the same model parameter values for both tasks. A stronger test of
the theory is provided by using these same parameter values once again to
account for an inconsistency in preference found with another two measures
of preference, described next.

Inconsistencies Between Certainty and Probability Equivalents

Two methods are commonly used by decision analysts to measure the utility
in risky investments: one is called the certainty equivalence method and the
other is called the probability equivalence method. Hershey and Schoemaker
(1985) proposed a two-stage design for testing the consistency of these two
ways of measuring utility. In both stages, a measurement of the utility of a
gamble of the form “win $500 with probability P” is obtained. In the first
stage, this utility is measured by the certainty equivalence method, and in the
second stage it is measured by the probability equivalence method.

In the first stage, the probability of winning is set to P = .50, and the
decision-maker is asked to find the cash value X that makes him or her indif-
ferent between the cash value (X) and the gamble (win $200 with probability
.50). According to most static-deterministic theories, this problem is solved
by finding the value of X such that

u(X) = w(.50)u(200),

where w(.50) is the decision weight assigned to the probability of winning,
u(200) is the utility of $200, and u(X) is the utility of the cash value X. For
example, suppose the decision-maker is indifferent between the cash value of
X = $75 and the gamble “win $200 with probability .50.”

In the second stage, utility is measured by a probability equivalence method.
This is accomplished by asking the decision-maker to find the probability
P such that he or she is indifferent between the cash value X and the gamble
“win $200 with probability P where X is the same cash value obtained from
the first-stage task. For example, if X = $75 was selected in the first stage,
then the decision-maker is asked to find P such that he or she is indifferent
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between the cash value of $75 and the gamble “win $200 with probability P.”
According to most static-deterministic theories, this problem is solved by
finding the probability P such that

u(X) = w(P)u(200).

Obviously, to be consistent across both stages, the decision-maker should
choose P = .50, the original probability value used to determine X in the
first stage. In other words, according to static-deterministic utility theories,
the P value selected in the second stage should always be set to P = .5,
independent of the value of X chosen in the first stage.

According to static-deterministic theories, the variance of the P value
selected in the second stage should be zero. In fact, Hershey and Schoemaker
(1985) found a considerable amount of variability in the second-stage P value.
More important, the variation in the P value was systematically related to the
payoff value X selected in the first stage. The observed correlation between
the first-stage value of X and the second-stage value of P was r = .67. This
runs counter to static-deterministic theories which predicted zero correlation
between the two stages. These results were later replicated by Schoemaker
and Hershey (1992) and Johnson and Shkade (1989).

Table 4.2A provides a summary of the results of the experiments by Hershey
and Schoemaker (1985) and Schoemaker and Hershey (1992). This table was
constructed as follows. First, the monetary scale was rescaled to match the
probability scale (i.e, we replaced X with X/200). Then both scales were par-
titioned into three response categories: [0, .45), [.45,.55), and (.55, 1.0]. Each
cell of the table indicates the proportion of 300 subjects that made responses
within each of the nine categories formed by crossing the three first-stage
categories with the three second-stage categories.! For example, the middle
row indicates the proportion of subjects selecting second-stage values within
the interval [.45, .55]. According to static-deterministic theories, all of the re-
sponses should fall into this interval. Instead, the table shows a strong posi-

Table 4.2 Observed (A) and predicted (B) relative frequencies of probability and certainty
equivalents from Hershey and Shoemaker experiments

First-stage value

Second-stage

value 0.0-.55 45-.55 56-1.0
A. Observed relative frequencies for gain conditions

.56-1.0 07 04 25
45-.55 12 .10 12
0.0-.44 .20 .04 06

B. Predicted relative frequencies from DFT using the same parameter values as in figure 4.3
.56—-1.0 .08 .07 27
.45-.55 .08 06 06
0.0-.44 .28 .04 06

Data from Hershey and Shoemaker (1985) and Schoemaker and Hershey (1992).
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tive correlation between the first- and second-stage selections. Note that the
largest frequencies occur in the lower-left and upper-right corner cells.

The predictions computed from DFT are shown in table 4.2B. It is impor-
tant to note that we used the exact same parameter values in table 4.2B that
were used in figure 4.4. Also note that the model accurately reproduces the
positive correlation between first- and second-stage results. Thus, the sys-
temic discrepancies between certainty and probability equivalence methods
for measuring utility can be explained without postulating changes in utilities
across tasks. Instead, the discrepancies can be explained as the result of the
dynamical-stochastic processes required to perform these two tasks.

4.5 CONCLUDING COMMENTS

For the past 50 years, the field of decision-making has been dominated by
static-deterministic theories. While these theories have provided a useful
first approximation to human decision-making behavior, they fail to describe
two very basic facts about human decision-making behavior—the variability
and the temporal evolution of preferences. We think it is time to consider
a better second-order approximation to human decision-making that captures
these two basic properties of human preference. In this chapter, we pre-
sented an alternative approach called decision field theory (DFT) which pro-
vides a dynamical-stochastic description of decision-making. Furthermore, we
showed that what often appears to be “paradoxical” decision behavior from
the point of view of static-deterministic theories can be understood as emer-
gent properties of the dynamical-stochastic process that individuals use to
perform decision tasks.

NOTE

1. The data in table 4.2A come from experiments by Hershey and Schoemaker (1985) and
Schoemaker and Hershey (1992). Each experiment had four conditions: Two conditions em-
ployed gambles which produced gains of the form “win $200 with probability P,” and the
other two conditions employed gambles which produced losses of the form “lose $200 with
probability P.” Table 4.2 only includes the conditions which employed gains because we used
parameter values from previous research on preference reversal that were restricted to gains.
The two gain conditions differed according to the task order: the certainty equivalent task in
stage 1 followed by the probability equivalent task in stage 2; in the other condition the
opposite task order was used. For both task orders, static-deterministic theories predict that
all of the subjects should fall into the middle row of table 4.2. We pooled the data across
both task orders, and we also pooled across both experiments to produce the results shown in
table 4.2.
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Computational and Dynamical Languages
for Autonomous Agents

Randall D. Beer

EDITORS’ INTRODUCTION

Most chapters in this book focus on some aspect of specifically human cognition.
Randy Beer, by contrast, here takes as his immediate target the behaviors of simple,
artificial, insectlike creatures. Yet the issues raised and the insights gained go directly
fo the heart of what it is to understand human cognition itself.

The latter part of this chapter contains a discussion of detailed modeling. Here
Beer studies the behavior of two kinds of creature, one that performs chemotaxis
(orienting to a source of chemical stimulation, such as food) and another six-legged
walking creature. Both creatures have “brains” that are neural network dynamical
systems whose parameters were obtained by an artificial evolutionary process. Beer
shows in detail how to deploy the tools and concepts of dynamics in understanding
these creatures as dynamical systems comprised of an agent coupled with its envi-
ronment. This discussion is an elegant case study in how complex behaviors can be
understood dynamically, and will be useful to anyone wondering how dynamical
approaches might be brought to bear in thinking about aspects of human cognition.

In a wider perspective, Beer's work can be seen as resulting from his stands on
two deep theoretical issues; these are discussed in the earlier sections. The first issue is
whether most progress is to be made by studying the kind of high-level, “disembodied”
cognitive processes on which artificial intelligence (Al) has traditionally focused, or
rather, autonomous, embodied agents in active participation with a real environ-
ment. The second issue is whether computationalism or dynamics provides the best
general framework within which to understand cognitive processes. Beer is especially
concerned to emphasize that computationalism—the claim that cognitive systems
are internally organized as computational systems—is an empirical hypothesis that
is subject to scientific evaluation and possible refutation.

Beer clearly sides with the study of autonomous agents and with dynamics as the
preferable framework. Now, humans are autonomous agents, but are currently much
too complex to be scientifically describable as such in their entirety. For this reason,
Beer focuses on simpler artificial systems for which it is possible to develop detailed
and rigorous scientific theories. These systems and the understanding they promote
constitute steppingstones in the process of understanding how humans negotiate their
own, vastly more complex environments.
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5.1 INTRODUCTION

Traditionally, work in artificial intelligence (Al) and cognitive science has
focused on such disembodied intellectual skills as language and abstract
reasoning. However, so-called low-level concerns of embodiment have re-
cently been taking on a growing importance in some areas of research. This
shift has been precipitated by the realization that building systems capable
of unconstrained interaction with the real world is very difficult and that ap-
proaches developed for disembodied systems have not translated well into
such situations (Brooks, 1991). Furthermore, many problems that seemed in-
tractable for disembodied systems have turned out to be considerably simpli-
fied by active participation in an environment (Agre and Chapman, 1987;
Ballard, 1991). Reviews of recent work on embodied systems (or, as [ shall
call them, autonomous agents) can be found in Maes (1990), Meyer and
Wilson (1991), and Meyer, Roitblat, and Wilson (1993). Indeed, it may very
well be that our capacity for situated action (which we share with all animals)
is fundamental to our penchant for language and abstract reasoning (which
are evolutionarily recent elaborations). Consequently, work on autonomous
agents emphasizes the primacy of actually taking action in the world over the
abstract descriptions that we sometimes make of it.

The central problem for any autonomous agent is the generation of the
appropriate behavior at the appropriate time as both its internal state and
external situation continuously change. One of the most striking features of
natural animal behavior is how well-adapted it is to the dynamical and statis-
tical structure of real-world environments. Consider an insect walking, for
example (Graham, 1985). On the one hand, walking is a paradigmatic exam-
ple of a stereotyped behavior, consisting as it does of endless repetition
of a seemingly fixed sequence of leg movements. However, insects can walk
under a variety of conditions, such as vertically, upside-down, or following
the loss of one or two legs, in which the particular forces and movements
necessary for each situation are very different. Furthermore, insects can walk
over complex terrain, where their gaits must be adjusted on a step-by-step
basis. Indeed, there is a very real sense in which the so-called stereotyped
behavior of walking is reinvented anew from moment to moment in the
interaction between the insect and its environment. This almost paradoxical
mixture of stability and flexibility of behavior is central to any agent that
must reliably accomplish its goals in the complex, dynamical, and somewhat
unpredictable environment of the real world.

What is the proper theoretical framework for the design and analysis of
such systems? For the past 40 years, research on intelligent agents has been
dominated by a theoretical position that I shall call computationalism, the idea
that an agent behaves “intelligently” in its environment only insofar as it is
able to represent and reason about its own goals and the relevant properties
of its environment. In contrast, this chapter explores the idea that the lan-
guage of dynamical systems may offer a better conceptual framework for
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autonomous agents. Section 5.2 assesses the relevance of computationalism
for autonomous agents. Section 5.3 will then sketch what an alternative dy-
namical systems perspective on autonomous agents might look like. Finally,
some examples of applications of this dynamical framework are presented in
section 5.4.

5.2 COMPUTATION IN AUTONOMOUS AGENTS
Computation as a Theoretical Position

How relevant is computationalism to the analysis and design of autono-
mous agents? Before we can even begin to answer this question, we must
first clearly distinguish computation as a theoretical position from the many
other uses of the notion of computation, both within cognitive science and in
everyday life. This may seem like an unnecessarily long-winded digression,
but the word “computation” and its many relatives are actually rather ambig-
uous terms. For example, “computational neuroscience” is sometimes taken to
refer to the construction of computer models of nervous systems and some-
times to the claim that nervous systems themselves are computers, with the
intended meaning sometimes switching within a single sentence. In my expe-
rience it is all too easy for proponents of computationalism to simply dismiss
its critics unless we carefully distinguish between at least the following four
notions:

1. Computation as a phenomenon to be explained. Computation is something
that people sometimes do. We can ride bicycles, fall in love, build airplanes,
and we can compute in the everyday sense of producing a result by con-
sciously following a step-by-step procedure. This phenomenological notion
of computation is the sense in which we compute our income tax or the
nth digit of 7. Indeed, the very word computer originally referred not to
any mechanical device but to a person performing a tedious mathematical
calculation. This ability to deliberately form conceptual representations and
manipulate them according to a step-by-step procedure is one of the many
human capabilities that any cognitive science must eventually explain.

2. Computation as a mathematical formalism. In an attempt to formalize the
above-mentioned ability, a number of logicians (including Godel, Turing,
Church, and Kleene) developed different mathematical models of the intuitive
notion of a step-by-step procedure (called an effective procedure or an algo-
rithm). These developments can be viewed as the culmination of a centuries-
long effort to mechanize human reasoning, dating at least as far back as
Leibnitz. For example, a Turing machine, probably the best-known model of
computation, is a way of representing all functions over the integers whose
values can be calculated by a finite number of primitive mechanical opera-
tions. Somewhat surprisingly, the different formalisms all turned out to be
equivalent in that they could compute exactly the same set of integer func-
tions (called the computable functions, or the partial recursive functions).
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Other fundamental insights that emerged from the development of a formal
theory of computation included a realization of the full generality of the
notion (any countable set can be coded into the integers and is thus amenable
to the formal theory of computation), the discovery that many important
questions (such as the famous halting problem) lead to uncomputable func-
tions and are thus undecidable by an algorithm, and the notion of universal
machines that can compute any computable function by emulating the behav-
ior of any other machine given a coded description of its behavior.

3. Computation as a simulation technology. The mechanizability of computa-
tion makes it particularly amenable to material instantiation, and the extreme
flexibility of universal machines provides the necessary incentive for doing
so. For these reasons, computers, the modem technological manifestation of
the ideas of Turing and his contemporaries, have become permanent fixtures
in our lives. Especially relevant to the present paper is the use of the com-
puter as a tool for simulation. Computer simulation has been applied to such
diverse areas as aircraft design, the greenhouse effect, and the formation of
planetary rings. The field of Al was quick to embrace the simulation abilities
of computers as a new experimental medium for building and testing theories
of cognition.

4. Computation as a theoretical position. In cognitive science and Al, not
only is computation a cognitive phenomenon to be studied and a technology
to be employed but features of the formal theory of computation and com-
puter technology have been elevated to the status of theoretical hypotheses
about cognition (Fodor, 1975; Newell and Simon, 1976; Pylyshyn, 1984).
Historically, cognition has often been examined through the lens of the most
sophisticated technology of the time. Descartes had his water clocks, Freud
had his steam engines, and now we have the computer. Taken at face value,
there is nothing intrinsically good or bad about this development. Indeed,
much of the empirical research in Al and cognitive science can be viewed
as a working out of the consequences of these hypotheses.

For our purposes here, the important point is simply that computationalism
is a set of theoretical hypotheses. The brain is no more obviously a computer
than is a thunderstorm, a solar system, or an economy. Furthermore, these
hypotheses are logically independent of all of the other notions of computa-
tion outlined above. From the mere fact that we can (and sometimes do)
compute things, we cannot conclude that computationalism is true any more
than we can conclude from the mere fact that stereos produce patterned
sound waves that compressed air plays any essential role in their electronic
guts. In addition, to question computationalism is certainly not to deny the
fact that people can perform computations. Likewise, the formal theory of
computation no more demonstrates the validity of computationalism than
Riemannian geometry does the validity of general relativity, and a refutation
of the latter theory in each case is certainly not an invalidation of the former
body of mathematics. Finally, building computer simulations of cognitive sys-
tems no more lends support to computationalism than computing planetary
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orbits supports the hypothesis that planets somehow compute their own
orbits. It is entirely possible and even quite fruitful to build computer models
of noncomputational theories. Every other branch of science and engineering
does this all the time.

At the risk of belaboring what I hope is by now an obvious distinction, let
me briefly mention just one more example. Lenses are an important tool in
astronomy. Astronomers rely on lenses to resolve the tiny images of the
distant objects that they study. It so happens that the concept of a lens also
plays a theoretical role in astronomy in explaining the distortion and multiple
images that occur when some massive body lies along the line of sight to a
more distant object (a phenomenon called gravitational lensing). Of course,
there are many other phenomena that astronomers observe (also with lenses)
whose explanation has nothing at all to do with lenses. But despite this dual
role of lenses as both a tool and a theoretical construct, astronomers never
seem to confuse the object they are looking at and the instrument they are
looking with, and neither should we. Computer models contain symbolic
structures that represent theoretical entities to the modeler, while computa-
tionalism claims that agents contain symbolic structures that represent their
situation fo themselves and that play a causal role in generating their behavior.
It is this (and only this) notion of computation as a theoretical position that
will concern us in the remainder of this section.

The Empirical Claims of Computationalism

Scientific hypotheses are usually valued for their specificity. In order to be a
legitimate scientific hypothesis, computationalism must be falsifiable, i.e., it
must make empirical predictions that are clear and specific enough to be
tested and it must be possible for these predictions to be false. Relativity, for
example, made very specific predictions about the bending of light near the
sun and the precession of Mercury’s orbit which, though at odds with the
predictions of Newtonian mechanics, were subsequently verified. While such
quantitative predictions are clearly beyond our present capabilities, at the
very least it is reasonable to expect computationalism to provide sufficiently
specific claims that we could determine whether or not the theory were true
of a given agent. If no such determination can be made, then computational-
ism is too vague to be a theory of anything. If, on the other hand, the pre-
dictions are so general that they are automatically true of every physical sys-
tem, then computationalism is tautological and hence scientifically vacuous.
The basic idea of computationalism is that cognition is a species of com-
putation. The claim is that cognition involves the manipulation of mental
symbols in a way entirely analogous to a Turing machine’s algorithmic
manipulation of strings of symbols, not just when we are “playing computer,”
but whenever we consciously reason at all. Furthermore, a computational
language has come to be applied to processes (such as language comprehen-
sion, learning, perception, and motor control) to which we do not have even
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apparent introspective access and thus for which we have no a priori reason
to believe that they are anything like deliberative reasoning, let alone compu-
tation. In all of these applications of computationalism, the idea that symbols
somehow encode or represent information relevant to behavior (e.g., my per-
ception of a car to my left or my belief that apples are red) plays a fundamen-
tal theoretical role. Interestingly, this is a significant extension of the formal
theory of computation which is, in fact, a purely syntactic theory. However,
attempts to interpret the states of an ongoing computation as being about
something introduce semantic concerns that have come to dominate discus-
sions of computational theories in cognitive science.

Intuitively, the overall shape of computationalism is clear enough. But
beyond the somewhat suggestive but vague sense in which at least delibera-
tive reasoning is like computation, just what are the falsifiable empirical claims
that computationalism is making? What, specifically, am I buying into if I
accept this theory and what am I giving up if I reject it? By what series of
tests would I determine whether a given agent lent evidence for or against
this theory’s hypotheses? How would I recognize a representation or a com-
putation if I saw one?

Given its central role in computationalism, let's begin with the question of
what constitutes an internal representation. One of the most common intu-
itions about representations is that they endow an agent with internal state.
Indeed, the postulation of complex internal states is one of the things that
computationalism uses to distinguish itself from behaviorism. Likewise, the
debate between proponents and critics of situated agent research has often
tacitly assumed the equivalence of internal state and representation, with
proponents using criticisms of representation to argue the need for reactive
(or state-free) systems and critics using the limitations of state-free systems
to argue the need for representation (e.g., Brooks, 1991; Kirsch, 1991). But
is the mere possession of internal state a sufficient condition for represen-
tation? Obviously not, since all physical systems possess internal state and
most computationalists would hesitate in accepting, say, the concentrations of
reactants in an industrial fractionation column as representing anything about
the company outside. Of course, some of these concentrations may be more
or less correlated with various aspects of the company, but once again, correla-
tion is a property of the states of physical systems in general and thus does
not serve to distinguish a computational system from a merely physical one.

Unfortunately, many commonsense notions of computation suffer from a
similar problem. For example, some see the mere presence of a systematic
relationship between a system’s “inputs” and “outputs” as evidence of its
computational nature. On this view, a device that reliably outputs the square
root of a given input must be computational because it is “computing” the
square root function. But this is once again an empirically vacuous notion of
computation because all physical systems exhibit systematic relationships be-
tween their various parts (in fact, they must if science’s assumption that all
natural phenomena are law-governed is correct). Are we to interpret all such
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systems as computing these relationships? Does the fact that planets move in
elliptical orbits imply that solar systems are computing these ellipses? Like-
wise, some view the existence of a computer program that mimics some
fragment of human behavior as providing evidence for computationalism
(and even go so far as to view such a program as itself a theory). But we can
build computer models of many things. If building a computer model of a
fluid doesn’t make computationalism true of fluids, why should we assume
that building a computer model of human behavior makes computationalism
true of cognition?

Computationalism as an Organizational Claim

We have seen above that many of the informal intuitions we have about
computationalism do not qualify as empirically falsifiable claims because they
appear to be true of any physical system. Thus it is perhaps not too surprising
that there is currently a great deal of controversy regarding the foundations
of computationalism (Smith, 1991; Harnad, 1994). In this section, I argue that,
if computationalism can be interpreted as making any empirically falsifiable
claims at all, then it is making a claim about the internal organization of a
system.

The essence of the picture that computationalism seems to be trying to
paint is that of an agent whose causal structure is isomorphic to some compu-
tation, i.e., whose physical states and causal laws mirror the functional states
and algorithms of a computation. This isomorphism is often referred to as
“implementation.” Note that this is a claim about a system'’s internal organi-
zation rather than merely its external behavior. But this isomorphism cannot
be to just any computation, or we are back to vacuity since, by definition, a
computer model of anything is a computation that is isomorphic in some
relevant way to that thing. Rather, computational notions must somehow
play an essential role in the system’s operation. It must be by virtue of
this isomorphism, and only by virtue of this isomorphism, that the system
behaves the way that it does. For example, a theory of calculator operation is
computational because a calculator’s internal states have an interpretation as
numbers and its causal laws “line up” with the laws of arithmetic. Thus, not
only can a calculator’s internal organization be mapped onto arithmetic com-
putations, but in some sense it must be in order to understand its operation as
a calculator. At least in principle, this organizational claim is an empirically
testable one, because we can presumably always look inside a given system
and see if its organization can be interpreted computationally.

As a practical matter, the entire conceptual framework offered by the lan-
guage of computation seems to work best for systems that, like calculators,
wear their computational organization on their sleeves, so to speak, in that,
by their very design, they invite a natural computational interpretation. Such
systems have a particularly direct relationship between what they do and
how they do it, between their competence and performance theories. They
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have reliably identifiable internal configurations of parts that can be usefully
interpreted as representing aspects of the domain in which the system oper-
ates and reliably identifiable internal components that can be usefully inter-
preted as algorithmically transforming these representations so as to produce
whatever output the system produces from whatever input it receives.

In contrast, the conceptual framework of computation seems to work least
well for highly distributed and richly interconnected systems whose parts do
not admit of any straightforward functional decomposition into representa-
tions and modules which algorithmically manipulate them. This is not to say
that a computational explanation of such systems can never be found. How-
ever, a computational account of such systems may be much less compelling
than for a calculator precisely because the organization that the very terms of
the computational language presuppose is nowhere apparent. Here, a compu-
tational language may actually mislead us into expecting that representations
and algorithms in some form must be lurking in the wings when, in fact, a
computational organization is really only one possibility among many. In
such cases, it would presumably be better to search for other mathematical
languages more suited to characterizing the behavior of highly distributed
and richly interconnected systems.

With this organizational claim in mind, let us return to a slightly refined
version of the question posed at the beginning of this section: How relevant
is the organizational claim of computationalism to the analysis and design of
autonomous agents? This question can be split into two questions: Can an
autonomous agent be organized in a computational fashion? Must an autono-
mous agent be so organized? It seems obvious that agents can be organized in
this way, given that Al researchers have had at least some limited success in
building such agents, but I can see no a priori reason why an agent must be
organized in this way. The more interesting questions are probably the fol-
lowing: Are animals organized in this fashion? Should the autonomous agents
that we build be so organized?

The functional organization of the neural mechanisms underlying animal
behavior is currently very much an open empirical question. It is no exagger-
ation to say that nervous systems do not in general exhibit any obvious
functional decomposition into computational components (except, once
again, in the trivial senses in which all physical systems do, namely (1) the
outputs of nerve cells are systematically related to their inputs and their
internal state, and (2) we can simulate models of nervous systems on a com-
puter). However, there are a few tantalizing examples where a computational
language does appear to be a genuinely useful one (Churchland and Sejnowski,
1992). For example, the mammalian visual system seems to be at least partly
decomposable into richly interconnected but somewhat distinct functional
modules (for a recent review, see Kandel, 1991). Likewise, the vector sum of a
population of directionally selective nerve cells in the rhesus monkey appears
to represent the subsequent direction of movement of its arm and, when the
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intended direction changes, the vector sum of this average can be seen to
rotate from the old target to the new (Georgopoulos, Lurito, Petrides, et al.,
1989).

However, many other aspects of nervous systems, such as the neural cir-
cuitry underlying rhythmic movements, olfaction, and essentially all higher
cognitive processes, have so far resisted all attempts to interpret their organi-
zation in anything like the terms offered by computationalism. Furthermore, it
is worth pointing out that, in order to make a computational language work
even in the above-mentioned cases, our notions of representation and compu-
tation (already ill-defined) must be significantly extended to include highly
distributed and massively parallel analog processes. It is quite possible that
such extensions are pushing a language founded on the step-by-step manipu-
lation of discrete symbols by functionally distinct modules past the breaking
point. Indeed, given the way in which natural selection operates, it would
be somewhat surprising if nervous systems exhibited the almost crystalline
structure of a calculator. Thus, while we certainly cannot at this point reject a
computational language in our attempts to understand natural agents, there
are good reasons to suppose that, at the very least, a significant generaliza-
tion of it will be required.

Should the autonomous agents that we build be organized in a computa-
tional fashion? A significant advantage of this organization is that it leads
almost directly to a powerful design methodology: A solution to some com-
plex task is hierarchically composed from many functional modules, each of
which solves some simpler subproblem and communicates its solutions to
other modules. In addition, systems organized in this way are easy to under-
stand and repair owing to the localization of particular subtasks to individual
modules or small collections of modules. However, artificial agents organized
along the lines suggested by computationalism have yet to exhibit the versa-
tility and robustness of even the simplest animals, and there is growing evi-
dence that new organizational ideas, perhaps drawn from animals themselves,
will be required (Beer, 1990; Maes, 1990; Brooks, 1991; Meyer, Roitblat, and
Wilson, 1993). Thus, we have good reason to question the appropriateness of
the conceptual framework offered by computationalism for the design of
autonomous agents as well, raising once again the need to broaden our orga-
nizational horizons.

5.3 A DYNAMICAL SYSTEMS PERSPECTIVE

Given the questions raised above, 1 believe that, in order to understand
the behavior of autonomous agents, we must generalize our organizational
notions from computational systems to dynamical systems (Beer, 1995). To
say that something is a dynamical system is to say only that its future behav-
ior depends on its current state in some principled way, with no additional
requirement that this state be interpretable as a representation or that the
evolution of this state be interpretable as a computation. Thus, a conceptual

Computational and Dynamical Languages for Autonomous Agents



130

framework founded on dynamical systems is potentially applicable to a wider
class of systems than is a conceptual framework founded on computation, be-
cause the former requires fewer organizational commitments than the latter.
A complete review of the modem theory of dynamical systems is clearly
beyond the scope of this chapter. However, it is worth pointing out that this
theory provides a rich geometric and topological vocabulary for expressing
the possible long-term behaviors of a dynamical system and the dependence
of those behaviors on parameters (Wiggins, 1990; Hale and Kocak, 1991,
Abraham and Shaw, 1992).

While there is a significant body of mathematics on dynamical systems, the
mathematical theory of dynamical systems is no more a theory of autono-
mous agents than is the formal theory of computation. Rather, like com-
putation, dynamical systems theory is best seen as offering a conceptual
framework for thinking about complex systems, and a framework that is very
different from that offered by computation. Where a computational language
suggests that complex but highly structured behavior arises from the step-by-
step transformation of discrete symbols by identifiable functional modules, a
dynamical language suggests that such behavior can arise as a global prop-
erty of the continuous interaction of many distributed, cooperative processes.
Our task as scientists is to use the language and mathematical tools offered
by dynamical systems theory to develop theories of particular phenomena of
interest.

A growing number of researchers are finding the language of dynamical
systems a fruitful one for understanding neural circuits (Skarda and Freeman,
1987; Rinzel and Ermentrout, 1989; Wang and Rinzel, 1992), the control of
movement (Schoner and Kelso, 1988; Turvey, 1990), and even natural lan-
guage (Elman, 1991; Pollack, 1991) and cognition in general (Smolensky,
1988; Giunti, 1992; van Gelder, 1992; Pollack, 1993). In the remainder of
this section, I sketch a view of autonomous agents from the perspective of
dynamical systems (Beer, 1995). Some sample applications of this perspec-
tive are presented in section 5.4.

Following Ashby (Ashby, 1960), I will model an agent and its environment
as two continuous-time dynamical systems &/ and &, respectively. Note that
the division between an agent and its environment is somewhat arbitrary. For
example, it will sometimes be convenient to view an agent’s body as part of
&/ and sometimes as part of & In general, there are many different ways to
partition the world into components whose interactions we wish to under-
stand. Because an agent and its environment are in constant interaction, o/
and & are coupled nonautonomous dynamical systems. This coupling can be
represented with a sensory function S from environmental state variables to
agent parameters and a motor function M from agent state variables to envi-
ronmental parameters. S(x,) corresponds to an agent's sensory inputs, while
M(x,/) corresponds to its motor outputs. Thus, we have the following model
of a coupled agent-environment system (figure 5.1):
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Figure 5.1 An agent and its environment as coupled dynamical systems.

Xy = (x4 8(x,))
*a = 8(x 4;M(x,))

Note that feedback plays a fundamental role in the relationship between an
agent and its environment. Any action that an agent takes affects its envi-
ronment in some way through M, which in turn affects the agent itself
through the feedback it receives from its environment via S. Likewise, the
environment's effects on an agent through S are fed back through M to
in turn affect the environment. Thus, each of these two dynamical systems is
continuously deforming the flow of the other (perhaps drastically if any cou-
pling parameters cross bifurcation points in the receiving system’s parameter
space), and therefore influencing its subsequent trajectory. Any agent that is
going to reliably accomplish its goals in the face of such environmental per-
turbations must be organized in such a way that its dynamics can compensate
for or even actively exploit the structure of such perturbations.

I have been describing an agent and its environment as two separate non-
autonomous dynamical systems which influence one another through sensory
and motor maps. This perspective emphasizes the distinction between an
agent and its environment in order to discuss the relationships between them.
However, an equally legitimate view is that the two coupled nonautonomous
systems o and & are merely components of a single autonomous dynamical
system 4 whose state variables are the union of the state variables of &/ and
& and whose dynamical laws are given by all of the internal relations (includ-
ing S and M) among this larger set of state variables and their derivatives.
Any trajectories arising in the interaction between the nonautonomous dy-
namical systems & and & must also be trajectories of the larger autonomous
dynamical system 4 and, after transients have died out, the observed patterns
of interaction between &/ and & must represent an attractor of #. Neither of
these perspectives is intrinsically better than the other, and we can switch
between them as appropriate.

(1)
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The coupled system % provides a dynamical basis for understanding one
of the central themes of recent autonomous agent research, namely the idea
that an agent’s behavior arises not simply from within the agent itself, but
rather through its interaction with its environment. Because of the higher
dimensionality of its state space, a dynamical system formed by coupling
two other systems can generate a richer range of dynamical behavior than
could either subsystem in isolation. Since properties of the coupled system
cannot in general be attributed to either subsystem individually, an agent's
behavior properly resides only in the dynamics of the coupled system # and
not simply in the dynamics of o or & alone. This suggests that we must learn
to think of an agent as necessarily containing only a latent potential to en-
gage in appropriate patterns of interaction. It is only when coupled with a
suitable environment that this potential is actually expressed through the
agent’s behavior in that environment.

I have repeatedly referred to the “appropriateness” of an agent’s behavior,
but what makes a given behavior appropriate or inappropriate? For an animal,
the appropriateness of behavior is ultimately defined by its survival, its ability
to maintain intact the network of biochemical processes that keep it alive. We
can think of the integrity of this network of processes as providing a con-
straint on the admissible trajectories of the animal’s behavioral dynamics. On
the other hand, the appropriateness of an artificial agent’s behavior is often
defined in terms of the adequate performance of whatever task it was designed
for (e.g., keeping the floor clean, or exploring the surface of Mars), a con-
straint on the admissible trajectories of the environment. Generally speaking,
then, we can define the appropriateness of an agent’s behavior in terms of its
continued satisfaction of some constraint C on the trajectories of the coupled
agent-environment system % (figure 5.2). It is sometimes more convenient
to express a desired task as a performance measure to be optimized rather
than a rigid constraint to be satisfied. In these cases, C can be thought of as
the minimum acceptable level of performance.

5.4 APPLICATIONS

In this section, I present two examples of the application of the dynamical
framework sketched above to particular autonomous agent problems. In each
case, I show how the problem can be formulated as a constraint on the tra-
jectories of coupled agent and environment dynamics, present examples of
agent dynamics which solve the problem, and then show how the operation
of this agent dynamics can be understood using the language and tools of
dynamical systems theory. In these examples, I focus on the question of how
the interactions between an agent’s internal control mechanisms (which I
interpret as /) and its body (which I interpret as &) give rise to its behavior.

While the dynamical perspective being advocated in this chapter is cer-
tainly not limited to neural networks, in all of the examples presented here
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Figure 5.2  An illustration of adaptive fit. This simple example assumes that both the agent
and the environment are one-dimensional dynamical systems. The constraint, volume C, is
shown in gray. This volume represents the region of the state-space of the coupled agent-
environment system corresponding to acceptable performance. Here the coupled agent-
environment system is shown exhibiting a limit cycle which satisfies this constraint.

an agent’s dynamics is implemented using continuous-time recurrent neural
networks with the following general form:

N
1‘9‘=—y‘+;%a(yj—ej)+l,(t) i=12,..N (2)

where 1 is the time constant of the neuron, w, gives the strength of the
connection between the j'* and the i** neuron, 6(£) = (1 + e7¢)! is the stan-
dard sigmoidal activation function, 8 is a bias term, and I(f) is a possibly
time-varying external input to the neuron (i.e., from a sensor). The parameters
of these networks (e.g., the time constants, biases, and connection weights)
define a space of dynamical systems. Using the public domain genetic algo-
rithm package GAucsd 1.1, this space was searched for networks whose
dynamics satisfy a given constraint when coupled to a given environment.

Chemotaxis

Chemotaxis is the problem of orienting to a chemical source such as a patch
of food by using local measurements of chemical intensity. In the specific
problem considered here, the agent is enclosed in a box containing a single
patch of food. The intensity of the food falls off as the inverse square of
the distance from the center of the patch. Thus, the agent must cope with a
chemical signal that varies five orders of magnitude from the center of the
food patch to the corners of the box. Starting from arbitrary locations and

Computational and Dynamical Languages for Autonomous Agents



134

Figure 5.3 Behavior of a typical chemotactic agent. The food patch is shown as a circle
circumscribed in gray and the agent’s path is shown with a dashed line. The numbers refer to
the corresponding plots in figure 5.5.

orientations in the environment, the agent must find and remain in the vicin-
ity of the food patch.

In terms of the framework, I define & to be the dynamics of the agent’s
body together with the environment in which it moves. The agent’s body is
circular, with two chemical sensors placed symmetrically about the center line
that can detect the intensity of the chemical signal at their location (figure
5.3). The agent also possesses two effectors placed on opposite sides of its
body which can generate translational and rotational forces.

The dynamics of the neural circuit controlling this body is . For this
purpose, a six-neuron, fully interconnected network was employed. The out-
puts of two of these neurons drive two effectors mentioned above (M), while
another two neurons receive as inputs the signals from the chemical sensors
(S). The remaining two neurons are interneurons whose role in the circuit is
not prespecified. Owing to the symmetry of the problem, the controller is
assumed to be bilaterally symmetric. The chemotaxis controller thus has 3
time constants, 3 biases, and 18 connection weights, forming a 24-dimen-
sional parameter space that was searched using GAucsd 1.1. The performance
measure to be minimized was the average distance between the agent and the
food patch. Thus, C can be defined as some minimum acceptable distance
from the patch.

A variety of different chemotaxis agents were evolved for this problem
(Beer and Gallagher, 1992). By far the most common solution was to move
forward while turning toward the side receiving the stronger chemical signal
by an amount related to the difference between the stronger and weaker
signals. A typical path for one such agent is shown in figure 5.3. Regard-
less of the agent’s initial position and orientation, its path curves toward
the food patch. Once there, the agent repeatedly crosses the patch. In a few
cases, agents evolved a rather different strategy for chemotaxis. These agents
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Figure 5.4  Individual motor-space projections of the location of the network’s single equilib-
rium point as a function of the activity of the left and right chemical sensors for the chemotaxis
agent shown in figure 5.3.

moved rhythmically from side to side, with the oscillations biased toward the
side receiving the stronger chemical signal. Interestingly, once they near the
patch, these agents stop oscillating and behave in the more common manner
described above. These agents thus switch between distinct behavioral
strategies depending on their distance from the patch.

How can we understand the operation of these chemotaxis agents? Recall
that these networks are fully interconnected. Perhaps not surprisingly, non-
trivial self and feedback connections are a common feature of the evolved
controllers. However, these systems can be understood using concepts from
dynamical systems theory. In order to illustrate the basic approach, I focus
here on the agent shown in figure 5.3. My strategy will be to first examine
how the motor space projection M = (M, M) of the autonomous dynam-
ics of o changes as a function of S = (S, Sg) and then to decompose the
dynamics of the coupled agent-environment system # in these terms.

For any constant pair of sensory inputs, this particular controller exhibits a
single stable equilibrium point. Motor-space projections of the location of this
equilibrium point as a function of S, and Sy are shown separately for M, and
My in figure 5.4. If the sensory inputs were clamped to particular values, then
the state of the network would flow toward a fixed point attractor whose
corresponding M, and M values are given by these two plots. Of course,
owing to the bilateral symmetry of the network, the M, and My equilibrium
surfaces are just mirror images of one another about the S, = S; diagonal.
Note how the location of the M, and My projections of the equilibrium
point changes with sensory input. For example, if the chemical signal is
stronger on the left side of the body than on the right (i.e., S, > Sg), then
the location of the corresponding equilibrium point has an M value that is
significantly greater than its M, value. As we shall see in a moment, this
property accounts for the turn to the left that would be observed under
these conditions.

These surfaces also exhibit several other interesting features. For example,
note that the location of the equilibrium point is most sensitive in the neigh-
borhood of the S, = Sy line, ie., to small differences between S, and Sp.
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This is presumably what allows the agent to operate at great distances from
the food patch, where the chemical signals (and their differences) are very
tiny. However, the surface is relatively insensitive to large differences. The
equilibrium surface is also relatively insensitive to the absolute magnitude of
the chemical signal since it is almost flat along all lines of constant difference
(i.e., lines parallel to the S, = Sy diagonal), even those near the S, = Sg
diagonal. This relative insensitivity to large signals and large differences is
probably what prevents the agent from overreacting near the patch.

These equilibrium surfaces summarize how the autonomous dynamics of
the neural controller changes as a function of S, and Sg. But how can they
help us to understand how the agent’s observed behavior arises from the
interaction between the network dynamics and the dynamics of the body
and environment? As the agent moves through its environment, its sensory
inputs at any given moment specify a unique location for the network’s
equilibrium point. Furthermore, if we examine the instantaneous network
state at that moment, we will find that it is flowing toward the attractor's
current location. Of course, the agent is constantly moving because the two
motor neurons activate the body’s effectors. Thus, the network’s sensory
inputs at the next instant, and hence the location of its autonomous attractor,
will be slightly different. However, we will still find that the network state is
instantaneously flowing toward this new location. Thus, we can picture the
agent-environment interaction as one in which the network state is flowing
toward a constantly moving equilibrium point, the motion of which depends
on the motor outputs of the network itself. However, as was mentioned
earlier, the essential feature of this interaction is that when the left chemical
input is stronger than the right, the motor-space projection of the equilibrium
point lies in a region where the right motor output is stronger than the left
(which would cause a turn to the left), and vice versa.

Figure 5.5 illustrates this interaction between the dynamics of the network
and the dynamics of the body and environment at several points along the
trajectory shown in figure 5.3. At 1, S, is slightly greater than S;, so the
motor-space projection of the equilibrium point lies on the My side of the
diagonal. As the network state flows toward this equilibrium point, the agent
begins to turn to the left. At 2, the network state has essentially reached the
attractor. As the turn ends, the equilibrium point moves back to the center
line, pulling the system state along behind it. However, owing to a slight
overturn at 3, the attractor actually crosses over to the M, side of the diago-
nal, causing a small compensatory turn to the right. Except for another over-
compensation when the agent first encounters the patch, both the equilibrium
point and the network state then remain on the diagonal (causing the agent
to move along a straight line) until the agent leaves the patch at 4. Because
the odor gradient is large so near the patch, Sg is much larger than S, at this
point. This moves the equilibrium point very far onto the M, side of the
diagonal. As the system state follows, the agent makes a sharp turn to the
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Figure 5.5 Motor-space projections of the network’s instantaneous state and trajectory
(gray) and the instantaneous location of the attractor (black disk) for the four points indicated
in figure 5.3. States above the diagonal (M, > M,) correspond to right turns, while left turns
occur when the state is below the diagonal.

right. Thus we can see how a reciprocal interaction between the effect of
the body’s chemical sensors on the network’s autonomous dynamics and the
effect of the network’s motor outputs on the body’s movement acts to keep
the agent oriented toward the patch at all times.

Legged Locomotion
In order for a legged agent to achieve steady forward progress, the relation-
ships among the segments comprising each individual leg and between mul-

tiple legs must be properly coordinated. These coordination problems raise
some interesting issues for the present framework. In order to explore these
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issues, a locomotion controller for a six-legged agent was evolved and ana-
lyzed (Beer and Gallagher, 1992; Gallagher and Beer, 1993; Beer, 1995). Here
I focus on the control of a single leg.

In terms of the framework, single-legged locomotion can be formulated as
follows. 1 once again interpret the dynamics of the agent’s body as & The
body has a single leg with a foot that can be either up or down. When the
foot is down, any forces generated by the leg serve to move the body (called
a stance phase). When the foot is up, any forces generated by the leg cause it
to swing (called a swing phase). The leg is controlled by three effectors: two
determine the clockwise and counterclockwise torque about the leg’s single
joint with the body and the third effector controls the state of the foot. &
corresponds to the dynamics of the neural circuit controlling the leg, for
which a five-neuron, fully interconnected network was employed. The out-
puts of three of these neurons drive the three effectors mentioned above
(M), while the other two neurons are interneurons whose role in the circuit is
not prespecified. In addition, all five neurons received as input a weighted
copy of the leg angle (S). The leg controller thus had 5 time constants,
5 biases, 25 connection weights, and 5 sensor weights, forming a 40-dimen-
sional parameter space that was searched using GAucsd. Since the goal of
locomotion is steady forward progress, the performance measure to be
maximized was the total forward distance traveled in a fixed amount of time.
The minimum acceptable level of performance (C) can be defined as the con-
straint that the average velocity of the body be greater than zero.

Leg controllers were evolved under three different conditions. During evo-
lution, sensory feedback was either (1) always available, (2) never available,
or (3) available 50% of the time. Successful leg controllers were evolved in
all three cases. When sensory feedback was always available during evolution,
reflexive pattern generators always evolved. The activity of a typical reflexive
controller is shown in figure 5.6. Note that, though this is not generally true,
the interneurons are not utilized in this particular controller. Reflexive con-
trollers are completely dependent on sensory feedback; if the sensor is later
removed, they cease to operate. When sensory feedback was never available
during evolution, so-called central pattern generators always evolved. Such
circuits are capable of intrinsically generating the basic oscillatory motor
pattern necessary for walking. Finally, when sensory feedback was available
only 50% of the time, mixed pattern generators evolved. These controllers can
take advantage of sensory feedback when it is available to fine-tune their
operation, but, like central pattern generators, they are able to generate a
stereotyped walking pattern without any sensory feedback.

In order to illustrate the dynamical analysis of these locomotion control-
lers, I focus here on analyzing the reflexive controller shown in figure 5.6.
I follow the same basic strategy as in the previous section. First, we exam-
ine how the phase portrait of the autonomous network dynamics varies as a
function of the leg angle. Then, we explore how the interaction between
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Figure 5.6 Activity of a reflexive pattern generator. Plots of the forward velocity of the
body, the output of the foot, backward swing and forward swing motor neurons, the output of
the two interneurons, and the leg angle are shown. The velocity ramps up to a maximum value
during each stance phase and then drops to zero when the agent lifts its single leg at the
beginning of each swing phase and falls.

this autonomous dynamics and the agent’s body gives rise to the observed
walking behavior.

Projections of the autonomous dynamics of the reflexive controller as a
function of leg angle are shown in figure 5.7 for each of the three motor
outputs. For our understanding of the operation of this controller, the most
important feature of these diagrams to note is that, over most of the range of
leg angles, there is a single stable equilibrium point. When the leg is forward,
this equilibrium point is located in a region of the state space where the foot
and backward swing motor outputs are active and the forward swing motor
output is inactive. In contrast, when the leg is backward, the stable equilib-
rium is located in a region of state space where the forward swing motor
output is active and the foot and backward swing motor outputs are inactive.

Between these two extremes, a sequence of bifurcations occur that serve to
switch the phase portrait between the two stable equilibrium points. This
sequence is perhaps most easily seen in the backward swing diagram. Let us
begin with the leg all the way back, where the backward swing projection of
the phase portrait exhibits a single stable equilibrium near 0. As the leg
swings forward, an additional pair of equilibrium points, one stable and the
other unstable, come into existence near 0.9. At slightly more positive angles,
this pair increasingly separate and the lower attractor eventually loses sta-
bility, bifurcating into another unstable equilibrium point and a stable limit
cycle. Note that this limit cycle is not at all appropriate for walking and
appears to play no functional role in the network. It is merely an intermediate
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Figure 5.7 Motor-space projections of the bifurcation diagram of the reflexive leg controller
shown in figure 5.6 as a function of leg angle. Stable equilibrium points are shown with solid
lines, while unstable equilibrium points are shown with dashed lines. Limit cycles are shown in
gray. By convention, a leg that is perpendicular to the body has a leg angle of 0. Positive
angles correspond to directions toward the front of the body, while negative angles corre-
spond to directions toward the rear. The normal operating range of the leg is +7/6, but the
leg often stretches past — /4 during stance.

step on the path from one stable equilibrium point to another. At increasingly
positive leg angles, this limit cycle grows until it eventually collides with the
upper unstable equilibrium point and disappears. Finally, at even more posi-
tive angles, the two unstable equilibrium points collide and disappear, leaving
a single attractor near 1. Note that this entire sequence of bifurcations takes
place in a fairly narrow range of leg angles. This sequence is reversed when
the leg swings in the opposite direction.
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From these bifurcation diagrams, we can immediately see why this control-
ler does not work when the sensory feedback is removed. Because the auton-
omous dynamics of this network exhibits only equilibrium points for most leg
angles, removing the sensory feedback causes the network state to evolve to
the corresponding equilibrium point and then stop. Thus, the normal walking
pattern is a property of the coupled agent-environment system # only and
cannot be attributed to either &/ or & alone. In order to understand how the
nature of the coupling between o and & gives rise to this limit cycle when
the sensory feedback is intact, we must follow the interaction between the
network and body dynamics through a single swing and stance cycle of the
leg, using the above bifurcation diagrams as a guide.

The three-dimensional motor-space projection M of the limit cycle gener-
ated when the controller is coupled to the body is shown at the center of
figure 5.8. Surrounding this central plot are smaller plots of the instantaneous
autonomous dynamics of the network at different points in the cycle. For
each plot, a black disk marks the location of the stable equilibrium point at
that instant, while the instantaneous state and trajectory of the network is
shown in gray. At any given point in the cycle, the network state moves
toward the attractor in whose basin it finds itself. However, since the leg
angle is a parameter of the network dynamics that is constantly changing, the
phase portrait of the network dynamics (and thus the location of the equilib-
rium point that is attracting it and the trajectory it is following) is continu-
ously changing as well.

At the start of a stance phase, the network is moving toward an equilib-
rium point in the back, upper left-hand corner of the motor output space (1).
Recall that this region of the state space corresponds to a situation in which
the foot is down, the backward swing effector is active, and the forward
swing effector is inactive (i.e., a stance phase). At 2, the state has reached this
attractor and the leg continues to stance. However, as the leg moves through
the region of bifurcations described above, this equilibrium point disappears
and the other attractor appears at the front, lower right-hand corner, which
the network state now begins to move toward 3. Recall that the region of
state space occupied by this attractor corresponds to a situation in which
the foot is up, the forward swing effector is active and the backward swing
effector is inactive (i.e., a swing phase). As the state nears this attractor at 4,
the foot is lifted and the leg begins to swing forward, initiating a swing
phase. As the leg swings forward, its angle once again passes through the
region of bifurcations (this time in reverse). The first attractor is restored and
the network state once again flows toward it (5). As the leg continues to
swing (6), the network state crosses the activation threshold for the foot and
a new stance phase begins at 1. Thus, we can see how the normal walking
pattern arises from a reciprocal interaction between the network dynamics
and the body dynamics: when the network state is in the vicinity of each
attractor, the body dynamics at that point is such that the other attractor
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Figure 5.8 Operation of a typical reflexive pattern generator. The output of the foot, back-
ward swing and forward swing motor neurons are plotted. The limit cycle generated when this
controller is coupled to the body is shown at center. Surrounding this central plot are plots of
the instantaneous autonomous dynamics of the network at different points in the step cycle. In
each case, the solid point denotes a stable equilibrium point, the gray point denotes the
instantaneous system state, and the gray line shows the trajectory that the system would
follow if the leg were to remain fixed at its present angle. As shown by the small pictures of
the agent associated with each plot, the top three plots correspond to the beginning (1), middle
(2), and end (3) of a stance phase, while the bottom three plots correspond to the beginning (4),
middle (5), and end (6) of a swing phase.
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appears, causing the network state to be alternately attracted by the two
equilibrium points.

Similar analyses have demonstrated that central pattern generators exhibit
autonomous limit cycles whose motor space projections are appropriate to
make the leg walk, while mixed pattern generators exhibit autonomous limit
cycles that are entrained by sensory feedback (Gallagher and Beer, 1993;
Beer, 1995). Full six-legged locomotion controllers comprised of six coupled
leg controllers were also successfully evolved (Beer and Gallagher, 1992).
Here not only did the network have to solve six versions of the single leg
control problem but the movements of all six legs had to be properly co-
ordinated so as to continuously maintain static stability. The results of these
experiments paralleled those for the single leg case in that reflexive, central,
and mixed pattern generators were evolved under analogous conditions. In
all cases, the locomotion controllers evolved to generate a tripod gait, in
which the front and back legs on each side of the body move in unison
with the middle leg on the opposite side. This gait is ubiquitous among fast-
walking insects (Graham, 1985).

5.5 CONCLUSION

In this chapter, I have argued that, aside from all of the other roles that the
notion of computation plays, it has supplied us with a conceptual framework
for thinking about the organization of systems that exhibit complex but
highly structured behavior, such as animals in general and human beings in
particular. This framework suggests that, like a computer, such systems must
operate by the algorithmic manipulation of symbolic representations. A com-
putational language leads us to search for ways to decompose an intelligent
agent’s machinery into reliably identifiable patterns of elements that can
be usefully interpreted as representations and reliably identifiable functional
modules that can be usefully interpreted as algorithmically transforming these
representations in meaningful ways.

In contrast, I have argued that dynamical systems provide a more appro-
priate conceptual framework for understanding how the behavior of any
agent interacting with the real world can be continuously adjusted to its
constantly changing external and internal circumstances. In a dynamical sys-
tem, complex but highly structured behavior can arise as a global property
of the interaction between the system’s individual components. In place of
discrete symbols and step-by-step manipulations, dynamical systems theory
provides a rich geometric and topological language for characterizing the
possible long-term behaviors of a complex system and the dependence of
those behaviors on parameters.

Using the language of dynamical systems theory, a theoretical framework
for autonomous agents research was sketched. In this framework, an agent
and its environment are modeled as two coupled dynamical systems whose
mutual interaction is jointly responsible for the agent’s observed behavior. In
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general, there need be no clean decomposition of an agent’s dynamics into
distinct functional modules and no aspect of the agent’s state need be inter-
pretable as a representation. The only requirement is that, when coupled to
the environment in which it must function, the agent engages in the patterns
of behavior necessary to accomplish whatever task it was designed for.

Chemotaxis and walking agents were used to illustrate the framework. In
each case, the observed behavior of an agent was understood by first exam-
ining how the motor-space projection of its autonomous dynamics changes
as a function of its sensory inputs and then using this understanding to
explain its behavior when coupled to its environment. In general, such an
analysis would need to be carried out for the environment as well. At any
given point in the interaction between &/ and &, the trajectory of each is
determined by its own current state and the geometry of its flow. However,
owing to their coupling, the trajectories of each system deform the flow
geometry of the other and therefore influence its subsequent evolution.

Two comments on these examples are in order. First, in order to illustrate
the basic framework, I have focused on the interaction between an agent’s
control mechanisms and its body rather than between an agent and its exter-
nal environment. Nevertheless, these examples clearly support the claim that
concepts from dynamical systems theory can be used to understand how
behavior arises from the interaction of coupled dynamical systems. Ulti-
mately, we must, of course, examine how the interaction of an agent (itself
considered as the interaction of two dynamical systems: control mechanism
and body) with a dynamic environment gives rise to its observed behavior.
Second, it should be emphasized that, despite the fact that these examples
utilized genetic algorithms to evolve continuous-time recurrent neural net-
works for these behaviors, the general approach is valid for any dynamical
system regardless of the nature of its components and the means by which it
was created.

The theoretical framework sketched in this paper is at best a beginning.
Dynamical systems theory is no more a theory of autonomous agents than is
the formal theory of computation. However, it does inspire a very different
set of intuitions about an agent’s internal organization, and it provides a
rather different language for explaining an agent’s behavior. Only further
empirical work will tell which of these conceptual frameworks will ultimately
prove to be more fruitful. Toward this end, dynamical analysis of other
chemotaxis and walking agents is ongoing. In addition, this basic approach
has been applied to understanding the operation of evolved continuous-time
recurrent neural networks that can learn to make short sequences of decisions
based on their experience in an environment (Yamauchi and Beer, 1994).
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Dynamics and Coordinate Systems in
Skilled Sensorimotor Activity

Elliot L. Saltzman

EDITORS’ INTRODUCTION

A lay-up by a professional basketball player is a spectacular example of bodily
coordination involving literally thousands of cooperating components. Yet numerous
kinds of everyday performance are just as magical: a mouse licking fur on its belly,
a child speaking her first words, or even simply walking across uneven ground. How
are such actions possible? How are all the elements involved controlled so as to
participate in the overall action in just the right way?

Traditional computational cognitive science has had very little to say about this
kind of problem. That approach inherits Descartes’ sharp distinction between mind
and body, in the form of a rigid separation between cognition and mere bodily
motions. Cognition, the proper domain of cognitive science, is regarded as inner,
abstract, representational, and rather difficult to study. Bodily motions are external,
concrete, mechanistic, and relatively simple; the study of movement is thought to
be someone else’s problem entirely. Consequently, for most computational cognitive
scientists, the nature of sensorimotor coordination—and hence the interaction of the
cognitive system with its world—is simply shelved. Further, when the issue does
come to be addressed, computationalists face the difficult problem of interfacing the
cognitive system with the body, and in particular getting the symbols, which are the
output of the cognitive system, to drive complex movements of real flesh and bone in
real time.

In this chapter, Saltzman describes coordination from a dynamical perspective. He
begins from the assumption that coordinated movements, such as the regular swing-
ing of two limbs, or the pronunciation of a word, are naturally flowing behaviors
of dynamical systems. But how, in any given case, is the dynamical system best
described? What are the relevant variables and equations, and how are they tied
together into complex systems?

Investigating these questions, Saltzman draws some surprising conclusions. For
example, it is natural to suppose that the relevant variables in coordinated movement
conceived as a dynamical system would correspond to concrete bodily features such
as muscle states and joint angles, and that these features would influence one another
by direct physical links. Yet Saltzman shows how patterns of coordination are in fact
best captured by dynamical models that operate in a much more abstract, high-level
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“task-space,” and that the links between different components of a system must be
characterized in informational terms.

In the second half of the chapter, the task-space analysis of coordination is de-
scribed in some detail for one particularly common and yet subtle form of movement,
namely the coordination of lips, jaw, tongue, elc. in speaking. Speech involves con-
stricting the throat and mouth in various ways, and so the abstract task space in this
case is defined over constriction types. Underlying these constrictions types, of course,
are movements of the particular articulators (lips, etc.) involved in speaking; the
dynamics in the task space governs the coordination of these lower-level articulators
into specific speech gestures such as the closing of the two lips. In speaking whole
words and sentences, multiple gestures must be combined in close succession, with the
effect that the detailed movements of the articulators in one gesture shape those of
their neighbors; in other words, the specific movements of articulators are heavily
context-dependent. Saltzman describes how a dynamical model of speech coordina-
tion can smoothly accommodate such phenomena.

This work has a number of wider implications for cognitive science. First, sensori-
motor coordination is a much more abstract, medium-independent business than is
often assumed. Second, a dynamical account of coordinated movement virtually
mandates adoption of a compatible dynamical account of more “central” aspects of
cognition, such as assembly of the “gestural score” that drives the speech gestures
themselves. Thus, a dynamical perspective on coordinated movement not only re-
duces the conceptual distance between cognition on the one hand and mere bodily
movement on the other, it forces reconceptualization of the nature of the inner cogni-
tive processes themselves in dynamical terms. It thus turns out that cognition is not
best thought of as something fundamentally distinct from movements of the body;
rather, bodily coordination (and thereby interaction with the world) is really part of
cognition itself.

6.1 INTRODUCTION

Skilled sensorimotor activities entail the creation of complex kinematic patterns
by actors using their limbs and speech articulators. Examples of kinematic
patterns include trajectories over time of a reaching hand's position, velocity,
or acceleration variables, the spatial shape of the path taken by a handheld
pen during handwriting, or the relative timing of the speech articulators to
produce the phonemes /p/, /e/, and /n/ in the word “pen.” The term dynamics
is used to refer to the vector field of forces that underlies and gives rise to an
action’s observable kinematic patterns. In this chapter, a dynamical account of
skilled activity is reviewed in which skilled behavior is characterized as much
as possible as that of a relatively autonomous, self-organizing dynamical sys-
tem. In such systems, task-appropriate kinematics are viewed as emerging
from the system’s underlying dynamical organization (Beek, 1989; Saltzman
and Munhall, 1989; Schéner and Kelso, 1988; Turvey, 1990). Thus, the em-
phasis in the present account is on a dynamical description, rather than a
kinematic one, of sensorimotor skills. For example, an extreme and admittedly
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exaggerated “straw man” counterhypothesis is that of a central executive or
homunculus that produces a given movement pattern with reference to an
internal kinematic template of the form, tracing out the form provided by the
template, and using the articulators as a physiological and biomechanical
pantograph to produce a larger version of the pattern in the external world.

An adequate account of skilled sensorimotor behaviors must also address
the multiplicity of coordinate systems or state spaces, and the mappings or
transformations that exist among them, that appear to be useful in describing
such behaviors. For example, a reaching movement can be described simulta-
neously in terms of patterns of muscle activations, joint angle changes, spatial
motions of the hand, etc., and in terms of the ways these patterns relate to
one another. This chapter focuses on the roles of both dynamics and coordi-
nate systems in skilled sensorimotor activities. Evidence is reviewed in this
chapter supporting the claim that the dynamics of sensorimotor control and
coordination are defined in highly abstract coordinate systems called task
spaces that are distinct from, yet related to, the relatively concrete physio-
logical and biomechanical details of the peripheral musculoskeletal appara-
tus. It is further hypothesized that such spaces are the media through which
actions are coupled perceptually to task-relevant surfaces, objects, and events
in the actor’s environment.

The chapter is divided into roughly two parts. The first is focused on con-
cepts of dynamics as they have been applied to understanding the perfor-
mance of single or dual sensorimotor tasks, where each task is defined in a
one-to-one manner with a single articulatory degree of freedom. For example,
a single task could be defined as the oscillation of a hand about the wrist joint
or of the forearm about the elbow joint; a dual task could be defined as the
simultaneous oscillations of both the right and left hand, or of the elbow and
hand of a given arm. The second part of the chapter is focused on how the
notions of dynamics and coordinate systems can be combined or synthesized
to account for the performance of single or multiple tasks, where each task is
defined over an entire effector system with many articulatory degrees of
freedom. For example, in the production of speech the task of bringing the
lips together to create a bilabial closure for /p/ is accomplished using the
upper lip, lower lip, and jaw as articulatory degrees of freedom.

6.2 DYNAMICS

Why place so much emphasis on the dynamics of sensorimotor coordination
and control? A dynamical account of the generation of movement patterns is
to be preferred over other accounts, in particular the notion of internal kine-
matic templates, because dynamics gives a unified and parsimonious account
of (at least) four signature properties of such patterns:

1. Spatiotemporal form. A movement’s spatiotemporal form can be described
both qualitatively and quantitatively. For example, qualitatively different
hand motions are displayed in situations where the hand moves discretely to
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a target position and then stops, and where the hand moves in a continuous,
rhythmic fashion between two targets. Quantitative differences are reflected
in the durations and extents of various discrete motions, and in the fre-
quencies and amplitudes of the rhythmic motions.

2. Stability. A movement's form can remain stable in the face of unforeseen
perturbations to the state of the system encountered during movement
performances.

3. Scaling. Lawful warping of a movement's form can occur with parametric
changes along performance dimensions such as motion rate and extent.

4. Invariance and variability. A dynamical framework allows one to character-
ize in a rigorous manner a common intuition concerning skilled actions in
general. This intuition is that there is a subtle underlying invariance of control
despite an obvious surface variability in performance.

In order to illustrate these points, the behavior of several simple classes
of dynamical systems are reviewed (Abraham and Shaw, 1982; Baker and
Gollub, 1990; Thompson and Stewart, 1986; see also Norton, chapter 2).
Mathematical models based on these systems have been used to provide
accounts and to simulate the performance of simple tasks in the laboratory. In
such models, the qualitative aspects of a system’s dynamics are mapped onto
the functional characteristics of the performed tasks. For example, discrete
positioning tasks can be modeled as being governed globally by point attrac-
tor or fixed point dynamics. Such dynamical systems move from initial states
in a given neighborhood, or attractor basin, of an attracting point to the
point itself in a time-asymptotic manner. Similarly, sustained oscillatory tasks
can be modeled using periodic attractor or limit cycle dynamics. Such dynamics
move systems from initial states in the attractor basin of an attracting cycle to
the cycle itself in a time-asymptotic manner (see examples 8 and 9 in Norton,
chapter 2, for representative equations of motion and sets of state trajectories
for fixed-point and limit-cycle systems, respectively). The performance of
simultaneous rhythms by different effectors can be modeled as the behavior
of a system of coupled limit-cycle oscillators, in which the motion equation
of each oscillator includes a coupling term(s) that represents the influence
of the other oscillator’s ongoing state. For example, the coupling term in oscil-
lator-i's equation of motion might be a simple linear function, ax;, of the
position of oscillator-j, where z; is the ongoing position of oscillator-j and
a; is a constant coefficient that maps this position into a coupling influence
on oscillator-i. In what follows, the discussion is focused initially on single
degree-of-freedom oscillatory tasks, and then moves to comparable, dual
degree-of-freedom tasks.

Single Degree-of-Freedom Rhythms

In a typical single degree-of-freedom rhythmic task, a subject is asked to
produce a sustained oscillatory movement about a single articulatory degree
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of freedom, e.g., of the hand or a handheld pendulum about the wrist joint.
Usually, the rhythm is performed at either a self-selected “comfortable” fre-
quency or at a frequency specified externally by a metronome; in both cases,
the amplitudes of the performed oscillations are self-selected according to
comfort criteria. Such movements can be characterized as limit-cycle oscilla-
tions, in that they exhibit characteristic frequencies and amplitudes (Kugler
and Turvey, 1987) that are stable to externally imposed perturbations (Kay,
Saltzman, and Kelso, 1991; Scholz and Kelso, 1989). For example, after such
rhythms are subjected to brief mechanical perturbations, they return sponta-
neously to their original preperturbation frequencies and amplitudes. Addi-
tionally, limit-cycle models capture the spontaneous covariation or scaling
behavior that is observed among the task’s kinematic observables. For
example, at a given movement frequency there is a highly linear relationship
between a cycle’s motion amplitude and its peak velocity, such that cycles
with larger amplitudes generally display greater peak velocities. Such a rela-
tionship is inherent in the dynamics of near-sinusoidal limit-cycle oscillations.
Further, across a series of different metronome-specified frequencies, the mean
cycle amplitude decreases systematically as cycle frequency increases (Kay,
Kelso, Saltzman, et al., 1987). Such scaling is a natural consequence of the
structure of the limit cycle’s escapement, a nonlinear damping mechanism that
is responsible for offsetting frictional losses and for governing energy flows

through the system in a manner that creates and sustains the limit cycle’s
rhythm.

Dual Degree-of-Freedom Rhythms

These tasks consist simply of two single degree-of-freedom tasks performed
simultaneously, e.g., rhythmic motions of the right and left index fingers,
usually at a common self-selected or metronome-specified frequency and with
self-selected amplitudes. Additionally, subjects are requested typically to per-
form the task with a given relative phasing between the component rhythms
(Kelso, 1984; Rosenblum and Turvey, 1988; Sternad, Turvey, and Schmidt,
1992; Turvey and Carello, chapter 13). For example, for bimanual pendulum
oscillations performed at a common frequency in the right and left parasagittal
planes (see figure 13.7, Turvey and Carello, chapter 13), an inphase relation-
ship is defined by same-direction movements of the components, i.e., front-
back movements of the right pendulum synchronous with front-back move-
ments of the left pendulum; similarly, an antiphase relationship is defined by
simultaneous, opposite-direction movements of the components. Models of
such tasks begin by specifying each component unit as a separate limit-cycle
oscillator, with a 1: 1 frequency ratio defined between the pair of oscillators. If
this were all there was to the matter, one could create arbitrary phase rela-
tions between the component limit cycles, simply by starting the components
with an initial phase difference equal to the desired phase difference. This is
an inadequate description of dual rhythmic performances, however, since the
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behavioral data demonstrate that it is only possible to easily perform 1:1
thythms that are close to inphase or antiphase; intermediate phase differences
are not impossible, but they require a good deal of practice and usually
remain more variable than the inphase and antiphase pair.

What makes the inphase and antiphase patterns so easy to perform, and
the others so difficult? What is the source of this natural cooperativity? It
turns out that these are the same questions that arise when one considers the
phenomenon of entrainment between limit-cycle oscillators. This phenomenon
was observed by the 17th century Dutch physicist Christiaan Huygens, who
noticed that the pendulum swings of clocks placed on the same wall tended
to become synchronized with one another after a period of time. This phe-
nomenon can be modeled dynamically by assuming that each clock is its own
limit-cycle oscillator, and that the clocks are coupled to one another because
of weak vibrations transmitted through the wall. Such coupling causes the
motions of the clocks to mutually perturb one another’s ongoing rhythms,
and to settle into a cooperative state of entrainment. These observations sug-
gest that the appropriate theory for understanding the performance of multiple
task rhythms is that of coupled limit-cycle oscillators. In this theory, when
two limit cycles are coupled bidirectionally to one another, the system’s
behavior is usually attracted to one of two modal states. In each modal state,
the components oscillate at a common mode-specific frequency, and with
a characteristic amplitude ratio and relative phase. Most important for the
present discussion, if the component oscillators are roughly identical and
the coupling strengths are roughly the same in both directions, then the two
modes are characterized by relative phases close to inphase and antiphase,
respectively. It is possible, however, that the frequencies and amplitudes ob-
served in the modal states can be different from those observed when the
components oscillate independently of one another.

Thus, we are led to view the inphase and antiphase coordinative patterns
in 1:1 dual oscillatory tasks as the attractive modal states of a system of
coupled limit-cycle components. Note that the coupling that creates this
modal cooperativity is involuntary and obligatory, in the sense that these
modal states are hard to avoid even if the task is to perform with a relative
phasing in between those of the naturally easy modes. Such intermediate
states are possible to perform, but require much practice and remain more
variable than the modal states. What is the structure of the intercomponent
coupling? What is the source or medium through which this coupling is

defined?

Coupling Structure Coupling structure refers to the mathematical struc-
ture of the coupling functions that map the ongoing states of a given oscilla-
tor into perturbing influences on another. It turns out that many types of
coupling will create stable modes with relative phases close to inphase and
antiphase. For example, even the simple linear positional coupling mentioned
earlier, a;;x;, will work, where z; is the ongoing position of oscillator-j and 4,
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is a constant coefficient that maps this position into a perturbation of oscilla-
tor-i's motion.

In addition to entrainment, however, human rhythmic tasks display phase
transition behaviors that place additional constraints on the choice of coupling
functions. In an experimental paradigm pioneered by Kelso (Kelso, 1984;
Scholz and Kelso, 1989), subjects begin an experimental trial by oscillating
two limb segments at the same frequency in an antiphase pattern, and then
increase the frequency of oscillation over the course of the trial. Under such
conditions, the antiphase coordination abruptly shifts to an inphase coordina-
tion when the oscillation frequency passes a certain critical value. A compara-
ble shift is not seen, however, when subjects begin with an inphase pattern;
under these conditions, the inphase coordination is maintained as frequency
increases. The abrupt phase transition from antiphase to inphase patterns
when frequency is increased can be characterized mathematically as a bifurca-
tion phenomenon in the underlying dynamical system. In dynamical models
of such phenomena the coupling functions are required typically to be non-
linear (Haken, Kelso, and Bunz, 1985; Schéner, Haken, and Kelso, 1986). To
summarize briefly, entrainment can be created by limit cycles coupled bidirec-
tionally in many ways, but entrainment with bifurcations require typically
nonlinear coupling structures.

Coupling Medium What is the source of interoscillator coupling during
the performance of simultaneous rhythmic tasks? What are the coordinates
along which such coupling is defined? One possibility is that the coupling
medium is mechanical in nature, as in the case of Huygens’ pendulum clocks,
since it is known that biomechanical reactive coupling exists among the seg-
ments of effector systems during motor skill performances (Bernstein, 1967/
1984; Hollerbach, 1982; Saltzman, 1979; Schneider, Zernicke, Schmidt, et al.,
1989). Such coupling is defined in segmental or joint-space coordinate sys-
tems. A second possibility is that the coupling is neuroanatomical, as in the
case of the crosstalk or overflow between neural regions controlling homolo-
gous muscle groups that has been hypothesized to underlie mirroring errors
in bimanual sequencing tasks such as typing or key-pressing (MacKay and
Soderberg, 1971), or associated mirror movements in certain clinical popu-
lations (Woods and Teuber, 1978). Such coupling is defined in muscle-based
coordinate systems.

An experiment by Schmidt, Carello, and Turvey (1990) indicated that
matters might not be so straightforward. In this experiment, subjects per-
formed rhythmic motions at their knee joints, but the major innovation of the
paradigm was to have the set of two rhythms defined across subjects rather
than within subjects. Thus, one subject would perform rhythmic oscillations
at one knee joint while watching a nearby partner do the same (see figure
13.9, Turvey and Carello, chapter 13). There were two types of task. In one
type, the partners were asked to oscillate their respective legs at a mutually
comfortable common frequency either inphase or antiphase with one another,
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and to increase or decrease the oscillation frequency by self-selected amounts
in response to a signal supplied by the experimenter; in the second type of
task, a metronome was used to specify both the frequencies and time schedule
of frequency scaling. Surprisingly, all the details of entrainment and bifurca-
tion phenomena were observed in this between-person experiment as had
been observed previously in the within-person experiments. Clearly, joint-
space (biomechanical) and muscle-space (neural) coordinates were not the
media of interoscillator coupling in this experiment. Rather, the coupling
must have been due to visual information that was specific to the observed
oscillatory states of the pendulums themselves. The same point has received
further support in subsequent studies in which similar behaviors are displayed
by subjects who oscillate an index finger either on or off the beat provided
auditorily by a metronome (Kelso, Delcolle, and Schéner, 1990), or who oscil-
late a forearm inphase or antiphase with the visible motion of a cursor on
a cathode-ray tube (CRT) screen (van Riel, Beek, and van Wieringen, 1991).
All these studies underscore the conclusion that the coupling medium is an
abstract one, and that coupling functions are defined by perceptual informa-
tion that is specific to the tasks being performed.

Coordinative Dynamics Just as the coupling medium is not defined in
simple anatomical or biomechanical terms, several lines of evidence support
the hypothesis that the limit-cycle dynamics themselves are also not specified
in this manner. That is, the degrees of freedom or state variables along which
the oscillatory dynamics are specified, and that experience the effects of inter-
oscillator coupling, are not defined in simple anatomical or biomechanical
coordinates. Even tasks that, at first glance, might appear to be specified at
the level of so-called articulatory joint rotational degrees of freedom have
been found to be more appropriately characterized in terms of the orienta-
tions of body segments in body-spatial or environment-spatial coordinate
systems. For example, Baldissera, Cavallari, and Civaschi (1982) studied the
performance of simultaneous 1:1 oscillations about the ipsilateral wrist and
ankle joints in the parasagittal plane. Foot motion consisted of alternating
downward (plantar) and upward (dorsal) motion. Hand motion consisted of
alternating flexion and extension. The relationship between anatomical and
spatial hand motions was manipulated across conditions by instructing sub-
jects to keep the forearm either palm down (pronated) or palm up (supinated).
Thus, anatomical flexion or extension at the wrist caused the hand to rotate
spatially downward or upward during the pronation condition, but spatially
upward or downward during supination. It was found that the easiest and
most stably performed combinations of hand and foot movements were
those in which the hand and foot motions were in the same spatial direction,
regardless of the relative phasing between upper and lower limb muscle
groups. Thus, the easiest and most natural patterns were those in which hand
and foot motions were spatially inphase. It was more difficult to perform
the spatially antiphase combinations, and occasional spontaneous transitions
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were observed from the spatially antiphase patterns to the spatially inphase
patterns. Related findings on combinations of upper and lower limb rhythmic
tasks were more recently reported by Baldissera, Cavallari, Marini, et al. (1991)
and by Kelso and Jeka (1992).!

Thus, the dynamical systems for coordination and control of sensorimotor
tasks, and the medium through which these systems are coupled, cannot be
described in simple biomechanical or neuroanatomical terms. Rather, they are
defined in abstract, spatial, and informational terms. This point becomes even
clearer when one examines the performance of tasks that are more realistic
and complex than the relatively artificial and simple tasks that have been
reviewed above.

Speech Production

Consider the production of speech and what is entailed during the speech
gesture of raising the tongue tip toward the roof of the mouth to create and
release a constriction for the phoneme /z/, using the tongue tip, tongue body,
and jaw in a synergistic manner to attain the phonetic goal. Such systems
show a remarkable flexibility in reaching such task goals, and can compensate
adaptively for disturbances or perturbations encountered by one part of the
system by spontaneously readjusting the activity of other parts of the system
in order to still achieve these goals. An elegant demonstration of this ability
was provided in an experiment by Kelso, Tuller, Vatikiotis-Bateson, et al.
(1984; see also Abbs and Gracco, 1983; Folkins and Abbs, 1975; Shaiman,
1989). In this experiment, subjects were asked to produce the syllables /bab/
or /baz/ in the carrier phrase “It's a again,” while recording (among
other observables) the kinematics of upper lip, lower lip, and jaw motion, as
well as the electromyographic activity of the tongue-raising genioglossus
muscle. During the experiment, the subjects’ jaws were unexpectably and un-
predictably perturbed downward as they were moving into the final /b/ clo-
sure for /bab/ or the final /z/ constriction for /baz/. It was found that when
the target was /b/, for which lip but not tongue activity is crucial, there was
remote compensation in the upper lip relative to unperturbed control trials,
but normal tongue activity (figure 6.1A); when the target was /z/, for which
tongue but not lip activity is crucial, remote compensation occurred in the
tongue but not the upper lip (figure 6.1B). Furthermore, the compensation
was relatively immediate in that it took approximately 20 to 30 ms from the
onset of the downward jaw perturbation to the onset of the remote compen-
satory activity. The speed of this response implies that there is some sort of
automatic “reflexive” organization established among the articulators with a
relatively fast loop time. However, the gestural specificity implies that the
mapping from perturbing inputs to compensatory outputs is not hard-wired.
Rather, these data imply the existence of a task- or gesture-specific, selective
pattern of coupling among the component articulators that is specific to the
utterance or phoneme produced.
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Figure 6.1 Experimental trajectory data for the unperturbed (dotted lines) and perturbed
(solid lines) utterances /bxb/ (A) and /baz/ (B). (Top row) Upper lip position. (Middle row)
Genioglossus muscle activity. (Bottom row) Jaw position. Panels in each column are aligned
with reference to the perturbation onset (solid vertical lines). Perturbation duration was 1.5
seconds. (Adapted from Kelso, J. A. S., Tuller, B., Vatikiotis-Bateson, E., et al., 1984).

What kind of dynamical system can display this sort of flexibility? Clearly,
it cannot be a system in which task goals are defined independently at the
level of the individual articulators. For example, if one were to model a
bilabial closing gesture by giving each articulatory component (upper lip,
lower lip, and jaw) point-attractor dynamics and its own target position, then
the system would attain a canonical closure in unperturbed simulations. How-
ever, the system would fail in simulations in which perturbing forces were
added to one of the articulators during the closing gesture. For example, if
a simulated braking force were added to the jaw that prevented it from
reaching its target, then the overall closure goal would not be met even
though the remaining articulators were able to attain their own individual
targets.

Appropriately flexible system behavior can be obtained, however, if the
task-specific dynamics are defined in coordinates more abstract than those
defined by the articulatory degrees of freedom. Recall that, in earlier discus-
sions of coupled limit-cycle dynamics, the term modal state was used to
characterize the cooperative states that emerged from the dynamics of the
coupled system components. Modal patterns defined the systems’ preferred
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or natural set of behaviors. The problem at hand, therefore, is to understand
how to create modal behaviors that are tailored to the demands of tasks
encountered in the real world. This can be accomplished if one can design
task-specific coupling functions among a set of articulatory components that
serve to create an appropriate set of task-specific system modes. The remain-
der of this chapter is devoted to describing one approach to the design of
task-specific dynamical systems, called task dynamics, that has been used with
some success to model the dynamics of speech production. This modeling
work has been performed in cooperation with several colleagues at Haskins
Laboratories (New Haven, Conn.) as part of an ongoing project focused on
the development of a gesturally based, computational model of linguistic
structures (Browman and Goldstein, 1986, 1991, and chapter 7; Fowler
and Saltzman, 1993; Kelso, Saltzman, and Tuller, 1986a,b; Kelso, Vatikiotis-
Bateson, Saltzman, et al., 1985; Saltzman, 1986, 1991; Saltzman and Kelso,
1987; Saltzman and Munhall, 1989). For recent reviews, related work, and
critiques, see also de Jong (1991), Edwards, Beckman, and Fletcher (1991),
Hawkins (1992), Jordan and Rosenbaum (1989), Mattingly (1990), Perkell
(1991), and Vatikiotis-Bateson (1988).

6.3 TASK DYNAMICS

The discussion of task dynamics for speech production is divided into two
parts. The first focuses on the dynamics of interarticulatory coordination
within single speech gestures, e.g., the coordination of lips and jaw to produce
a bilabial closure. The second part focuses on the dynamics of intergestural
coordination, with special attention being paid to periods of coproduction when
the blended influences of several temporally overlapping gestures are evident
in the ongoing articulatory and acoustic patterns of speech (Bell-Berti and
Harris, 1981; Fowler, 1980; Fowler and Saltzman, 1993; Harris, 1984; Keating,
1985; Kent and Minifie, 1977; Ohman, 1966, 1967; Perkell, 1969; Sussman,
MacNeilage, and Hanson, 1973). For example, in a vowel-consonant-vowel
(VCV) sequence, much evidence supports the hypothesis that the period of
control for the medial consonant is superimposed onto underlying periods of
control for the flanking vowels. Since vowel production involves (mainly) the
tongue body and jaw, and most consonants involve the jaw as well, then
during periods of coproduction the influences of the overlapping gestures
must be blended at the level of the shared articulators.

Interarticulatory Coordination: Single Speech Gestures

In the task-dynamical model, coordinative dynamics are posited at an abstract
level of system description, and give rise to appropriately gesture-specific and
contextually variable patterns at the level of articulatory motions. Since one
of the major tasks for speech is to create and release constrictions in different
local regions of the vocal tract, the abstract dynamics are defined in coordi-
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Figure 6.2 (Top) Table showing the relationship between tract variables and model articu-
lators. (Bottom) Schematic midsagittal vocal tract outline, with tract-variable degrees of freedom
indicated by arrows. (From Saltzman, E., 1991.)

nates that represent the configurations of different constriction types, e.g., the
bilabial constrictions used in producing /b/, /p/, or /m/, the alveolar constric-
tions used in producing /d/, /t/, or /n/, etc. Typically, each constriction type
is associated with a pair of so-called tract-variable coordinates, one that refers
to the location of the constriction along the longitudinal axis of the vocal
tract, and one that refers to the degree of constriction measured perpendicu-
larly to the longitudinal axis in the midsagittal plane. For example, bilabial
constrictions are defined according to the tract variables of lip aperture and
lip protrusion (see figure 6.2). Lip aperture defines the degree of bilabial con-
striction, and is defined by the vertical distance between the upper and lower
lips; lip protrusion defines the location of bilabial constriction, and is defined
by the horizontal distance between the (yoked) upper and lower lips and the
upper and lower front teeth, respectively. Constrictions are restricted to two
dimensions for practical purposes, owing to the fact that the simulations use
the articulatory geometry represented in the Haskins Laboratories software
articulatory synthesizer (Rubin, Baer, and Mermelstein, 1981). This synthe-
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sizer is defined according to a midsagittal representation of the vocal tract,
and converts a given articulatory configuration in this plane, first to a sagittal
vocal tract outline, then to a three-dimensional tube shape, and finally, with
the addition of appropriate voice source information, to an acoustic wave-
form. As a working hypothesis, the tract-variable gestures in the model have
been assigned the point-attractor dynamics of damped, second-order systems,
analogous to those of damped mass-spring systems. Each gesture is assigned
its own set of dynamic parameters: target or rest position, natural frequency,
and damping factor. Gestures are active over discrete time intervals, e.g.,
over discrete periods of bilabial closing or opening, laryngeal abduction or
adduction, tongue-tip raising or lowering, etc.

Just as each constriction type is associated with a set of tract variables,
each tract variable is associated with a set of model articulator coordinates that
constitutes an articulatory subset for the tract variable. The model articulators
are defined according to the articulatory degrees of freedom of the Haskins
software synthesizer. Figure 6.2 shows the relation between tract-variable and
model articulator coordinates (see also figure 7.2 in Browman and Goldstein,
chapter 7). The model articulators are controlled by transforming the tract-
variable dynamical system into model articulator coordinates. This coordi-
nate transformation creates a set of gesture-specific and articulatory posture-
specific coupling functions among the articulators. These functions create a
dynamical system at the articulatory level whose modal, cooperative behav-
iors allow them to flexibly and autonomously attain speech-relevant goals.
In other words, the tract-variable coordinates define a set of gestural modes
for the model articulators (see also Coker, 1976, for a related treatment
of vocal tract modes).

Significantly, articulatory movement trajectories unfold as implicit conse-
quences of the tract-variable dynamics without reference to explicit trajectory
plans or templates. Additionally, the model displays gesture-specific patterns
of remote compensation to simulated mechanical perturbations delivered to
the model articulators (figure 6.3) that mirror the compensatory effects
reported in the experimental literature (see figure 6.1). In particular, simula-
tions were performed of perturbed and unperturbed bilabial closing gestures
(Saltzman, 1986; Kelso, et al., 1986a,b). When the simulated jaw was “frozen”
in place during the closing gesture, the system achieved the same final degree
of bilabial closure in both the perturbed and unperturbed cases, although with
different final articulatory configurations. Furthermore, the lips compensated
spontaneously and immediately to the jaw perturbation, in the sense that
neither replanning or reparameterization was required in order to compen-
sate. Rather, compensation was brought about through the automatic and
rapid redistribution of activity over the entire articulatory subset in a gesture-
specific manner. The interarticulatory processes of control and coordination
were exactly the same during both perturbed and unperturbed simulated ges-
tures (see Kelso, et al., 1986ab; and Saltzman, 1986, for the mathematical
details underlying these simulations).
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Figure 6.3 Simulated tract-variable and articulatory trajectories for unperturbed (solid lines)
and perturbed (dotted lines) bilabial closing gestures. (Top) Lip aperture. (Middle) Upper lip.
(Bottom) Jaw. Panels are aligned with reference to the perturbation onset (solid vertical lines).
Dashed horizontal line in top panel denotes zero lip aperture, with negative aperture signifying
lip compression. (Adapted from Kelso, J. A. S, Saltzman, E. L., and Tuller, B., 1986.)

Intergestural Coordination, Activation, Blending

How might gestures be combined to simulate speech sequences? In order
to model the spatiotemporal orchestration of gestures evident in even the
simplest utterances, a third coordinate system composed of gestural activation
coordinates was defined. Each gesture in the model’s repertoire is assigned its
own activation coordinate, in addition to its set of tract variables and model
articulators. A given gesture’s ongoing activation value defines the strength
with which the gesture “attempts” to shape vocal tract movements at any
given point in time according to its own phonetic goals (e.g., its tract-variable
target and natural frequency parameters). Thus, in its current formulation the
task-dynamical model of speech production is composed of two functionally
distinct but interacting levels (see figure 6.4). The intergestural coordination
level is defined according to the set of gestural activation coordinates, and the
interarticulatory coordination level is defined according to both model articu-
latory and tract-variable coordinates. The architectural relationships among
these coordinates are shown in figure 6.5.
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Figure 6.4 Schematic illustration of the two-level dynamical model for speech production,
with associated coordinate systems indicated. The darker arrow from the intergestural to the
interarticulator level denotes the feedforward flow of gestural activation. The lighter arrow
indicates feedback of ongoing tract-variable and model articulatory state information to the
intergestural level. (From Saltzman, E. L., and Munhall, K. G., 1989.)

In current simulations, the gestural activation trajectories are defined for
simplicity’s sake as step functions of time, normalized from zero to one. Thus,
outside a gesture’s temporal interval of activation (i.e, when activation is
zero), the gesture is inactive or “off” and has no influence on vocal tract
activity. During its activation interval, when its activation value is one, the
gesture is “on” and has maximal effect on the vocal tract. Viewed from this
perspective, the problem of coordination among the gestures participating
in a given utterance, e.g., for tongue-dorsum and bilabial gestures in a vowel-
bilabial-vowel sequence, becomes that of specifying patterns of relative
timing and cohesion among activation intervals for those gestures (see Saltz-
man and Munhall, 1989, for further details of the manner in which gestural
activations influence vocal tract movements). Currently, intergestural relative
timing patterns are specified by gestural scores that are generated explicitly
either “by hand,” or according to a linguistic gestural model that embodies
the rules of Browman and Goldstein’s articulatory phonology (Browman and
Goldstein, 1986, 1991, and chapter 7). The manner in which gestural scores
represent the relative timing patterns for an utterance’s set of tract-variable
gestures is shown in figure 6.6 for the word “pub.”

Using these methods, the task-dynamical model has been shown to repro-
duce many of the coproduction and intergestural blending effects found
in the speech production literature. In the model, coproduction effects are
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Figure 6.5 Example of the “anatomical” relationships defined among model articulatory,
tract-variable, and activation coordinate systems. BL and TD denote tract variables associated
with bilabial and tongue-dorsum constrictions, respectively. Gestures at the activation level are
labeled in terms of both linguistic identity (e.g. /k/) and tract-variable affiliation (e.g. TD).
(From Saltzman, E., 1991.)

generated as the articulatory and acoustic consequences of temporal over-
lap in gestural activations; blending occurs when there is spatial overlap of
the gestures involved, i.e., when the gestures share model articulators in com-
mon. Blending would occur, for example, during coproduction of vowel
(tongue and jaw) and bilabial (lips and jaw) gestures at the shared jaw articu-
lator. The magnitude of coproduction effects is a function of the degree of
spatial overlap of the gestures involved, i.e., the degree to which articulators
are shared across gestures. Minimal interference occurs as long as the spatial
overlap is incomplete. This is the case when gestures are defined along dis-
tinct sets of tract variables, and the gestures share none, or some, but not all
articulators in common (see figure 6.2). In this situation, the coproduced ges-
tures can each attain their individual phonetic goals. Figure 6.7A illustrates
the behavior of the model for two VCV sequences in which symmetrical
flanking vowels, /i/ and /a/, vary across sequences, the medial consonant is
the alveolar /d/ in both sequences, and the time courses of vowel and conso-
nant activations are identical in both sequences. Vowels are produced using
the tract variables of tongue-dorsum constriction location and degree, and the
associated jaw and tongue-body model articulators; the alveolar is produced
using the tract variables of tongue-tip constriction location and degree, and
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Figure 6.6 Gestural score for the simulated sequence /pab/. Filled boxes denote intervals of
gestural activation. Box heights are either 0 (no activation) or 1 (full activation). The waveform
lines denote tract-variable trajectories produced during the simulation. (From Saltzman, E. L.,
and Munhall, K. G., 1989a)

the associated jaw, tongue-body, and tongue-tip articulators. Thus, the vowel
and consonant gestures share some but not all articulators in common. In this
case, the alveolar’s tongue-tip constriction goals are met identically in both
sequences, although contextual differences in articulatory positions are evi-
dent, and are related to corresponding differences in the identities of the
flanking vowels (for comparison, see the simulated tract shapes of isolated,
steady-state productions of the vowels /i/ and /2/, shown in figure 6.7C).
However, when coproduced gestures use the same sets of tract variables,
all articulators are shared in common, and there is the potential for mutual
interference in attaining competing phonetic goals. Figure 6.7B illustrates the
behavior of the model for two VCV sequences that are identical to those
shown in figure 6.7A, except that the medial consonant is the velar /g/. In
this situation, consonant and vowels are produced using the same tongue-
dorsum tract variables and the same jaw and tongue-body model articulators.
During periods of coproduction the gestures compete for control of tongue-
dorsum motion, resulting in contextual variation even in the attainment of
the constriction target for /g/. The velar’s place of constriction is altered by
the identity of the flanking vowels, although the degree of constriction is not.
Importantly, the simulations displayed in figure 6.7A and B mirror the pat-
terns observed experimentally during actual VCV production (Ohman, 1967).
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Figure 6.7 Simulated vocal tract shapes. (A) First contact of tongue tip and upper tract wall
during symmetric vowel-alveolar-vowel sequences. (B) First contact of tongue-dorsum and
upper tract wall during symmetric vowel-velar-vowel sequences. (C) Comresponding steady-
state vowel productions. (Dark lines denote /i/ tokens; light lines denote /a2/ tokens.) (From
Saltzman, E., 1991,

Additionally, such processes of within-tract variable blending are consistent
with data on experimentally induced vowel production errors (Laver, 1980),
in which blended vowel forms were produced that were intermediate be-
tween canonical forms.

Future Directions

In its current state, the task-dynamical model offers a useful and promising
account of movement patterns observed during unperturbed and mechani-
cally perturbed speech sequences, and during periods of coproduction. Sig-
nificantly, explicit trajectory planning is not required, and the model func-
tions in exactly the same way during simulations of unperturbed, mechani-
cally perturbed, and coproduced speech gestures. Additionally, the model
provides a way to reconcile much of the apparent conflict between observa-
tions of surface articulatory and acoustic variability on the one hand, and the
hypothesized existence of underlying, invariant linguistic units on the other
hand. Invariant units are specified in the form of context-independent sets of
gestural parameters (e.g., tract-variable targets), and are associated with cor-
responding subsets of activation, tract-variable, and articulatory coordinates.
Variability emerges in the tract-variable and articulatory movement patterns,
as a result of both the utterance-specific temporal interleaving of gestural
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activations provided by the gestural scores, and the accompanying dynamics
of intergestural blending during coproduction.

One of the main drawbacks of the model from a dynamical perspective is
that there are no dynamics intrinsic to the level of intergestural coordination
that are comparable to the dynamics intrinsic to the interarticulatory level.
The patterning of gestural activation trajectories is specified explicitly either
“by hand” or by the rules embodied in the linguistic gestural model of
Browman and Goldstein. Once a gestural score is specified, it remains fixed
throughout a given simulation, defining a unidirectional, rigidly feedforward
flow of control from the intergestural to interarticulatory levels of the model.
The gestural score acts, in essence, like the punched paper roll that drives the
keys of a player piano. Experimental data suggest, however, that the situation
is not this simple. For example, transient mechanical perturbations delivered
to the speech articulators during repetitive speech sequences (Saltzman, 1992;
Saltzman, Kay, Rubin, et al., 1991), or to the limbs during unimanual rhythmic
tasks (Kay, 1986; Kay et al., 1991), can alter the underlying timing structure
of the ongoing sequence and induce systematic shifts in the timing of subse-
quent movement elements. These data imply that activation patterns are
not rigidly specified over a given sequence. Rather, such results suggest that
activation trajectories evolve fluidly and flexibly over the course of an ongo-
ing sequence governed by an intrinsic intergestural dynamics, and that this
intergestural dynamical system functions as a sequence-specific timer or clock
that is bidirectionally coupled to the interarticulatory level.

Work is currently in progress (with colleagues John Hogden, Simon Levy,
and Philip Rubin) to incorporate the dynamics of connectionist networks
(Bailly, Laboissiére, and Schwartz, 1991; Grossberg, 1986; Jordan, 1986, 1990,
in press; Kawato, 1989) at the intergestural level of the model, in order to
shape activation trajectories intrinsically and to allow for adaptive on-line
interactions with the interarticulatory level. In particular, we have adopted
the recurrent, sequential network architecture of Jordan (1986, 1990, in press).
Each output node of the network represents a corresponding gestural activa-
tion coordinate. The values of these output nodes range continuously from
zero to one, allowing each gesture’s influence over the vocal tract to wax and
wane in a smoothly graded fashion. Additionally, the ongoing tract-variable
state will be fed back into the sequential net, providing an informational basis
for the modulation of activation timing patterns by simulated perturbations
delivered to the model articulatory or tract-variable coordinates. Thus, rather
than being explicitly and rigidly determined prior to the onset of the simu-
lated utterance, the activation patterns will evolve during the utterance as
implicit consequences of the dynamics of the entire multilevel (intergestural
and interarticulatory) system.

6.4 SUMMARY AND CONCLUSIONS
The dynamical approach described in this chapter provides a powerful set

of empirical and theoretical tools for investigating and understanding
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the coordination and control of skilled sensorimotor activities, ranging from
simple one-joint rhythms to the complex patterns of speech production.
The approach offers a unified and rigorous account of a movement's spatio-
temporal form, stability of form, lawful warpings of form induced by scal-
ing performance parameters, and the intuitive relation between underlying
invariance and surface variability. Evidence was reviewed supporting the
hypothesis that dynamical systems governing skilled sensorimotor behaviors
are defined in abstract, low-dimensional task spaces that serve to create modal
or cooperative patterns of activity in the generally higher-dimensional articu-
latory periphery. In this regard, the single and dual degree-of-freedom limb
rhythms, considered in section 6.1, can be viewed as tasks with relatively
simple mappings between their respective task (or modal) coordinates and
articulatory coordinates. Such tasks are rare in everyday life, however. Most
real-world activites (e.g., speech production, or the coordination of reaching
and grasping for object retrieval and manipulation) involve tasks defined over
effector systems with multiple articulatory degrees of freedom, and for which
the mappings between task and articulatory coordinates are more complex.

The abstract nature of these coordinative dynamics was highlighted by
the demonstration (Schmidt, et al., 1990) that entrainment between two limit-
cycle rhythms can occur when the component rhythms are performed by
different actors that are linked by visual information. These data suggest that
the intent to coordinate one’s actions with events in the external environment
serves to create a linkage through which perceptual information, specific to
the dynamics of these events, flows into the component task spaces that
control these actions. The result is a coupled, abstract, modal dynamical sys-
tem that seamlessly spans actor and environment. It is tempting to speculate
that this perspective applies quite generally across the spectrum of biological
behaviors.
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NOTES

1. Similar results on rhythms produced at the elbow and wrist joints of the same arm were
presented by Kelso, Buchanan, and Wallace (1991), when the forearm was either pronated or
supinated across experimental conditions. Again, the easiest combinations to perform were
those in which the motions of the hand and forearm were spatially inphase, regardless of the
relative anatomical phasing between hand and forearm muscle groups. Furthermore, in trials
involving experimentally demanded increases or decreases of coupled oscillation frequency,
phase transitions were observed from the spatially antiphase to spatially inphase patterns in
both pronation and supination conditions. Relatedly, MacKenzie and Patla (1983) induced
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phase transitions in bimanual finger rhythms by increasing cycling frequency within trials, and
showed that the transitions were affected systematically by the relative orientation of the
fingers’ spatial planes of motion.

The primacy of abstract spatial coordinates over anatomical or biomechanical coordinates
has also been demonstrated for discrete targeting tasks. For example, Soechting (1982) reported
evidence from a pointing task involving the elbow joint, suggesting that the controlled vari-
able for this task is not anatomical joint angle per se, but rather the orientation angle of the
forearm in body-referenced or environment-referenced coordinates.
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Guide to Further Reading

The Russian motor physiologist, N. A. Bernstein (1967/1984) produced a classic body of
empirical and theoretical work that anticipated and inspired many of today’s developments in
movement science. It is still a great read. Turvey (1990) reviews and extends this perspective
in a broad overview of issues faced in studying the dynamics of coordination, carrying the
reader on a tour from Bernstein to the current state of the art. Readers interested in more
detailed accounts of various recent trends in the field should consult Jordan (1990; a con-
nectionist perspective on dynamics and coordinate systems in skilled actions), Saltzman and
Munhall (1989; task dynamics and speech production), and Schéner and Kelso (1988; an
overview of the “synergetics” approach to self-organizing systems, in the context of sensori-
motor behaviors).
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Dynamics and Articulatory Phonology

Catherine P. Browman and Louis Goldstein

EDITORS’ INTRODUCTION

Linguists studying the sound of utterances distinguish between the strictly physical
aspects of speech and its production, on the one hand, and its basic linguistic prop-
erties on the other. The difference here can be illustrated by two utterances of Here
it is, one produced by Lurch, the laconic butler from The Addams Family, and the
other by a child discovering an Easter egg. At the phonetic level—the level of
the physical sounds—these differ enormously, but at a higher and more abstract
phonological level they consist of the same sound units (known as phonemes)
assembled in the same order.

Developing good theories of phonetics, phonology, and the relation between them
are central parts of linguistics, but these efforts are important to cognitive science as
well. Somehow we manage to produce utterances—to speak—and how we can do
this cries out for explanation. The standard assumption is that the phonological
level is basic as far as cognitive processes are concerned; the output of the cognitive
system is a phonological specification of what it is one wants to say. Actually
speaking involves using one’s vocal mechanisms to translate a phonological specific-
ation into a stream of sound.

Mainstream computational cognitive science assumes that cognitive processes are
a matter of processing symbols inside the head. Consequently, it makes the assump-
tion that phonemes are represented in the mind/brain by symbols of basically the
same kind as those used by linguists when they write about phonemes. Thus, linguists
represent the phoneme /t/ by means of the symbol [t*]; computational cognitive
science assumes that when you produce an utterance involving this sound, the cogni-
tive system delivers a similar symbol (though in “mentalese”) to the motor system,
which drives the vocal apparatus to produce the actual sound. (In more detailed
versions, the phonemic symbol is more complex; it is a data structure specifying the
presence or absence of more basic features.)

This approach turns out to have some deep problems, grounded in the fact that
the symbols of phonology are so different from the actual physical processes that
constitute speaking. One problem is figuring out the nature of the relationship be-
tween phonological specifications and the resulting sounds that the motor system
must somehow implement. Another problem is in the nature of the implementation
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device itself. How does it translate from the sequence of static symbols, which
are output by the cognitive system, into the dynamical processes, which constitute
speaking? How does it get from atemporal symbols to real speech, which has an
extraordinarily subtle and complex temporal character?

Browman and Goldstein do not solve these problems; rather, they avoid them by
offering a fundamentally different picture of phonology and its relationship with the
physical processes of speaking. In their approach, known as articulatory phonol-
ogy. the fundamental units are not abstract units of sound, represented by mental
symbols, but rather basic coordinated gestures of the speech system. These gestures
are high-level descriptions of a single complex dynamical system whose behaviors, at
a lower level, constitute the articulatory processes of sound production. Consequently
in articulatory phonology there is no deep incommensurability between the phonolog-
ical and phonetic levels to be overcome. The basic units of phonology are themselves
dynamic events of the same kind (though at a higher level) as the physical processes
of speech production.

In this chapter, Browman and Goldstein give an overview of the articulatory
phonology approach, and describe its implementation in a speech production system
for English. In this system a high-level gestural score drives a dynamical system
which organizes movements of components of the articulatory system (in the manner
described by Elliot Saltzman in chapter 6). The specifications of these movements
are then fed into a sound synthesizer which produces the physical sound itself. (Note
that in this chapter they describe this system as a computational model, but by this
they mean simulated on a computer rather than a model of computational
processes.)

This work illustrates a number of general characteristics of the dynamical ap-
proach to cognition. For example, it rejects the traditional assumptions that cognitive
processes and bodily processes are fundamentally different in kind, and that cognition
is “inner” while bodily movement is “outer.” Articulatory phonology breaks down
the difference in kind by reconceptualizing the basic units of cognition as behaviors of
a dynamical system, and so as essentially temporal in nature. By making this move,
this dynamical approach overcomes problems of embeddedness that plague standard
compulational cognitive science.

7.1 INTRODUCTION

Traditionally, the study of human speech and its patterning has been ap-
proached in two different ways. One way has been to consider it as mechani-
cal or biomechanical activity (e.g., of articulators or air molecules or cochlear
hair cells) that changes continuously in time. The other way has been to
consider it as a linguistic (or cognitive) structure consisting of a sequence of
elements chosen from a closed inventory. Development of the tools required
to describe speech in one or the other of these approaches has proceeded
largely in parallel, with one hardly informing the other at all (some notable
exceptions are discussed below). As a result, speech has been seen as having
two structures, one considered physical, and the other cognitive, where the
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relation between the two structures is generally not an intrinsic part of either
description. From this perspective, a complete picture requires “translating”
between the intrinsically incommensurate domains (as argued by Fowler,
Rubin, Remez, et al. 1980).

The research we have been pursuing (Browman and Goldstein, 1986, 1989,
1990a,b, 1992) (“articulatory phonology”) begins with the very different
assumption that these apparently different domains are, in fact, the low- and
high-dimensional descriptions of a single (complex) system. Crucial to this
approach is identification of phonological units with dynamically specified
units of articulatory action, called gestures. Thus, an utterance is described as
an act that can be decomposed into a small number of primitive units (a low-
dimensional description), in a particular spatiotemporal configuration. The same
description also provides an intrinsic specification of the high-dimensional
properties of the act (its various mechanical and biomechanical consequences).

In this chapter, we briefly examine the nature of the low- and high-dimen-
sional descriptions of speech, and contrast the dynamical perspective that
unifies these with other approaches in which they are separated as properties
of mind and body. We then review some of the basic assumptions and results
of developing a specific model incorporating dynamical units, and illustrate
how it provides both low- and high-dimensional descriptions.

7.2 DIMENSIONALITY OF DESCRIPTION

Human speech events can be seen as quite complex, in the sense that an
individual utterance follows a continuous trajectory through a space defined
by a large number of potential degrees of freedom, or dimensions. This is true
whether the dimensions are neural, articulatory, acoustic, aerodynamic, audi-
tory, or otherwise describable. The fundamental insight of phonology, how-
ever, is that the pronunciation of the words in a given language may differ
from (i.e., contrast with) one another in only a restricted number of ways: the
number of degrees of freedom actually employed in this contrastive behavior
is far fewer than the number that is mechanically available. This insight has
taken the form of the hypothesis that words can be decomposed into a small
number of primitive units (usually far fewer than a hundred in a given lan-
guage) which can be combined in different ways to form the large number of
words required in human lexicons. Thus, as argued by Kelso, Saltzman, and
Tuller (1986), human speech is characterized not only by a high number of
potential (microscopic) degrees of freedom but also by a low-dimensional
(macroscopic) form. This macroscopic form is usually called the “phonologi-
cal” form. As suggested below, this collapse of degrees of freedom can possi-
bly be understood as an instance of the kind of self-organization found in
other complex systems in nature (Haken, 1977; Kugler and Turvey, 1987;
Madore and Freedman, 1987; Schoner and Kelso, 1988; Kauffmann, 1991).
Historically, however, the gross differences between the macroscopic and
microscopic scales of description have led researchers to ignore one or the
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other description, or to assert its irrelevance, and hence to generally separate
the cognitive and the physical. Anderson (1974) describes how the develop-
ment of tools in the 19th and early 20th centuries led to the quantification of
more and more details of the speech signal, but “with such increasingly pre-
cise description, however, came the realization that much of it was irrelevant
to the central tasks of linguistic science” (p. 4). Indeed, the development of
many early phonological theories (e.g., those of Saussure, Trubetzkoy, Sapir,
Bloomfield) proceeded largely without any substantive investigation of the
measurable properties of the speech event at all (although Anderson notes
Bloomfield's insistence that the smallest phonological units must ultimately
be defined in terms of some measurable properties of the speech signal).
In general, what was seen as important about phonological units was their
function, their ability to distinguish utterances.

A particularly telling insight into this view of the lack of relation between
the phonological and physical descriptions can be seen in Hockett’s (1955)
familiar Easter egg analogy. The structure serving to distinguish utterances
(for Hockett, a sequence of letter-sized phonological units called phonemes)
was viewed as a row of colored, but unboiled, Easter eggs on a moving
belt. The physical structure (for Hockett, the acoustic signal) was imagined to
be the result of running the belt through a wringer, effectively smashing the
eggs and intermixing them. It is quite striking that, in this analogy, the cogni-
tive structure of the speech event cannot be seen in the gooey mess itself. For
Hockett, the only way the hearer can respond to the event is to infer (on the
basis of obscured evidence, and knowledge of possible egg sequences) what
sequence of eggs might have been responsible for the mess. It is clear that in
this view, the relation between cognitive and physical descriptions is neither
systematic nor particularly interesting. The descriptions share color as an
important attribute, but beyond that there is little relation.

A major approach that did take seriously the goal of unifying the cognitive
and physical aspects of speech description was that presented in the Sound
Pattern of English (Chomsky and Halle, 1968), including the associated work
on the development of the theory of distinctive features (Jakobson, Fant,
and Halle, 1951) and the quantal relations that underlie them (Stevens, 1972,
1989). In this approach, an utterance is assigned two representations: a “pho-
nological” one, whose goal is to describe how the utterance functions with
respect to contrast and patterns of alternation, and a “phonetic” one, whose
goal is to account for the grammatically determined physical properties of
the utterance. Crucially, however, the relation between the representations is
quite constrained: both descriptions employ exactly the same set of dimen-
sions (the features). The phonological representation is coarser in that features
may take on only binary values, while the phonetic representation is more
fine-grained, with the features having scalar values. However, a principled
relation between the binary values and the scales is also provided: Stevens's
quantal theory attempts to show how the potential continuum of scalar fea-
ture values can be intrinsically partitioned into categorical regions, when the
mapping from articulatory dimensions to auditory properties is considered.
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Further, the existence of such quantal relations is used to explain why lan-
guages employ these particular features in the first place.

Problems raised with this approach to speech description soon led to its
abandonment, however. One problem is that its phonetic representations
were shown to be inadequate to capture certain systematic physical differ-
ences between utterances in different languages (Ladefoged, 1980; Port, 1981;
Keating, 1985). The scales used in the phonetic representations are them-
selves of reduced dimensionality, when compared to a complete physical de-
scription of utterances. Chomsky and Halle (1968) hypothesized that such
further details could be supplied by universal rules. However, the above
authors (also Browman and Goldstein, 1986) argued that this would not
work—the same phonetic representation (in the Chomsky and Halle sense)
can have different physical properties in different languages. Thus, more of
the physical detail (and particularly details having to do with timing) would
have to be specified as part of the description of a particular language.
Ladefoged's (1980) argument cut even deeper. He argued that there is a
system of scales that is useful for characterizing the measurable articulatory
and acoustic properties of utterances, but that these scales are very different
from the features proposed by Chomsky and Halle.

One response to these failings has been to hypothesize that descriptions
of speech should include, in addition to phonological rules of the usual sort,
rules that take (cognitive) phonological representations as input and convert
them to physical parameterizations of various sorts. These rules have been
described as rules of “phonetic implementation” (e.g., Klatt, 1976; Port, 1981;
Keating, 1985; Liberman and Pierrehumbert, 1984; Keating, 1990; Pierre-
humbert, 1990). Note that in this view the description of speech is divided
into two separate domains involving distinct types of representations: the
phonological or cognitive structure and the phonetic or physical structure.
This explicit partitioning of the speech side of linguistic structure into sepa-
rate phonetic and phonological components which employ distinct data types
that are related to one another only through rules of phonetic implementation
(or “interpretation”) has stimulated a good deal of research (e.g., Liberman
and Pierrehumbert, 1984; Fourakis and Port, 1986; Keating, 1988; Cohn,
1990; Coleman, 1992). However, there is a major price to be paid for draw-
ing such a strict separation: it becomes very easy to view phonetic and pho-
nological (physical and cognitive) structures as essentially independent of
one another, with no interaction or mutual constraint. As Clements (1992)
describes the problem: “The result is that the relation between the phonologi-
cal and phonetic components is quite unconstrained. Since there is little
resemblance between them, it does not matter very much for the purposes of
phonetic interpretation what the form of the phonological input is; virtually
any phonological description can serve its purposes equally well” (p. 192).
Yet, there is a constrained relation between the cognitive and physical struc-
tures of speech, which is what drove the development of feature theory
in the first place.
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In our view, the relation between the physical and cogpnitive, ie. the
phonetic and phonological, aspects of speech is inherently constrained by
their being simply two levels of description—the microscopic and macro-
scopic—of the same system. Moreover, we have argued that the relation
between microscopic and macroscopic properties of speech is one of mutual
or reciprocal constraint (Browman and Goldstein, 1990b). As we elaborated, the
existence of such reciprocity is supported by two different lines of research.
One line has attempted to show how the macroscopic properties of contrast
and combination of phonological units arise from, or are constrained by, the
microscopic, i.e., the detailed properties of speech articulation and the rela-
tions between speech articulation, aerodynamics, acoustics, and audition (e.g.,
Stevens, 1972, 1989; Lindblom, MacNeilage, and Studdert-Kennedy, 1983;
Ohala, 1983). A second line has shown that there are constraints running in
the opposite direction, such that the (microscopic) detailed articulatory or
acoustic properties of particular phonological units are determined, in part, by
the macroscopic system of contrast and combination found in a particular
language (e.g., Wood, 1982; Ladefoged, 1982; Manuel and Krakow, 1984;
Keating, 1990). The apparent existence of this bidirectionality is of con-
siderable interest, because recent studies of the generic properties of com-
plex physical systems have demonstrated that reciprocal constraint between
macroscopic and microscopic scales is a hallmark of systems displaying “self-
organization” (Kugler and Turvey, 1987; see also discussions by Langton in
Lewin, 1992, pp. 12—14, 188-191; and work on the emergent properties of
“co-evolving” complex systems: Hogeweg, 1989; Kauffman, 1989; Kauffman
and Johnsen, 1991; Packard, 1989).

Such self-organizing systems (hypothesized as underlying such diverse
phenomena as the construction of insect nests and evolutionary and ecologi-
cal dynamics) display the property that the “local” interactions among a large
number of microscopic system components can lead to emergent patterns
of “global” organization and order. The emergent global organization also
places constraints on the components and their local interactions. Thus, self-
organization provides a principled linkage between descriptions of different
dimensionality of the same system: the high-dimensional description (with
many degrees of freedom) of the local interactions and the low-dimensional
description (with few degrees of freedom) of the emergent global patterns.
From this point of view, then, speech can be viewed as a single complex
system (with low-dimensional macroscopic and high-dimensional microscopic
properties) rather than as two distinct components.

A different recent attempt to articulate the nature of the constraints hold-
ing between the cognitive and physical structures can be found in Pierre-
humbert (1990), in which the relation between the structures is argued to be
a “semantic” one, parallel to the relation that obtains between concepts and
their real-world denotations. In this view, macroscopic structure is constrained
by the microscopic properties of speech and by the principles guiding human
cognitive category formation. However, the view fails to account for the
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apparent bidirectionality of the constraints. That is, there is no possibility of
constraining the microscopic properties of speech by its macroscopic prop-
erties in this view. (For a discussion of possible limitations to a dynamic
approach to phonology, see Pierrehumbert and Pierrehumbert, 1990.)

The articulatory phonology that we have been developing (e.g., Browman
and Goldstein, 1986, 1989, 1992) attempts to understand phonology (the
cognitive) as the low-dimensional macroscopic description of a physical sys-
tem. In this work, rather than rejecting Chomsky and Halle’s constrained
relation between the physical and cognitive, as the phonetic implementation
approaches have done, we have, if anything, increased the hypothesized
tightness of that relation by using the concept of different dimensionality. We
have surmised that the problem with the program proposed by Chomsky and
Halle was instead in their choice of the elementary units of the system. In
particular, we have argued that it is wrong to assume that the elementary
units are (1) static, (2) neutral between articulation and acoustics, and (3)
arranged in nonoverlapping chunks. Assumptions (1) and (3) have been
argued against by Fowler et al. (1980), and (3) has also been rejected by most
of the work in “nonlinear” phonology over the past 15 years. Assumption
(2) has been, at least partially, rejected in the “active articulator” version of
“feature geometry” (Halle, 1982; Sagey, 1986; McCarthy, 1988.)

7.3 GESTURES

Articulatory phonology takes seriously the view that the units of speech
production are actions, and therefore that (1) they are dynamic, not static.
Further, since articulatory phonology considers phonological functions such
as contrast to be low-dimensional, macroscopic descriptions of such actions,
the basic units are (2) not neutral between articulation and acoustics, but
rather are articulatory in nature. Thus, in articulatory phonology, the basic
phonological unit is the articulatory gesture, which is defined as a dynamical
system specified with a characteristic set of parameter values (see Saltzman,
chapter 6). Finally, because the actions are distributed across the various
articulator sets of the vocal tract (the lips, tongue, glottis, velum, etc.), an
utterance is modeled as an ensemble, or constellation, of a small number of
(3) potentially overlapping gestural units.

As is elaborated below, contrast among utterances can be defined in terms
of these gestural constellations. Thus, these structures can capture the low-
dimensional properties of utterances. In addition, because each gesture is
defined as a dynamical system, no rules of implementation are required to
characterize the high-dimensional properties of the utterance. A time-varying
pattern of articulator motion (and its resulting acoustic consequences) is law-
fully entailed by the dynamical systems themselves—they are self-imple-
menting. Moreover, these time-varying patterns automatically display the
property of context dependence (which is ubiquitous in the high-dimensional
description of speech) even though the gestures are defined in a context-
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Figure 7.1 Computational system for generating speech using dynamically defined articu-
latory gestures.

independent fashion. The nature of the articulatory dimensions along which
the individual dynamical units are defined allows this context dependence to
emerge lawfully.

The articulatory phonology approach has been incorporated into a com-
putational system being developed at Haskins Laboratories (Browman,
Goldstein, Kelso, et al, 1984; Saltzman, 1986; Saltzman and Munhall, 1989;
Browman and Goldstein, 1990a,c). In this system, illustrated in figure 7.1,
utterances are organized ensembles (or constellations) of units of articulatory
action called gestures. Each gesture is modeled as a dynamical system that
characterizes the formation (and release) of a local constriction within the
vocal tract (the gesture’s functional goal or “task”). For example, the word
“ban” begins with a gesture whose task is lip closure. The formation of this
constriction entails a change in the distance between the upper and lower lips
(or lip aperture) over time. This change is modeled using a second-order sys-
tem (a “point attractor,” Abraham and Shaw, 1982), specified with particular
values for the equilibrium position and stiffness parameters. (Damping is, for
the most part, assumed to be critical, so that the system approaches its equi-
librium position and doesn’t overshoot it.) During the activation interval for
this gesture, the equilibrium position for lip aperture is set to the goal value
for lip closure; the stiffness setting, combined with the damping, determines
the amount of time it will take for the system to get close to the goal of lip
closure.

The set of task or tract variables currently implemented in the computa-
tional model are listed at the top left of figure 7.2, and the sagittal vocal tract
shape below illustrates their geometric definitions. This set of tract variables
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LI

glottis

Figure 7.2 Tract variables and their associated articulators.

is hypothesized to be sufficient for characterizing most of the gestures of
English (exceptions involve the details of characteristic shaping of constric-
tions; see Browman and Goldstein, 1989). For oral gestures, two paired tract-
variable regimes are specified, one controlling the constriction degree of a
particular structure, the other its constriction location (a tract-variable regime
consists of a set of values for the dynamic parameters of stiffness, equilibrium
position, and damping ratio). Thus, the specification for an oral gesture in-
cludes an equilibrium position, or goal, for each of two tract variables, as
well as a stiffness (which is currently yoked across the two tract variables).
Each functional goal for a gesture is achieved by the coordinated action of a
set of articulators, i.e., a coordinative structure (Turvey, 1977; Fowler et al,
1980; Kelso et al., 1986; Saltzman, 1986); the sets of articulators used for each
of the tract variables are shown on the top right of figure 7.2, with the
articulators indicated on the outline of the vocal tract model below. Note that
the same articulators are shared by both of the paired oral tract variables, so
that altogether there are five distinct articulator sets, or coordinative structure
types, in the system.
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In the computational system the articulators are those of a vocal tract
model (Rubin, Baer, and Mermelstein, 1981) that can generate speech wave-
forms from a specification of the positions of individual articulators. When a
dynamical system (or pair of them) corresponding to a particular gesture is
imposed on the vocal tract, the task-dynamic model (Saltzman, 1986; Saltzman
and Kelso, 1987; Saltzman and Munhall, 1989; Saltzman, chapter 6) calculates
the time-varying trajectories of the individual articulators constituting that
coordinative structure, based on the information about values of the dynamical
parameters, and phasing information (see section 7.4), contained in its input.
These articulator trajectories are input to the vocal tract model, which then
calculates the resulting global vocal tract shape, area function, transfer func-
tion, and speech waveform (see figure 7.1).

Defining gestures dynamically can provide a principled link between mac-
roscopic and microscopic properties of speech. To illustrate some of the ways
in which this is true, consider the example of lip closure. The values of the
dynamical parameters associated with a lip closure gesture are macroscopic
properties that define it as a phonological unit and allow it to contrast with
other gestures such as the narrowing gesture for [w). These values are defini-
tional, and remain invariant as long as the gesture is active. At the same time,
however, the gesture intrinsically specifies the (microscopic) patterns of con-
tinuous change that the lips can exhibit over time. These changes emerge
as the lawful consequences of the dynamical system, its parameters, and the
initial conditions. Thus, dynamically defined gestures provide a lawful link
between macroscopic and microscopic properties.

While tract-variable goals are specified numerically, and in principle could
take on any real value, the actual values used to specify the gestures of
English in the model cluster in narrow ranges that correspond to contrastive
categories: for example, in the case of constriction degree, different ranges are
found for gestures that correspond to what are usually referred to as stops,
fricatives, and approximants. Thus, paradigmatic comparison (or a density
distribution) of the numerical specifications of all English gestures would re-
veal a macroscopic structure of contrastive categories. The existence of such
narrow ranges is predicted by approaches such as the quantal theory (e.g.,
Stevens, 1989) and the theory of adaptive dispersion (e.g., Lindblom et al.,
1983), although the dimensions investigated in those approaches are not
identical to the tract-variable dimensions. These approaches can be seen as
accounting for how microscopic continua are partitioned into a small number
of macroscopic categories.

The physical properties of a given phonological unit vary considerably
depending on its context (e.g., Ohman, 1966; Liberman, Cooper, Shankweiler,
et al, 1967; Kent and Minifie, 1977). Much of this context dependence
emerges lawfully from the use of task dynamics. An example of this kind of
context dependence in lip closure gestures can be seen in the fact that the
three independent articulators that can contribute to closing the lips (upper
lip, lower lip, and jaw) do so to different extents as a function of the vowel
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environment in which the lip closure is produced (Sussman, MacNeilage, and
Hanson, 1973; Macchi, 1988). The value of lip aperture achieved, however,
remains relatively invariant no matter what the vowel context. In the task-
dynamic model, the articulator variation results automatically from the fact
that the lip closure gesture is modeled as a coordinative structure that links
the movements of the three articulators in achieving the lip closure task. The
gesture is specified invariantly in terms of the tract variable of lip aperture,
but the closing action is distributed across component articulators in a
context-dependent way. For example, in an utterance like [ibi], the lip closure
is produced concurrently with the tongue gesture for a high front vowel.
This vowel gesture will tend to raise the jaw, and thus less activity of the
upper and lower lips will be required to effect the lip closure goal than in
an utterance like [aba). These microscopic variations emerge lawfully from
the task-dynamic specification of the gestures, combined with the fact of
overlap (Kelso, Saltzman, and Tuller, 1986; Saltzman and Munhall, 1989).

7.4 GESTURAL STRUCTURES

During the act of talking, more than one gesture is activated, sometimes
sequentially and sometimes in an overlapping fashion. Recurrent patterns of
gestures are considered to be organized into gestural constellations. In the
computational model (see figure 7.1), the linguistic gestural model determines
the relevant constellations for any arbitrary input utterance, including the
phasing of the gestures. That is, a constellation of gestures is a set of gestures
that are coordinated with one another by means of phasing, where for this
purpose (and this purpose only), the dynamical regime for each gesture is
treated as if it were a cycle of an undamped system with the same stiffness
as the actual regime. In this way, any characteristic point in the motion of the
system can be identified with a phase of this virtual cycle. For example, the
movement onset of a gesture is at phase 0 degrees, while the achievement of
the constriction goal (the point at which the critically damped system gets
sufficiently close to the equilibrium position) occurs at phase 240 degrees.
Pairs of gestures are coordinated by specifying the phases of the two gestures
that are synchronous. For example, two gestures could be phased so that
their movement onsets are synchronous (0 degrees phased to 0 degrees), or
so that the movement onset of one is phased to the goal achievement of
another (0 degrees phased to 240 degrees), etc. Generalizations that charac-
terize some phase relations in the gestural constellations of English words are
proposed in Browman and Goldstein (1990c). As is the case for the values of
the dynamical parameters, values of the synchronized phases also appear to
cluster in narrow ranges, with onset of movement (0 degrees) and achieve-
ment of goal (240 degrees) being the most common (Browman and Goldstein,
1990a).

An example of a gestural constellation (for the word “pawn” as pronounced
with the back unrounded vowel characteristic of much of the United States) is
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shown in figure 7.3a, which gives an idea of the kind of information con-
tained in the gestural dictionary. Each row, or tier, shows the gestures that
control the distinct articulator sets: velum, tongue tip, tongue body, lips,
and glottis. The gestures are represented here by descriptors, each of which
stands for a numerical equilibrium position value assigned to a tract variable.
In the case of the oral gestures, there are two descriptors, one for each of the
paired tract variables. For example, for the tongue tip gesture labeled {clo
alv}, {clo} stands for — 3.5 mm (the negative value indicates compression of
the surfaces), and {alv} stands for 56 degrees (where 90 degrees is vertical
and would correspond to a midpalatal constriction). The association lines
connect gestures that are phased with respect to one another. For example,
the tongue tip {clo alv} gesture and the velum {wide} gesture (for nasaliza-
tion) are phased such that the point indicating 0 degrees—onset of move-
ment—of the tongue tip closure gesture is synchronized with the point
indicating 240 degrees—achievement of goal—of the velic gesture.

Each gesture is assumed to be active for a fixed proportion of its virtual
cycle (the proportion is different for consonant and vowel gestures). The
linguistic gestural model uses this proportion, along with the stiffness of each
gesture and the phase relations among the gestures, to calculate a gestural
score that specifies the temporal activation intervals for each gesture in an
utterance. One form of this gestural score for “pawn” is shown in figure 7.3b,
with the horizontal extent of each box indicating its activation interval, and
the lines between boxes indicating which gesture is phased with respect
to which other gesture(s), as before. Note that there is substantial overlap
among the gestures. This kind of overlap can result in certain types of con-
text dependence in the articulatory trajectories of the invariantly specified
gestures. In addition, overlap can cause the kinds of acoustic variation that
have been traditionally described as allophonic variation. For example, in this
case, note the substantial overlap between the velic lowering gesture (velum
{wide}) and the gesture for the vowel (tongue body {narrow pharyngeal}).
This will result in an interval of time during which the velopharyngeal port is
open and the vocal tract is in position for the vowel, i.e., a nasalized vowel.
Traditionally, the fact of nasalization has been represented by a rule that
changes an oral vowel into a nasalized one before a (final) nasal consonant.
But viewed in terms of gestural constellations, this nasalization is just the
lawful consequence of how the individual gestures are coordinated. The
vowel gesture itself has not changed in any way: it has the same specification
in this word and in the word “pawed” (which is not nasalized).

Figure 7.3 Various displays from the computational model for “pawn.” (a) Gestural descrip-
tors and association lines. (b) Gestural descriptors and association lines plus activation boxes.
(c) Gestural descriptors and activation boxes plus generated movements of ( from top to bottom):
velic aperture; vertical position of the tongue tip (with respect to the fixed palate and teeth);
vertical position of the tongue body (with respect to the fixed palate and teeth); lip aperture;
glottal aperture.
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The parameter value specifications and activation intervals from the gestural
score are input to the task-dynamical model (see figure 7.1), which calculates
the time-varying response of the tract variables and component articulators
to the imposition of the dynamical regimes defined by the gestural score.
Some of the time-varying responses are shown in figure 7.3c, along with the
same boxes indicating the activation intervals for the gestures. Note that the
movement curves change over time even when a tract variable is not under
the active control of some gesture. Such motion can be seen, for example, in
the LIPS panel, after the end of the box for the lip closure gesture. This
motion results from one or both of two sources. (1) When an articulator is not
part of any active gesture, the articulator returns to a neutral position. In the
example, the upper lip and lower lip articulators both are returning to a
neutral position after the end of the lip closure gesture. (2) One of the artic-
ulators linked to the inactive tract variable may also be linked to some
active tract variable, and thus cause passive changes in the inactive tract
variable. In the example, the jaw is part of the coordinative structure for the
tongue-body vowel gesture, as well as part of the coordinative structure for
the lip closure gesture. Therefore, even after the lip closure gesture becomes
inactive, the jaw is affected by the vowel gesture, and its lowering for the
vowel causes the lower lip to also passively lower.

The gestural constellations not only characterize the microscopic prop-
erties of the utterances, as discussed above, but systematic differences among
the constellations also define the macroscopic property of phonological con-
trast in a language. Given the nature of gestural constellations, the possible
ways in which they may differ from one another is, in fact, quite constrained.
In other papers (e.g.. Browman and Goldstein, 1986, 1989, 1992) we have
begun to show that gestural structures are suitable for characterizing phono-
logical functions such as contrast, and what the relation is between the view
of phonological structure implicit in gestural constellations, and that found
in other contemporary views of phonology (see also Clements, 1992, for a
discussion of these relations). Here we simply give some examples of how
the notion of contrast is defined in a system based on gestures, using the
schematic gestural scores in figure 7.4.

One way in which constellations may differ is in the presence vs. absence
of a gesture. This kind of difference is illustrated by two pairs of subfigures in
figure 7.4: (a) vs. (b) and (b) vs. (d); (a) “pan” differs from (b) “ban” in having
a glottis {wide} gesture (for voicelessness), while (b) “ban” differs from (d)
“Ann” in having a labial closure gesture (for the initial consonant). Constella-
tions may also differ in the particular tract-variable or articulator set con-
trolled by a gesture within the constellation, as illustrated by (a) “pan” vs. (c)
“tan,” which differ in terms of whether it is the lips or tongue tip that per-
forms the initial closure. A further way in which constellations may differ is
illustrated by comparing (e) “sad” with (f) “shad,” in which the value of the
constriction location tract variable for the initial tongue-tip constriction is the
only difference between the two utterances. Finally, two constellations may
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contain the same gestures and differ simply in how they are coordinated, as
can be seen in (g) “dab” vs. (h) “bad.”

7.5 CONCLUSIONS

This chapter describes an approach to the description of speech in which both
the cognitive and physical aspects of speech are captured by viewing speech
as a set of actions, or dynamical tasks, that can be described using different
dimensionalities: low-dimensional or macroscopic for the cognitive, and high-
dimensional or microscopic for the physical. A computational model that
instantiates this approach to speech was briefly outlined. It was argued that
this approach to speech, which is based on dynamical description, has several
advantages over other approaches. First, it captures both the phonological
(cognitive) and physical regularities that must be captured in any description
of speech. Second, it does so in a way that unifies the two descriptions as
descriptions of different dimensionality of a single complex system. The latter
attribute means that this approach provides a principled view of the recipro-
cal constraints that the physical and phonological aspects of speech exhibit.
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