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No changing of place
at a hundred miles an hour,

You can’t imagine how strange it seemed
to be journeying on thus, without

any visible cause of progress

other than the magical machine,

nor making of stuffs a thousand
yards a minute,

with its flying white breath and
rhythmical, unvarying pace,

between these rocky walls, which are
already clothed with moss and

ferns and grass;

will make us
one whit stronger, happier
or wiser.

and when I reflected that

There was always more

in the world

than men could see,
walked they ever so slowly;

these great masses of stone had been cut
asunder to allow our passage thus far
below the surface of the earth, I felt that

they will see it no better
for going fast.
Joun Ruskin! (1856)

no fairy tale

was every half so wonderful
as what I saw.

FANNY KEMBLE? (1830)
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Prologue

This book describes an event that will happen someday soon: You
will look into a computer screen and see reality. Some part of your
world—the town you live in, the company you work for, your school
system, the city hospital-—will hang there in a sharp color image,
abstract but recognizable, moving subtly in a thousand places. This
Mirror World you are looking at is fed by a steady rush of new data
pouring in through cables. It is infiltrated by your own software
creatures, doing your business.

People are drawn to these software gadgets: When you switch one
on, you turn the world (like an old sweater) inside out. You stuff the
huge multi-institutional ratwork that encompasses you into a genie
bottle on your desk. You can see over, under and through it. You can
see deeply into it. A bottled institution cannot intimidate, confound
or ignore its members; they dominate it. And your computer’s screen
is transformed, into a clear surface with brilliant multi-colored life
unfolding just beyond. People will stop looking at their computer
screens and start gazing into them.

Mirror worlds will transform the meaning of “computer.” Our
dominant metaphor since 1950 or thereabouts, “the electronic brain,”
will go by the boards. Instead people will talk about crystal balls,
telescopes, stained glass windows—wine, poetry or whatever—things
that make you see vividly.

Don’t like computers? Unamused by technology? For most peo-
ple, technology is the ocean on a bright cool Spring day. Sparkling
in the far distance; breathtakingly cold; exhilarating once you've
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plunged in. At any rate, not to be over-delicate: This cold and
beautiful Ocean is coming to meet you. Mirror Worlds mean
another overwhelming rise in sea level. If you don’t choose to jump
in, what exactly do you choose?

Why not give it a try? Hold your breath. Let’s plunge.



Chapter 1
Mirror Worlds?

What are they?

They are software models of some chunk of reality, some piece
of the real world going on outside your window. Oceans of informa-
tion pour endlessly into the model (through a vast maze of software
pipes and hoses): so much information that the model can mimic the
reality’s every move, moment-by-moment.

A Mirror World is some huge institution’s moving, true-to-life
mirror image trapped inside a computer—where you can see and
grasp it whole. The thick, dense, busy sub-world that encompasses
you is also, now, an object in your hands. A brand new equilibrium
is born.

Suppose you are sitting in a room somewhere in a city, and you
catch yourself wondering—what’s going on out there? What’s hap-
pening?

At this very instant, traffic on every street is moving or blocked,
your local government is making brilliant decisions, public money is
flowing out at a certain rate, the police are deployed in some pattern,
there’s a fire here and there, the schools are staffed and attended in
some way or other, oil and caulifiower are selling for whatever in local
markets... This list could fill the rest of the book. Suppose you’d
like to have some of this information. Why? Who are you to be so
nosy? Let’s say you're a commuter or an investment house or a school
principle or a CEO or jeurnalist or politician or policeman or even a
mere, humble, tax-paying citizen. Let’s say you're just curious. You
want to browse, take in the big picture (it’s your city, isn’t it?)-—form
some impression of how well the whole thing is working.

3
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So you build a model. You lay out a detailed map on your living
room floor. You add little model buildings and bridges and cars and
policemen and so on, and lots of blackboards. On the blackboards
you will record information that doesn’t correspond to any physical
object—the state of the budget, the weather; thousands or maybe
millions of other tidbits. The blackboards are scattered all over.
Given the blackboards, you don’t really need the map, the buildings
and so on—the city-in-miniature. But you've realized that you’ll
need some way to organize all the data you intend to collect; and a
recognizable image is a powerful organizing device. If you dump lots
of little cars onto currently slow-go streets, use unfinished buildings
to indicate construction projects and so on—you can grasp at least
certain kinds of data quickly. And you can deploy the blackboards in
“reasonable” locations—the stock-prices blackboard in front of the
little stock exchange building; which gives you at least some hope of
finding them.

You buy some long tables and set them up around your model.
You have a few dozen phone lines installed. You hire a bunch of
people. Most of them will staff the phones; the rest will maintain
the model, moving things around and updating the blackboards to
reflect the latest information.

Now you hire several thousand more people (let’s say) and send
them out into the city. Some are posted permanently at interesting
points: you’d like to know traffic conditions everywhere. Some are
assigned to particular institutions: What are the city council, the
board of education, the police department, the mayor’s office doing
at the moment? How’s water quality and the value of city bonds
holding up? Your researchers are in constant phone-contact with
the staffers back in your living room, passing in the latest data for
instant transfer to the model.

Good work. (Glad you didn’t just sit there brooding...)

Now, whenever that “what’s going on?” mood is upon you, you
need merely rise from your sofa, glance (languidly) at your model
and you know.

Yes, but—it was difficult and a tad expensive to set up; and how
good is it, really? Certainly it’s a lot better than nothing. But it’s
interesting that... If you do the smart thing, chuck the whole set-up
and build the model out of software instead -
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You don’t merely get something that’s plausible—that’s achiev-
able, where the hardware version is obviously ridiculous, for most
people in any case. More important: the software model is stagger-
ingly more powerful than the best hardware model could possibly
be.

The software model of your city, once it’s set up, will be available
(like a public park) to however many people are interested, hundreds
or thousands or millions at the same time. It will show each visi-
tor exactly what he wants to see—it will sustain a million different
views, a million different focuses on the same city simultaneously.
Each visitor will zoom in and pan around and roam through the
model as he chooses, at whatever pace and level of detail he likes.
On departing, he will leave a bevy of software alter-egos behind, to
keep tabs on whatever interests him. Perhaps most important, the
software model can remember its own history in perfect detail; and
can reminisce pointedly whenever it is asked. And everything is up
to date, to the millisecond.

Such models, such Mirror Worlds, promise to be powerful, fasci-
nating, and gigantic in their implications. They are scientific viewing
tools—microscopes, telescopes—focused not on the hugely large or
small, but on the human-scale social world of organizations, insti-
tutions and machines; promising that same vast microscopic, tele-
scopic increase in depth, sharpness and clarity of vision. Such Mir-
ror Worlds don’t exist, yet. But most of the necessary components
have been designed, built and separately test-fired, and we are now
entering the assembly stages that will produce complete (albeit small-
scale) prototypes. The intellectual content, the social implications of
these software gizmos make them far too important to be left in the
hands of the computer sciencearchy. The rest of this book explains
why.

Sounds Like Fun, but So What?

Software today offers assistance to the specialist (in everybody) —
not to the citizen. The mere citizen deals with the increasingly per-
ilous complexity of his government, business, transportation, health,
school, university and legal systems unaided. Mirror Worlds repre-
sent one attempt to change this state of affairs.
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You set up a software mirror wherever you like, then allow some
complex real-world system to unfold before it. The software faith-
fully reflects whatever is going on out front. But this is a three-
dimensional kind of reflection: The program reaches out and engulfs
some chunk of reality. Like a child-sized play village modeled pre-
cisely on a real town and tracking reality’s every move, the Mirror
World supplies a software object to match and track every real one.

A hospital Mirror World has a software version of every patient,
doctor, bed, room—and every abstract entity that’s important: cash
in the bank, drugs on order and so on. Through permanent sen-
sors and ordinary terminal-based record-keeping, the Mirror World
reflects the real one. When a patient is scheduled for surgery, the
date is noted in the software Doppelginger. When the patient is
transferred to the X unit, the software version is too. The organi-
zation’s current status is presented in the form of an intricate and
constantly-changing picture that you explore from your computer
screen, skimming the surface or diving deeper as you like.

What’s the point? These Mirror Worlds are like regular old-
fashioned databases, to some extent. If you need to find Shmoe’s
salary or Schwartz’s social security number, you can look it up. But
they go far beyond this. The Mirror World is directly accessible,
twenty-four hours a day, to the population that it tracks. You can
parachute in your own software agents. They look out for your inter-
ests, or gather data that you need, or let you know when something
significant seems to be going on. You consult the Mirror World like
an encyclopaedia when you need information; you read it like a dash-
board when you need a fast take on current status. Fundamentally
these programs are intended to help you comprehend the powerful,
super-techno-glossy, dangerously complicated and basically indiffer-
ent man-made environments that enmesh you, and that control you
to the extent that you don’t control them.

So Mirror Worlds function in part as fire walls opposing the
onslaught of chaos. But they aren’t mere fire breaks. They are
beer halls and grand piazzas, natural gathering places for infor-
mation hunters and insight searchers. Most important, they are
microcosms—intricate worlds come alive in small packages. Whether
in the shape of a Victorian winter garden, an eclectric train layout, a
Joseph Cornell shadow-box or a mere three-inch plastic dome with
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snowflakes softly settling inside, microcosms are intriguing. They
show you patterns and help you make discoveries that you'd never
have come across otherwise. At their best, they are thought-tools of
great power and evocativeness.

But Mirror Worlds aren’t happening in a vacuum. Today’s world
technology scene is no placid pond, exactly. And the technological
context isn’t incidental to this story: it will figure in every paragraph.
So we need to step back a moment before we begin.

1791

People were pretty sure, in 1791, that the industrial revolution had
happened. 1t was history.

The world had been transformed. The spinning jenny and the
power loom, the coke-fired blast furnace and above all Watt’s all-
powerful steam engine were ready and waiting. In 1791, William
Hutton frothed over in describing the growth of Birmingham, that
industrial super-city. “These additions are so amazing, that even
an author of veracity will barely meet belief.”! Fifteen years earlier,
Adam Smith had enthused over the “universal opulence”? that Eng-
land’s state-of-the-art, machine-driven economy had produced. “Let
any person consider the progress of everything in Britain during the
last twenty years...”3 wrote Arthur Young in 1774.

In retrospect, little had changed. There were no railroads. Cot-
ton was a minor industry in Britain. Manchester was a smallish
town. Who were these people kidding, patting themselves on the
back and congratulating themselves up and down on the advanced
state of their technology? On the world-transforming wonders it had
wrought? In 1791, the industrial revolution was merely building up
a head of steam. The Big Bang came later.

Glancing backwards from a vantage-point two centuries hence,
1991 will look a lot like 1791. The technological world of today has
that same pastoral sparsely-settled leafiness. Everything is neat and
well-ordered and tentative: a garden in earliest Spring. Nothing basic
has changed. Yes, software has accomplished great things. But as Al
Jolson so presciently announced in Hollywood’s first Talkie, you ain’t
heard nothing yet. The real software revolution won’t have much to
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do with fancy robots, computers in education, canned “multimedia”
hype or the other hot topics that dominate this month’s hit parade.
It will center instead on software that steps over the crucial boundary
between private and public. It will have to do with “public software
works,” with civil software-engineering, with Mirror Worlds. The
software revolution hasn’t begun yet; but it will soon.

Public policy will be forced to come to grips with the implications.
So will every thinking person: A software revolution will change the
way society’s business is conducted, and it will change the intellectual
landscape. This book is a brief introduction to software and the
computers that power it, a guide to the coming revolution, and a
toast to that memorable moment not far off when the Design of
Software Structures sweeps down the grand staircase to its smashing
debut—as a deep and beautiful intellectual effort in its own right.

§ Venice (Quick Visit)

It is widely claimed, of course, that the software revolution has al-
ready happened, that we live in an “information age”. To grasp why
and how this is not so, the Piazza San Marco in Venice is a good
place to start. The great church is before you. It is in essence a
combination of two materials, stone and mosaic: the stone for shape
and structure, the mosaic for pizzazz. Both components are part of
the church’s beauty, but the stones are fundamental, the mosaic in
every sense superficial. Today, software as a building material resem-
bles mosaic tile. Modern organizations and intellectual pursuits are
extensively plastered with this stuff, and the results are spectacular;
but nothing basic has changed. In the future, software will meta-
morphose into a something more like stone or steel or concrete. The
metamorphosis has in fact (just) begun.

New software Saint Marks’ will rise. They will monopolize the
energy and attention of thousands in the building, will broadcast
an aesthetic and a world-view to millions, will mold behavior and
epitomize the age...

§ The Building Material

Most people are oblivious to the possibilities; this has a lot to do
with a widespread difficulty in understanding software as a build-
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ing material. Most people conceive of programs (to the extent they
bother to conceive of them at all) as “lists of instructions that tell a
computer what to do.” Examine the business side of a compact disk:
You’re looking at millions of microscopic bits of information. How
would you describe what the disk contains? You might say “a list
of instructions that tell the compact disk player what to do,” and
you’d be right. But your answer would be a little lacking in poetry
and insight. “Encoded music” might be a better answer. It puts the
emphasis where it belongs. The fact that you will use a compact
disk player to perform the decoding is technically crucial but leaves
a huge conceptual gap.

The information on the disk is a formula for constructing an event
in time. Software is the same. In both cases we are dealing with a
kind of instant soup mix that can be reconstituted automatically,
the CD into music, the program into a certain kind of machine. A
software machine (a reconstituted program) is a real machine, and
independent of the electronic box that decodes it, in the same sense
that the music coming out of a CD player is an independent reality.

§ Information Refineries

A software machine is an “information machine”. Hardware guides
and transforms forces, electronic machinery does the same with elec-
trical signals; software machines transform information. It’s perfectly
legitimate to picture a running program as a kind of factory with in-
formation trundled in by software forklifts, dumped into conveyers,
fed into and out of sub-assemblies and so on.

This point is crucial to the intellectual moon-mission that soft-
ware is about to undertake. It’s unhelpful to think of programs as
mere static lists of instructions. A program is a working structure,
a (potentially) huge information refinery buzzing and blazing with
activity as masses of information move around inside — a Grand
Central Station of information, with crowds sweeping through on
many levels. It’s still often the case that you run a program, feed
it some numbers, get some numbers back and then turn it off. But
many programs today run continuously, in future most programs will,
and this will become our basic way of thinking about programs: as
factories, information refineries, operating day and night.

The topic in this book is information machinery. Mirror Worlds
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will likely be the most complex information machines ever built.
They might possibly be the most complex machines of any kind every
built.

But in discussing these prodigies of power and complexity, I'll
need to deal, too, with the simplest of information machines.

§ The Paleolithic, Revisited

In the hyper-compressed world of software technology, it’s the
twenty-first century and the old stone age simultaneously.

At the same time we develop vast complex software worlds, the
simple machines of information structure are also just being invented.
The wheel, the ramp, the wedge, the screw, the lever. Much of to-
day’s software-structures research amounts precisely to this search
for universal, simple information-machines that can support vast
complex structures. It makes no sense to reinvent the bolt and the
geartrain every time you design a mechanical device. Builders of
information machinery too would prefer to start with the universal,
basic stuff in hand. But what are the simple information machines?
It took some time (presumably millenia) to come up with the initial
basic five. We'd like five more by this afternoon. If it’s not too much
trouble.

But you can’t merely will them into existence. In some respects,
you're faced with a design problem (what engineers do); in others,
more a problem of discovery. The wheel and the lever are man-made
tools. But they’re so pervasively important that they look almost like
natural phenomena. Not mere engineering doodles; almost intrinsic
in the logical woodwork of mechanical problem-solving, just waiting
to be found out. Chances are, there is a set of basic information
machines waiting to be found out as well. And Mirror Worlds are so
complicated that it’s especially important that we build them out of
simple, universal elements; otherwise, we drown in complexity.

This re-creation of technology on a new footing, in a new way, is
an intellectual event of real importance. It’s also the sort of event
that, by its very nature, is easy to miss. These are simple machines
we’re talking about, after all. Nothing fancy; nothing showy. When
the first test-pryings using a prototype lever came off successfully
at some Paleolithic research institute (whose funding no doubt had
just been slashed)-—most likely, no-one held a press conference. A
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pivoting stick: big deal. Many thousands of years later, early re-
search trials of the potter’s wheel in Ancient Sumeria? are unlikely
to have dominated dinnertable conversation at mid-town watering
holes. The Sumerians knew how to write, but this new “wheel” tech-
nology hardly ranked up there with cattle inventories as a favorite
topic. We are more technology-conscious today. When a rocket goes
up, we are moderately interested. Far from the camera crews, tech-
nologists are doing experiments that are laughably less spectacular.
But, maybe, more important: They are inventing new simple ma-
chines; recreating the technological universe.

Of course, technology has gone through many phases since the
last bout of simple-machine development culminated, with the wheel,
in rather a big way. New engineering vocabularies arose for making
metal, building structures, harnessing water and wind power, keeping
time, building many kinds of engines: a series of techno-revolutions
of earthshaking importance. And yet, all these machines were made
of stuff and, in one important sense anyway, an information machine
is not. The rise of information machinery may or may not prove
more important, in the end, than the rise of clocks or watermills or
electric power. But it should be clear that something is going on
here that is new, different and worth understanding. We're starting
a new chapter in technological history. Chapter one—machines built
out of something; chapter two, machines built out of nothing. Merely
enacted, temporarily embodied by an irrelevant hunk of metal, plastic
and silicon called a computer.

And so,

This Book

has three layers. Mirror Worlds don’t make sense if they are served in
isolation. They are much happier as the insides of a conceptual Deli
Sandwich. The bottom layer deals with the basic nature of software
and the simple machines we are now in the process of inventing. The
upper layer deals with the ultimate motivation in building Mirror
Worlds—the search for what I will call “topsight.” Each chapter
serves up another slice of Mirror World between these wrappers.
The goal is not the usual (for this kind of book) quick stroll down
Wondertech Boulevard, admiring the window displays and then back
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on the bus; you should emerge from the last chapter with a detailed,
concrete feel for how you would actually build these systems.

The progression of chapters is dictated directly by the character
of the problem. Chapter 2 explains what a Mirror World is. The
chapters following discuss in step-by-step fashion how we intend to
build them.

Mirror Worlds are built out of software. First, then: what is
software? (Chapter 3.) The usual warmed-over tripe about those
“lists of instructions that tell the machine what to do” won’t serve.
We need to explore the intellectual shape of this problem, not the
trivial details. But it’s impossible to grasp software’s nature con-
cretely without coming to grips with some fairly subtle points. This
chapter is the “hardest” and most detailed in the book. (For all that,
it’s not terribly hard, and no more detailed than absolutely neces-
sary.) This chapter is also different in character from the others: It
deals with the basics, the fundamental facts about software that are
well-known to everyone in the field. All subsequent chapters discuss
research, and the state-of-the-art. In fact, they grow researchier and
researchier until the story culminates with a bang at the doorstep of
the large-scale Mirror World itself. Right up to this point, though, I
will be discussing real software that runs today, not mere hypotheses.

Mirror Worlds aren’t ordinary programs. They are software en-
sembles, glued-together out of many separate programs all chattering
at once. Chapter 4 explains how you build ensemble programs using
the basic elements described in Chapter 3. Once you understand en-
sembles, you've grasped the basic Mirror World technology. You've
also seen the software future in general. Ensembles are the natural
and inevitable end-point of the three major forces at work in software
evolution, the urge to make programs fast, clear and powerful. En-
sembles already loom large on the software scene; before long, they
will be ubiquitous.

Then, we start building Mirror Worlds. We look first (in Chapter
5) at the Mirror World “basement,” which is full of realtime knowl-
edge plants. A knowledge plant is one type of ensemble program—the
Mirror World as a whole is an ensemble of ensembles. These “knowl-
edge plants” are designed for installation in the teeth of onrushing
data floods. Their goal is to figure out what’s going on—to piece
together the big picture out of an endless outpouring of low level de-
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tail. Then (Chapter 6) we look at the attic, where bushels of fact are
fed into the History Presses (“expert datapools”) for transformation
into something like “the wisdom of experience.” The expert dat-
apools we describe are simple programs with a propensity to behave
in complicated ways—to “speculate,” to “get distracted,” occasion-
ally to “free associate.” What would you want with a program that
occasionally stops paying attention to you? Good question. I'll get
to it...

And finally the Mirror World itself: In Chapter 7 we describe how
the whole thing is put together, out of the components and using the
technologies we’ve already explored in some detail.

Discussing Mirror Worlds means discussing the future. But we
aren’t talking about hazy science fiction. We have arrived at the mus-
ing, prototype-building and detailed planning reflected in this book
by the fact that the tools and materials for Mirror World building
are in hand, and the job is underway.
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Chapter 2

The Orb

To use a Mirror World program, you sit down at your computer,
which has a large color screen and a connection to the local fiber-
optic utility cable. (The screen and the cable are garden-variety
technology today.) Or—if you're willing to put up with a smaller
picture and it’s a nice day—you pick up your laptop, tune in Data
Radio and head for the hammock. In either case, you flip channels
until you find the Mirror World of your choice, and then you see
a picture. Capturing the structure and present status of an entire
company, university, hospital, city or whatever in a single (obviously
elliptical, high-level) sketch is a hard but solvable research problem.
The picture changes subtly as you watch, mirroring changes in the
world outside. But for most purposes, you don’t merely sit and stare.
You zoom in and poke around, like an explorer in a miniature sub. At
every level the display is live: it changes as you watch. You move a
viewing-frame around the picture with a mouse or equivalent, proba-
bly equipped with knobs for zooming. You meet your software agents
and other Mirror World visitors along the way. When your agents
have developments to report, or when you choose to ask questions or
plant new agents, you pop into a sub-screen that displays ordinary
text.

You can enter a Mirror World through any household computer,
but a few extra controls come in handy. Your basic Mirror World
computer is equipped with a perspective shifter, a diving mouse, a
“history” key (with a time-travel velocity knob right next to it), the
all-important “experience” key, and finally an “agent” key. There is
the ordinary keyboard besides.

15
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('m describing hardware gadgets that are similar to what you
can buy today at the corner computer store. If you plan to do lots
of Mirror Worlding, you'll invest in the Mirror World Value Pack,
or whatever; the extra gadgets are tacked onto the computer in the
same way your mouse is attached. The “viewpoint shifter” probably
looks like a joystick; the diving mouse is the same as any other mouse,
but equipped with an altitude-control knob. The time-travel velocity
knob is a knob attached to a box. Your three extra keys look like
any other keyboard keys. You don’t really need any of this extra
stuff. You can always make do with a regular keyboard and a plain
ordinary mouse. But for an extra ten bucks, why not do it right?)

Into the Mirror World

You can look at the typical Mirror World in several different ways.
When you shift viewpoints, the contents of the Mirror World don’t
change, but the presentation does, radically: everything gets re-
arranged. The Mirror World is a leading member of a smug but
invaluable new class of software, programs that know too much. If
we don’t sort things out meticulously and arrange them intelligently,
you won’t know where to start, or which way to turn. The way things
are presented is a tremendously important aspect of a Mirror World
program.

The “geography” perspective is a natural starting point, some-
times. The picture you see on your display represents a real physical
layout. In a City Mirror World, you see a city map of some kind.
Lots of information is superimposed on the map, using words, num-
bers, colors, dials—the resulting display is dense with data; you are
tracking thousands of different values simultaneously. You can see
traffic density on the streets, delays at the airport, the physical con-
dition of the bridges, the status of markets, the condition of the city’s
finances, the current agenda at city hall and the board of education,
crime conditions in the parks, air quality, average bulk caulifiower
prices and a huge list of others.

This high-level view would represent—if you could achieve it at
all—the ultimate and only goal of the hardware city model. In the
software version, it’s merely a starting point. You can dive deeper
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and explore. Pilot your mouse over to some interesting point and
turn the altitude knob. Now you are inside a school, courthouse,
hospital or City Hall. You see a picture like the one at the top level,
but here it’s all focussed on this one sub-world, so you can find out
what’s really going on down here. Meet and chat (electronically)
with the local inhabitants, or other Mirror World browsers. You’d
like to be informed whenever the zoning board turns its attention to
Piffel Street? Whenever the school board finalizes a budget? Leave
a software agent behind.

Eavesdrop on decision-making in progress. Among other things,
you will discover video feeds down here. When you dive into City
Hall, one part of the display on your screen might be a (little) TV
picture. You can mouse over there and enlarge the thing, if you
want to hear the mayor’s press conference or the planning board
meeting. In some parts of the display you will find dozens of little
TV pictures. TV cameras are cheap, and getting cheaper. But how
will we distribute and (just as important) how will we organize a
potentially huge mass and variety of video material—almost all of
which is of absolutely no interest to anybody? Mirror Worlds are one
obvious answer. Those odd times when you do care what the mayor
or the local school principle or the police commissioner is holding
forth about, you can find out. Inside of each little courthouse on
your computer screen is a televised courtroom. Inside each City Hall
hearing room, you will find the hearing. Or-—attend a school board
meeting, visit a museum, take in a lecture at the university. This
is an archive as well as a “live” medium—an encyclopaedia as well
as a dashboard; so you can always go back and catch anything you
missed. (This all will require prodigies of communication, but no
unforeseen technological miracles. Some of the issues are discussed
in Chapter 4.)

You can use the Mirror World’s archival propensities to discover
the history or background of anything that concerns you. What
has the zoning board been doing lately? How did the school board
membership get to be this way, what is the history of a particular
piece of pending legislation—what was the whole city like, this time
last year? Last decade? Merely run the thing backwards through
time, using your history key and the time-travel-velocity knob. You
can restore this whole dense, multi-layered image-world to any point
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in its past. You're not guaranteed to get the whole picture in every
detail; some details may have been forgotten. By and large, though,
you can explore the past in the same way you explore the present,
and make some attempt to figure out how we got here,

But you may want more. You may need to press the “experience”
key. Its function is to answer some profoundly important questions:
Where have I seen this before? When did it happen last? And what
was the outcome? Using the mouse, the keyboard and (sometimes)
pop-up menus, I indicate which part of the current situation I'm
interested in. The city council is considering a bill about garbage
dumping proposed by councilman Piffel and only the following two
members have shown up. Or (if I am visiting the federal government
Mirror World) the Senate Finance committee is considering a bill
about X proposed by Y, the following members are present—what’s
the likely outcome? This patient was admitted with a suspected
diagnosis of Y but is now developing the following new symptoms.
Gold prices are up, oil is down, the dollar is stable, the yen is in
orbit, there’s been a big run-up in molybdenum futures, the White
House wants the following new taxes. Where have 1 seen it before?
Where is it all leading?

You will be presented with a collection of previous moments in
time. These moments capture situations, incidents or cases that
resemble what you’'ve asked about. Your display is reset to each of
the precedents in turn so that you can revisit them, explore them
in detail and find out where they went. Experience is a neat trick,
maybe the neatest of all. We discuss the underpinnings in Chapter 6.

When you've finished exploring whatever sub-world you’ve dived
into, grab your altitude control knob and head back to the surface.
The new knowledge you return with feeds your growing sense of a
big picture.

§ “Eavesdrop,” you said?

Where does all this information come from?

Nowhere special.

Granted, lots of new information-gathering devices have been in-
stalled. But the information they are gathering and feeding into the
Mirror World is strictly public information-—or information to which
this particular Mirror World’s clientele is entitled. And the Mir-
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ror World will discriminate judiciously among visitors. The public
at large, for example, is entitled to enter the City Hospital Mirror
World, and to learn a good deal about what’s going on. Further-
more, anyone is entitled to see his own medical records. But very
few people have access to anyone else’s, although they are all stored
down here. Access to private information is closely controlled.

The Mirror World isn’t snoopware. Its goal is merely to convert
the theoretically public into the actually public. What was always
available in principle merely becomes available in fact. Organized,
archived, spiflily presented, up to the minute and integrated into a
whole. That’s all.

But that’s a lot...

The Significance of Mirror Worlds

Why would anyone claim that these Mirror Worlds are, potentially,
immensely important?

I’ll discuss three bunches of reasons. The first bunch has to do
with control systems that are up to the job of maneuvering and
reining-in our high-output, overpowered modern society. The sec-
ond bunch involves the exchange of information and the making
of person-to-person contacts—processes for which the Mirror World
may be (in some ways) better suited than the real one. The last
reason is the biggest, deepest and most important. It’s also the most
abstract. I will prepare the ground for this last motive by making
the whole proposition as concrete as possible—by explaining what
has been done so far, and by whom, and where the whole effort is

going.

Significance, I: Getting a Grip

A parable: consider the modern, state-of-the-art fighter aircraft. It’s
so fantastically advanced that you can’t fly it. It is aerodynamically
unstable. It needs to have its “flight surfaces” adjusted by computer
every few thousandths of a second or it will bop off on its own, out of
control. Modern organizations are in many cases close to the same
level of attainment—except that, when they’re out of control, they
don’t crash in flames; they shamble on blindly forever.
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It isn’t easy for a hospital administration with the best of in-
tentions to make sure that bad or inappropriate or newly outmoded
or wrongly sequenced or mutually inconsistent or maximally expen-
sive or unnecessarily dangerous procedures are never scheduled. A
battery of software agents planted in a Mirror World can watch for
bad practices full-time. You might face broadly similar issues if you
were responsible (in full or in part) for a company, a school district,
a factory, an aircraft carrier and so on. If you merely work for a
company or deal with a government or study at a university, you face
related problems. Why do so many local governments hover so close
to the jagged edge of clique-ridden sham, engaging the interests of a
negligible fraction of the voters? Surely in part because it’s so hard
to find out what your local government is doing, to dig the issues
out of the minutiae and the trivia. Many voters will enjoy a quick,
bracing dip in their local-government Mirror Worlds from time to
time, particularly the night before an election. Employees: Does the
latest twist on tax laws, benefit packages, interest rates, job classifi-
cations, investment possibilities and insurance deals mean that, once
again, you are doing the wrong thing with your money? Students:
You are, we assume, meeting school and departmental requirements,
applying to all the applicable scholarship or fellowship or training
or research programs, public and private, going to the relevant odd
lecture or meeting or workshop on campus or nearby, monitoring job
conditions or admissions requirements in your chosen field, ordering
software at a discount and generally getting your money’s worth? Ad
infinitum.

The Hospital, for Example

Take the hospital Mirror World. In recent years, medical practice
has grown more effective, more complicated and more expensive si-
multaneously and at dizzying speeds. “Software quality control” is
one approach to the resulting problem, and a main goal of the hos-
pital Mirror World, to be achieved by software agents. Fach agent
monitors one piece of the picture; each one executes a separate pro-
gram. One agent, for example, might run a program that says “if a
patient ever shows up who is suspected of suffering from X, and a
W test isn’t scheduled within twenty-four hours, let someone know.”
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Letting someone know might mean printing a coinment on every ter-
minal screen focussed on this Mirror World, or electronic-mailing a
note to the physician who is responsible for this patient. The note
might be a brief sentence or two, or more extensive. It might cite
a recent study that shows why the recommended test is useful, or
statistics gathered in this hospital, or facts from the patient’s medical
history.

This simple example hints at several crucial Mirror World facts.
Software agents are independent, and we can create as many of them
as we like. Each one can monitor whatever we tell it to, from serious
problems to minor details. They needn’t be mutually exclusive, or
even mutually consistent: A note might say that “Dr. X’s agent
is surprised that you haven’t tried W yet.” Some agents are public
(their comments are available to all Mirror World comers), others
designed only for their creators. Potentially, there are large numbers
of agents: We may have to screen their comments or organize them in
some way so that Mirror World browsers aren’t overwhelmed. Their
behavior can be custom-tailored to an audience: An agent might
print a short note to the Mirror World’s public dashboard, then send
a detailed explanation to a particular clinician. They run simultane-
ously and continuously: Constant vigilance to every possible source
of screw-up, no matter how rare or complicated or subtle or outra-
geously improbable, is a principle Mirror World goal. If a particular
hyper-specialized agent runs patiently for thirty years without so
much as clearing its throat, and on Day 16,951 prints a message
that prevents a serious medical mistake, we are satisfied. We are
delighted.

A Mirror World agent might cite local statistics, I claimed, to
back up its case. A Mirror World can remember the history of its
institution with perfect accuracy, in exhaustive detail. We can use
the experience key to ask concrete historical questions: “When we try
A and then B on patients suffering from C', what happens?” We can
do prospective studies as well, by designing software agents who will
henceforth monitor and report on the results of some combination of
circumstances.
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The Ensemble

I've noted that each software agent is independent, that each one
executes its own program, and that all are active simultaneously.
It follows that the Mirror World as a whole isn’t an ordinary “se-
quential” program that does one thing at a time; it is an ensemble,
a “parallel” or “coordinated” program, a program that does many
things at once. As a consequence we have two choices. Either the
Mirror World executes on many computers simultaneously, or it ex-
ecutes on a single computer that is powerful enough to behave like
many separate ones. Most Mirror Worlds will choose the first alterna-
tive. The industry is building more and more “parallel computers,”
machines that come equipped with many sub-computers packed in
the same box, like tinned sardines. These machines are relatively
cheap and (because they can focus many computers on one problem)
blazingly fast. Computer networks are even more important than
parallel computers. Most organizations that are good candidates for
Mirror World monitoring own lots of computers, all connected to-
gether. It will be convenient for the Mirror World program to run on
many or all of them simultaneously (like a far-flung mercantile em-
pire with toe-holds in every interesting principality—were we talking
about Venice?).

As usual in the field of computation, finding a hardware solution
is no big deal. The real problem is software. Although a great deal
of effort has been spent on coordinated programming—it has been
our group’s main research focus for years—this is still new stuff, not
what the average programmer-in-the-street understands a “program”
to be. Building this kind of program still presents some tricky prob-
lems. But they will be solved; coordinated programs are the future
of computer science.

Now let’s go beyond the obvious and immediate benefits and look
at some others that are more subtle but just as important.

Significance, II: The New Public Square

The Mirror World isn’t a mere information service. It’s a place.
You can “stroll around” inside a Mirror World. You can meet and
(electronically) converse with your friends, or random passers-by,
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chat with a policeman or a teacher or a politician, discover like-
minded fellow-citizens; form some idea of the public mood.

Well—so what? You can do the same thing in the real world,
can’t you? Sure you can, it’s just that you don’t. (All right, I don’t.
Lots of people don’t...) For most people, the real world is just too big,
sprawling, complicated, disorganized, intimidating, cold-and-wet or
smoggy-and-smelly or expensive, unpredictable, inconvenient, dan-
gerous, whatever. Of course, you're no hermit. But you associate
with your own crowd. It just isn’t possible to deal on a friendly basis
(on any basis) with a whole good-sized town-full of people. You in-
habit some limited sub-world of necessity, and so does everyone else.
Do a million separate, barely-intersecting worlds make a polity? I
don’t think so.

The “small town,” an institution where you actually know your
fellow citizens—mnow there is an interesting idea. The Mirror World
is a re-application of the same concept on a smaller and larger scale.
Much smaller: the whole town fits inside your computer. You can
do the Grand Whirlwind Tour, see everyone and everything, without
changing out of your pajamas. Much larger: this small town might
support a population of millions.

The Mirror World as public square has many implications. Here
are some.

§ Elections...

in the United States are screaming rapidly downhill towards the
utopian Fantasyland of every politician’s dreams. Here, amid the
picturesque photo-ops and succulent sound bites, each and every in-
cumbent is guaranteed re-election unless he is in prison or certifiably
dead, and every campaign takes one step closer to the Absolutely
Perfect Campaign—not merely vapid and expensive, but zero con-
tent, infinite cost! A Mirror World offers another way to campaign.
Every Mirror World neighborhood is equipped with a public mes-
sage board. Candidates can post statements. Towards election time,
we can set up a special political playground, where they can hold
forth at greater length. Shoppers can send questions directly via
electronic mail, and post the answers on Mirror World billboards
where everybody (whether or not they feel like taking the trouble to
send mail) can find them. Politicians can open Mirror World offices,
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where browsers can catch up on what they’ve been doing and leave
questions that the staff promises to answer. This whole campaign
strategy will be dismissed as naive nonsense—after all, voters don’t
care about issues, they care about media advisors. Everybody knows
that. And then one day, some nobody of whom no TV reporter has
ever heard will win in a write-in landslide.

The message boards aren’t for politicians only, of course. If you
find something you don’t like, you can post a note; you will soon
discover whether anyone else agrees with you. In these impersonal
days, it’s difficult for a community to mobilize mere annoyance. Mir-
ror Worlds will help.

& The Public-Nuisance Level

This sounds like a small point, but it isn’t. The basic principle
of toxicology is the dose makes the poison. Modern society would
rather ignore this principle, because it makes things complicated.
We have a wasteful, dangerous, perfectly understandable tendency
to go crazy over trivial doses of “poison” but to ignore massive doses
of “irritation,” although the poison in this case is merely irritating
and the irritation is toxic.

Most people will go to some lengths to avoid any exposure to a
chemical (a pesticide, say) that is known to be poisonous in large
doses. The probability that a tiny dose will make you sick might
be minuscule, say a few parts per million, but what the hell—being
only human, we’d rather get sick with zero probability and live for-
ever. Fair enough. Rational or irrational, it comes with the terri-
tory. Now, irritation—-irritation is known to be absolutely harmless,
in small doses. Noise, rudeness, obtuse bureaucratic stupidity, point-
less procedural obstacles, the wanton squandering of your time by the
worldwide confraternity of air-headed, brain-dead officialdom: stop
whining, it won’t kill you. Yes, but the problem is, in massive doses,
it might. At least, it is quite as likely to contribute to real physical
illness (by way of stress) as those trace quantities of pesticide in your
yogurt. Maybe a whole lot more likely.

If life gets more and more annoying—well, people get annoyed,
and that’s that. Individually, a million irritated people accomplish
nothing. And the slow-acting poison of loudness, callousness and
obtuseness that has leached so deeply into public life is clearly not
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important enough to deserve attention from the politicians, TV an-
chors and movie stars to whom we have entrusted the Official Setting
of the Public Agenda. Have a heart. These people are busy.

When was the last time you heard a politician call a news confer-
ence to reflect thoughtfully that “maybe we should enforce the noise
ordinances after all? And by the way, are police sirens ten times
louder than they need to be? Is it really, 1 mean truly important
that you be able to hear them on Mars?” Or “collecting tolls is an
idea that made sense when roads were a lot less busy than they are to-
day. It was never intended when we installed these things that they’d
cause backups stretching for miles—wasting fuel, fouling the air and
squandering billions of hours of the public’s time. This is a stupid
way to collect money.” (The Administration’s new five-year highway
plan calls for wider use of tolls.! How about more potholes, too, while
you're up?) Or “maybe the people in government offices ought to be
polite to the public.” (Muffled guffaws from the back of the room.
It’s official, by the way: The Wall Street Journal has announced the
virtual eradication of the private-sector apology. “Apologies have all
but disappeared from America’s commercial discourse...”?)

Mirror Worlds will allow coalitions to accumulate gradually and
spontaneously, around issues that are important not to the lobby-
ists and not to the deep political thinkers of Hollywood but to the
(huh??) public, without fund raising, full-time staffers or histrionics.

§ Chatting with Passers-By

Which leads us to some of the broader implications of the Mirror
World as public square. A Mirror World may have lots of visitors at
any given time, and it’s supposed to show its users exactly what the
system looks like right now. It follows that visitors should be aware of
each other (after all, they too are part of the system’s current state).
So each visitor is represented by a blip on the screen. Because the
Mirror World presents its world-view in visual form, in the shape of
an intricately detailed multi-level neighborhood, users of the program
can rely on ordinary visual cues to find out where other program users
are congregating. If you happen to be browsing around Piffelwood
High one evening and you notice another visitor doing the same, you
might strike up an electronic conversation. The other guy might be
worrying about the same issues you arc. Then again, probably not.
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But, as many computer users already know, electronic conversations
are a lot easier to start and to stop than real ones.

The larger the Mirror World, the greater the opportunity for
chance encounters with interesting consequences. Browsers might
run into other browsers from anywhere in the country (or the world).

§ Business

Business applications: a final Mirror World example that partakes of
the public-square, information-exchange aspects of the operation. It
should be clear that Mirror Worlds have many commercial applica-
tions, but one of the most important may not be obvious. Com-
plex high-tech manufacturing requires teams of design, engineer-
ing, manufacturing-process and production specialists. Traditionally,
new products wend their way back and forth among these groups,
from one to the next and (if necessary) back again until an initial idea
has been transformed into a buildable product. Nowadays we hear
that this ad hoc process is too expensive. An integrated, coordinated
design process is essential, with designers and engineers and pro-
duction people working simultaneously on the same project. “Con-
current engineering” is the newly-hatched buzzword.®> A competi-
tive global economy means that companies have two choices: They
will learn how to turn ideas into products quickly, or they will be
squashed, mopped up and taken out with the trash (not infrequently
by those past masters of coordination, the Japanese). The problems
in coordinated design center on information flow. Everyone needs
to be up-to-date. Everyone needs to know immediately if his own
group’s work has been jeopardized or in any way affected by another
group’s decisions. But we can’t flood people with too much or irrele-
vant detail, or waste their time in hunting around for the information
they need. The right people need to be told things promptly and au-
tomatically. The others need to be left alone. A Mirror World that
captures the current right-now state of the entire project {allowing
any participant to stroll around and take in the big picture), and a
sct of software agents charged with alerting participants to relevant
developments, seems like a promising approach.



Building Mirror Worlds 27
Building Mirror Worlds

Before I take up one last aspect of the Mirror World’s reason for
being, let’s make the proposition concrete.

Building Mirror Worlds is a complicated but unmysterious propo-
sition. There is nothing science-fictionish about these programs.
They’re built out of a few basic software components all of which
are under active development, if they don’t exist already.

A Mirror World is an ocean of information, fed by many data
streams. Some streams represent hand-entry of data at computer ter-
minals; they flow slowly. Others are fed by automatic data-gathering
and monitoring equipment, like the machinery in a hospital’s inten-
sive care unit, or weather-monitoring equipment, or traffic-volume
sensors installed in roadways. These streams may be so fast-rushing
that they threaten to overwhelm the main program with informa-
tion tidal waves. The solution is to connect Mirror Worlds to fast-
rushing data streams via a sort of software hydroelectric plant. Such
programs are designed to sift through complex floods of data look-
ing for trends and patterns as they emerge. They are constructed
as layered networks. Data values are drawn in at the bottom and
passed upwards through a series of data-refineries, which attempt to
convert them into increasingly general and comprehensive chunks of
information. As low-level data flows in at the bottom, the big picture
comes into focus on top.

One current prototype (designed in collaboration with clinicians
at the Yale Medical School) is designed for patient monitoring in
operating rooms and intensive care units. The same principles are
applicable in many areas. A Mirror World dealing with a transporta-
tion network, for example, or a factory, powerplant or aircraft carrier
might draw information from an elaborate array of automatic sen-
sors through a datafilter. In every case, the filter program tries to
answer the same basic question: What’s going on here? What does
this mass of small, individually inscrutable detail add up to?

The intensive care unit program encompasses on the order of
a hundred “modules” or basic elements, but research points in the
direction of vast million-module filters, with data values streaming
constantly upwards as (perhaps) thousands of data-requests cascade
downwards simultaneously, and a complex blur of information comes
into focus.
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Expert datapools are the programs that make the “experience”
key work. They are crucial to Mirror Worlds and have enormous po-
tential significance outside them as well. Users hand these programs
the description of some problematic object or event, and it elucidates
this thing on the basis of the patterns and likely outcomes recorded
in thousands or millions of similar cases. In the course of doing so,
it pulls from its massive files a few individual records that are espe-
cially pertinent to the case in hand. In effect, the expert datapool
is a a huge case-library, expecting to be asked not “get me file 117,”
but “get me anything I can use.”

This software technology, in combination with high-speed par-
allel computers and computer networks, makes it possible to envi-
sion enormous, intelligent information reservoirs linking libraries and
databases across the country or the world.

These pools and filters are major building blocks of a Mirror
World, in the sense that (say) geartrains and jeweled bearings are
important components of a watch. But they also capture the two as-
pects of the Mirror World as a whole. A Mirror World is a two-faced
duality. You can look at it as a datapool, as a detailed historical
archive; or you can look at it as a datafilter, capturing and synop-
sizing the current state of a complicated system right now.

§ The Key Ingredients

Four key ingredients make up a Mirror World: a deep picture that is
also a live picture; plus agents; plus history and experience. And then
there’s a fifth element: the basic idea that knits these all together.

All four “key ingredients” occur already in some form or other in
the world of software or (at least) of imaginary software.

Deep pictures—pictures you can view at many levels, zoom into
and zoom out of—bring to mind the software that electronics design-
ers use to lay out their silicon chips. These packages can show you
the design of circuitry at many levels, from a bird’s eye overview to a
detailed close-up of one small corner. Some computer games let you
amble around imaginary landscapes. In a book about robots, Hans
Moravec of Carnegie Mellon University describes a computerized li-
brary system in which you cruise up to interesting-looking items and
then dive in.* And so on: Therc are lots of other examples.
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The graphic-design aspect of the problem, the so-called informa-
tion visualization field, is challenging and fascinating. There is a fair
amount of work in the area. But what you see today is a drop in the
bucket next to the dumpsters-full of research that will materialize
soon. This is one big, neat problem, and in a few years, computer
scientists will be thundering in like a herd of elephants. Today, Xe-
rox’s computer science research lab (a place I'll be mentioning again)
has software that shows you images, on standard computer screens,
of 3-D structures that represent abstractions like personnel charts. A
few other software researchers are working on the problem. (Steven
Feiner at Columbia, for example.) I'll discuss our own efforts in later
chapters. The leader of the field is non-computer-scientist Edward
Tufte of Yale, a statistician, designer and political scientist who wrote
a classic book on the subject and has just published the sequel.?

Live pictures, which show you the state of a complex external
system right now and change as you watch, are probably the most
exotic item on our list. You don’t encounter these often. The pictures
that computer-driven flight simulators produce (or ship simulators,
or the home-computer games that let you drive race cars) fall vaguely
into this category. So do the graphs that medical instruments display,
and a few other odds and ends.

Agents in one form or another occur in several contexts. Thomas
Malone of MIT builds electronic mail systems in which agent-like en-
tities examine a slosh of electronic letters and announcements, try-
ing to pick out items that their human sponsors will find interesting.
Robert Kahn of the Corporation for National Research Initiatives is
the moving force behind a major effort to build a national computer
network that will move data around the country at blinding speeds.
Kahn talks about “Knowbots”—agents in our terms, software enti-
ties working on behalf of their human sponsors. These “knowbots”
cruise around the network, ferreting out interesting volumes from
network-accessible electronic libraries.

Then, there’s experience and history. Any old database is his-
tory, in a sense. (Though not quite in our sense.) Other groups
whose work is related to our Finding Precedents problem include
Craig Stanfill and David Waltz at Thinking Machine Corporation
and Roger Schank and colleagues at Northwestern University.

So all of our key ingredients either exist, sort of exist or clearly
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could exist. But then, finally, there’s the “basic idea” that guides the
knitting-together of these elements. Forget the details, if you like.
The “basic idea” is what this book is about.

I will explain in detail how I think Mirror Worlds can and will be
built. But obviously, I could be wrong. I think our tools and methods
are great, but who knows? Perhaps ’ve simply failed to recognize
better ones. The techniques and software architectures that strike
me as beautiful and powerful might be small potatoes when all is
said and done. Discount everything we’ve done and all the details,
if you like; the basic idea stands. Before long, someone will start
building Mirror Worlds somehow. You may be absolutely certain of
that.

Why? Because the idea of this fundamental inversion in man’s
relationship to society is hard to grasp but too potent to suppress.

Significance, III: Seeing the Whole

Mirror Worlds are devices for showing you the big picture, the whole.
Every Mirror World has the same goal, in the end: to show you the
whole thing at once, the whole whatever this Mirror World is track-
ing. Yes, you can plunge in and explore the details. You can meet
people and chat, transact business, hold meetings and go shopping in-
side a Mirror World. You can leave your software agents behind. But
whatever your particular business, you’ll be hard-pressed to avoid
achieving something else as well: catching a glimpse of the whole
thing. When you switch-on your city Mirror World, the whole city
shows up on your screen, in a single dense, live, pulsing, swarming,
moving, changing picture. This big picture is the “top surface” of the
Mirror World. You can dive deeper to explore, but you start out from
the big picture—with the big picture on your screen. When you're
finished doing business in the depths, you return to the surface—to
the big picture—on your way out. Whenever you use a Mirror World,
the image of the whole is available, and inescapable.

Grasping the whole is a gigantic theme. Arguably, intellectual
history’s most important. Ant-vision is humanity’s usual fate; but
seeing the whole is every thinking person’s aspiration. If you accom-
plish it, you have acquired something [ will call topsight—and will
discuss at greater length further on.
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Mirror Worlds will contribute to whole-sightedness in many ar-
eas. The first Mirror Worlds will be nothing like entire cities. They
will be focussed, most likely, on university departments or research
projects, and possibly on single units of academic hospitals. A whole-
university or whole-hospital Mirror World is an ambitious step be-
yond that. Then, commercial applications: fragments of businesses;
eventually, whole corporations. Only then do we move out into the
fully public world of governments, cities, countries. What might
these systems mean ultimately, when they reach this point? What
does seeing the whole mean—what might Mirror Worlds mean—to
democratic government and society?

It used to be generally conceded that whole-sightedness—a due
respect for what Madison calls “the permanent and aggregate in-
terests of the community”®—was a good thing. Today, all sorts of
angry factions are proudly dedicated to the methodical tearing-to-
shreds of public life. Rapacious PAC lobbyists in Washington and
multi-culturalists at Stanford are quite agreed that a little E Pluribus
Unum goes a long way—

But whether they are in fagshion or not, whole-sighted citizens are
the prerequisite to sane public life. This is true on rational grounds
and on spiritual ones.

You can’t arrive at sound judgements and good decisions without
a view of the big picture—knowledge of the facts in each particular
case; but, still more important, a habit of thought. The habit of
going beyond that narrow self-interested slice of truth that is dished
out (with coffee) at every inform-the-public affair, no matter who is
doing the serving.

Spiritually, the ant’s-eye view means not only that your cutlook
is malformed, but that you are in a dangerous position: damned
likely to get stepped on. You are caught inside a something you
can’t picture and can’t fathom.

All this is obvious. But consider a few examples, for concreteness.
Why (Mr. and Mrs. Joe Citizen) have you chosen to allow Indepen-
dence Hall in Philadelphia to rot, nearly half the surrounding historic
buildings closed for lack of money, while a hundred miles away you
lavish your tax dollars on another federally supported park (in a po-
litically better-connected district)  is “Steamtown National Historic
Site,” “a third-rate collection in a place to which it has no relevance,”
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decisively more important to you than Independence Hall?” Where is
your sense of the whole? 1f we ban polystyrene hamburger clamshells
and force the fast-food industry to use all-natural, degradable card-
board instead, that’s good for the environment, right? A number
of especially virtuous cities have already done so. But those evil
polystyrene shells cost 30% less energy to manufacture than card-
board containers, and cause forty some-odd percent less air and wa-
ter pollution in the process.® Don’t you need some sense of the whole
before you make these decisions?

These are mere details; there is an endless list of others just
like them. One slightly broader example. At a recent government-
sponsored workshop near Johns Hopkins University in Baltimore, a
distinguished medical researcher asked the following question: What
are the costs of not adding five dollars a pack to cigarette taxes?
That sounds in isolation like an outrageous tax, but maybe, if you
look at the big picture, it’s merely a modest attempt to recover a
small piece of the yearly federal health care outlay that smoking costs
us. Should we think of those health care dollars as federal career-
support handouts, awarded annually to certain prominent southern
politicians? How does it all add up? What’s the big picture? Good
policy demands a sense of the whole.

But even the largest policy questions don’t define the edges of
this topic. Beyond the political boundaries we enter the spiritual
domain. Ant-vision isn’t an acute crisis. It’s a deep, subtle, gnawing
problem, and moreover a problem that far transcends the details of
American politics. Whole-sightedness, as I have mentioned, used to
be regarded as a good thing. Edmund Burke thought so. The British
Parliament should be an “assembly of one nation, with one interest,
that of the whole—.” Robert Moses (New York City’s leading urban
planner during the middle years of this century) thought so. He was
“totally without ideology, except for a basic belief that the whole was
bigger and more important than the sum of its parts.”'® Moses today
is reviled, for building public works on the ruins of private property.
Today we have come to understand (many of us, anyway) that Moses
was bad, that the “melting pot” was a silly idea if not outright offen-
sive, that we are not a watercolor nation of smoothly-blending indi-
viduals but a Calder Mobile of disjoint hard-edged pressurc groups
circling each other warily, and that Independence Hall can rot—
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It’s easy to blame the special-interest lobbyists, the multi-
culturalists, the whole crowd of rip-in and tear-it-uppers. Personally
I blame them plenty. But in fairness, how can you value something of
which you have no concept? How can you value the whole if you don’t
know what it is? Public life grows more intricate, diverse and simply
larger. Envisioning the whole grows tougher and tougher. Sure, this
sense-of-the-whole sounds great; but it’s not easily achieved...

It never was; and it’s getting much harder, harder all the time.
Galloping complexity is the theme of modern society. “Ours is a
complex age. It is much more complex than any previous age. In-
vention, machinery, industry, science and commerce are character-
istic of today.” These words were written by a schoolgirl in her
Home Economics notebook in 1937.'' Things were a lot simpler
then. Her remark is dead-neutral in tone; it merely reports a fact.
By 1981, the temptation “to believe that society has become too
complex to be managed by self-rule”!? was prevalent enough to be
Officially Denied in President Reagan’s inaugural address. James
Marone’s valuable description of the “dense environment of contem-
porary government”!3 in his recent, much-acclaimed The Democratic
Wish is a litany of complexity: Nowadays, everything seems to be
subtly and mysteriously connected to everything else. To build a
dam, review a hospital’s rates or set American trade policy you must
pick your way over a vast sticky web (of laws, interest groups, tech-
nical problems) anchored in far-flung outlandish places. The big

picture is a cypher. The whole is simply foo complicated to compre-
hend.

Can we afford to go on this way? Who will accept responsibility
for our ultimate achievement, the Incomprehensible Society? Is ant-
mindedness our fate? What are we going to do about it?

Okay: political scientists first.

Marone, for one, sees the problem. But he understands it differ-
ently: not as a failure of vision, but as a failure of government. Fair
enough. Things look chaotic, he says, because they are chaotic. We
must reconstitute the American government on a new, more inte-
grated and powerful basis. “America need a more powerful political
center; we need to rencw the public sphere.”!*

The only problem with Marone’s plan is that it will never work,



34 The Orb

and he knows it. “It is hard to imagine a more unlikely conclusion
to the story of American state building.”!®
All Right. Technologists?

Consider the peculiar idea that technology might help. Yes, we
could re-order, rationalize, stmplify society to suit the viewpoint of
ants. Or we could sharpen our vision instead; fight progress with
progress. We could abandon the naked eye and look at society
through the wholeness-enhancing lenses of our Mirror Worlds.

It’s nice to gaze up at the night sky, but if you want to comprehend
what’s up there, gazing is not enough; you need instruments too. It’s
too bad, but there it is. And we need instruments to help us now.
In the long term, ant-vision is incompatible with a free society. The
Mirror World is a wholeness-enhancing instrument; it is the sort of
instrument that modern life demands. It is an instrument that you
(almost literally) look though, as through a telescope, to see and
grasp the nature of the organizational world that surrounds you. To
see and grasp not in tiny pieces, but whole. An instrument not for
scientists but for citizens.

The Mirror World will not solve all your problems, answer all
of your questions, make you brilliant or teach you Japanese. It will
merely rub your nose in the big picture. It will foster a new way
of thinking—vividly, colorfully, intriguingly and relentlessly. And
society may be subtly but deeply different as a result.

You will still be encompassed by the defining institutions of mod-
ern life; but now, they will also be encompassed by you. They will be
objects in your hands. Literally: Whole organizational worlds will in-
habit pint-sized computers. You can pass one around after dinner —
anything from the local school board to the federal government—-
like a brandy bottle or a box of chocolates or a Hooka Pipe or the
golden Microcosmal Orb of kingship, the sphere perfectly held in the
right hand'® symbolizing the whole world—inherited from Rome by
Byzantium, passed onwards to medieval kingship and into modern
times. The original Mirror World. Look at it and imagine (if you
cannot see) the world and your kingdom: the two being synony-
mous. Primitive technology. Opaque, but evocative. The Orb, a
perfect sphere: perfect; whole.

Sure. you might be too tired this evening to turn the box on.
Or you might have better things to do. Or you might be such a
bored and apathetic gootball that you never turn it on, never even
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peek inside a Mirror World. Doesn’t matter. The fact that this box
exists, that the world is right there on your coffee table, makes all
the difference.

Adding It All Up

Since the start of the technology age, previous generations have made
their marks with iron and steel, aluminum, glass and concrete; soft-
ware is our own distinctive building stuff. We think of modern soft-
ware as fulfilling its destiny in the form of cute little shrink-wrapped
boxes at the corner store—software for the people, cheap and uni-
versally available. The vision is attractive, but leaves something
to be desired; as if the science and engineering that made every-
day realities of steel, aluminum, plastics and electric power were ail
almed ultimately at the realization of—say—the dishwasher. Dish-
washers are useful. There is nothing ignoble about a dishwasher.
But it would have been sad had railroads and airplanes, skyscrapers,
bridges, highway networks and supercomputers never existed, and
we had contented ourselves with kitchen appliances exclusively. Now
the time has come to build some noble and inspiring public things
out of software. And we surely will.

Is it an inadmissible stretch to refer to these Mirror Worlds as the
Saint Marks’ of their time? A Mirror World that encompasses a large
hospital or university or a moderate-sized company is an enormous,
complicated structure. A City Mirror World is immense. And such
programs will blend as they grow, eventually encompassing many
universities, or every hospital in the region, or all the somethings in
the country or, conceivably, in many countries. These monumental
projects will absorb great quantities of labor. And a program of
this sort might see throngs of strollers on a busy day: Thousands,
even millions of computer-windows might be thrown open on one
Mirror World simultaneously. It’s not hard to imagine the largest
of these projects becoming the grand piazzas of their age. Such
projects surely qualify as civil software-engineering on the order of
rail systems or highway networks. Like all great engineering projects,
they are potential artistic masterpieces as well. All that’s required is
a Brunel or an Eiffel or a Maillart to work in software. Apart from
their structural beauty, the constantly changing, endlessly detailed
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pictures that these programs project might be beautiful and will at
least be striking.

Still, some (many?) won’t grasp the structural reality of Mirror
Worlds. After all, if you turn your computer off, they disappear.
You can’t turn off Saint Mark’s. Certainly these things are peculiar
structures: invisible, built out of gossamer info-fluff, gliding silently
through dozens or thousands of computers simultaneously, fed by
quiet datastreams and raging datafloods to which they respond with
billions of clock-work micro-reactions every second, host to visiting
hordes—each member of the crowd sealed in absolute physical pri-
vacy. Pull the plug and it vanishes. This kind of structure does take
some getting used to.

Where previous generations would have gotten excited, we—
numbingly prudent middle-aged society that we have become—tend
to get worried. In the face of huge, powerful and potentially abusable
programs like Mirror Worlds, worry is in order. Exhilaration is also
in order.



Chapter 3

Disembodied Machines

We begin with the central question. The answer forms the most
important part of the Mirror World’s intellectual foundation. It also
forms, for that matter, the most important part of computer science’s
intellectual foundation; which makes it one of the central questions
in modern engineering, and arguably the most important question
in the history of technology. Despite which, it is a question that
is rarely asked; and on rare occasions when it is, the answers you
hear tend to be blatantly wrong. What is a program? What does
“software” mean? Any technoglitz book that proposes to slobber
on for hundreds of pages about software (there are plenty of them
nowadays) should make you acutely uncomfortable unless it starts
out by telling you what software is. And not many do.

Because (or at least partially because) the answer isn’t simple.
Or to put it another way, the answer is simple but it’s also sub-
tle, because it requires that we give a name to something that (like
adolescent female pigeons or the sky just as a cold front is arriving)
we are accustomed to seeing but not to identifying. I’ve said that
a computer program is a kind of machine, which is true. But it’s a
funny kind of machine that must be defined with care, or we miss the
whole point. I'll define a program as an example of something I’ll call
an “embodied machine”; this will place it roughly at the midpoint
between a lathe and a symphony.

37
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A Machine?

I need to say, first, what a “machine” is in general. (Arguing about
this definition used to be a fairly popular diversion. Machines are not
the sexy proposition they once were...) Let us say, for present pur-
poses, that a machine is a man-made structure that converts energy
into value. This definition is vague on purpose, but it makes several
points. A machine is man-made (a cloud doesn’t qualify), and it is a
structure—an object that occupies space and time. (An idea doesn’t
qualify). A machine is the meeting place between physics and soci-
ety: It converts energy, which has a precise physical definition, into
value, which doesn’t. Value is whatever you say it is.

Embodied Machines

Suppose you visit an art museum and walk up to a painting. I say
“Ah ha! I see you're admiring some powdered pigments, mixed with
oil and smeared onto what appears to be a canvas panel.” You say
“No, you moron. I'm admiring ¢ Rembrandt.” Good. You're three-
quarters of the way towards a deep understanding of software.

How did this happen?

Well clearly we may, if we choose, regard a painting as a coming-
together of two separate elements. The paints and canvas—the phys-
ical stuff; and the form-giving mind-plan. I'll call these two elements
the body and the disembodied painting respectively.

Both are necessary to the finished product. But they are
unequally decisive to its character. If Rembrandt had (while try-
ing to shake out a tablecloth) accidentally chucked his favorite paint
set into a canal on the very morning he was destined to make our
painting; if he’d accordingly been forced to go down to the basement
and hunt up another set—the finished product would be the same.
But if he’d altered his mind-plan—the disembodied painting—before
setting to work, our finished painting would obviously have been dif-
ferent.

In fact, the disembodied painting is a painting in and of itself—
albeit a painting of a special kind, namely an unbodied one. Rem-
brandt is perfectly entitled to tell his wife “I have a painting in mind”
before setting to work. But plainly the mere body is no painting, not
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in and of itself. If the paints on Rembrandt’s table went around
telling people “Hey look at us, we’re a painting,” no-one would be-
lieve them.

This distinction is the key to software and its special character. A
running program is a machine of a certain kind, an information ma-
chine. The program text—the words and symbols that the program-
mer composes, that “tell the computer what to do”—is a disembodied
information machine. Your computer provides a body.

Unlike Rembrandt’s mind plan, a disembodied information ma-
chine must be written down precisely and in full. It’s a bit like the
engineering drawings for a new toaster in this regard; the machine
designer leaves nothing to chance. Unlike Rembrandt’s mind plan or
the toaster drawings, on the other hand, a disembodied information
machine can be “embodied” automatically. No skill, judgement or
human intervention is required. Merely hand your text to a computer
(it’s probably stored inside the computer already); the computer it-
self performs the “embodying.”

So: A running program—an information machine or infomachine
for short—is the embodiment of a disembodied machine. In saying
this, we have said a lot. A fairly simple point first, then a subtle and
deeply important one—

Some people believe that, when they see a program running, the
machine they are watching is a “computer.” True, but not true
enough. The computer, that impressive-looking box with the de-
signer logo, is merely the paint, not the painting. When you say I'm
watching this computer do its stuff, you are saying in effect I'm ad-
miring not this Rembrandt but some paint smeared on canvas. Some
people imagine the computer as a gifted actor (say) who is handed
a program and declaims it feelingly. No: bad image. The computer
itself is of the utmost triviality to the workings of the infomachine
you are watching. It may decide how fast or slowly the thing runs,
and may effect its behavior just a little around the fringes, but es-
sentially it is of no logical significance whatever. It is a mere body,
and bodies are a dime a dozen.

OK, agreed. But the second point is harder.

People often find it difficult to keep in mind that, when they see a
program text, what they’re looking at is a machine. The fact that, for
the time being, the machine they’re looking at has no body confuses
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them. With good reason: This is a subtle, maybe a confusing point.
They leap to the conclusion that what programmers do amounts to
arranging symbols on paper (or in a computer file) in a certain way.
They look at a program and see merely a highly specialized kind of
document.

This mistake is fatal to any real understanding of what software
is.

Understanding software doesn’t mean understanding how pro-
gram texts are arranged, it means understanding what the working
infomachine itself is like—what actually happens when you embody
the thing and turn it on—what kind of structure you are creating
when you organize those squiggles—the shape of the finished prod-
uct, the way information hums through it, the way it grows, shrinks
and changes as it runs, the look and feel of the actual computa-
tional landscape. This is where software creativity is exercised. This
is where the field evolves, metamorphoses and explodes. Talented
software designers work with some image of the actual running pro-
gram uppermost in mind. Failing to see through the program text to
the machine it represents is like trying to understand musical nota-
tion without grasping that those little sticks and ellipsoids represent
sounds.

This kind of information is hard to convey. You can’t directly see
a running program. You can sense its workings indirectly, but you
can’t open the hood and look right at the mechanism. An ironic re-
versal of the Rembrandt experience: Here the mind-plan is tangible,
but the embodied thing itself is not.

Nonetheless, there are good ways to understand, indeed to enwvi-
sion exactly what a running program is like. The rest of the chapter
presents them.

Now let me backpedal a bit, by way of conclusion, to emphasize
the trickiness of this game.

Say you're a toaster designer and you’ve just completed a brand
new project. I see the finished engineering drawing sitting on your
worktable and I ask you “what’s that?” There are (at least) two
possible responses. You could say “it’s a drawing” or “it’s a toaster.”
Maybe, if you're an accurate-minded guy, you’ll say “it’s a drawing”
or “it denotes a toaster.” Same thing, for our purposes.

I’ve just gotten through insisting, emphatically, that the toaster
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answer is the important one. When you see a program, you’re not
looking at a document; you’re looking at a machine.

But it s true nonetheless that your engineering drawing is a draw-
ing, and that your program is (among other things) a document.
Your program text can be manipulated in the same way other docu-
ments can be. It can have spelling and grammatical errors, stylistic
quirks; you can print it on paper, frame it, hang it on the wall; draw
little daisies on it and send it to your mom.

We need to keep this duality in mind, but not be misled by it. The
danger is acute. There is a whole school of computer science research
dedicated to the proposition that “programming is mathematics.”
Why would anyone make such a fantastic claim? Well in fact a
program as a document can be made to look a lot like mathematics.
And of course a program is a document (among other things), and
if it appears to be a mathematical document, you can treat it in a
mathematical way—prove theorems about it and so forth. It may
even be useful to do so, up to a point.

By the same token, you can learn a lot about music on the basis
of the purely mechanical manipulation of symbols. You can see what
good counterpoint looks like on paper. You can learn how to “com-
pose” good counterpoint, even if you don’t have the vaguest idea of
what it sounds like.

But if you get carried away, and start asserting that “music s the
mechanical manipulation of symbols on staff paper,” “programming
s mathematics,” you have committed intellectual suicide. You’ve
mistaken the means for the end. You’ve cut yourself off absolutely
from all real inspiration, creativity and growth. And you have failed,
profoundly, to understand the character of your field.

A dangerous mistake. Where software is concerned, an all-too-
natural one.

The Design Process

Designing an embodied information machine is much like designing
any other kind of machinery. First you need an idea; then you pro-
duce a specification; then you build a prototype.

Creative hardware designers often proceed by incremental tinker-
ing. Build a mechanism of some sort, play with it, modify it, build
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another one. The same kind of thing goes on in software building.
Many creative software engineers also proceed by incremental tinker-
ing. They build a little program, watch it run, build an improved
version. The two activities, hardware and software machine-making,
are very similar in spirit. But the fact that the software builder never
needs to go anywhere near a lab bench, never needs to fool around
with cumbersome hardware, can merely hand his spec to the com-
puter and see it embodied automatically, gives him an incalculable
advantage. Alone at his keyboard he can improvise machinery of
extraordinary power, brilliance and intricacy.

So: What kind of machine?

What does a working information machine look like?

Well actually, of course, it looks like nothing. It’s a bunch of
electrical signals running around inside of wires. But metaphorically,
we can go into some detail about its appearance. (By the same token,
I can say “this is what the organization of the company looks like,”
“this is what the reaction between two particles looks like,” “this
is what the division of resources in the U.S. economy looks like”
and so on. The pictures I show you are arbitrary, but that doesn’t
make them untruthful. Once you learn the rules, such pictures can
represent with great accuracy and faithfulness the “un-depictable”
thing you’re attempting to discuss.)

So let’s envision an information machine. They’re not all alike.
But they’re enough alike so that we can describe an idealized model
that captures the most important features of nearly all of them.

The ideal model I'm about tc describe is simpler and more uni-
form than you’ll find in other books. It’s the product of a research
effort aimed exactly at that goal. The plan was to dump every in-
fomachine everywhere into a large pot, fish out the especially weird
or atypical ones and boil the rest down for a long time. Eventually,
all the inessential distinctions evaporate, and you are left with the
basic, simple, concentrated essence. What I'll describe below is the
essence of the essence. (Another book goes into technical detail.!)

It comes down to this: An infomachine is a landscape, divided
into plots. As the machine runs, the landscape changes. It evolves,
like the surface of a developing photograph; the stuff inside those
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plots changes; eventually it’s done—the process is complete, you have
what you want, and the evolution stops.
Now I need to define what’s in the plots, and how it evolves.

The Computational Landscape

Picture a landscape, divided into plots, with a “command post”
at the center. Fach plot has a name, and each one may contain
something—in the sense that a field contains wheat, or a building
lot contains a building. A plot can contain three kinds of things: an
information chunk (infochunk for short), a procedure—or more plots.
(A plot can be subdivided, in other words.)

An information chunk is usually a number or an alphabetic char-
acter. It might also be a word or a phrase or a few other things. A
procedure tells you how to accomplish something. If a software ma-
chine were an auto repair shop, the infochunks would be the parts
department (infochunks are the stuff you work with if you are an
information machine), and the procedures would be the library of
shop manuals (e.g. “How to Fix 1977 Pontiacs” and so on).

By subdividing plots, I can group a set of infochunks together.
For example, I might need a table of numbers with a hundred rows
and a thousand columns. So my software machine has a single large
plot (named “table of expenses per project by department,” or what-
ever); the large plot is subdivided into a hundred thousand plotlets,
one for each entry in the table. By sub-dividing I can also create
“modules,” discussed below.

The command post is walled with one-way mirrors. Whatever
is in there can see out, but you can’t see in. Pacing around inside,
surveying the big picture through fieldglasses, is an automaton I’ll
call “the Actor.” He’s equipped at all times with “the script;” the
script lists a series of operations for the Actor to carry out. (Thisisn’t
the “Actor” for which some people, I claimed, mistake the computer
itself. This Actor is a software creature entirely, one element of the
infomachine that gets created automatically when your program is
embodied.)

What does the Actor do? Its objectives in the large are pretty
clear: to respond to information. Information gets dumped into its
regions like piles of sand outside a glassworks, for conversion into
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Figure 3.1: A computational landscape. The circle represents the

Actor.
some other form. The means at the Actor’s disposal are limited but

powerful. It can make new information objects out of old objects. It
can use objects to make executive decisions. It can get new objects
from outside and dump them into regions (“input” ), and it can cause
objects to be printed, displayed on screens, stored in files or whatever
(“output”).

(The one-way mirrors mean that you think there’s an Actor pac-
ing around in there, but sometimes you are wrong.)

We'll refer to the disembodied information machine that the pro-
grammer lays out as the spec. A complete spec includes a map of the
information landscape, and the aforementioned script, to be carried
out by the Actor.

When a spec is finished, it can be be presented to the computer
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for embodiment. ( “Bodification”? “Bodying forth...”) Whereupon
the landscape is laid out according to the map, the Actor picks up
his script and we’re underway.

I've now covered all the basic stuff. I'll fill in a few details by
discussing a simple example; then we’re ready for the transition to
“advanced infomachinery” and the key question, how do you build
these things?

An Example

Making new infochunks out of old infochunks is the Actor’s main
stock in trade. This is accomplished primarily by plugging numbers
into formulas, by gluing objects together to make bigger ones and
smashing them apart to get smaller ones.

For example: You want to build an infomachine that, when it’s
handed the lengths of two legs of a right triangle, returns the length
of the hypotenuse. There is an exceedingly well-known formula for
computing the hypotenuse of a right triangle: Take the square root
of the summed squares of the lengths of the two legs.

We lay out the following map: three plots, one named “First
Leg,” one “Second Leg” and one “Hypotenuse.”

Now, the script. Here is what it says: (1) Input two numbers;
dump one in the “First Leg” plot and one in the “Second Leg” plot.
Now, prepare to create a new infochunk. (2) Grab the numbers
that you just dumped into the Leg regions; square each and sum the
squares; take the square root, and dump this number into the “Hy-
potenuse” region. (3) Finally, print the number that is now stored
in the “Hypotenuse” region. That’s it.

When the Actor has finished with the script, it takes a graceful
bow, the curtain falls and the information machine disappears.

Although I need to say more about scripts and procedures, we’ve
arrived at an important point: We can now say exactly and con-
cretely what a programming language is. A programming language
is a system for writing down information machine specs, or in other
words, for creating unbodied infomachines.

There are, God knows, many programming languages. There is
an awe-inspiring surplus of them. Serving Europe alone you will
find, right next to the famous Wine Lake and Butter Mountain, the
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less-well-known Programming Language Sludgepile. Here, old users’
manuals sit decomposing in gargantuan heaps dotted with wildflow-
ers, visited only by the odd graduate student or Tyrolean mountain
goat. Large dump trucks make fresh deliveries daily.

There are only a few genuinely important languages. But these
few are very important: Although the oldest dates only to the late
1950’s, these languages rank among the most heavily-used and infiu-
ential engineering tools of all time.

Programming languages differ somewhat in the range of specs
they allow you to write down, and dramatically in the means of ex-
pression they allow you—hence, in the actual look of the blueprint
and in its style. But every programming language has the same
purpose—to allow you to spec out information machines—and, in the
final analysis, it’s the information machine and not the programming
language that matters. Information machinery exists independent of
programming languages (as buildings exist independently of pencils
and straightedges). By and large, and neglecting a few subtle but
reasonably significant details, all languages allow you to express ex-
actly the same range of information machinery. By the same token,
all architectural drawing tools, from the fanciest computer package
to a pencil and a straightedge, allow you to design exactly the same
range of buildings. Of course, some tools make it a lot easier to do
the job, and some make it harder. Nonetheless, the world of all pos-
sible buildings (and infomachines) is independent of the world of all
possible drawing tools (and programming languages).

§ Details: What the Program Looks Like

Concretely: We've described a software machine for computing hy-
potenuses. Here is what the spec looks like in a programming lan-
guage called Pascal:

program Hyp(input, output);
var FirstLeg, SecondLeg, Hypotenuse: real;
begin

read(input, FirstLeg);

read(input, SecondLeg);
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Hypotenuse := sqrt(sqr(FirstLeg)+sqr(SecondLeg));
write(output, Hypotenuse)
end;

The var stands for “variable”, and it means “here are the names
of some regions for holding infochunks.” Three names follow. The
“real” means that the chunks stored in these compartments will be
“real numbers”—meaning, in Pascal’s terminology, that they may
have fractional components (as in 3.1415). The phrases that make
up the script stand between begin and end (which mean precisely
“beginning of the script” and “end of the script”). The details of the
phraseology may be obscure, but they don’t matter. (The phrase
beginning “Hypotenuse :=” means “put the following thing in the
region named Hypotenuse,” as you probably guessed.) The big pic-
ture should be pretty clear. The script we outlined above had four
steps; each step is described by one line of the formal script as it
occurs in Pascal.

We might have used one of two dozen other programming lan-
guages to produce very different-looking specs. But they’d all create
exactly the same information machine.

Aside from evaluating formulas, the Actor’s other chief occupa-
tion is making decisions based on infochunks. The script can contain
lines like “look at the infochunk in region so-and-so; if it’s the number
1 do this, and if it’s 0 do that.”

Suppose you want a software machine to read a document and
compile an alphabetical list of every word you have used. The spec
creates a region named “Next Line,” and another named “Word Use
Table,” which is divided into sub-regions. The Actor does the fol-
lowing, repeatedly: reads the next line from the document into the
“Next Line” region. (When you drop an infochunk into a region, the
old chunk disappears.) Then it looks at each word in this line. For
each word in the line, it asks “Do I already have this word in my
table?” If the answer is no, it looks for the first empty sub-region in
the “Word Use Table” and drops this new word into it. If the answer
is yes, it doesn’t need to do anything.

When it’s reached the end of the document it alphabetizes the
table-—once again, by making lots of decisions based on the values
of infochunks or expressions. (Does this word come after this other
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Firstteg | Hypotenuse

Secondleg

Figure 3.2: The landscape created by the Pascal program.



Building Info-structures 49

word in alphabetical order? If so, switch these two words...) Now it
can print out the words in the table, and it’s done.

Sounds pretty simple, 1 hope.

What I’ve described so far is sound and correct as far as it goes—
but that’s not far enough. We’ve been discussing how to saw a piece
of wood, drive a nail; now, a big leap: Let’s build a building. If you’re
building (let’s say) a wood-frame structure, it’s going to be based
(no matter how large it is) on techniques like sawing and nailing.
Without a grasp of these techniques, you’ll never have a concrete
sense for what the building process is like. But it’s also true that
“building a house” is not merely a bigger topic than “driving nails,”
it’s also a different topic. It centers on issues of design, planning,
strategy and organization that don’t occur on a smaller scale.

So let’s move on to this new and bigger topic.

Building Info-structures

First questions: What are the goals? What’s the point? What do
you design for? Yes, to put a roof over your head (if this is a house),
to perform a computation correctly (if this is an infomachine). Be-
yond that. What guides the design process? If you're designing a
car, for example, you design for reliability, economy, safety; speed,
performance, good looks... When you design an infomachine, what
are you designing for?
For two goals: efficiency and clarity.

¢ Efficiency

Maybe “efficiency” doesn’t sound like a very exciting topic but, sorry,
that’s the name of the game. Efficiency means: Do the job without
wasting time or space. Your infomachine should run as fast as pos-
sible. It should occupy as little space as possible, so it will fit into
small computers and not waste space inside of large ones.

& Details: Efficiency and Algorithm Design

Although efficiency considerations have a lot to do with the way
landscapes are layed out, they’re more important to the script than
to the map. For example: My lexicon program compiles a list of
words. Should I arrange for this list to stay alphabetized throughout
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the execution of the program? Or should I let it accumulate in
random order and alphabetize it only once, right before I print it
out?

This might sound like a minor consideration, but in many cases
it will be the decisive influence on your program’s performance. If
you need to handle large documents, your answer to this question
may determine whether your program finishes the job in two seconds
or two years.

Here’s the issue: If T keep the list alphabetized throughout, I’ll
have to do extra work every time I stick a new word in the list.
Where does this word go, exactly?—I have to figure this out, and
then I have to make space for the new word, probably by shuffling a
lot of other words around. All of this takes time.

On the other hand, every time I read a word, 1 need to check
whether or not this word already appears in my list. If the answer
is no, I'll need to add it; but whatever the answer, I always have
to check. And for a long document, the answer will usually be yes.
Most words I find, I've already seen at least once.

If I've taken the trouble to keep my list in alphabetical order, it’s
a lot faster to perform this check. Say the list is not alphabetized.
To check whether some word is in it I will need, in the worst case,
to look at every word on the list. This takes time. The longer the
list, the more time. The average lookup time is proportional to the
length of the list: If the list doubles in length, so does the average
lookup time.

But if the list is alphabetized and I want to do a lockup, I will
not need to look at every word in the list. I can take my new word
and compare it to the middle word in the list. If the new word comes
before this middle word in alphabetical order, I can forget about the
whole bottom half of the list: My new word is guaranteed not to be
there. If the list is ten thousand words long, I've just eliminated five
thousand entries at a stroke. I repeat my procedure on the remainder
of the list, the first half. Does my new word come before or after its
middle word? If it comes before, I can throw out the entire second
half of the first half. T repeat this procedure until I've found what
I’'m looking for, or concluded that it can’t be there.

This second procedure is not merely faster, it’s astoundingly faster
than the first. The first procedure required time proportional to
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the length of the list. The second requires time proportional to the
logarithm-to-the-base-2 of the length of the list. That is: If your list
is 512 entries long, you can search it completely (using the second
method) not in 512 steps but in 9. If the list doubles in length, the
first method now requires 1024 steps in the worst case; the second
method has shot all the way up to 10.

If you're dealing with a long list of words, or a word list that must
be searched often, or both, this enormous gap in searching time can
spell the difference between a program that runs well and one that is
simply too slow to use. And this simple example is typical of what
software designers worry about constantly: What’s the most efficient
way (the best algorithm, in technical terminology) for accomplishing
what needs to be accomplished?

But algorithms are only part of the story.

§ Clarity

In fact, clarity is not an wlfimate goal; it’s the means to an end.
The real end is something called “topsight.” But first we need to
get acquainted with the big monster problem, the leading killer of
software:

§ Complexity

Information structures are, potentially, the most complicated struc-
tures known to man. Precisely because software is so easy to build,
complexity is a deadly software killer.

The same problem exists for hardware machines, but it lacks
comparable significance. Physical reality is the overflow valve that
siphons off excess complexity before the whole system blows. If
you're building a hardware machine, you reach a point where your de-
vice has so many parts that you can’t afford any more, or the weight,
size or power consumption of your gadget is untenable—it can’t get
any more complex, and so it doesn’t. You don’t worry about hyper-
complex hardware because you haven’t got any. Sure, there is the
odd space shuttle, nuclear power plant and whatnot—there are some
staggeringly complex hardware machines, but not many, because not
many outfits can afford them.



52 Disembodied Machines

With infomachinery it’s a different story. Programs that amount
to a quarter of a million lines of text (there are about 7000 lines
in this book, so picture 35 volumes of program) are not in the least
unusual. Many programs are much longer. 250,000 lines is enough to
create an enormously complex info-landscape with many thousands
of regions. How can you design, build and understand such complex
landscapes?

Not easily.

It’s very hard to make programs come out right. After a decent
amount of effort they tend to be mostly right, with just a few small
bugs. Fixing those small bugs (a bug can be small but catastrophic
under the wrong circumstances) might take ten times longer than
the entire specification, design, construction and testing effort up to
this point. These are subile structures.

If you're a software designer and you can’t master and subdue
monumental complexity, you're dead: your machines don’t work.
They run for a while and then sputter to a halt, or they never run
at all. Hence “managing complexity” must be your goal. Or, we
can describe exactly the same goal in a more positive light. We can
call it the pursuit of topsight. Topsight——an understanding of the big
picture—is an essential goal of every software builder. It’s also the
most precious intellectual commodity known to man.

¢ Engineering Topsight

To manage software complexity, you must seek a deep and thorough
understanding of the structure of your problem; and then you must
transfer this understanding directly into software. Like studying a
face carefully enough to achieve a deep understanding of what it
really looks like, then transferring this understanding directly into a
painted portrait. The goal of the exercise is to achieve something
that is so universally important and yet so hard to come by that it
doesn’t even have a word to describe it. So I'll make one up: topsight.
(I don’t like this coinage particularly and would be glad to have a
better one. If you can think of one, let me know.)

If insight is the illumination to be achieved by penetrating inner
depths, topsight is what comes from a far-overhead vantagepoint,
from a bird’s cye view that reveals the whole the big picture: how
the parts fit together. (“Overview” comes fairly close to what 1
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mean. But an “overview” is something you either have or you don’t.
Topsight is something that, like insight, you pursue avidly and con-
tinuously, and achieve gradually.)

It is the quality that distinguishes genius in any field. (What
Newton displayed when he saw planets reeling round the sun and
teardrops falling as two pieces of one picture; what Churchill showed
when he grabbed for the Dardanelles to break an impasse in France;
what Hamlet is transfixed by: the special providence in the fall of
a sparrow...) It is the keystone of a beautifully transparent defini-
tion of philosopher: one who seeks “to transcend the world of human
thought and experience, in order to find some point of vantage from
which it can be seen whole.”? But topsight is emphatically not a feat
for philosophers and geniuses only. Every thinking person aims to
achieve it—to understand how the parts relate, how it all adds up.
It’s not easily won. The fact that we don’t even have a word for this
vital commodity is evidence, more than anything else, of our reluc-
tance (or inability) to teach it. Its significance is denigrated by the
run-of-the-mill hacks, bureaucrats and cadres who swing chattering
from detail to detail like monkeys in branches, never sensing or car-
ing about the forest in the large. Such people more or less run the
world. But all thoughtful people—most people, when all is said and
done—-are horn with a powerful inclination to seek this thing --

If you're a software designer, at any rate, your task is hard and
clear. When you're presented with a difficult problem, you seek
topsight; you use whatever topsight you've achieved as your guide
through the treacherous terrain of program building.

It’s a tall order, but the alternative is clear-cut: to drown in
complexity.

§ Programs illuminated by topsight...

have one unmistakable property: clarity. No down-directed gaze can
penetrate an opaque structure. The software designer works always
with the aim of coherence and clarity of statement. (I will return to
this phrase...)

Clarity is marked by three major phenomena. Or, in operational
terms, you get clarity by applying three principles. Perhaps you
build software in a constant blaze of topsightful inspiration, and
we’re merely characterizing your handiwork: we recognize it by the
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presence of three attributes. Or maybe you’re merely trying to
achieve the same affect by humble, serious, meticulous work (good
for you—give that guy a cigar); you follow three guiding principles.
It amounts to the same thing.

§ The Three-Fold Way to Clarity

In software building, there are three ways. (Actually, I’'m not sure
whether this is an exhaustive list. I suspect it is, but maybe not. In
any event, these are the three that underlie this book.) The three
principles are Recursive Simplicity, Uncoupling and Espalier. Tl
introduce the latter two in later chapters, and the first below.

The essence of all three methods is the same; it is design sense.
This is where engineering comes down to aesthetic judgement. To
impose clarity upon complexity through deep and careful design-
thinking is the crucial achievement of the master programmer. I've
just noted that the software builder works always with the aim of
coherence and clarity of statement—this is George Henderson, Art
Historian, imagining the unknown master architect of Chartres.? The
software revolution balances ultimately on a fine point of aesthetics.

This fact bears investigating. I'll return to it.

§ Recursive Simplicity

An object is recursive in structure when the whole is structurally
identical to its parts—or at least to some of them. You can build
a large electronic circuit out of smaller pieces that are themselves
electronic circuits. You can build a large algebraic expression—
something plus something else, times something else—out of smaller
pieces that are themselves algebraic expressions. You don’t build
a large toaster out of smaller toasters—recursive structures are un-
common; but: The most important event in the history of software
happened somewhere around 1959, when the designers of a program-
ming language called “Algol 60” realized that you can build a large
program out of smaller programs.

Break out the Dom Perignon!! Why? Because this principle rep-
resents such an immense break-through for the clarity of information
machines. I don’t need to understand how a million different struc-
tures fit together. I need only master a few, a small handful—for
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software machinery the grand total is two, a space-organizing and a
time-organizing structure—and I can re-use these structures again
and again ad infinitum. These two structures are in fact nothing
less than our two most important simple infomachines. The space-
organizing structure is what I’ve called the map. The time-organizing
structure is the script. I can use them to organize an immense pro-
granm, to organize each of this immense program’s gigantic pieces,
and the large components of the gigantic pieces, and the medium-
size pieces and each small, tiny and minuscule piece down to the
bottom. It’s as if I could learn French by mastering a grand total of
two phrases, and then relax in the assurance that, wherever I happen
to find myself, one or the other is bound to be exactly right.

Recursive simplicity means: You have this capability in the ab-
stract. Now use 4¢. Don’t build a large component out of a million
tiny pieces; build it out of a few medium-sized ones.

Recursive simplicity as a structuring principle is not unique to
software. I mentioned algebra and electronics; also, trees, mountains,
coastlines... Benoit Mandelbrot discusses the ways in which “self-
similar” natural structures re-use the same patterns at many scales.?
We use another form of recursive structure in the numerical codes
that impose organization in many domains (zip codes, library codes,
phone numbers). As you decipher one of these codes, you repeat
the same question (which geographical area?-—which topic?) on a
smaller scale for each number or group of numbers you encounter.
This books is conceptually recursive: Topsight is the goal of Mirror
Worlds; and topsight is the goal of one sub-effort that goes into the
making of a Mirror World.

In engineering, recursive simplicity requires that complex ma-
chines be planned, organized and explained as a series of levels. At
the highest level the big picture is clear, but the details are not. At
lower levels, the details come into focus. Each level breaks a problem
down into a manageable collection of parts or steps. Once I've as-
similated the big picture-—this nuclear reactor consists of five basic
pieces—I can proceed to the next level of detail: The cooling system
consists of eight basic components. And so on. In this way I can
pilot my thought-glider gracefully downwards level-by-level towards
the nitty gritty, assimilating detail gradually, never losing sight of
where cach detail fits.
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This gradual playing-out of detail, the ability to intuit a bold,
simple, multi-layered organizational framework for an immensely
complex structure, is an art pure and simple, a manifestation of
design sense. You don’t have to be born with it; there are rules
and methods that you can learn, as in any design discipline. But
of course, innate predilection and the occasional flash of inspiration
don’t hurt. It will never be called “design sense,” not by computer
people, anyway; nonetheless, a roomful of advanced programming
students at their terminals is less a laboratory than it is a studio.

There’s nothing mysterious or novel about the hierarchical struc-
turing principle I've described. Complex machines and activities
have always been described in terms of layered outlines. Not, “in or-
der to send a man to the moon, build the following twenty-three bil-
lion pieces of equipment and carry out these eighteen trillion steps.”
Instead, “in order to send a man to the moon, (1) design and build
rocket engines, (2) design and build space vehicles, (3) find and train
astronauts, (4) plan and organize space missions.” Each of these
steps can be subdivided in turn. Ultimately you get down to the
nuts and bolts: “Issue Astronaut Piffel his jar of Tang.” But you get
there gracefully and gradually.

What’s novel in computer science is the fact that the principle is
applicable, not merely as an abstract thought-tool, but immediately
and concretely: It’s built into the machinery.

Organizing Space and Time—

—the worthy goals of modules and procedures, respectively. These
tools allow you to build “recursively simple” programs.

If you notice that a bunch of regions are related, you can clump
them together into a single super-region called a module. If you
notice that a bunch of time-regions are related, you can do likewise:
You can clump them into a procedure.

What is a “time region”? The Actor performs the steps specified
in the script. Each step takes some time to perform. So we can say
(if we feel like it) that each step occupies a region in time, just as
each piece of the landscape occupies a region in space. We can clump
a bunch of steps together, and give the clump as a whole a name.
Such a clump is referred to generically as a “procedure.”
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§ Details: Modules and Procedures

Suppose some infomachine is designed to read data, do some calcu-
lations and then display the results as some kind of graph. Lots of
infochunks and a large script might be required. We might start by
building some time-clumps: We gather steps into procedures, some
having to do with reading data (say a procedure called “get next data
value” ), some having to do with building the graph (say a procedure
called “plot values”), and so on. When the Actor needs to plot some
values, the script doesn’t spell out all the steps; it merely says “now
perform the plot-values procedure,” or words to the effect. Then we
build some space-clumps. Some of infochunks and procedures deal
with reading data, some with the calculation, some with produc-
ing the graph and displaying it. Others might come into play at all
three stages. If we choose, we can gather together the infochunks and
procedures that are designed for reading data, and treat all these re-
gions as sub-regions within a single large region, called the “Reading
Data Module” (or whatever). Similarly we might build a Calculation
module and a Display Results module.

Details: How Procedures Work

But there’s more to procedures than this.

Plot-values is the name of a region; inside this region is a proce-
dure. Whenever I need to plot some values, I grab this thing and set
it to work. But what is it, exactly?

Two possibilities: 1t might be a script; or it might be an entire
landscape with its own command post and its own Actor.

Say the Actor arrives at the line in his script where it says “Now
perform the plot-values procedure.” What does he do? In the first
case, he reaches into the region named plot-values, grabs the script
and starts performing it. When he’s done, he puts the script back
and continues where he left off. In the second case, he picks up his
walkie-talkie and radios over to the Actor who is snoozing in the
plot-values command post-—the message he sends is “OK, do your
stuff; let me know when you’re done.” He sits back and waits, very
possibly sends out for a pizza; eventually a reply comes back: “I'm
done; the answer is...”
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Figure 3.3: Gathering plots into modules.
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Both of these possibilities are perfectly reasonable, but in general
they are both wrong.

Actually, the object that inhabits the plot-values region is not a
script, and is not a snoozing information machine. Instead, it is the
spec for a completely new information machine.

So: When the Actor arrives at the “perform plot-values” line in
his script, he reaches into the region of that name and grabs the spec
that is lying inside. Following this spec, an entirely new information
machine is constructed inside the command post: a new landscape,
with a new command post furnished with its own new script, and a
new Actor inside. This new Actor performs the new script. When
the performance is complete, the entire purpose-built information
machine vanishes—leaving only the answer behind (swirling around
on a mysterious scrap of paper near the floor...So to speak) The old
Actor reappears, finds the answer, and continues on his way.

This sequence of events has interesting implications. The new Ac-
tor inside the purpose-built information machine might itself decide
to perform a procedure. Another new machine pops up inside the
new command post. Inside, yet another procedure might be invoked
and then another, on and on.

So this information machine is radically unlike a hardware one:
It grows and shrinks. It may spiral deep into a recursive hole and
then spiral back out again. The only ultimate limit on how deep it
can go is the amount of real space inside the embodying computer.

Another thing about those one-way mirrors, by the way: The
information machine inside the command post can see out. It can
make use of the infochunks and procedures that exist within the
surrounding landscape. But the surrounding landscape can’t see in.
Procedures in the surrounding landscape can’t (for example) be de-
fined in such a way that they grab infochunks that only occur inside
the command post.

Why go to all this trouble? The first of our simple hypotheses
about procedures—that they were mere scripts, to be picked up and
played out by the main Actor—is no good in practice. Infochunks
and procedures might be required specifically for the use of the pro-
cedure itself. A procedure (in other words) needs a landscape of its
own. The second possibility—that a procedure is a separate, self-
contained information machine with its own command post, waiting
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Figure 3.4: An inward-spiralling computational landscape. The
“command post” is repeatedly replaced by entire new landscapes.
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to run—works out fairly well. The programming language called
“Fortran” operates in this way. Fortran, dating to 1957, was the
first successful programming language; its lineal descendants are still
in widespread use. But in most subsequent languages, a procedure
is a spec—which gains you exactly one magical little power over the
Fortran approach: You can build a procedure which invokes itself.
So what? To make a long story short, this ability allows you to
express certain things very concisely. (It’s a lot simpler to say “my
brother looks like me, but with a beard” than to say “my brother
has dark hair, brown eyes, fair skin” and so on through seventeen
more attributes. It’s useful to be able to refer to yourself.) It also al-
lows you to improvise elegant, sinuous computing patterns round the
unpredictable twists and turns of growing data structures. (Douglas
Hofstadter expounds on these issues in his Gédel, Escher, Bach.®)

§ Details: Using Modules and Procedures

Modules and procedures exist for a number of reasons, but recursive
simplicity is the most important.

First, a simpler reason: If you package a bunch of related stuff
into a single wrapper and give it a name, it's easy to re-use the
whole bundle whenever you need it. Thus I can define the plaintiffs
once (let’s say, as a list of forty-seven names), and then recycle this
one definition repeatedly by referring simply to “the plaintiffs” and
not repeating the list. If I need to carry out the same set of steps
repeatedly, I use a procedure, in the same vein. A cookbook may
have sixty-nine recipes all of which require a pie crust. The pie crust
procedure is spelled out once; all other recipes say merely “make a
pie crust (page 12).”

But there’s a more fundamental reason. A huge software machine
may involve a landscape with thousands or millions of regions, a
script with millions of steps. That’s too many. I need to pilot my
thought-glider gracefully downwards...

Hence, I use modules to play-out the complexity of the landscape,
procedures to play-out the complexity of the script, gradually.

Instead of a million regions, I can have (say) five. Each of the five
is a module containing (ultimately) hundreds of thousands of regions.
But a hundred thousand is also too many, so [ can structure cach big
module as a set of smaller modules, and so on.
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Likewise, the script. Instead of a million steps, I can have three.
The three might be “invoke the get-started procedure,” “invoke the
do-the-computation procedure,” and “invoke the clean-up-and-go-
away procedure.” Each of these three is defined in terms of slightly
narrower procedures, and so on.

The Shape of Computational Spacetime

Information machines are lovely to contemplate, so I'll conclude by
doing so.

An infomachine bursting forth into the emptiness of computer-
space is a fireworks chrysanthemum—intricate tracery drawn care-
fully on nothing, hanging in a void, un-graspable, unfolding automat-
ically—but real, vivid and striking. It burns fast and bright, trans-
forms galaxies of combustible data into information, then falls back
into nothing and disappears. Designing this kind of—whatever—
structure, event—is one the most inspiring challenges engineers and
designers have ever faced; and one of the hardest.

The Embodiment (Mere Hardware)

Ultimately a piece of electronic equipment, an object built largely of
metal, plastic and (for now) silicon—roughly the same stuff that
goes into your average trash-strewn beach—yes, a (out with it!)
computer—is responsible for embodying your software machinery. In-
tellectual thoroughness requires that we have a look at these things,
even though they are mere hardware. You can have a deep and
creative mastery of software with only the most rudimentary un-
derstanding of computers. But obviously—the more you know, the
better. It certainly won’t hurt to have a look at these devices. They
are less interesting than software. Nonetheless, they are neat little
items when all is said and done. A little respect, please.

(Skip this section if you're in a hurry.)

A computer has two basic pieces, the memory and the processor.
It also has a collection of so-called “devices,” which are responsible
for input and output- for moving data into and out of the computer.
Data values are dumped into the memory, they get transformed into
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more interesting values, and then they are pumped out of the memory
(in one form or another) to the waiting public.

The memory represents space in this world, and the processor
time. The processors’ role is to evolve the memory, to transform
the stuff that is stored in there, to push it step by puny step from
the starting state to the finish line. The steps are tiny: Generally
speaking, each step changes a single minuscule patch of memory.
Acres and acres may need to be transformed repeatedly in order to
get the job done. Thus a computer (mildly) resembles a painter
who insists on attacking the Empire State Building with a makeup-
daubing brush. But if you are a computer this strategy is sound,
and you will complete the job much faster than an army of humans
equipped with industrial-size paintblasters. Yes, you are only capable
of daubing. But you daub fast.

The memory is like a huge blackboard divided (as if by neatly-
ruled lines) into a fixed number of same-size boxes. Each box holds
a number. The computer’s worldview is inhabited by numbers ez-
clusively. If a computer is dealing with words, those words are rep-
resented by numbers. (I can say that the number 1 means the letter
a, 2 means b or whatever.) Pictures are represented by numbers. (I
break the picture into dots or “pixels” and use a number to indicate
the color, intensity and so on of each one.) Sounds are represented
by numbers (as they are on a compact disk). Thoughts are repre-
sented by numbers—insofar as thoughts can be expressed in words,
pictures, sounds and so on.

The memory is a sort of primitive map, in the special sense of the
term I have used in this chapter. The regions of this primitive map
are all the same (small) size. They may only hold numbers. They
don’t have names, merely numerical identities—- “region 56,712”. The
processor is like a primitive Actor: Its basic task is to grab numbers
from memory, transform them into new numbers and replace them.
This Actor has a primitive script, which doesn’t exist as a separate
document. Instead, it’s stored line-by-line in the memory. Some
portion of memory, in other words, is devoted to holding numbers
that are or that represent infochunks; another part holds numbers
that represent the Actor’s simple script.

A computer works in a simple, endless cycle, like a piston engine
or a loom or countless other machines. The processor grabs the
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next instruction from memory, and does that instruction. The cycle
repeats. That’s all.

To find out what the next instruction is, the processor looks in a
special memory region called the “program counter.” The program
counter has a number inside, just like every other region in memory.
This particular number designates another region, namely the region
that holds the next instruction. If the number is 3, the processor
knows that (next) it should look in region 3, pull out the instruction
and do it.

That instruction is also a number, of course. The actions of
which a processor is capable are very simple, which makes it simple
to encode these actions in the form of numbers. If you’d hired a
horticulturally innocent gardener and you were directing his weeding
activities from your back porch, you could use a simple numerical
code: 1 means pull that plant out, 2 means leave it alone; 3 means
move on to the next plant to your left, 4 means move on to your right.
You could put numbers together to extend or modify the meaning
of instructions: 11 means to pull the weed out and put it in the
weed bucket, 12 means to pull it out and chuck it to the back of the
bed, 13 means to pull it out carefully, because it’s poison ivy. Why
you would want to communicate with your gardener in this way is
another matter, but it’s easy to see how you could.

A computer’s instructions are encoded in this way. Their range
is very limited. They fall into a small number of classes. One class
performs simple arithmetic on numbers: Add the number over here
to the number over there and put the result here. One class makes
simple decisions about what to do next, based on numbers. Other
instructions move numbers from one region to another. Others have
to do with input and output, and so on through a few more simple
categories.

As the computer runs, the processor and the memory are in con-
stant communication. The processor repeatedly checks the program
counter, grabs the appropriate instruction and does it. In many
cases, executing the instruction causes memory to be altered, one
small piece at a time—the old contents of some region are eliminated,
and replaced by some new number. Then the processor trudges on-
ward to the next instruction. The cycle repeats.

Yes, it is, in reality, a little more complicated than this. The thing
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I’'ve called “memory” usually consists of several separate sections,
called “registers,” “cache” and the “memory” proper; the processor
may be capable of working on several instructions at the same time
(starting the next one before the current one is finished), and so on.
But even the most complex of modern machines is, at base, just a
processor plus a memory.

§ Information machines vs. computers

We're talking about instructions, but the alleged topic in this section
is hardware. When we talk about instructions... aren’t we talking
about software?

Yes and no. The primitive instructions that the processor un-
derstands, that are arranged in neat rows inside the memory, are
software of a simple kind. These instructions are called “machine
language,” and the program stored in memory is called a machine
language program.

If you wrote a machine language program on paper, it would look
nothing like Pascal. It might look something like

71522361
22310003
42218244

Catchy, huh? In other words, a list of numbers. These numbers are
software: If you put them into the computer’s memory and turn the
computer on, these numbers will cause the computer to do whatever
you want it to—calculate hypotenuses, draw pictures, hop up and
down and shriek or whatever you’d like.

How do you get an orchestra to play what you want it to? Easy:
Write a score, and hand out parts to each musician.

But in order for music to be generated by these people, some
complex translations must take place. Each musician must convert
the notation he sees into the series of strokes, twitches, taps or too-
dles that his instrument requires in order to generate the called-for
sounds. Now it is possible, in principle, to imagine a musical score
that bypasses standard notation and relies on direct physical instruc-
tions instead. “At this bar, each first violin presses his third finger to
the A string and draws his bow at moderate velocity and a sustained
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pressure of .35 newtons per square meter from left to right,” and so
on. Is what you have written music? Is machine language software?
No. Or at any rate, just barely.

A highly-trained computer can sight-read your Pascal program in
(sort of) the same way that a highly-trained violinist can sight-read
Paganini. Where the computer is concerned, “highly trained” means
that you’ve gone round to the Corner Computer Store and bought a
piece of software called a “compiler.” The compiler translates infor-
mation machinery into a form that raw hardware can understand. It
reads the phrases that make up your Pascal program one by one, and
translates them into the numbers that actually make it all happen.

Enough. Back to software.



Chapter 4

Space, Time and
Multi-time

We move now to the world of asynchronous ensembles. We've dis-
cussed information machines. Now imagine a lot of them zipping
around separately, each piloted by its own Actor—communicating oc-
casionally, getting born and self-destructing spontaneously-—all con-
verging like a swarm of space-scooters or electronic piranhas on some
lurking huge problem in the near distance. Now this is computing!

What is an ensemble?

A group of objects that interact; a group, accordingly, that is more
than the sum of its parts.

If you assemble a hundred toasters side-by-side and turn each
one loose on a slice of bread, what you’ve got is a hundred toasters,
toasting their hearts out. If you assemble a hundred monkeys side
by side, what you've got is not merely a hundred monkeys. You have
a monkey community of some kind, an ensemble and not simply one
hundred separate parts. Toasters don’t interact, but monkeys do.
One hundred information machines working on the same problem
also form an ensemble, an entity that is more, in some sense, than
the sum of its parts. Like monkeys, these information machines
interact. They must communicate and coordinate with each other in
order to make progress as a group on the same problem.

67
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What is “asynchronous”?

An ensemble is asynchronous if each part is independent, ticking
along at its own pace.

In the ensembles we're talking about, each information machine
is encased in its own little piece of spacetime. The machines are
unsynchronized: No machine can predict exactly what any other
machine is doing at any given time, because each Actor runs his own
show, executes his own script. Nothing outside the machine beats
time or constrains the Actor in any way: He barrels along at his own
speed.

So what?

Asynchronous ensembles (ensembles for short) are a major topic for
software in general. They are the crucial Mirror World technology.
Mirror Worlds would be unthinkable without them.

But here’s another interesting thing about ensembles: They are
also the “crucial technology” of nature and mankind. That’s a big-
gish statement. But a bit of thought makes it clear that physical,
chemical, biological and sociological systems are virtually all asyn-
chronous ensembles of one kind or another. Ensembles are so all-
pervasive and fundamental that there’s not terribly much we can
say about them per se (although we will say a few things in this
vein later on). But this all-pervasiveness also poses some subtle and
fascinating possibilities for software specifically. Software ensembles
can be modeled after natural ones (for their own benefit); or they
can be models of natural ones, in order to serve as laboratories, soft-
ware terraria, for the study of natural or human ensembles. Or they
can blend together with natural ensembles—software ensembles can
reflect natural ones, and then blend with the originals into an end-
lessly echoing mirror-maze of possibilities. Once we have mastered
ensembles, the people shuffling their feet tentatively on one one side
of the room will inevitably, inexorably approach the infomachines
on the other side: They will mingle (because “mastering ensembles”
means “allowing independent agents to mingle”); they will grow in-
extricably entwined. What happens next? A catastrophe of Biblical
proportions? No: merely new kinds of structures, new organizations
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and new programs, of which Mirror Worlds are one highly significant
example.

Concretely...

We're talking about one infomachine built out of many. The simplest
way to think about this is in terms of one multi-part program running
on many computers at once. These computers might be packed into
a single box, in which case we have a “parallel computer” or multi-
computer; or, they might be a collection of separate machines (let’s
say two dozen IBM PC’s, or whatever), connected into a network.

It’s important to keep in mind, though, that you can build en-
semble programs even if you have only a single computer at your
disposal. The programs that make up the ensemble can all inhabit
one computer simultaneously. The computer can execute a little of
one, than switch to the next and then to the next so fast that it ap-
pears to be running them all simultaneously. The effect is something
like a motion picture. A machine can project still pictures one after
another so rapidly that the image appears to move. Computers can
switch their attention from one program to another so fast that they
appear to be executing them all simultaneously.

Ordinarily this is not what you want to do; you’ve built an ensem-
ble precisely because you want to be able to focus lots of computers
on a single problem. But as we’ll discuss, there are important reasons
to build ensembles even if you have only one computer.

Ensemble programs (as we will sometimes call asynchronous soft-
ware ensembles) pose serious problems and open remarkable vistas.
I’ll get to the problems later. First, consider the possibilities. There
are several important ones.

The Bottom Line

Throughout human problem-solving history, complex engineering
and organizational problems have been attacked and mastered by
using ensembles. Complex organizations are managed, large build-
ings built and formidable enemies defeated by bunches of workers,
not by isolated actors. A watch, a steam engine or a factory is built
up out of many simultaneously active components.
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Ensembles are the norm. Sequential problem-solving—the one-
step-at-a-time approach—is the anomalous restriction. Consider our
top-level description of the space program in the last chapter: In
order to send a man to the moon, (1) design and build rocket engines,
(2) design and build space vehicles, (3) find and train astronauts,
(4) plan and organize space missions. These four sub-problems can
be attacked simultaneously. No-one wracked his brain to come up
with this kind of solution. It was the obvious thing. There are
innumerable examples.

Ensembles, then, are the natural way to approach hard problems.
So it’s not surprising that they are the natural way to approach hard
problems using software.

Our major fixations in building information machines were (you’ll
remember) efficiency and topsight—or in operational terms, clarity.
There are two reasons why ensembles recommend themselves again
and again as the natural thing. Conveniently enough, one has to do
with efficiency and the other with clarity. These two are speed and
uncoupling.

§ Speed

For many problems, modern, conventional computers are simply too
slow to be useful. Many? Yes: We are talking about important prob-
lems in science, engineering, making pictures, handling databases,
building Mirror Worlds. The fastest single computer you can build
is simply not fast enough to cope with them.

Once you’ve tuned an information machine for maximum per-
formance, once it’s running on the fastest conventional computer
you can find, ensembles are the obvious and only way to get more
speed. An ensemble program runs on many computers simultane-
ously. In other words, it allows you to focus many computational
energy-beams on a single problem and blast it away fast. There’s
nothing deep or tricky about this policy; it’s the obvious thing to
do. What’s a speedier way to demolish James Bond, one piranha or
a thousand piranhas?

Of course, if you are merely dealing with James Bond, a thou-
sand piranhas are nice but one will do the trick. For the massive
computing problems we're talking about here, one computer will not
do the trick. The world’s fastest conventional computer progresses so
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slowly as to make the effort pointless. If you're designing a machine
part, for example, you might be able to wait 24 hours in a pinch to
have the computer simulation tell you whether your latest design will
work. If you had to wait three months, you’d chuck the computer
because, in practical terms, it would be useless. The gap between
one day and three months is roughly a factor of one hundred, and
it’s not at all hard to build machines with one hundred separate
computers inside. If youw’re working on a problem of real scientific
significance—you want to understand the shape of a molecule, the
formation of a galaxy, the life-cycle of a star—you might be willing
to wait patiently for the results of a computation that runs for three
months. But would you wait twenty-five years? (Another factor of
one hundred.) One final example: A large military program needs
to simulate a sequence of complicated events at “realtime” speeds—
simulating a minute of actual goings-on must require (at most) one
minute of computing. On the fastest supercomputer the military can
buy, it now takes about thirty hours of computing to simulate about
thirty minutes of reality. No good. Bring on the ensembles. (Just
what they’re doing, in fact.)

It’s impossible to describe these extremely-hard problems in gen-
eral. There are many oddball cases. Mathematicians, for example,
occasionally like to chew up huge quantities of computer time in
the search for some huge number’s prime factors—the collection of
indivisible numbers that yield this huge number when they are mul-
tiplied together. In June of 1990, people were hopping up and down
in excitement: After a mere two months of computing on various
machines, a 155-digit number (the largest ever factored) was disas-
sembled into its three prime components.! All right, maybe you're
not impressed enough to take the rest of the day off and go party,
but you have to remember that, technically speaking, mathemati-
clans are pretty strange people. No, strike that, I mean that after
all, you’re not a number theorist or a cryptographer, but if you were,
you’d be duly thrilled. (Actually, some of my best friends are mathe-
maticians.) Number-theoretic results of this sort are of real practical
value in the ongoing attempt to develop better encryption schemes,
and break them.

Many super-tough problems do, nonetheless, fall into a single
important category: using mathematics to model physical systems.
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To understand why we need much faster computers, it’s essential to
grasp what this means, at least in a general way.

Take a simple case: I climb up a step-ladder and drop a tennis
ball to the ground. How fast is it traveling when it hits? [ can
write down an equation that will tell me. (If you have inexplicably
forgotten this formula and are dying to know what it is, look in any
first-year physics text.) This equation is a model of the falling tennis
ball. A model is a likeness that captures some aspect of the thing
modeled. A plastic toy model of a car captures the car’s shape; the
equation captures the falling tennis ball’s velocity.

Vastly more complex systems than falling tennis balls can be
modeled mathematically. The models may involve thousands of
equations instead of one, but the point is the same: Plug in numbers
you know; get out numbers you want. You may know the height from
which you dropped a ball, and want its speed when it hits the ground;
you may know the size, shape and composition of each part of a car,
and the car’s speed when it hits a wall, and you want to know the
shape of each piece after the collision. In both cases, you can get the
answer (or a reasonable approximation) by solving equations.

You can write down equations that model all sorts of interesting
things—the behavior of molecules in chemical solutions, fluids flow-
ing, galaxies forming, steel frameworks flexing, soundwaves propa-
gating. Solving the equations—plugging in the numbers you have,
getting out the ones you want—is another matter. Solving large sets
of equations efficiently and accurately, without wasting time on un-
necessary steps, may entail a highly complex and tricky game-plan.
But carrying out the plan inevitably comes down to performing huge
numbers of simple operations— “multiply each of these ten thousand
numbers by this other number; then multiply those other ten thou-
sand numbers by this number; then...” Your computer may perform
many millions of multiplications per second, but for problems like
these, that’s laughably slow.

In the final analysis, a single computer can only go so fast. Com-
puter speed has shot up so staggeringly in recent decades that you
may have gotten the impression that this is a permanent unlimited
Bull Market we're dealing with here. Unfortunately, no. When you
start brushing up against hard physical limits, the party is over. Sig-
nals can only travel so fast, we can only pack so much stuff into so
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much space and dissipate so much heat. Never mind where the limits
are; we're not there yet. But in the end, there’s no way to evade or
overrun them. We are talking death and taxes here—death, taxes,
physics.

Thus the future belongs, in logical terms it can only belong, to
ensembles. When we turn to ensembles, the limits nearly vanish.
One computer can only be so fast, but the aggregate power of a
group of computers is limited only by the size of the group. Such
groups can and will grow very large.

§ Clarity, Principle Two: Uncoupling

The go-fast aspect of ensemble programs speaks to the efficiency side
of the house. The other major attraction of ensemble programming
has to do with claerity. Here we encounter the second of our Big
Three Clarity Principles: uncoupling.

Uncoupling means to pull a complex problem apart into sepa-
rate components; solve them separately; minimize the interactions
between these separate solutions. Instead of handing one agent a
complex jumble of responsibilities, use an ensemble of agents; now,
each agent’s job can be clearly and simply defined. If some agent’s
job still can’t be, uncouple him too—replace him with another en-
semble. And so on.

I discussed modularity in the last chapter, and modularity is re-
lated to these issues; modularity is a passive form of simplification-
by-pulling-apart. Uncoupling is the active form.

Let’s say some businessman opens up a supermarket and he de-
cides to label every aisle “food,” with everything randomly jumbled
together. He is making a mistake. The “statics” of his system are
too complicated. He needs a fruit “module” (a.k.a. department),
a meat module, a bread module and so on. Modularity can clarify
things.

Suppose his next project is an office building. The floors have to
be swept, the telephones answered, the computers and the building
maintained and every visitor welcomed by a sweetly smiling recep-
tionist. Let’s say it’s a small office building, and none of these jobs
is especially demanding. So he does the economical thing, and hires
exactly one person to do it all.

Once again, he’s doing things wrong. (Evidently he’s not all that
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bright.) His new mistake is related to his first one, but it’s not the
same. This time the dynamics of the system are too complicated.
How exactly will he explain to his one employee that she’s supposed
to act like a receptionist except when the computers need fixing, but
to drop that and go answer the phone when it rings, except if a pipe
bursts, in which case, forget about the phones? And also sweep the
floors in her spare time? Even if the total demands of this job don’t
exceed eight hours a day on average, the dynamics of the situation are
too complicated to handle. To clarify things, you need to uncouple
them. Five people is a larger workforce than one person. But for
this problem, it’s also simpler.

This explanation has a negative spin: To avoid getting hopelessly
messed up, use uncoupling. But the real implications are positive
and formidable. There’s a hard limit on how complex any single
information machine can get (just as there’s a limit on how fast
any single computer can run). But there is no limit on how big a
machine ensemble can grow. Ensembles allow us to outstrip the speed
limit, and (just as important) the complezity limit, that ultimately
bound any single infomachine. Once you have mastered ensemble-
building, you have smashed right through the major barrier in the
way of continued unlimited expansion in software’s power. You can
even contemplate something as dizzyingly, stupefyingly complex as
a Mirror World.

Ensembles are the only natural, indeed the only possible way
to build Mirror Worlds. We’ve described throngs of independent
software agents who operate while rivers of data are pouring into
the system, while information filters are processing the data, while
visitors are hovering around and through it. The natural approach is
to allow each software agent to be a separate information machine,
to use a network of information machines to build an information
filter, to assign each visitor his own separate information machine as
a guide. No single infomachine could possibly master such a complex
assignment.

Ensembles, then, are natural and they are inevitable.

Uncoupling by the way, like recursive simplicity, is by no means
only (or even mainly) a software phenomenon. The behavior of natu-
ral objects is usually the combined result of many separate influences.
Uncoupling these influences, analyzing each one’s contribution sep-
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arately, is the right way to understand this kind of behavior. A
simple example: You throw a ball, and you want to understand its
flight path. To do so, you uncouple its up-and-down motion (fight-
ing gravity as it rises, sped-up by gravity as it falls) from its forward
motion (at a speed that remains the same—except for the effects
of air resistance—throughout the flight). This style of analysis is
fundamental throughout science. Closer to software, uncoupling is
the basic tool of the “organization engineer” (otherwise known as
a “manager”). If you are running an army, a corporation, a fire-
house or whatever, your skill at uncoupling complex behaviors into
manageable pieces goes a long way towards deciding your success or
failure.

What do ensembles look like?

We now pose for ensembles the same questions we discussed in the
context of ordinary, single-shot information machines: What do they
look like? How do they work?

These questions have more possible answers than the earlier ones.
Researchers have proposed many ways to build ensembles. My plan
is to describe exactly one and studiously ignore the rest.

The one I'll describe is (of course) our system, the one we designed
and built in our lab: a system called Linda.?

In focusing on Linda exclusively, I don’t mean to suggest that
nothing else exists, or that Linda is the consensus solution to the
ensemble problem. No such thing. There are other possibilities.

On the other hand, basing this kind of discussion on Linda isn’t
mere egotism either. After the knock-down battles of the last decade,
Linda is one of the few contenders left on her feet. There are perhaps
half a dozen systems on the Contenders list, as of today. Linda has
been taken up by a number of large companies, gets used at labs
and universities all over the world and has inspired computer science
research projects in North and South America, Europe, Asia, Africa
and Australia. In short, most continents.

The system is too radical for some people’s tastes. It doesn’t
extend earlier well-established approaches; it veers off in another
direction, and whatever community you belong to, there’s always
hell to pay when you do that. Today, some people still can’t stand
Linda, and some people love it; at any rate, it’s a contender.
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Linda is, furthermore, not merely a plausible basis for our dis-
cussion. It’s essential to Mirror Worlds as I'll describe them. The
Mirror World concept is wholly independent of Linda, but the Mirror
World strategy 1 will lay out depends on Linda not merely in passing
but fundamentally.

Okay: So you have a group of infomachines...

How do you knit them together into an ensemble capable of attacking
hard problems en masse?

Let’s reach for our space-scooter analogy. Picture a bunch of
information machines, each piloted by its own Actor, converging on
a hard problem. How do they communicate? That is the nitty-gritty
question.

You can't have an ensemble if you can’t communicate. The ma-
chines in our ensemble must be able to assign tasks to each other.
You take this part and I'll do that, or I’'m handling this; somebody—
anybody—take care of that; or I have a problem with Blah Blah Blah—
anybody understand Blah Blah Blah? Please help me out; or you're
the expert in this, please solve it for me and let me know what the
answer is. And they must be able to send information to each other.
Here’s a new problem to solve, let’s get to work you guys, the in-
put data is..., or I've just figured out that the answer to so-and-so
18 such-and-such, anyone interested?, or I’'m willing to do that job;
send it over here; or I'm too busy, bug off, get someone else; or here’s
the answer to that problem you asked me to solve. Communication is
the life-blood of the ensemble, and communication is the very thing
that doesn’t exist in an ordinary programming language. An ordi-
nary language allows you to create exactly one Actor, one machine,
one scene of activity, so what’s to communicate? But when we move
to ensembles, communication becomes our major question. How to
do we do it? How do information machines talk to each other?

The obvious answer: They merely grab their Cellular Space
Phones and call each other up. I promised not to discuss any-
thing but Linda, but there’s one important exception: the simple
and obvious communication strategy, the technique that pops imme-
diately into every undergraduate’s head, the Big Idea behind your
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typical WizzoTek computer company’s Revolutionary New Product
announcement—it’s called message passing. Message passing is one
answer to the communication question; it is, in effect, the Cellular
Space Phone answer. Under message passing, if one machine has
something to tell another machine, it sends that other machine a
message. The message gets delivered to a software mailbox (or, it
gets left on a software answering machine if you prefer, whatever,
same thing); when the recipient-machine is in the mood, it opens the
mailbox (or turns on the answering machine) and gets the message.
That’s it. Simple. Obvious. Easy to understand. One lousy idea.

Here is the problem. We might describe communication as, in
general, a matter of three separate questions: where, when and who.
The answers to any one of them may be, broadly speaking, this, any,
every. When you mail a letter or send a software message, you're
sending it to this place (the place to which it’s addressed), at this
time, to this person or this machine—i.e., the specified one. When 1
say this time 1 don’t mean instantaneously, of course. There’s some
leeway for the time it takes to find the recipient, and a letter can sit
around in a mailbox for awhile. But you’re sending the thing to a
mailbox that exists now, to a person who exists now. You can’t mail
a letter to the four hundredth president of the United States or to
your great-great-grandchildren.

§ Communication, Liberated

The problem is that this, this and this aren’t the only useful answers
to our Big Three questions. You might want to send a letter to this
person, any place: You don’t know where the guy is, or you don’t
care; maybe, for that matter, he moves around unpredictably. But
you still know who he is, and you have a message for him. Or let’s say
you have a message for any one, any place, any time. This is a vital
species of communication when you’re building software ensembles:
you constantly confront the need to communicate with anyone who’s
willing to do this new task. There’s no way to send a message to
“any information machines willing to do this,” any more than you
can place a phone call to “Any Plumber Who’s Interested in Fixing
My Sink.” Note that the any time is important. At the time you
create the message, everyone may be busy; no-one may be interested;
it’s not merely that you don’t know who the recipient is, there s no
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recipient. Your communication must hang around somehow until
someone s free—or, maybe, until some new Actor arrives on the
scene.

We’ve just said something decisive: Your communication must
hang around. It must persist. It can’t be a mere spacetime ripple—
your phone call passing over the wire and then vanishing; your letter
that either gets delivered or thrown out. Communication must be
based on persistent objects.

Software ensembles often require every-type communication as
well. Here’s new information for everyone, everywhere, every time,
who’s working on this problem.

Again, the every time is important. A Super-Deluxe message
passing system might allow me to broadcast a message to everybody:
I pick up my space phone and everybody’s phone rings. I talk to
everyone at once.

But that’s not what we need. A broadcast is a this time event;
we need something that holds good at every time. This means, for
one, that you get the message when you decide you need it, not when
I decide to send it. You might broadcast something at four o’clock;
my phone rings, I write down the message, I think it’s irrelevant
and I throw it out. At four-thirty I might be doing something com-
pletely different; I want the data now, but I've already chucked it.
The only safe thing is for me to archive every broadcast, but this
is a nuisance—ninety percent of them might in fact be pure junk
mail so far as I'm concerned. Every time communication means that
I can go shopping for information exactly when I need it—again,
communication must persist.

It may even be the case, to extend this argument, that when
you picked up your phone and did your broadcast, I didn’t exist. In
a genuinely wuseful communication system, communication is possi-
ble between two Actors whose lifetimes are completely separate—the
sender is dead when the receiver is born. We need communication
through time, in other words, not merely through space. Infoma-
chines are born and die out at a much brisker clip than (say) people.
Communication through time is an important requirement.

Linda is a communication system designed specifically to over-
come these limitations—to allow every communication to write its
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own ticket. Maybe this sounds complicated, but actually it is, in
many ways, a lot simpler than message passing.

¢ So, when infomachines need to communicate...

They don’t pick up their Cellular Space Phones; instead, they write
down whatever it is they need to communicate, and set it adrift.
They generate a new landscape and heave it through the air lock
into outer space. The new landscape consists of a bunch of regions,
like any landscape; these regions hold the substance of the communi-
cation. Usually, the first region holds a phrase that acts like a name
tag. The phrase might be Here’s a task that needs doing, or New
Information about Blah Blah Blah, or Attention: Machine Schwartz.
These jettisoned floating landscapes are called tuples.

When I need information, or I'm in the mood to take requests
or get messages, I don’t punch a button on my answering machine.
Instead, I peer out my windshield, where lots of jettisoned landscapes
(lots of tuples) are floating around among my fellow infomachines.
When I've located the one I want, I have two choices. 1 can reach
out and grab it, or I can copy down the stuff it contains and leave
the tuple itself floating around out there.

In a message-passing system, there are two basic operations: Send
a message; receive a message. In Linda, there are three: Jettison a
tuple; grab a tuple; read a tuple. It’s important that floating land-
scapes can either be grabbed or (merely) read. A here’s a task... or
Attention: Schwartz... tuple ought to be grabbed. If 'm willing to
do some task, it’s a waste of time for some other infomachine to start
work on the same thing. The tuple must be removed, so that other
machines don’t duplicate my efforts. But a New Information about...
tuple might be of interest to lots of machines. If I'm one of them, I
can read this tuple’s contents, but the tuple itself must remain adrift
and accessible.

§ Have 1 solved my “this, this, this” problem?

Yes. I can now customize any communication event in any way [
choose. I can communicate with someone who might be anywhere.
When 1 jettison an Attention: Schwartz... tuple, machine Schwartz
will pick it up wherever he happens to reside at the moment. 1 can
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communicate with anyone who might be anywhere. When I generate
a Here’s a task... tuple, I don’t know and don’t care which machine
will grab it. I can communicate with everyone, everywhere. When I
generate a New Information about... tuple, everyone who chooses can
read it. And I can communicate across time, not merely across space.
Tuples are persistent objects, not transient ripples. Once they are
jettisoned they drift placidly forever, or until someone grabs them.
The machine that grabs or reads one may have been born long after
the tuple-generating machine’s demise.

§ What does it look like?

Fine, but maybe this is a little abstract. Let’s consider something
concrete, two different kinds of problem.

First, let’s say you run a research service of some kind. You
maintain a huge database of news stories; your customers come to
you with lists of words or phrases, and you get back to them with a
bunch of stories that match on these words and phrases. A customer
might call up (for example) and ask for stories containing the phrases
Snoutbrook Savings and Loan or Robert Piffel or Bob Piffel, or the
phrases federal bank deregulation and the word Arkansas, and so on.
I’ll discuss a strategy for a much more sophisticated kind of search in
a couple of chapters, but people do make use of this simple searching
scheme today. You have a lot of customers, we’ll assume; they call
you on the phone or contact you via computer network, and you need
to respond quickly.

Let’s consider another very different kind of problem as well. You
want to build a computerized market. It deals in barrels of oil, tons
of grain, stocks, bonds or what have you. Anyone who's interested
can enter the market via computer and make a deal. We imagine a
series of blackboards, one for each commodity traded on the market.
If there’s no action in some commodity at the moment (no-one selling
or buying), the current price—the price that the stuff was last sold
for—appears on the blackboard. If I enter the market and want to
buy, I grab the appropriate blackboard and write “bid,” the price I'm
offering, and something that identifies me (let’s say a phone number
to call, once a deal is set). Then I replace the blackboard. To keeps
things simple, let’s say that all transactions are for equal-sized chunks
of stuff: 5 tons of this, 100 shares of that or whatever. If I want to
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sell, T look at the blackboard. If someone wants to buy and I'm
satisfied with the price he's offering, I grab the blackboard, write
“sold” and call the guy up (or send him a computer message). If the
price he’s offering is too low, I grab the blackboard, write down ask
and the price I'm willing to accept. And so on.

In the first problem, we’ll build an ensemble program in order to
get speed: We want to search the database quickly. In the second,
we need to build an ensemble because those are the facts of life. The
real-world system I'm dealing with (a bunch of people making deals)
happens to be an ensemble whether I like it or not. My software will
merely reflect that fact.

Here are the strategies we’ll use.

In the first case, a Primal Machine (PM for short) creates a bunch
of “worker machines”—say a couple of dozen. The number doesn’t
matter. The PM starts out by announcing “we are looking for articles
that meet the following criteria.” It announces this by heaving a
tuple out the air lock into outer space, otherwise known as “tuple
space.”

The tuple might look like

(LookingFor, "Snoutbrook Savings and Loan OR ...")

In other words, a tuple is just words (or numbers or other kinds of
data) put together into a kind of list. This is a two-element tuple.
The first element identifies the tuple in a way the workers will be able
to understand ( “this tuple announces what we’re LookingFor”). The
second element provides the actual information (“I want you guys to
scan some stories for the phrase Snoutbrook Savings and Loan or
the phrase...”).

The PM is merely an infomachine. There is a script that specifies
what this infomachine is supposed to do. The script is written out
using a programming language (like Pascal, or whatever). When
the PM reaches the point where, having set everything up properly,
it’s ready to start communicating with other infomachines——at that
point, it executes the instruction

out (LookingFor, "Snoutbrook Savings and Loan OR ...");

When the PM executes this instruction, a tuple goes sailing out the
air lock into tuple space.
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Each worker machine has a script too. At the start of the script,
there’s an instruction that causes this worker machine to read the
“LookingFor” tuple. If there are 100 worker machines, each one reads
the “LookingFor” tuple to start out—and now, they all understand
the goal of this particular search.

The PM now proceeds to rip apart the database of newspaper
articles. It grabs each article, puts the article in a tuple and heaves
the tuple out the air lock. In other words: if there are twelve million
and one articles in the database, the PM executes twelve million and
one instructions that look like

out (Article, 114,
"Passaic, June 21 (AP): Today, Robert Piffel...");

In other words, the 114¢h article reads Passaic, June 21 (AP)....
Of course, we don’t write twelve million instructions separately, one-
by-one, in the PM’s script. Instead, the script says “For each article
in the database, however many there are, execute the instruction
out (Article, next article’s number, next article’s text...).

So: The PM is busily heaving tuples into tuple space, and they’re
starting to collect. Each worker machine repeatedly does the follow-
ing. It reaches out and grabs an Article tuple. Doesn’t matter which
one; any one will do. Note that, if 7 grab a tuple, no-one else can
grab it; I haul it onboard, and it disappears from tuple space. I check
the text in the tuple against the search criterion. Do the specified

phrases appear in this article? If the answer is yes, I heave a tuple
like:

out (Checked, 114, Yes)
If the answer had been no, the tuple would have looked like
out (Checked, 114, No)

Notice that it doesn’t matter in what order the articles get
checked, nor does it matter which worker does what, so long as every
article gets checked eventually.

Now, the PM merely gathers up these answer tuples and collates
them. When every element has been checked, the PM prints a report
and the ensemble evanesces.
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If there’s a single worker, it plods through the database article
by article, and eventually gets through the whole thing. But if there
are five workers, the ensemble (at any given point) is checking five
articles simultaneously; if there are a thousand workers, it’s checking
a thousand simultaneously, and so on. The more workers, the faster
the search goes.

This particular example might or might not be realistic, depend-
ing on characteristics of the search criteria, the database and some
other factors. (Technical aspects of this sort of problem are discussed
in a parallel programming textbook.?) But in fact, there are many
ensemble programs in many domains that do solve problems fast and
efficiently using precisely this kind of approach.

Now, let’s glance at the second problem, the software market.

The basic idea is extremely simple. Every commodity has a tuple.
That tuple represents its blackboard. For example,

(Cauliflower, BID, 1522, 12345)

(where the 12345 is a number that identifies the bidder). Or
(USZipper, ASKED, 154, 54321),

or
(SweetTexasCrude, CURRENT, 22.545, 0).

(The zero at the end means “no-one”-—there’s no buyer or seller at
the moment.)

If I'm interested in a current price quote, the infomachine that’s
acting on my behalf executes an instruction that reads the tuple of
interest. If I want to sell or buy, my infomachine grabs the appropri-
ate tuple, updates it, and then heaves it out again—for example, by
executing an instruction like

out (SweetTexasCrude, BID, 22.545, 12345);

meaning that [, number 12345, am now ready to pay $22.545 a barrel
for Sweet Texas Crude.

This sort of market is oversimplified as it stands; but it’s not
hard to add details that make it more realistic. The result is more
complicated —but represents cxactly the same general idea. Using
this sort of market, two mutually unknown people can make a deal.
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Or, a person can make a deal with a program (that is merely acting
in auto-pilot mode on someone’s behalf)--or two programs can make
a deal; it’s all the same story.

§ Grabbing Tuples

How does a machine grab or read a tuple? How does it specify
which one it wants? How does it describe the longed-for tuple? By
specifying the contents of any regions it chooses. It announces “I
want to read the tuple whose first region says New Information about
Blah Blah Blah”, or “the tuple whose second region holds the number
3 and whose seventh holds the word Puce,” or whatever. Machines
may (in other words) grab or read a tuple based on the name-tag
in the first region, but they may specify more or different regions as
well.

So, concretely: I'm interested in the current going price for
cauliflower. My infomachine executes an instruction like

rd(Cauliflower, 7status, 7price, 7dealer);

which means “read the four-element tuple whose first region says
Cauliflower.” After I've executed this instruction, the current price
(or more precisely, the number that happens to occupy the third
region of the tuple, which is supposed to be the current price) has
been stored in a region named price—I merely look in this region,
and there is the price, copied out of the floating tuple.

Suppose I've bid on cauliflower, and I'm waiting for a buyer to
show up and specify an asked price. In other words: I've set the
status of the cauliflower blackboard to BID; I’'m waiting for its status
to be reset to ASKED, which means that a seller has materialized.
As soon as this happens I'll grab the blackboard; if 'm happy with
the price, we have a deal; otherwise, I'll flip the status back to BID,
with (perhaps) a new, revised offer for the seller to think about. So:
My infomachine will execute an instruction like

in(Cauliflower, ASKED, 7price, 7dealer).

This instruction means “grab a tuple (haul it in from tuple space)
whose first region says Cauliflower and whose second region says

ASKED.”
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In other words, I can be as specific as I choose about which tuple
I'm looking for. I can specify merely a name tag, the contents of
the first region: “I'm looking for a tuple whose first region says
Cauliflower.” Or I can be more specific: “Not only does the first
region have to say Cauliflower; the second region has to be ASKED.”

This flexibility is important, because it allows you to build data
structures out of tuples. A tennis ladder or a tournament tree exists,
sometimes, in the form of little name tags on hooks. A tennis ladder
is a data structure: each name tag is a datum; the structure in this
case is an ordered list. Data structures are important for the same
reason that tennis ladders and tournament trees are important: They
allow you to locate things quickly and to keep track of the big picture.
It often makes sense to arrange tuples into data structures—into
ordered lists, trees, other shapes. In principle we might tie them
together with software Space Rope, but that doesn’t work out well
in practice for a number of reasons. Instead, we rely on our ability
to ask for a tuple by naming several regions. For example, we can
build a list of tuples by putting the name of the list (say Task List)
in the first region of each tuple, and the tuple’s position-in-line in
the second. The first tuple on the list has a 1 in its second region,
the next tuple has a 2 and so forth. To read the seventeenth tuple
on line, we ask for the tuple whose first region says “Task List” and
whose second is 17.

§ The Rest of the Story

Two more points and the Linda story is complete.

Point one: We've been talking about passive tuples, but a tuple
can in fact be a full-blown infomachine. Instead of heaving a passive
bunch of regions out the air lock, we can send a new infomachine
streaking outwards. The new machine does some work, computes
some values—then turns into an ordinary passive tuple, whose re-
gions hold the values it just computed. The new infomachine (in
other words) flies around for awhile and then blows up: an exploded
moon whose asteroid-trail of space junk is a brand new tuple.

In fact, you have just learned the origins and the fate of every
infomachine in a Linda ensemble. FEwvery infomachine begins life by
streaking out of some Mother Machine’s air lock (except for the one
uncreated “primal machine” who starts everything off). Every info-
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Figure 4.2: Life cycle of an infomachine in a Linda ensemble: begins
by streaking out the mother-machine’s air lock (a); eventually blows
up (b), leaving an ordinary tuple in its wake (c).
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machine is destined to blow up when it’s done computing, leaving
a passive tuple in its wake. During its lifetime it may give birth to
more infomachines, or to passive tuples only, as it chooses.

Concretely: I discussed a simple ensemble to search a database.
There’s a Primal Machine, and then a collection of worker machines.
When I turn the ensemble on, the Primal Machine is created auto-
matically, ex nihilo. Where do the worker machines come from? The
Primal Machine’s first respounsibility is to create them. If we want five
workers, the Primal Machine begins by sending five brand-new info-
machines streaking out of the air lock. It executes five instructions
like

eval ("Worker", WorkerProcedure()).

By executing five such instructions, we dump five new things into
tuple space—but these five things aren’t passive tuples, mere lists of
values; each one is an active, live infomachine, doing its own compu-
tation simultaneously with, and independently of the Primal Machine
and its fellow workers. So we now have siz things going on at once:
The Primal Machine keeps chugging along, and we have five worker
machines as well.

Now, for the obscure-looking ewal instruction itself. The word
eval is short for evaluate. The phrase following “eval” means: Create
an infomachine that is destined, when it blows up, to leave a two-
element space-junk tuple in its wake. The first region of this tuple
will say “Worker”. 1 don’t know what the second region will say; to
figure it out, find the procedure called WorkerProcedure and execute
it. Whatever value WorkerProcedure computes—that’s the value that
goes in the second region of the space-junk tuple.

Now: WorkerProcedure is the name of a map somewhere, and
in the map there’s a script that spells out exactly what a worker
is supposed to do. Namely, read the search specification, and then
repeatedly grab article tuples and check them out.

By executing the ewval instructions, in other words, we’ve created
some new infomachines, and each one will devote its entire life to
figuring out what kind of space-junk tuple it should leave behind. To
figure this out, each new infomachine dutifully digs up the Work-
erProcedure and starts cxecuting it. We've created five new info-
machines and turned them into workers. We accomplished this by
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telling them “your goal in life is to bequeath a space-junk tuple to
the infomachines you leave behind, and in order to do this—you’ve
got to execute a worker procedure”; or in other words, turn into a
worker.

The final point: As I've mentioned, this collection of infomachines
and passive floating tuples is called a tuple space. (The objects it
contains are either tuples or incipient tuples: every infomachine will
be a tuple eventually...) Tuple Space differs from Outer Space in (at
least) one highly significant way. There’s only one Outer Space, but
there can be lots of tuple spaces; in fact, one tuple space can have
lots of others inside it. And of course, each one of those can have
many tuples spaces inside i, and...

How? A tuple consists of regions; each region holds a value. That
value may be another whole tuple space.

Picture it this way: You pilot your machine over to a floating
tuple, dock alongside and peer in. The first region has a phrase in-
side, let’s say; the second has the number 17; the third holds an entire
new world. When you look inside, you see thousands of infomachines,
clouds of tuples... Beaming your flashlight off-handedly down the fis-
sure in a mossy outcropping, finding a huge domed, pale-glimmering
cave chamber underneath—waterdrops faintly hollow-plunking into
a still pool far below—must be similar, I guess. Vaguely.

Does this remind you of Command Posts with whole new land-
scapes popping up inside? Recursive hierarchies, worlds within
worlds, one structure with many of the same inside it—this is the
primal landscape of the Infomachinery Universe.

Disclaimer: Putting tuple spaces inside of tuple spaces is a tricky
business, and not all Linda systems can do it. At the moment, only a
few research versions can. The Linda system you buy this afternoon
from Scientific Computing Associates in New Haven (the General
Motors of commercial Linda) won’t have this feature. But eventually,
every Linda will.

Simple Machines for Coordination

The most important simple infomachines are the ones I described
in the last chapter: the map and the seript, basic structures out of
which you build all infomachines.
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But maps and scripts allow you to build single infomachines; and
we need ensembles. The four basic instructions that Linda provides—
exactly the four I've presented above, out (heave a tuple out of the
air lock), in (grab a tuple), rd (read a tuple) and eval (create a new
infomachine)—are a set of simple coordination machines. You can
use these instructions to build any kind of ensemble you need.

Down to Earth

We aren’t talking about science fiction stuff; this is a practical way
to solve hard problems fast.

I described a database search problem involving news articles.
The problem in general amounts to the following. You have a big
database and you want to search through it quickly: You need to
check many records to find the “best match” against something or
other. In one example we work with a great deal, the database
holds information about genetic sequences. Biologists need to search
through it to find good matches between newly-discovered sequences
and already-known ones. But the database could just as well hold
images, descriptions of chemical reactions, customer records or what-
ever. You want to check every element in a large pile selected from
the database. Check could mean a lot of things, but generally speak-
ing, it means “find out how close this element lies to some target.”
Is it a news article that’s “close” to whatever I'm interested in? An
image that’s close to some ideal template? You can determine each
element’s “closeness” by doing some kind of computation that com-
pares this element to the target. The simple ensemble I described is
a good starting point for attacking any of these problems.

A simple program; many ensembles are a good deal more com-
plicated. Mirror Worlds are a radical example. But there are plenty
of important problems that can be treated in more or less this same
straightforward way. Two instances, for the hell of it. You're some
kind of finance house and you have a “bond pricing model” that tells
you how much a certain kind of bond will be worth, depending on
circumstances. You're interested in the worth of this bond under
lots of different scenarios. You can distribute these computations to
Worker Machines in the same way we handled database elements.
Workers grab a tuple, which specifies a bond and a set of interest-
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ing circumstances; the worker does a computation that predicts the
bond’s value, dumps an answer-tuple and repeats. One more ex-
ample: You're using computer-graphic techniques to make pictures.
You compute your picture scan-line by scan-line—the pictures will
be displayed on computer screens, and a computer’s screen (like a
TV’s) displays images in the form of many horizontal lines. Again,
you create a bunch of Worker Machines; workers grab tuples instruct-
ing them to compute some scan-line or other. They dump the results
back into tuple space. The PM collects and collates the results.

Pretty simple, but it works. This is reality we are talking about.
If you were at the Guggenheim Museum in New York in April 1990,
you saw some spectacular pictures produced by (among other people)
Ken Musgrave, a graduate student who works at Yale with Benoit
(“Fractal Curves”) Mandelbrot. Musgrave’s images were computed
using a Linda ensemble that was almost as simple as the one we just
described. Nowadays, significant problems are solved by ensemble
programs all over the place, every day.

Hypercomputers

We’ve been talking pure software—unbodied machines, unbodied en-
sembles. How does the “embodiment” take place?

Take the examples we’ve discussed; let’s suppose, for concrete-
ness, that you want to run them on an office network. The network
consists of a bunch of desktop computers wired together in the usual
way. You might execute an ensemble on a multi-computer, one box
(recall) with lots of sub-computers inside. But multi-computers are
still just a tad esoteric. Networks are not, so let’s talk about a net-
work.

During normal working hours, the computers in an office network
often have little or nothing to do. If you're reading mail or typing
words into a file, your computer is doing next to nothing, not even
working up a sweat, stifling yawns. If you are staring at the screen
and thinking, or talking on the phone, or doodling, napping, flirting
or having lunch-—and these are all activities in which (yes) people
continue to indulge, in flagrant disregard of the powerful computers
sitting on their desks—believe it or not—well, under these circum-
stances, your computer is fighting back tears of boredom. Most times,
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in other words, you could go round an office network discretely bor-
rowing chunks of computing power from everyone’s desktop machine,
and no-one would ever know the difference. Should a user actually
need his machine all of a sudden, you’d give it back immediately.

We refer to the computing resource that emerges from all this
idle power as a “hypercomputer.” If we take all the unused power in
a network of computers and lump it together, we have an excellent
home for ensemble programs.

Let’s say I have a difficult problem to solve—maybe it’s a
database search or a bond-pricing calculation or a graphics program
of the sort we’ve been discussing. Let’s say the program would run
for an hour and a half on my desktop machine, but I’d rather solve
it in ten minutes. Clearly, I need to focus ten computers on it at the
same time.

Say I'm in an office with a hundred-computer network. Chances
are that virtually any time of the day or night, I can find ten com-
puters that are doing either next to nothing or absolutely zero. And
if you had an enormously hard problem and you were willing to stay
late, you would find it easy to grab all one-hundred machines (or al-
most all) and focus the whole skein on your program. Depending on
the efficiency of your ensemble, you thereby stand a good chance of
solving your original one-and-a-half-hour problem in about a minute.
Instead of creating six pictures in a nine-hour shift, that’s more like
six hundred. Or you can stick with the same six pictures, and make
each one a hundred times better. And you did this trick not by
investing in fancy new hardware, but simply by using what you al-
ready had. Another name for “ensemble computing on a network”
is “getting what you paid for.”

Let’s go back to the ten-computer case. Let’s say you're search-
ing a database. You create an ensemble that has nine workers plus
the primal machine. (The unbodied ensemble doesn’t care how many
workers you create on any particular run. The score has a “worker
machine” part, and you can decide from run to run how many work-
ers should perform it.) In the “bodying” process itself, each of your
ten infomachines takes up residence on one of your ten computers,
like falcons settling on fence-posts. They start work. The PM gen-
crates tuples and heaves them into tuple space. The workers grab
them. Tuple space (which already contains your ten infornachines)
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is knit together using pieces of each participating computer’s mem-
ory. When I add a new tuple, characteristics of the tuple determine
(automatically) in which computer’s memory this new tuple should
be billeted. When I scan tuple space for some particular kind of
tuple, my attention is directed automatically to the memory of the
appropriate computer. So there’s no single box anywhere in which
tuple space resides. It’s an all-enfolding vapor, so to speak.

The Linda programmer, of course, couldn’t care less where tuple
space is. He just heaves stuff in and pulls stuff out.

Does it work?—running an ensemble on a network? The standard
approach to ensemble computing still assumes that you have a multi-
computer to work with, not a mere network of ordinary machines.
It’s easier to get good ensemble performance on a multi-computer
than on a network. A multi-computer is designed for this sort of
thing. As a consequence, communication (for example) is likely to
be much faster on the multi-computer; and the multi-computer will
have other nice properties as well.

But in fact the network approach does work very well. Not for
every ensemble, but for many significant ones. For example: Not
long ago, a Linda graphics program (similar to the one I mentioned
before) was set upon by forty mild-mannered desktop computers in
the Yale Computer Science Department. These are reasonably pow-
erful machines, but not in the last racey or exotic. They sell for
well under ten thousand dollars a pop. The forty of them produced
an image fast. Ten times faster, in fact, than a fifteen-million-dollar
traditional supercomputer, running a non-ensemble version of the
same program. (The Linda program was written by Craig Kolb of
the Yale Mathematics Department, and tested on the network by
Robert Bjornson of the Computer Science Department.)

Not a fair test, completely. We made no effort to coax good
performance out of the supercomputer, and you damned well better
make an effort if you own that kind of equipment. You expect to
make an effort. Nor is this kind of almost-embarrassing triwmph (or
anything close to it) guaranteed on every problem.

In other words, if you are already halfway out the kitchen door
with your fifteen-million-dollar supercomputer, lugging it down to
the sidewalk in anticipation of the next bulk trash pickup in your
neighborhood-—come back. You’re overreacting. But if you do any
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kind of serious computing at all, and you haven’t scheduled some
intensely serious pondering about this Network Linda business and
the enormous, explosive computing potential lying two inches be-
neath the surface of any garden-variety computer network--you’re
underreacting. Which is a lot worse, I'm afraid.

§ Piranhas, and the Out-of-Body Future

I’ve described the Linda-based hypercomputer of the present. One
word about the hypercomputer of the near future: forget about space
scooters and falcons; back to good old down-home piranhas. A few
years from now, there are still plenty of one-computer desktop ma-
chines, but desktop multi-computers are commonplace as well. (Once
yvou’ve paid for all the other stuff that goes into the computer, the
processor chip—the little item that does the actual computing—is a
relatively minor expense. So you might as well throw in a handful.
Cheap “parallel PC’s,” so-called, are already starting to appear.)
Desktop machines are interconnected using fast fiber-optic networks.
(Again, fiber-optic networks are no big deal technologically—you
can buy one this afternoon—but they’re still pricey. Not for long,
though.)

Now, full-blown Piranha Parallelism takes hold. Computations of
all sorts are routinely constructed as ensembles. Not that you care,
necessarily; you buy programs shrink-wrapped, and you don’t care
whether they’re asynchronous ensembles or conventional programs
or ruffled potato chips. But you notice that they run fast. At any
rate, when you turn one on, it releases a cloud of task tuples into
hypercomputer tuple space. Each separate computer in the network
(lots of them might be crammed into your desktop box, remember)
harbors an infomachine that has been trained to behave like an info-
piranha. An info-piranha cruises around tuple space looking for a
task cloud to attack. You have first claim on your own pet piranhas,
the ones who reside on your desktop. But your task cloud might
easily attract other marauding infomachines who are bored and hun-
gry. The more piranhas you attract, the faster your task cloud gets
demolished and your computation completes. And your own info-
piranhas, when you don’t need them, will go cruising around with
their low-life friends looking for computational trouble elsewhere in
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the network. Not a pretty picture perhaps. But these boys get the
job done, and what’s so bad about that, huh? All right.

Of course, the computer sits where you put it. It doesn’t actually
cruise around; it cruises in spirit. You might come back from lunch to
discover that your computer has slipped out of its box ( “spiritually”)
and is working on a problem in the next building. But, needless to
say, it comes romping right back the minute you call.

Our prototype Piranha system, now up and running, is the work
of David Kaminsky, who is a graduate student at Yale. He recently
ran a gigantic physics program in this way. The program ran in two
stretches, one fourteen hours long and one six hours. Roughly forty
computer-piranhas participated at one point or another. Only six
stayed for the whole party; the rest zigged in and out, darting over
for a snack whenever the opportunity arose.

There’s more to be said about Linda, its characteristics, and what
Linda ensembles look like. But I'll postpone further details until we
need them, in the Building Mirror Worlds chapter. One final point:
What is Linda? Answer: a coordination language. Using a pro-
gramming language, we build unbodied infomachines; a coordination
language is the glue that allows us to clump infomachines into en-
sembles.

Implications I: Nature

Asynchronous ensembles and their behavior are a bright thread run-
ning the length of the modern mind. It’s striking how often and how
wide-rangingly the answer to the question what are you studying?
turns out to be, ultimately, an asynchronous ensemble. These en-
sembles differ so hugely among themselves that there’s no science of
asynchronous ensembles per se, and there never will be. Regardless,
a due respect for topsight demands that (at a sheer minimum) we
notice this common theme.

I’ll glance in passing at three instances outside of software. Then
we’ll take up the interface, those fascinating tidal marshes where nat-
ural and softwarc ensembles swirl together in subtle and far-reaching
ways.
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Figure 4.3: Piranha parallelism: A program that someone wants
to run takes the form of a task cloud full of crunchy morsels (a).
The program is complete when every task has been consumed. Each
computer on the network acts like a cruising piranha. The more
piranhas attack your task cloud, the better. (b) is okay; (¢) is a lot
quicker.
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§ Ensembles in the Wild

Let’s go on a field trip, but (due warning): It all comes down to
software in the end.

Consider your favorite gas: the classical asynchronous ensemble.
A gas is an ensemble of atoms or molecules, each charged with a fairly
simple mission: bounce around. The temperature and pressure of the
gas are properties of the ensemble, not of any particular individual
within it. It’s the ensemble itself that has a pressure and a temper-
ature. Pressure reflects lots of randomly bouncing objects slamming
into the walls of your container. Temperature reflects the mean ki-
netic energy of these objects, which has to do with their masses and
velocities on average. Indeed, the scientific basis of “temperature,”
and its intimate association with the idea of “asynchronous ensem-
ble,” may have penetrated your thinking more deeply than you know
(see further)...

Consider Darwin’s twin processes of speciation and evolution.
Ensembles evolve; ensembles develop species. Individuals don’t. An
atom has its mass and its velocity, an individual its genetic makeup
and a marked tendency to mate. When you gather a bunch of such
individuals together and allow them to interact, evolution and spe-
ciation emerge. What Darwin accomplished was the discovery of a
new class of “ensemble properties”—attributes that are properties of
ensembles and only ensembles.

Consider Adam Smith. He discovered another fascinating ensem-
ble property—the tendency of free market economies to develop in
the direction of greater over-all wealth. Economic productivity is an
ensemble property, obviously. It emerges out of the interactions of
oblivious individuals. The fact that an economy is an asynchronous
ensemble is something of which most people are aware. I would guess
that they are aware, too, of the fact that temperature is an ensemble
property at base. After all, we say “the economy is heating up,”
not “the economy is turning purple” or “gaining weight,” although
in the abstract, rising frequency or weight might have worked out
just as well in the metaphor department. (And after all, “metaphor
is not just a matter of language, that is, of mere words,”* as Lakoff
and Johnson point out. Metaphors structure our thinking and reveal
much about the underlying thought processes. Vico argued along
similar lines in the seventeenth century.®)
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Well, fine. So what does all this have to do with software?

The three natural ensembles we’ve described form a sort of hi-
erarchy based on the complexity and predictability of their mem-
bers. Bouncing molecules are (in the relative scheme of things) sim-
ple and predictable, walking two-legged Genomes in pants or skirts
are medium, full-fledged Economic Man is complicated, with a wide
range of behaviors.

Statistical computing models like “neural networks” and com-
putational techniques like “simulated annealing” are the software
analog of a gas-type ensemble. These approaches work well, and
are increasingly applied in practice; they seem to be effective on a
somewhat narrow but important range of problems. “Genetic algo-
rithms” for the construction of certain types of artificial intelligence
programs attempt to harness a kind of simulated recombination and
evolution in the service of steadily-improving program performance.
More broadly, “adaptive behavior” in software systems is a topic that
has been attracting a great deal of attention recently.

These topics are interesting but off the point so far as Mirror
Worlds are concerned. But the third type of ensemble, the “Smithian
ensemble,” hits home. The ensembles I'll discuss in the rest of this
section are all Smithians.

Software ensembles, we said, might be patterned after “natural”
ones either for their own good, or for purposes of studying, modeling
and understanding human or natural ensembles. A small but growing
research community is attacking the first of these two possibilities.
The second remains largely unexplored.

A promising body of research focuses on the use of markets and
quasi-biological organizations as models for smoothly, efficiently run-
ning software ensembles. Bernardo Huberman of Xerox writes about
the development of a “community of concurrent processes which, in
their interactions, strategies, and competition for resources, behave
like whole ecologies.”® Huberman has gathered a bunch of technical
papers that address these issues into an uneven but intriguing book
called The Ecology of Computation; the quote comes from its opening
chapter.

I mentioned Tom Malone earlier. He’s attempting to make “co-
ordination” per se a topic that you can study. The coordination he’s
talking about is a goal that software ensembles share with certain
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kinds of business organizations and with whole economies. Malone
hasn’t yet settled on a precise definition for this effort or a sharp
delineation of its boundaries. But the character of this research is
stimulating and promising.

There’s much less to report with respect to the companion propo-
sition. The fact that software ensembles can mimic “real” ones gives
us a new kind of laboratory. Consider what a college course on “ex-
perimental ensembles” might be like—

You might build some simple mock ecosystems to begin with:
creatures of a few different sorts (each population represented by a
separate infomachine, perhaps); macro-features of the landscape; add
weather and let her rip—see how your creatures do. Tinker with the
mechanism and see what it takes to make the whole thing unravel.
(Do not leap to the conclusion that you’ve proved anything about
nature; your experiment is far too simple. But you have learned
a lot about each component of your ecosystem as you’ve tried to
model it accurately, and you’ve started to understand the dynamics
of such systems in general.) Build a population of infomachines which
“mate” in a genetically (if not anatomically) convincing fashion—
see if you can observe speciation or evolution. (There has actually
been a fair amount of work on a topic called “Synthetic Life” by
its practitioners: Experiments by Thomas Ray at the University
of Delaware, in which small programs make copies of themselves
inside a computer memory, experience “mutations” and compete for
resources, are an interesting example of the work in this area. In these
artificial and abstract environments, you can observe evolutionary
processes that resemble natural ones. The emphasis in this research
community is rarely on ensemble programs, however. An ensemble
of creatures is simulated by a conventional program.)

Next, something simpler: Build a market (each trader is a sep-
arate infomachine) and watch prices bob around. Create a boom
and a panic. While you're at it, build an entire economy. Raise
and lower interest rates, trade barriers, consumer confidence and so
on. See what happens. Build a “public” out of infomachines, one
machine per person. Fach person has a certain level of information,
willingness to talk and listen to other people, gullibility: See if you
can start some fads or rumors or political movements. Take a poll
every now and then. (Some of these experiments are outlined in a bit
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more detail in a textbook about ensemble programming by Nicholas
Carriero and myself.”)

And then, the fun begins: experimental history. You've already
built an economy, studied public opinion; can you trigger the global
economic collapse of the thirties? (Study the role of tariffs carefully.
Send the results to your congressman. Of course you may have to
explain what a “tariff” is, when the “thirties” took place and so
on, but please be patient...) By tuning-in the proper incendiary
mix of public and governmental attitudes and assumptions, treaty
obligations and general cussedness, can you start the First World
War? Can you reproduce the aftermath of Tet, Alexander’s victories
in Persia, the rise of feudalism ad infinitum? Maybe not. Don’t
expect it to be easy. But the attempt could be highly illuminating.

Computerized war gaming, as it is studied, developed and prac-
ticed very seriously by the military, comes closest to the sort of exer-
cise I have in mind. But the differences are significant. My claim here
is that understanding ensemble behavior is an indispensable part of
being educated. And there is a further claim, rather a large and
sweeping one: Students should build working models whenever they
can. When you can see and feel directly, immediately how each part
works and how they all come together, you've achieved something
important.

Software ensembles may be a new modeling medium of significant
power and promise. The goal is emphatically not to asphyxiate book
learning under a heap of color graphics and technoglitz. It would
simply be nice to foster a deep, intimate knowledge of the facts and
processes behind ecosystems, economies, history and so on. The
act of fine-tuning individual infomachines and the grand organizing
strategy that knits them together will rub people’s noses in this sort
of knowledge. If students pick up a bit of topsight in the process, so
much the better. And these exercises will be fun too, dammit. Why
not give it a try?

Why not? Because, by and large, scholars, social scientists and
biologists are unaware of the capabilities of software ensembles. And
many computer scientists would sooner take out the garbage than
think seriously about history. My own research group, accordingly,
declares itself ready and willing to talk to all serious comers about
experimental ensemble-izing in any field.
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(Eventually, I'd expect to see a brisk ancillary trade in “work-
ing textbooks,” monographs and articles, by the way—1I capture my
particular understanding of the dynamics of this or that historical
factor in a disembodied machine that can be dropped into anyone’s
ensemble. )

There’s a final issue we need to consider: the intermingling of
software and human ensembles. We start right now, and carry this
theme through the rest of the book.

Implications II: Communication

“What’s good for software is good for humans.” Talk about a stupid
proposition... But there are a few specialized areas in which this
principle holds, and communication (up to a point) is one of them.
Infomachines in a Linda ensemble enjoy far more flexible, far freer
communication than people usually do. Let’s fix this anomaly: We’ll
conduct a little thought experiment—

This is a small-scale dress rehearsal for Mirror Worlds. The topic
is not unrelated, but it’s more limited and far less important. This is
a useful exercise, though, not merely for its content but for its form
as well. The essence of what software researchers do is to dream up
crazy new structures, climb aboard them and shove off for extended
thought-cruises through strange new territories. So let’s try it.

§ The Tuplesphere

Suppose that (essentially) all non-face-to-face communication, be-
tween people and not merely infomachines, went through an all-
encompassing “Tuplesphere.” There are Tuplesphere sockets all over
the place (home, office, hotel room, airport waiting lounge...). When-
ever you're in the mood to communicate, you simply plug your laptop
computer into the nearest Tuplesphere socket. Or you might forget
about the cord, and tune your machine to Data Radio.

When you have something to communicate, you drop it into this
world tuple ocean. When you need information, you pull it out.
Usually you read it; sometimes you remove it. Pretty simple.

Mail-type communication can now be directed anywhere, not just
somewhere. Drop your electronic mail messages (containing either
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text or fax-type images) into the Tuplesphere; each message is labeled
with the recipient’s name and (probably) some kind of identifying
code. The receiver can pull it out wherever he happens to be. You
don’t have to know where he is, and you don’t have to care.

Telephone communication works in the same way. A phone con-
versation is converted into a numbered series of tuples, like the
streams I discussed earlier. As you talk, software breaks your con-
versation into a series of discrete chunks, translates each chunk into
numbers, puts the numbers in a tuple, drops the tuple into a tuple
stream. At the receiving end, software grabs the first tuple in the
stream and translates the numbers into sound, then the second tuple
and so on.

Again, this can be “anywhere” communication. Forget about
phone numbers; you “call up” a person by using his name and code,
the same way you send him mail. This information doesn’t desig-
nate a particular telephone, not even a portable one; it designates
a person. Two people make phone contact in exactly the same way
whether one is in Ulan Bator and the other is in Lusaka, or they are
both at home in Passaic. (Some phone companies are already talking
about this sort of “personal id” system. But let’s integrate this ser-
vice into a big picture, an entirely new communications approach—
not just slap it onto the current obsolete jumble of features.)

We’ve provided “everyone” communication, too. What holds for
phone conversation also holds, in principle, for video. What used to
be called “broadcasting” is now obsolete. TV presentations—images
and sound—are translated into numbers, hacked up into tuples and
formed into streams, just like phone conversations. Assuming your
laptop machine has the appropriate numbers-into-pictures hardware
(and why shouldn’t it?), you can watch TV using the same machine
that handles your mail and your telephone service.

Notice that all conventional bandwidth and geography limitations
have just been torn up. To be a TV station, you don’t need your own
broadcast frequency or cable slot. All you need is a label that you
can stuff into each of your tuples, to identify what you’re putting out,
and keep it all together. That label can be anything. In particular,
it can be a large number. Luckily, there is absolutely no shortage of
large numbers. They are in plentiful supply nearly everywhere. We
should easily be able to provide every inhabitant of the earth with
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his own—it can be the same one, for that matter, that serves as the
identification tag on your incoming mail and phone calls. And there
you have it: You're a TV station. Congratulations. Geography also
goes away. I tap into the same World Tuplesphere wherever I am. If
I’'m vacationing in Diisseldorf but can’t get to sleep without watching
the local news from Paramus, no problem. Any and all TV feeds,
worldwide, are accessible from my local machine.

To be fair, some agency needs to move this information around,
and moving information costs something. I may pay more to watch
the Paramus news in Diisseldorf than I'm accustomed to paying back
home. There might even be a brief delay in getting the video feed
in place-—a few seconds, maybe. But the service is available if you
want it. And the cost, my guess is, won’t break you. (Of course, we
are talking eventually here.)

The disappearance of bandwidth limitations as such means, by
the way, that you can generate your TV pictures with seventeen dif-
ferent sound tracks if you want. The customer chooses a picture that
looks interesting, then dials up his favorite language to accompany
it.

While we're at it, we might as well take the world’s libraries,
digitize them and dump them into the Tuplesphere as well. And the
Tuplesphere is a good publishing medium for newspapers, periodicals
and so on.

All Tuplesphere communication is (of course) trans-time and not
merely trans-space. Once a TV presentation has been dumped into
the Tuplesphere it stays there, until someone insists on removing it.
I can watch today’s TV programs, yesterday’s or something from the
last decade. “Broadcasters” can dump an entire season’s worth of
shows into Tuplesphere en masse.

Notice that I haven’t merely replaced the phone lines, TV cable
and so on with a single master-wire. I’ve unified things logically; all
these communication modes work in the same way. I can begin by
typing words, then switch to voice, then back to text and so on. And
it all takes place within the Linda “free communication” zone.

So, let’s say I need to call someone in Korea. I place the phone
call. Then I remember that, alas, I don’t speak Korean. I need a
translator. I put the Korean on hold and type a message: “anyone
willing to translate between English and Korean?” Let’s say that one
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such individual s logged on somewhere. He mouses on your message,
picks up the phone and says “sure, patch me in.” You ask him what
his rates are, you make a deal, and you add him to the conversation.
You’ve now got both the Korean and the translator on the line, and
you can proceed. You don’t care where the translator is. He might
be in Korea, or he might be in the office next door.

In short, you've got “anyone” communication, too. How did it
work? Organizations that are willing to accept anonymous phone
calls have installed a software monitor on their lines, designed to
filter out most irrelevant calls and display your introductory query
once they’ve caught something that seems plausible. If the introduc-
tory query looks interesting, the customer rep answers the phone.
The same holds, obviously, for a free-lancing individual. The World
Tupleshere encourages the proliferation of free-lance infoservice sup-
pliers. Do you need someone to correct the lousy grammar in your
reports, supply them with executive suminaries, reorganize them
according to federal format 71538q(4), translate them into French,
check the facts, fill in the missing citations, reformat them for a new
computer-printing system, supply classical references or redo them
in rthyming Alexandrines? Just ask.

Of course, you can also place that phone call you've been want-
ing to make to “any plumber who can fix my sink by the day after
tomorrow,” “anybody’s who’s got an oil filter for a 1979 Buick Riv-
iera” or whatever. You type this description into your machine, then
pick up the phone and wait for a response. If several people from
different companies pick up, you can talk to them all simultaneously.
Why waste time repeating your problem? Let them bid against each
other. If no-one answers and you get tired of waiting, hang up and
check later—perhaps no-one is interested or available at the moment,
but your request will (of course) hang around. Plumber Jones who
was out on a job, and Plumber Smith who is destined to show up in
town and open shop for the first time tomorrow, will both find your
message hanging around out there when they look around.

Let’s say that you and Fruitford need to have a conversation, and
Piffelini in the Tokyo office would also be interested, but he’s asleep
at the moment. You and Fruitford have your chat, and “copy” Pif-
felini; he can replay the conversation whenever he wants, interpolate
his own comments and send the results back to you. Trans-time
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communication also means that you can communicate with future
versions of yourself. You can pick up the phone and dictate a re-
minder message that you’ll get next Tuesday, next year or whatever.

People and infomachines cooperate smoothly in this environment.
You might want to have your phone conversations transcribed; in a
few years, software will be good at this sort of thing. You can patch a
software transcriber into your conversation as easily as you can add a
human translator. And people might want to communicate using the
same data structures that infomachines find useful. Let’s say that
the X department is generating a lot of work for the Y department.
X people might want to task the work out to Y people through the
Tuplesphere: dropping each task description in a “bag” (when a Y
person is free, he reaches in and grabs any task); arranging tasks in
a stream (an unoccupied Y person grabs the first task in line); and
SO on.

The Tuplesphere will need to be cleaned up from time to time,
so it doesn’t get clogged up with uninteresting junk. But its ca-
pacity will be large, particularly if we use the standard computer
science techniques of “caching” and “hierarchical memory.” These
techniques allow rarely-used data to be automatically elbowed aside
into out-of-the-way corners; the convenient, easily-accessible loca-
tions are reserved for widely-used material. Massive data warehouses
are cheap to build. So long as you're willing to wait a while for the
information you need to be trundled out of deep storage, tuple oceans
can have enormous capacity.

All this stuff needs to be organized somehow—here is where tuple
spaces-within-tuple spaces are important. (I'll pursue this point in a
couple of chapters.) And the best way to find your way around this
info-ocean is wvisually. Sophisticated images on your screen, to begin
with; “virtual reality,” images projected onto little eyeglass-style TV
screens, putting you inside a three-dimensional synthetic landscape,
will also be nice.

There are loads of difficult problems here—privacy, security, re-
liability, charging schemes and accounting, all sorts of things. But
the basic design is clear. The most important requirement is simply
raw communication capacity. Our available reserves of this crucial
resource are on the rise. Robert Kahn’s project, the one I referred
to in the second chapter, aims at a large leap in data communication
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capacity. We need to turn this raw hardware leap into real, usable
communication services, not just for scientific data- and computer-
sharing (obviously important), but for everyone’s tangible, imme-
diate and continuing gain. A family of fast data-network projects
is being funded by federal research agencies (to the tune of fifteen
million dollars or so, which—unfortunately—counts as a lot where
computer science funding is concerned); research on transcontinen-
tal billion-bit-per-second fiber-optic networks is well underway. Is a
billion bits per second enough? Probably not. But it’s a start.
What’s the net result of our Tuplesphere thought-experiment?
Freer, easier, more improvisational communication—more like neigh-
borhood face-to-face chatting, less like the typical phone, mail and
so-on communication of today. Space and time—where someone is,
when he’s available—more or less don’t matter. The boundary be-
tween speaking and writing is easily and repeatedly hopped over.
Language differences fade somewhat in significance when translation
services are easy to hire on the spot whenever you need them (and
TV shows come in many languages routinely). Most portentous,
people and software work hand-in-glove—sometimes, hand-in-hand.
We’ll have more to say about these mixed marriages.



Chapter 5

The Deluge

We’ve installed the foundation piles and are ready to start building
Mirror Worlds. In this chapter we discuss (so to speak) the basement,
in the next chapter we get to the attic, and the chapter after that
fills in the middle region and glues the whole thing together.

The basement we are about to describe is filled with lots of a
certain kind of ensemble program. This kind of program, called a
Trellis, makes the connection between external data and internal
mirror-reality. The Trellis is, accordingly, a key player in the Mir-
ror World cast. It’s also a good example of ensemble programming
in general, and, I’ll argue, a highly significant gadget in itself. The
hulking problem with which the Trellis does battle on the Mirror
World’s behalf is a problem that the real world, too, will be con-
fronting directly and in person very soon.

The Problem

Floods of data are pounding down all around us in torrents. How will
we cope? What will we do with all this stuff? When the encroaching
electronification of the world pushes the downpour rate higher by a
thousand or a million times or more, what will we do then?

Concretely: I'm talking about realtime date processing. The sub-
ject in this chapter is fresh data straight from the sensor. We’d like to
analyze this fresh data in “realtime”—to achieve some understanding
of data values as they emerge.

Raw data pours into a Mirror World and gets refined by a data
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distillery in the basement. The processed, refined, one-hundred-
percent pure stuff gets stored upstairs in the attic, where it ferments
slowly into history. (In the next chapter we move upstairs.)

Trellis programs are the topic here: how they are put together,
how they work. But there’s an initial question that’s too important
to ignore. We need to take a brief trip outside into the deluge, to
establish what this stuff is and where it’s coming from.

What data?

Data-gathering instruments are generally electronic. They are sen-
sors in the field, dedicated to the non-stop, automatic gathering of
measurements; or they are full-blown infomachines, waiting for peo-
ple to sit down, log on and enter data by hand. Electronics are get-
ting cheaper all the time—a revelation? Maybe you’ve noticed? And
since humans have always been insatiable collectors of data (even if
they are rarely inspired to do anything with it once they’ve got it),
data-gathering instruments are proliferating, and the world’s fresh-
data supply is going through the roof.

Start with something simple. Cars are fitted with a handful of
sensors today; in a few years they’ll be fitted with lots more. The
sensors gather data about the state of your engine and the rest of
the apparatus. Today, this data is converted instantaneously into
small tactical adjustments, for example to keep the engine burning
efficiently. In the future, there will be enough of it to present a
complete, detailed picture of the status of the whole machine. Will
you need new brake linings on the front (at your present burn rate)
in three weeks, and a front-end realignment while you're at it, but
the tires are okay? Are you about to run into a tree? These are
interesting questions, and ample data will no doubt be on hand to
answer them—if we can interpret the data effectively.

Of course a car, even the macho Data-Car of the future, is a small
potatoes operation. Speaking of cars, traffic is supposed to double
over the next three decades, and in case you hadn’t noticed, it isn’t
moving all that well right now. In some areas, complete breakdown
is in sight. The New York Times mutters darkly about the need to
“stave off a paralysis on the nation’s highways.”!

No problem, you say, build some new roads. Nope, sorry. No



What data? 109

room, too expensive, too much arguing, too many lawsuits, too slow,
too smelly, too much of a nuisance. The hell with it. Want an
example? In the early seventies, Manhattan’s heavily used West Side
Highway collapsed. In the early nineties (August 1990, to be precise)
the Federal government politely requested of the City the return of
some eighty-one million dollars that were supposed to have helped
pay for a replacement. In almost twenty years, New York hadn’t
even managed to decide what kind of highway it wanted, much less
started (however timidly) to build anything.? As a society we are
growing a bit ornery as we age, aren’t we? Don’t bother us with
yer dang construction projects! Who the divil needs all that fuss and
dirt? We got enough dang roads already— Yeah, okay...

And so we have an important data-deluge impending. In many
areas, sensors are being installed to monitor traffic; virtually every
non-residential street in the country will be wired within a decade or
two. The goal is to sculpt traflic flow instead of allowing it to blunder
stupidly down the first blind alley.

An experiment in Los Angeles involves twenty-five cars with on-
board navigation systems and congested-traflic information feeds. It
deals with a fourteen-mile chunk of several parallel roadways. A
fascinating start, but fourteen miles won’t do it for us. We need end-
to-end trip-planning and congestion-avoidance. We need to fine-tune
urban traffic grids continuously (using traffic light programming, lane
redirection and so on) for decent flow; we need to deploy repair trucks
exactly where they’ll be closest to potential breakdowns (a problem
very much like deciding where to store tuples on a hypercomputer);
we need to target maintenance for maximum effect, and anticipate
catastrophes. This is a massive data-handling problem. We can lay
down the sensors; fine. But what does it all mean? How are we
supposed to respond? The data needs to be interpreted, quickly.

So much for roads. Many of the same issues recur, often on a
huge scale, in air traffic control. Rising volume; insufficient capacity;
plenty of sensors telling me exactly where everyone is—but so what?
How does that help me? What should 1 do right now?

A blizzard of scientific data descends from space. Earth-bound
experimental installations generate data of all sorts in ridiculous
quantities. “Data volumes generated by [whatever...] currently

overwhelm the available computational resources”® according to one
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federal study. “Data too cheap to meter” reads a news-item head-
line in Science, the leading weekly in the U.S. scientific community.?
“Learning to drink from a fire hose” reads another, about the same
phenomenon.’

Finance, commerce and economic activity in general create huge
quantities of data. The world is full of markets, of banks setting rates,
companies and governments issuing reports, international agencies
making pronouncements. The data is almost all available online;
you can subscribe to all sorts of private services, and wind up with
dozens of primitive non-integrated stand-alone systems, each focused
on one little pieces of the picture. But what’s really happening, and
what does it mean? Another massive data-handling problem.

In operating rooms and intensive care units, clinicians must inter-
pret and react to a complex, diverse collection of unstoppable data
streams. What do these multiple blood pressure, heart rate, temper-
ature, fluid inflow and outflow and many more numbers mean about
the real condition of the patient? Is he basically OK? Is he about to
die? What can we do to improve things? Which crises can we stave
off by acting now? (More or less the same questions we’d like to pose
about the economy...)

In the intensive care unit, unless the correct interpretation is
available fast, it’s useless. The WizzoTek Post Mortem Pontifica-
tor/Perfect Diagnoses While U Wait (Indefinitely) is a tough sell.
And technological trends are making this hard problem harder. They
increase the volume, diversity and accuracy of the data that can be
gathered, and the range of available responses to any given prob-
lem; they do nothing to lessen the urgency of the required response,
or to increase human data-processing capacity. Clinicians face the
obvious difficulties of processing and interpreting masses of data cor-
rectly. They also face the more subtle problem of “fixation” — the
natural human tendency to become biased towards an initial hypoth-
esis and to ignore or misinterpret data to the contrary. A massive
data-handling problem.

Aircraft control involves similar issues: masses of data, time-
critical decisions, a hard problem getting worse.

Offices are computerized; computers and their networks grow
steadily more central to discussion, development and decision mak-
ing. Computers are capable of noticing and remembering lots of
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details. Computers eavesdropping on their users (with the user’s
consent) are a major source of the data streams that feed Mirror
Worlds.

And what about sensors in powerplants? Factories? Trains, sub-
marines and aircraft carriers? Police-gathered and security data?
Weather data? Marketing data? Data about the far-flung status of
phone networks, water and power grids? World oil supplies?

We're talking a lot of stuff here.

§ In sum...

Look out your window. That just-faintly-visible pall blanketing the
landscape to the rooftops, congealing in the valleys and climbing
at some points up past the clouds is the worldwide info-smog. A
dense clinging fog of information, full of the numbers and images
that are emitted in crazy profusion by our burgeoning swarms of
info-gathering devices.

And for what? What do we do with all of this information?

Some of it is studied seriously, squeezed hard for whatever knowl-
edge it contains. Much of it is used in simple, primitive ways and then
thrown out. A great deal of it is simply ignored. The info-smog is
dense with numbers that have been glanced at, scanned superficially
or never examined at all.

The problem is, in part, that our current-generation computer
plant is simply not up to the task of digesting it all. There’s too
much of it. A state-of-the-art organization like NASA, which runs
a whole collection of fancy labs full of very fast computers, keeps
libraries-full of magtape that no computer has had time to analyze.
But today’s data-flow is a puny trickle compared to what these people
have in mind. In the late 90’s, for example, one project alone, the so-
called “earth observation system,” should be generating one trillion
characters of data a day.® That’s sort of a lot. Picture a third of a
billion printed pages—ten thousand massive encyclopaedias—seven
some-odd miles of shelf space; you get the idea. And they can’t keep
up with what they are getting now.

Parallel computers will be a major help in fixing this problem.
They’ll deliver the raw computing power that’s called for...
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§ The Basic Problem

But there’s a more fundamental factor at work here. Throughout
human history, mankind has been a lot better at gathering data
than at thinking about it.

There were annales long before there were annalistes. It’s much
easier to be a bureaucrat than a scientist. It’s easy to organize a
data-gathering project, and you can count on a rush of neo-Victorian
curatorial satisfaction as your collection grows. But analyzing data
requires at least a measure of topsight, and topsight is a rare com-
modity.

We need to get a grip on this tendency, though. There’s a great
deal at stake. On one level, we’d like traffic to run more smoothly,
patients to get better treatment, markets to function more effectively
and so on. In other words, we'd like to accomplish a grab-bag of
basically unrelated good things.

At a deeper and more general level, power requires control. The
power and complexity of our technical infrastructure is exploding,
and our control systems have not kept pace. When you double an
engine’s horsepower, you’d better improve your brakes, tires, suspen-
sion and steering as well. Interpreting this data instead of ignoring it
is our main chance of beefing up the brakes and the steering. With-
out adequate control systems, we face real danger. With them, we
can turn our new-found power to great advantage. We can put the
top down, step on the gas, enjoy life.

Instead of venting all this data into the info-smog, we could treat
our data sources as plunging waterfalls waiting to drive software
powerplants that convert data into knowledge. I'll refer to such in-
stallations as Realtime Knowledge Plants. Clearly a knowledge plant
will be built out of software. The kind of plant I will describe must
in fact be realized by a software ensemble, of a very particular kind.

Software Architectures (Architectures?)

A software architecture describes a program structure—how parts
can be assembled into a whole. The parts may be modules or entire
infomachines. The whole will be (obviously) a single infomachine or
an ensemble respectively. Software architecture comes into its own
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in the second case. Modules are mere passive sacks. How you mod-
ularize your program doesn’t effect its dynamics: One infomachine
means one actor, and that’s it. But the way you uncouple your pro-
gram into separate infomachines, or (looking at it the other way)
glue infomachines together into an ensemble, decisively affects the
behavior and dynamics of the whole.

I'm about to describe a software architecture for ensembles: a
recipe for gluing infomachines together into a certain kind of struc-
ture. The recipe tells you how to determine what kind of infoma-
chines and how many you need, and (the crucial datum) how exactly
the infomachines coordinate their activities. Ensembles that are built
according to this particular architecture can be (and are) built using
Linda. Programs in lots of other shapes can also be built using Linda.
Linda is a general-purpose tool; this architecture is a template for
one significant class of programs.

Now, back to a prime fixation:

When we talk about “architecture” that’s a term we’ve stolen,
obviously, from its rightful owners. Computer scientists do talk about
architecture a great deal, mainly “machine architecture” (how to
design computers), but occasionally “software architecture,” exactly
as I’'m doing here.

The term has been purloined for convenience, but the theft says
a lot. The shape and structure of the ensemble programs I'm about
to describe are almost palpable. Software architecture bears a deep
resemblance to the real thing. Not to “real architecture” in strictly
conventional terms, but to the Eiffel Tower (let’s say) as architecture.
Spare and stark: but possessed of the particular shape it’s got and not
some other one in part—not wholly but in significant part——because
of the sheer aesthetic power of that shape. There is a strong, vibrant
feedback loop between engineering utility and aesthetics, whether
you're discussing iron towers or software ensembles.

I’'m not making this up. David Billington, who is a Professor of
Civil Engineering at Princeton, writes about Gustave Eiffel beginning
to shape his structures “not only to carry loads but also to please
himself.” He writes, in discussing the “best structural engineers,” of
the “intimate connection between the quality of the technical work
and the quality of the visual result.”” In software there is no visual
result, but there is a visualizable one, if you turn on your imagination.
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Software architecture is no medium for untrammeled whimsy. It
imposes ironclad discipline on the designer: The point is to solve a
hard problem efficiently, not to make art. But good designers in any
medium make art despite themselves; whether they work in steel or
concrete or software or silicon, that’s precisely how you recognize
them. Some of the best art being produced today is “applied art”
in exactly these tough media—because art, after all, requires dis-
cipline. You can’t push if nothing is pushing back. The popular
belief that you get art by pushing against society’s assumptions and
expectations used to make sense but is now quaintly obsolete, be-
cause after all, these expectations and assumptions—about content
and form—collapsed years ago. You can offend people, sure, but you
can’t surprise them. (Attention Connoisseurs: If you fling yourself in
a screaming massive assault at a supposedly locked door that turns
out, in the event, to be wide open, what you get is called “slapstick,”
not “art.”) Technology, on the other hand, still pushes back.

Damned hard, too. You’d better believe it.

The Design of Real Time Knowledge Plants

Here is a different kind of ensemble—not the dynamic, rowdy bunch
of infomachines zigging in and out that we’ve considered thus far. A
far more disciplined group.

Consider an upward-stretching network of infomachines tethered
together, rung-upon-rung (billowing slightly in the breeze?) No two
rungs need have exactly the same number of machines. But often,
many rungs will have roughly the same number, giving us a kind
of upright rectangle populated by running programs. There might
be ten rungs in all or hundreds or thousands, and the average rung
might have anywhere from a handful to hundreds of members. This
architecture spans a huge range of shapes and sizes—and when we
talk about thousands of rungs at hundreds of elements per, we are
talking about something immense.

So, these things are “tethered together”—meaning? Those lines
are lines of communication. Fach member of the Trellis is tethered
to some lower-down machines and to some higher-ups (except for
the bottom and top rungs, of course). A machine deals only with the
machines to which it is tethered. So far as it’s concerned, the rest
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Figure 5.1: The Trellis.
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don’t exist. It deals with inferiors in a certain way and superiors in a
certain other way, and that’s it. Those inferiors and superiors define
its universe.

Information rushes upward through the network, and the ma-
chines on each rung respond to it on their own terms. The higher
you rank, the more general your view of the world. Infomachines at
the bottom focus all their energy on particular, narrow streams of
data. Are these numbers good numbers—which ones are noise and
garbage, which are decent data? On a slightly higher rung: are these
numbers trending up or down? Stable or unstable? As we move
upward through the Trellis, each rung concentrates on wider, bigger
problems. Putting this trend and that one together, what do I get?
Suppose (moving higher) I factor in this stuff and that stuff too?

To put it another way, data values are forwarded from the bottom
rungs upward for more elaborate analysis of their information content
and for combination with signals from other types of receptors... (I’'lIl
return to this phrase.)

Each machine focuses on one piece of the problem—on answering
a single question about the thing out there (the traffic network, the
patient, the financial market) that is being monitored. Each ma-
chine’s entire and continuous effort is thrown into answering its one
question. You can query a machine at any time—what’s the cur-
rent best answer to your particular question?—and it will produce
an up-to-the-second response.

Raw data pours in at the bottom. The machines at every level
study the work of their inferiors. Based on what their inferiors are
doing, they develop a new, higher-level, bigger-picture view of what is
going on. The top-most level produces big-picture information: Part
X seems to be malfunctioning because of a problem in part Y. Traffic
flow in the north-west sector is normel. The patient is developing
congestive heart failure. In short, raw data flows in at the bottom;
the big picture comes into focus on top.

Thus a knowledge plant is precisely a machine for generating
topsight.

So data flows upward through the ensemble; there’s also a reverse,
downward flow of what you might call “anti-data”—inquiries about
what’s going on. A high-ranking element might attempt to generate
a new value, only to discover that it’s missing some key datum from
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an inferior. It sends a query downward. To wit, what the hell is
going on? The inferior tries to come up with some new data. But
it may fail, for the same reason the superior did: One of its own
key inferiors may have failed to report. So the query gets bucked
downwards another level. It may finally reach rock bottom, where
there are no inferiors to needle. If a bottom-level machine is missing
data, it can’t pass a query downward, it can only pass one outward:
It can ask the outside world directly for information. The system
might print a message on a computer screen ( When did you last give
this guy aspirin?), or nudge an external sensor.

The fact that data flows up and anti-data flows downwards means
that, in a certain sense, a Trellis can run either either forward or
backwards, or both at the same time. There’s more to be said about
this, further on.

The Noisiest Ensemble

The Trellis is a lion-tamirg act. It’s also the noisiest, most intense
software operation we will describe—

A pounding rush of data thunders into the machine; to sight down
a Trellis from the top is to stand on the upper roadway seeing, hearing
and feeling the spillway at the base of a concrete dam, billowing mist.
This outpouring of raw numbers is tamed and transformed, as it flows
upward, into the nuanced silence of a carpeted room. This patient
may be developing hypovolemia. Watch closely.

(Why these far-flung images? Because whatever helps you to
imagine software helps you to understand it. And this imagery con-
veys something significant: It tells you where Trellises live inside the
mind—)

Why do it this way?

What’s the point of all this? What does the Trellis have that other
architectures lack?
Point one: The Trellis is an ensemble. It didn’t have to be; in
principle, it might have been a single program (with lots of modules).
But for this problem, the ensemble is vital. First, consider speed.
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If these knowledge plants are going to operate in “real time,” they
must respond quickly. To do so, they must assimilate, analyze and
interpret data quickly. We have a fairly stringent definition for what
this means. The Trellis deals with streams of values: a stream of
blood pressure value, market transaction values, air pressure values
or whatever. There are a number of possible definitions for when
a Trellis is running “fast enough.” We’ll use the following one: A
Trellis is running fast enough if each new data value is fully analyzed
before the next one in its stream shows up. Suppose a bottom-rung
element is wired to a sensor that produces new readings once per
second. The Trellis program has to run fast enough so that this
piece of data has made it through every rung, all they way to the
top, in one second. During this same period, of course, lots of other
data values will be percolating upwards through the structure; we
need to make the same guarantee to every data stream. If there’s
lots of data or many rungs or both, this may be a stiff requirement
to meet.

But luckily we’re dealing with an ensemble, and ensembles can
do many things at once. Each member of the Trellis is a separate
infomachine. They can all run simultaneously. If a single infomachine
(running on a single computer) were trying to do the whole job, it
might have to either implausibly or impossibly fast. Focusing lots of
computers on this problem is the way to achieve the speed we need.

Now, consider clarity: this is an obvious case for uncoupling.
The Trellis as a whole has enormous, wide-ranging responsibilities.
Its low-level machines worry about numbers—throwing out garbage,
finding trends; to do so they might use (do use in our prototypes)
mathematical techniques borrowed from signal processing. The high-
lying machines may be radically different. They might reply on artifi-
cial intelligence techniques to simulate human-like expertise. Again,
our running prototypes do work this way. Forcing all these complex
responsibilities into a single script would be crazy. The ensemble is
a radically clearer approach.

These arguments are decisive, but they have to do with ensembles
generally, not (in particular) with Trellis-shaped ensembles. To deal
with the Trellis itself, we need to introduce the last of our big-three
clarity principles.
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Figure 5.2: Espalier: A tree trained on a trellis.
Espalier

Take a complex, powerful, far-flung structure; train it on a regular
grid. Bend (but don’t break) it to the rules of an external framework.
What you have is still a complex, far-lung structure, but now you
can find your way around it.

Espalier is a vital software-clarity principle. We've already met
it, surreptitiously. The Tuplesphere is a hugely complex jumble of
stuff, but it’s easy to conceive—and in a fairly concrete, detailed way
at that—Dbecause the whole thing is espaliered onto the simple and
regular Linda framework. Everything in there has been added in
the same way, can be read in the same way, can be removed in the
same way. Without an underlying simple framework of some sort,
the Tuplesphere would make no sense even as a thought-experiment.

Like our other two principles, espalier isn’t merely a software
principle. It is, in one sense, the most widespread and profoundly
important of our clarity devices.

It has manifestations in nature, like the other two. Think of a
crystal —a neat lattice-work of randomly quivering particles.
It is a competitor of recursive simplicity, in some ways. An
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ordinary address uses recursive simplicity. I send a letter to (reading
backwards) the U.S.A., the state of Connecticut, the town of New
Haven, Prospect Street, number 51. At each stage I answer the same
question (where?) on a smaller scale. But in principle, I might have
addressed the same letter to 41°, 15’ north latitude, 72°, 50’ west
longitude. No recursive levels: no resolution of a single problem re-
peatedly. Rather, the imposition of a single uniform, system-wide
pattern.

But the most important manifestation of this technique is else-
where. Espalier is a defining principle of art.

Good art consists almost by definition of inspiration squeezed
into an external framework that (in some ways) confines and limits
it-——but in return allows us to find our way around inside it, to fol-
low and comprehend it. Espalier imparts strength, energy and mus-
cle tone. Espalier is that “wonderful opposition to wrench against
and revise with” that Robert Lowell champions, defending meter to
William Carlos Williams.® The clarity and the tension of wild ideas
espaliered onto neat frameworks practically define we call great art.
Rhymed or metered verse, and the standard forms of classical mu-
sic, are espalier’s most striking achievements. (So all right, this has
nothing to do with software...)

Tom Wolfe and Al Bloom are Dead Wrong to suppose (respec-
tively) that there is no good abstract expressionist painting or rock
music. As some ancient proverb presumably notes, it’s hard not to
lop off a few flowers, if you weed your garden with a machete. But
even a died-in-the-wool admirer of fifties slash-and-burn de Kooning
or sixties Beatles (such as, say, your author) has trouble denying
that the greatest paintings accept the external discipline of depict-
ing something and, obviously, the greatest musical compositions are
fugues, variations and classical sonata movements; not free fantasias.

Espalier is a principle of applied art as well. Just one example:
Midtown Manhattan is a complicated place, but wherever you are,
you know where you stand. The city was organized early in the
nineteenth century into a regular grid of rectangular blocks. Anyone
can figure out how to get from Thirty-second Street and Seventh
Avenue to Ninety-first and Fifth (at least in theory). Espalier is a
reasonable way to organize a city. But more than that: Throughout
this century, Manhattan’s most widely-remarked attribute is usually
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called tension (if you don’t like it) or energy, intensity (if you do).
My hypothesis: The Triumph of Espalier represented in Manhattan’s
street plan feeds this triumph of ferocious pizzazz. Squeeze a huge,
dense, complicated, overflowing city into a square unrelenting corset-
grid and the very buildings scream (if you are attuned to this sort of
thing) and the energy flows. No wonder some people can’t stand it.

Language itself is built on principles of espalier. Learning a lan-
guage is do-able insofar as new words follow, by and large, the old
patterns. People seem to reach for an espaliered life—a monastic
rule, political autocracy, street gang—in times of disorder; naturally
enough.

Back to software.

In the Trellis structure, our dependence on espalier becomes ex-
plicit. With all this stuff going on at once—all those data streams
rushing in, all those analyses in progress—I’d have mere turbid chaos
without a simple organizing scheme to find my way around.

Espalier allows me to make sense of what’s going on. Inside the
Trellis, an infomachine’s connections to other machines are always
the same: Each element must be prepared to receive data from its
inferiors, and queries from its superiors. So long as it does this
properly, it can do whatever weird things it wants the rest of the
time. Connections between the infomachines in the Trellis are like
modular phone jacks. 1 can buy all sorts of strange phones with
many combinations of funny features, and still plug them into the
standard wall outlet. The connection between the phone network
and each telephone is simple and uniform. If it weren’t—if each new
phone required its own kind of connection—it would be impossible to
support any real variety of telephones. Likewise, Trellis components.

A customer walks up to a Trellis machine: We need to explain
to him what it can do (and importantly, what it can’t). The Trellis
framework is a way to show him. We don’t need to tell people “the
program can perform the following twenty-three thousand kinds of
analysis.” We can show them a picture whose structure mirrors their
own concept of the problem, their own mental picture: a low level, a
medium level, a high level. The lines in the picture show you what
depends on what. Again, they mirror your thinking: Sure, diagnosis
of an engine problem clearly has something to do with the state of
the exhaust gasses, but nothing to do with how clean the windshield
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is. Once you’ve learned the rules, you don’t have to relearn them for
every segment of the picture.

The regular framework also means that you can work on one piece
of the structure without having to understand the whole thing. In
the espaliered Trellis ensemble, an infomachine needs to know who
its inferiors are, who its superiors are, and that’s all. In building
(or changing) a machine, I don’t need to worry about the ensemble
as a whole (which might be enormous); I can restrict my attention
to my own neighborhood. This is crucial when we talk about big
Trellises built by a bunch of separate experts. In fact, even fairly
small Trellises may be constructed by many hands. For example:

The Intensive Care Unit Prototype

This is a Trellis program of 150 some-odd elements. It was built by
Mike Factor (then a graduate student at Yale, now at IBM Haifa,
still the undisputed world Trellis-building champ). He collaborated
with researchers from the Yale Medical School, notably Doctors Perry
Miller and Dean Sittig.

The medical side of the team had medical goals, of course. They
looked at the modern intensive care unit and saw a massive data
management problem. I outlined this problem earlier. They chose
the so-called “hemodynamic monitoring” problem to focus on, as
it occurs in the intensive care units where patients recuperate from
cardiac surgery.

The details aren’t germane here, but I'll sketch out the structure
of this program, in the interests of a concrete example.

The hemodynamic monitor is still a research vehicle. It contin-
ues to grow. When it’s finished, it will be slotted into place for a
clinical trial. Don’t look for this kind of software gadgetry at your
local hospital any time soon. The medical establishment is conser-
vative (understandably), and it takes awhile for systems like this to
propagate. And there is still work to be done before the prototype
itself is complete. But the eventual unconditional victory of this sort
of technology (whether or not in Trellis guise) is guaranteed. Our
medical collaborators differ quite a lot about when, not at all about
whether it will happen.

Figure 5.3 shows an excerpt from the structure of this program.
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(Figure 5.4 shows an entire ICU Trellis, for concreteness; the details
aren’t important. The program continues to evolve, by the way, and
the Trellis in figure 5.4 is already not quite current.) At the bottom
level, elements gather data from monitoring equipment at the pa-
tient’s bedside. The element labelled Raw Bp, for example, receives
blood pressure values. At higher rungs, elements like BP (blood
pressure) calculate “symbolic values” for the blood pressure (e.g.,
“high” vs. a number); and they detect trends in the values they’re
following. At the next-higher rung, for example the level containing
the SVR (systemic vascular resistance) element, small collections of
lower-level values start getting correlated and integrated. Further
up, for example on the rung where Vasoconstriction occurs, elements
start looking for various “clinical scenes” that signal the presence of
complete diagnoses—for example Tamponade, on the top level. (The
“clinical scenes” idea was introduced by Dr. Aaron Cohen, then at
the Yale Medical Informatics Program.)

Other Trellis problems we’ve looked at in some detail (with col-
laborators from the appropriate areas) include weather monitoring,
the management of computer networks and the detection of insider
trading on stock markets. All this is aside from the Trellis’s central
role in Mirror Worlds, which I’ll take up in a couple of chapters.

There’s more to it, of course...

§ Probes and Multi-Trellises

We need to get information into and out of a Trellis program. We
do so by means of “probes.” A probe is a conduit for data. Using a
probe, you can pump data into or out of any element in the Trellis.
You connect one end of the probe to a data source or receiver, and
touch the other end to a Trellis element. (Sparks fly...)

A probe has two buttons, read and write. If you hit read, the
current value of the element you’re touching jumps out of the Trellis
into your data-receptacle. If you hit write, motion is reversed: a new
value flows over the probe into the Trellis, resetting some element’s
current value.

Probes represent the (only) connection between the outside world
and the Trellis. Each bottom-rung Trellis element is wired, via probe,
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to the appropriate sensor or data terminal. (“Wired” metaphorically.
Probes are realized by software, not actual wires. But a software
probe behaves in essence just like a hardware wire.)

Probes are also useful for stringing lots of Trellises together into
a multi-Trellis ensemble.

There are several reasons to build such an ensemble. For one,
you might want to attach custom-built “personal” Trellises to the
main public one. You have your own way of analyzing data, and
you’d like to feed your data-analysis approach off a public Trellis.
You may want to tap into the public Trellis at many levels. Some
of your routines may need raw data; others may build on top of the
partially-analyzed data that emerges from mid-level elements; others
may superimpose new, super-general levels above the topmost rung
of the public Trellis. You can use probes to tap into the public Trellis
at any point you like.

There are other reasons to build multi-Trellis ensembles, having
to do with frequency.

§ Frequency

A Trellis, it turns out, is a lot like a crystal (or at any rate, it’s more
like a crystal than some other software structures are...). When you
turn it om, it vibrates at a certain frequency.

Meaning? In concept, each Trellis element is an infomachine. All
these infomachines run separately and simultaneously.

In practice, we do things somewhat differently. We create a group
of “worker” infomachines, just like the workers we described in the
last chapter. We parcel out Trellis elements to these workers. Each
worker is responsible for embodying the Trellis elements it’s been
handed. Thus the amount of parallelism in our ensemble—the num-
ber of things that are actually going on at once—is decided not by
the size of the Trellis, but by the number of workers. If we have
a thousand-element Trellis and a hundred workers, cach worker will
probably be handed around ten Trellis elements. When we turn the
whole thing on, we get one hundred activities going on at once.

Workers collaborate to make the whole thing work predictably.
Predictability is crucial: We must be able to guarantee that the
Trellis fully digests each data value before the next value shows up.
This is what our “realtime” requirement is all about. We need to be
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able to make assertions like “given this Trellis and those data streams,
you need at least eighteen workers to meet your requirement.” As
before, our ensemble won'’t care how may workers it’s running with
on any particular run. If it’s too slow with seventeen workers, we
add an eighteenth, and the thing runs faster. Nothing else changes.

But: How will we make this kind of assertion? How can we tell
exactly how many workers we need?

Imagine that each Trellis element generates a kind of stock-ticker.
Whenever a Trellis element gets pinged by a new upward-flowing
value, it performs its standard computation and then prints a new
number on its ticker. The new number reflects this element’s current,
up-to-the-minute view of the world. It might be the same as the
previous number on the ticker—the state of things might not be
changing—but whatever it is, it’s up to date.

Suppose we feed a single value to each bottom-rung element. In
response, they each print a new number on their tickers. Reacting
to the new data represented by these new numbers, elements in the
next rung up print new numbers, and so on upwards through the
whole structure.

Now: We run the Trellis in a series of sweeps. During the first
sweep, each machine gets a chance to print one number on its ticker.
During the second, each prints a second number, and so on. No
machine prints a second number until every tape has a first number
recorded.

To achieve this kind of behavior, we instruct each worker to run
through its list of Trellis elements, sticking with each one just long
enough to produce a single ticker entry. Each worker (in other words)
is responsible for a bunch of tickers: It advances each of its tickers by
one number. When it’s done, it waits until all the rest have finished.
Then, all workers proceed together into the next sweep.

Hence, the “frequency” of a Trellis. Given a Trellis and a
squadron of workers, we can figure out how long (at worst) it will
take the slowest worker to advance all of its tickers. This is exactly
the amount of time that the squadron as o whole will require to ex-
ecute a sweep (when the slowest guy is finished, all the rest will also
be done). The frequency of a Trellis equals the number of sweeps per
sccond. In a “fast” Trellis, sweeps are short; the frequency is high;
the tickers spew out numbers quickly. In a slow Trellis, the opposite.
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So what? This scheme allows us to figure out how many workers
we need in order to meet our realtime requirements. To restate
these requirements with our sweep model in mind: A Trellis must be
at least as fast as its fastest data source. “Fast” means frequency.
So long as a Trellis beats faster than its fastest data source, we’re
guaranteed that each new value will be fully digested when the next
arrives. We can say exactly what the frequency is for a given Trellis
and a given number of workers; we use a mathematical model to
figure this out. If the frequency is too low, we add workers and check
again.

So, a Trellis has a frequency. And one reason to build multi-
Trellis ensembles is to accommodate some fast Trellises and some
slow ones. There may be a handful of ultra-fast data streams, and
many slower ones. Instead of running the whole Trellis fast, it might
be better to uncouple. We build a high-frequency Trellis for the ultra-
fast streams, and a “regular” Trellis for the rest. Top-level machines
in the fast Trellis might pump data straight into the bottom of the
slow Trellis: We string probes from the top of one to the bottom of
the other. (Nowadays the ICU Trellis is built this way, as it happens.)

& Dashboards

Any running Trellis has a natural companion picture, showing the
elements and the way they're arranged. We can treat this picture
as the Trellis’s dashboard. Each element uses its own part of the
picture as a display case for its current value.

Designing this dashboard is a research problem in its own right.
Any decent-sized Trellis program is apt to know too much for its own
good. This is certainly true of our intensive care unit prototype—
which is pint-sized, when you cousider the possibilities (as I'll do
below). A Trellis must be able to draw your attention to what’s
important, to what may need immediate attention. If it buries you
under all the verbose details, it’s a failure, no matter how smart it
may be in the abstract.

The current Trellis dashboard looks like a receding plane. Every
Trellis element has a corresponding tile or paving stone. When the
condition tracked by some element is normal or uninteresting, its tile



Figure 5.5: The Trellis dashboard: current model. The display is still evolving. The original
is in color (of course); flat-lying tiles are blue. They turn yellow-orange-red as they tip upright.
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lies flat. If conditions start looking noteworthy, the tile tips upward
toward the viewer, turning more-alarming colors as it goes. (This
display was built by Craig Kolb, who is a research programmer in
the Yale Math Department.)

Implications

No decent research project stops short at any pre-conceived bound-
aries. The Trellis (like the tuple space) has implications beyond its
original charter. I'll consider three below. In the course of doing
so, I'll arrive at an alternate, arguably simpler, description of this
architecture’s basic mission.

Nerves

Data goes up, anti-data comes down. “Anti-data,” we’ve said, means
“inquiries.” But it might also mean commands.

In other words, we might imagine a Trellis that is wired at the
bottom (using ordinary probes) to sensors and also to actuators.
Data flow upward from the sensors, seeking the first rung where the
elements know how to react—how to change things in the real world
in response to this data. Instructions flow downward to the actua-
tors: either directly or (in some cases) through a descending series of
elements that decide which actuator should receive this command,
or how exactly a command should be carried out.

This kind of Trellis might monitor but also control a complex ex-
ternal system. It might reprogram traffic lights and dispatch emer-
gency vehicles, retarget, zero or recalibrate experimental equipment,
fine-tune the steering or engine or support services on a boat or a
plane—

It’s natural to envision Trellises in which simple data are handled
quickly by low-level elements. Complex or ambiguous reports move
higher. They need more processing and refinement and topsight-
extraction before they can be translated into action. And after
all, adjustments that need to be made fast and continuously aren’t
the sort that require careful analysis (we hope). Large, strate-
gic adjustments-—of which high-level Trellis elements would take
charge -don’t crop up as often, and don’t usually necd to be ac-
complished instantaneously.
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§ The New Look

One way to describe a Trellis, I mentioned, was in terms of signals
“being transmitted to higher centers for more elaborate analysis of
their information content and for combination with signals from other
types of receptors.” The quotation comes from a book called Medi-
cal Physiology; it describes the human nervous system: “The spinal
circuits involve very little delay and ensure rapid responses when
speed is essential... While this immediate response is occurring, the
same signals are being transmitted to higher centers...”® The sensor-
actuator Trellis and the human sensory-motor system revolve around
similar kinds of hierarchies: immediate “low-level,” local responses
at the bottom; more elaborate, global responses at higher levels.

Now, the Trellis starts looking a bit like the nervous system.
In a Trellis-style “nervous system,” a dense lattice-work stretches
downward from the “brain centers” to the outside world beneath.
Signals snap up and down in the lower regions in response to the
normal ebb and flow of events. The odd unusual signal climbs higher;
dramatic changes outside send floods of signals flowing upward and
new commands pouring down.

We now understand the Trellis’s mission is simpler terms: to
complete a factory, traffic network or power plant by equipping it
with a synthetic nervous system. To take a dumb lumbering pile
of stuff and add the crucial ingredient that turns the whole thing
into a functioning organism, “alive” metaphorically in the sense of
being able to cope; able to react and not merely be adjusted; able to
respond to the changing shape of the outside world. Or: to supply
the recovering patient (who already has a nervous system) with an-
other, supplemental one, one that “understands” instead of merely
experiencing his disease.

§ Found Robots

We'’re accustomed (getting accustomed, anyway) to thinking of
robots as self-contained humanoids, filling in for humans in tedious
or physically-demanding jobs. Robots weld, paint, fetch computer
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tapes, explore contaminated areas and so forth. This intuitive feel
for the subject is echoed in the research community, where robotics
is a field that focuses on movement, simulated vision and the manip-
ulation of physical objects.

On the other hand: Why can’t the building you work in be a
robot? Or the car you drive? One way to understand what we’re
actually doing when we install sensor-actuator Trellises in factories
and so on is “turning this thing into a robot.” The intent is to trans-
plant not the physical aspect of humans or animals but an abstract
version of the nervous system and, in some primitive low-level sense,
the brain.

This is a matter of perspective as much as (or more than) of soft-
ware technology. Cars have lots of electronic control circuits already,
and they will get a lot more; but the circuits aren’t integrated. They
don’t come together into a single electronic version of the whole car.
If your car is a robot, on the other hand, it ought to know how to do
things as a unit, and we should be able to interact and “converse”
with it as an integrated whole. Consider the office building-as-robot.
It’s got sensors and data feeds of all sorts powering a fairly simple
Trellis. The building fine-tunes its own heating and air condition-
ing system, as all reasonably bright buildings already do today. It
watches current stockpiles (and maybe the price of oil), and orders
more as needed. It knows who is where: If you need to move people
around, you ask the building. “These three guys need to move from
this group to that group. Suggest a plan.” “I need to put four com-
puters in there instead of three. Network implications?” If you want
to know who is in what office, what’s going on in the fourth-floor
seminar room at the moment, which computers are up—you ask the
building. There are no fancy software tricks here. There is merely a
simple idea: A “robot building” can be put in charge of tracking its
own status as a whole.

Factories could be robots; so could powerplants, airplanes, sub-
way systems... A “found robot” is aware of its current status (from
the details up through the big picture) and capable of reacting to
it. Any set of physical machines, plus a synthetic nervous system—a
Trellis that touches them all-—equals a found robot. And these found
robots could be just as significant in the long term as the “humanoid”
ones.
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§ By way of comparison...

Some readers might be thinking “Ah ha, we are now talking about
neural networks.” Nope, sorry. The 'Trellis has nothing to do with
this particular hot research topic. Neural network research generally
focuses on exquisitely abstract simulations of the brain proper, not
of the brain-to-nerves-to-muscle hierarchy.

But the sensor-actuator Trellis does broadly resemble another re-
search project. One of the most fascinating of all ongoing artificial
intelligence projects is being carried out by Rodney Brooks at (of
all places) MIT. He and his group have built a collection of “in-
sect robots” that are capable of getting around a room—avoiding
walls, clambering over obstacles—in surprisingly realistic, insect-like
fashion. They’ve done it by abandoning the quest for simulated cog-
nition that some “traditional” robots pursue. Instead of attempting
to think things over, these robots wing it using simple, seat-of-the-
pants reactions to the conditions they encounter. Thus the goal is, in
a sense, to simulate instinct instead of cognition. Simulating cogni-
tion is tough, because who the hell knows what cognition is anyway?
Simulating instinct is easier, and turns out to be surprisingly reward-
ing. You can go a long way on instinct.

The bottom levels of the sensor-actuator Trellis resemble these
“instinct simulators” in a sense. (Higher-rung elements attempt to
ferret out the big picture, as always.)

Turingware

I introduced software-human mixed marriage ensembles in the last
chapter. Here it makes sense to push things a step further—to ex-
plore these collaborations in a formal context, and see where we get.

Specifically: It’s easy to imagine a Trellis that includes human
elements alongside the software ones.

The great mathematician Alan Turing devised what is now called
the “Turing test”; Turing declared himself willing to concede intel-
ligence to any machine that passed. Basically, the test hinges on
posing a series of written questions to a hidden human and a hidden
computer. If a human observer is unable to figure out which answers
come from the human and which from the computer, the computer
passes. (Or the human fails?)
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In our group, we've used the term “Turingware” to designate
mixed marriage ensembles; particularly, ones in which ensemble
members don’t know or care whether the other members they deal
with are software or human.

The Trellis architecture is a good example of where and why this
might be useful.

In a sensor-actuator Trellis, lower rungs act “instinctively.”
Higher levels look for the big picture; but in some areas, people
are rather better at this than software. In these areas, we could use
people to realize some of the higher-rung elements. Every element
(whether software or human) has the same assignment: to respond
to information from below, and to queries or instructions from above.
Software-generated and human-generated information is passed to
each element over the same channels, in the same envelopes. Human
“elements” receive data from inferior elements, inquiries or instruc-
tions from superiors, in the usual way. They respond to read or write
probes. Their inferiors (or superiors, I suppose) might be human or
software—but who cares which? (Unless you want to get touchy
about this thing. A touchy element has blown its cover, in any case.
It is pretty likely to be human.)

Thus you might imagine a submarine, for example, being oper-
ated by a piece of Turingware, a mixed human-software Trellis. The
routine fine-tuning necessary to keep the thing on course and the
machinery running efficiently might be purely a low-level software
matter. If a machine starts to malfunction, higher-level software
elements might look the problem over. They might issue actuator-
commands themselves, or they might pass their problem diagnoses
upward for integration with other information sources. At some level
of the hierarchy, human elements start to intermingle with software
ones. For example, software elements might mull things over and
decide that it would be a good idea to fire a torpedo; other software
elements might carry out the actual firing. But the Trellis element
that makes the “fire torpedo” decision itself should probably be a
person.

§ Concretely

What does this mean in concrete terms? When a human is act-
ing as a Trellis element, a computer terminal will be his window to
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Figure 5.6: A Turingware Trellis: software and humans intermingle.
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the rest of the ensemble. Data will percolate up from below in the
form of messages on his screen: Engine room reports that X pres-
sure is trending above 4000 Y’s. Response? If this human “element”
changes his own viewpoint as a consequence, he types a response, and
the response is forwarded automatically to higher-ups. Questions or
instructions flow downward in the same way. This particular element
doesn’t know or care whether the engine room report he just saw was
human- or software-generated. Nor does he care what kind of ele-
ments see his reports. If his response takes the form of an ordinary
English sentence, it may (of course) be hard for a software element to
understand it. But if he responds in a stylized way (filling in a tem-
plate displayed on his screen, for example), people or software might
be equally capable of accepting and dealing with the new datum.

(Once you’ve added human elements, frequency is out the door.
Mixed-mode Trellises don’t hum: We can’t guarantee that humans
will perform within strictly predictable limits. But we can always
build a multi-Trellis. A fast, predictable, low-level software-only
Trellis might be patched into a higher-level mixed ensemble.)

What have we gained? People and software are now working to-
gether to impersonate an ideal model of the machine’s nervous sys-
tem. Their hierarchy—Ilines of communication, chains of command—
precisely reflect the problem they are trying to solve. We have neatly
dissected-out those sub-problems software can manage, and handed
them to software. (One of these sub-problems is providing the com-
mon framework into which every element plugs.)

The mixed Trellis makes an opaque system transparent. In static
terms: You can see at a glance how responsibilities are divided and
where decisions are made. In dynamic terms: By glancing at the
dashboard, you determine the current status of every element.

A transparent system is open to outsiders. (At any rate, to out-
siders who know where to look.) If a technical expert needs to diag-
nose a submarine problem from a thousand miles away, he can look at
the dashboard and tap into a detailed information-stream by affixing
probes. In fact he can become an element of the Trellis temporarily, if
need be. Likewise, an admiral or random bigshot who is monitoring
and coordinating operations can watch the Trellis diagram, attach
probes as he likes, incorporate himself into the structure if need be.
For that matter, he can use probes to tie all of his Trellises together,
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and display a multi-Trellis dashboard that captures the state of the
entire fleet. Relaxing with a drink on the official Admiralty Sofa,
he can watch the large-screen computer display on the other side of
his room and, with remote-control laser-mouse in hand, inspect his
entire operation from highest pinnacle of rarefied topsight down to
the nitty-grittiest detail.

Forget about submarines: The point is, of course, a general one.
Complex operations are controlled by complex logic. Some of this
logic is automated in software and some will remain, for the foresee-
able future, in human hands. But we can knit the whole thing into
a harmonious whole anyway.

§ In Sum:

The Japanese revolutionized car production by embedding workers,
factories, suppliers, truckers, dealers in a tightly run ensemble where
everything shows up just when you need it.!° Nothing (not supplies,
not information, not advice) collects in stagnant pools. Everything
flows. Customers are coupled to dealers, dealers to factories, factories
to suppliers... The Turingware Trellis is something similar but much
more “intimate”—people and software can work far more closely,
after all, than people and stamping presses. The Trellis allows us
to restructure a piece of sprawling random chaos into a tight-knit
crystalline whole, where the parts aren’t rigidly tied together but
are coupled and in synch. A whole corporation might in fact be
structured this way (it would be an interesting experiment...).

True Bigness

Bigness is fascinating, where ensembles are concerned. How big could
a mega-Trellis get? How far can we push these structures before they
run out of conceptual steam? How many elements might you (could
you ever realistically) want to tie together in this way?

When you're tying separate Trellises together with probes, there
seems to be no practical limit. The whole-fleet multi-Trellis is im-
mense. And suppose it’s merely one element of the whole-armed-
forces multi-mega-Trellis, and so on—
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It’s interesting to ask, too, how large an individual Trellis might
grow.

The answer: pretty large. If you're monitoring a traffic network,
weather or a complex experimental set-up you might easily want
tens of thousands of elements; very possibly more. They won’t all
be distinct in design, of course. You might replicate the same ba-
sic, low-level structure thousands of times if you’'re monitoring (say)
thousands of separate regions in a transport Trellis. But the net re-
sult is still many thousands of elements. Will it all hang together?
Will it be possible to operate such a huge ensemble? Our largest
prototype is a drop in the bucket next to these huge structures. But
the evidence suggests that we can build mega-Trellises. We’ve built
and operated a “synthetic’ Trellis of more than twenty thousand el-
ements. Synthetic insofar as it didn’t do anything. It was an empty
shell——a mere framework; while the program executed, the individ-
ual Trellis elements sat around twiddling their thumbs or napping as
the spirit moved. But the experiments are suggestive. (A conclusive
demonstration awaits experience with a real mega-Trellis.)

Mega-Trellis contemplation turns the discussion back to an earlier
topic. We mentioned that, in a certain sense, a Trellis can run either
forward or backwards, or both at the same time.

If we walk up to some Trellis and rip out all its information
feeds, we can still ask it questions— “Is the patient developing con-
gestive heart failure? Does all traffic need to be rerouted off the
XY Z Bridge? Shall we mobilize the eighty-second Airborne?” One
possible response is “don’t ask me, Bozo,” but in fact, even a discon-
nected Trellis can do better than that. It can take your query and
disassemble it into primitive components, by merely sending inquiries
downward in the usual way. The congestive heart failure element sees
that it has no data and passes a query to the relevant inferiors. They
pass it downwards in turn. Eventually the system can respond: You
want information about the following high-level condition? Then you
must provide the following low-level data values. If the user complies,
the new data courses upward through the system and the high-level
question eventually gets answered.

Here the system ran backwards, in a sense. Action was triggered
by the arrival of a high-level inquiry, not a low-level datum. The
query took root and branched downwards, seeking information. In
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computer science terminology, the Trellis became “demand-driven”
instead of “data-driven.”

Now, plug everything back in. A mega-Trellis is particularly likely
to run forwards and backwards at the same time (although any Trellis
is capable of this trick in principle).

A big Trellis is especially apt to have out-of-the-way, high-lying
elements that rarely see enough data to jolt them into action one
way or another. Such elements are designed to keep track of the
esoteric, the peripheral or the bizarre. A driving force behind the
whole mega-Trellis effort is the urge to burn up computing power, to
throw it in bulk against hard problems. In the near future, after all,
we will wish to be as enterprising with computers as a frugal fifties
housewife with Ritz Crackers. These dandy little items are cheap, so
why not use lots? If some Trellis element fires off every five months
(or every five decades), but it tells us something interesting when it
does, that’s fine. If it spends ninety-nine point nine nine nine percent
of its time doing nothing, who cares? Give it a raise.

So: While data pour into the mega-Trellis and course upward
through the main shopping districts, users might walk up to the
dashboard and lodge high-level queries about unusual or highly-
specialized topics. These questions trigger a data-seeking downwards
cascade. The same Trellis is running forwards and backwards simul-
taneously.

In Sum

Are we engineering knowledge plants here, or nervous systems? In
either case, it looks promising.
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Chapter 6

Simple Mind Machines

We plunge now into the deepest, trickiest, most treacherous and
remarkable undersea cavern in the whole coral reef, the question
of simulated experience. When we get to the bottom we will be
face to face with the fundamental question of artificial intelligence
(henceforth AI). We won’t know how to solve it, but we will be
shining a flashlight in its face. What does it mean to think? How
does thinking work?

Not “how does the brain work,” but what does the thinking pro-
cess consist of, in logical terms? We don’t need to understand lungs
to realize that respiration has something to do with grabbing air,
letting it soak in somehow and then pushing it out. Thinking is (one
suspects) just as basic a physiological process as breathing; how does
it work? Presumably it’s not mere random helter skelter scurrying
about. There is some system at work, some process, presumably.
Even when you are not hard at work solving a math problem, plan-
ning a strategy or wracking your brain for the name of someone’s
daughter, there is something ticking over in there, as steadily (maybe
even as rhythmically) as breathing. What is this process?

As usual, we have a particular, concrete problem and a software
solution in mind. The problem is crucial to Mirror Worlds: How
do we make the ezperience key work? In answering we will (again)
be addressing a major problem in the non-Mirror World as well. In
the last chapter, I discussed the extraction of information from fast-
flowing data streams at the source. We turn now to oceans of data
that have accumulated in databases. What can we do with this stuff?

141
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All those multi-billions of records on file? Here, the focus is different.
You don’t worry so much about extracting information fast, as the
data values fly by. You focus instead on the problem of comparing
many stored incidents or situations.

In pursuing this concrete problem, I'll keep the deep questions
and long-term implications at bay, for the most part—but they do
have a tendency to wind their tendrils around the subject matter
in this chapter. I will be describing a “simulated mind” designed
for a well-defined, utilitarian purpose. But the simulated mind is
inhabited by two simple machines, two raucous little yippers that do
have a tendency to run away with things...

Our simulated mind is a very simple affair. It relates to a real
mind the way a child’s puppet theater relates to a real theater, only
a lot less so; it’s a far coarser approximation. Its only purpose is to
allow “past experience” to shed light on the present, in the limited
Mirror World sense: “Past experience” is the enormous historical
Mirror World archive, and we want to use those archives to shed
light on what is happening right now.

But—in tackling this assignment, we will build two little ma-
chines that seem to have bigger ambitions.

The Goal: Finding Precedents

We want to describe a “new case” to the program. The program
should respond by commenting about the new case and by citing rel-
evant precedents. In a Mirror World, a “new case” will be a list of
features describing whatever current situation the user cares about.
A committee in mid-deliberation (who’s present, what’s being ar-
gued, when and where it is all taking place, the political context); a
hospital patient; a business plan; some particular state that a com-
plex machine has gotten itself into, and so on. Outside the Mirror
World, the new case is anything you care about. For example, you're
a doctor making decisions about a patient. You describe the patient;
you get comments and precedents in responsc.
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What Precedents? What Comments?

You want to hear about earlier cases that are relevant to the new
one. Lots of implications are packed into this spring-loaded word.

The database might be enormous. There might be millions of
cases in there. The program must dig out a small handful that shed
light on the new case—that relate to it in a substantial way. An
earlier case might be relevant although it resembles the current case
only a little-——but the significance of that resemblance is large.

What about comments? In making comments, the system’s main
job is to fill in the blanks in two ways, with conclusions and with
speculative guesses. You know certain things about the new case,
but you don’t know the whole story. You can describe a patient,
but you don’t know what the diagnosis is. You can describe the
committee hearing, but you don’t know what the final vote will be.
The program will attempt to answer this key question.

But the system’s attention isn't restricted to the key question. It
may conclude or guess the value of any one of the new case’s un-
known attributes. In describing a new case, there is information you
don’t know (tests that haven’t been done, results that are unclear);
there’s also information you simply haven’t mentioned yet (or forgot
to mention, or didn’t intend to mention, because you didn’t realize it
was important). The program might attempt to fill in any of those
blanks as you go along, describing the case.

This activity is crucial in digging up relevant precedents. The
system will be lowering the new case as bait (so to speak) into a
memory pool, attempting to lure the right cases out of the database.
The juicier the bait, the more likely that the right precedents will
be attracted. And obviously, by filling in the blanks, the software is
also attempting to shed light on this new case directly, by telling you
something about it irrespective of specific precedents.

(Wait a minute though, what is this speculation stuff? The pro-
gram will fill in blanks by making “speculative guesses?” You want
a program to speculate? Maybe you’d also like it to philosophize,
reminisce, do a little tap dance and then have a nervous breakdown
into the bargain? Speculation is not the sort of activity in which
we ordinarily expect software to indulge. We want software to figure
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out the answer and tell us what it is, not take off on contemplative
excursions.

Usually...)

For Example—

This is a non-Mirror World example of our software. The Mirror
World as an integrated whole doesn’t exist yet. Again, we are look-
ing at a key software component in isolation, doing its stuff and
attempting to be useful on it own, as if Mirror Worlds didn’t exist.
Which they don’t, yet.

Consider a special kind of conversation with a computer. You're
a clinician of some kind, and you're describing an x-ray image. For
now you're describing it via keyboard, but we are working on a voice-
recognition interface that will allow you to talk into a microphone
or a telephone. (This is important so far as radiology is concerned,
because radiologists it turns out don’t like to write, and they certainly
don’t like to type; they like to talk, over the telephone if you don’t
mind, to their secretaries. None of this face-to-face stuff.)

You use standard, ordinary medical lingo to describe what you
see. Currently, the language you use is sharply constrained by the
fact that you're talking to a computer—like talking to a person who
just barely understands English. You have to go slowly and choose
your words carefully; you would never mistake the resulting inter-
change for ordinary conversation. Yet information is exchanged; at
any rate, the software is getting better at this sort of thing.

You tell the program “The patient’s age is 42. The mass den-
sity is high.” (You're describing a breast x-ray, trying to determine
whether the image you see is a benign or a malignant mass, and
what the diagnosis is.) “The mass border is not complete.” The
program interrupts: “Speculating about whether the mass density
has changed—TI’ll guess it has increased; like, for example, case 14 (a
46-year-old patient; the diagnosis was infiltrating ductal carcinoma),
or case 20 (a 60-year-old; diagnosis was the same). Now, speculating
about whether there is a comet—1I’ll guess yes.”

These are not random interruptions and speculations.  They
indicate that this case has gotten off to a disturbing start. The
high density of the mass and the incomplete mass border are not
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good. The system’s speculations suggest that it’s wandering towards
a negative conclusion: This mass is probably malignant. It won’t
say so yet—that would be premature. But these speculations about
increased density and the presence of a comet suggest malignancy.

You continue. “The mass border is lobulated. The border is
defined...” The system puts in “I'm concluding at this point that
there are no large calcifications, and no nipple inversion.” Tending
to suggest that, if the mass 4s malignant, the disease may not be far
advanced.

“The mass density has not changed,” you continue: a piece of
historical data, which makes the situation look better. Maybe the
mass is benign after all. The system says nothing. But then you zig
back in the other direction. “There is no mass halo.” “No? That’s
surprising,” says the program. “But... consider cases 14 or 40. Both
cases of infiltrating ductal carcinoma.”

Things had started to look better. But then “no halo”—and
this is interpreted as a bad sign. The program hasn’t seen many
cases with features generally like this one, and also no halo. It’s a
surprising and worrying development. There are a few instances with
this combination of feature; the two it mentions are both malignant
cases.

You add some more data; the system comments. Then you’re
done, and it’s up to the program to guess: What’s the diagnosis?

It presents a list of relevant precedents. It’s a mixed and some-
what confusing list. Cases with malignant diagnoses occur, but this
case strongly resembles some benign cases as well. The system takes
a stab at a diagnosis. “Fibroadenoma?” A benign lesion. But then,
thinking it over... The personal history of cancer that exists in this
case 18 disturbing, in light of all the other ambiguous signs. It with-
draws its guess. The bottom line: “I can’t say what the diagnosis

is...”

Right! The correct diagnosis was “plasmacytoma”—a rare lesion
that the system has never seen before. No way to guess this correctly.
The program does exactly the right thing, and passes.

But we don’t leave things there. It now speculates: “I don’t know
the diagnosis, but what’s the bottom line? Is this mass likely to be
malignant or not?” It guesses malignant. This was a complex and
confusing case, but the system has (unfortunately) drawn the right
conclusion.
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The program I'm discussing was built by Scott Fertig, a re-
searcher in our group at Yale. He’s had significant help from several
people, notably Dr. Paul Fisher, a Yale radiologist.

§ Nice trick, but so what?

Fine, you say, very nice. Of course, we’ve seen programs do tricks
like this before.

But the point is that this program knows nothing. No infor-
mation about diagnosing x-rays whatsoever was ever handed to this
program. What it’s got to work with is a database, period; in fact,
a pathetically small one in this instance, so small it barely qualifies
as a database at all. This program was handed the description of
around seventy x-rays, with their diagnoses. That’s all. On the basis
of these seventy cases, it ad libbed a reaction to a new case that
wasn't flawless but was damned good, and clinically on the mark.

It is possible to turn “memories” into expertise. The process is
fairly simple, but subtle.

The Raw Material

First I have to spell out more precisely what “cases” and the
“database” are like.

We describe a “new case” to the program. [t comments about the
new case—muses, prognosticates, fills in the blanks, directs our at-
tention to a small number of relevant precedents, chosen from among
a vast intractable pile of cases-on-file—and it does all this strictly by
comparing the “new case” to the cases in this database. The new
case and the cases in the database are, structurally, exactly the same.
They are lists of features. A feature is an attribute (“hair”) plus a
value (“blond”). A value may be more than one thing: attribute
“pets,” value “fido, ernestina, spot.” In the sort of interaction I just

Figure 6.1: (Right.) The transcript, as produced by the program (ex-
cerpts). Data from the user appear in the left column, the program’s
comments on the right.
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(ID 30)

(AGE 42)

(MASS DENSITY HIGH)
(MASS_BORDER_COMPLETE? NO)

(MASS_TYPE_BORDER LOBULATED)
(MASS_BORDER_DEFINED? YES)

(MASS DENSITY_CHANGED? NO)
(MASS_HALO? NO)
(BACKGROUND DENSITY FATTY)

(FAMILY HISTORY.CA NO)
(PERSONAL HISTORY_CA MYELOMA)

147

Speculating: MASS.DENSITY_.CHANGED?...
Guessing INCREASED - e.g.

case ((id 14) (age 46) (diagnosis CAAINF_DUCTAL),
case ((id 20) (age 60) (diagnosis CA_LINF_DUCTAL),
case ((id 50) (age 70) (diagnosis CA_LINF_DUCTAL))

Speculating: MASS.COMET?...
Guessing YES - e.g.
case 14

case ((id 40) (age 69) (diagnosis CALINF_DUCTAL),

Concluding
(LARGE_CALCIFICATIONS? NO)
(NIPPLE_INVERSION? NO)

NO is unusual in this context - see e.g.
case 14
case 40

!! Never seen this value before.

Closest cases in DB:
(4) (NO) (FIBROADENOMA)
(6) (YES) (CA_.COLLOID)

Speculating: DIAGNOSIS...
Guessing FIBROADENOMA

Checking expectations...
Withdrawing this guess.
Speculating: MALIGNANT?...
Guessing YES

Checking expectations...

Accepting this guess.
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presented, the user describing an x-ray to the system, the user is
building up a new case feature-by-feature. At first, the new case has
only one feature; the system muses about that. Then the user tacks
on a second feature, and the program muses about this two-feature
case; then he tacks on another, and so on. Each time the case grows,
the system thinks it over.

(Here and throughout, if I say that the program is musing or
thinking or whatever, I’'m obviously using these terms metaphorically.
My goal is to get the basic idea across with minimum fuss. I am not
suggesting that by seeming to think, the computer actually s, in the
human sense of the word. Some Al researchers are sensitive about
this point. They will go to any lengths to avoid this kind of usage, on
the theory that the typical reader is extremely gullible and to boot
rather dim. Such meticulous sensitivity is touching but absurd.)

So, in referring to “the new case,” 1 mean the growing list of
features that a user presents to the system. In a Mirror World,
a “new case” will be a list of features describing whatever current
situation the user cares about. A committee in mid-deliberation
(who’s present, what’s being argued, when and where it is all taking
place, the political context); a hospital patient; a business plan; some
particular state of the machinery, and so on.

Sometimes it will be useful to refer to the database as the “mem-
ory pool,” for obvious reasons. The cases in the database are a
software version, a simulation, of the memories of particular cases
or experiences that are stored inside a human expert’s head. And
if a database sometimes acts (or tries to) like a memory pool, then
retrieving something from the database will often masquerade as re-
membering.

...And Its Implications

I will be turning repeatedly to the yawning gulf between some piece
of a simulated mind and the real thing. But this is no mere exercise in
computational humility, be assured. Perish the thought. The goal is
to establish not merely how far we have to go, but in which direction
we ought to be setting out.

First I need to establish (and believe me it will be no sweat to do
so) that our raw material, our “simulated memories,” are lousy, third-
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rate imitations of the real thing. Soon our little fleet of software tools
for the manipulation of simulated memories—a dump-truck and a
bull-dozer (let’s say)—will emerge from their garages and go through
their paces. The next question, the real question, will be: Okay, these
tools are useful, but what are the implications?

The implications all ride on the fact that the tools are demonstra-
bly useful when they have lousy material to work with. But suppose
they had good material?

They might be amazingly powerful.

But what is good material? What’s wrong with what we’ve got?

§ Real vs. simulated memories

The cases in the database are simulations of the memories of particu-
lar cases or experiences that are stored inside a human expert’s head.
Weak and feeble simulations: When an expert remembers a patient,
he doesn’t remember a mere list of words. He remembers an experi-
ence, a whole galaxy of related perceptions. No doubt he remembers
certain words—perhaps a name, a diagnosis, maybe some others.
But he also remembers what the patient looked like, sounded like;
how the encounter made him feel (confident, confused?)... Clearly
these unrecorded perceptions have tremendous information content.
People can revisit their experiences, examine their stored percep-
tions in retrospect. In reducing a “memory” to mere words, and a
quick-march parade step of attribute, value, attribute, value at that,
we are giving up a great deal. We are reducing a vast mountaintop
panorama to a grainy little black-and-white photograph.

There is, too, a huge distance between simulated remembering—
pulling cases out of the database—and the real thing. To a human
being, an ezrperience means a set of coherent sensations, which are
wrapped up and sent back to the storeroom for later recollection.
Remembering is the reverse: A set of coherent sensations is trun-
dled out of storage and replayed—those archived sensations are re-
experienced. The experience is less vivid on tape (so to speak) than
it was in person, and portions of the original may be smudged or com-
pletely missing, but nonetheless—the Rememberer gets, in essence,
another dose of the original experience. For human beings, in other
words, remembering isn’t merely retrieving, it is re-ezperiencing.
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And this fact is important, because it obviously impinges (proba-
bly in a large way) on how people do their remembering. Why do you
“choose” to recall something? Well for one thing, certain memories
make you feel good. The original experience included a “feeling good”
sensation, and so the tape has “feel good” recorded on it, and when
you recall the memory—you feel good. And likewise, one reason you
choose (or unconsciously decide) not to recall certain memories is
that they have “feel bad” recorded on them, and so remembering
them makes you feel bad. (If you don’t believe me check with Freud,
who based the better part of a profoundly significant career on this
observation, more or less.) It’s obvious that the emotions recorded in
a memory have at least something to do with steering your solitary
rambles through Memory Woods.

§ Software: Fundamental Limits?

But obviously, the software version of remembering has no emotional
compass. To some extent, that’s good: Software won’t suppress,
repress or forget some illuminating case because (say) it made a
complete fool of itself when the case was first presented. Objectivity
is powerful.

On the other hand, we are brushing up here against a limitation
that has a distinctly fundamental look. We want our Mirror Worlds
to “remember” intelligently—to draw just the right precedent or two
from a huge database. But human beings draw on reason and emo-
tion when they perform an act of remembering. An emotion can be
a concise, nuanced shorthand for a whole tangle of facts and per-
ceptions that you never bothered to sort out. How did you feel on
your first day at work or school, your child’s second birthday, last
year’s first snowfall? Later you might remember that scene; you
might be reminded merely by the fact that you now feel the same
as you did then. Why do you feel the same? If you think carefully,
perhaps you can trace down the objective similarities between the
two experiences. But their emotional resemblance was your original
clue. And it’s quite plausible that “expertise” works this way also,
at least occasionally: I'm reminded of a past case not because of any
objective similarity, but rather because I now feel the same as I did
then.

I'll return to this hugely important issue: Mind-stuff consists of
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rational and emotional strands densely interwoven. Your intellectual
faculties depend on your emotions and not merely your “reason.”
And these are issues that Al rarely confronts. Understandably.

But we’ll naturally be drawn to ask: Stored cases can ewvolve to-
wards real experiences, can’t they? Stored images and stored sounds
might ultimately be integrated into a far more vivid and complete
simulation of a “memory” that our mere lists of words. And emo-
tional processes might be simulated, too, at least in principle. But it
all sounds like a lot of work, and raises hard, unanswered questions.
Is this a reasonable research direction?

The answer will emerge loud and clear: Yes.

Now, back to reality...

So what about “speculation”?

We'd like to squeeze knowledge out of our database: comments; rel-
evant citations. Standard statistical techniques can be very helpful
in doing so. But they run out of gas before we have arrived at our
destination.

Let’s say you have lots of cases in a database. Now a new case
comes along, and I say “classify it.” The stored cases are all tagged
with some kind of classification label; you’re trying to attach such a
label to the new case. Each case and its label can be anything you
want, more or less. The case might describe a patient and the label
is the diagnosis. In a classic example that recurs as a benchmark or
test case in the literature, each case describes an iris, and the label
says what kind of iris.

Now, I've given you a new case; by applying some statistical
analysis to the existing cases and their labels, plus the new case, you
can guess the new case’s label. The details are tricky, and there has
been much discussion about the best and most accurate way to do
it. But the basic idea is simple. No “simulated mind” or anything
like that; just straight statistical analysis.

This problem is clearly related to the one in which we are inter-
ested. And the program we’ve built incorporates statistical analyses
that are very similar to the classical straight-statistics approaches.
But unfortunately, these techniques aren’t good enough in the hard
cases; and the hard cases are the interesting ones, after all.
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Human experts have a useful characteristic: Even if they don’t
know what the answer is, they can tell you something interesting
anyway. They can go out on limb. They can propose possibilities.
They can speculate. That’s the sort of behavior we must try to
simulate.

¢ Simulated Speculation: Why?

We’ve hypothesized that real, important information gets communi-
cated when Joe Expert speculates. His speculative comments help
reveal what is likely to be important and what isn’t; what lines of
attack are worth pursuing (they may not be ones you would have
expected); what developments to monitor as the situation evolves.

Ideally, our expert backs up his musings with examples: It might
be that the following is true... as it was in the case of Mrs. Fruitford.
Remember her? (We scurry off to grab the Fruitford File, study it
and, sure enough, there are thought-provoking similarities...) Clearly
the process of speculation is related to the process of remembering.
And if an expert tells you “this case reminds me of z, y and z,”
you’ve learned something important. You can look those cases up,
study them and compare them to your current case.

This is what we’d like the Mirror World to do. When you describe
some current situation and ask it for historical precedents, you will
get precedents and speculations: the two are intimately related. You
may also get conclusions, in those cases where they check out using
conservative statistical methods. [It’s clear that this bill will pass
(consider the following precedents), it’s clear that the patient has x
and not y and so forth.

§ Speculation: When and How?

How to simulate speculation? Some principle is at work when an
expert decides that something is worth remarking on—-is remarkable
in other words—and there is the rub, precisely. Remarkable means
“worthy of notice.” Two observations follow. To notice something
means to devote some attention to it, in some sense; to be distracted
by it. (If your attention remains wholly focussed on x—say on “the
large dirigible that is about to crash into my petunia bed” - you can’t
notice anything else. To the extent that you do notice something
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else, say the fact that it’s a nice day, or that the dirigible seems to be
leaking, you have temporarily stopped noticing whatever you were
attending to. In the second case, you stopped thinking about the
dirigible and the petunia bed in general, and concentrated instead
on just one interesting facet of the situation.

Second: To be worthy of notice means to be “interesting,” in some
sense. So to speculate requires that you be distracted by something
interesting. Hence we need to build a program that is capable of
being distracted, and we need a working definition of “interesting.”

§ What’s interesting?

Interesting within the narrow, technical confines of listening to a new
case description, of course. What makes a painting or a novel or a
lady interesting is another matter. This is an important point.

Simulating expert behavior is a major goal of artificial intelli-
gence. Expert behavior depends among other things on the ability
to speculate. Speculation depends on some notion of what is in-
teresting, and interesting-ness depends ultimately on emotional and
not merely intellectual criteria. So here we are again. Mind-stuff
consists of rational and emotional strands densely interwoven. Emo-
tional processes are a fundamental part of intellectual ones.

Luckily we can achieve an unemotional definition of “being inter-
esting” that’s effective for our purposes...

We'll say that something is interesting if it is an evocative possi-
belity.

§ What does “evocative” mean?

Intuitively, something is evocative to the extent that it brings other
things to mind—sets a mental train in motion. For example, the
phrase “cool bright Spring morning” might be fairly evocative for
you and “galvanized steel roofing nail” might not be. Might: This is
a strictly personal issue.

We need to be more precise for software purposes. Something
is evocative with respect to something else if it brings something to
mind a propos. “Headache” is not terribly evocative with respect to
“diagnosis” because a headache could mean anything or nothing. It
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sets no clinical train of thought in motion. “Prominent auditory hal-
lucinations” are more evocative: They do suggest possible diagnoses.
“Blue eyes” are unevocative with respect to “diagnosis,” but quite
evocative with respect to “hair color.” Note that being evocative
doesn’t mean pointing definitely to a conclusion, merely suggesting
something or other.

(We borrowed this term “evocative” from a path-breaking Al
program called “Internist,” developed during the late seventies by
Jack Meyers, Randy Miller and Harry Pople at the University of
Pittsburgh. Internist did a remarkably good job of diagnosing highly
complex diseases in the field of internal medicine. A striking thing
about the program was the simplicity of its logic: no deep model of
cognition, just a few simple moves that worked remarkably well. This
should bring Brooks’s insects to mind. Internist had nothing to do
with a database of cases in our sense, and its idea. of “evocativeness”
isn’t terribly much like ours. But ours does build on Internist’s in a
sense.)

Now, given a database, we can decide automatically what is
evocative and what isn’t. Let’s say you’re given a million person-
descriptions: Each one describes a person, in terms of a list of at-
tributes: hair blond; eyes blue; favorite planets Venus, Jupiter (an
attribute can have several values associated with it), and so on. I
can now establish automatically what is evocative with respect to
what, simply by auditioning each possibility in turn. Question: Is
blond hair evocative with respect to favorite pizza topping? I look
at all my blonds: Do they show any pattern in their pizza-topping
preferences? If they have pretty much the same pizza-topping atti-
tudes as everyone else, I conclude that blondness is not evocative in
this respect. But if eighty per-cent of my blonds go for anchovies,
then blondness is evocative here. If I run a pizza take-out and a
blonde saunters in, I often catch myself saying “anchovies—right?”
Blondness sets a thought train in motion.

Something is interesting if it is evocative and possible. How can 1
tell whether something is possible?

Good question. It’s time to launch our two Simple Mind Ma-
chines.
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What’s Possible’7—The Basic Operations

We come now to the heart of the matter, the two basic tools that will
assist us in turning data into simulated wisdom (or in other words,
lead into gold): our two simple mind machines. I'll refer to the two
as plunge and squish.

Imagine that someone is describing a new case to the program.
Every time he mentions a new attribute of this case, the program
“looks around” in its database. The question it asks is what other
cases are similar to this one? A case is similar to the extent that its
attributes match those of the new case. Attributes aren’t all equally
important, of course; the more evocative an attribute and its value,
the more significance in matching it closely. If I'm looking for a
diagnosis and I happen to learn your hair and eye color and your
favorite pizza topping, some of my stored cases might show exact
matches on all three. But so what?—that doesn’t mean they are
“close” to this case, because these three attributes are unevocative
for diagnosis. The cases that are close to the new one are the cases
that tend to match on evocative attributes.

This is plunge. Take a new case—one attribute or many at-
tributes, doesn’t matter—and plunge it into the memory pool. The
plunged-in case attracts memories from all over: The “force fields”
inside the system get warped in such a way that every stored mem-
ory (every case in the database) is re-oriented with respect to the
plunged-in “bait.” The most relevant memories approach closest;
and the less-relevant ones recede into the distance.

Let’s be slightly more precise. Your new case is a list of attributes:
hair blond, eyes blue... 1 go through my entire database with this
list of attributes in hand. So let’s see: The hair blond cases in my
database are closer to the new one than the hair dirty blond cases,
which are closer than the hair brown cases... The eyes blue cases
are closer than the eyes hazel cases, and so on. Every case in the
database has a mess of separate closeness ratings. Some cases are
obviously irrelevant (they don’t have a single close match-—or they
might not even include the attributes that my new case includes). 1
can throw those out. What about the rest? I have to integrate all
these separate closeness-scores, taking evocativeness into account—
and also accounting for the fact that some of my memories may
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include attributes (shoe size?) that the new case simply doesn’t
have, or they may lack attributes that my new case does have, and
so on. This “integration” process is tricky and finicky in detail. But
the basic idea is simple: The tighter, more “relevant” your overlap
with the new case, the closer you come.

So: We tell the system the “key question,” what we’re interested
in (which could be more than one thing, by the way—diagnosis and
favorite pizza topping); then we describe a new case. Each time we
add a new piece of information, the program plunges the case into
its database and attracts a collection of “close cases.” We can say, if
we choose, that the new case “reminds” the program of those close
cases.

§ Squish

Squish means to look at the closest cases that are attracted by a
plunge, and compact them together into a single “super case.” We
take all these nearby memories (in other words) and superimpose
them.

Let’s say we’re squishing three memories. One reads hair blond,
eyes blue, lipstick red; a second is hair blond, eyes blue, lipstick pink;
the third is hair blond, eyes hazel, no lipstick. (These skimpy three-
attribute memories are only by way of illustration. The average case
in our radiology database has about twenty attributes. It’s easy to
imagine a database where most cases have hundreds or thousands or
more.) When we squish them together, we get a single super-memory
that reads hair blond; eyes blue (2) or hazel (1); lipstick red, pink or
none. To understand a squish, look at it. Visualize it. Imagine that
this squish describes a photograph. Hair color is clearly discernible:
The “hair” attribute has a single value, it’s in sharp focus. But when
you try to figure out what’s going on in the lipstick department, you
see a blur. “Lipstick” values are all over the map in your squish,
not sharply focussed on anything. The eyes seem to be blue; maybe
hazel. But blue is a reasonable guess.

(If we were dealing with real memories—experiences and not mere
words —then squish would produce a new memory that could be re-
played, experienced, like any other.)
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§ Possible? Definite? Surprising?

An attribute is possible in the context of some new case if you are
reminded of a bunch of cases that have this attribute: in other words,
if this attribute is well-defined in the squished-together results of a
plunge. Let’s say you haven’t told me yet whether my new case has
attribute z (either because I haven’t gotten around to it or I don’t
know); but if I'm reminded of lots of cases that have z, then z is
probably a reasonable guess in this case too.

In fact, it might not merely be possible; it might be virtually
definite, in which case the program will treat it not as a possibility
but as a conclusion. For example, you tell the program “I’ve got a
young lady named Ingrid here; she’s Icelandic; she’s got blond hair,
fair skin, and her eyes are...” “Blue,” says the system (and yawns).
Sure it could be wrong (cocky insouciance is generally the wrong
attitude for software to adopt in any case)—but that doesn’t make
the conclusion unreasonable. It looks like a safe bet. Note that,
whenever the program reaches this kind of conclusion, it can back it
up with examples: I've concluded that z is so, as it is (for example)
if the following cases—

I can also notice when something is surprising. Say 1 want to
conclude something, because all my close cases have it—but 1 notice
that you’ve already told me about that attribute, and I'm wrong.
I wanted to conclude that you have blond hair, but in fact, you've
already told me that it’s black. So the program gets surprised and
duly mentions the fact: “This black hair stuff is surprising; I was
expecting blond.”

We have now determined what an evocative possibility is. As you
describe a case, the system is “reminded” of other cases. To the ex-
tent that many of those other cases have some particular attribute,
that attribute is a possible feature of the new case too. Some of the
possible features are boring, trivial or irrelevant. Sure Ingrid proba-
bly has straight hair, but if we are trying to guess which candidate
she’ll vote for in the upcoming election, that fact doesn’t help much.
But some possibilities will also be evocative with respect to the ques-
tion we are trying to answer... and that’s where we would like to
see a bit of speculation. Say we have just been told that Ingrid is
an enthusiastic fox hunter. Suppose that many fox-hunting enthusi-
asts are members of the Icelandic Rifle Association, and such people
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almost always vote for the Hrufyavid party candidate and virtually
never for the Glugyadtyks. Our program ought to speculate—might
Ingrid in fact be a member of the Association? That would be a
datum worth knowing.

The Implications of Plunge and Squish

It’s important to keep in mind that the new case we plunge into the
memory pool might be a single attribute. We could plunge the phrase
diagnosis schizophrenia into the memory pool, and every memory
that includes this phrase will come swarming. The new case has
only one attribute, so deciding on “closeness” is simple: The cases in
the database that include this phrase are close, and the rest aren’t.
We are now in a position to figure out, by examining the squish of
those cases, exactly what “schizophrenia” means. For our purposes,
it means “what these cases have in common.”

& Now, suppose you had rea/ memories,...

plus plunge and squish. A thought experiment: You allow our little
bull-dozer and dump-truck to drive right into your brain and mess
around with your memories. Or if you are the squeamish sort and
simply do not allow heavy construction equipment into your brain,
even on a thought-experimental basis (I guess I can understand this
attitude), imagine that plunge and squish have genuinely good imi-
tations of human memories to play with.

Suppose you plunge the phrase color blue (all by itself) into this
realistic memory pool. A swarm of memories approaches. All these
memories have the sensation of seeing blue embedded in them. And
so, when you squish them all together, the sky memories and the
swimming pool memories and the blue-crayon memories and the
forget-me-not memories and the blueberry memories—the squish is
blurry in every way but (nothing matches ezcept...) for this sensa-
tion. The sensation of seeing blue emerges clearly when you replay
the squish (just like blond hair or a definition of “schizophrenia”
might emerge). And you thereby learn (if you happen to be a young
child, and you hadn’t known already) what “blue” means.

In fact, this squishing operation is the one plausible mechanism
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for establishing a correspondence between a label (like the word
“blue”) and an indescribable sensation (like seeing blue). All those
memories had the word “blue” pinned to their lapels (if you are a
young child, someone—we’ll assume—-described each one of them to
you as “blue”); and so they all came swarming when you plunged
the word “blue” into memory. And then when you squished, the
sensation of seeing blue popped out. The one plausible mechanism:
If you are a child, people are always telling you “what a nice blue
picture—we’ll put on your blue sweater—let’s play with your blue
ball” and so on. But what exactly is blue about these things? Their
shape, size, fuzziness, location, mood? The only way to find out is
to squish them together and see what they have in common.

(This is a learning process sometimes called “induction.” “Many
lessons may be needed, so as to eliminate wrong generalizations based
on shape, material etc., rather than color... Like all conditioning,
or induction, the process will depend ultimately also on one’s own
inborn propensity to find one stimulation qualitatively more akin to
a second stimulation than to a third...”!)

§ Building abstract ideas out of concrete memories

Once you’ve figured out “blue” and some other colors, you can figure
out what an abstract word like “color” means, simply by squishing
together all those squishes. What do the blue squish, the purple
squish and all those other squishes labeled “color” have in common?
That’s not a simple question to answer. But luckily you don’t have
to answer it. You need only do the squish and ezperience it.

13

Or consider words like “wood,” “metal” and so on; and then an
abstraction like “substance.” How do you know what “irony” means?
The dictionary definition isn’t a lot more useful than the definition of
“blue.” A young child is told “those things are blue,” “those things
are wood”; a slightly older child is told “those things are ironic.”
When you squish them together, all those memories with “ironic”
pinned to their lapels, you figure out what the word designates.

In short, a child can figure out what purple and wood mean
strictly on the basis of comparing like-labelled experiences (purple
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things, wood things). He can then proceed to figure out what color
and substance mean, in exactly the same way. And in this fashion
he can build a hierarchy of abstractions from the ground up.

Yes, and...? So what? Well...

§ Understanding language

has always been a holy grail of Al research. Plunge and squish
are, potentially, a significant part of language understanding. Ulti-
mately, the way you attach a meaning to a label (blueness to “blue”,
substance-ness to “substance”) is by plunging and squishing. This is
merely the flip side of the original problem we examined—attaching
a label to a “meaning” (the label malignant to an image on a film,
the label Iris Setosa to a particular plant...).

Put another way, our problem of “correct diagnosis based on ex-
perience,” or the related problem of “finding the right precedent,” is
the same problem, in terms of what you need to do in order to solve it,
as the problem of learning the meaning of a word like “blue.” Learn-
ing correct diagnosis based on experience is, in one sense, merely
extending your grasp of the language. In working on any one of these
problems (say diagnosis) we must, at least in some sense, be working
on the others (say, language understanding) too.

If we are ever to build software that understands language in
a deep and convincing way, we will have to master plunging and
squishing.

Stay tuned. Now, back to our existing software...

Achieving Distraction

We’ve discussed one way to define “an interesting possibility.” Spec-
ulation requires “being distracted” by such a possibility. How does
software get distracted?

We’ll take a simple and obvious approach. The program tem-
porarily puts aside the new case it is examining, and focuses instead
on the interesting possibility. It treats this possibility as if it were
the new case, the thing it is asked to comment on, the matter at
hand- the fishbait to be lowered into the memory sea. If “member-
ship in the Icelandic rifle association” is the interesting possibility,
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the program temporarily focuses on this possibility alone. It plunges
the case “member Icelandic Rifle Association” into the memory pool
and squishes the results.

Maybe we can’t build a direct path from Ingrid to Association
membership, but we can build a path from being a member to Ingrid.
Let’s say that Ingrid strongly recalls a few dozen people, and four
or five are Rifle Association members. Not an overwhelming case in
itself for Ingrid’s being one. But now let’s say 1 focus on all Associa-
tion members by plunging “member Icelandic Rifle Association” into
the memory pool. These cases might have dozens of attributes, but
it could be that most of them are irrelevant. They might all disap-
pear {blur up, fuzz out) when I do the squish—because there might
be no agreement on them. There might be exactly three attributes
(say) that virtually all Association Members have in common, and
all the rest are a blur. Furthermore (say) when we run a check on
these three—when we plunge all three together into the pool—the
close cases are in fact mainly Members.

The point is to allow us to guess when a bunch of attributes are
evocative as a group. We can’t pre-compute the evocativeness of all
possible groups in advance: There are simply too many of them. But
we can now return to Ingrid and check her for the bunch of features
that point collectively to Association membership. If she matches,
we've got a case for believing that she might be a member too. If
she’s got some but not all of these features, we can speculate about
the missing ones.

None of this is certain and the program won’t claim that it is.
It’s merely speculation. But it’s informed speculation and it might
well be correct...

Putting It All Together: the Basic Cycle

We learn an attribute. We add the attribute to our new case. We
plunge the case into our pool of memories, and attract a collection
of “close cases.” We squish the close cases together, and examine
what they have in common. If we reach any conclusions, we add
them to the new case. If we notice any evocative possibilities, we get
distracted and speculate.

To speculate is (in essence) simply to repeat the cycle again.
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We take the evocative possibility, plunge it into memory and attract
some close cases. We squish them together and see what they have in
common. We plunge the common elements and see if they point back
to the evocative possibility. At this point we stop being distracted,
remember the original case and compare it to what we’ve learned
about the evocative possibility—is there a decent match? Does the
evocative possibility remain merely possible or has it become proba-
ble? If it seems likely, we can add it (tentatively) to our new case as
well.

The new case may have grown: We might have added some con-
clusions and some speculative possibilities. So we can plunge the new
expanded case back into memory, and attract (possibly) a slightly
different set of cases, and squish them together, and so on... Until
we learn nothing more. Then we can go back to the user: Anything
else you want to tell me about this case? If so, I tack on the new
attributes, and start the cycle again.

Plunge and squish, plunge and squish.

Squishing and Its Consequences

If you squish the same pile of stuff together often enough, it may be
that the pile will stay squished.

Let’s say that your program is designed to work as a Complexion
Counselor in a department store: Users describe themselves and the
program tells them what color lipstick to buy, or something like that.
It build its database by remembering each customer. To impress the
clientele, the software wants to makes guesses, cite precedents, reach
conclusions, speculate and so forth. Whenever a customer starts
by entering “my eyes are blue,” the system performs a plunge-and-
squish and concludes that most likely her hair is blond and her skin
is fair. This happens many times a day.

Eventually the system notices that it is constantly called upon to
prognosticate about the implications of blue eyes; it can save itself
a bit of trouble by leaving all those shared segments, the segments
that say “hair blond, eyes blue, skin fair”-—squished together. Now
of course the case of Customer Fruitford (say) amounts to a lot more
than merely blond hair and blue eyes; but this particular segment of
her dossier is shared with lots of other customers. As you scan down
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it you see “hang-gliding enthusiast; three children; pet raccoon—and,
a typical blue-eyed blond.”

Maybe the system does this. It’s not inevitable. It gains the
system nothing in terms of accuracy (in fact it loses something, as
I'll discuss). You obviously can cook up generalizations like this
on the spot, whenever you need them. But “perma-squishing” is
nonetheless an interesting possibility, for several reasons.

When we form a permanent squish, we are creating a rule or prin-
ciple or template or generalization. We've taken leave of our partic-
ular memories, and substituted a general-purpose template instead.
Another name for this kind of generalization is forgetting. I've forgot-
ten the distinctions between a bunch of individuals. I’ve remembered
only the similarities. It may be that Customer Fruitford had slightly
lighter hair and darker eyes, and Customer Prunestein the reverse,
and Customer Piffelini something else again, but these distinctions
are gone. They’ve all turned into mere blue-eyed blondes, period.

Consider (moving over into humanware) the color blue. Blueness
is the sort of concept that comes in handy. It’s easy to believe that,
during your struggles to learn the language, a bunch of blue mem-
ories soon become permanently squished. This leaves the blueness
sensation and the word blue (the two clearly-focussed pieces of the
squish) permanently chained together.

Back to software: This kind of forgetfulness will be extremely
useful, because it saves space. Mirror Worlds accumulate massive
archives. It’s one thing to say data storage is cheap (it is), and
that we know how to use parallelism to search massive databases
very fast (true), but come off it, seriously speaking—there are lim-
its. Ultimately we must have a strategy for controlling the monu-
mental oceans of data that a Mirror World remembers. Forgetful-
ness is a promising one. Mirror World storage areas come equipped
with “forgetting thresholds.” If two cases are closer together than
the threshold, they stay squished together. If the threshold is zero,
we never forget anything: Every individual memory—every case,
scene, machine-state, patient or whatever—remains distinct. As the
threshold widens, the system starts to blur nice distinctions. As it
widens further, we loose increasingly larger distinctions, and ulti-
mately the system becomes “infinitely forgetful”’- meaning not that
it’s got nothing upstairs, database empty- —meaning rather that ev-
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erything it’s ever seen is squished together into a single opaque black-
hole blob.

There should be some happy medium that allows us to preserve
interesting distinctions, but to save lots of space by forgetting minor
ones.

§ Time and forgetting

The age of a memory is one of its attributes. Suppose the system
has two very similar memories—that is, two very similar elements in
its archival database. Suppose that one dates from this morning and
the other from two weeks ago. How close are these two memories?
I need to measure closeness in terms of every attribute that the two
share. “Age” is one attribute. How can I tell when two memories
are close in age?

Let’s say that age-closeness depends on a ratio of distances-from-
right-now. Today, those two memories are far apart in age, because
two weeks is a lot further than this morning from right now. So
maybe these two memories do not slip under the forgetting threshold.
They're similar in lots of ways, but far apart in age, and so they
remain distinct.

Time passes. With each tick of the clock, those memories grow
relatively closer in age. Three years into the future, those two mem-
ories are separated from right now by—relatively speaking—nearly
identical amounts of time. From the standpoint of three years, two
weeks doesn’t matter much. And so it’s very possible that, even-
tually, if 1 wait long enough, the two memories will slip under the
forgetting threshold and get blended together.

In this way the Mirror World can simulate, if it chooses, the
human tendency to let distinctions slip away as time passes.

In short: perma-squishing (this special form of forgetfulness)
saves space.

It also accounts, one might easily suppose, for the entire epis-
temological universe: rules, principles and abstractions. If abstract
principles exist, this is where they come from.
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The Software Architecture

Our program is called the FGP Machine, after its three operations—
the two biggies and a helper—called Fetch, Generalize and Project.
“Fetch” is plunge. “Generalize” is squish. “Project” merely allows
you to pick what you want out of a squish.

When you press the Mirror World’s “experience” button, you are
in effect presenting a new case to an FGP infomachine. The “case”
is whatever you’ve indicated on your screen. You give the system
some idea of what you’re interested in, as a focus for computing
evocativeness. What are you trying to “diagnose?”—the chance that
this bill will pass? That the factory will meet some production quota?
The best medication for this patient? The entire archival history of
this Mirror World serves as our database. Most of the elements of the
database are completely irrelevant. They share no attributes with
the situation on your screen. We don’t even need to look at them.
But most likely there are some potentially relevant cases, and we
look carefully at those.

The system could take the case you are interested in and plunge
it intc memory as a single object. Conclusions, speculations and
particular precedents emerge. But it will often be useful for the
Mirror World to run down the attributes of the new case one by one,
as if they were being presented conversationally—as in the radiology
example. The result is a kind of commentary on each attribute of
the case, culminating in a “diagnosis” and a list of the closest, most
interesting precedents.

How do we achieve decent performance if we need to manipulate
(say) millions of individual cases while the user waits? Ensembles
again, in the interest of speed: Throw lots of workers at the prob-
lem simultaneously. Any decent-sized Mirror Worlds will incorporate
some large, shared information depots. These machines store lots of
data, and provide lots of computers for looking at the data. They are
large, “classical” parallel machines—many computers packed into a
single box.

The FGP program I've described is still an unparallel program, a
single infomachine. We are in the process of ensemblizing it right
now. The techniques involved are pretty simple, much like the
database search problem I described in chapter four.
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I’ll discuss three sets of implications. The first is an engineering
matter. The second (having to do with language understanding)
strikes close to the heart of Al, and the third hits the jackpot: What
is thinking?

Implications I: The Ultimate Reference Room

The possibilities under this heading are close to obvious. Provide
every book in your library with an abstract—Ilikewise for every news-
paper article, journal publication and so on. Dump all the abstracts
into a world-wide database. When I'm interested in some topic, my
interests become the fishbait for a plunge into the world library pool.
I attract descriptions of relevant documents from all over the world
and all over history.

Implications II: Understanding Language (?)

Getting software to understand human language has been a goal of
Al research almost from the start. How do you do it? Answer: not
easily. Pull up a chair.

Here is one important facet of the problem. It has long been
noticed by the Al community, and also by everybody else (but only
the Al community seems to take it personally), that human conver-
sation is exceptionally elliptical. People are always leaving things out
(dammit). They emit some utterance or other that simply doesn’t
make any sense, in and of itself; but other people understand it
anyway. People are able to connect the dots—to fill in the blanks—
automatically and nearly instantaneously.

How do they do this? Plunge-and-squish offers one approach to
an explanation. (But it’s not the standard or “conventional” ap-
proach, which I will also introduce, in passing...)

Consider the problem. Say Ingrid is visiting her relatives on Long
Island. “Let’s go to the beach. Is Ingrid coming? Then take the
umbrella.” In itself, this makes no sense whatever—what do you
mean, then take...? This is not a self-contained logical proposition,
any more than “It’s Tuesday? Then how about a case of dill pickles?”
We need to fill in the blanks: Ingrid is very fair. Such people sun-
burn easily. It’s sunny at the beach. Umbrellas are a good way to
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keep out of the sun. You need to know all of these random facts in
order to make sense of the pronouncement about Ingrid.

Unfortunately, you can’t get a computer to understand a sentence
simply by teaching it grammar and handing it a dictionary. There is
a tremendous pile of odd rules and principles that you must have on
hand (fair people sun-burn easily, beaches are sunny, ad infinitum)
if you are to have any hope of understanding human language. Rec-
ognizing this state of affairs constitutes, in and of itself, one of the
more significant achievements of language understanding research in
recent years.

How do you know all this stuff? Are we really going to have to
sit down and make a list of all these intellectual pearls? Fuair people
sun-burn easily. How many of these lapidary pre-cooked Wisdom
Nuggets will our program need to ingest? Millions, according to
current estimates.

But—how do people acquire this basic information? No-one ever
served it to you as a pre-packaged ten-million-course TV dinner. No-
one ever made up a list and taught you every item one-by-one (what
people have proposed doing with software—what almost seems like
the only available alternative, in dealing with software). They stuffed
the raw material of experience into you like vegetables into a food
processor, holding down the plunge-and-squish key full blast as they
did so; and common-sense knowledge simply developed.

So I'll discuss, first, how you can build a mental food processor
using plunge and squish. This handy machiné converts particulars
into abstractions—particular experiences into general wisdom. Not
our plunge and squish; not the ones that are part of our current,
operational FGP program. We'll need far heavier-duty versions, and
building them will be intensely difficult—an enormous job involving
lots of research. But logically these heavy-duty bruisers are the same
as what we already have. A rocket engine is a rocket engine. Com-
pare an early-fifties rocket plane to a late-sixties moon blaster: The
difference represents a huge leap in engineering prowess. And yet at
base they are two versions of the same thing.

Okay, but who cares how you came by your hard-won basic
common-sense knowledge? It would be much easier for the program
if it could skip this process, whatcver it is. Why not simply distill
all of Common Sense into a modest bottle and say Drink up! —-down
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the hatch..—congratulations! you're smart...? You know enough to
understand human language.

Unfortunately, there are reasons to doubt whether any such ap-
proach can possibly be successful in the end. People are dynamic
information processors. Not in the sense that you spend a lifetime
acquiring the basics of common sense: No doubt you have mastered
the basics by age so-and-so, and if we could take a snapshot of your
Inner Head at just that point—we’ve got what we need. The prob-
lem is more subtle but just as important. Namely: The process of
bringing knowledge to bear on a problem appears to be logically iden-
tical to the process of accumulating knowledge in the first place. In
order to use your knowledge you've got to have plunge and squish (or
something comparable). In order to use its knowledge, the program,
the Simulated Mind, will also need plunge and squish. However much
it costs to build these things, we’re going to have to pay up. We need
them. TV dinner or no TV dinner.

§ Plunge, Squish and the Mental Food Processor

I've talked about blue, color, irony. Plunge-and-squish allow you (or
a simulated you) to attach meanings to words like these.

Now consider the rules and principles on which language relies.
Returning to our Ingrid pronouncement... You had to know, in or-
der to understand it, that Ingrid is fair. How did you know this?
Let’s suppose you're reading this dialogue in a story, and have never
seen Ingrid or been explicitly informed that she is fair. But still
you understand what’s going on. You executed a piece of reason-
ing: Scandinavian girls tend to be fair; Ingrid is a Scandinavian girl;
hence... Where and how do you get the knowledge that enables you
to do this?

Abstractions can be distilled from particulars via plunge and
squish.

Scandinavian girls tend to be fair: How do you know? Did
beloved Mrs. Piffel drill it into your head in the fifth grade that
Scandinavian girls are fair? Or could it be that you’ve actually seen
some Scandinavian girls (in person or pictures) and reached this con-
clusion on your own? Or rather, not even reached a conclusion; just
squished a lot of pictures together in your mind until those pictures
turned into a kind of fact? The result is a “visual syllogism” —the
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major premise is a mental picture. I have a picture in mind of a
Scandinavian girl. (She is fair...among other things.) Ingrid is a
Scandinavian girl. So Ingrid is probably fair.

Chances are that a tremendously large proportion of the general
rules and principles you know are, in fact, compacted particular ex-
periences. Yes, sometimes you do learn something in the abstract:
Mongolians live in yurts. Fine. But these abstract facts are mailed
to you in “experiential envelopes.” You read this fact at such and
such a time, or such-and-such a person told you, or whatever. It did
not pop into your brain by order of the surgeon general. If you've
been told often enough, or you've used this abstract fact (and thus
recalled it) often enough, the fact may become completely dissociated
from its various “learning experiences.” But what’s happened is just
like blueness or Scandinavian girls: Individual experiences (the ex-
perience of being told or the experience of recalling what you have
been told) were compounded into a general rule. The basic stuff out
of which the rule is built is still the “particular experience.”

Are the abstractions, rules, principles and common sense that
language-understanding requires merely wine plunge-and-squished
out of Experiential Grapes?

§ Time

What about abstractions having to do with processes or time? I
need to understand these also. “He ran over a nail and got a flat.
It wouldn’t have bothered him too much, but it was raining hard...”
You need to understand what happens when someone gets a flat.
There’s a procedure that involves getting out of the car; hence if it’s
raining, that’s bad news. How do you know the procedure?

How do you learn what goes into changing a tire, doing long
division, having lunch in a restaurant? We’re no longer talking about
identifying something (“it’s blue,” “it’s schizophrenia”); we’re now
talking about a process, a sequence of events. But at base, it’s all
the same.

AT research has gotten considerable mileage out of an idea called
“scripts”, due to Roger Schank of Northwestern University. (These
“scripts” are completely unrelated to the ones I discussed in Chap-
ter 3, which tell your Infomachine Actor what to do.) How do you
know what to expect when you go to a restaurant? Well, there’s a
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thing called the “restaurant script” that captures the procedure in
outline. First you sit down, then you look at the menu, then you
order some food and so on. People operate (it is conjectured) using
mental scripts like this to guide them; and you can also write down
a script and hand it to a program. So the program now understands
what happens in restaurants. It can understand stories in which peo-
ple go to restaurants. It’s a useful idea that Al programs have relied
on extensively.

But of course fundamentally a “script” is the same as blue. It’s
the same as wood, “schizophrenia,” Scandinavian girls. When you
squish a lot of restaurant experiences together, you get a script. In
this sort of squishing, we need to respect and preserve similarities
in the arrangement of events in time. If ten memories show more
or less the same sequence of events, those ten events must emerge
sharply, in the right order, in the resulting squish. And of course,
this blending-together has to work right despite the fact that some
memories may have extra events, others may be missing events and
SO On.

So what else is new? How do you know what a chair is, after
all? There’s nothing special about a “script.” To understand chair-
ness, you extracted a certain arrangement of objects in space from
a bunch of squished-together chair memories. The legs go there,
the seat over here, the arms over there... Extracting such patterns
from a bunch of related, particular experiences is all in a day’s work
for the humanware version of plunge and squish. It’s a neat trick
computationally—recognizing common patterns like this. But peo-
ple do it, and software can try.

And then finally, how do you learn syntax? How do you learn
what makes a sentence and what doesn’t? How do you know what
a verb or noun is, and where a verb or noun goes? By squishing lots
of sentences together, and extracting patterns—what other choice is
there? A grammatical sentence is a chairis a “script.” It’s a certain
structure: down there are the legs, then the seat, then the back;
you order food, then you eat, then you pay; first comes a noun,
then comes a verb... People learn to understand these structures
whether or not anyone ever explains them. And obviously they learn
to do so—what other choice is there?—by squishing lots of examples.
Which is also the way we come to understand blue, which is also how
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an expert clinician comes to understand schizophrenia, and how the
FGP program fills in the blanks as it listens to the description of a
case.

Make no mistake about it—this kind of pattern extraction,
squishing together a million declarative sentences and winding up
with a general structure—is largely unknown territory, in computa-
tional terms. It looks extremely hard. We don’t know how to do it.
But one thing is clear—

Whether we can build heavy-duty quasi-human versions, or we
limp along with our current weak imitations, plunge and squish are
important. We can account for a huge range of basic mental phe-
nomena using these little devices.

§ Why bother?

Understanding language was the problem, right? So what s the
plunge-and-squish approach to a solution?

Well, we might in principle attempt to build a simulated mind
starting with nothing but plunge, squish and emptiness. We start
feeding in “experiences”—pictures, stories, whatever; every time we
feed in something new, the program does a plunge and a squish
and tries to fill in the blanks. Tries to attach labels; tries to find
“meanings.” In the beginning, it fails every time. The database is
empty. Plunge recalls nothing. Squish reveals nothing. But we plug
on anyway. Add more “memories.” And eventually, things start to
develop.

The answer in short is: Feed lots of experiences into the mental
food processor.

That’s an answer?

This is, in a sense, the hardest way to approach the problem. Lots
of work is involved: many plunges, many squishes; and mountains of
raw material—raw memory stuff-—to work on. And this effort (no
doubt about it...) presupposes knowledge we don’t yet have: how to
represent and store database elements that are more like memories,
less like sterile, stylized shorthand; how to beef up plunge and squish
so that they can handle these richer cases—can extract temporal and
spatial patterns, and so on. These problems are all solvable, most
likely. But they are also hard. We need to do more research. See you
in ten years.
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Why bother? As I mentioned, a program might have all this
knowledge simply bestowed on it. You might sit down at your desk,
sharpen your pencil, open your notebook, flatten it down very care-
fully, and then compile a complete orderly list of the rules and prin-
ciples that define basic human knowledge. All of them. Then you
knock off for lunch. This effort requires the creation of a kind of
“mind map” that charts out all necessary rules, principles and cat-
egories, and their interrelations. A complete chart of the Cognitive
Heavens.

There is a formidable research group that is working on this
problem.? The whole thing may sound silly, but it is in fact heroic.
It’s just the sort of enterprise people dismiss as impossible (if they
don’t merely laugh at it) until some intrepid band actually sets out
to survey the stars, conduct a census or compile the Oxford English
Dictionary.

If it works, great. Many good insights about the structure of
knowledge have already emerged from this project. No complete
mind map yet; in time, maybe. But unfortunately: Even if the whole
thing works perfectly; even if that hugely nourishing ten-million-
course TV dinner pops out at the end, in a handy tin-foil tray...you
still need plunge and squish. Sorry. You simply cannot get along
without them. Any workable simulated mind—any mind with any
shot at real language understanding—must have plunge and squish.

Why? Because the process of bringing knowledge to bear on a
problem appears to be logically identical to the process of accumu-
lating knowledge in the first place.

In your mind particulars turn into generalities gradually, imper-
ceptibly—like snow at the bottom of a drift turning into ice. If you
don’t know any general rules, if you’ve merely experienced something
once, then that once will have to do. You may remember one exam-
ple, or a collection of particular examples, or a general rule. These
states blend together: When you’ve mastered the rule, you can still
recall some individual experiences if you need to. Any respectable
mind simulation must accommodate all three states. Any one of them
might be the final state for some particular (perfectly respectable)
mind. (Many people have been to Disneyland once, a fair number
have been there a couple of times, and a few, no doubt, have been to
Disneyland so often that the individual visits blend together into a
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single melted ice-cream puddle of a visit to Disneyland rule or script
or principle or whatever. All three states are real.)

Plunge-and-squish adapts to whatever you have on hand. If
there is a single relevant memory, plunge finds it. If there are sev-
eral, squish constructs a modest generalization, one that captures
the quirks of its particular elements. If there are many, squish con-
structs a sound, broad-based generalization. You may even wind up
with a perma-squish abstraction, if this particular squish happens
frequently enough and the elements blend smoothly together. It all
happens automatically.

You need plunge and squish.

One more point: Whatever stack of memories you have on hand,
you can cut the deck in a million ways. You can reshuffle it endlessly.
You can, if you need to, synthesize a general rule at a moment’s no-
tice. You see an asphalt spreader on the next block. You develop
an expectation: The next block will smell like [the smell of fresh as-
phalt...]. What happened—did you wrack your brain for that impor-
tant general principle, squirreled away for just such an occasion—fact
number three million twenty-one thousand and seven—fresh asphalt
usually smells like...?7 Or did you synthesize this rule by doing a
plunge-and-squish on the spot?

Clearly you can cobble together an abstraction, a category or an
expectation at a moment’s notice. You can create new categories to
order whenever they are needed. (Unpleasant vacations? Objects
that look like metal but aren’t?...) Any realistic mind simulation
must know how to do this.

Gotta have plunge; gotta have squish.

And so we arrive, finally, at two radically different pictures of
the mind. In the mind-map view, there is a dense intertwined su-
perstructure of categories, rules and generalizations, with the odd
specific, particular fact hanging from the branches like the occa-
sional bird-pecked apple. In the plunge-and-squish view, there are
slowly-shifting, wandering and reforming snowdrifts instead, built
without superstructure out of a billion crystal flakes—a billion par-
ticular experiences. New experiences sift constantly downwards onto
the snowscape and old ones settle imperceptibly into ice-clear uni-
versals, and the whole scene is alive and constantly, subtly changing.

It’s too soon to say which view is right. Both approaches need a
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lot more work. Both have produced interesting results. But if I had
to guess... I mean, if you forced me to pick a winner...

Implications I1I: The Mind Spectrum

Suppose we were to equip our FGP program with a “concentration
knob.” We can dial up any concentration setting we want, from
mazx down to 0. With concentration set at maximum, the program is
incapable of being distracted (by anything, no matter how interesting
and evocative). As we turn the level down, concentration lapses and
the program becomes more distractable. At zero concentration, the
program can’t keep its simulated mind on anything.

Meaning? After each squish, the program must decide whether
anything in the squish is worth speculating about—whether any-
thing in there is distracting enough to justify a speculative excur-
sion. How is the decision made? Although we haven’t mentioned
it explicitly, clearly there must be some threshold value stored in
the program somewhere. If some attribute-value combination in the
squish has an evocativeness higher than 17 SEU’s (standard evoca-
tiveness units—I just made this unit up, don’t bother consulting
your dictionary)...then it is evocative enough to justify a speculative
excursion.

Now: If we set this threshold to maz, the cut-off value becomes
infinitely large. Nothing is ever evocative enough to justify an excur-
sion; the program never does any speculation. It plods along like a
pack-mule. Nothing ever catches its attention. It never strays from
the straight and narrow.

As I turn “concentration” down, there are three related effects, all
tending to increase the program’s distractability. The program gets
lazy about squishing, the distraction tlireshold falls, and it develops
a tendency to continue an excursion instead of returning immediately
to home base.

Things still have to be “evocative” but (increasingly) I don’t care
with respect to what. If Ingrid brings Ingrid Bergman to mind, who
brings to mind a movie which brings to mind a particular evening
which brings to mind a notorious blimp accident on Piffel Boule-
vard...fine. Evocative with respect to anything is okay. Eventually,
as “concentration” continues to fall, squishing laziness sets in. I do a
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plunge, and merely grab any individual memory that has an evoca-
tive overlap with the plunged-in memory. (Squishing is a kind of
mental work. It requires concentration, of a sort.) And I develop a
tendency to prolong my excursions.

In the FGP program, getting distracted means performing a
plunge and squish, and then attempting to find a path back to the
original topic. But in principle, having done a single plunge-and-
squish, I might do another: I might allow myself to be distracted yet
again by another interesting possibility.

For example: In dealing with Ingrid’s likely political preferences,
I may be distracted by the matter of her possible Rifle Association
membership. I switch my focus to the rifle association, via plunge and
squish. But let’s say that, instead of returning immediately to Ingrid,
I can’t help but notice that a certain number of rifle association
members seem to list Piffel’s Extra-Heavy Lager as their favorite
beverage. Hmmmm, 1 say, that’s interesting—and I get distracted
again; this time, I focus on Piffel’s drinkers. 1 plunge-and-squish on
favorite-drink Piffel’s, and examine the resulting squish.

In principle this could go on indefinitely; but let’s say I call a
halt to the excursion at this point, and retrace my steps. Maybe
I can build a path from Piffel’s drinking back to rifle association
membership? Suppose I establish that, while being an Association
Member doesn’t mean you drink Piffel’s...being a Piffel’s drinker
means that you're very likely to be an Association Member. Fine.
Now I try to build a path home to Ingrid: Doing so could be easier,
given what I’ve learned about Piffel’s. If she’s a Piffel’s drinker, I'm
all set.

In short, straying outward into the mental countryside can be
useful, occasionally. As concentration falls, the program’s tendency
to stray increases. The lower the setting, the further it’s willing to
wander before it decides to come home.

With concentration set at zero, it never comes home. It merely
wanders from one evocative memory to another, completely ignoring
the human user and everyone else.

In describing the FGP program and discussing the radiology ex-
ample, we assumed implicitly that “concentration” was set fairly
high. Ounly attribute-value pairs that were strongly evocative with
respect to diagnosis could set off a speculative excursion; and such
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excursions could only venture a single leap away from home. But in
fact, an FGP program can execute at any concentration level.

Which leads us to several conclusions. First, two styles of think-
ing which are almost always treated as separate, unconnected points
are in fact merely the endpoints of a continuous spectrum. And
the existence of this spectrum suggests that, once again, all useful
thought depends on a highly significant dollop of non-rational think-
ing.

§ Thought Styles

The main business of a human mind is to string thoughts together.
What are the rules that govern thought-stringing? Starting with
some particular thought, how do you decide which thought should
be next?

The FGP program suggests that thought-stringing is a spectrum
whose two endpoints are concentration mazx and concentration 0. In
the first case, there is a starting point and a goal and every mental act
is designed to carry you one step further along the path that connects
them. We grab every memory we can find in the attempt to get to
the goal, but we never stray off the track by diverting attention from
Ingrid to the Rifle Association, much less to Piffel’s Drinkers. In the
second case, each thought merely overlaps some previous thought.
Two adjacent thoughts in the string have some common element, or
they are expressed in similar words, or similar sounds, or in terms
of similar images; or they may evoke the same emotion. The points
of overlap—the words or sensations or images that serve as pivots
between two thoughts—aren’t randomly chosen; they tend to be the
most evocative elements of any particular thought. You tell me “I’'d
like to know who the following person is apt to vote for in the up-
coming election,” and you describe Ingrid. I think “Ingrid—Ingrid
Bergman—Casablanca— DC-3’s—Cape Cod—whatever.”

The observation that two different thought-stringing methods ex-
ist has been traced back to Hobbes?; thoughts may be laid down like
stepping stones leading to a goal, or they may ramble without ap-
parent direction. Psychologists usually refer to the first as “problem-
solving” or “reasoning”; the second is more of a puzzle. In purest
form, it’s usually called free-association. Slightly diluted, it’s related
to what Freud called “primary process thinking,” and to what is
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sometimes called “divergent thinking” by cognitive psychologists.*
Experimental psychologists who study daydreaming are examining
another closely related topic.

Everyone understands what “reasoning” is for, but there’s very
little agreement on what purpose “free association” serves. At first
blush, it seems like a waste of time. Freud believed that the “pri-
mary process thinking” of dreams and waking fantasies represents
a pursuit of wish fulfillment. Modern experimentalists propose that
day-dreaming helps us anticipate contingencies, and gives us some-
thing interesting to do in the absence of anything better.’ (Amazing
stuff, no?)

But no one seems to doubt that you are either reasoning or you
are—dreaming, day-dreaming, fantasizing or whatever. The two al-
ternatives are mutually exclusive. And reasoning is what serious
thought #s. Granted, it’s hard to find any kind of standard definition
of “thinking.” But Robert Sternberg, a leading cognitive psycholo-
gist, is trying to tell us something when he writes that “Reasoning,
problem solving, and intelligence are so closely interrelated that it
is often difficult to tell them apart.” Cognitive psychologists often
equate intelligence and thinking—thus, for example, the emphasis
on “thinking skills” in their attempts to define intelligence. Reason-
ing and intelligence—hence reasoning and thought itself—are more
or less the same thing.

According to the FGP program, this is all wrong,.

These two thinking styles are not mutually exclusive: A continu-
ous spectrum connects them. At any point along the spectrum, my
thinking is partly straight-arrow reasoning and partly free-association,
in the sense that gray represents some black and some white mixed
together. “Thinking” is not the same as “reasoning.” Reasoning
is merely one endpoint of the thought-spectrum. Speculative excur-
sions are fundamental to useful thinking, and speculation is merely,
precisely and entirely a low-key, well-mannered version of free asso-
ciation. Turn up the heat, and speculation boils off into pure mental
rambling through the cognitive countryside. Turn the heat off en-
tirely, and you have “reasoning”—pure, “goal-directed” (a favorite
AI term) problem solving; boring, and in many cases futile.

You need both these thought styles to make a mind. Intelligence
requires both.
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The implications over-slosh the boundaries of this book alto-
gether. (Some of them are discussed in greater detail elsewhere.®)
But the moral of the story for software is, again: Forget “rational.”
There is more to human thought processes, hence there must be more
to any really good simulation, than focussed unemotional reasoning.
Much more.

Conclusions

All this to make a single key work. But now we can go ahead and
put our Mirror World together.



Chapter 7

Building Mirror Worlds

We’ve laid the foundations. Now we’ll build the building. But first,
let’s take stock.

Facts vs. Forecasts

A large bunch of software ideas have paraded gamely past the re-
viewing stand one-by-one, trumpets blaring; and by this point, it
may no longer be easy to keep them all straight. So here is a quick
summary.

Garden-variety infomachines are (of course) a fact of life. En-
sembles are also a fact: Programmers build and run them every day.
Linda is a fact; its presence continues (at least for now) to expand,
as a research topic and as a practical tool. The roping together of
networked computers into a single “hypercomputer” is a new fact—
esoteric stuff; but it’s such an obvious and compelling idea, and it’s
working so well in practice, that it continues to come on strong.

The World Tuplesphere is of course a non-fact. It’s a mere
forecast. But—some sort of integrated worldwide communication
scheme, based on persistent information objects, will eventually ex-
ist. That’s a forecast that is almost inevitable.

The Trellis as a working ensemble is a fact. Substantial proto-
types are up and running; they perform as advertised. The Trellis as
a daily tool is a mere forecast. The Trellis is still a creature of the
research lab; but it’s packed and ready to leave home.

The FGP infomachine is a fact, too: Real prototypes are up and
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running. Like the Trellis, it’s still a laboratory creature. Like the
Trellis, it will be ready to leave home soon. But the FGP infomachine
that leaves home first will be a simple, in some ways primitive version
of the system that further research will eventually produce. An FGP
machine that can cope with “emotion,” with full-fledged pseudo-
memories or with human language is a mere forecast. Of course, we
don’t need all this fancy stuff for a Mirror World. The FGP software
that exists today isn’t far from meeting all of our immediate Mirror
World needs.

These are the Mirror World’s ingredients—Trellises and FGP ma-
chines; above all, ensembles, and the software technology to build
them cleanly and support them efficiently. The raw materials are
in place. Could we build a full-fledged, industrial-strength Mirror
World tomorrow? No; more research is needed to fill some significant
gaps and smooth some rough edges. Are Mirror Worlds technologi-
cally plausible, right now?

Yes, they are.

If we had the luxury of devoting ourselves to full-time Mirror
Worlding, we’d have a complete prototype in a year or two. One way
or another, we or some other research group will almost certainly
have produced a full-fledged, large-scale Mirror World by the end
of the decade. Not a top-of-the-line model, necessarily; maybe not
decked out in multiple video feeds, near-instant total recall and a
few other nice features. These depend on further progress in the
world communications infrastructure, in computer design and in the
widespread dissemination of cheap parallel machines. All inevitable;
but it’s hard to say exactly when. So the Mirror World you get at
the end of the decade may not the Ultimate Mirror World. But it
will be a solid little performer.

End of the decade... or maybe sooner. But let’s be conservative,
okay? Aren’t we always?

One final step before we start. The Mirror World’s roots aren’t
exclusively technological. They reach just as deeply (or more so) into
the cluttered, compelling history of miniature worlds.
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The Urge...

to build microcosms is a fixture of cultural history. It’s so obvious
and so basic that you rarely hear it discussed. But let’s: This is a
necessary prelude to the building of Mirror Worlds. Microcosms are
like ensembles, so pervasive and varied and strongly colored, dressed
up in some many radically different ways, that you wonder (natu-
rally) how important the shared essence under the wrappings could
really be. So much of what people do falls into this category; but
let’s stop anyway, at a few interesting points.

Let’s start outside in the garden.

The Zen garden ideal is “reducing thirty thousand miles to the
distance of a single foot,”! and many Japanese gardens present ab-
stract, graceful sketches of vast scenes on little plots. A “box garden”
(near relative of the bonsai) is a whole landscape in a small con-
tainer. The Islamic Paradise Garden, more ambitious, compresses
“within itself a total reflection of the cosmos,”? and the four wa-
tercourses emanating from its central fountain are stand-ins for the
outward-flowing rivers of the Garden of Eden. Advice to the builders
of nineteenth-century French wintergardens: “A small brook should
wind through a carefully-chosen glade, alive with tropical fish, then
rush cascading between rocks, to spread out finally in a wide calm
basin surrounded by sand and gravel...”? Europe has explored the
abstract microcosm too, of course—the Gothic cathedral “is perhaps
best understood as a ‘model’ of the mediaeval universe.”*

Museums, exhibitions, toys: The King invited the populace to
the British Empire Exhibition at Wembley, which “reveals to us the
whole Empire in little...” The Perisphere was a huge concrete ball at
dead center of the 1939 New York World’s Fair. Visitors entered at
balcony level, and below them “Democracity,” a scale-model Utopia,
“symbol of a perfectly integrated futuristic metropolis pulsing with
life and rhythm and music,”® stretched out twinkling in the dark.
The history of toys is a history of microcosms: puppet theaters and
dolthouses and snowdomes, model railroads and toy soldiers, music-
boxes with dancing figurines and goldfish bowls with tiny divers on
blue-gravel floors. The capital of this world is The Hague, where a
park called Madurodam reproduces a whole city in loving detail on
a one-acre plot. No child who sees it ever forgets it.
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All this is peripheral to the main locus of microcosmic creativity
through the ages, painted and sculpted art. The intriguing sensation
of viewing a small world depends mainly, I think, not on the size
of the scene before you but on its self-containment. The world of
Keats’s Grecian Urn, the miniatures of life from season to season in
the opening calendar of a medieval Book of Hours, Vermeer’s view
of Delft or (for that matter) of any specimen of domestic silence—all
these are microcosms in the broader sense. And there are plenty
of literal microcosms, too: I'll stop briefly at three of my favorite
spots, three outlying points that are fascinating for their microcosmic
fanaticism...

The painterly curiosity called a peep box is “apparently a Dutch
invention.”” (The microcosmic Dutch again.) A box with peepholes,
painted on the inside, designed to create the illusion when peeped-
into of a miniature three-dimensional space. “A peek through either
hole of the box presents a delightful surprise: we experience an almost
perfect illusion of standing within a seventeenth-century interior.”®
That weird production of Marcel Duchamp usually called the Etant
Données is a beat-up old door with (again) two peep holes. A visi-
tor who peers in “will see a scene he is not likely to forget...a wide
open space, luminous and seemingly bewitched”®-—a sprawling nude
holding a small gaslamp; a waterfall. And Joseph Cornell’s famous,
haunting boxes. Productions mainly of the 1940’s and 1950’s, they
are miniature dreamscapes in small wooden containers, the moodiest,
most brooding-evocative art of the twentieth century.

And finally there is that purest, simplest microcosm of all: the
Golden Orb, symbol of kingship.

What do we learn from this whirlwind tour? Merely that this
“microcosm” category includes some of mankind’s most compelling
artifacts. And this is the stage onto which the Mirror World is dif-
fidently preparing (as it waits nervously in its dressing room...) to
step. In claiming to be, in one sense, the ultimate microcosm, it
knows that it is bound to be judged not only as technology but as
art.

But one more question, a crucial one: Why are microcosms so
compelling?
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Why?

Why are people drawn to microcosms? After all it could have been
otherwise. In some other universe somewhere, people might not be
drawn from childhood to create worlds in miniature. But in our
universe they are so drawn. Why?

Two reasons, one small and one larger—

Small: In the act of recreating a large scene on a small scale,
I heighten its intensity, in the sense of focusing a beam of light. I
experience it more vividly. And human beings seem to enjoy vivid
experiences. As you may have noticed.

Can you imagine a Vermeer at the scale of Rubens? His sharp
concentrated quiet—the whole room draws in breath and pauses—
couldn’t exist on a larger scale. I must be able to see and comprehend
the whole thing in detail at once; it must be focused onto one nar-
row patch of space. Indeed the world’s few (relatively) large-scale
Vermeers are mainly failures. Vermeer’s fascination with the camera
obscura is perfectly in keeping with an urge to concentrate and inten-
sify. This microcosmic Intensification Urge is something that you can
hear, too—in late Beethoven, for example. Not merely in the prolif-
eration of intense short movements, but in the searing point-focus of
the musical thinking itself onto a single line. When I twirl the focus
setting to maximum-sharp, the harmony is absorbed and disappears:
consider the opening movements of the last piano sonata, or the last
symphony, the Credo of the Missa Solemnis; the burgeoning of fugue
themes everywhere.

But there’s also a larger, more inclusive answer. People build
microcosms to find topsight.

Topsight is an elusive goal. The simplest way to get it—the im-
mediate, obvious, child-like way—is to recreate a big scene in little.
Then I can soar above it—tower over it; literally see the big picture.
Naive, childlike, effective. Microcosms are satisfying because they
give you the sense of comprehending the whole thing, of understand-
ing how the parts fit together and what it all means.

Don’t mistake this topsight search for a mere intellectual drive.
It’s an emotional quest too. Now, towards the end, it’s time to come
clean about this phenomenon. When you’ve achieved topsight you
are, yes, looking down at something. You hold it in the palm of your
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hand. It will come as no shock if I assert that people take satisfaction
in the sense of mastery. The barely visible sliver of double entendre
winking out from underneath this word mastery—of the piano? of
your enemies?—makes it clear how largely our grandest accomplish-
ments reflect the innate urge to dominate. This is sobering. What’s
reassuring is to reflect that, after all, the ugly inclination that is
responsible for fistfights and world wars also accounts, ultimately,
for Newtonian mechanics. The pursuit of topsight is intellectually
compelling because it is emotionally compelling.

I’ve claimed that Mirror Worlds are a development of large po-
tential importance. This is why. True, they have appeal of a purely
technical kind: They’ll make the world run better and smoother.
Operating your world without them will seem, in retrospect, as ap-
pealing as running your car without oil. But what lends them a
uniquely potent potential is the submerged iceberg mass of their emo-
tional appeal. This sort of phenomenon is hard to picture before the
fact. But my guess is that, by offering topsight to the millions (not
merely to the visionaries who have monopolized it in the past), they
speak directly to the large, perpetually unsatisfied human craving to
understand what’s going on, to see things whole. For “reasons” that
transcend the rational, they will be hard to resist.

They scotch that great primal modern fear, to be entangled by
the sucker-arms of the modern institutional state, and all those pri-
vate mini-states within which (live insects in congealing amber?) we
hang embedded. They offer penetrating vision; they repair the shat-
tered whole. Fittingly: The ultimate Kaftka Killer is the last word in
engineering, a really nice piece from the workshop of Technological
Man.

The Basic Design: One More Software
Architecture

In principle there are lots of ways to build a Mirror World. [ will
describe just one—the one we’re using (at least for the time being).

This architecture is a bit subtle, because it emerges when two
separate designs are superimposed. Imagine a stock-exchange trad-
ing floor surrounded by a balcony. Or a legislature, with a gallery.
The action takes place down there, and you watch from up here. A
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Mirror World works this way. The action takes place in the so-called
Agent Space. The onlookers crowd around on the balcony.

But they don’t merely hang over the railing, taking it all in. The
“balcony” holds several odd little structures, and each onlooker is
inside of one. An Agent Space is complicated. The stuff going on
down there has to be organized, or it won’t make any sense. The
structures on the balcony exist to impose organization. Each one
creates a different sort of organization-—a different viewpoint. One
Mirror World might give you a geographic viewpoint, a personnel
viewpoint, a financial viewpoint and whatever; for each one, there’s
a corresponding structure on the balcony.

The shape of each structure (each “recursive free-form doll-
house”) captures the shape of one viewpoint.

I need to explain, in short, Agent Spaces, recursive free-form doll-
houses, and their cross-relationships.

The Agent Space

Agents are the players on the Mirror World stage. They make ev-
erything happen. They react to information and synthesize it, dis-
play it, study it, investigate it, double-check, analyze and digest it.
Agents snoop for you; other Agents guide you through the Mirror
World; other Agents do the main, impersonal business—looking at
information, answering questions, setting off alarms, painting the big
picture.

An Agent is merely an infomachine, of a special kind. (Unlike
a Trellis element, Agents are infomachines in the direct and sim-
ple sense.) The set of all Agents is a dynamic ensemble. Dynamic
because new Agents are created and old ones disappear all the time.

A decent-sized Mirror World is likely to have thousands or tens of
thousands of Agents in play around the clock. Inside a vast “Agent
Space” they hang suspended between two information worlds, the
Chronicle Streams overhead and the Data Fields beneath. Data gen-
erated in the outside world course through the subterranean Data
Fields. The Agents themselves build the Chronicle Streams in re-
sponse. Up above, an endless rush of notes, files, records and inter-
Agent chatter recedes into the past, stretching backward to the very
beginning of this Mirror World, fermenting into archives as it goes,
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grist for an experience-extracting battery of FGP machines. Down
beneath, a forest of Trellis machines (like a field of oilpumps) moves
data upward from subterranean reaches into the Agent Space. Agents
consume data, drawing it upward through the Trellis fields; they gen-
erate new information and release it high overhead into the chronicle
streams, whence it flows backwards into history (or actually stands
still, while the Mirror World voyages forward through time).

Agents may extend their tentacles downwards or upwards or both.
Or their dendrites if you prefer, on analogy with the information-
gathering offshoots of neurons. These dendrite-tentacles are the in-
formation channels that connect an Agent to the Mirror World, and
indirectly to the world beyond. Downward-reaching tentacles suck
up information. An upward-reaching tentacle may read data from a
chronicle stream, or release new data. Some Agents reach downward
only, some upward, some both. We can use this fact to impose a loose
hierarchy on the Agent Space. In the bottom level are downward-
only Agents, in the top level upward-only ones; the others float in
the middle space.

The Agent hierarchy isn’t like a Trellis hierarchy, though. Unlike
the elements of the Trellis, Agents never talk to each other directly.
Every dendrite stretches downward into the Data Field, or all the
way upward to a chronicle stream. Thus the Agent Space is really
only one Agent thick. And it starts to look (ever so slightly) like the
retina—Ilike that one-cell-thick middle layer of neurons that hang be-
tween the outer data-grabbing light-catchers and the inner ganglion
cells, gateways to the brain. Like Agents, their mission is to pass in-
formation judiciously from the outer world to the inner. Like Agents
they form an ensemble, all work in parallel; like Agents they talk
only to the alien layers above and below them, never to each other.

But—the resemblance is mainly pictorial. You might say it’s
merely anatomic, not physiological. And truth be told, it’s not all
that close anyway. But why not grab any image that can help illu-
minate our structures and our thinking?

§ The Trellis Fields

Listless data trickles, placid data brooks and fast-pounding data
rivers flow beneath the Mirror World’s surface. A forest of Trellis
machines taps into this data world. But: A full-blown Trellis is a
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Figure 7.1: The Agent Space.
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Figure 7.2: A retina, by way of comparison: after Mountcastle.1?
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highly specialized piece of equipment. When you're dealing with a
bunch of related, fast-flowing streams, a fancy Trellis is just the thing.
But Navies need cruisers, not just battleships. In fact they need a lot
more cruisers. Lots of important data arrive in sluggish trickles. Any
data source that depends on human data-entry is a sluggish trickle.
An occasional Mirror World may depend only on such sources. Most
Mirror Worlds will depend on them to some extent, at least.

Every data pump is a Trellis, nonetheless. Of course, a Trellis
might consist of a small handful of elements or (in the degenerate
case) exactly one.

For example: In a hospital Mirror World, the initial data-entry
session that accompanies every patient admission is a vital data re-
source. But obviously, we don’t need an elaborate Trellis to handle
it. One element might deal directly with the receptionist at her com-
puter terminal; a lone “high-level” element might convert the stuff
she types into standard Mirror World format. That’s it: a two-
element Trellis. Humans typing in their characteristic (from a soft-
ware perspective) frozen-in-time fashion are ubiquitous, and simple
one- or two-element Trellises will be likewise.

Of course, a hospital that has lots of slowly-typing humans is
likely to have plenty of sensors and data-gathering monitors as well.
You need big Trellises to handle these.

Why call the little ones Trellises at all? Qbviously, in the interests
of imposed uniformity—espalier. Agents can deal with every data
source in the same way. It may be a single trickle or a hundred
raging rivers side-by-side, but whatever, it will be managed by a
Trellis whose elements respond to the same commands in the same
ways all the time.

§ Dealing with Data

A downward-curling dendrite is precisely a read probe. Agents
stretch read probes downward onto whatever Trellis-field elements
they care about. A state-government Mirror World may have a trans-
portation network Trellis. A visitor might feel the urge to project this
morning’s traffic-congestion information onto a street map of what-
ever corridor he travels. His Agent sends a read probe downward to
the appropriate Trellis element, sucks up data and projects it onto
the specified map. A financial-markets Mirror World has a Trellis
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field with lots of current-prices information; you might want to know
when a certain bunch of prices moves in a certain way. Your Agent
sends probes downward to the appropriate Trellis field elements. And
S0 on.

In these and similar cases ad infinitum, Agents you install are act-
ing exactly like ad hoc Trellis elements. That’s fine. We’d like to get
as much mileage as possible out of every structure and concept in the
system (so that we can keep our library of basic, underlying struc-
tures small); and in fact, the Trellis field blends smoothly (almost
imperceptibly) into the lower reaches of Agent Space. But Agents,
even this kind, aren’t exactly like Trellis elements. For one, they
don’t speak Trellis-lingo. They don’t need to respond in the agreed
fashion to upward-percolating data and downward-flowing queries.
For another, the Trellis fields are public and some Agents are pri-
vate. A Mirror World’s designers supply a set of data sources for
public use. They also provide a basic (and probably large) set of
Agents; but users install private Agents to suit themselves as well.
So they must be allowed to alter the Agent Space—to set up new
Agents and remove old ones—but not the Trellis fields; the fields are
a quasi-permanent resource that any user must be able to count on.

The Chronicles

Communication within the Mirror World flows through the chronicle
streams. To explain how they’re used, it’s helpful to define a term:
To hang on a stream means to sit around waiting for a new element
to be attached to that stream. When a new element is attached, you
wake up and take a look at the new element.

Agents may hang on a group of chronicle streams (like a spider
with a group of web-strands underfoot). Whenever something shows
up on any of those streams, the Agent wakes up and checks it out.

This “hanging on” procedure is in concept ezactly the same as a
Trellis element’s relationship to its inferiors. A Trellis element waits
until any one of its inferiors has produced something new; then it
wakes up and recalibrates its own view of things. We’ve merely
translated this Trellis idea into a different setting. Here, Agents are
hanging on passive (though constantly growing) streams of stuff—

Everything that’s interesting, everything you might want to have
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Figure 7.3: An Agent, hanging on several chronicle streams.

a record of, ever category of inter-Agent chatter has its own chronicle
stream.

The hospital Mirror World (for example) has a chronicle stream
for every patient in the building. In fact, it has a stream for every
patient who'’s ever been in the building. A patient’s complete history
(so far as this hospital is concerned) appears in his chronicle stream.
Whenever “something happens” to this patient, a new entry appears
on the stream, deposited there by the appropriate Agent.

Whenever an Agent notices something that some other Agent
might be interested in, it drops a note in a stream. Someone de-
cides (let’s say) to prescribe Propiffelin 250mg for patient Fruitford,
the prescribing clinician makes a routine note on a computer ter-
minal. Fruitford’s chronicle stream is updated automatically. Let’s
say that Fruitford is a cardiac patient. The Agent who routinely
follows the status of all cardiac patients wakes up and takes a look
at the Fruitford chronicle. This Agent may have been notified that
Propiffelin is an “interesting” drug because, let’s say, some clini-
cians believe it to be obsolete—strictly less effective than some other,
newer drug. Because Propiffelin is “interesting,” there is a Propiffelin
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chronicle stream, and the Cardiac Agent drops in a note: Propiffe-
lin has just been prescribed for patient Fruitford. Another Agent,
created specifically to track the use of this drug, is hanging on this
stream. It awakes and checks out the situation. It may conclude that
this prescription is a mistake. What to do? Generate a message to
that effect, perhaps, and send it to the resident on duty. (There’s a
chronicle stream to hold his incoming electronic mail.)

Lots of Agents (or none) might hang on a single chronicle stream.
If Fruitford’s problems fall into several categories, several Agents
might routinely check every development in his case. A medication
stream might be of interest to many Agents. Some of them might
have particular opinions about the drug’s applicability. Others might
be passively monitoring its use, for purposes of a survey of some kind,
or reordering. Likewise for tens of thousands of other streams in the
system.

A chronicle stream, by the way, is merely a bunch of tuples. Each
element in the stream is a separate tuple. These streams are built and
maintained in exactly the same way as any other sort of information
structure in tuple space.

§ Forgetfulness

Each chronicle stream has a forgetfulness threshold.

Forgetfulness allows the system to blur an older stream entry
into a newer one, once the distinction between the two is no longer
important enough to maintain. Each stream entry is marked with
its time-of-creation, and so age can figure in the forgetting process.
As of today, I might wish to remember that Fruitford got aspirin at
exactly twelve, four and eight o’clock yesterday. Five years from now,
it might be enough to remember that within a given two-week period,
aspirin was prescribed frequently. (No? You want to remember each
aspirin prescription forever? Fine, no problem: Determining the
forgetfulness threshold is up to you. “You” meaning “whoever is
responsible, ultimately, for creating this stream.” Of course, the
Mirror World Management reserves the right to level surcharges on
users who create “abnormally many” total-recall streams...)

In the limiting case, I have no long term memory at all. I may
be interested in a stream’s most recent entry only. So I dial in total
forgetfulness, and every time 1 drop a new entry into the stream, the
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previous one evaporates into a blur. Strictly speaking, the stream
has two entries at all times: the most recent entry, plus all previous
ones mushed together.

Now, up on the balcony...

The Recursive Free-Form Dollhouse

Imagine a structure that you can wander through, but also “deep
into” and back out of. The RFF dollhouse consists of a collection
of floating rooms. You can wander from one room to the next. But
rooms may have other rooms not merely adjacent to but inside them.
I can walk through a succession of rooms, business as usual. Or I
can enter one room, dive into one of its sub-rooms, and then one
of its sub-rooms and so on. In the second case, 'm not progressing
through the structure. I'm journeying deeper and deeper into it.

Each room at the top level represents a major piece of the Mirror
World. A piece may be geographical or conceptual. (A building; a
state; the budget; the staff.) Inside a major piece there are less-major
pieces, in the form of nested rooms.

It makes sense to think of a recursive dollhouse in concrete terms,
as a structure in (imaginary) space. But it’s not the kind of structure
that can be captured in a blueprint or map or any physical model.
It’s an “impossible structure.” It’s built up out of spaces-within-
spaces—but no matter how deeply I penetrate, everything is the
same size and scale. And I can dive to the deepest room and, no
matter how far into the structure I may have traveled, I can always
create a new room right there; and dive deeper still.

A recursive free-form dollhouse is the Mirror World’s stage set.
Its layout captures some viewpoint on the action. When you shift
viewpoints, you shift from one dollhouse to another.

§ Dollhouse Furniture

Dollhouse rooms are furnished with “televiewers” (or whatever you
want to call them). FEach televiewer is wired to some chronicle
stream—it displays the stream’s most-recently-added element. You
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Figure 7.4: Recursive free-form dollhouse: partial floorplan.
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can wire as many televiewers as you like to a single stream. And so
the same piece of stream may appear in many separate roles, within
many separate viewpoints, simultaneously.

§ Viewpoints

Consider our hospital Mirror World, for example: A personnel view-
point might be the most logical and important perspective. The front
lobby (the dollhouse room you enter first, off the street) contains one
sub-room for each major group of people: say patients and staff. In-
side the “patients” sub-room, there are sub-rooms corresponding to
each major category: maternity patients, orthopedics patients, psy-
chiatric patients and so forth. Inside “maternity patients” is one
“room” for every individual. The room has a televiewer focussed on
this patient’s stream.

In a city Mirror World, geography is a natural viewpoint. The
entrance-hall is pretty crowded, most likely. It might contain a sepa-
rate sub-room for every building, road, bridge—every separate “ob-
ject” in a comprehensive map. (The subdivision is arbitrary in some
of its details—one room per street, one room per block? It’s up to the
“viewpoint designer” to make these decisions.) Most of those rooms
probably contain no sub-rooms, and only a single televiewer focussed
on this object’s stream. Most such streams will be pretty slow and
sparse. (They might acquire a new fire-inspection certificate once
a year, a new set of allowable rent-increases every now and then...
not much.) But some objects are full of sub-rooms. In a large pub-
lic building, we might track the history of many rooms separately.
Some buildings—hospitals, for example—contain entire sub-worlds.
Such rooms are equipped with “walk-through televiewers”—look at
the screen, and you enter an entire separate Mirror World.

§ Public vs. Private

The dollhouses are public space. Customers may occasionally design
their own viewpoints from scratch, but there’s no point in building
more than one detailed geographic dollhouse, personnel dollhouse
and so on. But many Agents, and the chronicle streams they write,
are private. The typical dollhouse room may hold some televiewers
that are focussed on private streams. For example, you're looking at
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the trading floor in a market of some kind, and public Agents are
reporting on current prices, trends and so on. But private investors
may have set up their own Agents as well, designed to run proprietary
analyses over the market data. The convenient place for those private
Agents to report is right here, in the trading room. How do we make
sure that private Agents stay private? That visitors see only what
they’re entitled to see?

For that matter, how do we make sure that visitors see anything?

¢ The Roving Camera Crews, and Keeping Secrets

When you enter a Mirror World, you enter with your cameraman by
your side.

Your cameraman is a highly-trained professional, as infomachines
go. He is the London cabdriver or Venetian gondolier of informa-
tion machinery. He (all right, it) produces the image that you will
see on your screen. When you enter the system, you enter with
a single cameraman. But you might well occupy several rooms at
once (that is, display many parts of a Mirror World on your screen
at the same time). Wherever you go, you’ll want to retain some
contert—some view of the surrounding countryside, so you don’t get
disoriented or lost. Luckily, your cameraman can reproduce himself
instantaneously. (I've discussed how infomachines can create new in-
fomachines). You start out with an individual, but you may quickly
amass a whole crew. When you leave, your cameramen disappear,
except for the main guy, the one you started with; he stays around,
ready for your next foray.

This Chief Cameraman is a crucial figure in the Mirror World
landscape. He knows all the technical details about the particular
computers through which you customarily enter this Mirror World.
He knows how their displays work; he knows which machine you’re
using at the moment, so he can make the picture come out right. Far
more important, he knows who you are. He knows precisely which
televiewers belong to you; which are public; which are private, but
you're allowed to see; and which you are not allowed to have anything
to do with.

A cameraman is (in short) nothing less than a respected Agent of
the State. A civil servant. He looks out for your interests devotedly.
But he protects the public interest as well.
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So, what if you lose this state lackey—throw out your standard-
issue cameraman and build your own? Forget it. It won’t work. A
major part of the Mirror World’s security apparatus is concentrated
right here. You can’t “copy” a cameraman or change its script; you
can’t forge a cameraman’s license. And only a cameraman with a
valid license can show you information from a Mirror World. Tech-
niques are available that allow you to build this kind of highly pro-
tected infomachine. They need further development in some respects;
but the basic methods are in hand.

Many Mirror Worlds will contain a good deal of confidential in-
formation. Professional thieves will certainly be attracted. So will
the typical undergraduate computer science major, and high school
students who have successfully combined good technical skills with
outstanding personal obnoxiousness. Evidently there are quite a few
of them. Lucky us. Anyway: Can we guarantee absolutely that
any attempted info-theft or vandalism will fail? Unfortunately, no.
We can’t make such guarantees about any information-storage sys-
tem. Not even those top-secret files handwritten by ultra-trusted
secretaries (since quietly executed) stored by the CIA within lead-
and-kryptonite vaults sealed with Crozy Glue and deposited at the
bottom of the Marianas Trench are absolutely safe, unfortunately.
Can we guarantee, though, that if the issue is taken as seriously as it
deserves to be—not sloughed off or saved for last, when implementa-
tion time approaches; that if time, money and effort are invested in
protecting the security of information within a Mirror World—that
such information will be just as safe as it would be anywhere else?
Just as safe as it would be (for example) on paper, locked inside a
file cabinet somewhere? Yes, I think we can guarantee that much.

§ So: What do the cameramen do?

They show you pictures.

But this is no easy to task. The televiewers don’t have any-
thing like pictures on them. Televiewers show you merely data from
which you can generate pictures, if you choose. Rooms are equipped
with blackboards that explain how each televiewer’s display might
be turned into some part of a big picture. In a City Mirror World,
for example, the front lobby of the Geography Viewpoint has loads
of televiewers, and blackboards spelling out the shape of a city-wide
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map, and other blackboards that explain how each televiewer’s data
might be integrated into the big map. That’s all—rew material for
a picture. The cameraman comes up with the actual picture.

This work gets done, by the way, on you own private computer.
Most parts of a Mirror World live somewhere else, on public comput-
ers that you reach via network. Picture-generation, though, is the
responsibility of your own desktop machine.

§ Building Dollhouses

A dollhouse is a nest of tuple spaces. The front lobby is the outer
tuple space; the rooms it contains are also tuple spaces, nested inside
the outer one, and so on. Each televiewer is an infomachine plus a
tuple. (The tuple is the “screen” and the infomachine is the stuff
inside the TV set, so to speak: The infomachine keeps the tuple
up-to-date.) The blackboards floating around inside each room are
tuples.

A tuple space, notice, has exactly the right characteristics for
dollhouse purposes. It is an endlessly stretchable envelope: We can
toss in new objects or remove old ones whenever we like. This is vital.
Cameramen cruise from room to room, swelling one room’s popula-
tion and diminishing another’s as they go. When visitors create new
Agents and toss them into the thick of things, new televiewers are
created too, and a room’s population changes. Sometimes Agents die
(they’re created to monitor a set of stock prices until you make some
decision, say). Their televiewers disappear—and for that matter,
whole rooms may vanish. Stretchability is essential.

Tuple spaces have another attribute that is crucial for dollhouse
building. Many infomachines may safely mess around with one tuple
space simultaneously. One informachine might be tossing something
in, another might be hauling something out, several dozen might
be reading tuples and a few more might be modifying tuples (by
withdrawing and then re-creating them); and it all works out okay.

For Example

Consider a Mirror World that captures a fair-sized city. A particu-
larly huge and complex example; obviously I'll merely sketch some



For Example 199

possibilities here. There are smaller, better behaved examples (lots).
But let’s not edit out the sheer vast complexity of the kind of project
we're discussing.

A City Mirror World is a an ensemble in its own right, but it
can (and should) serve as an organizing framework for many other
Mirror Worlds as well. Large institutions like hospitals, universities
or stock exchanges are prime candidates for Mirror Worlding. But
if they are located physically in Greater Metropolitan Piffelbourg,
I’d like to be able to reach those Mirror Worlds via the Piffelbourg
Mirror World.

§ What do I see...

when I enter this Mirror World?

The “geography” viewpoint is my logical starting point, and no
doubt the most heavily-used city viewpoint by far. So let’s assume
that we have entered the Geography Dollhouse. When I tune in,
I see an intricate picture: a map of sorts, showing the whole city.
“Of sorts” because I’d rather not see a conventional flat map. An
axonometric drawing showing the general shape of every building
would be nice. But of course we don’t want a fixed, static display:
We should be able to swivel and rotate the image, to get a better look
at regions that might be obscured in the initial perspective. And we
probably won’t be able to fit the whole map onto the screen at an
adequate level of detail; it should be easy to roll the picture back
and forth, and to zoom in and out.

Now, how much information can we superimpose on this map?
Plenty. We accept the fact that the resulting image will be dense and
complicated. But if we design things decently, it won’t be confusing.
(Actually we may be pleased with the fact that it’s dense and com-
plicated. Edward Tufte claims that “we thrive in information-thick
worlds...” Images that are dense with information “are an appropri-
ate and proper complement to human capabilities.” “High-density
designs also allow viewers to select, to narrate, to recast and person-
alize data for their own uses...”!1)

To start, we’ll choose a goodness-badness color scheme. The
colors themselves aren’t terribly important (though not irrelevant
either); but the existence of the scheme itself is important. The
top-level, front lobby display will attempt to show you the relative
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goodness of all sorts of things. In compacting the “goodness” of a
complex system into a single gross estimate, all sorts of data are
thrown away. But at the top-level, we don’t care. Our goal at the
top level is overview. Quick sketch.

So, let’s say that blue is good, red is bad. These are reasonable
choices because they give you a nice, intermediate range of blended-
together purples. We'll use our color scheme in the obvious way to
convey traffic information on the map. Empty streets are colored
blue. They turn red as they get crowded.

We can annotate the map with other kinds of simple, geography-
based information. If there are fires, water-main breaks, demon-
strations, snowy or icy or flooded roads or presidential motorcades
underway, the map shows their whereabouts.

Many parts of the map have “performance meters,” using the
blue-red color scheme, or superimposed notes (in the style of names
or labels on a conventional map). In the simplest case, a single
blue square means “doing okay.” Often three little squares (stacked
vertically, like a traffic light) will be useful. The top square is “per-
formance right now,” the medium square is a rolling performance-
average over the last few minutes, hours or whatever seems appro-
priate; and the bottom square is a longer-term trend.

“Performance”—meaning? It depends. These meters measure
radically different things in different contexts. They are designed
to capture some (Agent’s) quick, intuitive notion of “How well is it
going?” The stock exchange has a three-square meter: Good means
“prices up.” The medium and bottom squares give trends for the last
few hours and few days. The airport’s three squares measure average
departure delays right now, over the last hour (middle) and the last
week (bottom). Every school has a performance meter. We dispense
with the top square and rely on the bottom two: “Goodness” is
defined (say) as “average reading levels at this school, versus the
national average.” The middle square tells you about this year, the
bottom square measures the last five years. Pretty reductivist, isn’t
it? To reduce a school’s performance to a couple of little blobs? Yes,
it certainly is. If you don’t like it—avert your eyes. But the public
is entitled to this kind of information.

In many cases, we’d like a little array of squares instead of a
single column. Each station on each bus line or subway (or monorail
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or whatever you’ve got) might have two columns, three squares each.
The first measures on-timeness (over the last half hour, half day, this
week...); the second measures crime at this station (if you should
happen to have any crime in your city). Parks have two-column
meters, measuring cleanliness and crime. We can reduce all sorts of
city agencies to little two-column displays. Column one: Are you (at
least) keeping up with the job? (How long are the lines at the motor
vehicles bureau?) Column two: Is your spending within budget?
Bridges and tunnels have two-column displays, for traffic load and
physical condition. And so on.

In every case, these color blobs are mere “executive summaries,”
quick sketches—blatantly incomplete. You are welcome to dive
deeper. But there is value in a well-executed quick sketch.

For every performance meter, there’s an Agent whose job is to
maintain it. Performance-meter settings (goodness or badness) are
written to chronicle streams. TV’s in the RFF dollhouse are tuned
to the streams. (If I don’t like some performance meter’s behavior,
by the way, I can always build my own Agent instead.)

Little blobs of color can’t be the whole story, of course. City
Hall has a small superimposed billboard (Snoutbrook hearings, 3:00
this afternoon). Other government buildings likewise. (Police com-
missioner press conference, in progress.) Museums and theaters can
advertise their current shows in a word or two.

(What about shops and department stores? Can they advertise
their current Spectacular Discount Events? Like hell, not while I'm
Piffelbourg Mirror World Commissioner. You do whatever you want.
But I’'m not anti-commerce—how’s this? For a modest fee, we’ll label
a store’s image with its name. Then, if Macy’s wants to provide its
own Mirror World, fine: We’ll be happy to let customers step directly
from public Mirror Worlds into private ones.)

The map is ringed with smaller windows that summarize gen-
eral information. There’s a weather window, and a crowds window:
About how many people, how many cars, how many delivery trucks
are in town today? How many browsers are roaming through this
Mirror World? We use the red-blue scale on the window borders as
a quick shorthand. (Is the weather forecast bad or good?) There’s
a travel guide and a commercial infoservices window (see below). If
I’ve installed personal Agents at the top level, they’ll report in their
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own windows: Perhaps they’ll show me some stock market numbers,
current heating-oil prices, estimated travel time as of right now from
here to somewhere else, the level of criminal activity in my neighbor-
hood. And if I'm a sufficiently public-spirited fellow, I may set up my
City Watch Agents right here, in the front lobby. My City Finances
window, my School System window, my Local Economy window...

Wherever you can dive deeper (into city hall, a hospital, an air-
port, a bank or university or museum or courthouse), the map has
some indication, say a little green X. When I move my cursor to the
X and grab the altitude control, I dive into a new sub-realm.

§ The Public Infomarket

The front lobby’s role is to show you a high-level picture of the whole
thing. It plays another, related role as well: It’s a natural trading
floor for a vast range of infoservices.

There are several different kinds, and they blend smoothly to-
gether.

There are public information sources: Agents designed to answer
my questions; also, real people.

I might need personal, custom-tailored information services as
well. 1 can build my own Agents, using the Mirror World’s Agent-
building menu. Or I can buy an Agent from an infoservice company.
And again, there are those “real people” hanging around on the
sidelines. Using a Mirror World, I can find and connect to a private
info-supplier so fast and so painlessly that a whole new breed of
short-order consultants might easily leap into being.

Information about train schedules? I mouse over to the train
station and dive in. Inside I'll find a “schedules” corner. I can
also find out whether trains are running late, the fare, typical crowd
levels—will I get a seat? But I may need to ask a specific question; I
mouse over to the information kiosk and type out the question, using
my ordinary computer keyboard. Somewhere or other, there’s a real
person manning this (imaginary) kiosk. My question appears on his
computer screen. He types a response. The response pops up on my
screen. If I insist, I can even place a call to this fellow, by mousing
over to the appropriate little box.

If I need information on library hours, car registrations, school
schedules, whatever, I use the Mirror World to find the source and
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Figure 7.5: Piffelbourg Mirror World: front lobby, geography view-
point. An abstract sketch, merely the general idea. This is a fairly
close-up, zoomed-in view. When you zoom out you lose some detail,
but you see a greater portion of the city. Zoom all the way out and
you see the whole thing.
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make the connection. I mouse over to the library or the school board
and dive in. Can’t find them in the display? Mouse over to the “travel
guide” window and describe what you’re looking for. Still can’t find
it? Type out a note to the highly-trained (unfailingly courteous...)
Mirror World staff, and they’ll get right back to you. The transition
between software and human info-suppliers will be smooth, effortless
and sometimes (often?) imperceptible.

Let’s get serious. Suppose you actually care about this city. Sup-
pose you’d like to know something about (say) the state of its fi-
nances, its crime rate, its public school system.

City finances can be tricky. With the advent of Mirror Worlds,
the data are all out there for you, if you can figure them out. You've
got up-to-the-minute numbers on city obligations, revenue projec-
tions, money flowing in, the value of city property and so on, ad
infinitum. The details will be utterly boring to most people, but—
what does it all mean? Are we moving in a healthy direction? Are
we running a deficit? Is it getting worse or better? Are revenues
and spending moving roughly in tandem? No?—then, are we getting
more or less out of wack? You might buy an Agent to track this sort
of thing, or a public-service organization might build one and hand
it out free.

(Most likely there is a whole separate viewpoint devoted to fi-
nances, of course. If you wander inside, you might see a stack of
windows ranging downward, as if—in a sense—you were looking at a
Trellis from on top, with a foreshortened view downward. The upper-
most window presents a compressed summary of the whole situation,
like the Finances window inside the Geography dollhouse. Right be-
neath, peaking out from under the top window, are the second-tier
windows that summarize the main sub-factors feeding into the Fi-
nancial big picture: revenues, expenditures and economic climate, or
whatever they are. Each of those windows has its own sub-cluster
underneath, and so on through dozens or hundreds of levels down-
ward to the bottom. Each window corresponds to a room in the
Finances RFF dollhouse—you're peering into each one through its
glass ceiling, so to speak.)

Similarly for crime trends, or the school system, and lots of oth-
ers. The Mirror World makes oceans of data available live and online.
You wire your own Agents directly into the circuit.
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Figure 7.6: The structure of a City Finances viewpoint.
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Finally, all those “real people” info-suppliers.

Let’s say you're interested in running for a seat on the local school
board. You’re not part of the political establishment, and you don’t
know how. So you hire an info-supplier consultant to give you ad-
vice. The whole transaction is handled inside the Mirror World. In
principle, you could do exactly the same thing in the real world; but
the Mirror World cuts the cost of performing this kind of service so
drastically that more-or-less anybody who wants it can afford it.

You shop for a consultant in the “commercial services” window.
You converse with your consultant electronically, inside the Mirror
World: You type messages and (when he gets around to it) he types
responses. No phone and no mail bills. No phone disruptions: save
on secretaries.

When the time comes to make contact with potential supporters,
election officials or the press, your consultant sets the whole thing up
inside the Mirror World. To attend one of these meetings, you visit
the consultant’s electronic “conference room”—inside a private RFF
dolthouse that you dive into from the Mirror World’s front lobby.
Each participant is represented by an on-screen blip, and you can
open an electronic inter-blip conversation by typing the appropriate
commands. Or, use the telephone (conference-call style: just type
“phone call,” and the phone rings on every blip’s desk); or—if ev-
eryone has gotten around to installing a video camera and a digital
interface at his site—set up a live video feed. Your consultant can
attend the meeting if he chooses, easily enough. For that matter, he
can attend ten meetings simultaneously.

When you need to advertise, your consultant dives into the local
public school Mirror Worlds and posts your messages on the Issues
bulletin boards. (A bulletin board is a TV focussed on a chronicle
stream, into which all posted messages are dropped by the Agent
on duty.) Or, of course, you can post your pronouncements your-
self. You’ll probably want to spend some time hanging around in
local school Mirror Worlds in any case, chatting (electronically) with
passers-by.

Yes of course, you’ll want to meet people for real (“in person”)
occasionally. But those occasions can be arranged inside the Mirror
World, they can be discussed afterwards inside the Mirror World—
they might even be “broadcast” inside the Mirror World. (Say you
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debate the other candidates in an auditorium that’s equipped with a
Mirror World video feed. Browsers can tap into the feed and watch
the debate. The debate hangs around in a chronicle stream, of course;
voters can watch it during the event or long afterward.)

In short: The Mirror World relieves the whole enterprise of such
a tremendous load of sheer organizational deadweight that virtually
anyone can take a shot at it. You accomplish the greater part of
your campaign by sitting in front of your computer and thinking.

One more example. Say you’re glancing over the performance
meters on the local bridges, and you happen to notice that, for the
first time you can recall, virtually all the “physical condition” blobs
are bright red. You wonder: When was the last time this happened?
You press the “experience” key, circle the relevant parts of the dis-
play (the bright red performance blobs)—and, as it turns out, things
have never been this bad before. So you look for a civil engineering
infoservice and pose a question: What does this mean, exactly? The
connection between you and the expert is so cheap, easy and quick
to establish that this kind of occasional give-and-take—the experts
talk to the public—could even become commonplace.

§ Private Feeds

The City Mirror World is a public infomachine. But it’s a framework
for private software as well. Private hospitals, banks, markets, stores
or any sort of open-to-the-public institution may have private Mirror
Worlds into which the public is invited, up to a point: Enter through
the City Mirror World front lobby.

It would be nice if architects or the local historical association
would donate computer models of interesting buildings. When [
zoom in, I see perspective drawings, plans, interior views... For ex-
ample: a coalition of architectural and engineering firms is now at
work on the renovation of New York City’s Grand Central Station.
They have prepared a massive archive of computer drawings show-
ing all aspects of the famous station at every stage of its history.!?
This fascinating and invaluable document is exactly the sort of thing
that ought (ultimately) to be donated to a municipal Mirror World.
Libraries and museums are fitting repositories for the community’s
physical valuables. A Mirror World is the proper home for its most
significant and beautiful disembodied objects.
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When I dive into a theater, I might find (privately-supplied) video
feeds of current shows or coming attractions. Department stores
might show me promotional stuff. Museums might have large col-
lections of images and video feeds on file. Concert halls can sell me
tickets. Banks or investment houses might offer private news feeds.
Corporations might “broadcast” demos, sales pitches and so forth.
The list goes on.

§ Diving In

You can dive into City Hall, a local school or public hospital, a
courthouse, airport, whatever. Maybe you step into an entire, au-
tonomous Mirror World; maybe you merely discover rooms within
rooms. Dollhouse nesting can go as deep as you’d like. These “inte-
rior,” more-detailed spaces are where you're likely to bump into other
browsers, review past experiences, set up special-purpose Agents.

Dive into a public school, for example. What are the important is-
sues in here? What are teachers actually thinking and saying? What
are their current assumptions and favorite jargon terms? What’s the
general mood and worldview? In here, you can glance at the teleview-
ers set up by the teachers themselves to keep track of system-wide
issues. You can buttonhole a teacher and have a genuine, honest-
to-god discussion. After classes, you can count on finding at least a
handful of teachers browsing the school Mirror World, catching up
on news. Each browser is represented on your screen. (We didn’t
bother doing this in the front lobby, because there are simply too
many browsers. Down here, in the sub-room representing a partic-
ular public school, we don’t expect to find more than a couple of
dozen people at most—a lot fewer, usually; and so we can add a
little blip to the display for each one.) By mousing over to a blip,
you can (attempt to) start a conversation. You type some comments,
and the other guy types responses. People who would never dream
of buttonholing a teacher in real life can have nice long chats with
teachers who’d never dream of being buttonholed.

Dive into a police station or the highway department or City Hall,
and check them out, too.

Many people are curious to some extent at least about what the
hell is going on out there, what people are doing and how, what
they’re thinking; how people in foreign walks of life are getting on;
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but they lack the time or brashness to venture into the city and find
out. The Mirror World is a device for converting abstract into real
curiosity. For translating the casual willingness to be enlightened
into a measure of real enlightenment.

I can’t know the people who run my local world any longer. I
can’t be personal friends with the teacher and the grocer and the
mayor and the town constable. But maybe via Mirror World we can
be impersonal friends. Understanding the feel of those many closed
sub-worlds that make up a city is impossible for most of us, for now.
Dipping into these worlds, making contact—and then withdrawing
to survey the whole picture, to fit the pieces together: one of the
most tantalizing of Mirror World possibilities.

& The Big Picture

What I've presented is the barest sketch of the City Mirror World.
A thorough discussion would fill a much larger book than this. And
it would be a book not merely about the future of technology, but
the future of government.

Is this Mirror World messy? Crowded? Complicated? Damned
right. And so is the city itself. But sometimes it’s nice to step back
for the long view, in search of topsight. The City Mirror World
is convenient and intriguing and entertaining and all that, but it’s
more.

Grab your diving mouse and zoom out instead of in, up into the
endless pseudo-space above the image. The map collapses gradually
into a few square inches at the center of the screen, and you hover
miles above it, looking down at a small patch of tiny red, blue and
purple dots shimmering together. Turn off all your side-windows and
just watch this little patch for a few minutes. That’s the whole city.
Any place you want to go down there, you can go. Anything you
want to find out—if you have a right to know it, you will know it.
It’s yours. It’s the collective property of all its inhabitants. Now
close the cover of your laptop, heft the little machine: and there it
is. You are holding it. The New Orb.
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In Sum

Why stop at the city line?

The first Mirror Worlds will be much smaller (though still enor-
mous in software terms): they will capture a hospital or university
or private company, or a government institution—a court system,
transportation network, school system. There is lots to do before a
City Mirror World becomes practical.

But then, afterwards: why not capture an entire country?

How do you display the image of an entire country? The geogra-
phy viewpoint is too broad for most purposes. But a display along
the lines of the City Finances viewpoint might be right—a bottom-
less cascade tracing the state of the government, the economy, the
polity downwards level by level from the big trends on top to a billion
details far below.

When you wander backwards through time in this Mirror World,
you have raw history, the past complete and unedited in your grasp.

Do people impart something of their personalities to their soft-
ware Agents? Do their Agents outlive them? Do you encounter the
software shadows of past lives as you wander backward?

Why stop at the borders? From the Mirror City to the Mirror
Nation, to the Mirror World itself...

Where technology is concerned, it’s easy, after a point, to predict
what will happen. What’s hard is to say what it will all mean.
When the prediction of grand implications is the game, your only
choice (pretty much) is to be wrong. About the details, at the very
least.

Mirror Worlds will happen.

What will they mean?

It’s easy to get carried away...

Television was new in the early 1940’s. Commercially it was
unborn. In 1942, one critic predicted that commercial television
would reinvigorate family ties, cause an exodus from large cities
and lead eventually to the demolition of all those ridiculous urban
skyscrapers.!3 (The skyscrapers themselves were pretty new...) Yes,
well; he was wrong.

But who was closer? This guy or the typical befuddled observer
of that period, who was quite unconvinced that Mr. and Mrs. Joe
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Average would ever swap their favorite radio programs for a stupid
little low-grade picture that, because you actually had to watch it,
made it quite impossible to carry on with your regular household
chores? A royal nuisance. “Such fears about the rigors of watching
television persisted in industry debates into the 1940s.”14

Predicting implications is hard. But, my guess:

Mirror Worlds mark a new era in mankind’s relationship to the
man-made world. They change that relationship; for good.
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Epilogue

One afternoon in late Fall two profs, Ed Florestan and John Eusebius
(yes all right, these are not their real names) walked up Whitney
Avenue toward the edge of town.

“I'll admit they’re inevitable,” Ed says, “and 1 find the general
Mirror World idea intriguing. But I have some problems. Deep ones,
so far as I'm concerned. But here is a warm-up problem just for
starters. I hate computers, a lot.”

A half hour’s walk north of campus, there is a wide shallow water-
fall that feeds a stream. A covered bridge crosses the stream. Near
the bridge is a low brick factory that has been turned into a museum.
The two of them have been visiting this waterfall together for years.

“You’ve got a Mac on your desk, right?” says John.

Ed is a composer and historian who teaches in the music school,
and John is an electrical engineer.

“I'm not saying I don’t use them. Of course I do. I'm not a fool.
They’re very useful. But the problem is—”

“Why bother hating an inanimate object? Waste of time.”

“All right, I don’t hate the object. I merely hate having anything
to do with the object. Better?” “Is Object Hatred a big problem for
you, in general?” “Drop dead.” “All right tell me: Why do you hate
computers? You’ve never said so before—" “Here’s why. Speaking,
understand, as a confirmed hard-core user... Let me see. How do I
formulate this.” They walk on in silence.

It’s a week after Thanksgiving and the maples along this street
are flat yellow—still bright, but no sparkle; the pin oaks are rust
brown or a dry papery tan. Bright sky, fast-moving clouds.

“The problem is...” Ed the musician laces his hands behind his
head, tenses them and frowns. “They impose on my time: I hate

213
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reading owner’s manuals. I'm just not interested. I don’t care how
my possessions work.” He talks faster than Florestan and seems
(as usual) slightly edgy and preoccupied. “The damned manuals
do not interest me: It’s as simple as that. This procedure, you pay
money and acquire something and then you enter a prolonged period
of study and contemplation in order to figure out how to use it, is
perverse if not positively depraved, because it puts the ink and the
pen on the same plane as the symphony, so to speak. It makes the
mere body as important as the unbodied machine—or idea in this
case—to use the book’s terms. The tools are interchangeable. T don’t
care about them, and I don’t want to waste time on them. I realize
this is a dangerously bad attitude and I try to suppress it and I do
use the damned thing, I can’t afford not to. And it’s great, once I've
figured something out and it works. But when I look at a computer
or a box of software I see boring complexity. Sorry. 1see—Form 1040!
Your 1990 Federal Income Tax Return! 1 hate boring complexity that
imposes on my time.”

“To the extent software is complicated, it’s no good. Well-
designed software is simple. Don’t confuse the idea with a particular
instance you don’t like.”

“Well okay, sure, but—"

They walk over a trampled-flat pile of yellow maple leaves.

“It’s the nature of the beast, to some extent, isn’t it?” Ed con-
tinues. “It’s a machine, and you're never going to be able to tell it
‘just figure out what I want and do it,” right?” “Right.” “So it’s al-
ways going to require a series of excursions downward from the stuff-
you’re-thinking-about level to the working-this-fancy-machine level
and back up again. Which bothers me. It’s damaging precisely to—
like the book says—my search for topsight. All right, it’s not such a
big deal for now...”

John bends over and snatches a leaf off the sidewalk; twirls it
stemwise between his fingers as Ed continues—

“But T wonder: Is the time approaching when, using only five
percent of the time I use now, I’'m ten billion times more produc-
tive... but the deal is, I have to spend ninety-five percent of my time
worrying about computers? Because I’m not sure I like that deal.”

They stop at a light. Whitney is a busy road all the way out to
the waterfall.
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“Granted,” Ed continues, “it’s not only computers. They’re
merely the vanguard. Today every damned thing comes with a user’s
manual. Tomorrow, shirts—rubber bands-—hamburgers—each indi-
vidual french fry... ‘Congratulations! You have just purchased a
genuine Hatsubatsu TM French Fry! Read all instructions carefully
before consuming your new Hatsubatsu TM French Fry! First, set
the digital clock-timer on your new French Fry! Find the small white
‘time set’ button and push five times while dialing the ‘feature func-
tion’ knob to seventeen! Now press...” But I’'m serious. Somewhat.”

“I understand what you’re saying. But you still have a Mac on
your desk.”

Ed shrugs.

“All right,” says John, “society is on a certain trajectory, and
you don’t like it. Because you don’t like worrying about comput-
ers, but computers are too useful to ignore. And you think they’ll
become even more useful, and so you’ll have to spend even more
time worrying them. So; well.” He drops the leaf. “You’re probably
right.”

“Suppose the surgeon general determines that the absolutely in-
fallible route to perfect health is a cauliflower a day. So I eat
my cauliflower. But I’'m not thrilled about it.” “So don’t eat it.”
“Granted, I make a choice. But not much of one.”

“Sure... My own tendency is to say lighten up, these things are
fun. Why get worked up about it? Y’know it’s interesting...” He
is walking now with his hands stuck in the pockets of his slightly
raggy sportscoat. “The most talented programmers I know, the best
hackers, are people who appear to the naked eye, to the untrained
observer, like me, to love wasting time—"

The stop at another light (where a school bus pulls up with a
hiss, and a squealing gear-grinding dump truck right behind it)—

“You ask them—what are you doing, you’ve been trying to fix
that little routine for hours, and y’know it really doesn’t matter,
who needs it? And they look up at you in that miffed two-year-old
way, and then ignore you. Which is why they’re so good. Because
of the knowledge they accumulate in their perpetually engrossed,
bedazzled two-year-old approach to computers. I can’t claim to be
in that category of course, but even if you can’t lose yourself in it
completely-—except maybe every now and then—it’s still fun-—just
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a little?—isn’t it?...” He looks over at Ed. “All right. It isn’t.”

“Fun is maybe subjective? But none of this matters, much. Let
me tell you what really bothers me about Mirror Worlds. Still accept-
ing, of course, that they’re interesting and at any rate, inevitable.”

The late afternoon light hits the brick facades on the east side of
the street full-face, and they drink it in like sun-bathers and glow.
The yellow maples to the west are lit up from behind like stained
glass.

“The stirrup,” says Ed. “It arrived in western Europe in the
eighth century, evidently. A nice, simple piece of technology.” He
pauses as they walk on, then continues: “What do you think the
consequences were?”

“Can’t rightly recall...”

“Serfdom.” John frowns and Ed continues— “The stirrup made
possible mounted shock combat: You hold a lance and ram it into
the other guy. Weapons and armor changed—they got much heavier;
and cavalry became decisive. The new weapons and the horses were
expensive. There’s a classic study by White on Medieval Technology
and Social Change—and all of a sudden, you can’t just join the army;
you’ve got to be equipped. Now, when any old slob could join the
army, certain basic rights were distributed fairly widely. But when
it came about that you had to be rich to join the army, the trouble
started. If the wide-scale semi-enslavement of the population counts
as trouble. Now let me tell you what the point is...” “Yeah, this is
kind of hacking with a pretty broad sword, isn’t it?”

“Here is the point.” They pass a jogger going the other direction.
“First, new technology can have strange consequences. Obviously.
But more important. A technology arises that, one, is terribly im-
portant, not merely superficially but fundamentally: I mean mounted
shock combat. Two, for whatever reason, only a few people can really
master it. The result is feudalism, actual or intellectual...”

It’s getting breezier: The wind makes a whirlpool of leaves a few
paces in front of them. Then the whirlpool unkinks and the leaves
go pattering off down the sidewalk.

“Mirror Worlds come in, and related technologies—all this infor-
mation handling stuff, communication stuff, Trellis stuff—computers
are no longer pots and pans —important-but-trivial. 1 can in fact be-
lieve that a Mirror World would suck life from the thing it’s modeling
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into itself, like a roaring fire sucking up oxygen. The external reality
becomes just a little bit...not superfluous; second-hand. Not quite
Center Court. Not quite where the action is. Couldn’t it happen
that, instead of the Mirror World tracking the real world, a subtle
shift takes place and the real world starts tracking the Mirror World
instead?”

“A simple question deserves a simple answer. And the answer
is no.” “Why not?” “Because these programs are creatures of their
programmers. This semi-mystical Frankenstein view of software is
just—no offense—stupid. Stupid. It cannot be. If you don’t like
what’s happening, you pull the fricking plug. Right?” “Okay, but
that’s just the point. They’re creatures of their programmers. Im-
portant creatures. And as a result, a dependency develops. The pro-
grammers...” “Do you know how a steam engine works?” “Roughly.”
“Okay, sure, but could you repair one? I couldn’t. Steam power was
important, but it didn’t create feudalism or anything conceivably like
it.” “But there’s a difference. Let me see. How do I...” He trails off,
and they walk on.

“You see: You're not talking about steam engines,” Ed continues.
“You're talking about something more like eyeglasses, in an abstract
sense. These things color your view of reality. They present the
world to you. In a compelling way. More real than real. Steam
engineers hardly made up a knightly order at the pinnacle of society.
Granted. But the people who control these Mirror Worlds are more
like TV people, sort of. Isn’t that a priesthood? But we're talking
about something far more significant to your daily life than TV is.
We need these Mirror Worlds, they’re great, they are the window
on reality—when you shut one off, we get all lost-feeling and let
down...and anxious...what’s going on?? 1 don’t know what’s going
on. What’s wrong with my Mirror World??”

The breeze sends another flock of leaves scuttling away down the
sidewalk.

“And it’s not that I distrust the software guys who design and
build them. You see, that’s just the point: I don’t think they’re
going to screw me up. 1 think they’ll be responsible, professional
guys. They’ll take good care of us. And that’s just the problem.
Serfdom means, above all, not slavery—slavery is slavery; serfdom
is merely utter dependency—1I don’t understand these things but I
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rely on them, not just for convenience but in order to carry out my
thinking! And-—"

“Gimme a break. C’mon. These are just guileless programmers,
engineers, not prima donnas...”

“Let me finish.” “But you’re just a peon, a humanities serf, I
don’t have to. Right? Oh all right. I realize you’re serious. 1 just
don’t think you ought to be.”

A bike rider in a sweatsuit pedals slowly towards them, making a
wobbly long shadow. “Hey Walt!” Ed calls out. “You guys at it...”
the rider shouts as he passes. The rest of the question gets lost.

“If you shut off your TV, who cares?” Ed says. “Who steals my
Tube steals trash. But if you shut off your Mirror World in a fit of
pique, you really are less well-informed than the other guy. There’s
really no way you can know as much about a Mirror Worlded reality
if you don’t watch the Mirror World. And that’s a recipe for real
dependence. The guys who run these operations are like TV people
and they’re not: because they don’t just control entertainment. They
control reality. Do you smell a fault? And it’s far more than that.
This evening, let’s say, you mess with your computer and I play the
piano. We'’re both just amusing ourselves, right? We’re just playing.
Neither activity is divinely blessed. We do what we like. Ten years
from now, you've got Mirror Worlds, and the same thing happens,
and suddenly—you are flying and I am walking. You simply know
so much more about the city or the university or the state or what-
ever Mirror Worlded thing you’re looking at than I do, that I'm a
damned near second class citizen. Yes I know I can use the Mirror
World, too, whenever I want, sure, great. But let’s be honest, okay?
These things don’t work by magic. They don’t operate themselves.
You’ve got to know something in order to squeeze all this knowledge
out of a Mirror World. High school hackers are going to be a lot
better at it than the chairman of the Political Science Department.
Relatively speaking, while you soar to new heights of topsight, I sink
into pig-ignorance. Modern technology is a centrifuge, isn’t it, de-
signed to stratify society based strictly on a person’s fondness for
playing games with machines? But forget about me, you're right,
I don’t mind computers that much and I understand them to some
extent and I would play with a Mirror World because 1 do find the
idea intriguing. At least I read books like this. I'll do okay. Many
people—most people—won’t.”
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“Okay. Here is your point. It is an important point. Enormously

important. It’s Just that you are utterly, entirely, completely and
absolutely wrong...

“But not totally, or transgalactically?”

“Look. This technology will have a special, basic, intellectual
importance. You're right. If people have no real idea how it works,
but they rely on it anyway, uncritically, that is a crisis. A recipe
for disaster. Or: If most people don’t learn how to use it but a
few do, or if most people learn in a half-assed way—if they won’t
bother to activate their brains long enough to figure out what the
score really is—and you’re right, they’re going to have to understand
the technology, not just use it blindly—you’re right, they are really
going to have to understand something about computers if they are
in fact going to rely on them in this new, transcendental way—and
if they don’t, that is a genuine disaster. You're right. But. They will
understand! They will learn! Bingo. Q.E.D.” He punches a privet.

“Oh yeah? Do they understand now?” “Look. I think...” He
thinks.

(His hair is cut rather short and it’s not immaculately combed,
and when you add the raggy sportscoat the whole impression is some-
what disreputable. Ed on the other hand is wearing a gray raincoat
and looks like a businessman, but talks faster, and has piercing eyes
that ignore you and focus on some abstract point ten feet away when
he is fidgeting with an idea—which is usually.)

“Go back to the beginning of the book,” John continues. “The
water level is rising. True. Do people drown in droves, or do they
learn to swim? As soon as you state this question, you answer it.
Obviously, they learn to swim. In fact, that’s the best thing about
Mirror Worlds: Ultimately they force people to learn how to swim.
They force people to come to grips with technology.”

“It hasn’t happened yet, with any technology. You asked me
about steam power—how long has electricity been important? How
many people know what it is? Can the average guy tell an amp from
a volt?”

“Maybe—1 don’t know-—look, people are lazy. I'm happy to con-
cede the point. In recent decades your typical intellectual, so called—
let alone your typical ‘guy’—generally has not condescended to learn
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anything whatsoever about science or engineering. That will change.
To avoid drowning, you wise up. Simple as that. Effective. And great
news. Today, when the science professors show up at—y’know—the
Great Cocktail Party of modern undergraduate education—sit-down
dinners where you get an honest meal being simply {00 boring—when
a prof shows up in his formal cocktail waiter’s uniform bearing a tray
of scientific hors d’oeuvres, the neophyte intellectual waves it away
as if it were spam-on-toast. The typical attitude is, why should I
bother myself with science, that’s what we have scientists for—just
like, why should I bother myself with driving? That’s why we have
chauffeurs. That’s why we have Toiwanese graduate students!” And
he veers off into a pile of brown leaves to the right, slosh-rustling
through them. “I’'m not supposed to do that.” He stops and turns
back. “I didn’t really mess it up. Too much...?”

“I think you’re overestimating the average student’s ability to
learn this—” “No that’s bull, you see, no offense, I'm not saying our
average undergrad is a potential Nobel physicist,” they are striding
forward again, “but if he can’t learn basic science and engineering,
what the hell is he doing in college? But in fact he can. No, the
problem is—Physics this term? Sorry Dearie,” ”—he has switched
unaccountably into falsetto with a broad English accent—*I am so
busy with my Introductory Ketchup as Metaphor, my Intermediate
Mauling, Murdering and Disemboweling the Competition and my
Advanced WASPs Make Me Puke, which is a required course you
know, every term, double credit, with a lab... So I'm afraid I simply
don’t have the time...” 7 In his normal voice: “Physics is beyond me is
merely the polite, socially-approved way of saying I'm too goddamned
lazy. And you’re too mush-brained to make me. And this is precisely
the greatest thing about Mirror Worlds...”

They pause as a beat-up Volvo station wagon shoots past, then
cross the street—

“They will energize people, once they’re real. By placing a con-
siderable explosive charge right in front of their noses. Hey, wanna be
a second class citizen? No? Then turn on your brain and learn. It’s
like putting someone in a spacesuit, and loading him into a space
ship on top of a rocket, and then telling him here we go. We're
about to blast off. Now: Would you like to know how this space ship
works? The answer is going to be —hmmmm, actually--yes.” He



Epilogue 221

grabs a gray-green pine-needle from a tree by the sidewalk and rolls
its ridginess between his fingers.

“Let’s forget about relative likelihoods,” says Ed. “I can’t predict
them accurately and neither can you. But do you agree with me
that... If people don’t, as you say, wise up, and maybe they won’t,
right?” “Yes. Maybe they won’t.” “Maybe they won’t. Could be.
Do you agree with me that, if they don’t—they drown? Or they get
blown to bits? Or, they become intellectual serfs, in some limited
sense at least, to the Lords of the Mirror World Manor? Do you
agree?—doesn’t it concern you, at least a little?”

John stops walking, sticks his hands in his jacket pockets, stiffens
his arms and looks at the sky. He stands that way for half a minute
or more. In an oak-tree full of dry leaves the breeze makes a tinkling-
crisp rustling.

He nods his head and looks down.

“Okay. Yes. It concerns me. At least a little.”

And they walk on silently.

The waterfall comes over a stone dam capped with concrete. A
clear arc over the rounded lip spills into white parallel lines, then
feathers downward in broken silver-brown sheets. The sound is high-
pitched from a distance and deepens as they approach. They walk
through the covered bridge. The sound is muffled inside. Across from
the waterfall, the stream slips under some fallen trees and disappears
into the woods; as New England streams do.

“Here is my last problem,” says Ed. They emerge on the other
side and stand side-by-side, watching the waterfall. “Two guys strug-
gling on top of a train. In an old Western. Picture it. One is going
to make it. The other is going to get thrown off. And between us,
chances are, he’s going to die. The two guys struggling on top there
are the science and technology worldview and the romantic world-
view. And the romantic worldview has lost it. It’s exhausted. Mirror
Worlds are going to throw it off the train. And it’s going to die.”

“Huh?” says John. “Now you’ve lost me.” They watch the
waterfall.

“There’s been a retreat going on at least since the early nine-
teenth century. From the country to the city, from outdoors to in-
doors, from natural to synthetic environments—old news. Our men-
tal life runs through a riverbed that is getting paved, so to speak,
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piece by piece. But now the retreat will be pursued all the way out
of mundane reality altogether. All the way into a little box on your
desk, into your mind. You see: It’s not just a sentimental attraction
to birds and flowers...”

“What’re you talking about?” says John. “We’re outside.” “But
there’s no connection between what we’re seeing and what we're
thinking—to a romantic, nature is the driving engine of thought.
It’s the engine under the hood—the electricity in the outlet—the
vodka in the screwdriver, it’s—just one grand poetic gesture? If you
don’t mind?” “Sure,” says John— “the blade at the bottom of the
food processor. Take that away, the constant chafing between natural-
outer and human-inner, and the heat it generates, and thought stops.
To me, the meanest flower that blows— That worldview still exists:
instead of Wordsworth, nature was all in all, you've got Greenpeace;
same thing, only it has a nasty, desperate edge today, because it’s
dying.”

Near the other side of the bridge is a picnic table. A woman is
sitting there and they can hear her calling something towards the
parking lot repeatedly, indistinctly.

“I don’t mean a sentimental attraction to birds and flowers,” Ed
begins again. “I’m not talking about air pollution or recycling or
whatever. I'm talking about a worldview in which chaotic multi-
sensual reality—polyperceptiveness, Goethe called it—is dying, be-
cause it’s inefficient. It has been shown to be a losing way to think.
It doesn’t produce anything. Except maybe a vague sense of well-
being; but so does a bottle of cheap wine. The sights, the sounds,
the smells, the character of the people all buy you nothing intellectu-
ally. They waste your time. How do I know? Well, the Mirror World
edits them out completely. And it gives you a vastly deeper look into
the real nature of things. Romantics are shallow. They don’t know
much but they feel a lot. The future is clear. Know everything, feel
nothing. Romanticism held its own against Technology for a couple
of centuries, a couple dozen rounds or whatever, but now it’s on its
last legs, staggering. And Mirror Worlds have the stuff to kill it.”

“Hey... it’s only software, for God’s sake!”

“Maybe I take Mirror Worlds more seriously than you do?” “No
I take them seriously, it’s just that—"

“They didn’t start it, obviously,” Ed puts in. “The fight has been
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going on for two centuries. I’m not saying Mirror Worlds created this
state of affairs. They’re just ambling casually onstage in the middle
of it. What I am saying is that—if I had to envision the capstone
of the pyramid—that final concrete panel in our boffo paving-the-
riverbed project—it would look exactly like a Mirror World. Like a
telescope, or a microscope, but focussed not on an isolated specimen
but on the whole human world, reality, and like a microscope it shows
you deeply, sertously, completely, analytically—it’s captivating—and
in an untaste-able, unsmellable way, in perfect clean neat analytic
silence, what’s going on. And it’s done. The riverbed is paved.”

“No, look, a biologist...” John shakes his head and sighs. “A
biologist who uses a microscope doesn’t stop seeing and feeling in a
normal human way; he’s merely adding something; he’s adding to his
sensory equipment, not diminishing it.”

“But if his microscope shows him the whole world... Leonardo or
Goethe or Ruskin were scientists after a fashion, or at least in sympa-
thy with the science of their day. But the sensual isolation of powerful
instruments drove this type out of science—good riddance, 1 mean,
between Goethe and the electron microscope, you must choose the
electron microscope, I'm not disputing it; and now they’ll be driven
back again. And the gain in clarity of vision will be just as great,
but no longer confined only to science, and potentially even more
important—but where does that leave Goethe? My only question—
” and he repeats, not as a question but as a flat statement: “where
does that leave Goethe. It all reminds me in the end of Ruskin talk-
ing about the railroad. ‘There was always more in the world than
men could see, walked they ever so slowly. They will see it no better
for going fast.” ”

“No. Ruskin is wrong. He’s wrong in a bunch of ways. And
so are you. You guys—you’re attacking the idea of going fast: by
which, implicitly, you mean technological progress—okay, not you,”
(Ed was protesting), “but Ruskin. Progress means forward motion.
Going fast.”

He pauses; then starts again.
“Did you ever ride at the front of a New York City subway when
you were a kid, looking out the front window as the car roars down

the track— rocking, screeching like hell, careening round the corners?
With the blue tunnel lights batting past? Remember the first time
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you rode in a plane and it started barreling down the runway? Re-
member running, when you were a kid, just for the hell of it? Just for
fun? That’s progress. That’s forward motion. That’s moving fast.
Progress means the thrill of motion. That is: transformed childhood
joy. That’s why we do technology...You've got it inside out. We
aren’t isolating ourselves from the emotional side of anything... Feel
nothing? It’s all emotion. When you think of technology, that’s what
you ought to think of. The kid riding his bike, or sledding downhill,
or charging over a grass field trying to get his kite to fly, just because
it feels great, it’s the human thing to do.”

“But,” says Ed, “you’re saying...I don’t care what the conse-
quences are, we’re having so much fun we’re going to charge on
anyway? I accept that. I accept that these things are inevitable.”
“No, more than that—forgetting about romanticism proper, more
broadly—the real live warm joyful emotional cutting edge of human
experience today is science and is technology. That’s what I'm say-
ing.”

He crouches down, by the tangle of spiky dead wildflowers next to
the stream. The air out here is chilly, with the faint smell of burning
leaves.

They watch the waterfall.

“Ruskin is wrong in another way too,” John continues. “He says,
you’ll see it no better for going fast. Wrong. In one sense, at least,
you see much better. Because, you see a bigger piece. So much more
gets crammed into your field of view, and as a result, instead of a
handful of fragments and loose ends, the big picture gradually starts
to add up. And in this sense, Mirror Worlds are a natural culmination
of all these technologies of motion and communication; because they
show you so much more, a huge sweep instead of a narrow puny
medieval sliver, and for precisely that reason, they show you better.”
He picks up a pebble and tosses it into the water. “All right, they
move you farther from some of the concrete physical details, the
smells and chirps and oinks and rustlings and all that, and that’s
regrettable. But at the same time, and for the very same reason,
they move you closer to the whole. You can’t see the chickens clucking
from on top of the Eiffel Tower either, but people come from all over
the world to go to the top; they don’t just stare at the thing, they
want to go to the top, because they know and feel that it’s good to
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see what the top of that tower has to show them. I think you see
much better for building towers, and going fast. And after all, no
Act of Parliament ever told Ruskin he couldn’t take a walk in the
woods if he felt like it, for all his whining, railroads or no; and you
have the same privilege.”

“But I could be bounded in a nut-shell, and count myself a king
of infinite space...” He breaks off.

A full minute passes. They watch the waterfall and listen to its
steady rush.

Ed begins again: “I’ve never said that the possibilities aren’t
tantalizing. All I’'m saying is that the dangers are also frightening.
I’'m saying I'm worried and you’re saying sorry, I can’t help it. We're
talking at right angles, aren’t we? Do you see, at least, why 'm
worried?”

The choppy stream has sky-blue facets angled at the waterfall,
and burnt orange ones facing the bridge, and picks up a wintery
yellow-brown from the faded plants near the far bank.

Eventually John asks “Do you see why I’'m not, why I’'m exhila-
rated?”

They watch some gulls circling the bare gray tangle of the dis-
tant lakeshore. “Look, anyway.” He picks up another pebble and
examines it carefully. “It’s only a piece of software.”

Ed shakes his head, and smiles wryly.

And the author snaps his two alter-egos back into place like the
blades of a penknife, and pockets them. And there he is, smiling
wryly, watching the waterfall.

New Haven, Connecticut
April, 1991
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