

The Cathedral and the Bazaar

Musings on Linux and Open Source by an

Accidental Revolutionary

The Cathedral and the Bazaar

Musings on Linux and Open Source by an

Accidental Revolutionary

Eric S. Raymond

with a foreword by Bob Young

BEIJING • CAMBRIDGE • FARNHAM • KÖLN • PARIS • SEBASTOPOL • TAIPEI • TOKYO

The Cathedral and the Bazaar: Musings on Linux
and Open Source by an Accidental Revolutionary,
Revised Edition
by Eric S. Raymond

Copyright © 1999, 2001 by Eric S. Raymond.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc.,
101 Morris Street, Sebastopol, CA 95472.

Editor: Tim O’Reilly

Production Editor: Sarah Jane Shangraw

Cover Art Director/Designer: Edie Freedman

Interior Designers: Edie Freedman, David Futato, and Melanie Wang

Printing History:

October 1999: First Edition

January 2001: Revised Edition

This material may be distributed only subject to the terms and conditions
set forth in the Open Publication License, v1.0 or later. (The latest version
is presently available at http://www.opencontent.org/openpub/.)
Distribution of substantively modified versions of this document is
prohibited without the explicit permission of the copyright holder.
Distribution of the work or derivatives of the work in any standard (paper)
book form is prohibited unless prior permission is obtained from the
copyright holder.

The O’Reilly logo is a registered trademark of O’Reilly & Associates, Inc.
Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly & Associates, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or omissions, or for damages
resulting from the use of the information contained herein.

Library of Congress Cataloging-in-Publication data is available at:
http://www.oreilly.com/catalog/cathbazpaper/.

0-596-00108-8 (paperback)
0-596-00131-2 (hardcover)
[C]

To the Memory of Robert Anson Heinlein

For the many lessons he taught me:

to respect competence, to value and defend freedom,

and especially, that specialization is for insects.

✦ ✦ ✦

Table of Contents

Foreword ix

Preface: Why You Should Care xi

A Brief History of Hackerdom 1

The Cathedral and the Bazaar 19

Homesteading the Noosphere 65

The Magic Cauldron 113

Revenge of the Hackers 167

Afterword: Beyond Software? 193

Appendix A: How to Become a Hacker 195

Appendix B: Statistical Trends in the 215
Fetchmail Project’s Growth

Notes, Bibliography, 219
and Acknowledgments

vii

Foreword

✦ ✦ ✦

Freedom is not an abstract concept in business.

The success of any industry is almost directly related to the degree

of freedom the suppliers and the customers of that industry enjoy.

Just compare the innovation in the U.S. telephone business since

AT&T lost its monopoly control over American consumers with

the previously slow pace of innovation when those customers had

no freedom to choose.

The world’s best example of the benefits of freedom in business is

a comparison of the computer hardware business and the com-

puter software business. In computer hardware, where freedom

reigns for both suppliers and consumers alike on a global scale,

the industry generates the fastest innovation in product and cus-

tomer value the world has ever seen. In the computer software

industry, on the other hand, change is measured in decades. The

office suite, the 1980s killer application, wasn’t challenged until

the 1990s with the introduction of the web browser and server.

Open-source software brings to the computer software industry

even greater freedom than the hardware manufacturers and con-

sumers have enjoyed.

Computer languages are called languages because they are just

that. They enable the educated members of our society (in this

ix

The Cathedral and the Bazaar

case, programmers) to build and communicate ideas that benefit

the other members of our society, including other programmers.

Legally restricting access to knowledge of the infrastructure that

our society increasingly relies on (via the proprietary binary-only

software licenses our industry historically has used) results in less

freedom and slower innovation.

Open source represents some revolutionary concepts being thrown

at an industry that thought it had all of its fundamental structures

worked out. It gives customers control over the technologies they

use, instead of enabling the vendors to control their customers

through restricting access to the code behind the technologies.

Supplying open-source tools to the market will require new busi-

ness models. But by delivering unique benefits to the market, those

companies that develop the business models will be very successful

competing with companies that attempt to retain control over

their customers.

There have always been two things that would be required if

open-source software was to materially change the world: one was

for open-source software to become widely used and the other

was that the benefits this software development model supplied to

its users had to be communicated and understood.

This is Eric Raymond’s great contribution to the success of the

open-source software revolution, to the adoption of Linux-based

operating systems, and to the success of open-source users and the

companies that supply them. Eric’s ability to explain clearly, effec-

tively, and accurately the benefits of this revolutionary software

development model has been central to the success of this revolu-

tion.

—Bob Young, Chairman and CEO, Red Hat, Inc.

x

Preface: Why You Should Care

✦ ✦ ✦

The book in your hands is about the behavior and culture of com-

puter hackers. It collects a series of essays originally meant for

programmers and technical managers. The obvious (and entirely

fair) question for you, the potential reader, to ask is: ‘‘Why should

I care?’’

The most obvious answer to this question is that computer soft-

ware is an increasingly critical factor in the world economy and in

the strategic calculations of businesses. That you have opened this

book at all means you are almost certainly familiar with many of

today’s truisms about the information economy, the digital age,

and the wired world; I will not rehearse them here. I will simply

point out that any significant advance in our understanding of

how to build better-quality, more reliable software has tremen-

dous implications that are growing more tremendous by the day.

The essays in this book did not invent such a fundamental

advance, but they do describe one: open-source software, the pro-

cess of systematically harnessing open development and decentral-

ized peer review to lower costs and improve software quality.

Open-source software is not a new idea (its traditions go back to

the beginnings of the Internet thirty years ago), but only recently

have technical and market forces converged to draw it out of a

niche role. Today the open-source movement is bidding strongly to

xi

The Cathedral and the Bazaar

define the computing infrastructure of the next century. For any-

one who relies on computers, that makes it an important thing to

understand.

I just referred to the ‘‘open-source movement’’. That hints at other

and perhaps more ultimately interesting reasons for the reader to

care. The idea of open source has been pursued, realized, and

cherished over those thirty years by a vigorous tribe of partisans

native to the Internet. These are the people who proudly call

themselves ‘‘hackers’’—not as the term is now abused by journal-

ists to mean a computer criminal, but in its true and original sense

of an enthusiast, an artist, a tinkerer, a problem solver, an expert.

The tribe of hackers, after decades spent in obscurity struggling

against hard technical problems and the far greater weight of

mainstream indifference and dismissal, has recently begun to come

into its own. They built the Internet; they built Unix; they built the

World Wide Web; they’re building Linux and open-source soft-

ware today; and, following the great Internet explosion of the

mid-1990s, the rest of the world is finally figuring out that it

should have been paying more attention to them all along.

The hacker culture and its successes pose by example some funda-

mental questions about human motivation, the organization of

work, the future of professionalism, and the shape of the firm—

and about how all of these things will change and evolve in the

information-rich post-scarcity economies of the 21st century and

beyond. The hacker culture also, arguably, prefigures some pro-

found changes in the way humans will relate to and reshape their

economic surroundings. This should make what we know about

the hacker culture of interest to anyone else who will have to live

and work in the future.

This book is a collection of essays that were originally published

on the Internet; A Brief History of Hackerdom is originally from

1992, but has since been regularly updated and revised, and the

others were written between February 1997 and May 1999. They

were somewhat revised and expanded for the first edition in

xii

October 1999, and updated again for this second edition of Jan-

uary 2001, but no really concerted attempt has been made to

remove technicalia or make them more accessible (e.g., dumb

them down) for a general audience. I think it more respectful to

puzzle and challenge an audience than to bore and insult it. If you

have difficulty with particular technical or historical points or the

odd computer acronym, feel free to skip ahead; the whole does tell

a story, and you may find that what you learn later makes sense of

what puzzled you earlier.

The reader should also understand that these essays are evolving

documents, into which I periodically merge the distilled results of

feedback from people who write to comment on or correct them.

While I alone remain responsible for any errors in this book, it has

benefitted from a peer-review process very like that which it

describes for software, and incorporates contributions from peo-

ple too numerous to list here. The versions printed here are not

fixed or final forms; rather, they should be considered reports from

a continuing inquiry in which many members of the culture they

describe are active participants.

Finally, I must at least try to express my delight and amazement

and gratitude for the many people and the long chain of appar-

ently fortuitous circumstances that have led up to this book

Some particular thanks are due for long-term friendship and sup-

port for the work captured between these covers. Thank you,

Linus Torvalds. Thank you, Larry Augustin. Thank you, Doc

Searls. Thank you, Tim O’Reilly. You are all people I am proud to

call friends as well as colleagues. Most especially: thank you,

Catherine Raymond — my love, my wife, and my longest-time

supporter.

I am a hacker. I have been part of the culture described in this

book for more than 20 years. In that time I have been privileged

to work and play with some of the most interesting and excep-

tional people on Earth, solving fascinating problems and (on a

precious few occasions) creating something both genuinely new

Preface

xiii

The Cathedral and the Bazaar

and useful. Too many of those people to name here have taught

me valuable lessons, about our shared craft and many other

things. The essays in this book are my return gift to them.

These essays were stages of discovery for me as well, reports from

a fascinating journey in which I learned to see the long-familiar in

a new and deeper way. To my then and continuing astonishment,

the mere act of reporting this journey turned out to have a catalyz-

ing effect on the emergence of open source into the mainstream. I

hope the reader of my travel papers will catch some of the excite-

ment of that journey and of the amazing prospects that are

unfolding before us today as mainstream business and consumers

take their first steps on the same road.

Revision Notes for
the Second Edition

For the benefit of readers of the first edition, here follows a sum-

mary of topics on which there have been substantive additions or

revisions in the second edition:

How many eyeballs tames complexity. The deadliness of dead-

lines. A more precise definition of forking and pseudoforking. The

relevance of evolutionary handicap theory, peacocks, and stags to

open-source developer motivation. Economically, why isn’t open

source underprovided? Effects of asymmetric information. Open-

sourcing as a competitive weapon. The predictions in Revenge of

the Hackers have been examined from the perspective of one year

later, and new ones added. An appendix on the growth of the

fetchmail project has been added.

xi v

A Brief History of Hackerdom

✦ ✦ ✦

I explore the origins of the hacker culture, including pre-

history among the Real Programmers, the glory days of

the MIT hackers, and how the early ARPAnet nurtured

the first network nation. I describe the early rise and even-

tual stagnation of Unix, the new hope from Finland, and

how ‘‘the last true hacker’’ became the next generation’s

patriarch. I sketch the way Linux and the mainstreaming

of the Internet brought the hacker culture from the fringes

of public consciousness to its current prominence.

1

Prologue: The Real Programmers

In the beginning, there were Real Programmers.

That’s not what they called themselves. They didn’t call themselves

hackers, either, or anything in particular; the sobriquet ‘Real Pro-

grammer’ wasn’t coined until after 1980, retrospectively by one of

their own. But from 1945 onward, the technology of computing

attracted many of the world’s brightest and most creative minds.

From Eckert and Mauchly’s first ENIAC computer onward there

was a more or less continuous and self-conscious technical culture

of enthusiast programmers, people who built and played with

software for fun.

The Real Programmers typically came out of engineering or

physics backgrounds. They were often amateur-radio hobbyists.

They wore white socks and polyester shirts and ties and thick

glasses and coded in machine language and assembler and FOR-

TRAN and half a dozen ancient languages now forgotten.

From the end of World War II to the early 1970s, in the great days

of batch processing and the ‘‘big iron’’ mainframes, the Real Pro-

grammers were the dominant technical culture in computing. A

few pieces of revered hacker folklore date from this era, including

various lists of Murphy’s Laws and the mock-German ‘‘Blinken-

lights’’ poster that still graces many computer rooms.

Some people who grew up in the Real Programmer culture

remained active into the 1990s. Seymour Cray, designer of the

Cray line of supercomputers, was among the greatest. He is said

to have once toggled an entire operating system of his own design

into a computer of his own design through its front-panel

A Brief History of Hackerdom

3

The Cathedral and the Bazaar

switches. In octal. Without an error. And it worked. Real Pro-

grammer macho supremo.

The ‘Real Programmer’ culture, though, was heavily associated

with batch (and especially batch scientific) computing. It was

eventually eclipsed by the rise of interactive computing, the univer-

sities, and the networks. These gave birth to another engineering

tradition that, eventually, would evolve into today’s open-source

hacker culture.

The Early Hackers

The beginnings of the hacker culture as we know it today can be

conveniently dated to 1961, the year MIT acquired the first

PDP-1. The Signals and Power Committee of MIT’s Tech Model

Railroad Club adopted the machine as their favorite tech-toy and

invented programming tools, slang, and an entire surrounding cul-

ture that is still recognizably with us today. These early years have

been examined in the first part of Steven Levy’s book Hackers,

Anchor/Doubleday 1984, ISBN 0-385-19195-2.

MIT’s computer culture seems to have been the first to adopt the

term ‘hacker’. The Tech Model Railroad Club’s hackers became

the nucleus of MIT’s Artificial Intelligence Laboratory, the world’s

leading center of AI research into the early 1980s. Their influence

was spread far wider after 1969, the first year of the ARPAnet.

The ARPAnet was the first transcontinental, high-speed computer

network. It was built by the Defense Department as an experiment

in digital communications, but grew to link together hundreds of

universities and defense contractors and research laboratories. It

enabled researchers everywhere to exchange information with

unprecedented speed and flexibility, giving a huge boost to collab-

orative work and tremendously increasing both the pace and

intensity of technological advance.

But the ARPAnet did something else as well. Its electronic high-

ways brought together hackers all over the U.S. in a critical mass;

4

instead of remaining in isolated small groups each developing their

own ephemeral local cultures, they discovered (or re-invented)

themselves as a networked tribe.

The first intentional artifacts of the hacker culture—the first slang

lists, the first satires, the first self-conscious discussions of the

hacker ethic—all propagated on the ARPAnet in its early years. In

particular, the first version of the Jargon File

(http://www.tuxedo.org/jargon) developed as a cross-net collabo-

ration during 1973–1975. This slang dictionary became one of the

culture’s defining documents. It was eventually published as The

Hacker’s Dictionary in 1983; that first version is out of print, but

a revised and expanded version is The New Hacker’s Dictionary,

MIT Press, 3rd edition 1996, ISBN 0-262-68092-0 .

Hackerdom flowered at the universities connected to the net, espe-

cially (though not exclusively) in their computer science depart-

ments. MIT’s AI and LCS labs made it first among equals from the

late 1960s. But Stanford University’s Artificial Intelligence Labora-

tory (SAIL) and Carnegie-Mellon University (CMU) became

nearly yas important. All were thriving centers of computer sci-

ence and AI research. All attracted bright people who contributed

great things to the hacker culture, on both the technical and folk-

loric levels.

To understand what came later, though, we need to take another

look at the computers themselves, because the AI Lab’s rise and its

eventual fall were both driven by waves of change in computing

technology.

Since the days of the PDP-1, hackerdom’s fortunes had been

woven together with Digital Equipment Corporation’s PDP series

of minicomputers. DEC pioneered commercial interactive comput-

ing and time-sharing operating systems. Because their machines

were flexible, powerful, and relatively cheap for the era, lots of

universities bought them.

A Brief History of Hackerdom

5

The Cathedral and the Bazaar

Cheap time-sharing was the medium the hacker culture grew in,

and for most of its lifespan the ARPAnet was primarily a network

of DEC machines. The most important of these was the PDP-10,

first released in 1967. The 10 remained hackerdom’s favorite

machine for almost fifteen years; TOPS-10 (DEC’s operating sys-

tem for the machine) and MACRO-10 (its assembler) are still

remembered with nostalgic fondness in a great deal of slang and

folklore.

MIT, though it used the same PDP-10s as everyone else, took a

slightly different path; it rejected DEC’s software for the PDP-10

entirely and built its own operating system, the fabled ITS.

ITS stood for ‘‘Incompatible Time-sharing System’’ which gives

one a pretty good fix on the MIT hackers’ attitude. They wanted it

their way. Fortunately for all, MIT’s people had the intelligence to

match their arrogance. ITS, quirky and eccentric and occasionally

buggy though it always was, hosted a brilliant series of technical

innovations and still arguably holds the record as the single time-

sharing system in longest continuous use.

ITS itself was written in assembler, but many ITS projects were

written in the AI language LISP. LISP was far more powerful and

flexible than any other language of its day; in fact, it is still a bet-

ter design than most languages of today, 25 years later. LISP freed

ITS’s hackers to think in unusual and creative ways. It was a

major factor in their successes, and remains one of hackerdom’s

favorite languages.

Many of the ITS culture’s technical creations are still alive today;

the EMACS program editor is perhaps the best-known. And much

of ITS’s folklore is still ‘live’ to hackers, as one can see in the

Jargon File (http://www.tuxedo.org/jargon).

SAIL and CMU weren’t asleep, either. Many of the cadre of hack-

ers that grew up around SAIL’s PDP-10 later became key figures in

the development of the personal computer and today’s window/

icon/mouse software interfaces. Meanwhile hackers at CMU were

6

doing the work that would lead to the first practical large-scale

applications of expert systems and industrial robotics.

Another important node of the culture was XEROX PARC, the

famed Palo Alto Research Center. For more than a decade, from

the early 1970s into the mid-1980s, PARC yielded an astonishing

volume of groundbreaking hardware and software innovations.

The modern mice, windows, and icons style of software interface

was invented there. So were the laser printer and the local-area

network; and PARC’s series of D machines anticipated the power-

ful personal computers of the 1980s by a decade. Sadly, these

prophets were without honor in their own company; so much so

that it became a standard joke to describe PARC as a place char-

acterized by developing brilliant ideas for everyone else. Their

influence on hackerdom was pervasive.

The ARPAnet and the PDP-10 cultures grew in strength and vari-

ety throughout the 1970s. The facilities for electronic mailing lists

that had been used to foster cooperation among continent-wide

special-interest groups were increasingly also used for more social

and recreational purposes. DARPA deliberately turned a blind eye

to all the technically ‘unauthorized’ activity; it understood that the

extra overhead was a small price to pay for attracting an entire

generation of bright young people into the computing field.

Perhaps the best-known of the ‘social’ ARPAnet mailing lists was

the SF-LOVERS list for science-fiction fans; it is still very much

alive today, in fact, on the larger ‘Internet’ that ARPAnet evolved

into. But there were many others, pioneering a style of communi-

cation that would later be commercialized by for-profit time-shar-

ing services like CompuServe, GEnie, and Prodigy (and later still

dominated by AOL).

Your historian first became involved with the hacker culture in

1977 through the early ARPAnet and science-fiction fandom.

From then onward, I personally witnessed and participated in

many of the changes described here.

A Brief History of Hackerdom

7

The Cathedral and the Bazaar

The Rise of Unix

Far from the bright lights of the ARPAnet, off in the wilds of New

Jersey, something else had been going on since 1969 that would

eventually overshadow the PDP-10 tradition. The year of

ARPAnet’s birth was also the year that a Bell Labs hacker named

Ken Thompson invented Unix.

Thompson had been involved with the development work on a

time-sharing OS called Multics, which shared common ancestry

with ITS. Multics was a test-bed for some important ideas about

how the complexity of an operating system could be hidden inside

it, invisible to the user, and even to most programmers. The idea

was to make using Multics from the outside (and programming

for it!) much simpler, so that more real work could get done.

Bell Labs pulled out of the project when Multics displayed signs of

bloating into an unusable white elephant (the system was later

marketed commercially by Honeywell but never became a suc-

cess). Ken Thompson missed the Multics environment, and began

to play at implementing a mixture of its ideas and some of his

own on a scavenged DEC PDP-7.

Another hacker named Dennis Ritchie invented a new language

called C for use under Thompson’s embryonic Unix. Like Unix, C

was designed to be pleasant, unconstraining, and flexible. Interest

in these tools spread at Bell Labs, and they got a boost in 1971

when Thompson and Ritchie won a bid to produce what we’d

now call an office automation system for internal use there. But

Thompson & Ritchie had their eye on a bigger prize.

Traditionally, operating systems had been written in tight assem-

bler to extract the absolute highest efficiency possible out of their

host machines. Thompson and Ritchie were among the first to

realize that hardware and compiler technology had become good

enough that an entire operating system could be written in C, and

by 1978 the whole environment had been successfully ported to

several machines of different types.

8

This had never been done before, and the implications were enor-

mous. If Unix could present the same face, the same capabilities,

on machines of many different types, it could serve as a common

software environment for all of them. No longer would users have

to pay for complete new designs of software every time a machine

went obsolete. Hackers could carry around software toolkits

between different machines, rather than having to re-invent the

equivalents of fire and the wheel every time.

Besides portability, Unix and C had some other important

strengths. Both were constructed from a ‘‘Keep It Simple, Stupid’’

philosophy. A programmer could easily hold the entire logical

structure of C in his head (unlike most other languages before or

since) rather than needing to refer constantly to manuals; and

Unix was structured as a flexible toolkit of simple programs

designed to combine with each other in useful ways.

The combination proved to be adaptable to a very wide range of

computing tasks, including many completely unanticipated by the

designers. It spread very rapidly within AT&T, in spite of the lack

of any formal support program for it. By 1980 it had spread to a

large number of university and research computing sites, and

thousands of hackers considered it home.

The workhorse machines of the early Unix culture were the

PDP-11 and its descendant, the VAX. But because of Unix’s porta-

bility, it ran essentially unaltered on a wider range of machines

than one could find on the entire ARPAnet. And nobody used

assembler; C programs were readily portable among all these

machines.

Unix even had its own networking, of sorts—UUCP: low-speed

and unreliable, but cheap. Any two Unix machines could

exchange point-to-point electronic mail over ordinary phone lines;

this capability was built into the system, not an optional extra. In

1980 the first Usenet sites began exchanging broadcast news,

forming a gigantic distributed bulletin board that would quickly

A Brief History of Hackerdom

9

The Cathedral and the Bazaar

grow bigger than ARPAnet. Unix sites began to form a network

nation of their own around Usenet.

A few Unix sites were on the ARPAnet themselves. The PDP-10

and Unix/Usenet cultures began to meet and mingle at the edges,

but they didn’t mix very well at first. The PDP-10 hackers tended

to consider the Unix crowd a bunch of upstarts, using tools that

looked ridiculously primitive when set against the baroque, lovely

complexities of LISP and ITS. ‘‘Stone knives and bearskins!’’ they

muttered.

And there was yet a third current flowing. The first personal com-

puter had been marketed in 1975; Apple was founded in 1977,

and advances came with almost unbelievable rapidity in the years

that followed. The potential of microcomputers was clear, and

attracted yet another generation of bright young hackers. Their

language was BASIC, so primitive that PDP-10 partisans and Unix

aficionados both considered it beneath contempt.

The End of Elder Day s

So matters stood in 1980: three cultures, overlapping at the edges

but clustered around very different technologies. The ARPAnet/

PDP-10 culture, wedded to LISP and MACRO and TOPS-10 and

ITS and SAIL. The Unix and C crowd with their PDP-11s and

VAXen and pokey telephone connections. And an anarchic horde

of early microcomputer enthusiasts bent on taking computer

power to the people.

Among these, the ITS culture could still claim pride of place. But

stormclouds were gathering over the Lab. The PDP-10 technology

ITS depended on was aging, and the Lab itself was split into fac-

tions by the first attempts to commercialize artificial intelligence.

Some of the Lab’s (and SAIL’s and CMU’s) best were lured away

to high-paying jobs at startup companies.

The death blow came in 1983, when DEC cancelled its Jupiter fol-

low-on to the PDP-10 in order to concentrate on the PDP-11 and

10

VAX lines. ITS no longer had a future. Because it wasn’t portable,

it was more effort than anyone could afford to move ITS to new

hardware. The Berkeley variant of Unix running on a VAX

became the hacking system par excellence, and anyone with an eye

on the future could see that microcomputers were growing in

power so rapidly that they were likely to sweep all before them.

It’s around this time that Levy wrote Hackers. One of his prime

informants was Richard M. Stallman (inventor of Emacs), a lead-

ing figure at the Lab and its most fanatical holdout against the

commercialization of Lab technology.

Stallman (who is usually known by his initials and login name,

RMS) went on to form the Free Software Foundation and dedicate

himself to producing high-quality free software. Levy eulogized

him as ‘‘the last true hacker’’, a description which happily proved

incorrect.

Stallman’s grandest scheme neatly epitomized the transition hack-

erdom underwent in the early eighties—in 1982 he began the con-

struction of an entire clone of Unix, written in C and available for

free. His project was known as the GNU (Gnu’s Not Unix) operat-

ing system, in a kind of recursive acronym. GNU quickly became

a major focus for hacker activity. Thus, the spirit and tradition of

ITS was preserved as an important part of the newer, Unix and

VAX-centered hacker culture.

Indeed, for more than a decade after its founding RMS’s Free Soft-

ware Foundation would largely define the public ideology of the

hacker culture, and Stallman himself would be the only credible

claimant to leadership of the tribe.

It was also around 1982–83 that microchip and local-area net-

work technology began to have a serious impact on hackerdom.

Ethernet and the Motorola 68000 microchip made a potentially

potent combination, and several different startups had been

formed to build the first generation of what we now call work-

stations.

A Brief History of Hackerdom

11

The Cathedral and the Bazaar

In 1982, a group of Unix hackers from Stanford and Berkeley

founded Sun Microsystems on the belief that Unix running on rel-

atively inexpensive 68000-based hardware would prove a winning

combination for a wide variety of applications. They were right,

and their vision set the pattern for an entire industry. While still

priced out of reach of most individuals, workstations were cheap

for corporations and universities; networks of them (one to a user)

rapidly replaced the older VAXes and other time-sharing systems.

The Proprietary-Unix Era

By 1984, when Ma Bell divested and Unix became a supported

AT&T product for the first time, the most important fault line in

hackerdom was between a relatively cohesive ‘network nation’

centered around the Internet and Usenet (and mostly using mini-

computer- or workstation-class machines running Unix), and a

vast disconnected hinterland of microcomputer enthusiasts.

It was also around this time that serious cracking episodes were

first covered in the mainstream press—and journalists began to

misapply the term ‘‘hacker’’ to refer to computer vandals, an abuse

which sadly continues to this day.

The workstation-class machines built by Sun and others opened

up new worlds for hackers. They were built to do high-perfor-

mance graphics and pass around shared data over a network. Dur-

ing the 1980s hackerdom was preoccupied by the software and

tool-building challenges of getting the most use out of these fea-

tures. Berkeley Unix developed built-in support for the ARPAnet

protocols, which offered a solution to the networking problems

associated with UUCP’s slow point-to-point links and encouraged

further growth of the Internet.

There were several attempts to tame workstation graphics. The

one that prevailed was the X Window System, developed at MIT

with contributions from hundreds of individuals at dozens of com-

panies. A critical factor in its success was that the X developers

were willing to give the sources away for free in accordance with

12

the hacker ethic, and able to distribute them over the Internet. X’s

victory over proprietary graphics systems (including one offered

by Sun itself) was an important harbinger of changes that, a few

years later, would profoundly affect Unix as a whole.

There was a bit of factional spleen still vented occasionally in the

ITS/Unix rivalry (mostly from the ex-ITSers’ side). But the last ITS

machine shut down for good in 1990; the zealots no longer had a

place to stand and mostly assimilated to the Unix culture with var-

ious degrees of grumbling.

Within networked hackerdom itself, the big rivalry of the 1980s

was between fans of Berkeley Unix and the AT&T versions. Occa-

sionally you can still find copies of a poster from that period,

showing a cartoony X-wing fighter out of the ‘‘Star Wars’’ movies

streaking away from an exploding Death Star patterned on the

AT&T logo. Berkeley hackers liked to see themselves as rebels

against soulless corporate empires. AT&T Unix never caught up

with BSD/Sun in the marketplace, but it won the standards wars.

By 1990, AT&T and BSD versions were becoming harder to tell

apart, having adopted many of each other’s innovations.

As the 1990s opened, the workstation technology of the previous

decade was beginning to look distinctly threatened by newer, low-

cost and high-performance personal computers based on the Intel

386 chip and its descendants. For the first time, individual hackers

could afford to have home machines comparable in power and

storage capacity to the minicomputers of ten years earlier—Unix

engines capable of supporting a full development environment and

talking to the Internet.

The MS-DOS world remained blissfully ignorant of all this.

Though those early microcomputer enthusiasts quickly expanded

to constitute a population of DOS and Mac hackers orders of

magnitude larger than that of the network nation culture, they

never became a self-aware of their culture. The pace of change

was so fast that fifty different technical cultures grew and died as

rapidly as mayflies, never achieving quite the stability necessary to

A Brief History of Hackerdom

13

The Cathedral and the Bazaar

develop a common tradition of jargon, folklore, and mythic his-

tory. The absence of a really pervasive network comparable to

UUCP or Internet prevented them from becoming a network

nation themselves.

Widespread access to commercial online services like CompuServe

and GEnie was beginning to take hold, but the fact that non-Unix

operating systems don’t come bundled with development tools

meant that very little source was passed over them. Thus, no tradi-

tion of collaborative hacking developed.

The mainstream of hackerdom, (dis)organized around the Internet

and by now largely identified with the Unix technical culture,

didn’t care about the commercial services. These hackers wanted

better tools and more Internet, and cheap 32-bit PCs promised to

put both in everyone’s reach.

But where was the software? Commercial Unixes remained expen-

sive, in the multiple-kilobuck range. In the early 1990s several

companies made a go at selling AT&T or BSD Unix ports for PC-

class machines. Success was elusive, prices didn’t come down

much, and (worst of all) you didn’t get modifiable and redis-

tributable sources with your operating system. The traditional

software-business model wasn’t giving hackers what they wanted.

Neither was the Free Software Foundation. The development of

HURD, RMS’s long-promised free Unix kernel for hackers, got

stalled for years and failed to produce anything like a usable ker-

nel until 1996 (though by 1990 FSF supplied almost all the other

difficult parts of a Unix-like operating system).

Worse, by the early 1990s it was becoming clear that ten years of

effort to commercialize proprietary Unix was ending in failure.

Unix’s promise of cross-platform portability got lost in bickering

among half a dozen proprietary Unix versions. The proprietary-

Unix players proved so ponderous, so blind, and so inept at mar-

keting that Microsoft was able to grab away a large part of their

14

market with the shockingly inferior technology of its Windows

operating system.

In early 1993, a hostile observer might have had grounds for

thinking that the Unix story was almost played out, and with it

the fortunes of the hacker tribe. And there was no shortage of hos-

tile observers in the computer trade press, many of whom had

been ritually predicting the imminent death of Unix at six-month

intervals ever since the late 1970s.

In those days it was conventional wisdom that the era of individ-

ual techno-heroism was over, that the software industry and the

nascent Internet would increasingly be dominated by colossi like

Microsoft. The first generation of Unix hackers seemed to be get-

ting old and tired (Berkeley’s Computer Science Research Group

ran out of steam and would lose its funding in 1994). It was a

depressing time.

Fortunately, there had been things going on out of sight of the

trade press, and out of sight even of most hackers, that would pro-

duce startlingly positive developments in later 1993 and 1994.

Eventually, these would take the culture in a whole new direction

and to undreamed-of successes.

The Early Free Unixes

Into the gap left by the Free Software Foundation’s uncompleted

HURD had stepped a Helsinki University student named Linus

Torvalds. In 1991 he began developing a free Unix kernel for 386

machines using the Free Software Foundation’s toolkit. His initial,

rapid success attracted many Internet hackers to help him develop

Linux, a full-featured Unix with entirely free and redistributable

sources.

Linux was not without competitors. In 1991, contemporaneously

with Linus Torvalds’s early experiments, William and Lynne Jolitz

were experimentally porting the BSD Unix sources to the 386.

Most observers comparing BSD technology with Linus’s crude

A Brief History of Hackerdom

15

The Cathedral and the Bazaar

early efforts expected that BSD ports would become the most

important free Unixes on the PC.

The most important feature of Linux, however, was not technical

but sociological. Until the Linux development, everyone believed

that any software as complex as an operating system had to be

developed in a carefully coordinated way by a relatively small,

tightly-knit group of people. This model was and still is typical of

both commercial software and the great freeware cathedrals built

by the Free Software Foundation in the 1980s; also of the

freeBSD/netBSD/OpenBSD projects that spun off from the Jolitzes’

original 386BSD port.

Linux evolved in a completely different way. From nearly the

beginning, it was rather casually hacked on by huge numbers of

volunteers coordinating only through the Internet. Quality was

maintained not by rigid standards or autocracy but by the naively

simple strategy of releasing every week and getting feedback from

hundreds of users within days, creating a sort of rapid Darwinian

selection on the mutations introduced by developers. To the

amazement of almost everyone, this worked quite well.

By late 1993 Linux could compete on stability and reliability with

many commercial Unixes, and hosted vastly more software. It was

even beginning to attract ports of commercial applications soft-

ware. One indirect effect of this development was to kill off most

of the smaller proprietary Unix vendors—without developers and

hackers to sell to, they folded. One of the few survivors, BSDI

(Berkeley Systems Design, Incorporated), flourished by offering

full sources with its BSD-based Unix and cultivating close ties with

the hacker community.

These developments were not much remarked on at the time

within the hacker culture, and not at all outside it. The hacker cul-

ture, defying repeated predictions of its demise, was just beginning

to remake the commercial-software world in its own image. It

would be five more years, however, before this trend became

obvious.

16

The Great Web Explosion

The early growth of Linux synergized with another phenomenon:

the public discovery of the Internet. The early 1990s also saw the

beginnings of a flourishing Internet-provider industry, selling con-

nectivity to the public for a few dollars a month. Following the

invention of the World Wide Web, the Internet’s already rapid

growth accelerated to a breakneck pace.

By 1994, the year Berkeley’s Unix development group formally

shut down, several different free Unix versions (Linux and the

descendants of 386BSD) served as the major focal points of hack-

ing activity. Linux was being distributed commercially on CD-

ROM and selling like hotcakes. By the end of 1995, major com-

puter companies were beginning to take out glossy advertisements

celebrating the Internet-friendliness of their software and hard-

ware!

In the late 1990s the central activities of hackerdom became Linux

development and the mainstreaming of the Internet. The World

Wide Web has at last made the Internet into a mass medium, and

many of the hackers of the 1980s and early 1990s launched Inter-

net Service Providers selling or giving access to the masses.

The mainstreaming of the Internet even brought the hacker culture

the beginnings of respectability and political clout. In 1994 and

1995 hacker activism scuppered the Clipper proposal which

would have put strong encryption under government control. In

1996 hackers mobilized a broad coalition to defeat the misnamed

‘‘Communications Decency Act’’ (CDA) and prevent censorship of

the Internet.

With the CDA victory, we pass out of history into current events.

We also pass into a period in which your historian (rather to his

own surprise) became an actor rather than just an observer. This

narrative will continue in Revenge of the Hackers.

A Brief History of Hackerdom

17

The Cathedral and the Bazaar

✦ ✦ ✦

I anatomize a successful open-source project, fetchmail,

that was run as a deliberate test of the surprising theories

about software engineering suggested by the history of

Linux. I discuss these theories in terms of two fundamen-

tally different development styles, the ‘cathedral’ model of

most of the commercial world versus the ‘bazaar’ model

of the Linux world. I show that these models derive from

opposing assumptions about the nature of the software-

debugging task. I then make a sustained argument from

the Linux experience for the proposition that ‘‘Gi ven

enough eyeballs, all bugs are shallow’’, suggest productive

analogies with other self-correcting systems of selfish

agents, and conclude with some exploration of the impli-

cations of this insight for the future of software.

19

The Cathedral and the Bazaar

Linux is subversive. Who would have thought even five years ago

(1991) that a world-class operating system could coalesce as if by

magic out of part-time hacking by several thousand developers

scattered all over the planet, connected only by the tenuous

strands of the Internet?

Certainly not I. By the time Linux swam onto my radar screen in

early 1993, I had already been involved in Unix and open-source

development for 10 years. I was one of the first GNU contributors

in the mid-1980s. I had released a good deal of open-source soft-

ware onto the Net, developing or co-developing several programs

(nethack, Emacs’s VC and GUD modes, xlife, and others) that are

still in wide use today. I thought I knew how it was done.

Linux overturned much of what I thought I knew. I had been

preaching the Unix gospel of small tools, rapid prototyping, and

evolutionary programming for years. But I also believed there was

a certain critical complexity above which a more centralized, a

priori approach was required. I believed that the most important

software (operating systems and really large tools like the Emacs

programming editor) needed to be built like cathedrals, carefully

crafted by individual wizards or small bands of mages working in

splendid isolation, with no beta to be released before its time.

Linus Torvalds’s style of development—release early and often,

delegate everything you can, be open to the point of promiscu-

ity — came as a surprise. No quiet, reverent cathedral-building

here — rather, the Linux community seemed to resemble a great

babbling bazaar of differing agendas and approaches (aptly sym-

bolized by the Linux archive sites, which would take submissions

The Cathedral and the Bazaar

21

The Cathedral and the Bazaar

from anyone) out of which a coherent and stable system could

seemingly emerge only by a succession of miracles.

The fact that this bazaar style seemed to work, and work well,

came as a distinct shock. As I learned my way around, I worked

hard not just at individual projects, but also at trying to under-

stand why the Linux world not only didn’t fly apart in confusion

but seemed to go from strength to strength at a speed barely imag-

inable to cathedral-builders.

By mid-1996 I thought I was beginning to understand. Chance

handed me a perfect way to test my theory, in the form of an

open-source project that I could consciously try to run in the

bazaar style. So I did—and it was a significant success.

This is the story of that project. I’ll use it to propose some apho-

risms about effective open-source development. Not all of these

are things I first learned in the Linux world, but we’ll see how the

Linux world gives them particular point. If I’m correct, they’ll

help you understand exactly what it is that makes the Linux com-

munity such a fountain of good software—and, perhaps, they will

help you become more productive yourself.

The Mail Must Get Through

Since 1993 I’d been running the technical side of a small free-

access Internet service provider called Chester County InterLink

(CCIL) in West Chester, Pennsylvania. I co-founded CCIL and

wrote our unique multiuser bulletin-board software—you can

check it out by telnetting to locke.ccil.org. Today it supports

almost 3000 users on 30 lines. The job allowed me 24-hour-a-day

access to the net through CCIL’s 56K line—in fact, the job practi-

cally demanded it!

22

I had gotten quite used to instant Internet email. I found having to

periodically telnet over to locke to check my mail annoying. What

I wanted was for my mail to be delivered on snark (my home sys-

tem) so that I would be notified when it arrived and could handle

it using all my local tools.

The Internet’s native mail forwarding protocol, SMTP (Simple

Mail Transfer Protocol), wouldn’t suit, because it works best when

machines are connected full-time, while my personal machine isn’t

always on the Internet and doesn’t have a static IP address. What I

needed was a program that would reach out over my intermittent

dialup connection and pull across my mail to be delivered locally.

I knew such things existed, and that most of them used a simple

application protocol called POP (Post Office Protocol). POP is

now widely supported by most common mail clients, but at the

time, it wasn’t built in to the mail reader I was using.

I needed a POP3 client. So I went out on the Internet and found

one. Actually, I found three or four. I used one of them for a while,

but it was missing what seemed an obvious feature, the ability to

hack the addresses on fetched mail so replies would work

properly.

The problem was this: suppose someone named joe on locke sent

me mail. If I fetched the mail to snark and then tried to reply to it,

my mailer would cheerfully try to ship it to a nonexistent joe on

snark. Hand-editing reply addresses to tack on @ccil.org quickly

got to be a serious pain.

This was clearly something the computer ought to be doing for

me. But none of the existing POP clients knew how! And this

brings us to the first lesson:

1. Every good work of software starts by scratch-

ing a developer’s personal itch.

Perhaps this should have been obvious (it’s long been proverbial

that ‘‘Necessity is the mother of invention’’), but too often soft-

ware developers spend their days grinding away for pay at

The Cathedral and the Bazaar

23

The Cathedral and the Bazaar

programs they neither need nor love. But not in the Linux

world — which may explain why the average quality of software

originated in the Linux community is so high.

So, did I immediately launch into a furious whirl of coding up a

brand-new POP3 client to compete with the existing ones? Not on

your life! I looked carefully at the POP utilities I had in hand, ask-

ing myself ‘‘Which one is closest to what I want?’’ Because:

2. Good programmers know what to write. Great

ones know what to rewrite (and reuse).

While I don’t claim to be a great programmer, I try to imitate one.

An important trait of the great ones is constructive laziness. They

know that you get an A not for effort but for results, and that it’s

almost always easier to start from a good partial solution than

from nothing at all.

Linus Torvalds (http://www.tuxedo.org/ ̃ esr/faqs/linus), for exam-

ple, didn’t actually try to write Linux from scratch. Instead, he

started by reusing code and ideas from Minix, a tiny Unix-like

operating system for PC clones. Eventually all the Minix code

went away or was completely rewritten—but while it was there, it

provided scaffolding for the infant that would eventually become

Linux.

In the same spirit, I went looking for an existing POP utility that

was reasonably well coded, to use as a development base.

The source-sharing tradition of the Unix world has always been

friendly to code reuse (this is why the GNU project chose Unix as

a base OS, in spite of serious reservations about the OS itself). The

Linux world has taken this tradition nearly to its technological

limit; it has terabytes of open sources generally available. So

spending time looking for someone else’s almost-good-enough is

more likely to give you good results in the Linux world than any-

where else.

And it did for me. With those I’d found earlier, my second search

made up a total of nine candidates—fetchpop, PopTart, get-mail,

24

gwpop, pimp, pop-perl, popc, popmail and upop. The one I first

settled on was ‘fetchpop’ by Seung-Hong Oh. I put my header-

rewrite feature in it, and made various other improvements that

the author accepted into his 1.9 release.

Just a few weeks later, though, I stumbled across the code for

popclient by Carl Harris, and found I had a problem. Though

fetchpop had some good original ideas in it (such as its back-

ground-daemon mode), it could only handle POP3 and was rather

amateurishly coded (Seung-Hong was at that time a bright but

inexperienced programmer, and both traits showed). Carl’s code

was better, quite professional and solid, but his program lacked

several important and rather tricky-to-implement fetchpop fea-

tures (including those I’d coded myself).

Stay or switch? If I switched, I’d be throwing away the coding I’d

already done in exchange for a better development base.

A practical motive to switch was the presence of multiple-protocol

support. POP3 is the most commonly used of the post-office server

protocols, but not the only one. Fetchpop and the other competi-

tion didn’t do POP2, RPOP, or APOP, and I was already having

vague thoughts of perhaps adding IMAP (Internet Message Access

Protocol, the most recently designed and most powerful post-

office protocol, http://www.imap.org) just for fun.

But I had a more theoretical reason to think switching might be as

good an idea as well, something I learned long before Linux.

3. ‘‘Plan to throw one awa y; you will, anyhow. ’ ’

(Fred Brooks, The Mythical Man-Month, Chapter 11)

Or, to put it another way, you often don’t really understand the

problem until after the first time you implement a solution. The

second time, maybe you know enough to do it right. So if you

want to get it right, be ready to start over at least once.1

Well (I told myself) the changes to fetchpop had been my first try.

So I switched.

The Cathedral and the Bazaar

25

The Cathedral and the Bazaar

After I sent my first set of popclient patches to Carl Harris on 25

June 1996, I found out that he had basically lost interest in

popclient some time before. The code was a bit dusty, with minor

bugs hanging out. I had many changes to make, and we quickly

agreed that the logical thing for me to do was take over the pro-

gram.

Without my actually noticing, the project had escalated. No

longer was I just contemplating minor patches to an existing POP

client. I took on maintaining an entire one, and there were ideas

bubbling in my head that I knew would probably lead to major

changes.

In a software culture that encourages code-sharing, this is a natu-

ral way for a project to evolve. I was acting out this principle:

4. If you have the right attitude, interesting prob-

lems will find you.

But Carl Harris’s attitude was even more important. He under-

stood that:

5. When you lose interest in a program, your last

duty to it is to hand it off to a competent suc-

cessor.

Without ever having to discuss it, Carl and I knew we had a com-

mon goal of having the best solution out there. The only question

for either of us was whether I could establish that I was a safe pair

of hands. Once I did that, he acted with grace and dispatch. I hope

I will do as well when it comes my turn.

The Importance of Having Users

And so I inherited popclient. Just as importantly, I inherited

popclient’s user base. Users are wonderful things to have, and not

just because they demonstrate that you’re serving a need, that

you’ve done something right. Properly cultivated, they can become

co-developers.

26

Another strength of the Unix tradition, one that Linux pushes to a

happy extreme, is that a lot of users are hackers too. Because

source code is available, they can be effective hackers. This can be

tremendously useful for shortening debugging time. Given a bit of

encouragement, your users will diagnose problems, suggest fixes,

and help improve the code far more quickly than you could

unaided.

6. Treating your users as co-developers is your

least-hassle route to rapid code improvement

and effective debugging.

The power of this effect is easy to underestimate. In fact, pretty

well all of us in the open-source world drastically underestimated

how well it would scale up with number of users and against sys-

tem complexity, until Linus Torvalds showed us differently.

In fact, I think Linus’s cleverest and most consequential hack was

not the construction of the Linux kernel itself, but rather his

invention of the Linux development model. When I expressed this

opinion in his presence once, he smiled and quietly repeated some-

thing he has often said: ‘‘I’m basically a very lazy person who likes

to get credit for things other people actually do.’’ Lazy like a fox.

Or, as Robert Heinlein famously wrote of one of his characters,

too lazy to fail.

In retrospect, one precedent for the methods and success of Linux

can be seen in the development of the GNU Emacs Lisp library

and Lisp code archives. In contrast to the cathedral-building style

of the Emacs C core and most other GNU tools, the evolution of

the Lisp code pool was fluid and very user-driven. Ideas and pro-

totype modes were often rewritten three or four times before

reaching a stable final form. And loosely-coupled collaborations

enabled by the Internet, a la Linux, were frequent.

Indeed, my own most successful single hack previous to fetchmail

was probably Emacs VC (version control) mode, a Linux-like col-

laboration by email with three other people, only one of whom

(Richard Stallman, the author of Emacs and founder of the Free

The Cathedral and the Bazaar

27

The Cathedral and the Bazaar

Software Foundation, (http://www.fsf.org") I have met to this day.

It was a front-end for SCCS, RCS, and later CVS from within

Emacs that offered ‘‘one-touch’’ version control operations. It

evolved from a tiny, crude sccs.el mode somebody else had writ-

ten. And the development of VC succeeded because, unlike Emacs

itself, Emacs Lisp code could go through release/test/improve gen-

erations very quickly.

The Emacs story is not unique. There have been other software

products with a two-level architecture and a two-tier user commu-

nity that combined a cathedral-mode core and a bazaar-mode

toolbox. One such is MATLAB, a commercial data-analysis and

visualization tool. Users of MATLAB and other products with a

similar structure invariably report that the action, the ferment, the

innovation mostly takes place in the open part of the tool where a

large and varied community can tinker with it.

Release Early, Release Often

Early and frequent releases are a critical part of the Linux devel-

opment model. Most developers (including me) used to believe

this was bad policy for larger than trivial projects, because early

versions are almost by definition buggy versions and you don’t

want to wear out the patience of your users.

This belief reinforced the general commitment to a cathedral-

building style of development. If the overriding objective was for

users to see as few bugs as possible, why then you’d only release a

version every six months (or less often), and work like a dog on

debugging between releases. The Emacs C core was developed this

way. The Lisp library, in effect, was not—because there were

active Lisp archives outside the FSF’s control, where you could go

to find new and development code versions independently of

Emacs’s release cycle.2

The most important of these, the Ohio State Emacs Lisp archive,

anticipated the spirit and many of the features of today’s big

Linux archives. But few of us really thought very hard about what

28

we were doing, or about what the very existence of that archive

suggested about problems in the FSF’s cathedral-building develop-

ment model. I made one serious attempt around 1992 to get a lot

of the Ohio code formally merged into the official Emacs Lisp

library. I ran into political trouble and was largely unsuccessful.

But by a year later, as Linux became widely visible, it was clear

that something different and much healthier was going on there.

Linus’s open development policy was the very opposite of cathe-

dral-building. Linux’s Internet archives were burgeoning, multiple

distributions were being floated. And all of this was driven by an

unheard-of frequency of core system releases.

Linus was treating his users as co-developers in the most effective

possible way:

7. Release early. Release often. And listen to your

customers.

Linus’s innovation wasn’t so much in doing quick-turnaround

releases incorporating lots of user feedback (something like this

had been Unix-world tradition for a long time), but in scaling it

up to a level of intensity that matched the complexity of what he

was developing. In those early times (around 1991) it wasn’t

unknown for him to release a new kernel more than once a day!

Because he cultivated his base of co-developers and leveraged the

Internet for collaboration harder than anyone else, this worked.

But how did it work? And was it something I could duplicate, or

did it rely on some unique genius of Linus Torvalds?

I didn’t think so. Granted, Linus is a damn fine hacker. How many

of us could engineer an entire production-quality operating system

kernel from scratch? But Linux didn’t represent any awesome con-

ceptual leap forward. Linus is not (or at least, not yet) an innova-

tive genius of design in the way that, say, Richard Stallman or

James Gosling (of NeWS and Java) are. Rather, Linus seems to me

to be a genius of engineering and implementation, with a sixth

sense for avoiding bugs and development dead-ends and a true

The Cathedral and the Bazaar

29

The Cathedral and the Bazaar

knack for finding the minimum-effort path from point A to point

B. Indeed, the whole design of Linux breathes this quality and mir-

rors Linus’s essentially conservative and simplifying design

approach.

So, if rapid releases and leveraging the Internet medium to the hilt

were not accidents but integral parts of Linus’s engineering-genius

insight into the minimum-effort path, what was he maximizing?

What was he cranking out of the machinery?

Put that way, the question answers itself. Linus was keeping his

hacker/users constantly stimulated and rewarded—stimulated by

the prospect of having an ego-satisfying piece of the action,

rewarded by the sight of constant (even daily) improvement in

their work.

Linus was directly aiming to maximize the number of person-

hours thrown at debugging and development, even at the possible

cost of instability in the code and user-base burnout if any serious

bug proved intractable. Linus was behaving as though he believed

something like this:

8. Given a large enough beta-tester and co-devel-

oper base, almost every problem will be charac-

terized quickly and the fix obvious to someone.

Or, less formally, ‘‘Given enough eyeballs, all bugs are shallow.’’ I

dub this: ‘‘Linus’s Law’’.

My original formulation was that every problem ‘‘will be transpar-

ent to somebody’’. Linus demurred that the person who under-

stands and fixes the problem is not necessarily or even usually the

person who first characterizes it. ‘‘Somebody finds the problem,’’

he says, ‘‘and somebody else understands it. And I’ll go on record

as saying that finding it is the bigger challenge.’’ That correction is

important; we’ll see how in the next section, when we examine the

practice of debugging in more detail. But the key point is that both

parts of the process (finding and fixing) tend to happen rapidly.

30

In Linus’s Law, I think, lies the core difference underlying the

cathedral-builder and bazaar styles. In the cathedral-builder view

of programming, bugs and development problems are tricky, insid-

ious, deep phenomena. It takes months of scrutiny by a dedicated

few to develop confidence that you’ve winkled them all out. Thus

the long release intervals, and the inevitable disappointment when

long-awaited releases are not perfect.

In the bazaar view, on the other hand, you assume that bugs are

generally shallow phenomena—or, at least, that they turn shallow

pretty quickly when exposed to a thousand eager co-developers

pounding on every single new release. Accordingly you release

often in order to get more corrections, and as a beneficial side

effect you have less to lose if an occasional botch gets out the

door.

And that’s it. That’s enough. If ‘‘Linus’s Law’’ is false, then any

system as complex as the Linux kernel, being hacked over by as

many hands as that kernel was, should at some point have col-

lapsed under the weight of unforseen bad interactions and undis-

covered ‘‘deep’’ bugs. If it’s true, on the other hand, it is sufficient

to explain Linux’s relative lack of bugginess and its continuous

uptimes spanning months or even years.

Maybe it shouldn’t have been such a surprise, at that. Sociologists

years ago discovered that the averaged opinion of a mass of

equally expert (or equally ignorant) observers is quite a bit more

reliable a predictor than the opinion of a single randomly chosen

observer. They called this the Delphi effect. It appears that what

Linus has shown is that this applies even to debugging an operat-

ing system—that the Delphi effect can tame development com-

plexity even at the complexity level of an OS kernel.3

One special feature of the Linux situation that clearly helps along

the Delphi effect is the fact that the contributors for any given

project are self-selected. An early respondent pointed out that con-

tributions are received not from a random sample, but from peo-

ple who are interested enough to use the software, learn about

The Cathedral and the Bazaar

31

The Cathedral and the Bazaar

how it works, attempt to find solutions to problems they

encounter, and actually produce an apparently reasonable fix.

Anyone who passes all these filters is highly likely to have some-

thing useful to contribute.

Linus’s Law can be rephrased as ‘‘Debugging is parallelizable’’.

Although debugging requires debuggers to communicate with

some coordinating developer, it doesn’t require significant coordi-

nation between debuggers. Thus it doesn’t fall prey to the same

quadratic complexity and management costs that make adding

developers problematic.

In practice, the theoretical loss of efficiency due to duplication of

work by debuggers almost never seems to be an issue in the Linux

world. One effect of a ‘‘release early and often’’ policy is to mini-

mize such duplication by propagating fed-back fixes quickly.4

Brooks (the author of The Mythical Man-Month) even made an

off-hand observation related to Jeff’s: ‘‘The total cost of maintain-

ing a widely used program is typically 40 percent or more of the

cost of developing it. Surprisingly this cost is strongly affected by

the number of users. More users find more bugs.’’ [Emphasis

added.]

More users find more bugs because adding more users adds more

different ways of stressing the program. This effect is amplified

when the users are co-developers. Each one approaches the task of

bug characterization with a slightly different perceptual set and

analytical toolkit, a different angle on the problem. The Delphi

Effect seems to work precisely because of this variation. In the

specific context of debugging, the variation also tends to reduce

duplication of effort.

So adding more beta-testers may not reduce the complexity of the

current ‘‘deepest’’ bug from the developer’s point of view, but it

increases the probability that someone’s toolkit will be matched to

the problem in such a way that the bug is shallow to that person.

32

Linus coppers his bets, too. In case there are serious bugs, Linux

kernel version are numbered in such a way that potential users can

make a choice either to run the last version designated ‘‘stable’’ or

to ride the cutting edge and risk bugs in order to get new features.

This tactic is not yet systematically imitated by most Linux hack-

ers, but perhaps it should be; the fact that either choice is available

makes both more attractive.5

Many Eyeballs Tame Complexity

It’s one thing to observe in the large that the bazaar style greatly

accelerates debugging and code evolution. It’s another to under-

stand exactly how and why it does so at the micro-level of day-to-

day developer and tester behavior. In this section (written three

years after the original paper, using insights by developers who

read it and re-examined their own behavior) we’ll take a hard

look at the actual mechanisms. Non-technically inclined readers

can safely skip to the next section.

One key to understanding is to realize exactly why it is that the

kind of bug report non–source-aware users normally turn in tends

not to be very useful. Non–source-aware users tend to report only

surface symptoms; they take their environment for granted, so

they (a) omit critical background data, and (b) seldom include a

reliable recipe for reproducing the bug.

The underlying problem here is a mismatch between the tester’s

and the developer’s mental models of the program; the tester, on

the outside looking in, and the developer on the inside looking

out. In closed-source development they’re both stuck in these

roles, and tend to talk past each other and find each other deeply

frustrating.

Open-source development breaks this bind, making it far easier

for tester and developer to develop a shared representation

grounded in the actual source code and to communicate effectively

about it. Practically, there is a huge difference in leverage for the

developer between the kind of bug report that just reports

The Cathedral and the Bazaar

33

The Cathedral and the Bazaar

externally visible symptoms and the kind that hooks directly to

the developer’s source-code–based mental representation of the

program.

Most bugs, most of the time, are easily nailed given even an

incomplete but suggestive characterization of their error condi-

tions at source-code level. When someone among your beta-testers

can point out, “there’s a boundary problem in line nnn”, or even

just “under conditions X, Y, and Z, this variable rolls over”, a

quick look at the offending code often suffices to pin down the

exact mode of failure and generate a fix.

Thus, source-code awareness by both parties greatly enhances

both good communication and the synergy between what a beta-

tester reports and what the core developer(s) knows. In turn, this

means that the core developers’ time tends to be well conserved,

even with many collaborators.

Another characteristic of the open-source method that conserves

developer time is the communication structure of typical open-

source projects. Earlier I used the term “core developer”; this

reflects a distinction between the project core (typically quite

small; a single core developer is common, and one to three is typi-

cal) and the project halo of beta-testers and available contributors

(which often numbers in the hundreds).

The fundamental problem that traditional software-development

organization addresses is Brooks’s Law: ‘‘Adding more program-

mers to a late project makes it later.’’ More generally, Brooks’s

Law predicts that the complexity and communication costs of a

project rise with the square of the number of developers, while

work done only rises linearly.

Brooks’s Law is founded on experience that bugs tend strongly to

cluster at the interfaces between code written by different people,

and that communications/coordination overhead on a project

tends to rise with the number of interfaces between human beings.

Thus, problems scale with the number of communications paths

34

between developers, which scales as the square of the number of

developers (more precisely, according to the formula N*(N–1)/2

where N is the number of developers).

The Brooks’s Law analysis (and the resulting fear of large numbers

in development groups) rests on a hidden assummption: that the

communications structure of the project is necessarily a complete

graph, that everybody talks to everybody else. But on open-source

projects, the halo developers work on what are in effect separable

parallel subtasks and interact with each other very little; code

changes and bug reports stream through the core group, and only

within that small core group do we pay the full Brooksian

overhead.6

There are are still more reasons that source-code–level bug report-

ing tends to be very efficient. They center around the fact that a

single error can often have multiple possible symptoms, manifest-

ing differently depending on details of the user’s usage pattern and

environment. Such errors tend to be exactly the sort of complex

and subtle bugs (such as dynamic-memory-management errors or

nondeterministic interrupt-window artifacts) that are hardest to

reproduce at will or to pin down by static analysis, and which do

the most to create long-term problems in software.

A tester who sends in a tentative source-code–level characteriza-

tion of such a multi-symptom bug (e.g., “It looks to me like there’s

a window in the signal handling near line 1250” or “Where are

you zeroing that buffer?”) may give a developer, otherwise too

close to the code to see it, the critical clue to a half-dozen dis-

parate symptoms. In cases like this, it may be hard or even impos-

sible to know which externally visible misbehaviour was caused

by precisely which bug—but with frequent releases, it’s unneces-

sary to know. Other collaborators will be likely to find out quickly

whether their bug has been fixed or not. In many cases, source-

level bug reports will cause misbehaviours to drop out without

ever having been attributed to any specific fix.

The Cathedral and the Bazaar

35

The Cathedral and the Bazaar

Complex multi-symptom errors also tend to have multiple trace

paths from surface symptoms back to the actual bug. Which of the

trace paths a given developer or tester can chase may depend on

subtleties of that person’s environment, and may well change in a

not obviously deterministic way over time. In effect, each devel-

oper and tester samples a semi-random set of the program’s state

space when looking for the etiology of a symptom. The more sub-

tle and complex the bug, the less likely that skill will be able to

guarantee the relevance of that sample.

For simple and easily reproducible bugs, then, the accent will be

on the “semi” rather than the “random”; debugging skill and inti-

macy with the code and its architecture will matter a lot. But for

complex bugs, the accent will be on the “random”. Under these

circumstances many people running traces will be much more

effective than a few people running traces sequentially—even if

the few have a much higher average skill level.

This effect will be greatly amplified if the difficulty of following

trace paths from different surface symptoms back to a bug varies

significantly in a way that can’t be predicted by looking at the

symptoms. A single developer sampling those paths sequentially

will be as likely to pick a difficult trace path on the first try as an

easy one. On the other hand, suppose many people are trying

trace paths in parallel while doing rapid releases. Then it is likely

one of them will find the easiest path immediately, and nail the

bug in a much shorter time. The project maintainer will see that,

ship a new release, and the other people running traces on the

same bug will be able to stop before having spent too much time

on their more difficult traces.7

When Is a Rose Not a Rose?

Having studied Linus’s behavior and formed a theory about why it

was successful, I made a conscious decision to test this theory on

my new (admittedly much less complex and ambitious) project.

36

But the first thing I did was reorganize and simplify popclient a

lot. Carl Harris’s implementation was very sound, but exhibited a

kind of unnecessary complexity common to many C program-

mers. He treated the code as central and the data structures as

support for the code. As a result, the code was beautiful but the

data structure design ad hoc and rather ugly (at least by the high

standards of this veteran LISP hacker).

I had another purpose for rewriting besides improving the code

and the data structure design, however. That was to evolve it into

something I understood completely. It’s no fun to be responsible

for fixing bugs in a program you don’t understand.

For the first month or so, then, I was simply following out the

implications of Carl’s basic design. The first serious change I made

was to add IMAP support. I did this by reorganizing the protocol

machines into a generic driver and three method tables (for POP2,

POP3, and IMAP). This and the previous changes illustrate a gen-

eral principle that’s good for programmers to keep in mind, espe-

cially in languages like C that don’t naturally do dynamic typing:

9. Smart data structures and dumb code works a

lot better than the other way around.

Brooks, Chapter 9: ‘‘Show me your flowchart and conceal your

tables, and I shall continue to be mystified. Show me your tables,

and I won’t usually need your flowchart; it’ll be obvious.’’ Allow-

ing for 30 years of terminological/cultural shift, it’s the same

point.

At this point (early September 1996, about six weeks from zero) I

started thinking that a name change might be in order—after all,

it wasn’t just a POP client any more. But I hesitated, because there

was as yet nothing genuinely new in the design. My version of

popclient had yet to develop an identity of its own.

That changed, radically, when popclient learned how to forward

fetched mail to the SMTP port. I’ll get to that in a moment. But

first: I said earlier that I’d decided to use this project to test my

The Cathedral and the Bazaar

37

The Cathedral and the Bazaar

theory about what Linus Torvalds had done right. How (you may

well ask) did I do that? In these ways:

• I released early and often (almost never less often than every

10 days; during periods of intense development, once a day).

• I grew my beta list by adding to it everyone who contacted me

about fetchmail.

• I sent chatty announcements to the beta list whenever I

released, encouraging people to participate.

• I listened to my beta-testers, polling them about design deci-

sions and stroking them whenever they sent in patches and

feedback.

The payoff from these simple measures was immediate. From the

beginning of the project, I got bug reports of a quality most devel-

opers would kill for, often with good fixes attached. I got thought-

ful criticism, I got fan mail, I got intelligent feature suggestions.

Which leads to:

10.If you treat your beta-testers as if they’re your

most valuable resource, they will respond by

becoming your most valuable resource.

One interesting measure of fetchmail’s success is the sheer size of

the project beta list, fetchmail-friends. At the time of latest revi-

sion of this paper (November 2000) it has 287 members and is

adding 2 or 3 a week.

Actually, when I revised in late May 1997 I found the list was

beginning to lose members from its high of close to 300 for an

interesting reason. Several people have asked me to unsubscribe

them because fetchmail is working so well for them that they no

longer need to see the list traffic! Perhaps this is part of the normal

life-cycle of a mature bazaar-style project.

38

Popclient Becomes Fetchmail

The real turning point in the project was when Harry Hochheiser

sent me his scratch code for forwarding mail to the client

machine’s SMTP port. I realized almost immediately that a reliable

implementation of this feature would make all the other mail

delivery modes next to obsolete.

For many weeks I had been tweaking fetchmail rather incremen-

tally while feeling like the interface design was serviceable but

grubby — inelegant and with too many exiguous options hanging

out all over. The options to dump fetched mail to a mailbox file or

standard output particularly bothered me, but I couldn’t figure out

why.

(If you don’t care about the technicalia of Internet mail, the next

two paragraphs can be safely skipped.)

What I saw when I thought about SMTP forwarding was that

popclient had been trying to do too many things. It had been

designed to be both a mail transport agent (MTA) and a local

delivery agent (MDA). With SMTP forwarding, it could get out of

the MDA business and be a pure MTA, handing off mail to other

programs for local delivery just as sendmail does.

Why mess with all the complexity of configuring a mail delivery

agent or setting up lock-and-append on a mailbox when port 25 is

almost guaranteed to be there on any platform with TCP/IP sup-

port in the first place? Especially when this means retrieved mail is

guaranteed to look like normal sender-initiated SMTP mail, which

is really what we want anyway.

(Back to a higher level . . .)

Even if you didn’t follow the preceding technical jargon, there are

several important lessons here. First, this SMTP-forwarding con-

cept was the biggest single payoff I got from consciously trying to

emulate Linus’s methods. A user gave me this terrific idea—all I

had to do was understand the implications.

The Cathedral and the Bazaar

39

The Cathedral and the Bazaar

11.The next best thing to having good ideas is rec-

ognizing good ideas from your users. Sometimes

the latter is better.

Interestingly enough, you will quickly find that if you are com-

pletely and self-deprecatingly truthful about how much you owe

other people, the world at large will treat you as though you did

every bit of the invention yourself and are just being becomingly

modest about your innate genius. We can all see how well this

worked for Linus!

(When I gave my talk at the first Perl Conference in August 1997,

hacker extraordinaire Larry Wall was in the front row. As I got to

the last line above he called out, religious-revival style, ‘‘Tell it, tell

it, brother!’’ The whole audience laughed, because they knew this

had worked for the inventor of Perl, too.)

After a few weeks of running the project in the same spirit, I

began to get similar praise not just from my users but from other

people to whom the word leaked out. I stashed away some of that

email; I’ll look at it again sometime if I ever start wondering

whether my life has been worthwhile :-).

But there are two more fundamental, non-political lessons here

that are general to all kinds of design.

12.Often, the most striking and innova tive solu-

tions come from realizing that your concept of

the problem was wrong.

I had been trying to solve the wrong problem by continuing to

develop popclient as a combined MTA/MDA with all kinds of

funky local delivery modes. Fetchmail’s design needed to be

rethought from the ground up as a pure MTA, a part of the nor-

mal SMTP-speaking Internet mail path.

When you hit a wall in development—when you find yourself

hard put to think past the next patch—it’s often time to ask not

whether you’ve got the right answer, but whether you’re asking

the right question. Perhaps the problem needs to be reframed.

40

Well, I had reframed my problem. Clearly, the right thing to do

was (1) hack SMTP forwarding support into the generic driver, (2)

make it the default mode, and (3) eventually throw out all the

other delivery modes, especially the deliver-to-file and deliver-to-

standard-output options.

I hesitated over step 3 for some time, fearing to upset long-time

popclient users dependent on the alternate delivery mechanisms.

In theory, they could immediately switch to .forward files or their

non-sendmail equivalents to get the same effects. In practice the

transition might have been messy.

But when I did it, the benefits proved huge. The cruftiest parts of

the driver code vanished. Configuration got radically simpler—no

more grovelling around for the system MDA and user’s mailbox,

no more worries about whether the underlying OS supports file

locking.

Also, the only way to lose mail vanished. If you specified delivery

to a file and the disk got full, your mail got lost. This can’t happen

with SMTP forwarding because your SMTP listener won’t return

OK unless the message can be delivered or at least spooled for

later delivery.

Also, performance improved (though not so you’d notice it in a

single run). Another not insignificant benefit of this change was

that the manual page got a lot simpler.

Later, I had to bring delivery via a user-specified local MDA back

in order to allow handling of some obscure situations involving

dynamic SLIP. But I found a much simpler way to do it.

The moral? Don’t hesitate to throw away superannuated features

when you can do it without loss of effectiveness. Antoine de Saint-

Exupéry (who was an aviator and aircraft designer when he

wasn’t authoring classic children’s books) said:

13.‘‘Perfection (in design) is achieved not when

there is nothing more to add, but rather when

there is nothing more to take awa y.’’

The Cathedral and the Bazaar

41

The Cathedral and the Bazaar

When your code is getting both better and simpler, that is when

you know it’s right. And in the process, the fetchmail design

acquired an identity of its own, different from the ancestral

popclient.

It was time for the name change. The new design looked much

more like a dual of sendmail than the old popclient had; both are

MTAs, but where sendmail pushes then delivers, the new

popclient pulls then delivers. So, two months off the blocks, I

renamed it fetchmail.

There is a more general lesson in this story about how SMTP

delivery came to fetchmail. It is not only debugging that is paral-

lelizable; development and (to a perhaps surprising extent) explo-

ration of design space is, too. When your development mode is

rapidly iterative, development and enhancement may become spe-

cial cases of debugging—fixing ‘bugs of omission’ in the original

capabilities or concept of the software.

Even at a higher level of design, it can be very valuable to have

lots of co-developers random-walking through the design space

near your product. Consider the way a puddle of water finds a

drain, or better yet how ants find food: exploration essentially by

diffusion, followed by exploitation mediated by a scalable com-

munication mechanism. This works very well; as with Harry

Hochheiser and me, one of your outriders may well find a huge

win nearby that you were just a little too close-focused to see.

Fetchmail Grows Up

There I was with a neat and innovative design, code that I knew

worked well because I used it every day, and a burgeoning beta

list. It gradually dawned on me that I was no longer engaged in a

trivial personal hack that might happen to be useful to few other

people. I had my hands on a program that every hacker with a

Unix box and a SLIP/PPP mail connection really needs.

42

With the SMTP forwarding feature, it pulled far enough in front

of the competition to potentially become a category killer, one of

those classic programs that fills its niche so competently that the

alternatives are not just discarded but almost forgotten.

I think you can’t really aim or plan for a result like this. You have

to get pulled into it by design ideas so powerful that afterward the

results just seem inevitable, natural, even foreordained. The only

way to try for ideas like that is by having lots of ideas—or by hav-

ing the engineering judgment to take other people’s good ideas

beyond where the originators thought they could go.

Andy Tanenbaum had the original idea to build a simple native

Unix for IBM PCs, for use as a teaching tool (he called it Minix).

Linus Torvalds pushed the Minix concept further than Andrew

probably thought it could go—and it grew into something won-

derful. In the same way (though on a smaller scale), I took some

ideas by Carl Harris and Harry Hochheiser and pushed them

hard. Neither of us was original in the romantic way people think

is genius. But then, most science and engineering and software

development isn’t done by original genius, hacker mythology to

the contrary.

The results were pretty heady stuff all the same—in fact, just the

kind of success every hacker lives for! And they meant I would

have to set my standards even higher. To make fetchmail as good

as I now saw it could be, I’d have to write not just for my own

needs, but also include and support features necessary to others

outside my orbit. And do that while keeping the program simple

and robust.

The first and overwhelmingly most important feature I wrote after

realizing this was multidrop support—the ability to fetch mail

from mailboxes that had accumulated all mail for a group of

users, and then route each piece of mail to its individual recipients.

I decided to add the multidrop support partly because some users

were clamoring for it, but mostly because I thought it would shake

The Cathedral and the Bazaar

43

The Cathedral and the Bazaar

bugs out of the single-drop code by forcing me to deal with

addressing in full generality. And so it proved. Getting RFC 822

(http://info.internet.isi.edu:80/in-notes/rfc/files/rfc822.txt) address

parsing right took me a remarkably long time, not because any

individual piece of it is hard but because it involved a pile of inter-

dependent and fussy details.

But multidrop addressing turned out to be an excellent design

decision as well. Here’s how I knew:

14.Any tool should be useful in the expected way,

but a truly great tool lends itself to uses you

never expected.

The unexpected use for multidrop fetchmail is to run mailing lists

with the list kept, and alias expansion done, on the client side of

the Internet connection. This means someone running a personal

machine through an ISP account can manage a mailing list with-

out continuing access to the ISP’s alias files.

Another important change demanded by my beta-testers was sup-

port for 8-bit MIME (Multipurpose Internet Mail Extensions)

operation. This was pretty easy to do, because I had been careful

to keep the code 8-bit clean (that is, to not press the 8th bit,

unused in the ASCII character set, into service to carry informa-

tion within the program). Not because I anticipated the demand

for this feature, but rather in obedience to another rule:

15.When writing gateway software of any kind, take

pains to disturb the data stream as little as pos-

sible — and never throw away information unless the
recipient forces you to!

Had I not obeyed this rule, 8-bit MIME support would have been

difficult and buggy. As it was, all I had to do is read the MIME

standard (RFC 1652, http://info.internet.isi.edu:80/in-notes/rfc/

files/rfc1652.txt) and add a trivial bit of header-generation logic.

Some European users bugged me into adding an option to limit

the number of messages retrieved per session (so they can control

costs from their expensive phone networks). I resisted this for a

44

long time, and I’m still not entirely happy about it. But if you’re

writing for the world, you have to listen to your customers—this

doesn’t change just because they’re not paying you in money.

A Few More Lessons from Fetchmail

Before we go back to general software-engineering issues, there

are a couple more specific lessons from the fetchmail experience to

ponder. Nontechnical readers can safely skip this section.

The rc (control) file syntax includes optional ‘noise’ keywords that

are entirely ignored by the parser. The English-like syntax they

allow is considerably more readable than the traditional terse key-

word-value pairs you get when you strip them all out.

These started out as a late-night experiment when I noticed how

much the rc file declarations were beginning to resemble an imper-

ative minilanguage. (This is also why I changed the original

popclient ‘‘server’’ keyword to ‘‘poll’’).

It seemed to me that trying to make that imperative minilanguage

more like English might make it easier to use. Now, although I’m

a convinced partisan of the ‘‘make it a language’’ school of design

as exemplified by Emacs and HTML and many database engines, I

am not normally a big fan of ‘‘English-like’’ syntaxes.

Traditionally programmers have tended to favor control syntaxes

that are very precise and compact and have no redundancy at all.

This is a cultural legacy from when computing resources were

expensive, so parsing stages had to be as cheap and simple as pos-

sible. English, with about 50% redundancy, looked like a very

inappropriate model then.

This is not my reason for normally avoiding English-like syntaxes;

I mention it here only to demolish it. With cheap cycles and core,

terseness should not be an end in itself. Nowadays it’s more

important for a language to be convenient for humans than to be

cheap for the computer.

The Cathedral and the Bazaar

45

The Cathedral and the Bazaar

There remain, however, good reasons to be wary. One is the com-

plexity cost of the parsing stage—you don’t want to raise that to

the point where it’s a significant source of bugs and user confusion

in itself. Another is that trying to make a language syntax English-

like often demands that the ‘‘English’’ it speaks be bent seriously

out of shape, so much so that the superficial resemblance to natu-

ral language is as confusing as a traditional syntax would have

been. (You see this bad effect in a lot of so-called ‘‘fourth genera-

tion’’ and commercial database-query languages.)

The fetchmail control syntax seems to avoid these problems

because the language domain is extremely restricted. It’s nowhere

near a general-purpose language; the things it says simply are not

very complicated, so there’s little potential for confusion in mov-

ing mentally between a tiny subset of English and the actual con-

trol language. I think there may be a broader lesson here:

16.When your language is nowhere near Turing-

complete, syntactic sugar can be your friend.

Another lesson is about security by obscurity. Some fetchmail

users asked me to change the software to store passwords

encrypted in the rc file, so snoopers wouldn’t be able to casually

see them.

I didn’t do it, because this doesn’t actually add protection. Anyone

who’s acquired permissions to read your rc file will be able to run

fetchmail as you anyway—and if it’s your password they’re after,

they’d be able to rip the necessary decoder out of the fetchmail

code itself to get it.

All .fetchmailrc password encryption would have done is give a

false sense of security to people who don’t think very hard. The

general rule here is:

17.A security system is only as secure as its secret.

Beware of pseudo-secrets.

46

Necessary Preconditions
for the Bazaar Style

Early reviewers and test audiences for this essay consistently raised

questions about the preconditions for successful bazaar-style

development, including both the qualifications of the project

leader and the state of code at the time one goes public and starts

to try to build a co-developer community.

It’s fairly clear that one cannot code from the ground up in bazaar

style.8 One can test, debug and improve in bazaar style, but it

would be very hard to originate a project in bazaar mode. Linus

didn’t try it. I didn’t either. Your nascent developer community

needs to have something runnable and testable to play with.

When you start community-building, what you need to be able to

present is a plausible promise. Your program doesn’t have to work

particularly well. It can be crude, buggy, incomplete, and poorly

documented. What it must not fail to do is (a) run, and (b) con-

vince potential co-developers that it can be evolved into something

really neat in the foreseeable future.

Linux and fetchmail both went public with strong, attractive basic

designs. Many people thinking about the bazaar model as I have

presented it have correctly considered this critical, then jumped

from that to the conclusion that a high degree of design intuition

and cleverness in the project leader is indispensable.

But Linus got his design from Unix. I got mine initially from the

ancestral popclient (though it would later change a great deal,

much more proportionately speaking than has Linux). So does the

leader/coordinator for a bazaar-style effort really have to have

exceptional design talent, or can he get by through leveraging the

design talent of others?

I think it is not critical that the coordinator be able to originate

designs of exceptional brilliance, but it is absolutely critical that

the coordinator be able to recognize good design ideas from

others.

The Cathedral and the Bazaar

47

The Cathedral and the Bazaar

Both the Linux and fetchmail projects show evidence of this.

Linus, while not (as previously discussed) a spectacularly original

designer, has displayed a powerful knack for recognizing good

design and integrating it into the Linux kernel. And I have already

described how the single most powerful design idea in fetchmail

(SMTP forwarding) came from somebody else.

Early audiences of this essay complimented me by suggesting that

I am prone to undervalue design originality in bazaar projects

because I have a lot of it myself, and therefore take it for granted.

There may be some truth to this; design (as opposed to coding or

debugging) is certainly my strongest skill.

But the problem with being clever and original in software design

is that it gets to be a habit—you start reflexively making things

cute and complicated when you should be keeping them robust

and simple. I have had projects crash on me because I made this

mistake, but I managed to avoid this with fetchmail.

So I believe the fetchmail project succeeded partly because I

restrained my tendency to be clever; this argues (at least) against

design originality being essential for successful bazaar projects.

And consider Linux. Suppose Linus Torvalds had been trying to

pull off fundamental innovations in operating system design dur-

ing the development; does it seem at all likely that the resulting

kernel would be as stable and successful as what we have?

A certain base level of design and coding skill is required, of

course, but I expect almost anybody seriously thinking of launch-

ing a bazaar effort will already be above that minimum. The open-

source community’s internal market in reputation exerts subtle

pressure on people not to launch development efforts they’re not

competent to follow through on. So far this seems to have worked

pretty well.

There is another kind of skill not normally associated with soft-

ware development which I think is as important as design clever-

ness to bazaar projects—and it may be more important. A bazaar

48

project coordinator or leader must have good people and commu-

nications skills.

This should be obvious. In order to build a development commu-

nity, you need to attract people, interest them in what you’re

doing, and keep them happy about the amount of work they’re

doing. Technical sizzle will go a long way towards accomplishing

this, but it’s far from the whole story. The personality you project

matters, too.

It is not a coincidence that Linus is a nice guy who makes people

like him and want to help him. It’s not a coincidence that I’m an

energetic extrovert who enjoys working a crowd and has some of

the delivery and instincts of a stand-up comic. To make the bazaar

model work, it helps enormously if you have at least a little skill at

charming people.

The Social Context of Open-Source
Software

It is truly written: the best hacks start out as personal solutions to

the author’s everyday problems, and spread because the problem

turns out to be typical for a large class of users. This takes us back

to the matter of rule 1, restated in a perhaps more useful way:

18.To solve an interesting problem, start by finding

a problem that is interesting to you.

So it was with Carl Harris and the ancestral popclient, and so

with me and fetchmail. But this has been understood for a long

time. The interesting point, the point that the histories of Linux

and fetchmail seem to demand we focus on, is the next stage—the

evolution of software in the presence of a large and active commu-

nity of users and co-developers.

In The Mythical Man-Month, Fred Brooks observed that program-

mer time is not fungible; adding developers to a late software pro-

ject makes it later. As we’ve seen previously, he argued that the

complexity and communication costs of a project rise with the

The Cathedral and the Bazaar

49

The Cathedral and the Bazaar

square of the number of developers, while work done only rises

linearly. Brooks’s Law has been widely regarded as a truism. But

we’ve examined in this essay a number of ways in which the pro-

cess of open-source development falsifies the assumptionms

behind it—and, empirically, if Brooks’s Law were the whole pic-

ture, Linux would be impossible.

Gerald Weinberg’s classic The Psychology of Computer Program-

ming supplied what, in hindsight, we can see as a vital correction

to Brooks. In his discussion of egoless programming, Weinberg

observed that in shops where developers are not territorial about

their code, and encourage other people to look for bugs and

potential improvements in it, improvement happens dramatically

faster than elsewhere. (Recently, Kent Beck’s ’extreme program-

ming’ technique of deploying coders in pairs who look over one

another’s shoulders might be seen as an attempt to force this

effect.)

Weinberg’s choice of terminology has perhaps prevented his analy-

sis from gaining the acceptance it deserved—one has to smile at

the thought of describing Internet hackers as egoless. But I think

his argument looks more compelling today than ever.

The bazaar method, by harnessing the full power of the egoless

programming effect, strongly mitigates the effect of Brooks’s Law.

The principle behind Brooks’s Law is not repealed, but given a

large developer population and cheap communications its effects

can be swamped by competing nonlinearities that are not other-

wise visible. This resembles the relationship between Newtonian

and Einsteinian physics—the older system is still valid at low ener-

gies, but if you push mass and velocity high enough you get sur-

prises like nuclear explosions or Linux.

The history of Unix should have prepared us for what we’re learn-

ing from Linux (and what I’ve verified experimentally on a smaller

scale by deliberately copying Linus’s methods 9). That is, while

coding remains an essentially solitary activity, the really great

hacks come from harnessing the attention and brainpower of

50

entire communities. The developer who uses only his or her own

brain in a closed project is going to fall behind the developer who

knows how to create an open, evolutionary context in which feed-

back exploring the design space, code contributions, bug-spotting,

and other improvements come from from hundreds (perhaps thou-

sands) of people.

But the traditional Unix world was prevented from pushing this

approach to the ultimate by several factors. One was the legal

contraints of various licenses, trade secrets, and commercial inter-

ests. Another (in hindsight) was that the Internet wasn’t yet good

enough.

Before cheap Internet, there were some geographically compact

communities where the culture encouraged Weinberg’s egoless

programming, and a developer could easily attract a lot of skilled

kibitzers and co-developers. Bell Labs, the MIT AI and LCS labs,

UC Berkeley—these became the home of innovations that are leg-

endary and still potent.

Linux was the first project for which a conscious and successful

effort to use the entire world as its talent pool was made. I don’t

think it’s a coincidence that the gestation period of Linux coin-

cided with the birth of the World Wide Web, and that Linux left

its infancy during the same period in 1993–1994 that saw the

takeoff of the ISP industry and the explosion of mainstream inter-

est in the Internet. Linus was the first person who learned how to

play by the new rules that pervasive Internet access made possible.

While cheap Internet was a necessary condition for the Linux

model to evolve, I think it was not by itself a sufficient condition.

Another vital factor was the development of a leadership style and

set of cooperative customs that could allow developers to attract

co-developers and get maximum leverage out of the medium.

But what is this leadership style and what are these customs? They

cannot be based on power relationships—and even if they could

be, leadership by coercion would not produce the results we see.

The Cathedral and the Bazaar

51

The Cathedral and the Bazaar

Weinberg quotes the autobiography of the 19th-century Russian

anarchist Pyotr Alexeyvich Kropotkin’s Memoirs of a Revolution-

ist to good effect on this subject:

Having been brought up in a serf-owner’s family, I entered

acti ve life, like all young men of my time, with a great

deal of confidence in the necessity of commanding, order-

ing, scolding, punishing and the like. But when, at an

early stage, I had to manage serious enterprises and to

deal with [free] men, and when each mistake would lead

at once to heavy consequences, I began to appreciate the

difference between acting on the principle of command

and discipline and acting on the principle of common

understanding. The former works admirably in a military

parade, but it is worth nothing where real life is con-

cerned, and the aim can be achieved only through the

severe effort of many converging wills.

The ‘‘severe effort of many converging wills’’ is precisely what a

project like Linux requires—and the ‘‘principle of command’’ is

effectively impossible to apply among volunteers in the anarchist’s

paradise we call the Internet. To operate and compete effectively,

hackers who want to lead collaborative projects have to learn how

to recruit and energize effective communities of interest in the

mode vaguely suggested by Kropotkin’s ‘‘principle of understand-

ing’’. They must learn to use Linus’s Law.10

Earlier, I referred to the Delphi Effect as a possible explanation for

Linus’s Law. But more powerful analogies to adaptive systems in

biology and economics also irresistably suggest themselves. The

Linux world behaves in many respects like a free market or an

ecology, a collection of selfish agents attempting to maximize util-

ity, which in the process produces a self-correcting spontaneous

order more elaborate and efficient than any amount of central

planning could have achieved. Here, then, is the place to seek the

‘‘principle of understanding’’.

52

The ‘‘utility function’’ Linux hackers are maximizing is not classi-

cally economic, but is the intangible of their own ego satisfaction

and reputation among other hackers. (One may call their motiva-

tion ‘‘altruistic’’, but this ignores the fact that altruism is itself a

form of ego satisfaction for the altruist.) Voluntary cultures that

work this way are not actually uncommon; one other in which I

have long participated is science fiction fandom, which unlike

hackerdom has long explicitly recognized ‘‘egoboo’’ (ego-boosting,

or the enhancement of one’s reputation among other fans) as the

basic drive behind volunteer activity.

Linus, by successfully positioning himself as the gatekeeper of a

project in which the development is mostly done by others, and

nurturing interest in the project until it became self-sustaining, has

shown an acute grasp of Kropotkin’s ‘‘principle of shared under-

standing’’. This quasi-economic view of the Linux world enables

us to see how that understanding is applied.

We may view Linus’s method as a way to create an efficient mar-

ket in ‘‘egoboo’’—to connect the selfishness of individual hackers

as firmly as possible to difficult ends that can only be achieved by

sustained cooperation. With the fetchmail project I have shown

(albeit on a smaller scale) that his methods can be duplicated with

good results. Perhaps I have even done it a bit more consciously

and systematically than he.

Many people (especially those who politically distrust free mar-

kets) would expect a culture of self-directed egoists to be frag-

mented, territorial, wasteful, secretive, and hostile. But this

expectation is clearly falsified by (to give just one example) the

stunning variety, quality, and depth of Linux documentation. It is

a hallowed given that programmers hate documenting; how is it,

then, that Linux hackers generate so much documentation? Evi-

dently Linux’s free market in egoboo works better to produce vir-

tuous, other-directed behavior than the massively-funded

documentation shops of commercial software producers.

The Cathedral and the Bazaar

53

The Cathedral and the Bazaar

Both the fetchmail and Linux kernel projects show that by

properly rewarding the egos of many other hackers, a strong

developer/coordinator can use the Internet to capture the benefits

of having lots of co-developers without having a project collapse

into a chaotic mess. So to Brooks’s Law, I counter-propose the fol-

lowing:

19.Provided the development coordinator has a

communications medium at least as good as the

Internet, and knows how to lead without coer-

cion, many heads are inevitably better than one.

I think the future of open-source software will increasingly belong

to people who know how to play Linus’s game, people who leave

behind the cathedral and embrace the bazaar. This is not to say

that individual vision and brilliance will no longer matter; rather, I

think that the cutting edge of open-source software will belong to

people who start from individual vision and brilliance, then

amplify it through the effective construction of voluntary commu-

nities of interest.

Perhaps this is not only the future of open-source software. No

closed-source developer can match the pool of talent the Linux

community can bring to bear on a problem. Very few could afford

even to hire the more than 200 (1999: 600, 2000: 800) people

who have contributed to fetchmail!

Perhaps in the end the open-source culture will triumph not

because cooperation is morally right or software ‘‘hoarding’’ is

morally wrong (assuming you believe the latter, which neither

Linus nor I do), but simply because the closed-source world can-

not win an evolutionary arms race with open-source communities

that can put orders of magnitude more skilled time into a

problem.

54

On Management and
the Maginot Line

The original Cathedral and Bazaar paper of 1997 ended with the

vision above—that of happy networked hordes of programmer/

anarchists outcompeting and overwhelming the hierarchical world

of conventional closed software.

A good many skeptics weren’t convinced, however; and the ques-

tions they raise deserve a fair engagement. Most of the objections

to the bazaar argument come down to the claim that its propo-

nents have underestimated the productivity-multiplying effect of

conventional management.

Traditionally-minded software-development managers often object

that the casualness with which project groups form and change

and dissolve in the open-source world negates a significant part of

the apparent advantage of numbers that the open-source commu-

nity has over any single closed-source developer. They would

observe that in software development it is really sustained effort

over time and the degree to which customers can expect continu-

ing investment in the product that matters, not just how many

people have thrown a bone in the pot and left it to simmer.

There is something to this argument, to be sure; in fact, I have

developed the idea that expected future service value is the key to

the economics of software production in the essay The Magic

Cauldron .

But this argument also has a major hidden problem; its implicit

assumption that open-source development cannot deliver such sus-

tained effort. In fact, there have been open-source projects that

maintained a coherent direction and an effective maintainer com-

munity over quite long periods of time without the kinds of incen-

tive structures or institutional controls that conventional

management finds essential. The development of the GNU Emacs

editor is an extreme and instructive example; it has absorbed the

efforts of hundreds of contributors over 15 years into a unified

The Cathedral and the Bazaar

55

The Cathedral and the Bazaar

architectural vision, despite high turnover and the fact that only

one person (its author) has been continuously active during all

that time. No closed-source editor has ever matched this longevity

record.

This suggests a reason for questioning the advantages of conven-

tionally-managed software development that is independent of the

rest of the arguments over cathedral versus bazaar mode. If it’s

possible for GNU Emacs to express a consistent architectural

vision over 15 years, or for an operating system like Linux to do

the same over 8 years of rapidly changing hardware and platform

technology; and if (as is indeed the case) there have been many

well-architected open-source projects of more than 5 years dura-

tion — then we are entitled to wonder what, if anything, the

tremendous overhead of conventionally managed development is

actually buying us.

Whatever it is certainly doesn’t include reliable execution by dead-

line, or on budget, or to all features of the specification; it’s a rare

managed project that meets even one of these goals, let alone all

three. It also does not appear to be ability to adapt to changes in

technology and economic context during the project lifetime,

either; the open-source community has proven far more effective

on that score (as one can readily verify, for example, by comparing

the 30-year history of the Internet with the short half-lives of pro-

prietary networking technologies—or the cost of the 16-bit to

32-bit transition in Microsoft Windows with the nearly effortless

upward migration of Linux during the same period, not only

along the Intel line of development but to more than a dozen other

hardware platforms, including the 64-bit Alpha as well).

One thing many people think the traditional mode buys you is

somebody to hold legally liable and potentially recover compensa-

tion from if the project goes wrong. But this is an illusion; most

software licenses are written to disclaim even warranty of mer-

chantability, let alone performance—and cases of successful recov-

ery for software nonperformance are vanishingly rare. Even if they

56

were common, feeling comforted by having somebody to sue

would be missing the point. You didn’t want to be in a lawsuit;

you wanted working software.

So what is all that management overhead buying?

In order to understand that, we need to understand what software

development managers believe they do. A woman I know who

seems to be very good at this job says software project manage-

ment has five functions:

• To define goals and keep everybody pointed in the same direc-

tion

• To monitor and make sure crucial details don’t get skipped

• To motivate people to do boring but necessary drudgework

• To organize the deployment of people for best productivity

• To marshal resources needed to sustain the project

Apparently worthy goals, all of these; but under the open-source

model, and in its surrounding social context, they can begin to

seem strangely irrelevant. We’ll take them in reverse order.

My friend reports that a lot of resource marshalling is basically

defensive; once you have your people and machines and office

space, you have to defend them from peer managers competing for

the same resources and from higher-ups trying to allocate the most

efficient use of a limited pool.

But open-source developers are volunteers, self-selected for both

interest and ability to contribute to the projects they work on (and

this remains generally true even when they are being paid a salary

to hack open source). The volunteer ethos tends to take care of the

‘attack’ side of resource-marshalling automatically; people bring

their own resources to the table. And there is little or no need for

a manager to ‘play defense’ in the conventional sense.

Anyway, in a world of cheap PCs and fast Internet links, we find

pretty consistently that the only really limiting resource is skilled

attention. Open-source projects, when they founder, essentially

The Cathedral and the Bazaar

57

The Cathedral and the Bazaar

never do so for want of machines or links or office space; they die

only when the developers themselves lose interest.

That being the case, it’s doubly important that open-source hack-

ers organize themselves for maximum productivity by self-selec-

tion — and the social milieu selects ruthlessly for competence. My

friend, familiar with both the open-source world and large closed

projects, believes that open source has been successful partly

because its culture only accepts the most talented 5% or so of the

programming population. She spends most of her time organizing

the deployment of the other 95%, and has thus observed first-

hand the well-known variance of a factor of one hundred in pro-

ductivity between the most able programmers and the merely

competent.

The size of that variance has always raised an awkward question:

would individual projects, and the field as a whole, be better off

without more than 50% of the least able in it? Thoughtful man-

agers have understood for a long time that if conventional soft-

ware management’s only function were to convert the least able

from a net loss to a marginal win, the game might not be worth

the candle.

The success of the open-source community sharpens this question

considerably, by providing hard evidence that it is often cheaper

and more effective to recruit self-selected volunteers from the

Internet than it is to manage buildings full of people who would

rather be doing something else.

Which brings us neatly to the question of motivation. An equiva-

lent and often-heard way to state my friend’s point is that tradi-

tional development management is a necessary compensation for

poorly motivated programmers who would not otherwise turn out

good work.

This answer usually travels with a claim that the open-source

community can only be relied on to do work that is “sexy” or

technically sweet; anything else will be left undone (or done only

58

poorly) unless it’s churned out by money-motivated cubicle peons

with managers cracking whips over them. I address the psycholog-

ical and social reasons for being skeptical of this claim in Home-

steading the Noosphere. For present purposes, however, I think it’s

more interesting to point out the implications of accepting it as

true.

If the conventional, closed-source, heavily-managed style of soft-

ware development is really defended only by a sort of Maginot

Line of problems conducive to boredom, then it’s going to remain

viable in each individual application area for only so long as

nobody finds those problems really interesting and nobody else

finds any way to route around them. Because the moment there is

open-source competition for a boring piece of software, customers

are going to know that it was finally tackled by someone who

chose that problem to solve because of a fascination with the

problem itself—which, in software as in other kinds of creative

work, is a far more effective motivator than money alone.

Having a conventional management structure solely in order to

motivate, then, is probably good tactics but bad strategy; a short-

term win, but in the longer term a surer loss.

So far, conventional development management looks like a bad

bet now against open source on two points (resource marshalling,

organization), and like it’s living on borrowed time with respect to

a third (motivation). And the poor beleaguered conventional man-

ager is not going to get any succour from the monitoring issue; the

strongest argument the open-source community has is that decen-

tralized peer review trumps all the conventional methods for try-

ing to ensure that details don’t get slipped.

Can we save defining goals as a justification for the overhead of

conventional software project management? Perhaps; but to do so,

we’ll need good reason to believe that management committees

and corporate roadmaps are more successful at defining worthy

and widely shared goals than the project leaders and tribal elders

who fill the analogous role in the open-source world.

The Cathedral and the Bazaar

59

The Cathedral and the Bazaar

That is on the face of it a pretty hard case to make. And it’s not so

much the open-source side of the balance (the longevity of Emacs,

or Linus Torvalds’s ability to mobilize hordes of developers with

talk of world domination) that makes it tough. Rather, it’s the

demonstrated awfulness of conventional mechanisms for defining

the goals of software projects.

One of the best-known folk theorems of software engineering is

that 60 to 75% of conventional software projects either are never

completed or are rejected by their intended users. If that range is

anywhere near true (and I’ve never met a manager of any experi-

ence who disputes it), then more projects than not are being aimed

at goals that are either (a) not realistically attainable, or (b) just

plain wrong.

This, more than any other problem, is the reason that in today’s

software engineering world the very phrase ‘‘management commit-

tee’’ is likely to send chills down the hearer’s spine — even (or per-

haps especially) if the hearer is a manager. The days when only

programmers griped about this pattern are long past; Dilbert car-

toons hang over executives’ desks now.

Our reply, then, to the traditional software development manager,

is simple—if the open-source community has really underesti-

mated the value of conventional management, why do so many of

you display contempt for your own process?

Once again the example of the open-source community sharpens

this question considerably—because we have fun doing what we

do. Our creative play has been racking up technical, market-share,

and mind-share successes at an astounding rate. We’re proving not

only that we can do better software, but that joy is an asset.

Two and a half years after the first version of this essay, the most

radical thought I can offer to close with is no longer a vision of an

open-source–dominated software world; that, after all, looks plau-

sible to a lot of sober people in suits these days.

60

Rather, I want to suggest what may be a wider lesson about soft-

ware (and probably about every kind of creative or professional

work). Human beings generally take pleasure in a task when it

falls in a sort of optimal-challenge zone; not so easy as to be bor-

ing, not too hard to achieve. A happy programmer is one who is

neither underutilized nor weighed down with ill-formulated goals

and stressful process friction. Enjoyment predicts efficiency.

Relating to your own work process with fear and loathing (even in

the displaced, ironic way suggested by hanging up Dilbert car-

toons) should therefore be regarded in itself as a sign that the pro-

cess has failed. Joy, humor, and playfulness are indeed assets; it

was not mainly for the alliteration that I wrote of “happy hordes”

above, and it is no mere joke that the Linux mascot is a cuddly,

neotenous penguin.

It may well turn out that one of the most important effects of

open source’s success will be to teach us that play is the most eco-

nomically efficient mode of creative work.

Epilog: Netscape Embraces
the Bazaar

It’s a strange feeling to realize you’re helping make history

On 22 January 1998, approximately seven months after I first

published The Cathedral and the Bazaar, Netscape Communi-

cations, Inc. announced plans to give away the source for

Netscape Communicator (see http://www.netscape.com/newsref/

pr/newsrelease558.html). I had had no clue this was going to hap-

pen before the day of the announcement.

Eric Hahn, executive vice president and chief technology officer at

Netscape, emailed me shortly afterwards as follows: ‘‘On behalf of

everyone at Netscape, I want to thank you for helping us get to

this point in the first place. Your thinking and writings were fun-

damental inspirations to our decision.’’

The Cathedral and the Bazaar

61

The Cathedral and the Bazaar

The following week I flew out to Silicon Valley at Netscape’s invi-

tation for a day-long strategy conference (on 4 February 1998)

with some of their top executives and technical people. We

designed Netscape’s source-release strategy and license together.

A few days later I wrote the following:

Netscape is about to provide us with a large-scale, real-

world test of the bazaar model in the commercial world.

The open-source culture now faces a danger; if Netscape’s

execution doesn’t work, the open-source concept may be

so discredited that the commercial world won’t touch it

again for another decade.

On the other hand, this is also a spectacular opportunity.

Initial reaction to the move on Wall Street and elsewhere

has been cautiously positi ve. We’re being given a chance

to prove ourselves, too. If Netscape regains substantial

market share through this move, it just may set off a long-

overdue revolution in the software industry.

The next year should be a very instructive and interesting

time.

And indeed it was. As I write in mid-2000, the development of

what was later named Mozilla has been only a qualified success. It

achieved Netscape’s original goal, which was to deny Microsoft a

monopoly lock on the browser market. It has also achieved some

dramatic successes (notably the release of the next-generation

Gecko rendering engine).

However, it has not yet garnered the massive development effort

from outside Netscape that the Mozilla founders had originally

hoped for. The problem here seems to be that for a long time the

Mozilla distribution actually broke one of the basic rules of the

bazaar model; it didn’t ship with something potential contributors

could easily run and see working. (Until more than a year after

release, building Mozilla from source required a license for the

proprietary Motif library.)

62

Most negatively (from the point of view of the outside world) the

Mozilla group didn’t ship a production-quality browser for two

and a half years after the project launch—and in 1999 one of the

project’s principals caused a bit of a sensation by resigning, com-

plaining of poor management and missed opportunities. ‘‘Open

source,’’ he correctly observed, ‘‘is not magic pixie dust.’’

And indeed it is not. The long-term prognosis for Mozilla looks

dramatically better now (in November 2000) than it did at the

time of Jamie Zawinski’s resignation letter—in the last few weeks

the nightly releases have finally passed the critical threshold to

production usability. But Jamie was right to point out that going

open will not necessarily save an existing project that suffers from

ill-defined goals or spaghetti code or any of the software engineer-

ing’s other chronic ills. Mozilla has managed to provide an exam-

ple simultaneously of how open source can succeed and how it

could fail.

In the mean time, however, the open-source idea has scored suc-

cesses and found backers elsewhere. Since the Netscape release

we’ve seen a tremendous explosion of interest in the open-source

development model, a trend both driven by and driving the con-

tinuing success of the Linux operating system. The trend Mozilla

touched off is continuing at an accelerating rate.

The Cathedral and the Bazaar

63

Homesteading the Noosphere

✦ ✦ ✦

After observing a contradiction between the official ideol-

ogy defined by open-source licenses and the actual behav-

ior of hackers, I examine the actual customs that regulate

the ownership and control of open-source software. I

show that they imply an underlying theory of property

rights homologous to the Lockean theory of land tenure. I

then relate that to an analysis of the hacker culture as a

‘gift culture’ in which participants compete for prestige by

gi ving time, energy, and creativity away. Finally, I examine

the consequences of this analysis for conflict resolution in

the culture, and develop some prescriptive implications.

65

An Introductory Contradiction

Anyone who watches the busy, tremendously productive world of

Internet open-source software for a while is bound to notice an

interesting contradiction between what open-source hackers say

they believe and the way they actually behave—between the offi-

cial ideology of the open-source culture and its actual practice.

Cultures are adaptive machines. The open-source culture is a

response to an identifiable set of drives and pressures. As usual,

the culture’s adaptation to its circumstances manifests both as

conscious ideology and as implicit, unconscious or semi-conscious

knowledge. And, as is not uncommon, the unconscious adapta-

tions are partly at odds with the conscious ideology.

In this essay, I will dig around the roots of that contradiction, and

use it to discover those drives and pressures. I will deduce some

interesting things about the hacker culture and its customs. I will

conclude by suggesting ways in which the culture’s implicit knowl-

edge can be leveraged better.

The Varieties of Hacker Ideology

The ideology of the Internet open-source culture (what hackers

say they believe) is a fairly complex topic in itself. All members

agree that open source (that is, software that is freely redis-

tributable and can readily evolve and be modified to fit changing

needs) is a good thing and worthy of significant and collective

effort. This agreement effectively defines membership in the cul-

ture. However, the reasons individuals and various subcultures

give for this belief vary considerably.

Homesteading the Noosphere

67

The Cathedral and the Bazaar

One degree of variation is zealotry; whether open source develop-

ment is regarded merely as a convenient means to an end (good

tools and fun toys and an interesting game to play) or as an end in

itself.

A person of great zeal might say, ‘‘Free software is my life! I exist

to create useful, beautiful programs and information resources,

and then give them away.’’ A person of moderate zeal might say,

‘‘Open source is a good thing, which I am willing to spend signifi-

cant time helping happen.’’ A person of little zeal might say, ‘‘Yes,

open source is okay sometimes. I play with it and respect people

who build it.’’

Another degree of variation is in hostility to commercial software

and/or the companies perceived to dominate the commercial soft-

ware market.

A very anticommercial person might say, ‘‘Commercial software is

theft and hoarding. I write free software to end this evil.’’ A mod-

erately anticommercial person might say, ‘‘Commercial software in

general is okay because programmers deserve to get paid, but

companies that coast on shoddy products and throw their weight

around are evil.’’ An un-anticommercial person might say, ‘‘Com-

mercial software is okay; I just use and/or write open-source soft-

ware because I like it better.’’ (Nowadays, given the growth of the

open-source part of the industry since the first public version of

this essay, one might also hear, ‘‘Commercial software is fine, as

long as I get the source or it does what I want it to do.’’)

All nine of the attitudes implied by the cross-product of the cate-

gories mentioned earlier are represented in the open-source cul-

ture. It is worthwhile to point out the distinctions because they

imply different agendas and different adaptive and cooperative

behaviors.

Historically, the most visible and best-organized part of the hacker

culture has been both very zealous and very anticommercial. The

Free Software Foundation founded by Richard M. Stallman

68

(RMS) supported a great deal of open-source development from

the early 1980s forward, including tools like Emacs and GCC,

which are still basic to the Internet open-source world, and seem

likely to remain so for the forseeable future.

For many years the FSF was the single most important focus of

open-source hacking, producing a huge number of tools still criti-

cal to the culture. The FSF was also long the only sponsor of open

source with an institutional identity visible to outside observers of

the hacker culture. They effectively defined the term ‘free soft-

ware’, deliberately giving it a confrontational weight (which the

newer label ‘open source’ [http://www.opensource.org] just as

deliberately avoids).

Thus, perceptions of the hacker culture from both within and

without it tended to identify the culture with the FSF’s zealous

attitude and perceived anticommercial aims. RMS himself denies

he is anticommercial, but his program has been so read by most

people, including many of his most vocal partisans. The FSF’s vig-

orous and explicit drive to ‘‘Stamp Out Software Hoarding!’’

became the closest thing to a hacker ideology, and RMS the closest

thing to a leader of the hacker culture.

The FSF’s license terms, the ‘‘General Public License’’ (GPL),

expresses the FSF’s attitudes. It is very widely used in the open-

source world. North Carolina’s Metalab (http://metalab.unc.edu/

pub/Linux/welcome.html; formerly Sunsite) is the largest and most

popular software archive in the Linux world. In July 1997 about

half the Sunsite software packages with explicit license terms used

GPL.

But the FSF was never the only game in town. There was always a

quieter, less confrontational and more market-friendly strain in the

hacker culture. The pragmatists were loyal not so much to an ide-

ology as to a group of engineering traditions founded on early

open-source efforts that predated the FSF. These traditions

included, most importantly, the intertwined technical cultures of

Unix and the pre-commercial Internet.

Homesteading the Noosphere

69

The Cathedral and the Bazaar

The typical pragmatist attitude is only moderately anticommercial,

and its major grievance against the corporate world is not ‘hoard-

ing’ per se. Rather it is that world’s perverse refusal to adopt supe-

rior approaches incorporating Unix and open standards and open-

source software. If the pragmatist hates anything, it is less likely to

be ‘hoarders’ in general than the current King Log of the software

establishment; formerly IBM, now Microsoft.

To pragmatists the GPL is important as a tool, rather than as an

end in itself. Its main value is not as a weapon against hoarding,

but as a tool for encouraging software sharing and the growth of

bazaar-mode development communities. The pragmatist values

having good tools and toys more than he dislikes commercialism,

and may use high-quality commercial software without ideological

discomfort. At the same time, his open-source experience has

taught him standards of technical quality that very little closed

software can meet.

For many years, the pragmatist point of view expressed itself

within the hacker culture mainly as a stubborn current of refusal

to completely buy into the GPL in particular or the FSF’s agenda

in general. Through the 1980s and early 1990s, this attitude

tended to be associated with fans of Berkeley Unix, users of the

BSD license, and the early efforts to build open-source Unixes

from the BSD source base. These efforts, however, failed to build

bazaar communities of significant size, and became seriously frag-

mented and ineffective.

Not until the Linux explosion of early 1993–1994 did pragmatism

find a real power base. Although Linus Torvalds never made a

point of opposing RMS, he set an example by looking benignly on

the growth of a commercial Linux industry, by publicly endorsing

the use of high-quality commercial software for specific tasks, and

by gently deriding the more purist and fanatical elements in the

culture.

A side effect of the rapid growth of Linux was the induction of a

large number of new hackers for which Linux was their primary

70

loyalty and the FSF’s agenda primarily of historical interest.

Though the newer wave of Linux hackers might describe the sys-

tem as ‘‘the choice of a GNU generation’’, most tended to emulate

Torvalds more than Stallman.

Increasingly it was the anticommercial purists who found them-

selves in a minority. How much things had changed would not

become apparent until the Netscape announcement in February

1998 that it would distribute Navigator 5.0 in source. This excited

more interest in ‘free software’ within the corporate world. The

subsequent call to the hacker culture to exploit this unprecedented

opportunity and to re-label its product from ‘free software’ to

‘open source’ was met with a level of instant approval that sur-

prised everybody involved.

In a reinforcing development, the pragmatist part of the culture

was itself becoming polycentric by the mid-1990s. Other semi-

independent communities with their own self-consciousness and

charismatic leaders began to bud from the Unix/Internet root

stock. Of these, the most important after Linux was the Perl cul-

ture under Larry Wall. Smaller, but still significant, were the tradi-

tions building up around John Osterhout’s Tcl and Guido van

Rossum’s Python languages. All three of these communities

expressed their ideological independence by devising their own,

non-GPL licensing schemes.

Promiscuous Theory,
Puritan Practice

Through all these changes, nevertheless, there remained a broad

consensus theory of what ‘free software’ or ‘open source’ is. The

clearest expression of this common theory can be found in the var-

ious open-source licenses, all of which have crucial common ele-

ments.

In 1997 these common elements were distilled into the Debian

Free Software Guidelines, which became the Open Source Defini-

tion (http://www.opensource.org). Under the guidelines defined by

Homesteading the Noosphere

71

The Cathedral and the Bazaar

the OSD, an open-source license must protect an unconditional

right of any party to modify (and redistribute modified versions

of) open-source software.

Thus, the implicit theory of the OSD (and OSD-conformant

licenses such as the GPL, the BSD license, and Perl’s Artistic

License) is that anyone can hack anything. Nothing prevents half a

dozen different people from taking any given open-source product

(such as, say the Free Software Foundations’s gcc C compiler),

duplicating the sources, running off with them in different evolu-

tionary directions, but all claiming to be the product.

This kind of divergence is called a fork. The most important char-

acteristic of a fork is that it spawns competing projects that can-

not later exchange code, splitting the potential developer

community. (There are phenomena that look superficially like

forking but are not, such as the proliferation of different Linux

distributions. In these pseudo-forking cases there may be separate

projects, but they use mostly common code and can benefit from

each other’s development efforts completely enough that they are

neither technically nor sociologically a waste, and are not per-

ceived as forks.)

The open-source licenses do nothing to restrain forking, let alone

pseudo-forking; in fact, one could argue that they implicitly

encourage both. In practice, however, pseudo-forking is common

but forking almost never happens. Splits in major projects have

been rare, and are always accompanied by re-labeling and a large

volume of public self-justification. It is clear, in such cases as the

GNU Emacs/XEmacs split, or the gcc/egcs split, or the various fis-

sionings of the BSD splinter groups, that the splitters felt they

were going against a fairly powerful community norm.1

In fact (and in contradiction to the anyone-can-hack-anything

consensus theory) the open-source culture has an elaborate but

largely unadmitted set of ownership customs.

72

These customs regulate who can modify software, the circum-

stances under which it can be modified, and (especially) who has

the right to redistribute modified versions back to the community.

The taboos of a culture throw its norms into sharp relief. There-

fore, it will be useful later on if we summarize some important

ones here:

• There is strong social pressure against forking projects. It does

not happen except under plea of dire necessity, with much

public self-justification, and requires renaming.

• Distributing changes to a project without the cooperation of

the moderators is frowned upon, except in special cases like

essentially trivial porting fixes.

• Removing a person’s name from a project history, credits, or

maintainer list is absolutely not done without the person’s

explicit consent.

In the remainder of this essay, we shall examine these taboos and

ownership customs in detail. We shall inquire not only into how

they function but what they reveal about the underlying social

dynamics and incentive structures of the open-source community.

Ownership and Open Source

What does ‘ownership’ mean when property is infinitely reduplica-

ble, highly malleable, and the surrounding culture has neither

coercive power relationships nor material scarcity economics?

Actually, in the case of the open-source culture this is an easy

question to answer. The owner of a software project is the person

who has the exclusive right, recognized by the community at large,

to distribute modified versions.

(In discussing ‘ownership’ in this section I will use the singular, as

though all projects are owned by some one person. It should be

understood, however, that projects may be owned by groups. We

shall examine the internal dynamics of such groups later on.)

Homesteading the Noosphere

73

The Cathedral and the Bazaar

According to the standard open-source licenses, all parties are

equals in the evolutionary game. But in practice there is a very

well-recognized distinction between ‘official’ patches, approved

and integrated into the evolving software by the publicly recog-

nized maintainers, and ‘rogue’ patches by third parties. Rogue

patches are unusual, and generally not trusted.2

That public redistribution is the fundamental issue is easy to

establish. Custom encourages people to patch software for per-

sonal use when necessary. Custom is indifferent to people who

redistribute modified versions within a closed user or development

group. It is only when modifications are posted to the open-source

community in general, to compete with the original, that owner-

ship becomes an issue.

There are, in general, three ways to acquire ownership of an open-

source project. One, the most obvious, is to found the project.

When a project has had only one maintainer since its inception

and the maintainer is still active, custom does not even permit a

question as to who owns the project.

The second way is to have ownership of the project handed to you

by the previous owner (this is sometimes known as “passing the

baton”). It is well understood in the community that project own-

ers have a duty to pass projects to competent successors when they

are no longer willing or able to invest needed time in development

or maintenance work.

It is significant that in the case of major projects, such transfers of

control are generally announced with some fanfare. While it is

unheard of for the open-source community at large to actually

interfere in the owner’s choice of succession, customary practice

clearly incorporates a premise that public legitimacy is important.

For minor projects, it is generally sufficient for a change history

included with the project distribution to note the change of owner-

ship. The clear presumption is that if the former owner has not in

fact voluntarily transferred control, he or she may reassert control

74

with community backing by objecting publicly within a reasonable

period of time.

The third way to acquire ownership of a project is to observe that

it needs work and the owner has disappeared or lost interest. If

you want to do this, it is your responsibility to make the effort to

find the owner. If you don’t succeed, then you may announce in a

relevant place (such as a Usenet newsgroup dedicated to the appli-

cation area) that the project appears to be orphaned, and that you

are considering taking responsibility for it.

Custom demands that you allow some time to pass before follow-

ing up with an announcement that you have declared yourself the

new owner. In this interval, if someone else announces that they

have been actually working on the project, their claim trumps

yours. It is considered good form to give public notice of your

intentions more than once. You get more points for good form if

you announce in many relevant forums (related newsgroups, mail-

ing lists), and still more if you show patience in waiting for replies.

In general, the more visible effort you make to allow the previous

owner or other claimants to respond, the better your claim if no

response is forthcoming.

If you have gone through this process in sight of the project’s user

community, and there are no objections, then you may claim own-

ership of the orphaned project and so note in its history file. This,

however, is less secure than being passed the baton, and you can-

not expect to be considered fully legitimate until you have made

substantial improvements in the sight of the user community.

I have observed these customs in action for 20 years, going back

to the pre-FSF ancient history of open-source software. They have

several very interesting features. One of the most interesting is that

most hackers have followed them without being fully aware of

doing so. Indeed, this may be the first conscious and reasonably

complete summary ever to have been written down.

Homesteading the Noosphere

75

The Cathedral and the Bazaar

Another is that, for unconscious customs, they have been followed

with remarkable (even astonishing) consistency. I have observed

the evolution of literally hundreds of open-source projects, and I

can still count the number of significant violations I have observed

or heard about on my fingers.

Yet a third interesting feature is that as these customs have

evolved over time, they have done so in a consistent direction.

That direction has been to encourage more public accountability,

more public notice, and more care about preserving the credits

and change histories of projects in ways that (among other things)

establish the legitimacy of the present owners.

These features suggest that the customs are not accidental, but are

products of some kind of implicit agenda or generative pattern in

the open-source culture that is utterly fundamental to the way it

operates.

An early respondent pointed out that contrasting the Internet

hacker culture with the cracker/pirate culture (the ‘‘warez d00dz’’

centered around game-cracking and pirate bulletin-board systems)

illuminates the generative patterns of both rather well. We’ll

return to the d00dz for contrast later in this essay.

Locke and Land Title

To understand this generative pattern, it helps to notice a histori-

cal analogy for these customs that is far outside the domain of

hackers’ usual concerns. As students of legal history and political

philosophy may recognize, the theory of property they imply is

virtually identical to the Anglo-American common-law theory of

land tenure!

In this theory, there are three ways to acquire ownership of land:

On a frontier, where land exists that has never had an owner, one

can acquire ownership by homesteading, mixing one’s labor with

the unowned land, fencing it, and defending one’s title.

76

The usual means of transfer in settled areas is transfer of title—

that is, receiving the deed from the previous owner. In this theory,

the concept of ‘chain of title’ is important. The ideal proof of

ownership is a chain of deeds and transfers extending back to

when the land was originally homesteaded.

Finally, the common-law theory recognizes that land title may be

lost or abandoned (for example, if the owner dies without heirs,

or the records needed to establish chain of title to vacant land are

gone). A piece of land that has become derelict in this way may be

claimed by adverse possession—one moves in, improves it, and

defends title as if homesteading.

This theory, like hacker customs, evolved organically in a context

where central authority was weak or nonexistent. It developed

over a period of a thousand years from Norse and Germanic tribal

law. Because it was systematized and rationalized in the early

modern era by the English political philosopher John Locke, it is

sometimes referred to as the Lockean theory of property.

Logically similar theories have tended to evolve wherever property

has high economic or survival value and no single authority is

powerful enough to force central allocation of scarce goods. This

is true even in the hunter-gatherer cultures that are sometimes

romantically thought to have no concept of ‘property’. For exam-

ple, in the traditions of the !Kung San bushmen of the Kgalagadi

(formerly Kalahari) Desert, there is no ownership of hunting

grounds. But there is ownership of waterholes and springs under a

theory recognizably akin to Locke’s.

The !Kung San example is instructive, because it shows that Lock-

ean property customs arise only where the expected return from

the resource exceeds the expected cost of defending it. Hunting

grounds are not property because the return from hunting is

highly unpredictable and variable, and (although highly prized)

not a necessity for day-to-day survival. Waterholes, on the other

hand, are vital to survival and small enough to defend.

Homesteading the Noosphere

77

The Cathedral and the Bazaar

The ‘noosphere’ of this essay’s title is the territory of ideas, the

space of all possible thoughts.3 What we see implied in hacker

ownership customs is a Lockean theory of property rights in one

subset of the noosphere, the space of all programs. Hence ‘home-

steading the noosphere’, which is what every founder of a new

open-source project does.

Faré Rideau (fare@tunes.org) correctly points out that hackers do

not exactly operate in the territory of pure ideas. He asserts that

what hackers own is programming projects—intensional focus

points of material labor (development, service, etc.), to which are

associated things like reputation, trustworthiness, etc. He there-

fore asserts that the space spanned by hacker projects is not the

noosphere but a sort of dual of it, the space of noosphere-explor-

ing program projects. (With an apologetic nod to the astrophysi-

cists out there, it would be etymologically correct to call this dual

space the ‘ergosphere’ or ‘sphere of work’.)

In practice, the distinction between noosphere and ergosphere is

not important for the purposes of our present argument. It is dubi-

ous whether the noosphere in the pure sense on which Faré insists

can be said to exist in any meaningful way; one would almost

have to be a Platonic philosopher to believe in it. And the distinc-

tion between noosphere and ergosphere is only of practical impor-

tance if one wishes to assert that ideas (the elements of the

noosphere) cannot be owned, but their instantiations as projects

can. This question leads to issues in the theory of intellectual

property that are beyond the scope of this essay4).

To avoid confusion, however, it is important to note that neither

the noosphere nor the ergosphere is the same as the totality of vir-

tual locations in electronic media that is sometimes (to the disgust

of most hackers) called ‘cyberspace’. Property there is regulated by

completely different rules that are closer to those of the material

substratum — essentially, he who owns the media and machines on

which a part of cyberspace is hosted owns that piece of cyberspace

as a result.

78

The Lockean logic of custom suggests strongly that open-source

hackers observe the customs they do in order to defend some kind

of expected return from their effort. The return must be more sig-

nificant than the effort of homesteading projects, the cost of main-

taining version histories that document ‘chain of title’, and the

time cost of making public notifications and waiting before taking

adverse possession of an orphaned project.

Furthermore, the ‘yield’ from open source must be something

more than simply the use of the software, something else that

would be compromised or diluted by forking. If use were the only

issue, there would be no taboo against forking, and open-source

ownership would not resemble land tenure at all. In fact, this

alternate world (where use is the only yield, and forking is

unproblematic) is the one implied by existing open-source licenses.

We can eliminate some candidate kinds of yield right away.

Because you can’t coerce effectively over a network connection,

seeking power is right out. Likewise, the open-source culture

doesn’t have anything much resembling money or an internal

scarcity economy, so hackers cannot be pursuing anything very

closely analogous to material wealth (e.g., the accumulation of

scarcity tokens).

There is one way that open-source activity can help people

become wealthier, however — a way that provides a valuable clue

to what actually motivates it. Occasionally, the reputation one

gains in the hacker culture can spill over into the real world in

economically significant ways. It can get you a better job offer, or

a consulting contract, or a book deal.

This kind of side effect, however, is at best rare and marginal for

most hackers; far too much so to make it convincing as a sole

explanation, even if we ignore the repeated protestations by hack-

ers that they’re doing what they do not for money but out of ide-

alism or love.

Homesteading the Noosphere

79

The Cathedral and the Bazaar

However, the way such economic side effects are mediated is

worth examination. Next we’ll see that an understanding of the

dynamics of reputation within the open-source culture itself has

considerable explanatory power.

The Hacker Milieu as Gift Culture

To understand the role of reputation in the open-source culture, it

is helpful to move from history further into anthropology and eco-

nomics, and examine the difference between exchange cultures

and gift cultures.

Human beings have an innate drive to compete for social status;

it’s wired in by our evolutionary history. For the 90% of hominid

history that ran before the invention of agriculture, our ancestors

lived in small nomadic hunter-gatherer bands. High-status individ-

uals (those most effective at informing coalitions and persuading

others to cooperate with them) got the healthiest mates and access

to the best food. This drive for status expresses itself in different

ways, depending largely on the degree of scarcity of survival

goods.

Most ways humans have of organizing are adaptations to scarcity

and want. Each way carries with it different ways of gaining social

status.

The simplest way is the command hierarchy. In command hierar-

chies, scarce goods are allocated by one central authority and

backed up by force. Command hierarchies scale very poorly;5 they

become increasingly brutal and inefficient as they get larger. For

this reason, command hierarchies above the size of an extended

family are almost always parasites on a larger economy of a differ-

ent type. In command hierarchies, social status is primarily deter-

mined by access to coercive power.

Our society is predominantly an exchange economy. This is a

sophisticated adaptation to scarcity that, unlike the command

model, scales quite well. Allocation of scarce goods is done in a

80

decentralized way through trade and voluntary cooperation (and

in fact, the dominating effect of competitive desire is to produce

cooperative behavior). In an exchange economy, social status is

primarily determined by having control of things (not necessarily

material things) to use or trade.

Most people have implicit mental models of both and understand

how they interact with each other. Government, the military, and

organized crime (for example) are command hierarchies parasitic

on the broader exchange economy we call ‘the free market’.

There’s a third model, however, that is radically different from

either and not generally recognized except by anthropologists; the

gift culture.

Gift cultures are adaptations not to scarcity but to abundance.

They arise in populations that do not have significant material-

scarcity problems with survival goods. We can observe gift cul-

tures in action among aboriginal cultures living in ecozones with

mild climates and abundant food. We can also observe them in

certain strata of our own society, especially in show business and

among the very wealthy.

Abundance makes command relationships difficult to sustain and

exchange relationships an almost pointless game. In gift cultures,

social status is determined not by what you control but by what

you give away.

Thus the Kwakiutl chieftain’s potlach party. Thus the multi-

millionaire’s elaborate and usually public acts of philanthropy.

And thus the hacker’s long hours of effort to produce high-quality

open-source code.

For examined in this way, it is quite clear that the society of open-

source hackers is in fact a gift culture. Within it, there is no seri-

ous shortage of the ‘survival necessities’—disk space, network

bandwidth, computing power. Software is freely shared. This

abundance creates a situation in which the only available measure

of competitive success is reputation among one’s peers.

Homesteading the Noosphere

81

The Cathedral and the Bazaar

This observation is not in itself entirely sufficient to explain the

observed features of hacker culture, however. The crackers and

warez d00dz have a gift culture that thrives in the same (elec-

tronic) media as that of the hackers, but their behavior is very dif-

ferent. The group mentality in their culture is much stronger and

more exclusive than among hackers. They hoard secrets rather

than sharing them; one is much more likely to find cracker groups

distributing sourceless executables that crack software than tips

that give away how they did it. (For an inside perspective on this

behavior, see endnote 5).

What this shows, in case it wasn’t obvious, is that there is more

than one way to run a gift culture. History and values matter. I

have summarized the history of the hacker culture in A Brief His-

tory of Hackerdom; the ways in which it shaped present behavior

are not mysterious. Hackers have defined their culture by a set of

choices about the form that their competition will take. It is that

form that we will examine in the remainder of this essay.

The Joy of Hacking

In making this ‘reputation game’ analysis, by the way, I do not

mean to devalue or ignore the pure artistic satisfaction of design-

ing beautiful software and making it work. Hackers all experience

this kind of satisfaction and thrive on it. People for whom it is not

a significant motivation never become hackers in the first place,

just as people who don’t love music never become composers.

So perhaps we should consider another model of hacker behavior

in which the pure joy of craftsmanship is the primary motivation.

This ‘craftsmanship’ model would have to explain hacker custom

as a way of maximizing both the opportunities for craftsmanship

and the quality of the results. Does this conflict with or suggest

different results than the reputation game model?

Not really. In examining the craftsmanship model, we come back

to the same problems that constrain hackerdom to operate like a

gift culture. How can one maximize quality if there is no metric

82

for quality? If scarcity economics doesn’t operate, what metrics

are available besides peer evaluation? It appears that any crafts-

manship culture ultimately must structure itself through a reputa-

tion game—and, in fact, we can observe exactly this dynamic in

many historical craftsmanship cultures from the medieval guilds

onwards.

In one important respect, the craftsmanship model is weaker than

the gift culture model; by itself, it doesn’t help explain the contra-

diction we began this essay with.

Finally, the craftsmanship motivation itself may not be psychologi-

cally as far removed from the reputation game as we might like to

assume. Imagine your beautiful program locked up in a drawer

and never used again. Now imagine it being used effectively and

with pleasure by many people. Which dream gives you satis-

faction?

Nevertheless, we’ll keep an eye on the craftsmanship model. It is

intuitively appealing to many hackers, and explains some aspects

of individual behavior well enough.6

After I published the first version of this essay on the Internet, an

anonymous respondent commented: ‘‘You may not work to get

reputation, but the reputation is a real payment with consequences

if you do the job well.’’ This is a subtle and important point. The

reputation incentives continue to operate whether or not a crafts-

man is aware of them; thus, ultimately, whether or not a hacker

understands his own behavior as part of the reputation game, his

behavior will be shaped by that game.

Other respondents related peer-esteem rewards and the joy of

hacking to the levels above subsistence needs in Abraham

Maslow’s well-known ‘hierarchy of values’ model of human

motivation.7 On this view, the joy of hacking fulfills a self-actual-

ization or transcendence need, which will not be consistently

expressed until lower-level needs (including those for physical

security and for ‘belongingness’ or peer esteem) have been at least

Homesteading the Noosphere

83

The Cathedral and the Bazaar

minimally satisfied. Thus, the reputation game may be critical in

providing a social context within which the joy of hacking can in

fact become the individual’s primary motive.

The Many Faces of Reputation

There are reasons general to every gift culture why peer repute

(prestige) is worth playing for:

First and most obviously, good reputation among one’s peers is a

primary reward. We’re wired to experience it that way for evolu-

tionary reasons touched on earlier. (Many people learn to redirect

their drive for prestige into various sublimations that have no

obvious connection to a visible peer group, such as ‘honor’, ‘ethi-

cal integrity’, ‘piety’, etc.; this does not change the underlying

mechanism.)

Second, prestige is a good way (and in a pure gift economy, the

only way) to attract attention and cooperation from others. If one

is well known for generosity, intelligence, fair dealing, leadership

ability, or other good qualities, it becomes much easier to per-

suade other people that they will gain by association with you.

Third, if your gift economy is in contact with or intertwined with

an exchange economy or a command hierarchy, your reputation

may spill over and earn you higher status there.

Beyond these general reasons, the peculiar conditions of the

hacker culture make prestige even more valuable than it would be

in a ‘real world’ gift culture.

The main ‘peculiar condition’ is that the artifacts one gives away

(or, interpreted another way, are the visible sign of one’s gift of

energy and time) are very complex. Their value is nowhere near as

obvious as that of material gifts or exchange-economy money. It is

much harder to objectively distinguish a fine gift from a poor one.

Accordingly, the success of a giver’s bid for status is delicately

dependent on the critical judgement of peers.

84

Another peculiarity is the relative purity of the open-source cul-

ture. Most gift cultures are compromised—either by exchange-

economy relationships such as trade in luxury goods, or by

command-economy relationships such as family or clan groupings.

No significant analogues of these exist in the open-source culture;

thus, ways of gaining status other than by peer repute are virtually

absent.

Ownership Rights and Reputation
Incentives

We are now in a position to pull together the previous analyses

into a coherent account of hacker ownership customs. We under-

stand the yield from homesteading the noosphere now; it is peer

repute in the gift culture of hackers, with all the secondary gains

and side effects that implies.

From this understanding, we can analyze the Lockean property

customs of hackerdom as a means of maximizing reputation

incentives—of ensuring that peer credit goes where it is due and

does not go where it is not due.

The three taboos we have observed make perfect sense under this

analysis. One’s reputation can suffer unfairly if someone else mis-

appropriates or mangles one’s work; these taboos (and related cus-

toms) attempt to prevent this from happening. (Or, to put it more

pragmatically, hackers generally refrain from forking or rogue-

patching others’ projects in order to be able to deny legitimacy to

the same behavior practiced against themselves.)

• Forking projects is bad because it exposes pre-fork contribu-

tors to a reputation risk they can only control by being active

in both child projects simultaneously after the fork. (This

would generally be too confusing or difficult to be practical.)

Homesteading the Noosphere

85

The Cathedral and the Bazaar

• Distributing rogue patches (or, much worse, rogue binaries)

exposes the owners to an unfair reputation risk. Even if the

official code is perfect, the owners will catch flak from bugs in

the patches (but see endnote 4.).

• Surreptitiously filing someone’s name off a project is, in cul-

tural context, one of the ultimate crimes. Doing this steals the

victim’s gift to be presented as the thief’s own.

Of course, forking a project or distributing rogue patches for it

also directly attacks the reputation of the original developer’s

group. If I fork or rogue-patch your project, I am saying, “You

made a wrong decision by failing to take the project where I am

taking it”; and anyone who uses my forked variation is endorsing

this challenge. But this in itself would be a fair challenge, albeit

extreme; it’s the sharpest end of peer review. It’s therefore not suf-

ficient in itself to account for the taboos, though it doubtless con-

tributes force to them.

All three taboo behaviors inflict global harm on the open-source

community as well as local harm on the victim(s). Implicitly they

damage the entire community by decreasing each potential con-

tributor’s perceived likelihood that gift/productive behavior will be

rewarded.

It’s important to note that there are alternate candidate explana-

tions for two of these three taboos.

First, hackers often explain their antipathy to forking projects by

bemoaning the wasteful duplication of work it would imply as the

child products evolve on more-or-less parallel courses into the

future. They may also observe that forking tends to split the co-

developer community, leaving both child projects with fewer

brains to use than the parent.

A respondent has pointed out that it is unusual for more than one

offspring of a fork to survive with significant ‘market share’ into

the long term. This strengthens the incentives for all parties to

cooperate and avoid forking, because it’s hard to know in advance

86

who will be on the losing side and see a lot of their work either

disappear entirely or languish in obscurity.

It has also been pointed out that the simple fact that forks are

likely to produce contention and dispute is enough to motivate

social pressure against them. Contention and dispute disrupt the

teamwork that is necessary for each individual contributor to

reach his or her goals.

Dislike of rogue patches is often explained by the objection that

they can create compatibility problems between the daughter ver-

sions, complicate bug-tracking enormously, and inflict work on

maintainers who have quite enough to do catching their own mis-

takes.

There is considerable truth to these explanations, and they cer-

tainly do their bit to reinforce the Lockean logic of ownership. But

while intellectually attractive, they fail to explain why so much

emotion and territoriality gets displayed on the infrequent occa-

sions that the taboos get bent or broken—not just by the injured

parties, but by bystanders and observers who often react quite

harshly. Cold-blooded concerns about duplication of work and

maintainance hassles simply do not sufficiently explain the

observed behavior.

Then, too, there is the third taboo. It’s hard to see how anything

but the reputation-game analysis can explain this. The fact that

this taboo is seldom analyzed much more deeply than ‘‘It wouldn’t

be fair’’ is revealing in its own way, as we shall see in the next

section.

The Problem of Ego

At the beginning of this essay I mentioned that the unconscious

adaptive knowledge of a culture is often at odds with its conscious

ideology. One major example of this is the fact that Lockean own-

ership customs have been widely followed despite the fact that

they violate the stated intent of the standard licenses.

Homesteading the Noosphere

87

The Cathedral and the Bazaar

I have observed another interesting example of this phenomenon

when discussing the reputation-game analysis with hackers. This is

that many hackers resisted the analysis and showed a strong reluc-

tance to admit that their behavior was motivated by a desire for

peer repute or, as I incautiously labeled it at the time, ‘ego satis-

faction’.

This illustrates an interesting point about the hacker culture. It

consciously distrusts and despises egotism and ego-based motiva-

tions; self-promotion tends to be mercilessly criticized, even when

the community might appear to have something to gain from it.

So much so, in fact, that the culture’s ‘big men’ and tribal elders

are required to talk softly and humorously deprecate themselves at

every turn in order to maintain their status. How this attitude

meshes with an incentive structure that apparently runs almost

entirely on ego cries out for explanation.

A large part of it, certainly, stems from the generally negative

Europo-American attitude towards ‘ego’. The cultural matrix of

most hackers teaches them that desiring ego satisfaction is a bad

(or at least immature) motivation; that ego is at best an eccentric-

ity tolerable only in prima donnas and often an actual sign of

mental pathology. Only sublimated and disguised forms like ‘peer

repute’, ‘self-esteem’, ‘professionalism’, or ‘pride of accomplish-

ment’ are generally acceptable.

I could write an entire other essay on the unhealthy roots of this

part of our cultural inheritance, and the astonishing amount of

self-deceptive harm we do by believing (against all the evidence of

psychology and behavior) that we ever have truly ‘selfless’

motives. Perhaps I would, if Friedrich Wilhelm Nietzsche and Ayn

Rand had not already done an entirely competent job (whatever

their other failings) of deconstructing ‘altruism’ into unacknowl-

edged kinds of self-interest.

But I am not doing moral philosophy or psychology here, so I will

simply observe one minor kind of harm done by the belief that ego

is evil, which is this: it has made it emotionally difficult for many

88

hackers to consciously understand the social dynamics of their

own culture!

But we are not quite done with this line of investigation. The sur-

rounding culture’s taboo against visibly ego-driven behavior is so

much intensified in the hacker (sub)culture that one must suspect

it of having some sort of special adaptive function for hackers.

Certainly the taboo is weaker (or nonexistent) among many other

gift cultures, such as the peer cultures of theater people or the very

wealthy.

The Value of Humility

Having established that prestige is central to the hacker culture’s

reward mechanisms, we now need to understand why it has

seemed so important that this fact remain semi-covert and largely

unadmitted.

The contrast with the pirate culture is instructive. In that culture,

status-seeking behavior is overt and even blatant. These crackers

seek acclaim for releasing ‘‘zero-day warez’’ (cracked software

redistributed on the day of the original uncracked version’s

release) but are closemouthed about how they do it. These magi-

cians don’t like to give away their tricks. And, as a result, the

knowledge base of the cracker culture as a whole increases only

slowly.

In the hacker community, by contrast, one’s work is one’s state-

ment. There’s a very strict meritocracy (the best craftsmanship

wins) and there’s a strong ethos that quality should (indeed must)

be left to speak for itself. The best brag is code that ‘‘just works’’,

and that any competent programmer can see is good stuff. Thus,

the hacker culture’s knowledge base increases rapidly.

The taboo against ego-driven posturing therefore increases pro-

ductivity. But that’s a second-order effect; what is being directly

protected here is the quality of the information in the community’s

peer-evaluation system. That is, boasting or self-importance is

Homesteading the Noosphere

89

The Cathedral and the Bazaar

suppressed because it behaves like noise tending to corrupt the

vital signals from experiments in creative and cooperative

behavior.

For very similar reasons, attacking the author rather than the code

is not done. There is an interesting subtlety here that reinforces the

point; hackers feel very free to flame each other over ideological

and personal differences, but it is unheard of for any hacker to

publicly attack another’s competence at technical work (even pri-

vate criticism is unusual and tends to be muted in tone). Bug-hunt-

ing and criticism are always project-labeled, not person-labeled.

Furthermore, past bugs are not automatically held against a devel-

oper; the fact that a bug has been fixed is generally considered

more important than the fact that one used to be there. As one

respondent observed, one can gain status by fixing ‘Emacs bugs’,

but not by fixing ‘Richard Stallman’s bugs’ — and it would be con-

sidered extremely bad form to criticize Stallman for old Emacs

bugs that have since been fixed.

This makes an interesting contrast with many parts of academia,

in which trashing putatively defective work by others is an impor-

tant mode of gaining reputation. In the hacker culture, such

behavior is rather heavily tabooed—so heavily, in fact, that the

absence of such behavior did not present itself to me as a datum

until that one respondent with an unusual perspective pointed it

out nearly a full year after this essay was first published!

The taboo against attacks on competence (not shared with

academia) is even more revealing than the (shared) taboo on pos-

turing, because we can relate it to a difference between academia

and hackerdom in their communications and support structures.

The hacker culture’s medium of gifting is intangible, its communi-

cations channels are poor at expressing emotional nuance, and

face-to-face contact among its members is the exception rather

than the rule. This gives it a lower tolerance of noise than most

other gift cultures, and goes a long way to explain both the taboo

90

against posturing and the taboo against attacks on competence.

Any significant incidence of flames over hackers’ competence

would intolerably disrupt the culture’s reputation scoreboard.

The same vulnerability to noise explains the model of public

humility required of the hacker community’s tribal elders. They

must be seen to be free of boast and posturing so the taboo

against dangerous noise will hold.8

Talking softly is also functional if one aspires to be a maintainer

of a successful project; one must convince the community that one

has good judgement, because most of the maintainer’s job is going

to be judging other people’s code. Who would be inclined to con-

tribute work to someone who clearly can’t judge the quality of

their own code, or whose behavior suggests they will attempt to

unfairly hog the reputation return from the project? Potential con-

tributors want project leaders with enough humility and class to

be able to to say, when objectively appropriate, ‘‘Yes, that does

work better than my version, I’ll use it’’—and to give credit where

credit is due.

Yet another reason for humble behavior is that in the open source

world, you seldom want to give the impression that a project is

‘done’. This might lead a potential contributor not to feel needed.

The way to maximize your leverage is to be humble about the

state of the program. If one does one’s bragging through the code,

and then says, ‘‘Well shucks, it doesn’t do x, y, and z, so it can’t be

that good’’, patches for x, y, and z will often swiftly follow.

Finally, I have personally observed that the self-deprecating

behavior of some leading hackers reflects a real (and not unjusti-

fied) fear of becoming the object of a personality cult. Linus Tor-

valds and Larry Wall both provide clear and numerous examples

of such avoidance behavior. Once, on a dinner expedition with

Larry Wall, I joked, ‘‘You’re the alpha hacker here—you get to

pick the restaurant.’’ He flinched noticeably. And rightly so; failing

to distinguish their shared values from the personalities of their

leaders has ruined a good many voluntary communities, a pattern

Homesteading the Noosphere

91

The Cathedral and the Bazaar

of which Larry and Linus cannot fail to be fully aware. On the

other hand, most hackers would love to have Larry’s problem, if

they could but bring themselves to admit it.

Global Implications of the
Reputation-Game Model

The reputation-game analysis has some more implications that

may not be immediately obvious. Many of these derive from the

fact that one gains more prestige from founding a successful pro-

ject than from cooperating in an existing one. One also gains more

from projects that are strikingly innovative, as opposed to being

‘me, too’ incremental improvements on software that already

exists. On the other hand, software that nobody but the author

understands or has a need for is a non-starter in the reputation

game, and it’s often easier to attract good notice by contributing

to an existing project than it is to get people to notice a new one.

Finally, it’s much harder to compete with an already successful

project than it is to fill an empty niche.

Thus, there’s an optimum distance from one’s neighbors (the most

similar competing projects). Too close and one’s product will be a

‘‘me, too!’’ of limited value, a poor gift (one would be better off

contributing to an existing project). Too far away, and nobody

will be able to use, understand, or perceive the relevance of one’s

effort (again, a poor gift). This creates a pattern of homesteading

in the noosphere that rather resembles that of settlers spreading

into a physical frontier—not random, but like a diffusion-limited

fractal. Projects tend to get started to fill functional gaps near the

frontier (see endnote 9 for further discussion of the lure of

novelty).

Some very successful projects become category killers; nobody

wants to homestead anywhere near them because competing

against the established base for the attention of hackers would be

too hard. People who might otherwise found their own distinct

efforts end up, instead, adding extensions for these big, successful

92

projects. The classic category killer example is GNU Emacs; its

variants fill the ecological niche for a fully-programmable editor

so completely that no competitor has gotten much beyond the

one-man project stage since the early 1980s. Instead, people write

Emacs modes.

Globally, these two tendencies (gap-filling and category-killers)

have driven a broadly predictable trend in project starts over time.

In the 1970s most of the open source that existed was toys and

demos. In the 1980s the push was in development and Internet

tools. In the 1990s the action shifted to operating systems. In each

case, a new and more difficult level of problems was attacked

when the possibilities of the previous one had been nearly

exhausted.

This trend has interesting implications for the near future. In early

1998, Linux looked very much like a category killer for the ‘open-

source operating systems’ niche—people who might otherwise

write competing operating systems are now writing Linux device

drivers and extensions instead. And most of the lower-level tools

the culture ever imagined having as open-source already exist.

What’s left?

Applications. As the third millenium begins, it seems safe to pre-

dict that open-source development effort will increasingly shift

towards the last virgin territory—programs for non-techies. A

clear early indicator was the development of GIMP

(http://www.gimp.org), the Photoshop-like image workshop that is

open source’s first major application with the kind of end-

user–friendly GUI interface considered de rigueur in commercial

applications for the last decade. Another is the amount of buzz

surrounding application-toolkit projects such as KDE (see

http://www.kde.org) and GNOME (see http://www.gnome.org).

A respondent to this essay has pointed out that the homesteading

analogy also explains why hackers react with such visceral anger

to Microsoft’s ‘‘embrace and extend’’ policy of complexifying and

then closing up Internet protocols. The hacker culture can coexist

Homesteading the Noosphere

93

The Cathedral and the Bazaar

with most closed software; the existence of Adobe Photoshop, for

example, does not make the territory near GIMP (its open-source

equivalent) significantly less attractive. But when Microsoft suc-

ceeds at de-commoditizing a protocol so that only Microsoft’s

own programmers can write software for it, they do not merely

harm customers by extending their monopoly; they also reduce the

amount and quality of noosphere available for hackers to home-

stead and cultivate9. No wonder hackers often refer to Microsoft’s

strategy as ‘‘protocol pollution’’; they are reacting exactly like

farmers watching someone poison the river they water their crops

with!

Finally, the reputation-game analysis explains the oft-cited dictum

that you do not become a hacker by calling yourself a hacker—

you become a hacker when other hackers call you a hacker.10 A

hacker, considered in this light, is somebody who has shown (by

contributing gifts) that he or she both has technical ability and

understands how the reputation game works. This judgement is

mostly one of awareness and acculturation, and can be delivered

only by those already well inside the culture.

How Fine a Gift?

There are consistent patterns in the way the hacker culture values

contributions and returns peer esteem for them. It’s not hard to

observe the following rules:

1. If it doesn’t work as well as I have been led to

expect it will, it’s no good—no matter how

clever and original it is.

Note the phrase “led to expect”. This rule is not a demand for

perfection; beta and experimental software is allowed to have

bugs. It’s a demand that the user be able to accurately estimate

risks from the stage of the project and the developers’ representa-

tions about it.

This rule underlies the fact that open-source software tends to stay

in beta for a long time, and not get even a 1.0 version number

94

until the developers are very sure it will not hand out a lot of

nasty surprises. In the closed-source world, Version 1.0 means:

‘‘Don’t touch this if you’re prudent.’’ In the open-source world, it

reads something more like: ‘‘The developers are willing to bet their

reputations on this.’’

2. Work that extends the noosphere is better than

work that duplicates an existing piece of func-

tional territory.

The naive way to put this would have been: original work is better

than mere duplication of the functions of existing software. But

it’s not actually quite that simple. Duplicating the functions of

existing closed software counts as highly as original work if by

doing so you break open a closed protocol or format and make

that territory newly available.

Thus, for example, one of the highest-prestige projects in the pre-

sent open-source world is Samba—the code that allows Unix

machines to act as clients or servers for Microsoft’s proprietary

SMB file-sharing protocol. There is very little creative work to be

done here; it’s mostly an issue of getting the reverse-engineered

details right. Nevertheless, the members of the Samba group are

perceived as heroes because they neutralize a Microsoft effort to

lock in whole user populations and cordon off a big section of the

noosphere.

3. Work that makes it into a major distribution is

better than work that doesn’t. Work carried in

all major distributions is most prestigious.

The major distributions include not just the big Linux distribu-

tions like Red Hat, Debian, Caldera, and SuSE, but other collec-

tions that are understood to have reputations of their own to

maintain and thus implicitly certify quality—like BSD distribu-

tions or the Free Software Foundation source collection.

4. Utilization is the sincerest form of flattery—

and category killers are better than also-rans.

Homesteading the Noosphere

95

The Cathedral and the Bazaar

Trusting the judgment of others is basic to the peer-review process.

It’s necessary because nobody has time to review all possible alter-

natives. So work used by lots of people is considered better than

work used by a few.

To have done work so good that nobody cares to use the alterna-

tives anymore is therefore to have earned huge prestige. The most

possible peer esteem comes from having done widely popular, cat-

egory-killing original work that is carried by all major distribu-

tions. People who have pulled this off more than once are half-

seriously referred to as demigods.

5. Continued devotion to hard, boring work (like

debugging, or writing documentation) is more

praiseworthy than cherrypicking the fun and

easy hacks.

This norm is how the community rewards necessary tasks that

hackers would not naturally incline towards. It is to some extent

contradicted by:

6. Nontrivial extensions of function are better

than low-level patches and debugging.

The way this seems to work is that on a one-shot basis, adding a

feature is likely to get more reward than fixing a bug—unless the

bug is exceptionally nasty or obscure, such that nailing it is itself a

demonstration of unusual skill and cleverness. But when these

behaviors are extended over time, a person with a long history of

paying attention to and nailing even ordinary bugs may well out-

rank someone who has spent a similar amount of effort adding

easy features.

A respondent has pointed out that these rules interact in interest-

ing ways and do not necessarily reward highest possible utility all

the time. Ask a hacker whether he’s likely to become better known

for a brand new tool of his own or for extensions to someone

else’s and the answer ‘‘new tool’’ will not be in doubt. But ask

about (a) a brand new tool that is only used a few times a day

invisibly by the OS but that rapidly becomes a category killer,

96

versus (b) several extensions to an existing tool that are neither

especially novel nor category-killers, but are daily used and daily

visible to a huge number of users and you are likely to get some

hesitation before the hacker settles on (a). These alternatives are

about evenly stacked.

Said respondent gave this question point for me by adding: ‘‘Case

(a) is fetchmail; case (b) is your many Emacs extensions, like vc.el

and gud.el.’’ And indeed he is correct; I am more likely to be

tagged ‘‘the author of fetchmail’’ than ‘‘the author of a boatload of

Emacs modes’’, even though the latter probably have had higher

total utility over time.

What may be going on here is simply that work with a novel

‘brand identity’ gets more notice than work aggregated to an

existing ‘brand’. Elucidation of these rules, and what they tell us

about the hacker culture’s scoreboarding system, would make a

good topic for further investigation.

Noospheric Property and the
Ethology of Territory

To understand the causes and consequences of Lockean property

customs, it will help us to look at them from yet another angle;

that of animal ethology, specifically the ethology of territory.

Property is an abstraction of animal territoriality, which evolved

as a way of reducing intraspecies violence. By marking his bounds,

and respecting the bounds of others, a wolf diminishes his chances

of being in a fight that could weaken or kill him and make him

less reproductively successful. Similarly, the function of property

in human societies is to prevent inter-human conflict by setting

bounds that clearly separate peaceful behavior from aggression.

It is fashionable in some circles to describe human property as an

arbitrary social convention, but this is dead wrong. Anybody who

has ever owned a dog who barked when strangers came near its

owner’s property has experienced the essential continuity between

Homesteading the Noosphere

97

The Cathedral and the Bazaar

animal territoriality and human property. Our domesticated

cousins of the wolf know, instinctively, that property is no mere

social convention or game, but a critically important evolved

mechanism for the avoidance of violence. (This makes them

smarter than a good many human political theorists.)

Claiming property (like marking territory) is a performative act, a

way of declaring what boundaries will be defended. Community

support of property claims is a way to minimize friction and maxi-

mize cooperative behavior. These things remain true even when

the ‘property claim’ is much more abstract than a fence or a dog’s

bark, even when it’s just the statement of the project maintainer’s

name in a README file. It’s still an abstraction of territoriality,

and (like other forms of property) based in territorial instincts

evolved to assist conflict resolution.

This ethological analysis may at first seem very abstract and diffi-

cult to relate to actual hacker behavior. But it has some important

consequences. One is in explaining the popularity of World Wide

Web sites, and especially why open-source projects with websites

seem so much more ‘real’ and substantial than those without

them.

Considered objectively, this seems hard to explain. Compared to

the effort involved in originating and maintaining even a small

program, a web page is easy, so it’s hard to consider a web page

evidence of substance or unusual effort.

Nor are the functional characteristics of the Web itself sufficient

explanation. The communication functions of a web page can be

as well or better served by a combination of an FTP site, a mailing

list, and Usenet postings. In fact it’s quite unusual for a project’s

routine communications to be done over the Web rather than via a

mailing list or newsgroup. Why, then, the popularity of websites

as project homes?

The metaphor implicit in the term ‘home page’ provides an impor-

tant clue. While founding an open-source project is a territorial

98

claim in the noosphere (and customarily recognized as such) it is

not a terribly compelling one on the psychological level. Software,

after all, has no natural location and is instantly reduplicable. It’s

assimilable to our instinctive notions of ‘territory’ and ‘property’,

but only after some effort.

A project home page concretizes an abstract homesteading in the

space of possible programs by expressing it as ‘home’ territory in

the more spatially-organized realm of the World Wide Web.

Descending from the noosphere to ‘cyberspace’ doesn’t get us all

the way to the real world of fences and barking dogs yet, but it

does hook the abstract property claim more securely to our

instinctive wiring about territory. And this is why projects with

web pages seem more ‘real’.

This point is much strengthened by hyperlinks and the existence of

good search engines. A project with a web page is much more

likely to be noticed by somebody exploring its neighborhood in

the noosphere; others will link to it, searches will find it. A web

page is therefore a better advertisement, a more effective perfor-

mative act, a stronger claim on territory.

This ethological analysis also encourages us to look more closely

at mechanisms for handling conflict in the open-source culture. It

leads us to expect that, in addition to maximizing reputation

incentives, ownership customs should also have a role in prevent-

ing and resolving conflicts.

Ca uses of Conflict

In conflicts over open-source software we can identify four major

issues:

• Who gets to make binding decisions about a project?

• Who gets credit or blame for what?

Homesteading the Noosphere

99

The Cathedral and the Bazaar

• How to reduce duplication of effort and prevent rogue ver-

sions from complicating bug tracking?

• What is the Right Thing, technically speaking?

If we take a second look at the ‘‘What is the Right Thing’’ issue,

however, it tends to vanish. For any such question, either there is

an objective way to decide it accepted by all parties or there isn’t.

If there is, game over and everybody wins. If there isn’t, it reduces

to ‘‘Who decides?’’

Accordingly, the three problems a conflict-resolution theory has to

resolve about a project are (a) where the buck stops on design

decisions, (b) how to decide which contributors are credited and

how, and (c) how to keep a project group and product from fis-

sioning into multiple branches.

The role of ownership customs in resolving issues (a) and (c) is

clear. Custom affirms that the owners of the project make the

binding decisions. We have previously observed that custom also

exerts heavy pressure against dilution of ownership by forking.

It’s instructive to notice that these customs make sense even if one

forgets the reputation game and examines them from within a

pure ‘craftmanship’ model of the hacker culture. In this view these

customs have less to do with the dilution of reputation incentives

than with protecting a craftsman’s right to execute his vision in his

chosen way.

The craftsmanship model is not, however, sufficient to explain

hacker customs about issue (b), who gets credit for what—

because a pure craftsman, one unconcerned with the reputation

game, would have no motive to care. To analyze these, we need to

take the Lockean theory one step further and examine conflicts

and the operation of property rights within projects as well as

between them.

100

Project Structures and Ownership

The trivial case is that in which the project has a single owner/

maintainer. In that case there is no possible conflict. The owner

makes all decisions and collects all credit and blame. The only

possible conflicts are over succession issues—who gets to be the

new owner if the old one disappears or loses interest. The commu-

nity also has an interest, under issue (c), in preventing forking.

These interests are expressed by a cultural norm that an owner/

maintainer should publicly hand title to someone if he or she can

no longer maintain the project.

The simplest non-trivial case is when a project has multiple co-

maintainers working under a single ‘benevolent dictator’ who

owns the project. Custom favors this mode for group projects; it

has been shown to work on projects as large as the Linux kernel

or Emacs, and solves the ‘‘who decides’’ problem in a way that is

not obviously worse than any of the alternatives.

Typically, a benevolent-dictator organization evolves from an

owner-maintainer organization as the founder attracts contribu-

tors. Even if the owner stays dictator, it introduces a new level of

possible disputes over who gets credited for what parts of the

project.

In this situation, custom places an obligation on the owner/dicta-

tor to credit contributors fairly (through, for example, appropriate

mentions in README or history files). In terms of the Lockean

property model, this means that by contributing to a project you

earn part of its reputation return (positive or negative).

Pursuing this logic, we see that a benevolent dictator does not in

fact own his entire project absolutely. Though he has the right to

make binding decisions, he in effect trades away shares of the total

reputation return in exchange for others’ work. The analogy with

sharecropping on a farm is almost irresistible, except that a con-

tributor’s name stays in the credits and continues to ‘earn’ to some

degree even after that contributor is no longer active.

Homesteading the Noosphere

101

The Cathedral and the Bazaar

As benevolent-dictator projects add more participants, they tend

to develop two tiers of contributors; ordinary contributors and co-

developers. A typical path to becoming a co-developer is taking

responsibility for a major subsystem of the project. Another is to

take the role of ‘lord high fixer’, characterizing and fixing many

bugs. In this way or others, co-developers are the contributors

who make a substantial and continuing investment of time in the

project.

The subsystem-owner role is particularly important for our analy-

sis and deserves further examination. Hackers like to say that

“authority follows responsibility”. A co-developer who accepts

maintainance responsibility for a given subsystem generally gets to

control both the implementation of that subsystem and its inter-

faces with the rest of the project, subject only to correction by the

project leader (acting as architect). We observe that this rule effec-

tively creates enclosed properties on the Lockean model within a

project, and has exactly the same conflict-prevention role as other

property boundaries.

By custom, the ‘dictator’ or project leader in a project with co-

developers is expected to consult with those co-developers on key

decisions. This is especially so if the decision concerns a subsystem

that a co-developer ‘owns’ (that is, has invested time in and taken

responsibility for). A wise leader, recognizing the function of the

project’s internal property boundaries, will not lightly interfere

with or reverse decisions made by subsystem owners.

Some very large projects discard the benevolent dictator model

entirely. One way to do this is turn the co-developers into a voting

committee (as with Apache). Another is rotating dictatorship, in

which control is occasionally passed from one member to another

within a circle of senior co-developers; the Perl developers orga-

nize themselves this way.

Such complicated arrangements are widely considered unstable

and difficult. Clearly this perceived difficulty is largely a function

of the known hazards of design-by-committee, and of committees

102

themselves; these are problems the hacker culture consciously

understands. However, I think some of the visceral discomfort

hackers feel about committee or rotating-chair organizations is

that they’re hard to fit into the unconscious Lockean model hack-

ers use for reasoning about the simpler cases. It’s problematic, in

these complex organizations, to do an accounting of either owner-

ship in the sense of control or ownership of reputation returns. It’s

hard to see where the internal boundaries are, and thus hard to

avoid conflict unless the group enjoys an exceptionally high level

of harmony and trust.

Conflict and Conflict Resolution

We’ve seen that within projects, an increasing complexity of roles

is expressed by a distribution of design authority and partial prop-

erty rights. While this is an efficient way to distribute incentives, it

also dilutes the authority of the project leader—most importantly,

it dilutes the leader’s authority to squash potential conflicts.

While technical arguments over design might seem the most obvi-

ous risk for internecine conflict, they are seldom a serious cause of

strife. These are usually relatively easily resolved by the territorial

rule that authority follows responsibility.

Another way of resolving conflicts is by seniority—if two contrib-

utors or groups of contributors have a dispute, and the dispute

cannot be resolved objectively, and neither owns the territory of

the dispute, the side that has put the most work into the project as

a whole (that is, the side with the most property rights in the

whole project) wins.

(Equivalently, the side with the least invested loses. Interestingly

this happens to be the same heuristic that many relational

database engines use to resolve deadlocks. When two threads are

deadlocked over resources, the side with the least invested in the

current transaction is selected as the deadlock victim and is termi-

nated. This usually selects the longest running transaction, or the

more senior, as the victor.)

Homesteading the Noosphere

103

The Cathedral and the Bazaar

These rules generally suffice to resolve most project disputes.

When they do not, fiat of the project leader usually suffices. Dis-

putes that survive both these filters are rare.

Conflicts do not, as a rule, become serious unless these two crite-

ria (“authority follows responsibility” and “seniority wins”) point

in different directions, and the authority of the project leader is

weak or absent. The most obvious case in which this may occur is

a succession dispute following the disappearance of the project

lead. I have been in one fight of this kind. It was ugly, painful,

protracted, only resolved when all parties became exhausted

enough to hand control to an outside person, and I devoutly hope

I am never anywhere near anything of the kind again.

Ultimately, all of these conflict-resolution mechanisms rest on the

entire hacker community’s willingness to enforce them. The only

available enforcement mechanisms are flaming and shunning—

public condemnation of those who break custom, and refusal to

cooperate with them after they have done so.

Acculturation Mechanisms
and the Link to Academia

An early version of this essay posed the following research ques-

tion: how does the community inform and instruct its members as

to its customs? Are the customs self-evident or self-organizing at a

semi-conscious level? Are they taught by example? Are they taught

by explicit instruction?

Teaching by explicit instruction is clearly rare, if only because few

explicit descriptions of the culture’s norms have existed for

instructional use up to now.

Many norms are taught by example. To cite one very simple case,

there is a norm that every software distribution should have a file

called README or READ.ME that contains first-look instruc-

tions for browsing the distribution. This convention has been well

established since at least the early 1980s; it has even, occasionally,

104

been written down. But one normally derives it from looking at

many distributions.

On the other hand, some hacker customs are self-organizing once

one has acquired a basic (perhaps unconscious) understanding of

the reputation game. Most hackers never have to be taught the

three taboos I listed earlier in this essay, or at least would claim if

asked that they are self-evident rather than transmitted. This phe-

nomenon invites closer analysis—and perhaps we can find its

explanation in the process by which hackers acquire knowledge

about the culture.

Many cultures use hidden clues (more precisely ‘mysteries’ in the

religio/mystical sense) as an acculturation mechanism. These are

secrets that are not revealed to outsiders, but are expected to be

discovered or deduced by the aspiring newbie. To be accepted

inside, one must demonstrate that one both understands the mys-

tery and has learned it in a culturally sanctioned way.

The hacker culture makes unusually conscious and extensive use

of such clues or tests. We can see this process operating at at least

three levels:

• Password-like specific mysteries. As one example, there is a

Usenet newsgroup called alt.sysadmin.recovery that has a very

explicit such secret; you cannot post without knowing it, and

knowing it is considered evidence you are fit to post. The reg-

ulars have a strong taboo against revealing this secret.

• The requirement of initiation into certain technical mysteries.

One must absorb a good deal of technical knowledge before

one can give valued gifts (e.g., one must know at least one of

the major computer languages). This requirement functions in

the large in the way hidden clues do in the small, as a filter for

qualities (such as capability for abstract thinking, persistence,

and mental flexibility) that are necessary to function in the

culture.

Homesteading the Noosphere

105

The Cathedral and the Bazaar

• Social-context mysteries. One becomes involved in the culture

through attaching oneself to specific projects. Each project is a

live social context of hackers that the would-be contributor

has to investigate and understand socially as well as techni-

cally in order to function. (Concretely, a common way one

does this is by reading the project’s web pages and/or email

archives.) It is through these project groups that newbies

experience the behavioral example of experienced hackers.

In the process of acquiring these mysteries, the would-be hacker

picks up contextual knowledge that (after a while) does make the

three taboos and other customs seem self-evident.

One might, incidentally, argue that the structure of the hacker gift

culture itself is its own central mystery. One is not considered

acculturated (concretely: no one will call you a hacker) until one

demonstrates a gut-level understanding of the reputation game

and its implied customs, taboos, and usages. But this is trivial; all

cultures demand such understanding from would-be joiners. Fur-

thermore the hacker culture evinces no desire to have its internal

logic and folkways kept secret—or, at least, nobody has ever

flamed me for revealing them!

Respondents to this essay too numerous to list have pointed out

that hacker ownership customs seem intimately related to (and

may derive directly from) the practices of the academic world,

especially the scientific research commmunity. This research com-

munity has similar problems in mining a territory of potentially

productive ideas, and exhibits very similar adaptive solutions to

those problems in the ways it uses peer review and reputation.

Since many hackers have had formative exposure to academia (it’s

common to learn how to hack while in college), the extent to

which academia shares adaptive patterns with the hacker culture

is of more than casual interest in understanding how these cus-

toms are applied.

106

Obvious parallels with the hacker ‘gift culture’, as I have charac-

terized it, abound in academia. Once a researcher achieves tenure,

there is no need to worry about survival issues. (Indeed, the con-

cept of tenure can probably be traced back to an earlier gift cul-

ture in which ‘‘natural philosophers’’ were primarily wealthy

gentlemen with time on their hands to devote to research.) In the

absence of survival issues, reputation enhancement becomes the

driving goal, which encourages sharing of new ideas and research

through journals and other media. This makes objective functional

sense because scientific research, like the hacker culture, relies

heavily on the idea of ‘standing upon the shoulders of giants’, and

not having to rediscover basic principles over and over again.

Some have gone so far as to suggest that hacker customs are

merely a reflection of the research community’s folkways and have

actually (in most cases) been acquired there by individual hackers.

This probably overstates the case, if only because hacker custom

seems to be readily acquired by intelligent high-schoolers!

Gift Outcompetes Exchange

There is a more interesting possibility here. I suspect academia and

the hacker culture share adaptive patterns not because they’re

genetically related, but because they’ve both evolved the one most

optimal social organization for what they’re trying to do, given

the laws of nature and the instinctive wiring of human beings. The

verdict of history seems to be that free-market capitalism is the

globally optimal way to cooperate for economic efficiency; per-

haps, in a similar way, the reputation-game gift culture is the glob-

ally optimal way to cooperate for generating (and checking!) high-

quality creative work.

Support for this theory comes from a large body of psychological

studies on the interaction between art and reward.11 These studies

have received less attention than they should, in part perhaps

because their popularizers have shown a tendency to overinterpret

them into general attacks against the free market and intellectual

Homesteading the Noosphere

107

The Cathedral and the Bazaar

property. Nevertheless, their results do suggest that some kinds of

scarcity-economics rewards actually decrease the productivity of

creative workers such as programmers.

Psychologist Theresa Amabile of Brandeis University, cautiously

summarizing the results of a 1984 study of motivation and

reward, observed: ‘‘It may be that commissioned work will, in

general, be less creative than work that is done out of pure inter-

est.’’ Amabile goes on to observe: ‘‘The more complex the activity,

the more it’s hurt by extrinsic reward.’’ Interestingly, the studies

suggest that flat salaries don’t demotivate, but piecework rates and

bonuses do.

Thus, it may be economically smart to give performance bonuses

to people who flip burgers or dig ditches, but it’s probably smarter

to decouple salary from performance in a programming shop and

let people choose their own projects (both trends that the open-

source world takes to their logical conclusions). Indeed, these

results suggest that the only time it is a good idea to reward per-

formance in programming is when the programmer is so moti-

vated that he or she would have worked without the reward!

Other researchers in the field are willing to point a finger straight

at the issues of autonomy and creative control that so preoccupy

hackers. ‘‘To the extent one’s experience of being self-determined

is limited,’’ said Richard Ryan, associate psychology professor at

the University of Rochester, ‘‘one’s creativity will be reduced as

well.’’

In general, presenting any task as a means rather than an end in

itself seems to demotivate. Even winning a competition with oth-

ers or gaining peer esteem can be demotivating in this way if the

victory is experienced as work for reward (which may explain

why hackers are culturally prohibited from explicitly seeking or

claiming that esteem).

To complicate the management problem further, controlling verbal

feedback seems to be just as demotivating as piecework payment.

108

Ryan found that corporate employees who were told, ‘‘Good,

you’re doing as you should’’ were ‘‘significantly less intrinsically

motivated than those who received feedback informationally.’’

It may still be intelligent to offer incentives, but they have to come

without attachments to avoid gumming up the works. There is a

critical difference (Ryan observes) between saying, ‘‘I’m giving you

this reward because I recognize the value of your work,’’ and

‘‘You’re getting this reward because you’ve lived up to my stan-

dards.’’ The first does not demotivate; the second does.

In these psychological observations we can ground a case that an

open-source development group will be substantially more pro-

ductive (especially over the long term, in which creativity becomes

more critical as a productivity multiplier) than an equivalently

sized and skilled group of closed-source programmers (de)moti-

vated by scarcity rewards.

This suggests from a slightly different angle one of the specula-

tions in The Cathedral and the Bazaar; that, ultimately, the indus-

trial/factory mode of software production was doomed to be

outcompeted from the moment capitalism began to create enough

of a wealth surplus that many programmers could live in a post-

scarcity gift culture.

Indeed, it seems the prescription for highest software productivity

is almost a Zen paradox; if you want the most efficient produc-

tion, you must give up trying to make programmers produce.

Handle their subsistence, give them their heads, and forget about

deadlines. To a conventional manager this sounds crazily indul-

gent and doomed—but it is exactly the recipe with which the

open-source culture is now clobbering its competition.

Homesteading the Noosphere

109

The Cathedral and the Bazaar

Conclusion: From Custom
to Customary Law

We have examined the customs that regulate the ownership and

control of open-source software. We have seen how they imply an

underlying theory of property rights homologous to the Lockean

theory of land tenure. We have related that to an analysis of the

hacker culture as a gift culture in which participants compete for

prestige by giving time, energy, and creativity away. We have

examined the implications of this analysis for conflict resolution in

the culture.

The next logical question to ask is: “Why does this matter?”

Hackers developed these customs without conscious analysis and

(up to now) have followed them without conscious analysis. It’s

not immediately clear that conscious analysis has gained us any-

thing practical—unless, perhaps, we can move from description to

prescription and deduce ways to improve the functioning of these

customs.

We have found a close logical analogy for hacker customs in the

theory of land tenure under the Anglo-American common-law tra-

dition. Historically,12 the European tribal cultures that invented

this tradition improved their dispute-resolution systems by moving

from a system of unarticulated, semi-conscious custom to a body

of explicit customary law memorized by tribal wisemen—and

eventually, written down.

Perhaps, as our population rises and acculturation of all new

members becomes more difficult, it is time for the hacker culture

to do something analogous—to develop written codes of good

practice for resolving the various sorts of disputes that can arise in

connection with open-source projects, and a tradition of arbitra-

tion in which senior members of the community may be asked to

mediate disputes.

The analysis in this essay suggests the outlines of what such a code

might look like, making explicit that which was previously

110

implicit. No such codes could be imposed from above; they would

have to be voluntarily adopted by the founders or owners of indi-

vidual projects. Nor could they be completely rigid, as the pres-

sures on the culture are likely to change over time. Finally, for

enforcement of such codes to work, they would have to reflect a

broad consensus of the hacker tribe.

I have begun work on such a code, tentatively titled the “Malvern

Protocol” after the little town where I live. If the general analysis

in this paper becomes sufficiently widely accepted, I will make the

Malvern Protocol publicly available as a model code for dispute

resolution. Parties interested in critiquing and developing this

code, or just offering feedback on whether they think it’s a good

idea or not, are invited to contact me by email, esr@thyrsus.com.

Questions for Further Research

The culture’s (and my own) understanding of large projects that

don’t follow a benevolent-dictator model is weak. Most such pro-

jects fail. A few become spectacularly successful and important

(Perl, Apache, KDE). Nobody really understands where the differ-

ence lies. There’s a vague sense abroad that each such project is sui

generis and stands or falls on the group dynamic of its particular

members, but is this true or are there replicable strategies that a

group can follow?

Homesteading the Noosphere

111

The Magic Cauldron

✦ ✦ ✦

This essay analyzes the evolving economic substrate of the

open-source phenomenon. I first explode some prevalent

myths about the funding of program development and the

price structure of software. I then present a game-theory

analysis of the stability of open-source cooperation. I pre-

sent nine models for sustainable funding of open-source

development; two non-profit, seven for-profit. I then con-

tinue to develop a qualitative theory of when it is eco-

nomically rational for software to be closed. I then

examine some novel additional mechanisms the market is

now inventing to fund for-profit open-source develop-

ment, including the reinvention of the patronage system

and task markets. I conclude with some tentative predic-

tions of the future.

113

Indistinguishable from Magic

In Welsh myth, the goddess Ceridwen owned a great cauldron that

would magically produce nourishing food—when commanded by

a spell known only to the goddess. In modern science, Buckmin-

ster Fuller gave us the concept of ‘ephemeralization’, technology

becoming both more effective and less expensive as the physical

resources invested in early designs are replaced by more and more

information content. Arthur C. Clarke connected the two by

observing that ‘‘Any sufficiently advanced technology is indistin-

guishable from magic’’.

To many people, the successes of the open-source community seem

like an implausible form of magic. High-quality software material-

izes for free, which is nice while it lasts but hardly seems sustain-

able in the real world of competition and scarce resources. What’s

the catch? Is Ceridwen’s cauldron just a conjuring trick? And if

not, how does ephemeralization work in this context—what spell

is the goddess speaking?

Beyond Geeks Bearing Gifts

The experience of the open-source culture has certainly con-

founded many of the assumptions of people who learned about

software development outside it. The Cathedral and the Bazaar

described the ways in which decentralized cooperative software

development effectively overturns Brooks’s Law, leading to

unprecedented levels of reliability and quality on individual pro-

jects. Homesteading the Noosphere, examined the social dynamics

within which this ‘bazaar’ style of development is situated, argu-

ing that it is most effectively understood not in conventional

The Magic Cauldron

115

The Cathedral and the Bazaar

exchange-economy terms but as what anthropologists call a gift

culture in which members compete for status by giving things

away. In this essay I begin by exploding some common myths

about software production economics; then continue the line of

analysis of these essays into the realm of economics, game theory

and business models, developing new conceptual tools needed to

understand the way that the gift culture of open-source developers

can sustain itself in an exchange economy.

In order to pursue this line of analysis without distraction, we’ll

need to abandon (or at least agree to temporarily ignore) the gift-

culture level of explanation. Homesteading the Noosphere posited

that gift culture behavior arises in situations where survival goods

are abundant enough to make the exchange game no longer very

interesting; but while this appears sufficiently powerful as a psy-

chological explanation of behavior, it lacks suffiency as an expla-

nation of the mixed economic context in which most open-source

developers actually operate. For most, the exchange game has lost

its appeal but not its power to constrain. Their behavior has to

make sufficient material-scarcity–economics sense to keep them in

a gift-culture–supporting zone of surplus.

Therefore, this essay will consider (from entirely within the realm

of scarcity economics) the modes of cooperation and exchange

that sustain open-source development. While doing so it will

answer the pragmatic question ‘‘How do I make money at this?’’

in detail and with examples. First, though, I will show that much

of the tension behind that question derives from prevailing folk

models of software-production economics that are false to fact.

(A final note before the exposition: the discussion and advocacy of

open-source development in this essay should not be construed as

a case that closed-source development is intrinsically wrong, nor

as a brief against intellectual-property rights in software, nor as an

altruistic appeal to ‘share’. While these arguments are still beloved

to a vocal minority in the open-source development community,

experience since The Cathedral and the Bazaar was published has

116

made it clear that they are unnecessary. An entirely sufficient case

for open-source development rests on its engineering and eco-

nomic outcomes—better quality, higher reliability, lower costs,

and increased choice.)

The Manufacturing Delusion

We need to begin by noticing that computer programs, like all

other kinds of tools or capital goods, have two distinct kinds of

economic value. They have use value and sale value.

The use value of a program is its economic value as a tool, a pro-

ductivity multiplier. The sale value of a program is its value as a

salable commodity. (In professional economist-speak, sale value is

value as a final good, and use value is value as an intermediate

good.)

When most people try to reason about software-production eco-

nomics, they tend to assume a ‘factory model’, which is founded

on the following fundamental premises:

• Most developer time is paid for by sale value.

• The sale value of software is proportional to its development

cost (i.e., the cost of the resources required to functionally

replicate it) and to its use value.

In other words, people have a strong tendency to assume that soft-

ware has the value characteristics of a typical manufactured good.

But both of these assumptions are demonstrably false.

First, code written for sale is only the tip of the programming ice-

berg. In the pre-microcomputer era it used to be a commonplace

that 90% of all the code in the world was written in-house at

banks and insurance companies. This is probably no longer the

case — other industries are much more software-intensive now, and

the finance industry’s share of the total must have accordingly

dropped — but we’ll see shortly that there is empirical evidence

that approximately 95% of code is still written in-house.

The Magic Cauldron

117

The Cathedral and the Bazaar

This code includes most of the stuff of MIS, the financial- and

database-software customizations every medium and large com-

pany needs. It includes technical-specialist code like device drivers.

Almost nobody makes money selling device drivers, a point we’ll

return to later. It includes all kinds of embedded code for our

increasingly microchip-driven machines—from machine tools and

jet airliners to cars to microwave ovens and toasters.

Most such in-house code is integrated with its environment in

ways that make reusing or copying it very difficult. (This is true

whether the environment is a business office’s set of procedures or

the fuel-injection system of a combine harvester.) Thus, as the

environment changes, work is continually needed to keep the soft-

ware in step.

This is called maintenance, and any software engineer or systems

analyst will tell you that it makes up the vast majority (more than

75%) of what programmers get paid to do. Accordingly, most

programmer-hours are spent (and most programmer salaries are

paid for) writing or maintaining in-house code that has no sale

value at all—a fact the reader may readily check by examining the

listings of programming jobs in any newspaper with a ‘Help

Wanted’ section.

Scanning the employment section of your local newspaper is an

enlightening experiment that I urge the reader to perform for him-

or herself. Examine the jobs listings under programming, data

processing, and software engineering for positions that involve the

development of software. Categorize each such job according to

whether the software is being developed for use or for sale.

It will quickly become clear that, even given the most inclusive

definition of “for sale”, at least 19 in 20 of the salaries offered are

being funded strictly by use value (that is, value as an intermediate

good). This is our reason for believing that only 5% of the

118

industry is sale-value–driven. Note, however, that the rest of the

analysis in this essay is relatively insensitive to this number; if it

were 15% or even 20%, the economic consequences would

remain essentially the same.

When I speak at technical conferences, I usually begin my talk by

asking two questions: how many in the audience are paid to write

software, and for how many do their salaries depend on the sale

value of software. I generally get a forest of hands for the first

question, few or none for the second, and considerable audience

surprise at the proportion.

Second, the theory that the sale value of software is coupled to its

development or replacement costs is even more easily demolished

by examining the actual behavior of consumers. There are many

goods for which a proportion of this kind actually holds (before

depreciation) — food, cars, machine tools. There are even many

intangible goods for which sale value couples strongly to develop-

ment and replacement cost—rights to reproduce music or maps or

databases, for example. Such goods may retain or even increase

their sale value after their original vendor is gone.

By contrast, when a software product’s vendor goes out of busi-

ness (or if the product is merely discontinued), the maximum price

consumers will pay for it rapidly falls to near zero regardless of its

theoretical use value or the development cost of a functional

equivalent. (To check this assertion, examine the remainder bins at

any software store near you.)

The behavior of retailers when a vendor folds is very revealing. It

tells us that they know something the vendors don’t. What they

know is this: the price a consumer will pay is effectively capped by

the expected future value of vendor service (where “service” is

here construed broadly to include enhancements, upgrades, and

follow-on projects).

The Magic Cauldron

119

The Cathedral and the Bazaar

In other words, software is largely a service industry operating

under the persistent but unfounded delusion that it is a manufac-

turing industry.

It is worth examining why we normally tend to believe otherwise.

It may simply be because the small portion of the software

industry that manufactures for sale is also the only part that

advertises its product. The common mental bias that regards man-

ufacturing as more ‘real’ than services, because it produces things

you can heft, may be at work.1 Also, some of the most visible and

heavily advertised products are ephemera like games that have lit-

tle in the way of continuing service requirements (the exception,

rather than the rule).2

It is also worth noting that the manufacturing delusion encourages

price structures that are pathologically out of line with the actual

breakdown of development costs. If (as is generally accepted) over

75% of a typical software project’s life-cycle costs will be in main-

tenance and debugging and extensions, then the common price

policy of charging a high fixed purchase price and relatively low

or zero support fees is bound to lead to results that serve all par-

ties poorly.

Consumers lose because, even though software is a service

industry, the incentives in the factory model all work against a

vendor’s offering competent service. If the vendor’s money comes

from selling bits, most effort will go into making bits and shoving

them out the door; the help desk, not a profit center, will become a

dumping ground for the least effective employees and get only

enough resources to avoid actively alienating a critical number of

customers.

It gets worse. Actual use means service calls, which cut into the

profit margin unless you’re charging for service. In the open-

source world, you seek the largest possible user base, so as to get

maximum feedback and the most vigorous possible secondary

markets; in the closed-source you seek as many buyers but as few

actual users as possible. Therefore the logic of the factory model

120

most strongly rewards vendors who produce shelfware—software

that is sufficiently well marketed to make sales but actually useless

in practice.

The other side of this coin is that most vendors buying this factory

model will also fail in the longer run. Funding indefinitely-contin-

uing support expenses from a fixed price is only viable in a market

that is expanding quickly enough to cover the support and life-

cycle costs entailed in yesterday’s sales with tomorrow’s revenues.

Once a market matures and sales slow down, most vendors will

have no choice but to cut expenses by orphaning the product.3

Whether this is done explicitly (by discontinuing the product) or

implicitly (by making support hard to get), it has the effect of driv-

ing customers to competitors—because it destroys the product’s

expected future value, which is contingent on that service. In the

short run, one can escape this trap by making bug-fix releases pose

as new products with a new price attached, but consumers quickly

tire of this. In the long run, therefore, the only way to escape is to

have no competitors—that is, to have an effective monopoly on

one’s market. In the end, there can be only one.

And, indeed, we have repeatedly seen this support-starvation fail-

ure mode kill off even strong second-place competitors in a mar-

ket niche. (The pattern should be particularly clear to anyone who

has ever surveyed the history of proprietary PC operating systems,

word processors, accounting programs, or business software in

general.) The perverse incentives set up by the factory model lead

to a winner-take-all market dynamic in which even the winner’s

customers end up losing.

If not the factory model, then what? To handle the real cost struc-

ture of the software life cycle efficiently (in both the informal and

economics-jargon senses of “efficiency”), we require a price struc-

ture founded on service contracts, subscriptions, and a continuing

exchange of value between vendor and customer. This is already

the price structure of the largest merchant software products such

as ERP (Enterprise Resource Planning) systems, for which the

The Magic Cauldron

121

The Cathedral and the Bazaar

development costs are so large that no fixed purchase price could

possibly cover them; firms like Baan and Peoplesoft actually make

their money from after-sale consulting fees. Under the efficiency-

seeking conditions of the free market we can predict that this is

the sort of price structure most of a mature software industry will

ultimately follow.

The foregoing begins to give us some insight into why open-source

software increasingly poses not merely a technological but an eco-

nomic challenge to the prevailing order. The effect of making soft-

ware ‘free’, it seems, is to force us into that service-fee–dominated

world — and to expose what a relatively weak prop the sale value

of the secret bits in closed-source software was all along.

This transition will not be quite the wrench it may at first appear.

Many consumers find that pirate copies of packaged software

(especially games, operating systems, and popular productivity

tools) are readily available to them. Thus, many proprietary soft-

ware sale prices are, from the point of view of the consumer, only

worth paying as claims on other goods: vendor support, or the

paper manuals, or a feeling of virtuousness. Commercial distribu-

tions of so-called ‘free’ software often justify their price to the cus-

tomer in exactly the same way—the only difference is that their

vendors do not fool themselves into thinking that the bits alone

necessarily have value to the customer.

The term ‘free’ is misleading in another way as well. Lowering the

cost of a good tends to increase, rather than decrease, total invest-

ment in the people and infrastructure that sustains it. When the

price of cars goes down, the demand for auto mechanics goes

up — which is why even those 5% of programmers now compen-

sated by sale-value would be very unlikely to suffer in an open-

source world. The people who lose in the transition won’t be

programmers, they will be investors who have bet on closed-

source strategies where they’re not economically viable.

122

The ‘‘Information Wants
to Be Free’’ Myth

There is another myth, equal and opposite to the factory-model

delusion, which often confuses people’s thinking about the eco-

nomics of open-source software. It is that ‘‘information wants to

be free’’. This usually unpacks to a claim that the zero marginal

cost of reproducing digital information implies that its clearing

price ought to be zero (or that a market full of duplicators will

force it to zero).

Some kinds of information really do want to be free, in the weak

sense that their value goes up as more people have access to

them — a technical standards document is a good example. But the

myth that all information wants to be free is readily exploded by

considering the value of information that constitutes a privileged

pointer to a rivalrous good—a treasure map, say, or a Swiss bank

account number, or a claim on services such as a computer

account password. Even though the claiming information can be

duplicated at zero cost, the item being claimed cannot be. Hence,

the nonzero marginal cost for the item can be inherited by the

claiming information.

We mention this myth mainly to assert that it is almost unrelated

to the economic-utility arguments for open source; as we’ll see

later, those would generally hold up well even under the assump-

tion that software actually does have the (nonzero) value structure

of a manufactured good. We therefore have no need to tackle the

question of whether software ‘should’ be free or not.

The Inverse Commons

Having cast a skeptical eye on one prevailing model, let’s see if we

can build another—a hard-nosed economic explanation of what

makes open-source cooperation sustainable.

This is a question that bears examination on a couple of different

levels. On one level, we need to explain the behavior of

The Magic Cauldron

123

The Cathedral and the Bazaar

individuals who contribute to open-source projects; on another,

we need to understand the economic forces that sustain coopera-

tion on open-source projects like Linux or Apache.

Again, we must first demolish a widespread folk model that inter-

feres with understanding. Over every attempt to explain coopera-

tive behavior there looms the shadow of Garret Hardin’s ‘‘Tragedy

of the Commons’’.

Hardin famously asks us to imagine a green held in common by a

village of peasants, who graze their cattle there. But grazing

degrades the commons, tearing up grass and leaving muddy

patches, which re-grow their cover only slowly. If there is no

agreed-upon (and enforced!) policy to allocate grazing rights that

prevents overgrazing, all parties’ incentives push them to run as

many cattle as quickly as possible, trying to extract maximum

value before the commons degrades into a sea of mud.

Most people have an intuitive model of cooperative behavior that

goes much like this. The tragedy of the commons actually stems

from two linked problems, one of overuse and another of under-

provision. On the demand side, the commons situation encourages

a race to the bottom by overuse—what economists call a con-

gested–public-good problem. On the supply side, the commons

rewards free-rider behavior—removing or diminishing incentives

for individual actors to invest in developing more pasturage.

The tragedy of the commons predicts only three possible out-

comes. One is the sea of mud. Another is for some actor with

coercive power to enforce an allocation policy on behalf of the vil-

lage (the communist solution). The third is for the commons to

break up as village members fence off bits they can defend and

manage sustainably (the property-rights solution).

When people reflexively apply this model to open-source coopera-

tion, they expect it to be unstable with a short half-life. Since

there’s no obvious way to enforce an allocation policy for pro-

grammer time over the Internet, this model leads straight to a

124

prediction that the commons will break up, with various bits of

software being taken closed-source and a rapidly decreasing

amount of work being fed back into the communal pool.

In fact, it is empirically clear that the trend is opposite to this. The

trend in breadth and volume of open-source development can be

measured by submissions per day at Metalab and SourceForge

(the leading Linux source sites) or announcements per day at

freshmeat.net (a site dedicated to advertising new software

releases). Volume on both is steadily and rapidly increasing.

Clearly there is some critical way in which the ‘‘Tragedy of the

Commons’’ model fails to capture what is actually going on.

Part of the answer certainly lies in the fact that using software

does not decrease its value. Indeed, widespread use of open-source

software tends to increase its value, as users fold in their own fixes

and features (code patches). In this inverse commons, the grass

grows taller when it’s grazed upon.

That this public good cannot be degraded by overuse takes care of

half of Hardin’s tragedy, the congested–public-goods problem. It

doesn’t explain why open source doesn’t suffer from underprovi-

sion. Why don’t people who know the open-source community

exists universally exhibit free-rider behavior, waiting for others to

do the work they need, or (if they do the work themselves) not

bothering to contribute the work back into the commons?

Part of the answer lies in the fact that people don’t merely need

solutions, they need solutions on time. It’s seldom possible to pre-

dict when someone else will finish a given piece of needed work. If

the payoff from fixing a bug or adding a feature is sufficient to any

potential contributor, that person will dive in and do it (at which

point the fact that everyone else is a free rider becomes irrelevant).

Another part of the answer lies in the fact that the putative market

value of small patches to a common source base is hard to cap-

ture. Suppose I write a fix for an irritating bug, and suppose many

people realize the fix has money value; how do I collect from all

The Magic Cauldron

125

The Cathedral and the Bazaar

those people? Conventional payment systems have high enough

overheads to make this a real problem for the sorts of micropay-

ments that would usually be appropriate.

It may be more to the point that this value is not merely hard to

capture, in the general case it’s hard to even assign. As a thought

experiment, let us suppose that the Internet came equipped with

the theoretically ideal micropayment system—secure, universally

accessible, zero-overhead. Now let’s say you have written a patch

labeled ‘‘Miscellaneous Fixes to the Linux Kernel’’. How do you

know what price to ask? How would a potential buyer, not having

seen the patch yet, know what is reasonable to pay for it?

What we have here is almost like a funhouse-mirror image of F. A.

Hayek’s ‘calculation problem’—it would take a superbeing, both

able to evaluate the functional worth of patches and trusted to set

prices accordingly, to lubricate trade.

Unfortunately, there’s a serious superbeing shortage, so patch

author J. Random Hacker is left with two choices: sit on the

patch, or throw it into the pool for free.

Sitting on the patch gains nothing. Indeed, it incurs a future

cost — the effort involved in re-merging the patch into the source

base in each new release. So the payoff from this choice is actually

negative (and multiplied by the rapid release tempo characteristic

of open-source projects).

To put it more positively, the contributor gains by passing main-

tainance overhead of the patch to the source-code owners and the

rest of the project group. He also gains because others will

improve on his work in the future. Finally, because he won’t have

to maintain the patch himself, he will be able to afford more time

on other and larger customizations to suit his needs. The same

arguments that favor opening source for entire packages apply to

patches as well.

Throwing the patch in the pool may gain nothing, or it may

encourage reciprocal effort from others that will address some of

126

J. Random’s problems in the future. This choice, apparently altru-

istic, is actually optimally selfish in a game-theoretic sense.

In analyzing this kind of cooperation, it is important to note that

while there is a free-rider problem (work may be underprovided in

the absence of money or money-equivalent compensation) it is not

one that scales with the number of end users (see endnote 1 for

discussion). The complexity and communications overhead of an

open-source project is almost entirely a function of the number of

developers involved; having more end users who never look at

source costs effectively nothing. It may increase the rate of silly

questions appearing on the project mailing lists, but this is rela-

tively easily forestalled by maintaining a Frequently Asked Ques-

tions list and blithely ignoring questioners who have obviously not

read it (and in fact both these practices are typical).

The real free-rider problems in open-source software are more a

function of friction costs in submitting patches than anything else.

A potential contributor with little stake in the cultural reputation

game (see Homesteading the Noosphere) may, in the absence of

money compensation, think ‘‘It’s not worth submitting this fix

because I’ll have to clean up the patch, write a ChangeLog entry,

and sign the FSF assignment papers ’’ It’s for this reason that

the number of contributors (and, at second order, the success of)

projects is strongly and inversely correlated with the number of

hoops each project makes a contributing user go through. Such

friction costs may be political as well as mechanical. Together I

think they explain why the loose, amorphous Linux culture has

attracted orders of magnitude more cooperative energy than the

more tightly organized and centralized BSD efforts—and why the

Free Software Foundation has receded in relative importance as

Linux has risen.

This is all good as far as it goes. But it is an after-the-fact explana-

tion of what J. Random Hacker does with his patch after he has

created it. The other half we need is an economic explanation of

how JRH was able to write that patch in the first place, rather

The Magic Cauldron

127

The Cathedral and the Bazaar

than having to work on a closed-source program that might have

returned him sale value. What business models create niches in

which open-source development can flourish?

Reasons for Closing Source

Before taxonomizing open-source business models, we should deal

with exclusion payoffs in general. What exactly are we protecting

when we close source?

Let’s say you hire someone to write to order (say) a specialized

accounting package for your business. That problem won’t be

solved any better if the sources are closed rather than open; the

only rational reasons you might want them to be closed is if you

want to sell the package to other people, or deny its use to com-

petitors.

The obvious answer is that you’re protecting sale value, but for

the 95% of software written for internal use this doesn’t apply. So

what other gains are there in being closed?

That second case (protecting competitive advantage) bears a bit of

examination. Suppose you open-source that accounting package.

It becomes popular and benefits from improvements made by the

community. Now your competitor starts to use it. The competitor

gets the benefit without paying the development cost and cuts into

your business. Is this an argument against open-sourcing?

Maybe — and maybe not. The real question is whether your gain

from spreading the development load exceeds your loss due to

increased competition from the free rider. Many people tend to

reason poorly about this tradeoff through (a) ignoring the func-

tional advantage of recruiting more development help, and (b) not

treating the development costs as sunk. By hypothesis, you had to

pay the development costs anyway, so counting them as a cost of

open-sourcing (if you choose to do that) is mistaken.

Another reason often cited is the fear that disclosing source of a

particular special accounting function might be tantamount to

128

revealing confidential aspects of your business plan. This is really

an argument not for closed source but against bad design; in a

properly-written accounting package, business knowledge should

not be expressed in code at all but rather in a schema or specifica-

tion language implemented by the accounting engine (for a closely

parallel case, consider the way that database schemas separate

business knowledge from the mechanics of the database engine).

The separation of function would enable you to guard the crown

jewels (the schema) while getting maximum benefit from open-

sourcing the engine.

There are other reasons for closing source that are outright irra-

tional. You might, for example, be laboring under the delusion

that closing the sources will make your business systems more

secure against crackers and intruders. If so, I recommend thera-

peutic conversation with a cryptographer immediately. The really

professional paranoids know better than to trust the security of

closed-source programs, because they’ve learned through hard

experience not to. Security is an aspect of reliability; only algo-

rithms and implementations that have been thoroughly peer-

reviewed can possibly be trusted as secure.

Use-Value Funding Models

A key fact that the distinction between use and sale value allows

us to notice is that only sale value is threatened by the shift from

closed to open source; use value is not.

If use value rather than sale value is really the major driver of soft-

ware development, and (as was argued in The Cathedral and the

Bazaar) open-source development is really more effective and effi-

cient than closed, then we should expect to find circumstances in

which expected use value alone sustainably funds open-source

development.

And in fact it is not difficult to identify at least two important

models in which full-time developer salaries for open-source pro-

jects are funded strictly out of use value.

The Magic Cauldron

129

The Cathedral and the Bazaar

The Apa che Case: Cost-Sharing

Let’s say you work for a firm that has a business-critical require-

ment for a high-volume, high-reliability web server. Maybe it’s for

electronic commerce, maybe you’re a high-visibility media outlet

selling advertising, maybe you’re a portal site. You need 24/7

uptime, you need speed, and you need customizability.

How are you going to get these things? There are three basic

strategies you can pursue:

Buy a proprietary web server.

In this case, you are betting that the vendor’s agenda matches

yours and that the vendor has the technical competence to

implement properly. Even assuming both these things to be

true, the product is likely to come up short in customizability;

you will be able to modify it only through the hooks the ven-

dor has chosen to provide. We can see from the monthly

Netcraft surveys that this proprietary path is not a popular

one and is getting less popular all the time.

Roll your own.

Building your own web server is not an option to dismiss

instantly; web servers are not very complex, certainly less so

than browsers, and a specialized one can be very lean and

mean. Going this path, you can get the exact features and cus-

tomizability you want, though you’ll pay for it in develop-

ment time. Your firm may also find it has a problem when you

retire or leave.

Join the Apache group.

The Apache server was built by an Internet-connected group

of webmasters who realized that it was smarter to pool their

efforts into improving one code base than to run a large num-

ber of parallel development efforts. By doing this they were

able to capture both most of the advantages of roll-your-own

and the powerful debugging effect of massively-parallel peer

review.

130

The advantage of the Apache choice is very strong. Just how

strong, we may judge from the monthly Netcraft survey, which

has shown Apache steadily gaining market share against all pro-

prietary web servers since its inception. As of November 2000,

Apache and its derivatives had 60% market share

(http://www.netcraft.com/survey/)—with no legal owner, no pro-

motion, and no contracted service organization behind it at all.

The Apache story generalizes to a model in which competing soft-

ware users find it to their advantage to cooperatively fund open-

source development because doing so gets them a better product,

at lower cost, than they could otherwise have.

The Cisco Case: Risk-Spreading

Some years ago, two programmers at Cisco (the networking-

equipment manufacturer) got assigned the job of writing a dis-

tributed print-spooling system for use on Cisco’s corporate

network. This was quite a challenge. Besides supporting the ability

for arbitrary user A to print at arbitrary printer B (which might be

in the next room or a thousand miles away), the system had to

make sure that in the event of a paper-out or toner-low condition

the job would get rerouted to an alternate printer near the target.

The system also needed to be able to report such problems to a

printer administrator.

The duo came up with a clever set of modifications

(http://www.tpp.org/CiscoPrint/) to the standard Unix print-

spooler software, plus some wrapper scripts, that did the job.

Then they realized that they, and Cisco, had a problem.

The problem was that neither of them was likely to be at Cisco

forever. Eventually, both programmers would be gone, and the

software would be unmaintained and begin to rot (that is, to grad-

ually fall out of sync with real-world conditions). No developer

likes to see this happen to his or her work, and the intrepid duo

felt Cisco had paid for a solution under the not unreasonable

expectation that it would outlast their own employment there.

The Magic Cauldron

131

The Cathedral and the Bazaar

Accordingly, they went to their manager and urged him to autho-

rize the release of the print-spooler software as open source. Their

argument was that Cisco would have no sale value to lose, and

much else to gain. By encouraging the growth of a community of

users and co-developers spread across many corporations, Cisco

could effectively hedge against the loss of the software’s original

developers.

The Cisco story shows open source can function not only to lower

costs but to spread and mitigate risk. All parties find that the

openness of the source, and the presence of a collaborative com-

munity funded by multiple independent revenue streams, provides

a fail-safe that is itself economically valuable—sufficiently valu-

able to attract funding for it.

Why Sale Value Is Problematic

Open source makes it rather difficult to capture direct sale value

from software. The difficulty is not technical; source code is no

more nor less easily copied than binaries, and the enforcement of

copyright and license laws permitting capture of sale value would

not by necessity be any more difficult for open-source products

than it is for closed.

The difficulty lies rather with the nature of the social contract that

supports open-source development. For three mutually reinforcing

reasons, the major open-source licenses prohibit most of the sort

of restrictions on use, redistribution and modification that facili-

tate direct-sale revenue capture. To understand these reasons, we

must examine the social context within which the licenses evolved;

the Internet hacker culture (http://www.tuxedo.org/ ̃ esr/faqs/

hacker-howto.html).

Despite myths about the hacker culture still too widely believed

outside it, none of these reasons has to do with hostility to the

market. While a minority of hackers does indeed remain hostile to

the profit motive, the general willingness of the community to

cooperate with for-profit Linux packagers like Red Hat, SuSE, and

132

Caldera demonstrates that most hackers will happily work with

the corporate world when it serves their ends. The real reasons

hackers frown on direct–revenue-capture licenses are more subtle

and interesting.

One reason has to do with symmetry. While most open-source

developers do not intrinsically object to others profiting from their

gifts, most also demand that no party (with the possible exception

of the originator of a piece of code) be in a privileged position to

extract profits. J. Random Hacker is willing for Fubarco to profit

by selling his software or patches, but only so long as JRH himself

could also potentially do so.

Another has to do with unintended consequences. Hackers have

observed that licenses that include restrictions on and fees for

commercial use or sale (the most common form of attempt to

recapture direct sale value, and not at first blush an unreasonable

one) have serious chilling effects. A specific one is to cast a legal

shadow on activities like redistribution in inexpensive CD-ROM

anthologies, which we would ideally like to encourage. More gen-

erally, restrictions on use/sale/modification/distribution (and other

complications in licensing) exact an overhead for conformance

tracking and (as the number of packages people deal with rises) a

combinatorial explosion of perceived uncertainty and potential

legal risk. This outcome is considered harmful, and there is there-

fore strong social pressure to keep licenses simple and free of

restrictions.

The final and most critical reason has to do with preserving the

peer-review, gift-culture dynamic described in Homesteading the

Noosphere. License restrictions designed to protect intellectual

property or capture direct sale value often have the effect of mak-

ing it legally impossible to fork the project. This is the case, for

example, with Sun’s so-called “Community Source” licenses for

Jini and Java. While forking is frowned upon and considered a last

resort (for reasons discussed at length in Homesteading the Noo-

sphere), it’s considered critically important that that last resort be

The Magic Cauldron

133

The Cathedral and the Bazaar

present in case of maintainer incompetence or defection (e.g., to a

more closed license).4

The hacker community has some give on the symmetry reason;

thus, it tolerates licenses like the Netscape Public License (NPL)

that give some profit privileges to the originators of the code

(specifically in the NPL case, the exclusive right to use the open-

source Mozilla code in derivative products including closed

source). It has less give on the unintended-consequences reason,

and none at all on preserving the option to fork (which is why

Sun’s Java and Jini Sun Community Source License schemes have

been largely rejected by the community).

(It bears repeating here that nobody in the hacker community

wants projects to split into competing development lines; indeed,

as I observed in Homesteading the Noosphere, there is very strong

social pressure against forking, for good reasons. Nobody wants

to be on a picket line, in court, or in a firefight either. But the right

to fork is like the right to strike, the right to sue, or the right to

bear arms—you don’t want to have to exercise any of these rights,

but it’s a signal of serious danger when anyone tries to take them

away.)

These reasons explain the clauses of the Open Source Definition,

which was written to express the consensus of the hacker commu-

nity regarding the critical features of the standard licenses (the

GPL, the BSD license, the MIT License, and the Artistic License).

These clauses have the effect (though not the intention) of making

direct sale value very hard to capture.

Indirect Sale-Value Models

Nevertheless, there are ways to make markets in software-related

services that capture something like indirect sale value. There are

five known and two speculative models of this kind (more may be

developed in the future).

134

Loss-Leader/Market Positioner

In this model, you use open-source software to create or maintain

a market position for proprietary software that generates a direct

revenue stream. In the most common variant, open-source client

software enables sales of server software, or subscription/advertis-

ing revenue associated with a portal site.

Netscape Communications, Inc. was pursuing this strategy when it

open-sourced the Mozilla browser in early 1998. The browser side

of their business was at 13% of revenues and dropping when

Microsoft first shipped Internet Explorer (IE). Intensive marketing

of IE (and shady bundling practices that would later become the

central issue of an antitrust lawsuit) quickly ate into Netscape’s

browser market share, creating concern that Microsoft intended to

monopolize the browser market and then use defacto control of

HTML and HTTP to drive Netscape out of the server market.

By open-sourcing the still widely popular Netscape browser,

Netscape effectively denied Microsoft the possibility of a browser

monopoly. They expected that open-source collaboration would

accelerate the development and debugging of the browser, and

hoped that Microsoft’s IE would be reduced to playing catch-up

and prevented from exclusively defining HTML.

This strategy worked. In November 1998 Netscape actually began

to regain business-market share from IE. By the time Netscape

was acquired by AOL in early 1999, the competitive advantage of

keeping Mozilla in play was sufficiently clear that one of AOL’s

first public commitments was to continue supporting the Mozilla

project, even though it was still in alpha stage.

Widget Frosting

This model is for hardware manufacturers (hardware, in this con-

text, includes anything from Ethernet or other peripheral boards

all the way up to entire computer systems). Market pressures have

forced hardware companies to write and maintain software (from

device drivers through configuration tools all the way up to the

The Magic Cauldron

135

The Cathedral and the Bazaar

level of entire operating systems), but the software itself is not a

profit center. It’s an overhead — often a substantial one.

In this situation, opening source is a no-brainer. There’s no rev-

enue stream to lose, so there’s no downside. What the vendor

gains is a dramatically larger developer pool, more rapid and flexi-

ble response to customer needs, and better reliability through peer

review. It gets ports to other environments for free. It probably

also gains increased customer loyalty as its customers’ technical

staffs put increasing amounts of time into the code to improve the

source as they require.

There are a couple of vendor objections commonly raised specifi-

cally to open-sourcing hardware drivers. Rather than mix these

objections with discussion of more general issues here, I have writ-

ten specifically on this topic (see the section “Afterword: Why

Closing a Drivers Loses Its Vendor Money”).

The ‘future-proofing’ effect of open source is particularly strong

with respect to widget frosting. Hardware products have a finite

production and support lifetime; after that, the customers are on

their own. But if they have access to driver source and can patch

those drivers as needed, they’re more likely to be happier repeat

customers.

A very dramatic example of adopting the widget frosting model

was Apple Computer’s decision in mid-March 1999 to open-

source “Darwin”, the core of their Mac OS X server operating

system.

Give Awa y the Recipe, Open a Restaurant

In this model, one open-sources software to create a market posi-

tion not for closed software (as in the loss-leader/market-posi-

tioner case) but for services.

(I used to call this “Give Away the Razor, Sell Razor Blades”, but

the coupling is not really as close as the razor/razor-blade analogy

implies.)

136

This model was first used by Cygnus Solutions, arguably the first

open-source business (1989). At the time, the GNU tools provided

a common development environment across several machines, but

each tool used a different configuration process and required a dif-

ferent set of patches to run on each platform. Cygnus domesti-

cated the GNU tools and created the “configure” script to unify

the build process (the recipe), and then sold support services and

binaries bundled with their version of the GNU tools (the restau-

rant). In accordance with the GPL, they permitted customers to

freely use, distribute, and modify the software that they dis-

tributed, but the service contract could be terminated (or a higher

fee had to be paid) if there were more users at the site using the

support services than were accounted for in the contract (no shar-

ing at the salad bar).

This also is what Red Hat and other Linux distributors do. What

they are actually selling is not the software, the bits itself, but the

value added by assembling and testing a running operating system

that is warranted (if only implicitly) to be merchantable and to be

plug-compatible with other operating systems carrying the same

brand. Other elements of their value proposition include free

installation support and the provision of options for continuing

support contracts.

The market-building effect of open source can be extremely pow-

erful, especially for companies that are inevitably in a service posi-

tion to begin with. One very instructive recent case is Digital

Creations, a website-design house started up in 1998 that special-

izes in complex database and transaction sites. Their major tool,

the intellectual-property crown jewels of the company, is an object

publisher that has been through several names and incarnations

but is now called Zope.

When the Digital Creations people went looking for venture capi-

tal, the venture capitalist they brought in carefully evaluated their

prospective market niche, their people, and their tools. The VC

then recommended that Digital Creations take Zope open-source.

The Magic Cauldron

137

The Cathedral and the Bazaar

By traditional software industry standards, this looks like an abso-

lutely crazy move. Conventional business school wisdom has it

that core intellectual property like Zope is a company’s crown

jewels, never under any circumstances to be given away. But the

VC had two related insights. One is that Zope’s true core asset is

actually the brains and skills of its people. The second is that Zope

is likely to generate more value as a market-builder than as a

secret tool.

To see this, compare two scenarios. In the conventional one, Zope

remains Digital Creations’s secret weapon. Let’s stipulate that it’s a

very effective one. As a result, the firm will be able to deliver supe-

rior quality on short schedules—but nobody knows that. It will be

easy to satisfy customers, but harder to build a customer base to

begin with.

The VC, instead, saw that open-sourcing Zope could be critical

advertising for Digital Creations’s real asset — its people. He

expected that customers evaluating Zope would consider it more

efficient to hire the experts than to develop in-house Zope

expertise.

One of the Zope principals has since confirmed very publicly that

their open-source strategy has “opened many doors we wouldn’t

have got in otherwise” [sic]. Potential customers do indeed

respond to the logic of the situation—and Digital Creations,

accordingly, is prospering.

Another up-to-the-minute example is e-smith, inc. (http://www.e-

smith.net/). This company sells support contracts for turnkey

Internet server software that is open-source, a customized Linux.

One of the principals, describing the spread of free downloads of

e-smith’s software, says ‘‘Most companies would consider that

software piracy; we consider it free marketing’’ (http://www.glo-

betechnology.com/gam/News/19990625/BAND.html).

138

Accessorizing

In this model, you sell accessories for open-source software. At the

low end, mugs and T-shirts; at the high end, professionally edited

and produced documentation.

O’Reilly & Associates, Inc., publishers of many excellent reference

volumes on open-source software, is a good example of an acces-

sorizing company. O’Reilly actually hires and supports well-

known open-source hackers (such as Larry Wall and Brian

Behlendorf) as a way of building its reputation in its chosen

market.

Free the Future, Sell the Present

In this model, you release software in binaries and source with a

closed license, but one that includes an expiration date on the clo-

sure provisions. For example, you might write a license that per-

mits free redistribution, forbids commercial use without fee, and

guarantees that the software come under GPL terms a year after

release or if the vendor folds.

Under this model, customers can ensure that the product is cus-

tomizable to their needs, because they have the source. The prod-

uct is future-proofed—the license guarantees that an open source

community can take over the product if the original company dies.

Because the sale price and volume are based on these customer

expectations, the original company should enjoy enhanced rev-

enues from its product versus releasing it with an exclusively

closed-source license. Furthermore, as older code is GPLed, it will

get serious peer review, bug fixes, and minor features, which

removes some of the 75% maintainance burden on the originator.

This model has been successfully pursued by Aladdin Enterprises,

makers of the popular Ghostscript program (a PostScript inter-

preter that can translate to the native languages of many printers).

The Magic Cauldron

139

The Cathedral and the Bazaar

The main drawback of this model is that the closure provisions

tend to inhibit peer review and participation early in the product

cycle, precisely when they are needed most.

Free the Software, Sell the Brand

This is a speculative business model. You open-source a software

technology, retain a test suite or set of compatibility criteria, then

sell users a brand certifying that their implementation of the tech-

nology is compatible with all others wearing the brand.

(This is how Sun Microsystems ought to be handling Java and

Jini.)

Update: In July 2000, Sun announced that it would open-source

its Star Office, and that they would be selling the use of the Star

Office brand to lines of development of that codebase that pass

Sun’s validation suite.

Free the Software, Sell the Content

This is another speculative business model. Imagine something like

a stock-ticker subscription service. The value is neither in the

client software nor the server but in providing objectively reliable

information. So you open-source all the software and sell sub-

scriptions to the content. As hackers port the client to new plat-

forms and enhance it in various ways, your market automatically

expands.

(This is why AOL ought to open-source its client software.)

When to Be Open, When
to Be Closed

Having reviewed business models that support open-source soft-

ware development, we can now approach the general question of

when it makes economic sense to be open-source and when to be

closed-source. First, we must be clear what the payoffs are from

each strategy.

140

What Are the Payoffs?

The closed-source approach allows you to collect rent from your

secret bits; on the other hand, it forecloses the possibility of truly

independent peer review. The open-source approach sets up condi-

tions for independent peer review, but you don’t get rent from

your secret bits.

The payoff from having secret bits is well understood; tradition-

ally, software business models have been constructed around it.

Until recently, the payoff from independent peer review was not

well understood. The Linux operating system, however, drives

home a lesson that we should probably have learned years ago

from the history of the Internet’s core software and other branches

of engineering—that open-source peer review is the only scalable

method for achieving high reliability and quality.

In a competitive market, therefore, customers seeking high relia-

bility and quality will reward software producers who go open-

source and discover how to maintain a revenue stream in the

service, value-add, and ancilliary markets associated with soft-

ware. This phenomenon is what’s behind the astonishing success

of Linux, which came from nowhere in 1996 to be the second-

most-popular operating system in the business server market by

mid-2000 (and some surveys actually showed it passing

Microsoft’s share in late 2000). In early 1999 IDC projected that

Linux would grow faster than all other operating systems com-

bined through 2003; this projection has held true so far.

An almost equally important payoff of open source is its utility as

a way to propagate open standards and build markets around

them. The dramatic growth of the Internet owes much to the fact

that nobody owns TCP/IP; nobody has a proprietary lock on the

core Internet protocols.

The network effects behind TCP/IP’s and Linux’s success are fairly

clear and reduce ultimately to issues of trust and symmetry—

potential parties to a shared infrastructure can rationally trust it

more if they can see how it works all the way down, and will

The Magic Cauldron

141

The Cathedral and the Bazaar

prefer an infrastructure in which all parties have symmetrical

rights to one in which a single party is in a privileged position to

extract rents or exert control.

It is not, however, actually necessary to assume network effects in

order for symmetry issues to be important to software consumers.

No software consumer will rationally choose to lock itself into a

supplier-controlled monopoly by becoming dependent on closed

source if any open-source alternative of acceptable quality is avail-

able. This argument gains force as the software becomes more

critical to the software consumer’s business — the more vital it is,

the less the consumer can tolerate having it controlled by an out-

side party.

There’s a flip side to this. Economists know that, in general, asym-

metric information makes markets work poorly. Higher-quality

goods get driven out when it’s more lucrative to collect rent on

privileged information than it is to invest in producing better

products. In general, not just in software, secrecy is the enemy of

quality.

Finally, an important customer payoff of open-source software

related to the trust issue is that it’s future-proof. If sources are

open, the customer has some recourse if the vendor goes belly-up.

This may be particularly important for widget frosting, since hard-

ware tends to have short life cycles, but the effect is more general

and translates into increased value for all kinds of open-source

software.

How Do They Interact?

When the rent from secret bits is higher than the return from open

source, it makes economic sense to be closed-source. When the

return from open source is higher than the rent from secret bits, it

makes sense to go open source.

In itself, this is a trivial observation. It becomes nontrivial when

we notice that the payoff from open source is harder to measure

and predict than the rent from secret bits—and that said payoff is

142

grossly underestimated much more often than it is overestimated.

Indeed, until the mainstream business world began to rethink its

premises following the Mozilla source release in early 1998, the

open-source payoff was incorrectly but very generally assumed to

be zero.

So how can we evaluate the payoff from open source? It’s a diffi-

cult question in general, but we can approach it as we would any

other predictive problem. We can start from observed cases where

the open-source approach has succeeded or failed. We can try to

generalize to a model that gives at least a qualitative feel for the

contexts in which open source is a net win for the investor or busi-

ness trying to maximize returns. We can then go back to the data

and try to refine the model.

From the analysis presented in The Cathedral and the Bazaar, we

can expect that open source has a high payoff where (a) reliability/

stability/scalability are critical, and (b) correctness of design and

implementation is not readily verified by means other than inde-

pendent peer review. (The second criterion is met in practice by

most non-trivial programs.)

A consumer’s rational desire to avoid being locked into a

monopoly supplier will increase its interest in open source (and,

hence, the competitive-market value for suppliers of going open)

as the software becomes more critical to that consumer. Thus,

another criterion (c) pushes towards open source when the soft-

ware is a business-critical capital good (as, for example, in many

corporate MIS departments).

As for application area, we observed above that open-source

infrastructure creates trust and symmetry effects that, over time,

will tend to attract more customers and to outcompete closed-

source infrastructure; and it is often better to have a smaller piece

of such a rapidly-expanding market than a bigger piece of a closed

The Magic Cauldron

143

The Cathedral and the Bazaar

and stagnant one. Accordingly, for infrastructure software, an

open-source play for ubiquity is quite likely to have a higher long-

term payoff than a closed-source play for rent from intellectual

property.

In fact, the ability of potential customers to reason about the

future consequences of vendor strategies and their reluctance to

accept a supplier monopoly implies a stronger constraint; without

already having overwhelming market power, you can choose

either an open-source ubiquity play or a direct-revenue-from-

closed-source play—but not both. (Analogues of this principle are

visible elsewhere—e.g., in electronics markets where customers

often refuse to buy sole-source designs.) The case can be put less

negatively: where network effects (positive network externalities)

dominate, open source is likely to be the right thing.

We may sum up this logic by observing that open source seems to

be most successful in generating greater returns than is closed

source in software that (d) establishes or enables a common com-

puting and communications infrastructure.

Finally, we may note that purveyors of unique or just highly differ-

entiated services have more incentive to fear the copying of their

methods by competitors than do vendors of services for which the

critical algorithms and knowledge bases are well understood.

Accordingly, open source is more likely to dominate when (e) key

methods (or functional equivalents) are part of common engineer-

ing knowledge.

The Internet core software, Apache, and Linux’s implementation

of the standard Unix API are prime exemplars of all five criteria.

The path towards open source in the evolution of such markets

are well-illustrated by the reconvergence of data networking on

TCP/IP in the mid-1990s following 15 years of failed attempts at

empire-building with closed protocols such as DECNET, XNS,

IPX, and the like.

144

On the other hand, open source seems to make the least sense for

companies that have unique possession of a value-generating soft-

ware technology (strongly fulfilling criterion (e)), which is (a) rela-

tively insensitive to failure, which can (b) readily be verified by

means other than independent peer review, which is not (c) busi-

ness-critical, and which would not have its value substantially

increased by (d) network effects or ubiquity.

As an example of this extreme case, in early 1999 I was asked

“Should we go open source?” by a company that writes software

to calculate cutting patterns for sawmills that want to extract the

maximum yardage of planks from logs. My conclusion was ‘‘No.’’

The only criterion this comes even close to fulfilling is (c); but in a

pinch, an experienced operator could generate cut patterns by

hand.

Note that my answer night have been very different if the cut-pat-

tern calculator had been written by a sawmill-equipment manufac-

turer. In that case, opening the code would have increased the

value of the associated hardware they were selling. Also note that

if some open-source cut-pattern calculator already existed (per-

haps the one written by the sawmill-equipment manufacturer) the

closed-source product would have trouble competing with it—not

so much for reasons of price, but because customers would per-

ceive on open-source advantage in customizability and other

traits.

An important point is that where a particular product or technol-

ogy sits on these scales may change over time, as we’ll see in the

following case study.

The Magic Cauldron

145

The Cathedral and the Bazaar

In summary, the following discriminators push towards open

source:

1. Reliability/stability/scalability are critical.

2. Correctness of design and implementation cannot readily be

verified by means other than independent peer review.

3. The software is critical to the user’s control of his/her busi-

ness.

4. The software establishes or enables a common computing and

communications infrastructure.

5. Key methods (or functional equivalents of them) are part of

common engineering knowledge.

Doom: A Case Study

The history of id software’s best-selling game Doom illustrates

ways in which market pressure and product evolution can criti-

cally change the payoff magnitudes for closed versus open source.

When Doom was first released in late 1993, its first-person, real-

time animation made it utterly unique (the antithesis of criterion

(e)). Not only was the visual impact of the techniques stunning

(far exceeding the flat-world animation in its predecessor Wolfen-

stein 3D), but for many months nobody could figure out how it

had been achieved on the underpowered microprocessors of that

time. These secret bits were worth some very serious rent. In addi-

tion, the potential payoff from open source was low. As a solo

game, the software (a) incurred tolerably low costs on failure, (b)

was not tremendously hard to verify, (c) was not business-critical

for any consumer, and (d) did not benefit from network effects. It

was economically rational for Doom to be closed source.

However, the market around Doom did not stand still. Would-be

competitors invented functional equivalents of its animation tech-

niques, and other ‘‘first-person shooter’’ games like Duke Nukem

began to appear. As these games ate into Doom’s market share,

the value of the rent from secret bits went down.

146

On the other hand, efforts to expand that share brought on new

technical challenges—better reliability, more game features, a

larger user base, and multiple platforms. With the advent of multi-

player “deathmatch” play and Doom gaming services, the market

began to display substantial network effects. All this was demand-

ing programmer-hours that id would have preferred to spend on

the next game.

From the time the game was first released, id had looked benignly

on the publication of technical specs that helped people to create

data objects for the game, and occasionally cooperated directly

with hackers by answering specific questions or publishing an

existing specs document of their own. They also encouraged the

Internet distribution of new Doom data.

The technical and market trends raised the payoff from opening

the source; Doom’s opening of specifications and encouragement

of third-party add-ons increased the perceived value of the game

and created a secondary market for them to exploit. At some

point the payoff curves crossed over and it became economically

rational for id to shift to making money in that secondary market

(with products such as game-scenario anthologies) and then open

up the Doom source. Sometime after this point, it actually hap-

pened. The full source for Doom was released in late 1997.

Knowing When to Let Go

Doom makes an interesting case study because it is neither an

operating system nor communications/networking software; it is

thus far removed from the usual and obvious examples of open-

source success. Indeed, Doom’s life cycle, complete with crossover

point, may be coming to typify that of applications software in

today’s code ecology—one in which communications and dis-

tributed computation both create serious robustness/reliability/

scalability problems only addressible by peer review, and fre-

quently cross boundaries both between technical environments

and between competing actors (with all the trust and symmetry

issues that implies).

The Magic Cauldron

147

The Cathedral and the Bazaar

Doom evolved from solo to deathmatch play. Increasingly, the

network effect is the computation. Similar trends are visible even

in the heaviest business applications, such as ERP systems, as busi-

nesses network ever more intensively with suppliers and cus-

tomers — and, of course, they are implicit in the whole architecture

of the World Wide Web. It follows that almost everywhere, the

open-source payoff is steadily increasing.

If present trends continue, the central challenge of software tech-

nology and product management in the next century will be

knowing when to let go—when to allow closed code to pass into

the open-source infrastructure in order to exploit the peer-review

effect and capture higher returns in service and other secondary

markets.

There are obvious revenue incentives not to miss the crossover

point too far in either direction. Beyond that, there’s a serious

opportunity risk in waiting too long—you could get scooped by a

competitor going open-source in the same market niche.

The reason this is a serious issue is that both the pool of users and

the pool of talent available to be recruited into open-source coop-

eration for any given product category is limited, and recruitment

tends to stick. If two producers are the first and second to open-

source competing code of roughly equal function, the first is likely

to attract the most users and the most and best-motivated co-

developers; the second will have to take leavings. Recruitment

tends to stick, as users gain familiarity and developers sink time

investments in the code itself.

Open Source as a Strategic Weapon

Sometimes, open-sourcing can be effective not just as a way to

grow markets but as a strategic maneuver against a company’s

competition. It will be fruitful to re-examine some of the business

tactics described above from that angle; not directly as revenue

generators but as ways to break into and reshape markets.

148

Cost-sharing as a Competitive Weapon

Earlier, we considered Apache as an example of better and cheaper

infrastructure development through cost-sharing in an open-

source project. For software and systems vendors competing

against Microsoft and its IIS web server, the Apache project is also

a competitive weapon. It would be difficult, perhaps impossible,

for any other single web server vendor to completely offset the

advantages of Microsoft’s huge war chest and desktop-monopoly

market power. But Apache enables each corporate participant in

the project to offer a web server that is both technically superior

to IIS and reassures customers with a majority market share—at

far lower cost. This improves the market position and cost of pro-

duction for value-added electronic-commerce products (like IBM’s

WebSphere).

This generalizes. Open, shared infrastructure gives its participants

competitive advantages. One is lower cost per participant to pro-

duce salable products and services. Another is a market position

that reassures customers that they are much less likely to be stuck

with orphaned technology as a result of one vendor’s change in

strategy or tactics.

Resetting the Competition

When the development of the open-source X window system was

funded by DEC in the 1980s, their explicit goal was to “reset the

competition”. At the time there were several competing alternative

graphics environments for Unix in play, notably including Sun

Microsystems’ NeWS system. DEC strategists believed (probably

correctly) that if Sun were able to establish a proprietary graphics

standard it would get a lock on the booming Unix-workstation

market. By funding X and lending it engineers, and by allying with

many smaller vendors to establish X as a defacto standard, DEC

was able to neutralize advantages held by Sun and other competi-

tors with more in-house expertise in graphics. This moved the

focus of competition in the workstation market towards hard-

ware, where DEC was historically strong.

The Magic Cauldron

149

The Cathedral and the Bazaar

This too generalizes. Open source is attractive to smart customers,

and to potential allies not large enough to fund competive devel-

opment on their own. An open-source project, pitched at the right

time, can do better than just competing successfully against

closed-source alternatives; it can actually prevent them from get-

ting traction in the marketplace, resetting the competition and

redirecting it from an area where the initiating company is weak

to one where it is strong.

Growing the Pond

Red Hat Software funded the development of the RPM packaging

system in order to give the Linux world a standard binary package

installer. By doing so, they bet that the increased confidence such a

standard installer would give potential customers would be worth

more in future revenue than either the development cost of the

software or the revenue potentially lost to competitors also able to

use it.

Sometimes the smartest way to become a bigger frog is to make

the pond grow faster. This, of course, is the economic reason tech-

nology firms have participated in public standards—and it’s useful

to think of open-source software as an executable standard.

Besides being an excellent market builder, this strategy can be a

direct competitive weapon when a small company uses it to offset

the mass and market power of a much larger company outside the

standards-based alliance. In Red Hat’s case, the obvious and

acknowledged big competitor is Microsoft; standardization on

RPM across most Linux distributions went a significant way

towards neutralizing advantages Microsoft had previously held in

ease of system administration on its Windows machines.

Preventing a Chokehold

In explaining the previous loss-leader/market-positioner business

model, I described how Netscape’s open-sourcing of the Mozilla

150

browser was a (successful) maneuver aimed at preventing

Microsoft from effectively locking up HTML markup and the

HTTP protocol.

Often, it’s more important to prevent your competition from get-

ting a chokehold on a particular technology than it is to control

the technology yourself. By open-sourcing, you greatly increase

the potential size of your blocking coalition.

Open Source and Strategic
Business Risk

Ultimately, the reasons open source seems destined to become a

widespread practice have more to do with customer demand and

market pressures than with supply-side efficiencies for vendors. I

have already discussed, from the vendor’s point of view, the effects

of customer demand for reliability and for infrastructure with no

single dominant player, and how these have played out historically

in the evolution of networking. There is more to be said, though,

about the behavior of customers in a market where open source is

a factor.

Put yourself for the moment in the position of a CTO at a Fortune

500 corporation contemplating a build or upgrade of your firm’s

IT infrastructure. Perhaps you need to choose a network operating

system to be deployed enterprise-wide; perhaps your concerns

involve 24/7 web service and e-commerce; perhaps your business

depends on being able to field high-volume, high-reliability trans-

action databases.

Suppose you go the conventional closed-source route. If you do,

then you put your firm at the mercy of a supplier monopoly—

because by definition, there is only one place you can go for sup-

port, bug fixes, and enhancements. If the supplier doesn’t perform,

you will have no effective recourse because you are effectively

locked in by your initial investment and training costs. Your sup-

The Magic Cauldron

151

The Cathedral and the Bazaar

plier knows this. Under these circumstances, do you suppose the

software will change to meet your needs and your business

plan . . . or your supplier’s needs and your supplier’s business plan?

The brutal truth is this: when your key business processes are exe-

cuted by opaque blocks of bits that you can’t even see inside (let

alone modify), you have lost control of your business. You need

your supplier more than your supplier needs you—and you will

pay, and pay, and pay again for that power imbalance. You’ll pay

in higher prices, you’ll pay in lost opportunities, and you’ll pay in

lock-in that grows worse over time as the supplier (who has

refined its game on a lot of previous victims) tightens its hold.

Contrast this with the open-source choice. If you go that route,

you have the source code, and no one can take it away from you.

Instead of a supplier monopoly with a chokehold on your busi-

ness, you now have multiple service companies bidding for your

business — and you not only get to play them against each other,

you have the option of building your own captive support organi-

zation if that looks less expensive than contracting out. The

market works for you.

The logic is compelling; depending on closed-source code is an

unacceptable strategic business risk. So much so that I believe it

will not be very long until closed-source single-vendor acquisitions

when there is an open-source alternative available will be viewed

as actual fiduciary irresponsibility, and rightly grounds for a share-

holder lawsuit.

The Business Ecology
of Open Source

The open-source community has organized itself in a way that

tends to amplify the productivity effects of open source. In the

Linux world, in particular, it’s an economically significant fact that

there are multiple competing Linux distributors that form a tier

separate from the developers.

152

Developers write code, and make the code available over the Inter-

net. Each distributor selects some subset of the available code,

integrates and packages and brands it, and sells it to customers.

Users choose among distributions, and may supplement a distribu-

tion by downloading code directly from developer sites.

The effect of this tier separation is to create a very fluid internal

market for improvements. Developers compete with each other,

for the attention of distributors and users, on the quality of their

software. Distributors compete for user dollars on the appropri-

ateness of their selection policies, and on the value they can add to

the software.

A first-order effect of this internal market structure is that no node

in the net is indispensible. Developers can drop out; even if their

portion of the code base is not picked up directly by some other

developer, the competition for attention will tend to rapidly gener-

ate functional alternatives. Distributors can fail without damaging

or compromising the common open-source code base. The ecology

as a whole has a more rapid response to market demands, and

more capability to resist shocks and regenerate itself, than any

monolithic vendor of a closed-source operating system can possi-

bly muster.

Another important effect is to lower overhead and increase effi-

ciency through specialization. Developers don’t experience the

pressures that routinely compromise conventional closed projects

and turn them into tar-pits — no lists of pointless and distracting

check-list features from Marketing, no management mandates to

use inappropriate and outdated languages or development envi-

ronments, no requirement to reinvent wheels in a new and incom-

patible way in the name of product differentiation or intellectual-

property protection, and (most importantly) no deadlines. No

rushing a 1.0 out the door before it’s done right. De Marco and

Lister observed in their discussion of the “wake me when it’s

The Magic Cauldron

153

The Cathedral and the Bazaar

over” management style in ‘‘Peopleware: Productive Projects and

Teams’’5 that this generally conduces not only to higher quality

but actually to the most rapid delivery of a working result.

Distributors, on the other hand, get to specialize in the things dis-

tributors can do most effectively. Freed of the need to fund mas-

sive and ongoing software development just to stay competitive,

they can concentrate on system integration, packaging, quality

assurance, and service.

Both distributors and developers are kept honest by the constant

feedback from and monitoring by users that is an integral part of

the open-source method.

Coping with Success

The “Tragedy of the Commons” may not be applicable to open-

source development as it happens today, but that doesn’t mean

there are not any reasons to wonder if the present momentum of

the open-source community is sustainable. Will key players defect

from cooperation as the stakes become higher?

There are several levels on which this question can be asked. Our

“Comedy of the Commons” counter-story is based on the argu-

ment that the value of individual contributions to open source is

hard to monetize. But this argument has much less force for firms

(like, say, Linux distributors) that already have a revenue stream

associated with open source. Their contribution is already being

monetized every day. Is their present cooperative role stable?

Examining this question will lead us to some interesting insights

about the economics of open-source software in the real world of

present time—and about what a true service-industry paradigm

implies for the software industry in the future.

On the practical level, applied to the open-source community as it

exists now, this question is usually posed in one of two different

ways. One: will Linux fragment? Two: conversely, will Linux

develop a dominant, quasi-monopolistic player?

154

The historical analogy many people turn to when considering if

Linux will fragment is the behavior of the proprietary-Unix ven-

dors in the 1980s. Despite endless talk of open standards, despite

numerous alliances and consortia and agreements, proprietary

Unix fell apart. The vendors’ desire to differentiate their products

by adding and modifying operating-system facilities proved

stronger than their interest in growing the total size of the Unix

market by maintaining compatibility (and consequently lowering

both entry barriers for independent software developers and total

cost of ownership for consumers).

This is quite unlikely to happen to Linux, for the simple reason

that all the distributors are constrained to operate from a common

base of open source code. It’s not really possible for any one of

them to maintain differentiation, because the licenses under which

Linux code are developed effectively require them to share code

with all parties. The moment any distributor develops a feature,

all competitors are free to clone it.

Since all parties understand this, nobody even thinks about doing

the kinds of maneuvers that fragmented proprietary Unix. Instead,

Linux distributors are forced to compete in ways that actually

benefit the consumer and the overall market. That is, they must

compete on service, on support, and their design bets on what

interfaces actually conduce to ease installation and use.

The common source base also forecloses the possibility of monop-

olization. When Linux people worry about this, the name usually

muttered is ‘‘Red Hat’’, that of the largest and most successful of

the distributors (with somewhere around 90% estimated market

share in the U.S.). But it is notable that within days after the May

1999 announcement of Red Hat’s long-awaited 6.0 release—

before Red Hat’s CD-ROMs actually shipped in any quantity—

CD-ROM images of the release built from Red Hat’s own public

FTP site were being advertised by a book publisher and several

other CD-ROM distributors at lower prices than Red Hat’s

expected list price.

The Magic Cauldron

155

The Cathedral and the Bazaar

Red Hat itself didn’t turn a hair at this, because its founders

understand very clearly that they do not and cannot own the bits

in their product; the social norms of the Linux community forbid

that. In a latter-day take on John Gilmore’s famous observation

that the Internet interprets censorship as damage and routes

around it, it has been aptly said that the hacker community

responsible for Linux interprets attempts at control as damage and

routes around them. For Red Hat to have protested the pre-release

cloning of its newest product would have seriously compromised

its ability to elicit future cooperation from its developer com-

munity.

Perhaps more importantly in present time, the software licenses

that express these community norms in a binding legal form

actively forbid Red Hat from monopolizing the sources of the

code on which their product is based. The only thing they can sell

is a brand/service/support relationship with people who are freely

willing to pay for that. This is not a context in which the possibil-

ity of a predatory monopoly looms very large.

Open R&D and the Reinvention
of Patronage

There is one other respect in which the infusion of real money into

the open-source world is changing it. The community’s stars are

increasingly finding they can get paid for what they want to do,

instead of pursuing open source as a hobby funded by another day

job. Corporations like Red Hat, O’Reilly & Associates, and VA

Linux Systems are building what amount to semi-independent

research arms with charters to hire and maintain stables of open-

source talent.

This makes economic sense only if the cost per head of maintain-

ing such a lab can easily be paid out of the expected gains it will

achieve by growing the firm’s market faster. O’Reilly can afford to

pay the leaders of Perl and Apache to do their thing because it

expects their efforts will enable it to sell more Perl- and Apache-

156

related books and draw more people to its conferences. VA Linux

Systems can fund its laboratory branch because improving Linux

boosts the use value of the workstations and servers it sells. And

Red Hat funds Red Hat Advanced Development Labs to increase

the value of its Linux offering and attract more customers.

To strategists from more traditional sectors of the software

industry, reared in cultures that regard patent- or trade-secret–pro-

tected intellectual property as the corporate crown jewels, this

behavior may (despite its market-growing effect) seem inexplica-

ble. Why fund research that every one of your competitors is (by

definition) free to appropriate at no cost?

There seem to be two controlling reasons. One is that as long as

these companies remain dominant players in their market niches,

they can expect to capture a proportional lion’s share of the

returns from the open research and development. Using R&D to

buy future profits is hardly a novel idea; what’s interesting is the

implied calculation that the expected future gains are sufficiently

large that these companies can readily tolerate free riders in order

to get the peer-review effect.

While this obvious expected-future–value analysis is a necessary

one in a world of hard-nosed capitalists keeping their eyes on

return-on-investment, it is not actually the most interesting mode

of explanation for star-hiring, because the firms themselves

advance a fuzzier one. They will tell you if asked that they are

simply doing the right thing by the community they come from.

Your humble author is sufficiently well-acquainted with principals

at all three of the firms cited above to testify that these protesta-

tions cannot be dismissed as humbug. Indeed, I was personally

recruited onto the board of VA Linux Systems in late 1998 explic-

itly so that I would be available to advise them on ‘‘the right

thing’’, and have found them far from unwilling to listen when I

did so.

An economist is entitled to ask what payoff is involved here. If we

accept that talk of doing the right thing is not empty posturing, we

The Magic Cauldron

157

The Cathedral and the Bazaar

should next inquire what self-interest of the firm the ‘‘right thing’’

serves. Nor is the answer, in itself, either surprising or difficult to

verify by asking the right questions. As with superficially altruistic

behavior in other industries, what these firms actually believe

they’re buying is goodwill.

Working to earn goodwill, and valuing it as an asset predictive of

future market gains, is hardly novel either. What’s interesting is

the extremely high valuation that the behavior of these firms sug-

gests they put on that goodwill. They’re demonstrably willing to

hire expensive talent for projects that are not direct revenue gener-

ators even during the most capital-hungry phases of the runup to

IPO. And, at least so far, the market has richly rewarded this

behavior.

The principals of these companies themselves are quite clear about

the reasons why goodwill is especially valuable to them. They rely

heavily on volunteers among their customer base both for product

development and as an informal marketing arm. Their relation-

ship with their customer base is intimate, often relying on personal

trust bonds between individuals within and outside the firm. They

do not merely use the hacker community; they identify with it.

These observations reinforce a lesson we learned earlier from a

different line of reasoning. The intimate relationship between Red

Hat/VA/O’Reilly and their customers/developers is not one typical

of manufacturing firms. Rather, it carries to an interesting extreme

the patterns characteristic of highly professionalized and knowl-

edge-intensive service industries. Looking outside the technology

industry, we can see these patterns in (for example) law firms,

medical practices, and universities.

We may observe, in fact, that open-source firms hire star hackers

for much the same reasons that universities hire star academics. In

both cases, the practice is similar in mechanism and effect to the

system of aristocratic patronage that funded most fine art until

after the Industrial Revolution—a similarity of which some par-

ties are fully aware.

158

Getting There from Here

The market mechanisms for funding (and making a profit from!)

open-source development are still evolving rapidly. The business

models we’ve reviewed in this essay probably will not be the last

to be invented. Investors are still thinking through the conse-

quences of reinventing the software industry as one with an

explicit focus on service rather than closed intellectual property,

and will be for some time to come.

This conceptual revolution will have some cost in foregone profits

for people investing in the sale-value 5% of the industry; histori-

cally, service businesses are not as lucrative as manufacturing busi-

nesses (though as any doctor or lawyer could tell you, the return

to the actual practitioners is often higher). Any foregone profits,

however, will be more than matched by benefits on the cost side,

as software consumers reap tremendous savings and efficiencies

from open-source products. (There’s a parallel here to the effects

that the displacement of the traditional voice-telephone network

by the Internet is having everywhere).

The promise of these savings and efficiencies is creating a market

opportunity that entrepreneurs and venture capitalists are now

moving in to exploit. As the first draft of this essay was in prepa-

ration, Silicon Valley’s most prestigious venture-capital firm took a

lead stake in the first startup company to specialize in 24/7 Linux

technical support (Linuxcare). In August 1999 Red Hat’s IPO was

(despite a background slump in Internet and technology stocks)

wildly successful. It is generally expected that several Linux- and

open-source–related IPOs will be floated before the end of 1999

—and that they too will be quite successful. (Year 2000 update:

they were!)

The Magic Cauldron

159

The Cathedral and the Bazaar

Another very interesting development is the beginnings of system-

atic attempts to make task markets in open-source development

projects. SourceXchange (http://www.sourcexchange.com/process

.html) and CoSource (http://www.cosource.com/) represent

slightly different ways of trying to apply a reverse-auction model

to funding open-source development.

The overall trends are clear. We mentioned before IDC’s projection

that Linux will grow faster than all other operating systems com-

bined through 2003. Apache is at 61% market share and rising

steadily. Internet usage is exploding, and surveys such as the Inter-

net Operating System Counter (http://leb.net/hzo/ioscount/) show

that Linux and other open-source operating systems are already a

plurality on Internet hosts and steadily gaining share against

closed systems. The need to exploit open-source Internet infras-

tructure increasingly conditions not merely the design of other

software but the business practices and software use/purchase pat-

terns of every corporation there is. These trends, if anything, seem

likely to accelerate.

Conclusion: Life After
the Revolution

What will the world of software look like once the open-source

transition is complete?

Some programmers worry that the transition to open source will

abolish or devalue their jobs. The standard nightmare is what I

call the ‘‘Open-Source Doomsday’’ scenario. This starts with the

market value of software going to zero because of all the free

source code out there. Use value alone doesn’t attract enough con-

sumers to support software development. The commercial soft-

ware industry collapses. Programmers starve or leave the field.

Doomsday arrives when the open-source culture itself (dependent

on the spare time of all these pros) collapses, leaving nobody

around who can program competently. All die. Oh, the

embarrassment!

160

We have already observed a number of sufficient reasons this

won’t happen, starting with the fact that most developers’ salaries

don’t depend on software sale value in the first place. But the very

best one, worth emphasizing here, is this: when did you last see a

software development group that didn’t have way more than

enough work waiting for it? In a swiftly changing world, in a

rapidly complexifying and information-centered economy, there

will always be plenty of work and a healthy demand for people

who can make computers do things—no matter how much time

and how many secrets they give away.

For purposes of examining the software market itself, it will be

helpful to sort kinds of software by how completely the service

they offer is describable by open technical standards, which is well

correlated with how commoditized the underlying service has

become.

This axis corresponds reasonably well to what people are nor-

mally thinking when they speak of ‘applications’ (not at all com-

moditized, weak or nonexistent open technical standards),

‘infrastructure’ (commoditized services, strong standards), and

‘middleware’ (partially commoditized, effective but incomplete

technical standards). The paradigm cases today in 2000 would be

a word processor (application), a TCP/IP stack (infrastructure),

and a database engine (middleware).

The payoff analysis we did earlier suggests that infrastructure,

applications, and middleware will be transformed in different

ways and exhibit different equilibrium mixes of open and closed

source. It also suggested the prevalence of open source in a partic-

ular software area would be a function of whether substantial

network effects operate there, what the costs of failure are, and to

what extent the software is a business-critical capital good.

The Magic Cauldron

161

The Cathedral and the Bazaar

We can venture some predictions if we apply these heuristics not

to individual products but to entire segments of the software

market. Here we go:

Infrastructure (the Internet, the Web, operating systems, and the

lower levels of communications software that has to cross bound-

aries between competing parties) will be almost all open source,

cooperatively maintained by user consortia and by for-profit dis-

tribution/service outfits with a role like that of Red Hat today.

Applications, on the other hand, will have the most tendency to

remain closed. There will be circumstances under which the use

value of an undisclosed algorithm or technology will be high

enough (and the costs associated with unreliability will be low

enough, and the risks associated with a supplier monopoly suffi-

ciently tolerable) that consumers will continue to pay for closed

software. This is likeliest to remain true in standalone vertical-

market applications where network effects are weak. Our lumber-

mill example earlier is one such; biometric identification software

seems likeliest, of 1999’s hot prospects, to be another.

Middleware (like databases, development tools, or the customized

top ends of application protocol stacks) will be more mixed.

Whether middleware categories tend to go closed or open seems

likely to depend on the cost of failures, with higher cost creating

market pressure for more openness.

To complete the picture, however, we need to notice that neither

‘applications’ nor ‘middleware’ are really stable categories. Earlier

we saw that individual software technologies seem to go through a

natural life cycle from rationally closed to rationally open. The

same logic applies in the large.

Applications tend to fall into middleware as standardized tech-

niques develop and portions of the service are commoditized.

(Databases, for example, became middleware after SQL decoupled

frontends from engines.) As middleware services are commodi-

tized, they will in turn tend to fall into the open-source

162

infrastructure — a transition we’re seeing in operating systems

right now.

In a future that includes competition from open source, we can

expect that the eventual destiny of any software technology will be

to either die or become part of the open infrastructure itself. While

this is hardly happy news for entrepreneurs who would like to col-

lect rent on closed software forever, it does suggest that the soft-

ware industry as a whole will remain entrepreneurial, with new

niches constantly opening up at the upper (application) end and a

limited lifespan for closed-IP monopolies as their product cate-

gories fall into infrastructure.

Finally, of course, this equilibrium will be great for the software

consumers who are driving the process. More and more high-qual-

ity software will become permanently available to use and build

on instead of being discontinued or locked in somebody’s vault.

Ceridwen’s magic cauldron is, finally, too weak a metaphor—

because food is consumed or decays, whereas software sources

potentially last forever. The free market, in its widest libertarian

sense including all un-coerced activity whether trade or gift, can

produce perpetually increasing software wealth for everyone.

Afterword: Why Closing a Drivers
Loses Its Vendor Money

Manufacturers of peripheral hardware (Ethernet cards, disk con-

trollers, video board and the like) have historically been reluctant

to open up. This is changing now, with players like Adaptec and

Cyclades beginning to routinely disclose specifications and driver

source code for their boards. Nevertheless, there is still resistance

out there. In this appendix I attempt to dispel several of the eco-

nomic misconceptions that sustain it.

If you are a hardware vendor, you may fear that open-sourcing

may reveal important things about how your hardware operates

that competitors could copy, thus gaining an unfair competitive

advantage. Back in the days of three- to five-year product cycles

The Magic Cauldron

163

The Cathedral and the Bazaar

this was a valid argument. Today, the time your competitors’ engi-

neers would need to spend copying and understanding the copy is

a damagingly large portion of the product cycle, time they are not

spending innovating or differentiating their own product.

This is not a new insight. Former KGB chief Oleg Kalugin puts the

case well (http://cnn.com/SPECIALS/cold.war/experience/spies/

interviews/kalugin/):

For instance, when we stole IBMs in our blueprints, or

some other electronic areas which the West made great

strides in and we were behind, it would take years to

implement the results of our intelligence efforts. By that

time, in five or seven years, the West would go forward,

and we would have to steal again and again, and we’d fall

behind more and more.

But Rudyard Kipling put it better in his poem The Mary Gloster

(http://www.everypoet.com/archive/poetry/Rudyard_Kipling/

kipling_the_mary_gloster.htm), nearly a century ago. He wrote:

And they asked me how I did it,

and I gave ’em the Scripture text,

‘‘You keep your light so shining

a little in front o’ the next!’’

They copied all they could follow,

but they couldn’t copy my mind,

And I left ’em sweating and stealing

a year and a half behind.

Acceleration to Internet time makes this effect bite harder. If

you’re really ahead of the game, plagiarism is a trap you want

your competitors to fall into!

In any case, these details don’t stay hidden for long these days.

Hardware drivers are not like operating systems or applications;

they’re small, easy to disassemble, and easy to clone. Even teenage

novice programmers can do this—and frequently do.

164

There are literally thousands of Linux and FreeBSD programmers

out there with both the capability and the motivation to build

drivers for a new board. For many classes of device that have rela-

tively simple interfaces and well-known standards (such as disk

controllers and network cards) these eager hackers can often pro-

totype a driver almost as rapidly your own shop could, even with-

out documentation and without disassembling an existing driver.

Even for tricky devices like video and sound cards, there is not

much you can do to thwart a clever programmer armed with a

disassembler. Costs are low and legal barriers are porous; Linux is

an international effort and there is always a jurisdiction in which

reverse-engineering will be legal.

For hard evidence that all these claims are true, examine the list of

devices supported in the Linux kernel and notice the rate at which

new ones are added to the kernel even without vendor support.

Another good reason to open your drivers is so that you can con-

centrate on innovation. Imagine no longer having to spend your

internal staff’s time and salaries on rewriting, testing, and dis-

tributing new binaries for each new kernel as it comes out. You

certainly have better things to do with all that skill.

Yet another good reason: nobody wants to wait six months for

bug fixes. If you have any open-source competition at all, they are

likely to bury you for this reason alone.

Of course, there’s the future-proofing effect previously referred to.

Customers want open source because they know it will extend the

lifetime of the hardware beyond the point that it is cost-effective

for you to support it.

The best reason, though, is because selling hardware is what

makes money for you. There is no market demand for your

secrecy; in fact, quite the reverse. If your drivers are hard to find,

if they have to be updated frequently, if they (worst of all) run

poorly, it reflects badly on your hardware and you will sell less of

it. Open source can solve these problems and boost your revenues.

The Magic Cauldron

165

The Cathedral and the Bazaar

The message? Keeping your driver secret looks attractive in the

short run, but is probably bad strategy in the long run (certainly

when you’re competing with other vendors that are already open).

But if you must do it, burn the code into an onboard ROM. Then

publish the interface to the ROM. Go open as much as possible to

build your market and demonstrate to potential customers that

you believe in your capacity to out-think and out-innovate com-

petitors where it matters.

If you stay closed you will usually get the worst of all worlds—

your secrets will still get exposed, you won’t get free development

help, and you won’t have wasted your stupider competition’s time

on cloning. Most importantly, you miss an avenue to widespread

early adoption. A large and influential market (the people who

manage the servers that run effectively all of the Internet and a

plurality of all business data centers) will correctly write your

company off as clueless and defensive because you didn’t realize

these things. Then they’ll buy their boards from someone who did.

166

Revenge of the Hackers

✦ ✦ ✦

The eruption of open-source software into the main-

stream in 1998 was the revenge of the hackers after 20

years of marginalization. I found myself semi-accidentally

cast as chief rabble-rouser and propagandist. In this essay,

I describe the tumultuous year that followed, focusing on

the media stategy and language we used to break through

to the Fortune 500. I finish with a look at where the trend

curves are going.

167

Revenge of the Hackers

I wrote the first version of A Brief History of Hackerdom in 1996

as a web resource. I had been fascinated by hacker culture as a

culture for many years, since long before I edited the first edition

of The New Hacker’s Dictionary in 1990. By late 1993, many

people (including myself) had come to think of me as the hacker

culture’s tribal historian and resident ethnographer. I was comfort-

able in that role.

At that time, I had not the faintest idea that my amateur anthro-

pologizing could itself become a significant catalyst for change. I

think nobody was more surprised than I when that happened. But

the consequences of that surprise are still reverberating through

the hacker culture and the technology and business worlds today.

In this essay, I’ll recapitulate from my personal point of view the

events that immediately led up to the January 1998 ‘‘shot heard

’round the world’’ of the open-source revolution. I’ll reflect on the

remarkable distance we’ve come since. Then I will tentatively offer

some projections into the future.

Beyond Brooks’s Law

My first encounter with Linux came in late 1993, via the pioneer-

ing Yggdrasil CD-ROM distribution. By that time, I had already

been involved in the hacker culture for 15 years. My earliest expe-

riences had been with the primitive ARPAnet of the late 1970s; I

was even briefly a tourist on the ITS machines. I had already been

writing free software and posting it to Usenet before the Free Soft-

ware Foundation was launched in 1984, and was one of the FSF’s

Revenge of the Hackers

169

The Cathedral and the Bazaar

first contributors. I had just published the second edition of The

New Hacker’s Dictionary. I thought I understood the hacker cul-

ture — and its limitations—pretty well.

As I have written elsewhere, encountering Linux came as a shock.

Even though I had been active in the hacker culture for many

years, I still carried in my head the unexamined assumption that

hacker amateurs, gifted though they might be, could not possibly

muster the resources or skill necessary to produce a usable multi-

tasking operating system. The HURD developers, after all, had

been evidently failing at this for a decade.

But where they failed, Linus Torvalds and his community suc-

ceeded. And they did not merely fulfill the minimum requirements

of stability and functioning Unix interfaces. No. They blew right

past that criterion with exuberance and flair, providing hundreds

of megabytes of programs, documents, and other resources. Full

suites of Internet tools, desktop-publishing software, graphics sup-

port, editors, games . . . you name it.

Seeing this feast of wonderful code spread in front of me as a

working system was a much more powerful experience than

merely knowing, intellectually, that all the bits were probably out

there. It was as though for years I’d been sorting through piles of

disconnected car parts—only to be suddenly confronted with

those same parts assembled into a gleaming red Ferrari, door

open, keys swinging from the lock, and engine gently purring with

a promise of power

The hacker tradition I had been observing for two decades seemed

suddenly alive in a vibrant new way. In a sense, I had already been

made part of this community, for several of my personal free-soft-

ware projects had been added to the mix. But I wanted to get in

deeper . . . because every delight I saw also deepened my puzzle-

ment. It was too good!

The lore of software engineering is dominated by Brooks’s Law,

articulated in Fred Brooks’s classic The Mythical Man-Month.

170

Brooks predicts that as your number of programmers N rises,

work performed scales as N but complexity and vulnerability to

bugs rises as N2. N2 tracks the number of communications paths

(and potential code interfaces) between developers’ code bases.

Brooks’s Law predicts that a project with thousands of contribu-

tors ought to be a flaky, unstable mess. Somehow the Linux com-

munity had beaten the N2 effect and produced an OS of

astonishingly high quality. I was determined to understand how

they did it.

It took me three years of participation and close observation to

develop a theory, and another year to test it experimentally. And

then I sat down and wrote The Cathedral and the Bazaar to

explain what I had seen.

Memes and Mythmaking

What I saw around me was a community that had evolved the

most effective software-development method ever and didn’t know

it! That is, an effective practice had evolved as a set of customs,

transmitted by imitation and example, without the theory or lan-

guage to explain why the practice worked.

In retrospect, lacking that theory and that language hampered us

in two ways. First: we couldn’t think systematically about how to

improve our own methods. Second: we couldn’t explain or sell the

method to anyone else.

At the time, I was thinking about only the first effect. My sole

intention in writing the original paper was to give the hacker cul-

ture an appropriate language to use internally, to explain itself to

itself. So I wrote down what I had seen, framed as a narrative and

with appropriately vivid metaphors to describe the logic that

could be deduced behind the customs.

There was no really fundamental discovery in The Cathedral and

the Bazaar. I did not invent any of the methods it describes. What

was novel was not the facts it described but those metaphors and

Revenge of the Hackers

171

The Cathedral and the Bazaar

the narrative—a simple, powerful story that encouraged the

reader to see the facts in a new way. I was attempting a bit of

memetic engineering on the hacker culture’s generative myths.

I first gave the full paper at Linux Kongress, May 1997 in Bavaria.

The fact that it was received with rapt attention and thunderous

applause by an audience in which there were very few native

speakers of English seemed to confirm that I was onto something.

But, as it turned out, the sheer chance that I was seated next to

publisher Tim O’Reilly at the Thursday night banquet set in

motion a more important train of consequences.

As a long-time admirer of O’Reilly’s institutional style, I had been

looking forward to meeting Tim for some years. We had a wide-

ranging conversation (much of it exploring our common interest

in classic science fiction) that led to an invitation for me to deliver

The Cathedral and the Bazaar at Tim’s Perl Conference later in the

year.

Once again, the paper was well-received—with cheers and a

standing ovation, in fact. I knew from my email that since

Bavaria, word about The Cathedral and the Bazaar had spread

over the Internet like a fire in dry grass. Many in the audience had

already read it, and my speech was less a revelation of novelty for

them than an opportunity to celebrate the new language and the

consciousness that went with it. That standing ovation was not so

much for my work as for the hacker culture itself—and rightly so.

Though I didn’t know it, my experiment in memetic engineering

was about to light a bigger fire. Some of the people for whom my

speech was genuinely novel were from Netscape Communications,

Inc. And Netscape was in trouble.

Netscape, a pioneering Internet-technology company and Wall

Street highflier, had been targeted for destruction by Microsoft.

Microsoft rightly feared that the open Web standards embodied

by Netscape’s browser might lead to an erosion of the Redmond

giant’s lucrative monopoly on the PC desktop. All the weight of

172

Microsoft’s billions, and shady tactics that would later trigger an

antitrust lawsuit, were deployed to crush the Netscape browser.

For Netscape, the issue was less browser-related income (never

more than a small fraction of their revenues) than maintaining a

safe space for their much more valuable server business. If

Microsoft’s Internet Explorer achieved market dominance,

Microsoft would be able to bend the Web’s protocols away from

open standards and into proprietary channels that only

Microsoft’s servers would be able to service.

Within Netscape there was intense debate about how to counter

the threat. One of the options proposed early on was to throw the

Netscape browser source open—but it was a hard case to argue

without strong reasons to believe that doing so would prevent

Internet Explorer dominance.

I didn’t know it at the time, but The Cathedral and the Bazaar

became a major factor in making that case. Through the winter of

1997, as I was working on the material for my next paper, the

stage was being set for Netscape to break the rules of the propri-

etary game and offer my tribe an unprecedented opportunity.

The Road to Mountain View

On 22 January 1998 Netscape announced that it would release

the sources of the Netscape client line to the Internet. Shortly after

the news reached me the following day, I learned that CEO Jim

Barksdale was describing my work to national-media reporters as

‘‘fundamental inspiration’’ for the decision.

This was the event that commentators in the computer trade press

would later call ‘‘the shot heard ’round the world’—and Barks-

dale had cast me as its Thomas Paine, whether I wanted the role

or not. For the first time in the history of the hacker culture, a For-

tune 500 darling of Wall Street had bet its future on the belief that

our way was right. And, more specifically, that my analysis of

“our way” was right.

Revenge of the Hackers

173

The Cathedral and the Bazaar

This is a pretty sobering kind of shock to deal with. I had not been

very surprised when The Cathedral and the Bazaar altered the

hacker culture’s image of itself; that was the result I had been try-

ing for, after all. But I was astonished (to say the least) by the

news of its success on the outside. So I did some very hard think-

ing in first few hours after word reached me. About the state of

Linux and the hacker community. About Netscape. And about

whether I, personally, had what it would take to make the next

step.

It was not difficult to conclude that helping Netscape’s gamble

succeed had just become a very high priority for the hacker cul-

ture, and thus for me personally. If Netscape’s gamble failed, we

hackers would probably find all the opprobrium of that failure

piled on our heads. We’d be discredited for another decade. And

that would be just too much to take.

By this time I had been in the hacker culture, living through its

various phases, for twenty years. Twenty years of repeatedly

watching brilliant ideas, promising starts, and superior technolo-

gies crushed by slick marketing. Twenty years of watching hackers

dream and sweat and build, too often only to watch the likes of

the bad old IBM or the bad new Microsoft walk away with the

real-world prizes. Twenty years of living in a ghetto—a fairly

comfortable ghetto full of interesting friends, but still one walled

in by a vast and intangible barrier of mainsteam prejudice

inscribed ‘‘ONLY FLAKES LIVE HERE’’.

The Netscape announcement cracked that barrier, if only for a

moment; the business world had been jolted out of its compla-

cency about what ‘hackers’ are capable of. But lazy mental habits

have huge inertia. If Netscape failed, or perhaps even if they suc-

ceeded, the experiment might come to be seen as a unique one-off

not worth trying to repeat. And then we’d be back in the same

ghetto, walls higher than before.

To prevent that, we needed Netscape to succeed. So I considered

what I had learned about bazaar-mode development, and called

174

up Netscape, and offered to help with developing their license and

in working out the details of the strategy. In early February I flew

to Mountain View at their request for seven hours of meetings

with various groups at Netscape HQ, and helped them develop

the outline of what would become the Mozilla Public License and

the Mozilla organization.

While there, I met with several key people in the Silicon Valley

and national Linux community. While helping Netscape was

clearly a short-term priority, everybody I spoke with had already

understood the need for some longer-term strategy to follow up on

the Netscape release. It was time to develop one.

The Origins of ‘Open Source’

It was easy to see the outlines of the strategy. We needed to take

the pragmatic arguments I had pioneered in The Cathedral and

the Bazaar, develop them further, and push them hard, in public.

Because Netscape itself had an interest in convincing investors that

its strategy was not crazy, we could count on it to help the promo-

tion. We also recruited Tim O’Reilly (and through him, O’Reilly

& Associates) very early on.

The real conceptual breakthrough, though, was admitting to our-

selves that what we needed to mount was in effect a marketing

campaign—and that it would require marketing techniques (spin,

image-building, and rebranding) to make it work.

Hence the term ‘open source’, which the first participants in what

would later become the Open Source campaign (and, eventually,

the Open Source Initiative organization) invented at a meeting

held in Mountain View in the offices of VA Research (now VA

Linux Systems) on 3 February 1998.

It seemed clear to us in retrospect that the term ‘free software’ had

done our movement tremendous damage over the years. Part of

this stemmed from the fact that the word ‘free’ has two different

meanings in the English language, one suggesting a price of zero

Revenge of the Hackers

175

The Cathedral and the Bazaar

and one related to the idea of liberty. Richard Stallman, whose

Free Software Foundation has long championed the term, says

‘‘Think free speech, not free beer’’ but the ambiguity of the term

has nevertheless created serious problems—especially since most

free software is also distributed free of charge.

Most of the damage, though, came from something worse—the

strong association of the term ‘free software’ with hostility to

intellectual property rights, communism, and other ideas hardly

likely to endear it to an MIS manager.

It was, and still is, beside the point to argue that the Free Software

Foundation is not hostile to all intellectual property and that its

position is not exactly communistic. We knew that. What we real-

ized, under the pressure of the Netscape release, was that FSF’s

actual position didn’t matter. Only the fact that its evangelism had

backfired (associating ‘free software’ with these negative stereo-

types in the minds of the trade press and the corporate world)

actually mattered.

Our success after Netscape would depend on replacing the nega-

tive FSF stereotypes with positive stereotypes of our own—prag-

matic tales, sweet to managers’ and investors’ ears, of higher

reliability and lower cost and better features.

In conventional marketing terms, our job was to rebrand the

product, and build its reputation into one the corporate world

would hasten to buy.

Linus Torvalds endorsed the idea the day after that first meeting.

We began acting on it within a few days after. Bruce Perens had

the opensource.org domain registered and the first version of the

Open Source website (http://www.opensource.edu) up within a

week. He also suggested that the Debian Free Software Guidelines

become the ‘Open Source Definition’ (http://www.opensource.org/

osd.html), and began the process of registering ‘Open Source’ as a

certification mark so that we could legally require people to use

‘Open Source’ for products conforming to the OSD.

176

Even the particular tactics needed to push the strategy seemed

pretty clear to me at this early stage (and were explicitly discussed

at the initial meeting). Key themes follow.

1. Forget Bottom-Up; Work on Top-Down

One of the things that seemed clearest was that the historical Unix

strategy of bottom-up evangelism (relying on engineers to per-

suade their bosses by rational argument) had been a failure. This

was naive and easily trumped by Microsoft. Further, the Netscape

breakthrough didn’t happen that way. It happened because a

strategic decision-maker (Jim Barksdale) got the clue and then

imposed that vision on the people below him.

The conclusion was inescapable. Instead of working bottom-up,

we should be evangelizing top-down—making a direct effort to

capture the CEO/CTO/CIO types.

2. Linux Is Our Best Demonstration Case

Promoting Linux must be our main thrust. Yes, there are other

things going on in the open-source world, and the campaign will

bow respectfully in their direction—but Linux started with the

best name recognition, the broadest software base, and the largest

developer community. If Linux can’t consolidate the break-

through, nothing else will, pragmatically speaking, have a prayer.

3. Capture the Fortune 500

There are other market segments that spend more dollars (small

business and home office being the most obvious examples) but

those markets are diffuse and hard to address. The Fortune 500

doesn’t merely have lots of money, it concentrates lots of money

where it’s relatively accessible. Therefore, the software industry

largely does what the Fortune 500 business market tells it to do.

And therefore, it is primarily the Fortune 500 we need to

convince.

Revenge of the Hackers

177

The Cathedral and the Bazaar

4. Co-opt the Prestige Media that Serve
the Fortune 500

The choice to target the Fortune 500 implies that we need to cap-

ture the media that shape the climate of opinion among top-level

decision-makers and investors: very specifically, the New York

Times, the Wall Street Journal, the Economist, Forbes, and Bar-

ron’s Magazine.

On this view, co-opting the technical trade press is necessary but

not sufficient; it’s important essentially as a pre-condition for

storming Wall Street itself via the elite mainstream media.

5. Educate Hackers in Guerrilla Marketing
Ta ctics

It was also clear that educating the hacker community itself would

be just as important as mainstream outreach. It would be insuffi-

cient to have one or a handful of ambassadors speaking effective

language if, at the grass roots, most hackers were making argu-

ments that didn’t work.

6. Use the Open Source Certification Mark
to Keep Things Pure

One of the threats we faced was the possibility that the term ‘open

source’ would be ‘‘embraced and extended’’ by Microsoft or other

large vendors, corrupting it and losing our message. It is for this

reason the Bruce Perens and I decided early on to register the term

as a certification mark and tie it to the Open Source Definition (a

copy of the Debian Free Software Guidelines). This would allow

us to scare off potential abusers with the threat of legal action.

It eventually developed that the U.S. Patent and Trademark office

would not issue a trademark for such a descriptive phrase. Fortu-

nately, by the time we had to write off the effort to formally trade-

mark “Open Source” a year later, the term had acquired its own

178

momentum in the press and elsewhere. The sorts of serious abuse

we feared have not (at least, not yet as of November 2000) actu-

ally materialized.

The Accidental Revolutionary

Planning this kind of strategy was relatively easy. The hard part

(for me, anyway) was accepting what my own role had to be.

One thing I understood from the beginning is that the press almost

completely tunes out abstractions. They won’t write about ideas

without larger-than-life personalities fronting them. Everything

has to be story, drama, conflict, sound bites. Otherwise, most

reporters will simply go to sleep—and even if they don’t, their edi-

tors will.

Accordingly, I knew somebody with very particular characteristics

would be needed to front the community’s response to the

Netscape opportunity. We needed a firebrand, a spin doctor, a pro-

pagandist, an ambassador, an evangelist — somebody who could

dance and sing and shout from the housetops and seduce reporters

and huggermug with CEOs and bang the media machine until its

contrary gears ground out the message: the revolution is here!

Unlike most hackers, I have the brain chemistry of an extrovert

and had already had extensive experience at dealing with the

press. Looking around me, I couldn’t see anyone better qualified

to play evangelist. But I didn’t want the job, because I knew it

would cost me my life for many months, maybe for years. My pri-

vacy would be destroyed. I’d probably end up both caricatured as

a geek by the mainstream press and (worse) despised as a sell-out

or glory-hog by a significant fraction of my own tribe. Worse than

all the other bad consequences put together, I probably wouldn’t

have time to hack anymore!

Revenge of the Hackers

179

The Cathedral and the Bazaar

I had to ask myself: are you fed up enough with watching your

tribe lose to do whatever it takes to win? I decided the answer was

yes — and having so decided, threw myself into the dirty but neces-

sary job of becoming a public figure and media personality.

I’d learned some basic media chops while editing The New

Hacker’s Dictionary. This time I took it much more seriously and

developed an entire theory of media manipulation, which I then

proceeded to apply. The theory centers around the use of what I

call ‘‘attractive dissonance’’ to fan an itchy curiosity about the

evangelist, and then exploiting that itch for all it’s worth in pro-

moting the ideas.

This is not the place for a detailed exposition of my theory. But

intelligent readers can probably deduce much of it from the phrase

‘‘optimal level of provocation’’ and the fact that my interview

technique involves cheerfully discussing my interests in guns, anar-

chism, and witchcraft while looking as well-groomed, boyishly

charming, and all-American wholesome as I can possibly manage.

The trick is to sound challengingly weird but convey a reassuring

aura of honesty and simplicity. (Note that to make the trick work,

I think you have to genuinely be like that; faking either quality has

a high risk of exposure and I don’t recommend it.)

The combination of the ‘‘open source’’ label and deliberate pro-

motion of myself as an evangelist turned out to have both the

good and bad consequences that I expected. The ten months after

the Netscape announcement featured a steady exponential

increase in media coverage of Linux and the open-source world in

general. Throughout this period, approximately a third of these

articles quoted me directly; most of the other two thirds used me

as a background source. At the same time, a vociferous minority

of hackers declared me an evil egotist. I managed to preserve a

sense of humor about both outcomes (though occasionally with

some difficulty).

My plan from the beginning was that, eventually, I would hand

off the evangelist role to some successor, either an individual or

180

organization. There would come a time when charisma became

less effective than broad-based institutional respectability (and,

from my own point of view, the sooner the better!). I am attempt-

ing to transfer my personal connections and carefully built-up rep-

utation with the press to the Open Source Initiative, an

incorporated nonprofit formed specifically to manage the Open

Source trademark. At time of writing I am the president of this

organization, but hope and expect not to remain so indefinitely.

Phases of the Campaign

The open-source campaign began with the Mountain View meet-

ing, and rapidly collected an informal network of allies over the

Internet (including key people at Netscape and O’Reilly & Associ-

ates). Where I write “we” below I’m referring to that network.

From 3 February to around the time of the actual Netscape release

on 31 March, our primary concern was convincing the hacker

community that the ‘open source’ label and the arguments that

went with it represented our best shot at persuading the main-

stream. As it turned out, the change was rather easier than we

expected. We discovered a lot of pent-up demand for a message

less doctrinaire than the Free Software Foundation’s.

Tim O’Reilly invited 20-odd leaders of major free software pro-

jects to what came to be called the Free Software Summit on 7

March. When these leaders voted to adopt the term ‘open source’,

they formally ratified a trend that was already clear at the grass

roots among developers. By six weeks after the Mountain View

meeting, a healthy majority of the community was speaking our

language.

The publicity following the Free Software Summit introduced the

mainstream press to the term, and also gave notice that Netscape

was not alone in adopting the open-source concept. We’d given a

name to a phenomenon whose impact was already larger than

Revenge of the Hackers

181

The Cathedral and the Bazaar

anyone outside the Internet community had yet realized. Far from

being fringe challengers, open source programs were already mar-

ket leaders in providing key elements of the Internet infrastruc-

ture. Apache was the leading web server, with more than 50%

market share (now grown to more than 60%). Perl was the domi-

nant programming language for the new breed of web-based

applications. Sendmail routes more than 80% of all Internet email

messages. And even the ubiquitous domain name system (which

lets us use names like www.yahoo.com rather than obscure

numeric IP addresses) depends almost entirely on an open-source

program called BIND. As Tim O’Reilly said during the press con-

ference following the summit, pointing to the assembled program-

mers and project leaders: ‘‘These people have created products

with dominant market share using only the power of their ideas

and the networked community of their co-developers.’’ What

more might be possible if large companies also adopted the open

source methodology?

That was a good start to our ‘air war’, our attempt to change per-

ceptions through the press. But we still needed to maintain

momentum on the ground. In April, after the Summit and the

actual Netscape release, our main concern shifted to recruiting as

many open-source early adopters as possible. The goal was to

make Netscape’s move look less singular—and to buy us insur-

ance in case Netscape executed poorly and failed its goals.

This was the most worrying time. On the surface, everything

seemed to be coming up roses; Linux was moving technically from

strength to strength, the wider open-source phenomenon was

enjoying a spectacular explosion in trade press coverage, and we

were even beginning to get positive coverage in the mainstream

press. Nevertheless, I was uneasily aware that our success was still

fragile. After an initial flurry of contributions, community partici-

pation in Mozilla was badly slowed down by its requirement for

the proprietary Motif toolkit. None of the big independent soft-

ware vendors had yet committed to Linux ports. Netscape was

still looking lonely, and its browser still losing market share to

182

Internet Explorer. Any serious reverse could lead to a nasty back-

lash in the press and public opinion.

Our first serious post-Netscape breakthrough came on 7 May

when Corel Computer announced its Linux-based Netwinder net-

work computer. But that wasn’t enough in itself; to sustain the

momentum, we needed commitments not from hungry second-

stringers but from industry leaders. Thus, it was the mid-July

announcements by Oracle and Informix that really closed out this

vulnerable phase.

The database outfits joined the Linux party three months earlier

than I expected, but none too soon. We had been wondering how

long the positive buzz could last without major ISV support and

feeling increasingly nervous about where we’d actually find that.

After Oracle and Informix announced Linux ports other ISVs

began announcing Linux support almost as a matter of routine,

and even a failure of Mozilla became survivable.

Mid-July through the beginning of November was a consolidation

phase. It was during this time that we started to see fairly steady

coverage from the financial media I had originally targeted, led off

by articles in the Economist and a cover story in Forbes. Various

hardware and software vendors sent out feelers to the open-source

community and began to work out strategies for getting advantage

from the new model. And internally, the biggest closed-source ven-

dor of them all was beginning to get seriously worried.

Just how worried became apparent when the now-infamous

Halloween Documents (http://www.opensource.org/halloween/)

leaked out of Microsoft. These internal strategy documents recog-

nized the power of the open-source model, and outlined

Microsoft’s analysis of how to combat it by corrupting the open

protocols on which open source depends and choking off cus-

tomer choice.

The Halloween Documents were dynamite. They were a ringing

testimonial to the strengths of open-source development from the

Revenge of the Hackers

183

The Cathedral and the Bazaar

company with the most to lose from Linux’s success. And they

confirmed a lot of people’s darkest suspicions about the tactics

Microsoft would consider in order to stop it.

The Halloween Documents attracted massive press coverage in the

first few weeks of November. They created a new surge of interest

in the open-source phenomenon, serendipitously confirming all the

points we had been making for months. And they led directly to a

request for me to confer with a select group of Merrill Lynch’s

major investors on the state of the software industry and the

prospects for open source. Wall Street, finally, came to us.

The following six months were a study in increasingly surreal con-

trasts. On the one hand, I was getting invited to give talks on open

source to Fortune 100 corporate strategists and technology

investors; for the first time in my life, I got to fly first class and

saw the inside of a stretch limousine. On the other hand, I was

doing guerrilla street theater with grass-roots hackers—as in the

riotously funny Windows Refund Day demonstration of 15 March

1999, when a band of Bay Area Linux users actually marched on

the Microsoft offices in the glare of full media coverage, demand-

ing refunds under the terms of the Microsoft End User License for

the unused Windows software that had been bundled with their

machines.

I knew I was going to be in town that weekend to speak at a con-

ference hosted by the Reason Foundation, so I volunteered to be a

marshal for the event. Back in December I’d been featured in a

Star Wars parody plot (http://www.userfriendly.org/cartoons/

archives/98dec/19981203.html) in the Internet comic strip “User

Friendly”. So I joked with the organizers about wearing an Obi-

Wan Kenobi costume at the demonstration.

To my surprise, when I arrived I found the organizers had actually

made a passable Jedi costume—and that’s how I found myself

184

leading a parade that featured cheeky placards and an American

flag and a rather large plastic penguin, booming out “May the

Source be with you!” to delighted reporters. To my further sur-

prise, I was drafted to make our statement to the press.

I suppose none of us should have really been astonished when the

video made CNBC. The demonstration was a tremendous success.

Microsoft’s PR position, still trying to recover from the exposure

of the Halloween Documents, took another body blow. And

within weeks, major PC and laptop manufacturers began

announcing that they would ship machines with no Windows

installed and no ‘‘Microsoft tax’’ in the price. Our bit of guerilla

theater, it appeared, had struck home.

The Facts on the Ground

While the Open Source campaign’s air war in the media was going

on, key technical and market facts on the ground were also chang-

ing. I’ll briefly review some of them here because they combine

interestingly with the trends in press and public perception.

In the 18 months after the Netscape release, Linux continued to

grow rapidly more capable. The development of solid SMP sup-

port and the effective completion of the 64-bit cleanup laid impor-

tant groundwork for the future.

The roomful of Linux boxes used to render scenes for the Titanic

threw a healthy scare of expensive graphics engines into builders.

Then the Beowulf supercomputer-on-the-cheap project showed

that Linux’s Chinese-army sociology could be successfully applied

even to cutting-edge scientific computing.

Nothing dramatic happened to vault Linux’s open-source competi-

tors into the limelight. And proprietary Unixes continued to lose

market share; in fact, by mid-year only NT and Linux were actu-

ally gaining market share in the Fortune 500, and by late fall

Linux was gaining faster (and more at the expense of NT than of

other Unixes).

Revenge of the Hackers

185

The Cathedral and the Bazaar

Apache continued to increase its lead in the web-server market.

(By August 1999 Apache and its derivatives would be running

fully 61% of the world’s publicly accessible web servers.) In

November 1998, Netscape’s browser reversed its market-share

slide and began to make gains against Internet Explorer.

In April 1999 the respected computer-market researchers IDG pre-

dicted that Linux would grow twice as fast as all other server

operating systems combined through 2003—and faster than Win-

dows NT. In May, Kleiner-Perkins (Silicon Valley’s leading ven-

ture-capital firm) took a lead position in financing a Linux startup.

About the only negative development was the continuing prob-

lems of the Mozilla project. I have analyzed these elsewhere (in

The Magic Cauldron). They came to a head when Jamie Zawinski,

a Mozilla co-founder and the public face of the project, resigned a

year and a day after the release of the source code, complaining of

mismanagement and lost opportunities.

But it was an indication of the tremendous momentum open

source had acquired by this time that Mozilla’s troubles did not

noticeably slow down the pace of adoption. The trade press,

remarkably, drew the right lesson: “Open source,” in Jamie’s now-

famous words, “is [great, but it’s] not magic pixie dust.”

In the early part of 1999 a trend began among big independent

software vendors (ISVs) to port their business applications to

Linux, following the lead set earlier by the major database ven-

dors. In late July, the biggest of them all, Computer Associates,

announced that it would be supporting Linux over much of its

product line. And preliminary results from an August 1999 survey

of 2000 IT managers revealed that 49% consider Linux an

“important or essential” element of their enterprise computing

strategies. Another survey by IDC described what it called ‘‘an

amazing level of growth’’ since 1998, when the market research

couldn’t find statistically significant use of Linux; 13% of the

respondents now employ it in business operations.

186

The year 1999 also saw a wave of wildly successful Linux IPOs by

Red Hat Linux, VA Linux Systems, and other Linux companies.

While the overblown dot-com–like initial valuations investors

originally put on them didn’t outlast the big market corrections in

March 2000, these firms established an unmistakable for-profit

industry around open source that continues to be a focus of

investor interest.

Into the Future

I have rehearsed recent history here only partly to get it into the

record. More importantly, it sets a background against which we

can understand near-term trends and project some things about

the future.

First, safe predictions for the next year:

• The open-source developer population will continue to

explode, a growth fueled by ever-cheaper PC hardware and

fast Internet connections.

• Linux will continue to lead the way, the sheer size of its devel-

oper community overpowering the higher average skill of the

open-source BSD people and the tiny HURD crew.

• ISV commitments to support the Linux platform will increase

dramatically; the database-vendor commitments were a turn-

ing point.

• The Open Source campaign will continue to build on its victo-

ries and successfully raise awareness at the CEO/CTO/CIO

and investor level. MIS directors will feel increasing pressure

to go with open-source products not from below but from

above.

• Stealth deployments of Samba-over-Linux will replace increas-

ing numbers of NT machines even at shops that have all-

Microsoft policies.

Revenge of the Hackers

187

The Cathedral and the Bazaar

• The market share of proprietary Unixes will continue to grad-

ually erode. At least one of the weaker competitors (likely

DG-UX or HP-UX) will actually fold. But by the time it hap-

pens, analysts will attribute it to Linux’s gains rather than

Microsoft’s.

• Microsoft will not have an enterprise-ready operating system,

because Windows 2000 will not ship in a usable form. (At 60

million lines of code and still bloating, its development is out

of control.)

I wrote the above predictions in mid-December of 1998. All are

still holding good as of November 2000, two years after they were

written. Only the last one is arguable; Microsoft managed to ship

Windows 2000 by drastically curtailing its feature list; adoption

rates have not been what they hoped.

Extrapolating these trends certainly suggests some slightly riskier

predictions for the medium term (18 to 32 months out).

• Support operations for commercial customers of open-source

operating systems will become big business, both feeding off

of and fueling the boom in business use.

(This has already come true in 1999 with the launch of Linux-

Care, and Linux support-service announcements by IBM and

HP and others.)

• Open-source operating systems (with Linux leading the way)

will capture the ISP and business data-center markets. NT will

be unable to resist this change effectively; the combination of

low cost, open sources, and true 24/7 reliability will prove

unstoppable.

• The proprietary-Unix sector will almost completely collapse.

Solaris looks like a safe bet to survive on high-end Sun hard-

ware, but most other players’ proprietary Unixes will quickly

become legacy systems.

(In early 2000, SGI’s IRIX was dead-ended by official Linux

adoption within SGI itself, and in mid-2000 SCO agreed to be

188

acquired by Caldera. It now looks probable that a number of

Unix hardware vendors will switch horses to Linux without

much fuss, as SGI is already well into the process of doing.)

• Windows 2000 will be either canceled or dead on arrival.

Either way it will turn into a horrendous train wreck, the

worst strategic disaster in Microsoft’s history. However, their

marketing spin on this failure will be so deft that it will barely

affect their hold on the consumer desktop within the next two

years.

(In mid-2000, a just-published IDG survey suggested that

‘‘dead on arrival’’ looks more likely all the time, with most

large corporate respondents simply refusing to deploy the ini-

tial release and existing deployments experiencing serious

security and stability problems. The fact that Microsoft itself

was cracked twice in late October/early November of 2000

hardly helped.)

At first glance, these trends look like a recipe for leaving Linux as

the last one standing. But life is not that simple, and Microsoft

derives such immense amounts of money and market clout from

the desktop market that it can’t safely be counted out even after

the Windows 2000 train wreck.

But there are also reasons to believe that Microsoft is going to

experience serious problems in 2001 that aren’t related to either

Linux or the Department of Justice. As hardware prices drop, the

59% of Microsoft’s revenues that come from selling fixed-price

preinstallation licenses to PC OEMs is under pressure. Those fixed

license costs represent an ever-increasing slice of OEM’s gross

margins; at some point, the OEMs are going to have to claw back

some of that last margin from Redmond in order to make any

profits at all. We know where the critical price point is from

observing the appliance and PDA market; it’s at about $350 retail.

On previous trends, desktop prices will cross $350 going down

well before midyear 2001—and when that happens, OEMs will

have to defect from the Microsoft camp to survive.

Revenge of the Hackers

189

The Cathedral and the Bazaar

Nor will it help Microsoft to respond in the obvious way by

charging a percentage of the system’s retail price instead of a fixed

per-unit fee. OEMs can easily fiddle that system by unbundling

expensive outboard components like the monitor—and even if

they didn’t, Wall Street would regard such a move as an admission

that Microsoft had lost control of its future revenues. One way or

another, Microsoft’s revenues look likely to crash hard long before

DOJ gets a final ruling.

So at two years out the crystal ball gets a bit cloudy. Which of sev-

eral futures we get depends on questions like: will the DOJ actu-

ally succeed in breaking up Microsoft? Might BeOS or OS/2 or

Mac OS/X or some other niche closed-source OS, or some com-

pletely new design, find a way to go open and compete effectively

with Linux’s 30-year-old base design? At least Y2K fizzled

These are all fairly imponderable. But there is one such question

that is worth pondering: Will the Linux community actually

deliver a good end-user–friendly GUI interface for the whole

system?

In the 1999 first edition of this book, I said the most likely sce-

nario for late 2000/early 2001 has Linux in effective control of

servers, data centers, ISPs, and the Internet, while Microsoft main-

tains its grip on the desktop. By November 2000 this prediction

had proved out pretty completely except in large corporate data

centers, and there it looks very likely to be fulfilled within months.

Where things go from there depend on whether GNOME, KDE,

or some other Linux-based GUI (and the applications built or

rebuilt to use it) ever get good enough to challenge Microsoft on

its home ground.

If this were primarily a technical problem, the outcome would

hardly be in doubt. But it isn’t; it’s a problem in ergonomic design

and interface psychology, and hackers have historically been poor

at these things. That is, while hackers can be very good at design-

ing interfaces for other hackers, they tend to be poor at modeling

190

the thought processes of the other 95% of the population well

enough to write interfaces that J. Random End-User and his Aunt

Tillie will pay to buy.

Applications were 1999’s problem; it’s now clear we’ll swing

enough ISVs to get the ones we don’t write ourselves. I believe the

problem for 2001 and later is whether we can grow enough to

meet (and exceed!) the interface-design quality standard set by the

Macintosh, combining that with the virtues of the traditional Unix

way.

As of mid-2000, help may be on the way from the inventors of the

Macintosh! Andy Hertzfeld and other members of the original

Macintosh design team have formed an open-source company

called Eazel with the explicit goal of bringing the Macintosh

magic to Linux.

We half-joke about ‘world domination’, but the only way we will

get there is by serving the world. That means J. Random End-User

and his Aunt Tillie; and that means learning how to think about

what we do in a fundamentally new way, and ruthlessly reducing

the user-visible complexity of the default environment to an abso-

lute minimum.

Computers are tools for human beings. Ultimately, therefore, the

challenges of designing hardware and software must come back to

designing for human beings—all human beings.

This path will be long, and it won’t be easy. But I think the hacker

community, in alliance with its new friends in the corporate

world, will prove up to the task. And, as Obi-Wan Kenobi might

say, ‘‘the Source will be with us’’.

Revenge of the Hackers

191

AFTERWORD

Beyond Software?

✦ ✦ ✦

The essays in this book were a beginning, but they are not an end.

There are many questions not yet resolved about open-source soft-

ware. And there are many questions about other kinds of creative

work and intellectual property that the open-source phenomenon

raises, but does not really suggest a good answer for.

I am often asked if I believe the open-source model can be usefully

applied to other kinds of goods than software. Most usually the

question is asked about music, or the content of some kinds of

books, or designs for computer and electronic hardware. Almost

as frequently I am asked whether I think the open-source model

has political implications.

I am not short of opinions about music, books, hardware, or poli-

tics. Some of those opinions do indeed touch on the ideas about

peer review, decentralization, and openness explored in this book;

the interested reader is welcome to visit my home site

http://www.tuxedo.org/˜esr/ and make his or her own deductions.

However, I have deliberately avoided such speculation in connec-

tion with my work as a theorist and ambassador of open source.

The principle is simple: one battle at a time. My tribe is waging a

struggle to raise the quality and reliability expectations of soft-

ware consumers and overturn the standard operating procedures

193

The Cathedral and the Bazaar

of the software industry. We face entrenched opposition with a lot

of money and mind-share and monopoly power. It’s not an easy

fight, but the logic and economics are clear; we can win and we

will win. If, that is, we stay focused on that goal.

Staying focused on the goal involves not wandering down a lot of

beguiling byways. This is a point I often feel needs emphasizing

when I address other hackers, because in the past our representa-

tives have shown a strong tendency to ideologize when they would

have been more effective sticking to relatively narrow, pragmatic

arguments.

Yes, the success of open source does call into some question the

utility of command-and-control systems, of secrecy, of centraliza-

tion, and of certain kinds of intellectual property. It would be

almost disingenuous not to admit that it suggests (or at least har-

monizes well with) a broadly libertarian view of the proper rela-

tionship between individuals and institutions.

These things having been said, however, it seems to me for the pre-

sent more appropriate to try to avoid over-applying these ideas. A

case in point; music and most books are not like software, because

they don’t generally need to be debugged or maintained. Without

that requirement, the utility of peer review is much lower, and the

rational incentives for some equivalent of open-sourcing therefore

nearly vanish. I do not want to weaken the winning argument for

open-sourcing software by tying it to a potential loser.

I expect the open-source movement to have essentially won its

point about software within three to five years (that is, by

2003–2005). Once that is accomplished, and the results have been

manifest for a while, they will become part of the background cul-

ture of non-programmers. At that point it will become more

appropriate to try to leverage open-source insights in wider

domains.

In the meantime, even if we hackers are not making an ideological

noise about it, we will still be changing the world.

194

APPENDIX A

How to Become a Hacker

✦ ✦ ✦

Why This Document?

As editor of the Jargon File, http://www.tuxedo.org/jargon/, and

author of a few other well-known documents of similar nature, I

often get email requests from enthusiastic network newbies asking

(in effect) “How can I learn to be a wizard hacker?” Oddly

enough, there don’t seem to be any FAQs or web documents that

address this vital question, so here’s mine.

If you are reading a snapshot of this document offline, the current

version lives at http://www.tuxedo.org/ ̃ esr/faqs/hacker-howto

.html.

Note: there is a list of Frequently Asked Questions at the end of

this document.1 Please read these—twice — before mailing me any

questions about this document.

What Is a Hacker?

The Jargon File, http://www.tuxedo.org/jargon/, contains a bunch

of definitions of the term ‘hacker’, most having to do with techni-

cal adeptness and a delight in solving problems and overcoming

limits. If you want to know how to become a hacker, though, only

two are really relevant.

195

The Cathedral and the Bazaar

There is a community, a shared culture, of expert programmers

and networking wizards that traces its history back through

decades to the first time-sharing minicomputers and the earliest

ARPAnet experiments. The members of this culture originated the

term ‘hacker’. Hackers built the Internet. Hackers made the Unix

operating system what it is today. Hackers run Usenet. Hackers

make the World Wide Web work. If you are part of this culture, if

you have contributed to it and other people in it know who you

are and call you a hacker, you’re a hacker.

The hacker mind-set is not confined to this software-hacker cul-

ture. There are people who apply the hacker attitude to other

things, like electronics or music—actually, you can find it at the

highest levels of any science or art. Software hackers recognize

these kindred spirits elsewhere and may call them “hackers”

too — and some claim that the hacker nature is really independent

of the particular medium the hacker works in. But in the rest of

this document we will focus on the skills and attitudes of software

hackers, and the traditions of the shared culture that originated

the term ‘hacker’.

There is another group of people who loudly call themselves hack-

ers, but aren’t. These are people (mainly adolescent males) who

get a kick out of breaking into computers and phreaking the

phone system. Real hackers call these people ‘crackers’ and want

nothing to do with them. Real hackers mostly think crackers are

lazy, irresponsible, and not very bright, and object that being able

to break security doesn’t make you a hacker any more than being

able to hotwire cars makes you an automotive engineer. Unfortu-

nately, many journalists and writers have been fooled into using

the word ‘hacker’ to describe crackers; this irritates real hackers to

no end.

The basic difference is this: hackers build things, crackers break

them.

If you want to be a hacker, keep reading. If you want to be a

cracker, go read the alt.2600 (news:alt.2600) newsgroup and get

196

ready to do five to ten in the slammer after finding out you aren’t

as smart as you think you are. And that’s all I’m going to say

about crackers.

The Hacker Attitude

Hackers solve problems and build things, and they believe in free-

dom and voluntary mutual help. To be accepted as a hacker, you

have to behave as though you have this kind of attitude yourself.

And to behave as though you have the attitude, you have to really

believe the attitude.

But if you think of cultivating hacker attitudes as just a way to

gain acceptance in the culture, you’ll miss the point. Becoming the

kind of person who believes these things is important for you—

for helping you learn and keeping you motivated. As with all cre-

ative arts, the most effective way to become a master is to imitate

the mind-set of masters—not just intellectually but emotionally as

well.

So, if you want to be a hacker, repeat the following things until

you believe them:

1. The world Is Full of Fascinating Problems Wait-

ing to Be Solved.

Being a hacker is lots of fun, but it’s a kind of fun that takes lots

of effort. The effort takes motivation. Successful athletes get their

motivation from a kind of physical delight in making their bodies

perform, in pushing themselves past their own physical limits.

Similarly, to be a hacker you have to get a basic thrill from solving

problems, sharpening your skills, and exercising your intelligence.

If you aren’t the kind of person who feels this way naturally, you’ll

need to become one in order to make it as a hacker. Otherwise

you’ll find your hacking energy is sapped by distractions like sex,

money, and social approval.

(You also have to develop a kind of faith in your own learning

capacity — a belief that even though you may not know all of what

How to Become a Hacker

197

The Cathedral and the Bazaar

you need to solve a problem, if you tackle just a piece of it and

learn from that, you’ll learn enough to solve the next piece—and

so on, until you’re done.)

2. Nobody Should Ever Have to Solve a Problem

Twice.

Creative brains are a valuable, limited resource. They shouldn’t be

wasted on re-inventing the wheel when there are so many fascinat-

ing new problems waiting out there.

To behave like a hacker, you have to believe that the thinking time

of other hackers is precious—so much so that it’s almost a moral

duty for you to share information, solve problems and then give

the solutions away just so other hackers can solve new problems

instead of having to perpetually re-address old ones.

(You don’t have to believe that you’re obligated to give all your

creative product away, though the hackers that do are the ones

who get most respect from other hackers. It’s consistent with

hacker values to sell enough of it to keep you in food and rent and

computers. It’s fine to use your hacking skills to support a family

or even get rich, as long as you don’t forget your loyalty to your

art and your fellow hackers while doing it.)

3. Boredom and Drudgery Are Evil.

Hackers (and creative people in general) should never be bored or

have to drudge at stupid repetitive work, because when this hap-

pens it means they aren’t doing what only they can do—solve new

problems. This wastefulness hurts everybody. Therefore boredom

and drudgery are not just unpleasant but actually evil.

To behave like a hacker, you have to believe this enough to want

to automate away the boring bits as much as possible, not just for

yourself but for everybody else (especially other hackers).

(There is one apparent exception to this. Hackers will sometimes

do things that may seem repetitive or boring to an observer as a

mind-clearing exercise, or in order to acquire a skill or have some

particular kind of experience you can’t have otherwise. But this is

198

by choice—nobody who can think should ever be forced into a

situation that bores them.)

4. Freedom Is Good.

Hackers are naturally anti-authoritarian. Anyone who can give

you orders can stop you from solving whatever problem you’re

being fascinated by—and, given the way authoritarian minds

work, will generally find some appallingly stupid reason to do so.

So the authoritarian attitude has to be fought wherever you find it,

lest it smother you and other hackers.

(This isn’t the same as fighting all authority. Children need to be

guided and criminals restrained. A hacker may agree to accept

some kinds of authority in order to get something he wants more

than the time he spends following orders. But that’s a limited, con-

scious bargain; the kind of personal surrender authoritarians want

is not on offer.)

Authoritarians thrive on censorship and secrecy. And they distrust

voluntary cooperation and information-sharing—they only like

‘cooperation’ that they control. So to behave like a hacker, you

have to develop an instinctive hostility to censorship, secrecy, and

the use of force or deception to compel responsible adults. And

you have to be willing to act on that belief.

5. Attitude Is No Substitute for Competence.

To be a hacker, you have to develop some of these attitudes. But

copping an attitude alone won’t make you a hacker, any more

than it will make you a champion athlete or a rock star. Becoming

a hacker will take intelligence, practice, dedication, and hard

work.

Therefore, you have to learn to distrust attitude and respect com-

petence of every kind. Hackers won’t let poseurs waste their time,

but they worship competence—especially competence at hacking,

How to Become a Hacker

199

The Cathedral and the Bazaar

but competence at anything is good. Competence at demanding

skills that few can master is especially good, and competence at

demanding skills that involve mental acuteness, craft, and concen-

tration is best.

If you revere competence, you’ll enjoy developing it in yourself—

the hard work and dedication will become a kind of intense play

rather than drudgery. And that’s vital to becoming a hacker.

Ba sic Hacking Skills

The hacker attitude is vital, but skills are even more vital. Attitude

is no substitute for competence, and there’s a certain basic toolkit

of skills that you have to have before any hacker will dream of

calling you one.

This toolkit changes slowly over time as technology creates new

skills and makes old ones obsolete. For example, it used to include

programming in machine language, and didn’t until recently

involve HTML. But right now it pretty clearly includes the

following.

1. Learn How to Program.

This, of course, is the fundamental hacking skill. If you don’t

know any computer languages, I recommend starting with Python.

It is cleanly designed, well documented, and relatively kind to

beginners. Despite being a good first language, it is not just a toy;

it is very powerful and flexible and well suited for large projects. I

have written a more detailed evaluation of Python,

http://noframes.linuxjournal.com/lj-issues/issue73/3882.html. A

tutorial is available at the Python website, http://www.python.org.

Java is also a good language for learning to program in. It is more

difficult than Python, but produces faster code than Python. I

think it makes an excellent second language.

But be aware that you won’t reach the skill level of a hacker or

even merely a programmer if you only know one or two lan-

guages — you need to learn how to think about programming

200

problems in a general way, independent of any one language. To

be a real hacker, you need to get to the point where you can learn

a new language in days by relating what’s in the manual to what

you already know. This means you should learn several very dif-

ferent languages.

If you get into serious programming, you will have to learn C, the

core language of Unix. C++ is very closely related to C; if you

know one, learning the other will not be difficult. Neither lan-

guage is a good one to try learning as your first, however.

Other languages of particular importance to hackers include Perl

(http://www.perl.com) and LISP (http://snaefell.tamu.edu/ ̃ colin/

lp/). Perl is worth learning for practical reasons; it’s very widely

used for active web pages and system administration, so that even

if you never write Perl you should learn to read it. LISP is worth

learning for the profound enlightenment experience you will have

when you finally get it; that experience will make you a better pro-

grammer for the rest of your days, even if you never actually use

LISP itself a lot.

It’s best, actually, to learn all five of these (Python, Java, C/C++,

Perl, and LISP). Besides being the most important hacking lan-

guages, they represent very different approaches to programming,

and each will educate you in valuable ways.

I can’t give complete instructions on how to learn to program

here — it’s a complex skill. But I can tell you that books and

courses won’t do it (many, maybe most of the best hackers are

self-taught). You can learn language features—bits of knowl-

edge — from books, but the mind-set that makes that knowledge

into living skill can be learned only by practice and apprentice-

ship. What will do it is (a) reading code and (b) writing code.

Learning to program is like learning to write good natural lan-

guage. The best way to do it is to read some stuff written by mas-

ters of the form, write some things yourself, read a lot more, write

a little more, read a lot more, write some more . . . and repeat until

How to Become a Hacker

201

The Cathedral and the Bazaar

your writing begins to develop the kind of strength and economy

you see in your models.

Finding good code to read used to be hard, because there were few

large programs available in source for fledgeling hackers to read

and tinker with. This has changed dramatically; open-source soft-

ware, programming tools, and operating systems (all built by

hackers) are now widely available. Which brings me neatly to our

next topic

2. Get One of the Open-Source Unixes and Learn to

Use and Run It.

I’m assuming you have a personal computer or can get access to

one (these kids today have it so easy :-)). The single most impor-

tant step any newbie can take toward acquiring hacker skills is to

get a copy of Linux or one of the BSD-Unixes, install it on a per-

sonal machine, and run it.

Yes, there are other operating systems in the world besides Unix.

But they’re distributed in binary—you can’t read the code, and

you can’t modify it. Trying to learn to hack on a DOS or Win-

dows machine or under MacOS is like trying to learn to dance

while wearing a body cast.

Besides, Unix is the operating system of the Internet. While you

can learn to use the Internet without knowing Unix, you can’t be

an Internet hacker without understanding Unix. For this reason,

the hacker culture today is pretty strongly Unix-centered. (This

wasn’t always true, and some old-time hackers still aren’t happy

about it, but the symbiosis between Unix and the Internet has

become strong enough that even Microsoft’s muscle doesn’t seem

able to seriously dent it.)

So, bring up a Unix—I like Linux myself but there are other ways

(and yes, you can run both Linux and DOS/Windows on the same

machine). Learn it. Run it. Tinker with it. Talk to the Internet

with it. Read the code. Modify the code. You’ll get better pro-

gramming tools (including C, LISP, Python, and Perl) than any

202

Microsoft operating system can dream of, you’ll have fun, and

you’ll soak up more knowledge than you realize you’re learning

until you look back on it as a master hacker.

For more about learning Unix, see The Loginataka,

http://www.tuxedo.org/ ̃ esr/faqs/loginataka.html.

To get your hands on a Linux, see the “Where can I get Linux”

page, http://linuxresources.com/apps/ftp.html.

You can find BSD Unix help and resources at http://www.bsd.org.

(Note: I don’t really recommend installing either Linux or BSD as

a solo project if you’re a newbie. For Linux, find a local Linux

user’s group and ask for help; or contact the Linux Internet Sup-

port Co-Operative, http://www.linpeople.org. LISC maintains IRC

channels [http://openprojects.nu/services/irc.html] where you can

get help.)

3. Learn How to Use the World Wide Web and

Write HTML.

Most of the things the hacker culture has built do their work out

of sight, helping run factories and offices and universities without

any obvious impact on how non-hackers live. The Web is the one

big exception, the huge shiny hacker toy that even politicians

admit is changing the world. For this reason alone (and a lot of

other good ones as well) you need to learn how to work the Web.

This doesn’t just mean learning how to drive a browser (anyone

can do that), but learning how to write HTML, the Web’s markup

language. If you don’t know how to program, writing HTML will

teach you some mental habits that will help you learn. So build a

home page.

But just having a home page isn’t anywhere near good enough to

make you a hacker. The Web is full of home pages. Most of them

are pointless, zero-content sludge—very snazzy-looking sludge,

mind you, but sludge all the same (for more on this see The

HTML Hell Page: http://www.tuxedo.org/ ̃ esr/html-hell.html).

How to Become a Hacker

203

The Cathedral and the Bazaar

To be worthwhile, your page must have content—it must be inter-

esting and/or useful to other hackers. And that brings us to the

next topic

Status in the Hacker Culture

Like most cultures without a money economy, hackerdom runs on

reputation. You’re trying to solve interesting problems, but how

interesting they are, and whether your solutions are really good, is

something that only your technical peers or superiors are normally

equipped to judge.

Accordingly, when you play the hacker game, you learn to keep

score primarily by what other hackers think of your skill (this is

why you aren’t really a hacker until other hackers consistently call

you one). This fact is obscured by the image of hacking as solitary

work; also by a hacker-cultural taboo (now gradually decaying

but still potent) against admitting that ego or external validation

are involved in one’s motivation at all.

Specifically, hackerdom is what anthropologists call a gift culture.

You gain status and reputation in it not by dominating other peo-

ple, nor by being beautiful, nor by having things other people

want, but rather by giving things away. Specifically, by giving

away your time, your creativity, and the results of your skill.

There are basically five kinds of things you can do to be respected

by hackers:

1. Write Open-Source Software

The first (the most central and most traditional) is to write pro-

grams that other hackers think are fun or useful, and give the pro-

gram sources to the whole hacker culture to use.

(We used to call these works ‘‘free software’’, but this confused too

many people who weren’t sure exactly what ‘‘free’’ was supposed

to mean. Many of us now prefer the term “open-source” software,

http://www.opensource.org/.)

204

Hackerdom’s most revered demigods are people who have written

large, capable programs that met a widespread need and given

them away, so that now everyone uses them.

2. Help Test and Debug Open-Source Software

They also serve who stand and debug open-source software. In

this imperfect world, we will inevitably spend most of our soft-

ware development time in the debugging phase. That’s why any

open-source author who’s thinking will tell you that good beta-

testers (who know how to describe symptoms clearly, localize

problems well, can tolerate bugs in a quickie release, and are will-

ing to apply a few simple diagnostic routines) are worth their

weight in rubies. Even one of these can make the difference

between a debugging phase that’s a protracted, exhausting night-

mare and one that’s merely a salutary nuisance.

If you’re a newbie, try to find a program under development that

you’re interested in and be a good beta-tester. There’s a natural

progression from helping test programs to helping debug them to

helping modify them. You’ll learn a lot this way, and generate

good karma with people who will help you later on.

3. Publish Useful Information

Another good thing is to collect and filter useful and interesting

information into web pages or documents like Frequently Asked

Questions (FAQ) lists, and make those generally available.

Maintainers of major technical FAQs get almost as much respect

as open-source authors.

4. Help Keep the Infrastructure Working

The hacker culture (and the engineering development of the Inter-

net, for that matter) is run by volunteers. There’s a lot of necessary

but unglamorous work that needs done to keep it going—admin-

istering mailing lists, moderating newsgroups, maintaining large

software archive sites, developing RFCs and other technical stan-

dards.

How to Become a Hacker

205

The Cathedral and the Bazaar

People who do this sort of thing well get a lot of respect, because

everybody knows these jobs are huge time sinks and not as much

fun as playing with code. Doing them shows dedication.

5. Serve the Hacker Culture Itself

Finally, you can serve and propagate the culture itself (by, for

example, writing an accurate primer on how to become a hacker

:-)). This is not something you’ll be positioned to do until you’ve

been around for while and become well-known for one of the first

four things.

The hacker culture doesn’t have leaders, exactly, but it does have

culture heroes and tribal elders and historians and spokespeople.

When you’ve been in the trenches long enough, you may grow

into one of these. Beware: hackers distrust blatant ego in their

tribal elders, so visibly reaching for this kind of fame is dangerous.

Rather than striving for it, you have to sort of position yourself so

it drops in your lap, and then be modest and gracious about your

status.

The Hacker/Nerd Connection

Contrary to popular myth, you don’t have to be a nerd to be a

hacker. It does help, however, and many hackers are in fact nerds.

Being a social outcast helps you stay concentrated on the really

important things, like thinking and hacking.

For this reason, many hackers have adopted the label ‘nerd’ and

even use the harsher term ‘geek’ as a badge of pride—it’s a way of

declaring their independence from normal social expectations. See

The Geek Page (http://samsara.circus.com/ ̃ omni/geek.html) for

extensive discussion.

If you can manage to concentrate enough on hacking to be good

at it and still have a life, that’s fine. This is a lot easier today than

it was when I was a newbie in the 1970s; mainstream culture is

206

much friendlier to techno-nerds now. There are even growing

numbers of people who realize that hackers are often high-quality

lover and spouse material.

If you’re attracted to hacking because you don’t have a life, that’s

okay too—at least you won’t have trouble concentrating. Maybe

you’ll get a life later on.

Points for Style

Again, to be a hacker, you have to enter the hacker mindset. There

are some things you can do when you’re not at a computer that

seem to help. They’re not substitutes for hacking (nothing is) but

many hackers do them, and feel that they connect in some basic

way with the essence of hacking.

• Learn to write your native language well. Though it’s a com-

mon stereotype that programmers can’t write, a surprising

number of hackers (including all the best ones I know of) are

able writers.

• Read science fiction. Go to science fiction conventions (a good

way to meet hackers and proto-hackers).

• Study Zen, and/or take up martial arts. (The mental discipline

seems similar in important ways.)

• Develop an analytical ear for music. Learn to appreciate pecu-

liar kinds of music. Learn to play some musical instrument

well, or how to sing.

• Develop your appreciation of puns and wordplay.

The more of these things you already do, the more likely it is that

you are natural hacker material. Why these things in particular is

not completely clear, but they’re connected with a mix of left- and

right-brain skills that seems to be important (hackers need to be

able to both reason logically and step outside the apparent logic of

a problem at a moment’s notice).

How to Become a Hacker

207

The Cathedral and the Bazaar

Finally, a few things not to do:

• Don’t use a silly, grandiose user ID or screen name.

• Don’t get in flame wars on Usenet (or anywhere else).

• Don’t call yourself a ‘cyberpunk’, and don’t waste your time

on anybody who does.

• Don’t post or email writing that’s full of spelling errors and

bad grammar.

The only reputation you’ll make doing any of these things is as a

twit. Hackers have long memories—it could take you years to live

your early blunders down enough to be accepted.

The problem with screen names or handles deserves some amplifi-

cation. Concealing your identity behind a handle is a juvenile and

silly behavior characteristic of crackers, warez d00dz, and other

lower life forms. Hackers don’t do this; they’re proud of what

they do and want it associated with their real names. So if you

have a handle, drop it. In the hacker culture it will only mark you

as a loser.

Other Resources

Peter Seebach maintains an excellent Hacker FAQ

(http://www.plethora.net/ ̃ seebs/faqs/hacker.html) for managers

who don’t understand how to deal with hackers. I have also writ-

ten A Brief History of Hackerdom, (http://www.tuxedo.org/ ̃ esr/

writings/hacker-history/hacker-history.html). The Cathedral and

the Bazaar, (http://www.tuxedo.org/ ̃ esr/writings/cathedral-

bazaar/index.html) explains a lot about how the Linux and open-

source cultures work. I have addressed this topic even more

directly in its sequel Homesteading the Noosphere,

http://www.tuxedo.org/ ̃ esr/writings/homesteading/.

208

Frequently Asked Questions

Will you teach me how to hack?

Since first publishing this essay, I’ve gotten several requests a

week (often several a day) from people to “teach me all about

hacking”. Unfortunately, I don’t have the time or energy to do

this; my own hacking projects, and traveling as an open-

source advocate, take up 110% of my time.

Even if I did, hacking is an attitude and skill you basically

have to teach yourself. You’ll find that while real hackers

want to help you, they won’t respect you if you beg to be

spoon-fed everything they know.

Learn a few things first. Show that you’re trying, that you’re

capable of learning on your own. Then go to the hackers you

meet with specific questions.

How can I get started, then?

The best way for you to get started would probably be to go

to a LUG (Linux user group) meeting. You can find such

groups on the LDP General Linux Information Page,

http://MetaLab.unc.edu/LDP/intro.html; there is probably one

near you, possibly associated with a college or university.

LUG members will probably give you a Linux if you ask, and

will certainly help you install one and get started.

When do you have to start? Is it too late for me to learn?

Any age at which you are motivated to start is a good age.

Most people seem to get interested between ages 15 and 20,

but I know of exceptions in both directions.

How long will it take me to learn to hack?

That depends on how talented you are and how hard you

work at it. Most people can acquire a respectable skill set in

18 months to 2 years, if they concentrate. Don’t think it ends

there, though; if you are a real hacker, you will spend the rest

of your life learning and perfecting your craft.

How to Become a Hacker

209

The Cathedral and the Bazaar

Are Visual Basic or Delphi good languages to start with?

No, because they’re not portable. There are no open-source

implementations of these languages, so you’d be locked into

only those platforms the vendor chooses to support. Accept-

ing that kind of monopoly situation is not the hacker way.

Visual Basic is especially awful. The fact that it’s a proprietary

Microsoft language is enough to disqualify it, and like other

Basics it’s a poorly designed language that will teach you bad

programming habits.

One of those bad habits is becoming dependent on a single

vendor’s libraries, widgets, and development tools. In general,

any language that isn’t supported under at least Linux or one

of the BSDs, and/or at least three different vendors’ operating

systems, is a poor one to learn to hack in.

Would you help me to crack a system, or teach me how to crack?

No. Anyone who can still ask such a question after reading

this FAQ is too stupid to be educable even if I had the time for

tutoring. Any emailed requests of this kind that I get will be

ignored or answered with extreme rudeness.

How can I get the password for someone else’s account?

This is cracking. Go away, idiot.

I’ve been cracked. Will you help me fend off further attacks?

No. Every time I’ve been asked this question so far, it’s been

from somebody running Windows. It is not possible to effec-

tively secure Windows systems against crack attacks; the code

and architecture simply have too many flaws, and securing

Windows is like trying to bail out a boat with a sieve. The

only reliable prevention is to switch to Linux or some other

operating system with real security.

I’m having problems with my Windows software. Will you help

me?

Yes. Go to a DOS prompt and type “format c:”. The prob-

lems you are experiencing will cease within a few minutes.

210

Where can I find some real hackers to talk with?

The best way is to find a Unix or Linux user’s group local to

you and go to their meetings (you can find links to several lists

of user groups on the LDP site at Metalab, http://meta-

lab.unc.edu/LDP/).

(I used to say here that you wouldn’t find any real hackers on

IRC, but I’m given to understand this is changing. Apparently

some real hacker communities, attached to things like GIMP

and Perl, have IRC channels now.)

Can you recommend useful books about hacking-related subjects?

I maintain a Linux Reading List HOWTO,

http://sunsite.unc.edu/LDP/HOWTO/Reading-List-HOWTO/

index.html, that you may find helpful. The Loginataka may

also be interesting.

What language should I learn first?

HTML, if you don’t already know it. There are a lot of glossy,

hype-intensive bad HTML books out there, and distressingly

few good ones. The one I like best is HTML: The Definitive

Guide (http://www.oreilly.com/catalog/html3/).

But HTML is not a full programming language. When you’re

ready to start programming, I would recommend starting with

Python, http://www.python.org. You will hear a lot of people

recommending Perl, and Perl is still more popular than

Python, but it’s harder to learn and (in my opinion) less well

designed. There are web resources for beginners using Python

at http://www.deja.com/getdoc.xp?AN=523189453.

C is really important, but it’s also much more difficult than

either Python or Perl. Don’t try to learn it first.

Windows users, do not settle for Visual Basic. It will teach

you bad habits, and it’s not portable off Windows. Avoid.

What kind of hardware do I need?

It used to be that personal computers were rather underpow-

ered and memory-poor, enough so that they placed artificial

limits on a hacker’s learning process. This stopped being true

How to Become a Hacker

211

The Cathedral and the Bazaar

some time ago; any machine from an Intel 486DX50 up is

more than powerful enough for development work, X, and

Internet communications, and the smallest disks you can buy

today are plenty big enough.

The important thing in choosing a machine on which to learn

is whether its hardware is Linux-compatible (or BSD-compati-

ble, should you choose to go that route). Again, this will be

true for most modern machines; the only sticky areas are

modems and printers; some machines have Windows-specific

hardware that won’t work with Linux.

There’s a FAQ on hardware compatibility; the latest version is

here, http://users.bart.nl/ ̃ patrickr/hardware-howto/Hard-

ware-HOWTO.html.

Do I need to hate and bash Microsoft?

No, you don’t. Not that Microsoft isn’t loathsome, but there

was a hacker culture long before Microsoft and there will still

be one when Microsoft is history. Any energy you spend hat-

ing Microsoft would be better spent on loving your craft.

Write good code—that will bash Microsoft quite sufficiently

without polluting your karma.

But won’t open-source software leave programmers unable to

make a living?

This seems unlikely—so far, the open-source software indus-

try seems to be creating jobs rather than taking them away. If

having a program written is a net economic gain over not hav-

ing it written, a programmer will get paid whether or not the

program is going to be free after it’s done. And, no matter

how much “free” software gets written, there always seems to

be more demand for new and customized applications. I’ve

written more about this at the Open Source (http://www.open-

source.org) pages.

212

How can I get started? Where can I get a free Unix?

Elsewhere on this page I include pointers to where to get the

most commonly used free Unix. To be a hacker you need

motivation and initiative and the ability to educate yourself.

Start now

How to Become a Hacker

213

APPENDIX B

Statistical Trends in the
Fetchmail Project’s Growth

✦ ✦ ✦

The scattergram below was made with Gnuplot 3.7 from data

pulled directly out of the fetchmail project NEWS file using two

custom shellscripts available on the project website.

The graph shows the population growth of the fetchmail project.

The horizontal scale is days since baseline, which is when I started

collecting statistics in October 1996 at version 1.9.0. Left vertical

215

The Cathedral and the Bazaar

scale is number of participants. There is one data point for each

release; therefore, the changes in density of marks indicate release

frequency.

The peak in the earliest part of the graph (before the note “Bad

addresses dropped”) seems to be an artifact; I was not regularly

dropping addresses that became invalid at the time. Turnover on

the list seems to be about 5% per month (but that’s just my esti-

mate, I don’t have numbers on this).

The scatter of squares is total participants. The scatter of crosses is

the count of people on fetchmail-friends after I split the list. The

scatter of triangles is the population of fetchmail-announce after

the split.

The scatter of diamonds tracks project size in lines of code (right

vertical axis). The scale relationship between this scatter and the

other three is arbitrary.

This graph is quite revealing. Several trends stand out:

• Over time, the project population displays rather consistent

linear growth.

• The key event in the project’s lifetime was release 4.3.0 in

October 1997, when I declared the code to be out of develop-

ment and in maintainance mode, and split the fetchmail list.

• The run-up to 4.3.0 saw the most intensive spate of releases in

the project’s history (the gap in that run happened when I

took a two-week vacation). It was followed by a significant

slowdown.

• After 4.3.0, the developer population remained fairly stable

around an average of about 250 participants.

216

• Essentially all population growth after 4.3.0 happened on the

announce list, among people using fetchmail but not active

co-developers.

• The growth trend in code size looks sublinear, perhaps loga-

rithmic.

The linear growth trend in population is particularly interesting; a

priori we might expect geometric or logistic growth, given that the

project spreads by word of mouth.

It has been suggested that the linear growth rate is the result of a

situation in which both number of projects and the population of

eligible programmers are rising on trend curves of the same (prob-

ably exponential) rate.

There are some web pages doing similar things:

• http://kitenet.net/programs/debhelper/stats/ contains growth

statistics on the debhelper packaging utility.

• http://durak.org:81/sean/pubs/kfc/ is a page on the vocabulary

of the Linux kernel.

Statistical Trends in the Fetchmail Project’s Growth

217

Notes, Bibliography,
and Acknowledgments

✦ ✦ ✦

A Brief History of Hackerdom

Notes

1. David E. Lundstrom. ‘‘Real Programmer.’’ In A Few Good Men From

UNIVAC, 1987. An anecdotal history.

2. Levy, Steven. Hackers. Garden City, N.Y.: Anchor/Doubleday, 1984.

3. Raymond, Eric S. The New Hacker’s Dictionary. Cambridge: MIT
Press, 1996.

The Cathedral and the Bazaar

Notes

1. In Programing Pearls, the noted computer-science aphorist Jon Bentley com-
ments on Brooks’s observation with ‘‘If you plan to throw one away, you will
throw away two.’’ He is almost certainly right. The point of Brooks’s obser-
vation, and Bentley’s, isn’t merely that you should expect the first attempt to
be wrong, it’s that starting over with the right idea is usually more effective
than trying to salvage a mess.

2. Examples of successful open-source, bazaar development predating the Inter-
net explosion and unrelated to the Unix and Internet traditions have existed.
The development of the info-Zip (http://www.cdrom.com/pub/infozip/)

219

The Cathedral and the Bazaar

compression utility during 1990–1992, primarily for DOS machines, was one
such example. Another was the RBBS bulletin board system (again for DOS),
which began in 1983 and developed a sufficiently strong community that
there have been fairly regular releases up to the present (mid-1999) despite
the huge technical advantages of Internet mail and file-sharing over local
BBSs. While the info-Zip community relied to some extent on Internet mail,
the RBBS developer culture was actually able to base a substantial online
community on RBBS that was completely independent of the TCP/IP infras-
tructure.

3. That transparency and peer review are valuable for taming the complexity of
OS development turns out, after all, not to be a new concept. In 1965, very
early in the history of time-sharing operating systems, Corbató and Vyssot-
sky, co-designers of the Multics operating system (http://www.multicians.org/

fjcc1.html) wrote:

It is expected that the Multics system will be published when it is

operating substantially Such publication is desirable for two

reasons: First, the system should withstand public scrutiny and crit-

icism volunteered by interested readers; second, in an age of

increasing complexity, it is an obligation to present and future sys-

tem designers to make the inner operating system as lucid as possi-

ble so as to reveal the basic system issues.

4. John Hasler has suggested an interesting explanation for the fact that duplica-
tion of effort doesn’t seem to be a net drag on open-source development. He
proposes what I’ll dub ‘‘Hasler’s Law’’: the costs of duplicated work tend to
scale sub-quadratically with team size—that is, more slowly than the plan-
ning and management overhead that would be needed to eliminate them.

This claim actually does not contradict Brooks’s Law. It may be the case that
total complexity overhead and vulnerability to bugs scales with the square of
team size, but that the costs from duplicated work are nevertheless a special
case that scales more slowly. It’s not hard to develop plausible reasons for
this, starting with the undoubted fact that it is much easier to agree on func-
tional boundaries between different developers’ code that will prevent dupli-
cation of effort than it is to prevent the kinds of unplanned bad interactions
across the whole system that underly most bugs.

The combination of Linus’s Law and Hasler’s Law suggests that there are
actually three critical size regimes in software projects. On small projects (I
would say one to at most three developers) no management structure more
elaborate than picking a lead programmer is needed. And there is some inter-
mediate range above that in which the cost of traditional management is rela-
tively low, so its benefits from avoiding duplication of effort, bug-tracking,
and pushing to see that details are not overlooked actually net out positive.

Above that, however, the combination of Linus’s Law and Hasler’s Law sug-
gests there is a large-project range in which the costs and problems of tradi-
tional management rise much faster than the expected cost from duplication
of effort. Not the least of these costs is a structural inability to harness the
many-eyeballs effect, which (as we’ve seen) seems to do a much better job
than traditional management at making sure bugs and details are not

220

overlooked. Thus, in the large-project case, the combination of these laws
effectively drives the net payoff of traditional management to zero.

5. The split between Linux’s experimental and stable versions has another func-
tion related to, but distinct from, hedging risk. The split attacks another
problem: the deadliness of deadlines. When programmers are held both to an
immutable feature list and a fixed drop-dead date, quality goes out the win-
dow and there is likely a colossal mess in the making. I am indebted to Marco
Iansiti and Alan MacCormack of the Harvard Business School for showing
me me evidence that relaxing either one of these constraints can make
scheduling workable.

One way to do this is to fix the deadline but leave the feature list flexible,
allowing features to drop off if not completed by deadline. This is essentially
the strategy of the “stable” kernel branch; Alan Cox (the stable-kernel main-
tainer) puts out releases at fairly regular intervals, but makes no guarantees
about when particular bugs will be fixed or what features will be back-ported
from the experimental branch.

The other way to do this is to set a desired feature list and deliver only when
it is done. This is essentially the strategy of the “experimental” kernel branch.
De Marco and Lister cited research showing that this scheduling policy
(“wake me up when it’s done”) produces not only the highest quality but, on
average, shorter delivery times than either “realistic” or “aggressive” schedul-
ing.

I have come to suspect (as of early 2000) that in earlier versions of this essay I
severely underestimated the importance of the “wake me up when it’s done”
anti-deadline policy to the open-source community’s productivity and quality.
General experience with the rushed GNOME 1.0 release in 1999 suggests
that pressure for a premature release can neutralize many of the quality bene-
fits open source normally confers.

It may well turn out to be that the process transparency of open source is one
of three co-equal drivers of its quality, along with “wake me up when it’s
done” scheduling and developer self-selection.

6. It’s tempting, and not entirely inaccurate, to see the core-plus-halo organiza-
tion characteristic of open-source projects as an Internet-enabled spin on
Brooks’s own recommendation for solving the N-squared complexity prob-
lem, the “surgical-team” organization—but the differences are significant.
The constellation of specialist roles such as “code librarian” that Brooks envi-
sioned around the team leader doesn’t really exist; those roles are executed
instead by generalists aided by toolsets quite a bit more powerful than those
of Brooks’s day. Also, the open-source culture leans heavily on strong Unix
traditions of modularity, APIs, and information hiding—none of which were
elements of Brooks’s prescription.

7. The respondent who pointed out to me the effect of widely varying trace path
lengths on the difficulty of characterizing a bug speculated that trace-path dif-
ficulty for multiple symptoms of the same bug varies “exponentially” (which
I take to mean on a Gaussian or Poisson distribution, and agree seems very
plausible). If it is experimentally possible to get a handle on the shape of this
distribution, that would be extremely valuable data. Large departures from a

Notes, Bibliography, and Acknowledgments

221

The Cathedral and the Bazaar

flat equal-probability distribution of trace difficulty would suggest that even
solo developers should emulate the bazaar strategy by bounding the time they
spend on tracing a given symptom before they switch to another. Persistence
may not always be a virtue

8. An issue related to whether one can start projects from zero in the bazaar
style is whether the bazaar style is capable of supporting truly innovative
work. Some claim that, lacking strong leadership, the bazaar can only handle
the cloning and improvement of ideas already present at the engineering
state-of-the-art, but is unable to push the state-of-the-art. This argument was
perhaps most infamously made by the Halloween Documents,
http://www.opensource.org/halloween/, two embarrassing internal Microsoft
memoranda written about the open-source phenomenon. The authors com-
pared Linux’s development of a Unix-like operating system to ‘‘chasing tail-
lights’’, and opined ‘‘(once a project has achieved ’parity’ with the state-of-
the-art), the level of management necessary to push towards new frontiers
becomes massive’’.

There are serious errors of fact implied in this argument. One is exposed
when the Halloween authors themseselves later observe that ‘‘Often [. . .]
new research ideas are first implemented and available on Linux before they
are available/incorporated into other platforms.’’

If we read ‘‘open source’’ for ‘‘Linux’’, we see that this is far from a new phe-
nomenon. Historically, the open-source community did not invent Emacs or
the World Wide Web or the Internet itself by chasing taillights or being mas-
sively managed—and in the present, there is so much innovative work going
on in open source that one is spoiled for choice. The GNOME project (to
pick one of many) is pushing the state of the art in GUIs and object technol-
ogy hard enough to have attracted considerable notice in the computer trade
press well outside the Linux community. Other examples are legion, as a visit
to Freshmeat (http://freshmeat.net/) on any given day will quickly prove.

But there is a more fundamental error in the implicit assumption that the
cathedral model (or the bazaar model, or any other kind of management
structure) can somehow make innovation happen reliably. This is nonsense.
Gangs don’t have breakthrough insights—even volunteer groups of bazaar
anarchists are usually incapable of genuine originality, let alone corporate
committees of people with a survival stake in some status quo ante. Insight

comes from individuals. The most their surrounding social machinery can
ever hope to do is to be responsive to breakthrough insights—to nourish and
reward and rigorously test them instead of squashing them.

Some will characterize this as a romantic view, a reversion to outmoded lone-
inventor stereotypes. Not so; I am not asserting that groups are incapable of
developing breakthrough insights once they have been hatched; indeed, we
learn from the peer-review process that such development groups are essential
to producing a high-quality result. Rather I am pointing out that every such
group development starts from—is necessarily sparked by—one good idea in
one person’s head. Cathedrals and bazaars and other social structures can
catch that lightning and refine it, but they cannot make it on demand.

222

Therefore the root problem of innovation (in software, or anywhere else) is
indeed how not to squash it—but, even more fundamentally, it is how to

grow lots of people who can have insights in the first place.

To suppose that cathedral-style development could manage this trick but the
low entry barriers and process fluidity of the bazaar cannot would be absurd.
If what it takes is one person with one good idea, then a social milieu in
which one person can rapidly attract the cooperation of hundreds or thou-
sands of others with that good idea is going inevitably to out-innovate any in
which the person has to do a political sales job to a hierarchy before he can
work on his idea without risk of getting fired.

And, indeed, if we look at the history of software innovation by organizations
using the cathedral model, we quickly find it is rather rare. Large corpora-
tions rely on university research for new ideas (thus the Halloween Docu-
ments authors’ unease about Linux’s facility at coopting that research more
rapidly). Or they buy out small companies built around some innovator’s
brain. In neither case is the innovation native to the cathedral culture; indeed,
many innovations so imported end up being quietly suffocated under the
“massive level of management” the Halloween Documents’ authors so extol.

That, however, is a negative point. The reader would be better served by a
positive one. I suggest the following:

• Pick a criterion for originality that you believe you can apply consis-
tently. If your definition is ‘‘I know it when I see it’’, that’s not a problem
for purposes of this test.

• Pick any closed-source operating system competing with Linux, and a
best source for accounts of current development work on it.

• Watch that source and Freshmeat for one month. Every day, count the
number of release announcements on Freshmeat that you consider ‘orig-
inal’ work. Apply the same definition of ‘original’ to announcements for
that other OS and count them.

• Thirty days later, total up both figures.

The day I wrote this, Freshmeat carried 22 release announcements, of which
3 appear they might push state-of-the-art in some respect, This was a slow
day for Freshmeat, but I will be astonished if any reader reports as many as 3
likely innovations a month in any closed-source channel.

9. We now have history on a project that, in several ways, may provide a more
indicative test of the bazaar premise than fetchmail; EGCS,
http://egcs.cygnus.com/, the Experimental GNU Compiler System.

This project was announced in mid-August of 1997 as a conscious attempt to
apply the ideas in the early public versions of The Cathedral and the Bazaar.
The project founders felt that the development of GCC, the Gnu C Compiler,
had been stagnating. For about 20 months afterwards, GCC and EGCS con-
tinued as parallel products—both drawing from the same Internet developer
population, both starting from the same GCC source base, both using pretty
much the same Unix toolsets and development environment. The projects dif-
fered only in that EGCS consciously tried to apply the bazaar tactics I have

Notes, Bibliography, and Acknowledgments

223

The Cathedral and the Bazaar

previously described, while GCC retained a more cathedral-like organization
with a closed developer group and infrequent releases.

This was about as close to a controlled experiment as one could ask for, and
the results were dramatic. Within months, the EGCS versions had pulled sub-
stantially ahead in features; better optimization, better support for FOR-
TRAN and C++. Many people found the EGCS development snapshots to be
more reliable than the most recent stable version of GCC, and major Linux
distributions began to switch to EGCS.

In April of 1999, the Free Software Foundation (the official sponsors of GCC)
dissolved the original GCC development group and officially handed control
of the project to the the EGCS steering team.

10. Of course, Kropotkin’s critique and Linus’s Law raise some wider issues
about the cybernetics of social organizations. Another folk theorem of soft-
ware engineering suggests one of them; Conway’s Law — commonly stated as
‘‘If you have four groups working on a compiler, you’ll get a 4-pass com-
piler.’’ The original statement was more general: ‘‘Organizations which design
systems are constrained to produce designs which are copies of the communi-
cation structures of these organizations.’’ We might put it more succinctly as
‘‘The means determine the ends’’, or even ‘‘Process becomes product’’.

It is accordingly worth noting that in the open-source community organiza-
tional form and function match on many levels. The network is everything
and everywhere: not just the Internet, but the people doing the work form a
distributed, loosely coupled, peer-to-peer network that provides multiple
redundancy and degrades very gracefully. In both networks, each node is
important only to the extent that other nodes want to cooperate with it.

The peer-to-peer part is essential to the community’s astonishing productivity.
The point Kropotkin was trying to make about power relationships is devel-
oped further by the ‘SNAFU Principle’: ‘‘True communication is possible only
between equals, because inferiors are more consistently rewarded for telling
their superiors pleasant lies than for telling the truth.’’ Creative teamwork
utterly depends on true communication and is thus very seriously hindered by
the presence of power relationships. The open-source community, effectively
free of such power relationships, is teaching us by contrast how dreadfully
much they cost in bugs, in lowered productivity, and in lost opportunities.

Further, the SNAFU principle predicts in authoritarian organizations a pro-
gressive disconnect between decision-makers and reality, as more and more of
the input to those who decide tends to become pleasant lies. The way this
plays out in conventional software development is easy to see; there are
strong incentives for the inferiors to hide, ignore, and minimize problems.
When this process becomes product, software is a disaster.

224

Bibliography

I quoted several bits from Frederick P. Brooks’s classic The Mythical Man-

Month because, in many respects, his insights have yet to be improved
upon. I heartily recommend the 25th Anniversary edition from Addison-
Wesley, which adds his ‘‘No Silver Bullet’’ paper (1986).

The new edition is wrapped up by an invaluable 20-years-later retrospec-
tive in which Brooks forthrightly admits to the few judgements in the
original text that have not stood the test of time. I first read the retrospec-
tive after the first public version of this essay was substantially complete,
and was surprised to discover that Brooks attributed bazaar-like practices
to Microsoft! (In fact, however, this attribution turned out to be mis-
taken. In 1998 we learned from the Halloween Documents
(http://www.opensource.org/halloween/) that Microsoft’s internal devel-
oper community is heavily balkanized, with the kind of general source
access needed to support a bazaar not even truly possible.)

Gerald M. Weinberg’s The Psychology Of Computer Programming (New
York: Van Nostrand Reinhold, 1971) introduced the rather unfortu-
nately-labeled concept of ‘‘egoless programming’’. While he was nowhere
near the first person to realize the futility of the ‘‘principle of command’’,
he was probably the first to recognize and argue the point in particular
connection with software development.

Richard P. Gabriel, contemplating the Unix culture of the pre-Linux era,
reluctantly argued for the superiority of a primitive bazaar-like model in
his 1989 paper ‘‘LISP: Good News, Bad News, and How to Win Big’’.
Though dated in some respects, this essay is still rightly celebrated among
LISP fans (including me). A correspondent reminded me that the section
titled ‘‘Worse Is Better’’ reads almost as an anticipation of Linux. The
paper is accessible on the World Wide Web at http://www.naggum.no/

worse-is-better.html".

De Marco’s and Lister’s Peopleware: Productive Projects and Teams

(New York: Dorset House, 1987) is an underappreciated gem that I was
delighted to see Fred Brooks cite in his retrospective. While little of what
the authors have to say is directly applicable to the Linux or open-source
communities, the authors’ insight into the conditions necessary for cre-
ative work is acute and worthwhile for anyone attempting to import
some of the bazaar model’s virtues into a commercial context.

Finally, I must admit that I very nearly called this essay ‘‘The Cathedral
and the Agora’’, the latter term being the Greek for an open market or

Notes, Bibliography, and Acknowledgments

225

The Cathedral and the Bazaar

public meeting place. The seminal ‘‘agoric systems’’ papers by Mark
Miller and Eric Drexler, by describing the emergent properties of market-
like computational ecologies, helped prepare me to think clearly about
analogous phenomena in the open-source culture when Linux rubbed my
nose in them five years later. These papers are available on the Web at
http://www.agorics.com/agorpapers.html".

Acknowledgments

This essay was improved by conversations with a large number of people
who helped debug it. Particular thanks to Jeff Dutky
(dutky@wam.umd.edu), who suggested the ‘‘debugging is parallelizable’’
formulation, and helped develop the analysis that proceeds from it. Also
to Nancy Lebovitz (nancyl@universe.digex.net) for her suggestion that I
emulate Weinberg by quoting Kropotkin. Perceptive criticisms also came
from Joan Eslinger (wombat@kilimanjaro.engr.sgi.com) and Marty Franz
(marty@net-link.net) of the General Technics list. Glen Vandenburg
(glv@vanderburg.org) pointeed out the importance of self-selection in
contributor populations and suggested the fruitful idea that much devel-
opment rectifies ‘bugs of omission’; Daniel Upper (upper@peak.org) sug-
gested the natural analogies for this. I’m grateful to the members of
PLUG, the Philadelphia Linux User’s Group, for providing the first test
audience for the first public version of this essay. Paula Matuszek
(matusp00@mh.us.sbphrd.com) enlightened me about the practice of soft-
ware management. Phil Hudson (phil.hudson@iname.com) reminded me
that the social organization of the hacker culture mirrors the organization
of its software, and vice-versa. John Buck (johnbuck@sea.ece.umassd.edu)
pointed out that MATLAB makes an instructive parallel to Emacs. Russell
Johnston (russjj@mail.com) brought me to consciousness about some of
the mechanisms discussed in ‘‘How Many Eyeballs Tame Complexity’’.
Finally, Linus Torvalds’s comments were helpful and his early endorse-
ment very encouraging.

226

Homesteading the Noosphere

Notes

1. The term ‘noosphere’ is an obscure term of art in philosophy. It is pro-
nounced KNOW-uh-sfeer (two o-sounds, one long and stressed, one short
and unstressed tending towards schwa). If one is being excruciatingly correct
about one’s orthography, the term is properly spelled with a diaeresis over the
second ‘o’ to mark it as a separate vowel.

In more detail; this term for ‘‘the sphere of human thought’’ derives from the
Greek ‘noos’ meaning ‘mind’, ‘intelligence,’ or ’breath’. It was invented by E.
LeRoy in Les origines humaines et l’evolution de l’intelligence (Paris, 1928). It
was popularized first by the Russian biologist and pioneering ecologist
Vladimir Ivanovich Vernadsky, (1863–1945), then by the Jesuit paleon-
tologist/philosopher Pierre Teilhard de Chardin (1881–1955). It is with Teil-
hard de Chardin’s theory of future evolution to a form of pure mind
culminating in union with the Godhead that the term is now primarily associ-
ated.

2. David Friedman, one of the most lucid and accessible thinkers in contempo-
rary economics, has written an excellent outline of the history and logic of
intellectual-property law (http://www.best.com/ ̃ ddfr/Academic/Course_Pages

/L_and_E_LS_98/Why_Is_Law/Why_Is_Law_Chapter_11.html). I recom-
mend it as a starting point to anyone interested in these issues.

3. One interesting difference between the Linux and BSD worlds is that the
Linux kernel (and associated OS core utilities) have never forked, but BSD’s
has, at least three times. What makes this interesting is that the social struc-
ture of the BSD groups is centralized in a way intended to define clear lines of
authority and to prevent forking, while the decentralized and amorphous
Linux community takes no such measures. It appears that the projects that
open up development the most actually have the least tendency to fork!

Henry Spencer (henry@spsystems.net) suggests that, in general, the stability of
a political system is inversely proportional to the height of the entry barriers
to its political process. His analysis is worth quoting here:

One major strength of a relatively open democracy is that most

potential revolutionaries find it easier to make progress toward

their objectives by working via the system rather by attacking it.

This strength is easily undermined if established parties act together

to ‘raise the bar’, making it more difficult for small dissatisfied

groups to see some progress made toward their goals.

(A similar principle can be found in economics. Open markets have

the strongest competition, and generally the best and cheapest

products. Because of this, it’s very much in the best interests of

established companies to make market entry more difficult—for

example, by convincing governments to require elaborate RFI test-

ing on computers, or by creating ‘consensus’ standards that are so

complex that they cannot be implemented effectively from scratch

Notes, Bibliography, and Acknowledgments

227

The Cathedral and the Bazaar

without large resources. The markets with the strongest entry barri-

ers are the ones that come under the strongest attack from revolu-

tionaries, e.g., the Internet and the Justice Dept. vs. the Bell

System.)

An open process with low entry barriers encourages participation

rather than secession, because one can get results without the high

overheads of secession. The results may not be as impressive as

what could be achieved by seceding, but they come at a lower price,

and most people will consider that an acceptable tradeoff. (When

the Spanish government revoked Franco’s anti-Basque laws and

offered the Basque provinces their own schools and limited local

autonomy, most of the Basque Separatist movement evaporated

almost overnight. Only the hard-core Marxists insisted that it

wasn’t good enough.)

4. There are some subtleties about rogue patches. One can divide them into
‘friendly’ and ‘unfriendly’ types. A ‘friendly’ patch is designed to be merged
back into the project’s main-line sources under the maintainer’s control
(whether or not that merge actually happens); an ‘unfriendly’ one is intended
to yank the project in a direction the maintainer doesn’t approve. Some pro-
jects (notably the Linux kernel itself) are pretty relaxed about friendly patches
and even encourage independent distribution of them as part of their beta-test
phase. An unfriendly patch, on the other hand, represents a decision to com-
pete with the original and is a serious matter. Maintaining a whole raft of
unfriendly patches tends to lead to forking.

5. I am indebted to Michael Funk (mwfunk@uncc.campus.mci.net) for pointing
out how instructive a contrast with hackers the pirate culture is. Linus Walleij
has posted an analysis of their cultural dynamics that differs from mine
(describing them as a scarcity culture) in A Comment on ‘Warez D00dz’ Cul-

ture (http://www.df.lth.se/ ̃ triad/papers/Raymond_D00dz.html").

The contrast may not last. Former cracker Andrej Brandt (andy@pil-

grim.cs.net.pl) reports that he believes the cracker/warez d00dz culture is now
withering away, with its brightest people and leaders assimilating to the open-
source world. Independent evidence for this view may be provided by a prece-
dent-breaking July 1999 action of the cracker group calling itself “Cult of the
Dead Cow”. They have released their “Back Orifice 2000” for breaking
Microsoft Windows security tools under the GPL.

6. In evolutionary terms, the craftsman’s urge itself may (like internalized ethics)
be a result of the high risk and cost of deception. Evolutionary psychologists
have collected experimental evidence1 that human beings have brain logic
specialized for detecting social deceptions, and it is fairly easy to see why our
ancestors should have been selected for ability to detect cheating. Therefore,
if one wishes to have a reputation for personality traits that confer advantage
but are risky or costly, it may actually be better tactics to actually have these
traits than to fake them. (‘‘Honesty is the best policy.’’)

Evolutionary psychologists have suggested that this explains behavior like
barroom fights. Among younger adult male humans, having a reputation for
toughness is both socially and (even in today’s feminist-influenced climate)

228

sexually useful. Faking toughness, however, is extremely risky; the negative
result of being found out leaves one in a worse position than never having
claimed the trait. The cost of deception is so high that it is sometimes better
minimaxing to internalize toughness and risk serious injury in a fight to prove
it. Parallel observations have been made about less controversial traits like
honesty.

Though the primary meditation-like rewards of creative work should not be
underestimated, the craftsman’s urge is probably at least in part just such an
internalization (where the base trait is ‘capacity for painstaking work’ or
something similar).

Handicap theory may also be relevant. The peacock’s gaudy tail and the stag’s
massive rack of antlers are sexy to females because they send a message about
the health of the male (and, consequently, its fitness to sire healthy offspring).
They say: “I am so vigorous that I can afford to waste a lot of energy on this
extravagant display.” Giving away source code, like owning a sports car, is
very similar to such showy, wasteful finery—it’s expense without obvious
return, and makes the giver at least theoretically very sexy.

7. A concise summary of Maslow’s hierarchy and related theories is available on
the Web at http://www.valdosta.peachnet.edu/ ̃ whuitt/psy702/regsys/

maslow.html".

8. However, demanding humility from leaders may be a more general character-
istic of gift or abundance cultures. David Christie (dc@netscape.com) reports
on a trip through the outer islands of Fiji:

In Fijian village chiefs, we observed the same sort of self-deprecat-

ing, low-key leadership style that you attribute to open source pro-

ject leaders. [. . .] Though accorded great respect and of course all

of whatever actual power there is in Fiji, the chiefs we met demon-

strated genuine humility and often a saint-like acceptance of their

duty. This is particularly interesting given that being chief is a

hereditary role, not an elected position or a popularity contest.

Somehow they are trained to it by the culture itself, although they

are born to it, not chosen by their peers.’’ He goes on to emphasize

that he believes the characteristic style of Fijian chiefs springs from

the difficulty of compelling cooperation: a chief has ‘‘no big carrot

or big stick’’.

9. As a matter of observable fact, people who found successful projects gather
more prestige than people who do arguably equal amounts of work debug-
ging and assisting with successful projects. An earlier version of this essay
asked ‘‘Is this a rational valuation of comparative effort, or is it a second-
order effect of the unconscious territorial model we have adduced here?’’ Sev-
eral respondents suggested persuasive and essentially equivalent theories. The
following analysis by Ryan Waldron (rew@erebor.com) puts the case well:

In the context of the Lockean land theory, one who establishes a

new and successful project has essentially discovered or opened up

new territory on which others can homestead. For most successful

projects, there is a pattern of declining returns, so that after a

while, the credit for contributions to a project has become so

Notes, Bibliography, and Acknowledgments

229

The Cathedral and the Bazaar

diffuse that it is hard for significant reputation to accrete to a late

participant, regardless of the quality of his work.

For instance, how good a job would I have to do making modifica-

tions to the Perl code to have even a fraction of the recognition for

my participation that Larry, Tom, Randall, and others have

achieved?

However, if a new project is founded [by someone else] tomorrow,

and I am an early and frequent participant in it, my ability to share

in the respect generated by such a successful project is greatly

enhanced by my early participation therein (assuming similar qual-

ity of contributions). I reckon it to be similar to those who invest

in Microsoft stock early and those who invest in it later. Everyone

may profit, but early participants profit more. Therefore, at some

point I will be more interested in a new and successful IPO than I

will be in participating in the continual increase of an existing body

of corporate stock.

Ryan Waldron’s analogy can be extended. The project founder has to do a
missionary sell of a new idea that may or may not be acceptable or of use to
others. Thus the founder incurs something analogous to an IPO risk (of possi-
ble damage to their reputation), more so than others who assist with a project
that has already garnered some acceptance by their peers. The founder’s
reward is consistent despite the fact that the assistants may be putting in
more work in real terms. This is easily seen as analogous to the relationship
between risk and rewards in an exchange economy.
Other respondents have observed that our nervous system is tuned to perceive
differences, not steady state. The revolutionary change evidenced by the cre-
ation of a new project is therefore much more noticeable than the cumulative
effect of constant incremental improvement. Thus Linus is revered as the
father of Linux, although the net effect of improvements by thousands of
other contributors have done more to contribute to the success of the OS
than one man’s work ever could.

10. The phrase ‘‘de-commoditizing’’ is a reference to the Halloween Documents
(http://www.opensource.org/halloween/) in which Microsoft used ‘‘de-com-
moditize’’ quite frankly to refer to their most effective long-term strategy for
maintaining an exploitative monopoly lock on customers.

11. A respondent points out that the values surrounding the ‘‘You’re not a hacker
until other hackers call you a hacker’’ norm parallel ideals professed (if not
always achieved) by other meritocratic brotherhoods within social elites suffi-
ciently wealthy to escape the surrounding scarcity economy. In the medieval
European ideal of knighthood, for example, the aspiring knight was expected
to fight for the right, to seek honor rather than gain, to take the side of the
weak and oppressed, and to constantly seek challenges that tested his prowess
to the utmost. In return, the knight-aspirant could regard himself (and be
regarded by others) as among the best of the best—but only after his skill
and virtue had been admitted and ratified by other knights. In the knightly
ideal extolled by the Arthurian tales and Chansons de Geste we see a mix of
idealism, continual self-challenge, and status-seeking similar to that which

230

animates hackers today. It seems likely that similar values and behavioral
norms should evolve around any skill that both requires great dedication and
confers a kind of power.

12. The Free Software Foundation’s main website (http://www.gnu.org/philoso-

phy/motivation.html") carries an article that summarizes the results of many
of these studies. The quotes in this essay are excerpted from there.

Bibliography

Miller, William Ian. Bloodtaking and Peacemaking: Feud, Law, and Soci-

ety in Saga Iceland. Chicago: University of Chicago Press, 1990. A fasci-
nating study of Icelandic folkmoot law, which both illuminates the
ancestry of the Lockean theory of property and describes the later stages
of a historical process by which custom passed into customary law and
thence to written law.

Malaclypse the Younger. Principia Discordia, or How I Found Goddess

and What I Did To Her When I Found Her. Loompanics, 1980. There is
much enlightening silliness to be found in Discordianism. Amidst it, the
‘SNAFU principle’ provides a rather trenchant analysis of why command
hierarchies don’t scale well. There’s a browseable HTML version,
http://www.cs.cmu.edu/ ̃ tilt/principia/.

Barkow, J.L. Cosmides, and J. Tooby (Eds.). The Adapted Mind: Evolu-

tionary Psychology and the Generation of Culture. New York: Oxford
University Press, 1992. An excellent introduction to evolutionary psychol-
ogy. Some of the papers bear directly on the three cultural types I discuss
(command/exchange/gift), suggesting that these patterns are wired into
the human psyche fairly deep.

Goldhaber, Michael K.: “The Attention Economy and the Net”,
http://www.firstmonday.dk/issues/issue2_4/goldhaber". I discovered this
paper after my version 1.7. It has obvious flaws (Goldhaber’s argument
for the inapplicability of economic reasoning to attention does not bear
close examination), but Goldhaber nevertheless has funny and perceptive
things to say about the role of attention-seeking in organizing behavior.
The prestige or peer repute I have discussed can fruitfully be viewed as a
particular case of attention in his sense.

I have summarized the history of the hacker culture in A Brief History of

Hackerdom, http://www.tuxedo.org/ ̃ esr/faqs/hacker-hist.html". The
book that will explain it really well remains to be written, probably not
by me.

Notes, Bibliography, and Acknowledgments

231

The Cathedral and the Bazaar

Acknowledgments

Robert Lanphier (robla@real.com) contributed much to the discussion of
egoless behavior. Eric Kidd (eric.kidd@pobox.com) highlighted the role of
valuing humility in preventing cults of personality. The section on global
effects was inspired by comments from Daniel Burn (daniel@tsathog-

gua.lab.usyd.edu.au). Mike Whitaker (mrw@entropic.co.uk) inspired the
main thread in the section on acculturation. Chris Phoenix
(cphoenix@best.com) pointed out the importance of the fact that hackers
cannot gain reputation by doing other hackers down. A.J. Venter (JAVen-

ter@africon.co.za) pointed out parallels with the medieval ideal of knight-
hood. Ian Lance Taylor (ian@airs.com) sent careful criticisms of the
reputation-game model, which motivated me to think through and
explain my assumptions more clearly.

The Magic Cauldron

Notes

1. The underprovision problem would in fact scale linearly with a number of
users if we assumed programming talent to be uniformly distributed in the
project user population as it expands over time. This is not, however, the
case.

The incentives discussed in 2 (and some more conventionally economic ones
as well) imply that qualified people tend to seek projects that match their
interests, as well as the projects seeking them. Accordingly, theory suggests
(and experience tends to confirm) that the most valuable (most qualified and
motivated) people tend to discover the projects for which they fit well rela-
tively early in the projects’ life cycles, with a corresponding fall-off later on.

Hard data are lacking, but on the basis of experience I strongly suspect the
assimilation of talent over a growing project’s lifetime tends to follow a classi-
cal logistic curve.

2. Shawn Hargreaves has written a good analysis of the applicability of open-
source methods to games in Playing the Open Source Game

(http://www.talula.demon.co.uk/games.html").

3. Note for accountants: the argument that service costs will eventually swamp
a fixed up-front price still works if we move from constant dollars to dis-
counted present value, because future sale revenue discounts in parallel with
future service costs.

A similar but more sophisticated counter to the argument is to observe that,
per-copy, service cost will go to zero when the buyer stops using the software;
therefore you can still win, if the user stops before he/she has generated too

232

much service cost. This is basically just another form of the argument that
factory pricing rewards the production of shelfware. Perhaps a more instruc-
tive way to put it would be that the risk that your service costs will swamp
the purchase revenue rises with the expected period of usefulness of the soft-
ware. Thus, the factory model penalizes quality.

4. Wayne Gramlich (Wayne@Gramlich.Net) has proposed that the persistance
of the factory model is partly due to antiquated accounting rules, formulated
when machines and buildings were more important and people less so. Soft-
ware company books show the computers, office furniture, and buildings as
assets and the programmers are expenses. Of course, in reality, the program-
mers are the true assets and the computers, office equipment, and buildings
hardly matter at all. This perverse valuation is sustained by IRS and stock-
market pressure for stable and uniform accounting rules that reduce the com-
plexity of assigning a dollar figure to the company’s value. The resulting drag
has prevented the rules from keeping up with reality.

On this view, pinning a high price to the bits in the product (independent of
future service value) is partly a sort of defense mechanism, a way of agreeing
for all parties involved to pretend that the ontological ground hasn’t fallen
out from under the standard accounting rules.

(Gramlich also points out that these rules underpin the bizarre and often self-
destructive acquisition sprees that many software companies tear off on after
IPO: ‘‘Usually the software company issues some additional stock to build up
a war chest. But they can’t spend any of this money to beef up their program-
ming staff, because the accounting rules would show that as increased
expenses. Instead, the newly public software company has to grow by acquir-
ing other software companies, because the accounting rules let you treat the
acquisition as an investment.’’)

5. For a paradigmatic example of forking following defection, consult the his-
tory of OpenSSH. This project was belatedly forked from an early version of
SSH (Secure Shell) after the latter went to a closed license.

Bibliography

The Cathedral and the Bazaar, http://www.tuxedo.org/ ̃ esr/writings/cathe-

dral-bazaar/

Homesteading the Noosphere, http://www.tuxedo.org/ ̃ esr/writings/

homesteading/

De Marco and Lister. Peopleware: Productive Projects and Teams. New
York: Dorset House, 1987.

Notes, Bibliography, and Acknowledgments

233

The Cathedral and the Bazaar

Acknowledgments

Several stimulating discussions with David D. Friedman helped me refine
the ‘inverse commons’ model of open-source cooperation. I am also
indebted to Marshall van Alstyne for pointing out the conceptual impor-
tance of rivalrous information goods. Ray Ontko of the Indiana Group
supplied helpful criticism. A good many people in audiences before whom
I gave talks in the year leading up to June 1999 also helped; if you’re one
of those, you know who you are.

It’s yet another testimony to the open-source model that this essay was
substantially improved by email feedback I received within days after ini-
tial release. Lloyd Wood pointed out the importance of open-source soft-
ware being ‘future-proof’. and Doug Dante reminded me of the ‘Free the
Future’ business model. A question from Adam Moorhouse led to the dis-
cussion of exclusion payoffs. Lionel Oliviera Gresse gave me a better
name for one of the business models. Stephen Turnbull slapped me silly
about careless handling of free-rider effects. Anthony Bailey and Warren
Young corrected some facts in the Doom case study. Eric W. Sink con-
tributed the insight that the factory model rewards shelfware.

For Further Reading

The beginnings of an academic analytical literature on open source have
begun to appear. Related material on the Web can be found at the
author’s web page (http://www.tuxedo.org/ ̃ esr/writings/cathedral-

bazaar).

Ross Anderson. How to Cheat at the Lottery (or, Massively Parallel

Requirements Engineering). In this insightful, lucid and entertaining
paper, the author presents the results of an experiment in applying
bazaar-style parallelism not to coding but to the requirements analysis
and system design for a difficult problem in computer security.

Available as http://www.cl.cam.ac.uk/ ̃ rja14/lottery/lottery.html.

Davis Baird. “Scientific Instrument Making, Epistemology, and the Con-
flict between Gift and Commodity Economies.” In Journal of the Society

for Philosophy & Technology, Volume 2, no. 3–4. This paper is interest-
ing because, although it never refers to software or open source and is
founded in earlier anthropological literature on gift cultures, it suggests

234

an analysis similar in many respects to that in Homesteading the Noo-

sphere.

Available on the Web at http://scholar.lib.vt.edu/ejournals/SPT/

v2_n3n4html/baird.html.

Asif Khalak, Evolutionary Model for Open Source Software: Economic

Impact. The author attempts to model open-source market penetration
analytically and to use computer simulation to examine the mosel’s
dependence on various cost and behavioral parameters. Presented at
Genetic and Evolutionary Computation Conference, Ph.D. Workshop,
July 1999.

Available as http://web.mit.edu/asif/www/ace.html.

Bojidar Mantarow. Open Source Software as a New Business Model. The
author treats Red Hat Software as a case study in the effects of lowering
barriers to entry in a mature market. This dissertation was submitted in
partial fulfillment of the degree of MSc in International Management at
University of Reading, August 1999.

Available as http://www.lochnet.net/bozweb/academic/dissert.htm.

Eben Moglen. “Anarchism Triumphant: Free Software and the Death of
Copyright.” This paper (originally published in the Columbia Law
Review) contains a regrettably large number of errors in facts and logic,
and the analytical content is very nearly smothered under misguided
political polemic. Nevertheless, it is an entertaining and provocative read,
worth plowing through if only for the context of Moglen’s unforgettable
corollary to Faraday’s Law: “Wrap the Internet around every brain on the
planet and spin the planet. Software flows in the wires.”

Available as http://old.law.columbia.edu/my_pubs/anarchism.html.

Notes, Bibliography, and Acknowledgments

235

Index

✦ ✦ ✦

A
adverse possession, 77

AIs (Artificial Intelligence Labora-
tories), 4

Amabile, Theresa (psychologist),
107

Apache, 130

Apple Computers, 10

open sourcing Darwin, 136

ARPAnet, 4

electronic mailing lists and, 7

Artificial Intelligence Laboratories
(AIs), 4

attractive dissonance, 180

B
BASIC language, 10

bazaar development style, 19, 21,

50, 54

Linus’s Law and, 31

vs. cathedral mode, 55

Berkeley Systems Design, Incorpo-
rated (BSDI), 16

BIND, 181

Brooks, Fred (author), 25, 32, 37,

49, 170

Brook’s Law, 34, 50, 53

predictions of, 170

BSDI (Berkeley systems Design,
Incorporated), 16

ideology of hacker culture and,
70

bugs, fixing bazaar style, 33–36

C
C language, 8

Carnegie-Mellon University
(CMU), 5

category killers, 42, 92

Cathedral and the Bazaar, 171

Netscape Communications
and, 173

cathedral development style, 19,

21, 27–28

Linus’s Law and, 30

vs. bazaar mode, 55

Chester County InterLink (CCIL),
22

Cisco, 131

Clarke, Arthur C., 115

closed source
applications and, 162

development problems of, 33

GNU Emac editor and, 55

Linux and, 54

237

The Cathedral and the Bazaar

CMU (Carnegie-Mellon Univer-
sity), 5

code reuse, 24

command hierarchy, 80

Community Source licenses, 133

core developers, communicating
with collaborators, 34

Cray, Seymour, 3

D
Debian Free Software Guidelines,

71

DEC (Digital Equipment Corpora-
tion), 5

Delphi effect, 31

Digital Equipment Corporation
(DEC), 5

Doom (id software game), 146

E
egoless programming, 50

EMACS program editor, 6

category killers and, 92

Lisp code and, 27

Emacs VC (version control), 27

exchange economy, 80

F
fetchpop, 24

forking
definition of, 72

license restrictions and, 133

free software, 175

Free Software Foundation (FSF),
69

HURD project, failure of, 14

Lisp archives and, 28

origins of, 11

FSF (see Free Software Foun-

da tion)

Fuller, Buckminster (inventor),
115

G
General Public License (GPL), 69

gift cultures, 81

GIMP, 93

GNU Emacs Lisp library, 27

GNU (Gnu’s Not Unix) project,
11

GNU project
open-source development and,

21, 24

Gosling, James, 29

GPL (General Public License), 69

Guerrilla Marketing Tactics, pro-
moting open source, 178

H
hacker culture

ideology of, 67–71

prestige in, 84

reputation incentives, 85–87

hackers
as users, 26

gift culture and, 80–82

hacking, joy of, 82–83

prehistory of, 3

Hacker’s Dictionary, 5

Halloween Documents, 183

Hardin, Garret (ecologist), 124

hardware
innovations of, 7

Harris, Carl (programmer), 25

Hayek, Friedrich A., 126

hierarchy of values (Maslow), 83

homesteading, 76

I
IMAP (Internet Message Access

Protocol), 25, 37

Incompatible Time-sharing System
(see ITS)

in-house code, 117

Intel 386 chip, 13

238

Internet
Free Software Foundation

(FSF) and, 69

Linux developers and, 21, 29

popular discovery of, 17

Unix development and, 51

Internet Explorer (Microsoft),
135, 172

ITS (Incompatible Time-sharing
System), 6

breakdown of, 13

J
Jargon File (The Hacker’s Dictio-

nary), 5

Jolitz, William and Lynne, 15

K
Kipling, Rudyard, 164

Kropotkin, Pyotr Alexeyvich, 51

L
license restrictions for software,

133

licenses (open source), 72

ownership and, 73

Linus’s law, 30

Linux
category killers and, 93

for-profit packagers and, 133

ideology of hacker culture and,
70

kernels, early releases of, 29

open source and, 21

origins of, 15

promoting for open source
movement, 177

stable and unstable versions,
32

World Wide Web and, 17

LISP
code archives, evolution of, 27

LISP (AI language), 6

Locke, John, 76–79

M
MACRO-10, 5

maintenance, for software, 118

Maslow, Abraham, 83

MATLAB, 28

maximizaing reputation incen-
tives, 85

Memoirs of a Revolutionist
(Kropotkin), 51

Microsoft
Halloween Documents and,

183

Internet Explorer, 135, 172

MIME (Multipurpose Internet
Mail Extensions), 44

Minix, 24

Andy Tanenbaum and, 43

MIT, 4–6

Motorola 68000 microchip, 11

Mozilla organization, 135, 174

mismanagement of, 186

Multics, 8

Mythical Man-Month (Brooks),
25, 32

N
Netscape Communications, Inc.,

open-sourcing browsers,
135, 173

Netscape Public License (NPL),
134

New Hacker’s Dictionary, 169

noosphere, definition of, 77

NPL (Netscape Public License),
134

O
Oh, Seung-Hong (programer), 24

Ohio State Emacs Lisp arcive, 28

open source, 4

business ecology of, 152

company competition and,
148–151

Index

239

The Cathedral and the Bazaar

open source (cont’d)
conflicts and resolution in, 103

Doom (id software game) and,
146

doomsday scenario, 160

economics of software, 123

fixing bugs and, 33

forking and, 72

future of, 187–191

ideology of, S

indirect sale-value models and,
135–140

licenses, 72

origins of, 175–178

ownership and, 73–76

reasons for closing source,
128–129

software, conflicts over, 99

Open Source Definition (OSD),
71, 134

Free Software Guideline and,
176

promoting open source move-
ment, 178

O’Reilly, Tim (publisher), 172

Free Software Summit and,
181

open source and, 175

OSD (Open Source Definition), 71

Osterhout, John, 71

ownership, in open source culture,
100–103

P
Palo Alto Research Center

(XEROX PARC), 7

PARC (Palo Alto Reasearch Cen-
ter), 7

PDP-1, 4

PDP-10, 5

electronic mailing lists and, .

PDP-11, 9

Perens, Bruce, 176

Perl culture, 71

personal computers
origins of, 10

personal computers, origins of, 13

POP (Post Office Protocol), 23

popclient, 25, 36

becoming fetchmail, 38

programming projects, in hacker
ownership customs, 78

project structures, 100–103

Psychology of Computer Pro-
gramming (Weinberg),
50

R
Real Programmers, 3

reputation-game model, implica-
tions of, 92–94

Rideau, Faré, 78

Ritchie, Dennis, 8

RMS (see Stallman, Richard

M.)

S
SAIL (Stanford University’s Artifi-

cial Intelligence Labora-
tory, 5

Saint-Exupéry, Antoine de, 41

sale value for software, 129

sale value of software, 117,

132–140

Samba, 95

SF-LOVERS list, 7

SMTP (Simple Mail Transfer Pro-
tocol), 23

adding to popclient, 38–42

software
as a service industry, 119

conflicts over open source, 99

economic value of, 115–166

innovations of, 7

sale value of, 132–140

use-value of, 129–132

240

Stallman, Richard M. (RMS), 11,

27, 29, 69

Stanford University’s Artificial
Intelligence Laboratory
(SAIL), 5

Sun Microsystems, 12

Community Source licenses
and, 133

T
taboos, in hacker culture, 85

Tanenbaum, Andy (creator of
Minix), 43

theory of property (Locke), 77

Thompson, Ken, 8

TOPS-10, 5

Torvalds, Linus, 15, 21

ideology of hacker culture, 70

Linus’s law, 30

Linux kernels, early releases of,
29

releasing stable and unstable
kernels, 32

reusing code for Linux, 24

success of, 170

Tragedy of the Commons
(Hardin), 124

transfer of title, 76

U
Unix, 8–10

Berkeley vs. AT&T, 13

Free Software Foundation
(FSF) and, 69

GNU project and, 11

origins of, 8

portability of, 9

proprietary era of, 12–15

use value, 117

Usenet, 9

users, 26

as co-developers, 29

use-value of software, 129–132

V
van Rossum, Guido, 71

VAX, 9

W
Wall, Larry (inventor of Perl), 40

hacker culture and, 71

Weinberg, Gerald (author), 50

widget frosting, 136–142

Windows operating system, 14

workstations, first generation of,
11

X
X window system, 12

XEROX PARC (Palo Alto
Research Center), 7

Z
Zawinski, Jamie (Mozilla co-

founder), 186

Index

241

The cover of this book was designed and produced in Adobe Pho-

toshop 5.0 and QuarkXPress 4.1 with Interstate and Sabon fonts.

The cover illustration, “Composition with Figures,” was painted

by Livbov Popova in 1913. It is part of the collection of the State

Tetraykov Gallery.

The interior of the book is set in Adobe’s Sabon font, which was

designed by Jan Tschichold in 1964. The roman design is based on

Garamond; the italic is based on typefaces created by Robert

Granjon, one of Garamond’s contemporaries. Sabon is a regis-

tered trademark of Linotype-Hell AG and/or its subsidiaries.

Composition was done using GNU Emacs, the DocBook 4.1

markup language, and a set of formatting tools developed by Steve

Talbott, Norm Walsh, and Lenny Muellner using perl and GNU

troff.

Many people contributed to this project, including Tim O’Reilly,

Edie Freedman, Sarah Jane Shangraw, Claire Cloutier, Lenny

Muellner, David Futato, Melanie Wang, Emma Colby, Joe Wizda,

Catherine Morris, Emily Quill, Matt Hutchinson, Sue Willing,

Betsy Waliszewski, and Mark Brokering.

